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Abstract

Point cloud registration is a vital task in three‐dimensional (3D) perception, with

several different applications in robotics. Recent advancements have introduced

neural‐based techniques that promise enhanced accuracy and robustness. In this

paper, we thoroughly evaluate well‐known neural‐based point cloud registration

methods using the Point Clouds Registration Benchmark, which was developed to

cover a large variety of use cases. Our evaluation focuses on the performance of

these techniques when applied to real‐complex data, which presents a more chal-

lenging and realistic scenario than the simpler experiments typically conducted by

the original authors. The results reveal considerable variability in performance across

different techniques, highlighting the importance of assessing algorithms in realistic

settings. Notably, 3DSmoothNet emerges as a standout solution, demonstrating

good and consistent results across various data sets. Its efficacy, coupled with a

relatively low graphics processing unit (GPU) memory footprint, makes it a promising

choice for robotics applications, even if it is not yet suitable for real‐time applications

due to its execution time. Fully Convolutional Geometric Features also performs

well, albeit with greater variability among data sets. PREDATOR and Geo-

Transformer are promising, but demand substantial GPU memory, when handling

large point clouds from the Point Clouds Registration Benchmark. A notable finding

concerns the performance of Fast Point Feature Histograms, which exhibit results

comparable to the best approaches while demanding minimal computational

resources. Overall, this comparative analysis provides valuable insights into the

strengths and limitations of neural‐based registration techniques, both in terms of

the quality of the results and the computational resources required. This helps re-

searchers to make informed decisions for robotics applications.
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1 | INTRODUCTION

Point clouds registration is the problem of finding the rototranslation

that best aligns two point clouds, that is, two sets of points with

three‐dimensional (3D) coordinates.

Point clouds registration algorithms can be used in many differ-

ent applications. For example, robots typically require maps to

accurately locate themselves in an environment; point cloud regis-

tration techniques are often used to create these maps. Remote

sensing of natural environments is another application, as most 3D

sensors produce point clouds that are partial views of the environ-

ment and need to be aligned. However, point cloud registration does

not necessarily have to be applied to complex scenes, as in the

previous applications: it can also be applied to single objects or small

scenes.

The requirements of the different types of applications are very

different. Therefore, in this work we focus on robotics applications

solely, which usually involve large, complex scenes. For the same

reason, we focus on rigid point clouds registration, which is most

commonly used and most effective when dealing with large and

complex scenes, rather than individual objects.

The difference between different fields of application lies in

the usage conditions and assumptions. For example, in case a point

clouds registration technique is used as part of an architectural

reconstruction pipeline, we can expect a static world, carefully

calibrated acquisition poses, a large overlap between the point

clouds to be aligned, and no occlusion. In addition, poorly acquired

or too noisy point clouds can be discarded or acquired again. Of

course, the same does not apply to robotics and especially not to

mobile robotics. Furthermore, execution times and memory usage

are much more critical for robotics applications, which are often

ultimately intended to work in real time. At the same time, lower

accuracy can be accepted, considering that the sensors themselves

are usually less accurate as well (although, with properly aligned

point clouds, noise can be reduced with smoothing techniques,

another important application of registration techniques in

robotics). Of course, there are overlaps between different but

closely related fields of study. They are not completely separate

worlds, but the benchmark we use is eminently robotic and may

not adequately represent the advantages and disadvantages of

algorithms for other applications. For example, we test different

approaches under very difficult conditions, such as low overlap,

high noise, or in highly repetitive environments. These are all

challenges that are common in robotics but may be unnecessary

for other applications.

The main difficulty in aligning two point clouds is finding corre-

spondences between the two sets of points. With the exception of

point clouds created with RGB‐D sensors, point clouds are usually

sparse. For this reason, it is much more difficult to describe the

neighborhood of a point than it is, for example, with images. There-

fore, 3D features are usually less effective than the 2D counterpart.

The first approach to registering point clouds was Iterative

Closest Point (ICP), independently developed by Zhang (1994), Besl

and McKay (1992), and Chen and Medioni (1992). ICP attempts to

solve the correspondence problem by approximating the true

unknown correspondences with a closest neighbor policy. This means

that for each point in the first point cloud, called “source,” the match

is the closest one (using a Euclidean distance) in the second point

cloud, the “target.” The generated set of correspondences is used to

create an optimization problem that is solved using Singular Value

Decomposition (SVD). The whole process is repeated until the con-

vergence criteria are met. ICP, despite its simplicity, works reasonably

well. However, two conditions must be met: the two point clouds

must already be roughly aligned, and there should be a large overlap

between the two point clouds. Nevertheless, even if these two

conditions are met, ICP can lead to incorrect solutions, mainly

because it tends to fall into local minima and because its data asso-

ciation strategy can lead to a large number of incorrect

correspondences.

