

BIOMOLECULAR MARKERS FOR THE ASSESSMENT OF GENETIC POTENTIAL IN BIOREMEDIATION PROJECTS

BIOMOLECULAR MARKERS: DNA sequences involved in a reaction of interest: selected on the contamination and the biological processes under analysis.

HOW CAN WE ANALYSE THEM?

BIOMOLECULAR ANALYSES: genomic DNA extraction + complementary analyses (qualitative and quantitative)

QUALITATIVE ANALISIS

<u>Next-Generation Sequencing (NGS)</u> Taxonomic classification of the microbial community with relative abundances of specific groups.

QUANTITATIVE ANALYSIS

Quantitative PCR (qPCR) Absolut quantitication of specific taxonimic or metabolic genes.

HOW CAN WE USE THEM IN BIOREMEDIATION PROJECTS?

Case study 1: SITE CHARACTERISATION Matrix: soil; Contamination: aliphatic hydrocarbons and BTEXs; Case study 2: MONITORING

Matrix: groundwater; Contamination: chlorinated aliphatic hydrocarbons (CAHs)

SITE BACKGROUND

Petroleum products deposit

WHAT WE DO: Microbial characterisation

WHY: to investigate the biodegradative potential of the native microbial community and define the best site-specific biological strategy for the site remediation.

HOW: on the basis of chemical results we selected biomarkers and n. 19 samples for microbiological analysis, trying to investigate all the possible conditions:

- Samples from unsaturated, capillary fringe and saturated soil

11.500 m² site with previous petroleum products deposit, waste disposal and paraffines production;

2009: chemical characterisation

<u>2010-2017</u>: risk analysis \rightarrow groundwater contaminated by CAHs

<u>2018</u>: integrative characterisation **>** microbial characterisation to investigate the presence of biodegradative processes and their nature

<u>2019</u>: on the basis of characterisation results, **definition of a biological remediation strategy** \rightarrow MNA

2021: start of Monitoring of Natural Attenuation (MNA)

- Samples from contaminated and not contaminated zones.

ANALYSES: Next Generation Sequencing – NGS of bacterial16S rRNA gene Quantitative PCR (qPCR)

- bacterial 16S rRNA gene (total bacteria)
- **alkB** biomarker gene for aerobic degradation of aliphatic HC
- **todC** biomarker gene for aerobic degradation of BTEXs
- **dsrA** biomarker gene for sulfate reducers
- *narG* biomarker gene for nitrate reducers

MONITORING OF NATURAL ATTENUATION (MNA)

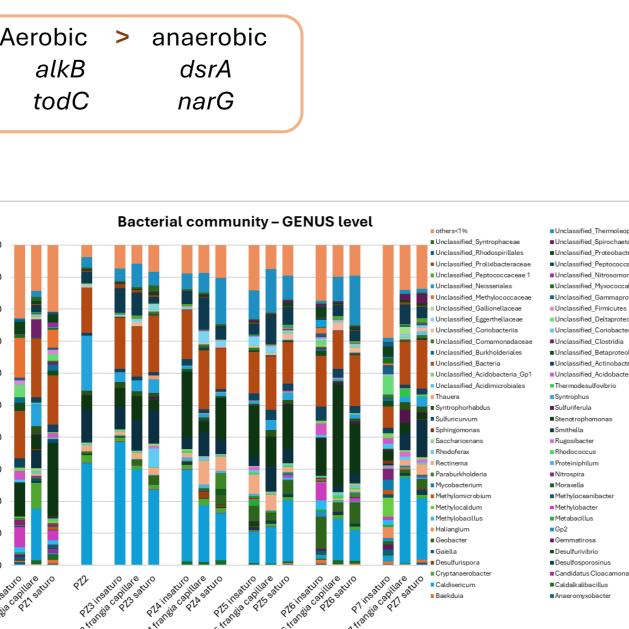

BIOMOLECULAR ANALYSES:

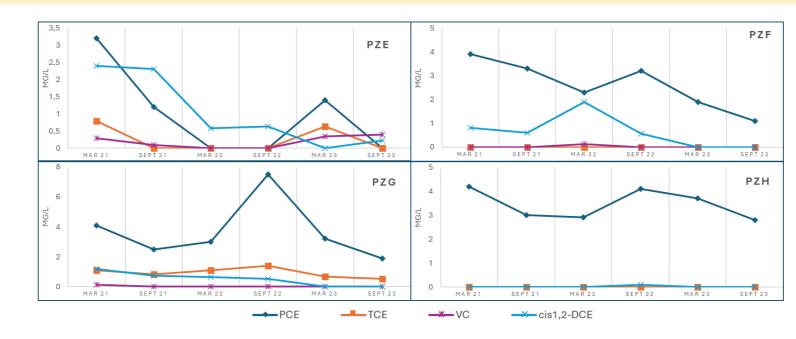
Next Generation Sequencing – NGS of bacterial16S rRNA gene

Quantitative PCR (qPCR)

- bacterial **16S rRNA** gene (total bacteria)
- 16S rRNA Dehalococcoides spp., model bacteria for reductive dechlorination of PCE to ethene.
- pceA biomarker gene for anaerobic degradation of PCE and TCE.
- tceA biomarker gene for anaerobic degradation of TCE and DCE.
- vcrA biomarker gene for anaerobic degradation of DCE and VCM.

