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PAX5::AUTS2 childhood B-ALL: a relapse-prone genetic subtype
with frequent central nervous system involvement and a poor
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TO THE EDITOR:
In childhood and young adolescent B-cell precursor acute
lymphoblastic leukemia (B-ALL) PAX5 is one of the most frequent
targets of genetic alterations comprising deletions, intragenic
amplifications (PAX5AMP), and point mutations as well as
rearrangements (PAX5-r) with multiple partner genes [1]. PAX5-r
account for 2–3% of all newly diagnosed B-ALL cases and result in
the expression of fusion oncoproteins [1, 2].
Patients with PAX5-r tend to have higher relapse and poorer

overall survival (OS) rates compared to good-risk genetic groups
[3–5]. Recent studies indicate that PAX5-r is associated with the
IKZF1plus copy number alteration (CNA) profile and a rather poor
event-free survival (EFS) [3, 5]. In small cohorts of infant B-ALL,
PAX5-r patients had a worse outcome than those with other non-
KMT2A genetic subtypes [6, 7].
Most, but not all, cases with PAX5-r belong to the PAX5-altered

(PAX5alt) subtype identified by gene expression profiling [1].
PAX5alt is associated with an intermediate to poor prognosis with
a strong dependence on IKZF1 codeletion [1, 8, 9]. Despite sharing
a distinctive expression signature, the underlying genetic land-
scape of PAX5alt is heterogeneous and various types of PAX5

lesions, which differently affect disease biology and outcomes, are
merged into a single group [1, 9]. Moreover, PAX5 is fused to a
multitude of different partner genes, and since most of these
fusions have been detected only in a few cases [1], the impact of
individual PAX5-r on outcomes remains to be determined.
In this international study, we collected cases with PAX5::AUTS2

B-ALL diagnosed over the past decades in patients aged 0–18
years, without any time or study protocol restrictions, to evaluate
the prognostic relevance of this rare genetic subtype. In
accordance with the Declaration of Helsinki, patients were
enrolled in respective clinical trials with written informed consent
from their parents or legal guardians, and the use of surplus
diagnostic material for research purposes was approved by the
institutional review boards of the participating centers.
Patients with a confirmed PAX5::AUTS2 fusion detected by RT-

PCR or a next-generation sequencing (NGS) approach were
eligible for inclusion in the study. Additionally, since PAX5::AUTS2
frequently results from unbalanced der(9)t(7;9)(q11;p13) rearran-
gements, cases with breakpoints in both PAX5 and AUTS2
detected by single nucleotide polymorphism (SNP) array analysis
were included without additional molecular genetic verification,
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Table 1. Demographic, clinical, genetic characteristics and outcome of PAX5::AUTS2 patients.

Age group Children (>1 year) n= 42 Age <18 months n= 18 Infants (≤1 year) n= 8 All patients n= 50

Gender

Female 42.9% (18/42) 38.9% (7/18) 25.0% (2/8) 40.0% (20/50)

Male 57.1% (24/42) 61.1% (11/18) 75.0% (6/8) 60.0% (30/50)

Age

Median age in years (range) 2.3 (1.1–15.5) 1.1 (0.6–1.4) 0.9 (0.6–1.0) 2.0 (0.6–15.5)

≤1 year – – – 16.0% (8/50)

>1–3 years 78.6% (33/42) – – 66.0% (33/50)

>4–9 years 16.7% (7/42) – – 14.0% (7/50)

≥10 years 4.8% (2/42) – – 4.0% (2/50)

WBC 109/L

Median (range) 40.1 (1.2–537.6) 57.0 (2.7–315.0) 53.0 (3.9–299.7) 40.1 (1.2–537.6)

<20 35.7% (15/42) 27.8% (5/18) 25.0% (2/8) 34.0% (17/50)

≥20 16.7% (7/42) 22.2% (4/18) 25.0% (2/8) 18.0% (9/50)

≥50 47.6% (20/42) 50.0% (9/18) 50.0% (4/8) 48% (24/50)

CNS involvement

Yesa 21.4% (9/42) 33.3% (6/18) 62.5% (5/8) 28.0% (14/50)