For this reason, several variants of ICP have been proposed in

recent years. These variants may aim, for example, to improve the

quality of the result, to speed up the algorithm, or to relax the con-

straint of overlap or initial misplacement between point clouds. A

comprehensive comparison of ICP variants was performed by

Pomerleau et al. (2013). Important variations of the original ICP

algorithm are those involving the error function to be optimized. For

example, the Generalized ICP (GICP) algorithm uses not only the

distances between two points, but also the covariances computed in

a neighborhood of the points (Segal et al., 2010). In this way, it can

better represent the underlying geometry of the clouds and produce

much better results than the original version (Fontana et al., 2021).

Instead of using a point‐to‐point association strategy, another option

is to associate points to planes, planes to planes, or even one point

with many points and weight them probabilistically (Agamennoni

et al., 2016).

One of the main problems with the basic version of ICP is that if

the overlap between the two point clouds is not complete, which is

almost always the case, a large number of false associations are

inserted into the optimization problem. To mitigate this issue, a

number of outlier rejection strategies have been developed (Babin

et al., 2019). There are also registration algorithms that do not use a

closest‐point‐based data association. For example, Normal Distribu-

tionsTransform aligns two point clouds by representing them as a set

of Gaussians and searching for the most likely alignment (Biber &

Straßer, 2003).

Despite the improvements, a major drawback of ICP‐like ap-

proaches is their limitation to small initial misalignments: they were

designed to solve the so‐called local registration problems. These are

defined as problems where the point clouds are already roughly

aligned or for which there is an initial guess about their alignment. In

many real‐world cases, an initial guess can be provided by other

sensors, such as inertial units, odometry, or Global Positioning System

(GPS). However, there is another class of problems: global registration

problems. In this case, the misalignment between the two point

clouds is not bounded. Obviously, global registration is a much more

difficult problem, of which local registration is a subset. Traditionally,
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however, global registration algorithms produce inferior results,

which usually need to be refined with a local technique.

Many global registration algorithms are based on geometric

features that aim to represent the geometric structure in the

neighborhood of a point by a vector. Of these, Point Feature

Histograms (Rusu et al., 2008), its faster variant Fast Point Fea-

ture Histograms (FPFH) (Rusu et al., 2009), and Angle Invariant

Features (Jiang et al., 2009) are notable examples. In addition,

SIFT features extracted from a depth image generated from a

point cloud have been used for the same purpose (Sehgal

et al., 2010).

Geometric descriptors allow one to estimate a set of corre-

spondences between the two point clouds. From these correspon-

dences, the rototranslation can be estimated using, for example,

random sample consensus (RANSAC) (Fischler & Bolles, 1981).

However, the number of false correspondences that these descrip-

tors entail usually makes the rototranslation estimation step chal-

lenging. Approaches such as Fast Global Registration (Zhou

et al., 2016) or TEASER (Yang et al., 2020) address this step and allow

the estimation of a rototranslation even in the presence of a high

number of outlier correspondences. TEASER is particularly able to

produce very good results in challenging scenarios (Fontana

et al., 2021).

More recently, neural network‐based solutions for point cloud

registration have been proposed. Two different types of approaches

have been proposed. The first type aims to represent a point cloud

with a single feature vector. Two point clouds are then matched by

finding the rototranslation that minimizes the distance between the

two feature vectors. Examples of the first category include point

cloud registration network (PCRNet) (Sarode et al., 2019) or Point-

NetLK, which implements PointNet and the classical Lukas‐Kanade

algorithms in a single recurrent deep neural network (Aoki

et al., 2019). While representing a point cloud as a single feature

vector is an elegant and efficient solution, it is particularly problem-

atic when aligning point clouds with partial overlap or moving objects.

This is because in these cases the two feature vectors differ greatly,

even when properly aligned. In our opinion, this type of technique is

therefore suitable for applications other than robotics, whose use

case commonly implies a partial overlap.