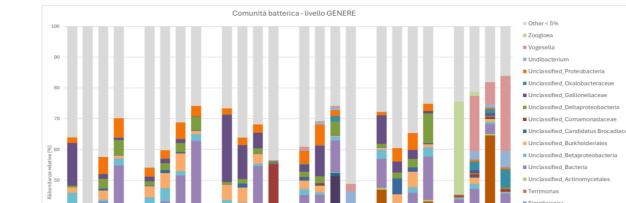
RESULTS


NGS ANALYSES:

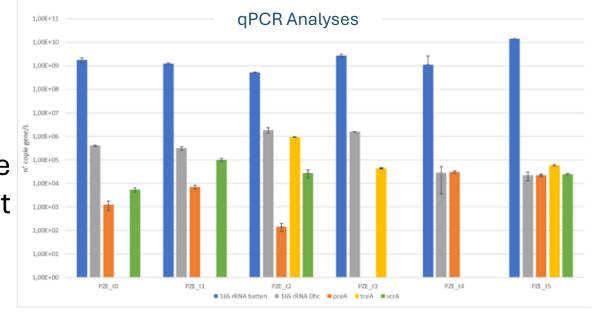

Samples from <u>superficial and not-contaminated soils</u> are characterised by a mostly **AEROBIC community**: *Xanthomonadales & Bacillales*

Samples from <u>deep and contaminated soil</u> are characterised by an **ANAEROBIC community**:

Caldisericales & Syntrophobacterales

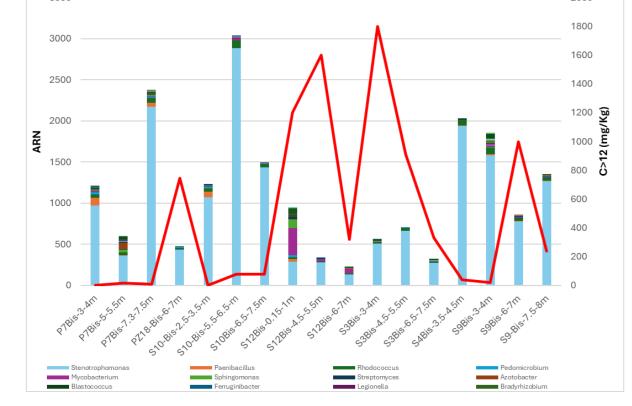

	Aerobic chemoorganotrophic bacteria		
3500		2000	

MICROBIOLOGICAL ANALYSES - qPCR:


increase in gene degradation potential during monitoring, with the greatest potential at the final time in the PZE, the one with best chemical results.

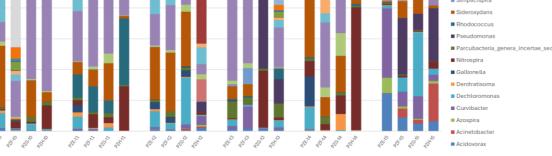
CHEMICAL & ISOTOPIC ANALYSES:

reduction of contaminant concentrations in all monitored piezometers


→ it can be attributed to biological processes of reductive dechlorination (anaerobic) and co-metabolism (aerobic).

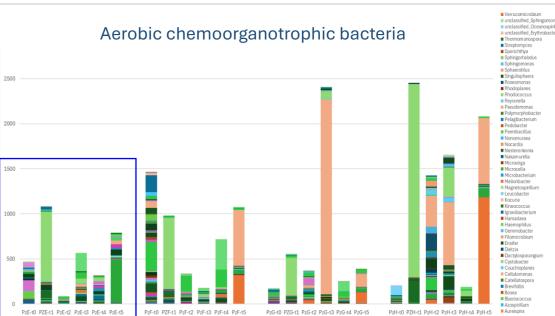
MICROBIOLOGICAL ANALYSES - NGS:

Mostly anaerobic populations, but non-strictly reducing conditions. Presence of bacteria for both anaerobic (*Aquabacterium, Dehalococcoides, Dechloromonas, Desulfosporosinus*) and co-


Duration: 3 years Times: every 6 months

NGS DATA ELABORATION:

Functional analyses is a tool through which it is possible to attribute the membership of specific bacterial groups (orders and/or genera) identified through NGS sequencing to functional groups, also defining their normalized relative abundance (ARN). It is useful to compare functional data with chemical ones, to investigate possible relations between them.


→ in this case it is evident the correlation between contamination and anaerobic community.

NGS DATA ELABORATION:

Functional analysis and PCA \rightarrow PZE is the piezometer that evolves least over time, maintaining anaerobic conditions the most. This could explain the best results for reductive dechlorination in this piezometer.

metabolic (*Pseudomonas, Curvibacter, Nistrospira Acinetobacter*) CAHs removal.

CONCLUSIONS

Results show the microbial community composition and functions, representing a precious instrument for the understanding of on-going processes and potential ones present on site.

Definition of the best site-specific remediation strategy.

Results show the effectiveness of the chosen remediation strategy, based on natural attenuation processes, allowing possible interventions to improve contaminant degradation and the site remediation. Achievement of bioremediation objectives.

M3R- Monitoring and Management of Microbial Resources S.r.l.

Viale Ortles 22/4, 20139, Milano (Italy)

WEBSITE: www.m3r.it

Contacts: info@m3r.it; tatiana.stella@m3r.it +39 02 5666 0153