No 78.6% (33/42) 66.7% (12/18) 37.5% (3/8) 72.0% (36/50)

IKZF1plus

Yes 66.7% (26/39) 60.0% (9/15) 33.3% (2/6) 62.2% (28/45)

No 33.3% (13/39) 40.0% (6/15) 66.7% (4/6) 37.8% (17/45)

Unknown 7.1% (3/42) 16.7% (3/18) 25.0% (2/8) 10.0% (5/50)

Prednisone response

Good 78.8% (26/33) 56.3% (9/16) 62.5% (5/8) 75.6% (31/41)

Poor 21.2% (7/33) 43.8% (7/16) 37.5% (3/8) 24.4% (10/41)

Unknown 21.4% (9/42) 16.7% (2/18) 0.0% (0/8) 18.0% (9/50)

MRD

FCM day 15 ≥10% 26.3% (5/19) 40.0% (4/10) 50.0% (2/4) 30.4% (7/23)

PCR and/or FCM EOI positiveb 82.1% (32/39) 64.3% (9/14) 60.0% (3/5) 79.5% (35/44)

MRD EIO ≥5 × 10−4 40.6% (13/32) 44.4% (4/9) 20.0% (1/5) 31.8% (14/44)

MRD EOI <5 × 10−4 65.4% (19/32) 55.6% (5/9) 40.0% (2/5) 47.7% (21/44)

MRD EOI negative 17.9% (7/39) 35.7% (5/14) 20.0% (2/5) 20.5% (9/44)

PCR and/or FCM EOC positivec 32.4% (11/34) 25.0% (3/12) 0.0% (0/3) 29.7% (11/37)

Relapse

Yes 42.9% (18/42) 61.1% (11/18) 62.5% (5/8) 46.0% (23/50)

BMd 72.2% (13/18) 63.6% (7/11) 40.0% (2/5) 65.2% (15/23)

CNS 11.1% (2/18) 18.2% (2/11) 20.0% (1/5) 13.0% (3/23)

BM & CNS 16.7% (3/18) 18.2% (2/11) 40.0% (2/5) 21.7% (5/23)

No 57.1% (24/42) 38.9% (7/18) 37.5% (3/8) 54.0% (27/50)

Outcome

Dead 19.0% (8/42) 27.8% (5/18) 25.0% (2/8) 20.0% (10/50)

Leukemia 37.5% (3/8) 20.0% (1/5) 0.0% (0/2) 30.0% (3/10)

Treatment-related complications 37.5% (3/8) 40.0% (2/5) 50.0% (1/2) 40.0% (4/10)

Other cause/unknown 25.0% (2/8) 40.0% (2/5) 50.0% (1/2) 30.0% (3/10)

Alive 81.0% (34/42) 72.2% (13/18) 75.0% (6/8) 80.0% (40/50)

WBC white blood cell count, CNS central nervous system, MRD measurable residual disease, FCM flow cytometry, EOI end of induction, EOC end of
consolidation, BM bone marrow.
aincluding patients with CNS2, CNS3, traumatic lumbar puncture with leukemia blasts or reported as positive without any further classification.
bdays 28-42 of therapy.
cdays 78-112 of therapy.
done childhood patient had an extramedullary testis involvement.
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likewise cases identified by optical genome mapping (OGM). All
PAX5::AUTS2 fusion transcripts were in frame or at least predicted
to be. CNA profiling for IKZF1 deletion and IKZF1plus was
performed by SNP array, multiplex ligation-dependent probe
amplification (MLPA), digitalMLPA or OGM following standard
procedures (Supplementary Methods).
The Kaplan–Meier method was used to determine EFS and OS

rates and the analysis was performed in R (version 4.2.2) statistical
environment. Adverse events were defined as relapse at any site,
the development of a second malignant neoplasm (SMN), or
death from any cause. OS was defined as the time from diagnosis
to the date of last follow-up or death. The cumulative incidence of
relapse (CIR) was calculated using the Kalbfleisch and Prentice
method and compared with the Gray’s test considering death and
SMN as competing events. Multivariate analysis was conducted
using a Cox proportional hazards regression model.
We identified 50 patients diagnosed with PAX5::AUTS2 B-ALL,