The second type of technique is similar to traditional feature‐

based approaches in that multiple feature vectors are extracted from

a set of keypoints or even from each point of the point clouds. These

features allow one to estimate a set of correspondences that are then

used with algorithms such as TEASER or Fast Global Registration. An

example of such an approach is Fully Convolutional Geometric Fea-

tures (FCGF), which are produced in a single pass by a fully con-

volutional neural network (Choy et al., 2019).

Another example is 3D Match, a 3D convolutional neural net-

work that uses a 3D patch around a point and computes a feature

descriptor (Zeng, 1917). A smaller distance between two descriptors

means a higher probability of matching. The descriptor was trained in

an unsupervised manner using correspondences from existing RGB‐D

reconstructions.

3DFeatNet, on the other hand, is a deep‐learning approach

based on a Siamese architecture (Chicco, 2021) that learns to rec-

ognize whether two given point clouds are from the same location

(Yew & Lee, 2018). It is trained in a weakly supervised manner using

pairs of point clouds with a GPS and inertial‐based localization. It uses

PointNet (Qi et al., 2017) to represent point clouds and, unlike

3DMatch, combines both a feature detector and a descriptor ex-

tractor. PPFNet is another approach based on PointNet. It uses

points, normals, and Point Pair Features (PPF) to compute feature

descriptors that are highly rotationally invariant (Deng et al., 2018).

A particular end‐to‐end approach is Feature Metric Registration

(FMR). Despite being based on features, it solves the registration

problem by minimizing the projection error onto a feature space

without requiring an explicit search for correspondences (Huang

et al., 2020).

Deep ICP (DCP) revises the classical ICP algorithm from a deep‐

learning perspective (Wang & Solomon, 2019). The result is a neural

network that maps source and target point clouds to transformation

invariant embeddings. These are used by an attention module that

predicts the match. Finally, a differentiable SVD layer estimates the

transformation.

3DSmoothNet is a neural‐based descriptor built using a voxelized

smoothed density value (SDV) representation with a Siamese deep‐

learning architecture and fully convolutional layers (Gojcic

et al., 2019). It achieves excellent results in the 3DMatch benchmark

data set (Zeng, 1917). It also enables the registration of laser scans of

outdoor vegetation, even when trained only on indoor RGB‐D data.

GenReg uses a completely different approach (Huang, Xu,

et al., 2021). Instead of estimating a set of correspondences, it

directly generates an aligned point cloud using a deep generative

neural network. Other examples of neural‐based approaches to point

cloud registration include RGM (robust point cloud registration

framework based on deep graph matching) (Fu et al., 2021), robust

point matching network (RPM‐Net) (Yew & Lee, 2020), point Gaus-

sian mixture model (PointGMM) (Hertz et al., 2020), and CorsNet

(Kurobe et al., 2020). However, these were only tested on registra-

tion problems involving single objects, not complex scenes, which are

a much more difficult problem.

In contrast to other approaches, PREDATOR is a machine

learning‐based technique that explicitly aims at solving registration

problems with low overlap (Huang, Gojcic, et al., 2021). Thanks to an

overlap attention block, this approach is able to estimate the common

areas of the source and target point clouds and therefore concentrate

the keypoints in this area. Thanks to this strategy, it can significantly

increase the success rate for problems with low overlap. The atten-

tion given to problems with low overlap is noteworthy because they

are often the most difficult to solve, they are relatively common in

practice, and many other approaches assume complete or at least

high overlap to work properly. Another approach that targets prob-

lems with low overlap is GeoTransformer (Qin et al., 2023). However,

it uses a different strategy than PREDATOR. Rather than estimating

the overlap region, it searches for correspondences over down-

sampled superpoints that are able to capture the geometric structure
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of a patch of the point cloud and that are transformation invariant.

Furthermore, it uses an overlap‐aware circle loss to focus on super-

point pairs with higher overlap, to obtain a correspondence‐free

method that can work efficiently in low‐overlap scenarios.

In contrast to previous feature‐based methods that mainly focus

on the extraction of rotation‐invariant descriptors, rotation‐guided

registration (RoReg) is a point cloud registration approach that utilizes

oriented descriptors and estimated local rotations (Wang

et al., 2023). RoReg utilizes the estimated local rotations to improve

the accuracy and robustness of the registration process. The core

idea is to incorporate the rotation information into the descriptor

matching and transformation estimation phases. This approach

should help improve the accuracy of the registration, especially for

problems with large rotations.

While many different approaches have been proposed, their

fields of application, such as large scenes or single objects, and their

advantages are not always clear. Most approaches are tested on very

limited data sets or on data sets that are too simple to represent the

real‐world scenarios of robotics applications. There is usually no

indication of how much the parameters of an approach have been

tuned to a particular data set. This is especially important given how

many parameters most techniques have and that it is often

impossible to tune them except by trial and error. We believe that the

ability to produce good results even when the parameters have not

been fine tuned to a specific scenario is critical to a truly useful point

cloud registration technique. In addition, most works do not compare

different techniques to each other, or compare only to very old

techniques, such as ICP.

We believe that testing point cloud registration approaches

against a common benchmark is critical. In particular, we want to test

whether recent advances in registration techniques offer real bene-

fits through the use of neural networks. That is, we want to test the

actual applicability of neural‐based techniques. This means that we

do not just want to know whether a technique performs well in a few

controlled experiments. Instead, we want to answer the following

questions:

• How does it perform on a variety of real‐complex scenes with

partial overlap?

• How well do the pretrained models provided by the authors

perform?

• Is the technique very sensitive to parameter settings?

• Is there an increase in performance compared with traditional and

well‐consolidated techniques?

All these questions can be summarized in one very important but

often neglected question: “Are neural‐based techniques for point

cloud registration applicable in practice?”

For these reasons, we selected the most remarkable neural‐

based point cloud registration techniques presented in the literature

and compared them on the Point Clouds Registration Benchmark

(Fontana et al., 2021). The results are then compared with a known

traditional technique. Since we believe that the reproducibility of the

experiments is an essential requirement for a sound comparison, we

provide all the details to reproduce the tests: the version of the

software used, the model, and the values of the parameters. We also

provide the raw results of the experiments and instructions to

reproduce them in a GitHub repository: https://github.com/

iralabdisco/neural_registration_comparison.

2 | MATERIAL AND METHODS

2.1 | Algorithms selection

The choice of techniques for point cloud registration is huge, even if

we restrict ourselves only to neural‐based approaches. Therefore, it is

impossible to compare them all. Moreover, point cloud registration

can be used in many different applications. In our opinion, it is not

useful to compare techniques developed with different objectives,

such as a technique for aligning small objects, with a technique for

reconstructing a large outdoor scene.

Since our goal is to compare point cloud registration techniques

for robotics applications, we defined the following requirements to

decide which techniques to test:

Req1 It must be able to align not only individual objects but also

large, complex scenes.

Req2 It must work with partial overlap problems. That is, part of the

scene represented in one point cloud might not be repre-

sented in the other.

Req3 It must also work in the presence of moving objects. That is,

even if the two point clouds represent the same scene, some

objects may have moved between the acquisition of the two

point clouds. This and the previous requirements may also

occur together.

Req4 There must be a public open‐source implementation of the

technique.

Req5 There must be a pretrained model available for the technique.

Req6 The technique should be neural based. That is, it should use a

neural network for at least one step of the registration

pipeline.

The first three requirements have led us to discard techniques

that align two point clouds by minimizing the distance between two

vectors, each of which represents an entire point cloud, such as

PCRNet (Sarode et al., 2019) or PointnetLK (Aoki et al., 2019). The

embedding vectors of two point clouds with only partial overlap will

indeed be very different, even if they are correctly aligned, since they

actually represent two very different sets of data. The same is true

for moving objects. Another problem is the dimension of the em-

bedding vector, which might be too small to represent a large,

complex outdoor scene. To support our conclusions, we observe that

these approaches are often tested only on single objects, almost

always from the ModelNet40 data set, which consists of 3D

computer‐aided design models of objects (Wu et al., 2015).

4 | FONTANA ET AL.
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Therefore, this is a use case very different from that of this work,

namely, robotics.

Requirement 4 is due in part to the need to test the techniques

and adapt them to our chosen benchmark. Although this is not strictly

necessary, open‐source software definitely facilitates this step. Also,

and most importantly, we would like to encourage research in point

cloud registration and advocate for the use and development of open

software in academic research.