including 16 previously published cases (Supplementary Table S1).
The main demographic and clinical features showed a male
predominance (60% vs 40%), a median age of 2.0 years (range
0.6–15.5 years), including eight infants (≤1 year), and highly
variable white blood cell counts (WBC) ranging from
1.2–537.6 × 109/L (median 40.1 × 109/L) (Table 1).
We detected IKZF1 deletions in 69.6% (32/46 with available

data) of PAX5::AUTS2 cases, most displaying also CDKN2A/B (90.0%,

27/30) and/or PAX5 (87.1%, 27/31) deletions (Supplementary Table
S1). Based on this deletion pattern, 62.2% (28/45) showed the
IKZF1plus CNA profile [10] (Table 1), which is higher than reported
for childhood PAX5alt (20–30% IKZF1-deleted, 20% IKZF1plus) or
PAX5AMP (13% IKZF1plus) cases [1, 9, 11].
According to National Cancer Institute (NCI) criteria (age ≥10

years and/or WBC ≥50 × 109/L; infants), 60.0% (30/50) of patients
had high-risk (HR) status. Of the patients with available data,
24.4% (10/41) showed a poor prednisone response (Table 1),
which is ~15% higher than in the average population of childhood
B-ALL [10]. Measurable residual disease (MRD) data assessed by
flow cytometry (FCM) on day 15 were only available for 23
patients, and according to AIEOP-BFM definitions, 30.4% (7/23)
showed HR disease with ≥10% residual blast cells [12]. At the end
of induction therapy (EOI; days 28-42), PCR- and/or FCM-MRD
measurements showed that 79.5% (35/44) of patients were MRD-
positive: 31.8% (14/44) ≥5×10−4 and 47.7% (21/44) <5 × 10−4. At
the end of consolidation therapy (EOC; mainly day 78; range
71–117 days), 29.7% (11/37) of patients still presented with MRD,
but except for two (≥5 × 10−4), with levels ≤1 × 10−4 (Table 1 and
Supplementary Table S1).
Overall, 46.0% (23/50) of PAX5::AUTS2 patients experienced a

relapse with a median time-to-event of 1.6 years (range 0.6-4.1
years) with the majority (65.2%, 15/23) occurring within two years
after diagnosis (Fig. 1A; Supplementary Table S1). Most patients

Fig. 1 Course of disease and outcome of PAX5::AUTS2 patients. A Swimmer plot illustrating the clinical course of each individual patient.
Relapses (orange dots), bone marrow transplantation (BMT; blue triangles), and death (red crosses) as well as age groups <18 months (light
brown bars) and ≥18 months (gray bars) are indicated. B–C Cumulative incidence of relapse (CIR) and Kaplan-Meier survival curves of event-
free (EFS) and overall survival (OS), (B) of all PAX5::AUTS2 cases (n= 50), (C) based on age group; red, <18 months; blue, ≥18 months. Gray’s test
p-value for CIR, Log-ranks test p-values for EFS and OS. D Forrest plot showing results of multivariate Cox regression analysis. HR hazard ratio,
CI confidence interval, p Gray’s test p-value, WBC white blood cell count, NCI-HR National Cancer Institute high-risk, MRD-EOI (measurable
residual disease) determined by PCR and/or flow cytometry at the end of induction (EOI) therapy.
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had isolated bone marrow (BM; 60.9%, 14/23) relapses, but CNS
disease was detected in 34.8% (8/23) of patients mostly combined
with BM recurrence (Table 1). In total, 38.0% (19/50) of patients
had CNS disease: 22.0% (11/50) only at diagnosis, 6.0% (3/50) at
diagnosis and relapse, and 10.0% (5/50) only at relapse. Among
infants, 87.5% (7/8) had CNS involvement, with 62.5% (5/8) already
at diagnosis (Supplementary Methods), one patient at both time
points, and two additional cases only at relapse (Supplementary
Table S1). CNS disease was more frequently detected in infants
than in children [87.5% (7/8) vs 40.0% (12/30), Fisher exact test
p= 0.0031].
The 5-year CIR for all patients was 48.0 ± 7.8% (Fig. 1B) and of

the patients who relapsed, 17.4% (4/23) experienced a second BM
relapse within 3–9 months of the first (Fig. 1A). Among patients
experiencing a relapse, 30.4% (7/23) died, three of progressive
disease and four of treatment-related mortality (TRM), and in total,
20.0% (10/50) of patients died (n= 3 leukemia, n= 4 TRM, n= 3
other/unknown reasons) (Fig. 1A, Table 1 and Supplementary
Table S1).
With a median follow-up of 4.8 years (range 0.3–13.0 years), we

observed 5-year EFS and OS rates for all patients of 47.9 ± 7.6%
and 76.2 ± 7.1%, respectively, (Fig. 1B). Notably MRD levels
(≥5 × 10−4 vs <5 × 10−4 vs negative) at EOI did not significantly
impact CIR, EFS or OS (Supplementary Fig. S1A), suggesting that in
PAX5::AUTS2 patients EOI-MRD negativity does not predict a
favorable outcome. Patients with ≥5 × 10−4 EOI-MRD had a worse
EFS compared to cases with <5 × 10−4/negative EOI-MRD, but the
result did not reach statistical significance (p= 0.057) (Supple-
mentary Fig. S1B). Furthermore, we did not find any differences in
5-year EFS and OS between IKZF1plus and non-IKZF1plus patients
(46.6 ± 9.9% vs 60.6 ± 14.0%, p= 0.67; 78.7 ± 8.5% vs 93.8 ± 6.1%,
p= 0.89) indicating that also IKZF1plus has no predictive value
(Supplementary Fig. S1C).
Given that patients were enrolled in various clinical trials with

differing risk stratification criteria and treatment regimens, we
compared the outcomes between earlier clinical trials and the two
most contemporary ones (i.e., AIEOP-BFM ALL 2017, ALLTogether-1)
but did not find any significant improvement (Supplementary Fig. S1D).
When comparing the outcomes of children and infants, we

observed a higher CIR and consequently a poorer EFS for infant
patients (Supplementary Fig. S2A). As several patients were just
over 1 year of age (Table 1), we explored whether age influenced
the outcome. Our analysis according to different age groups
revealed that patients aged <18 months had a significantly higher
5-year CIR (68.5 ± 12.7% vs 36.2 ± 9.4%, p= 0.006) and worse
outcome (Fig. 1C) than other age groups (Supplementary Figs.
S2B–D). In multivariate analysis, EOI-MRD ≥5 × 10−4 (hazard ratio
15.55, p= 0.001) and age (<18 months vs older; hazard ratio 16.65,
p= 0.001) had an independent impact on EFS (Fig. 1D).
Collectively, our study demonstrates that childhood PAX5::-

AUTS2 B-ALL is characterized by a high frequency of CNS
involvement and is a relapse-prone subtype with poor outcomes.
The disease mainly affects infants and toddlers with over 80%
being less than three years old, which differs from the childhood
PAX5alt group, which is more common in older patients (children
1–18 years, n= 94, median 9.5 years; ST1 cohort [1]) [1, 8, 9]. The
observed EFS and OS survival rates for PAX5::AUTS2 B-ALL were
lower than those in the overall PAX5alt group but similar to those
of patients with PAX5AMP [1, 8, 9, 11], underlining the importance
of focusing outcome analysis on genetically homogeneous
entities with unique alterations.
Our data also support the notion that PAX5-r is in general

recurrent in infants and along with KMT2A-r may represent a
further subgroup of infant B-ALL with a potentially dismal
outcome, while NUTM1-r has a favorable prognosis [6, 7, 13].
The finding that PAX5::AUTS2 patients enrolled in contemporary

trials still exhibit high relapse rates, emphasizes the need to
further explore innovative targeted treatment options [3].

Moreover, strategies to mitigate the risk of relapse and
treatment-related mortality associated with salvage therapy are
needed. Frontline use of the bi-specific T-cell engager blinatumo-
mab, which has been proven to be safe and effective also in
infants [14, 15] may be a worthwhile consideration.

DATA AVAILABILITY
The data relevant to this study are provided in Supplementary Table S1. More
detailed de-identified patient and genetic data may only be obtained from the
relevant clinical trial committees upon reasonable request.
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