Requirement 5 arises from several considerations. First, we want

the comparison to be useful to the potential users of these tech-

niques. Successful training of a neural network depends heavily on a

good choice of parameters, which usually requires a lot of trial and

error and, most importantly, a lot of computational resources. To

choose the right parameters, one needs to know how the network

works. Therefore, we think it is highly impractical and unlikely that a

user will retrain the network. Furthermore, if we retrain the net-

works, the poor performance of an approach could be due to our

poor training rather than the technique, and we consider this

unacceptable. Most importantly, we believe that testing the ability of

a network to generalize to environments other than those used in

training is fundamental to the practical utility of a network. Because

the applications for point cloud registration are so large and training

is so impractical, we believe this capability is essential. At a minimum,

a network should be able to generalize to environments that are

similar, but not identical, to those used in training. For example, an

office environment that is different from the one used to train the

network. Finally, finding training data for point cloud registration with

high‐quality ground truth is not an easy task. This is confirmed by the

fact that most of the works were trained on few real data sets, such

as KITTI (Geiger et al., 2012) or 3DMatch (Zeng, 1917), or on syn-

thetic data sets, such as ModelNet40. Obviously, we cannot use the

Point Clouds Registration Benchmark, since it is used in the testing

phase.

Regarding Requirement 6, some of the techniques we considered

are end‐to‐end. That is, they implement the entire registration pi-

peline. Others, however, generate feature descriptors that must be

used in conjunction with other techniques to estimate a roto-

translation. We have treated all the different types as “neural‐based”

regardless of whether the entire pipeline is implemented as a neural

network.

The algorithms we selected for comparison, together with their

implementation, are as follows:

• 3DFeatNet—https://github.com/yewzijian/3DFeatNet

• DCP—https://github.com/WangYueFt/dcp

• 3DSmoothNet—https://github.com/zgojcic/3DSmoothNet

• FCGF—https://github.com/chrischoy/FCGF

• FMR—https://github.com/XiaoshuiHuang/fmr

• PREDATOR—https://github.com/prs-eth/OverlapPredator

• GeoTransformer—https://github.com/qinzheng93/

GeoTransformer

• RoReg—https://github.com/HpWang-whu/RoReg

Initially, we also selected other algorithms that we believe are

noteworthy, but that we still had to discard. DeepVCP, for example, is

an end‐to‐end registration algorithm that achieves comparable

results to conventional nonneural methods but has higher robustness

against initial alignment errors (Lu et al., 2019). However, according

to the authors' experiments, which involved a random uniform initial

misalignment in the interval [0, 1] meters for translation and [0°, 1°]

for rotation, it still appears to be a local registration algorithm. We

believe that it would be unfair to compare local and global algorithms.

On the one hand, it is well known that local algorithms perform much

better than global algorithms on problems with smaller initial align-

ment errors (Fontana et al., 2021); on the other hand, local algorithms

are not able to solve global problems. Since all other approaches we

selected are global, we therefore had to discard DeepVCP.

We also discarded PPFNet, GenReg, and CorsNet because we

could not find an official implementation.

Eventually we did not test RGM, RPM‐Net, and PointGMM

because, according to the experimental activity reported in the cor-

responding papers, they are focused on the alignment of single

objects rather than complex scenes.

We believe that neural‐based approaches should also be com-

pared with traditional techniques. Since the two categories aim at

solving the same problem, there is no reason not to compare one

with the other. Therefore, we have also added a state‐of‐the‐art

geometric descriptor to the comparison, namely, FPFH.

2.2 | Data and methods

Choosing the right data set is an essential step for a comparison.

We chose the Point Clouds Registration Benchmark (Fontana

et al., 2021), which is very suitable for testing algorithms for robotics

applications. It consists of 15 sequences of data collected with dif-

ferent sensors and representing different types of environments.

Specifically, the represented outdoor environments are as follows:

• a forest, both summer and fall, a garden with a gazebo in summer

and winter, and a plain, from the ETH data sets (Pomerleau

et al., 2012);

• a reproduction of a planetary exploration environment, from the

planetary data sets (Tong et al., 2013);

• an urban road environment, from the Kaist data sets (Jeong

et al., 2019).

The indoor environments, on the other hand, are as follows:

• an indoor house environment and a college building, from the ETH

data sets (Pomerleau et al., 2012);

• office environments, from the TUM data sets (Sturm et al., 2012).

Figures 1–3 show some of the sequences used for the experi-

mental activity.
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The methodology used for the experimental activity is that

proposed for the Point Clouds Registration Benchmark. This pro-

vides, in addition to the data, sets of registration problems, that is,

pair of point clouds to be aligned and initial misalignments to apply to

the source point cloud. The overlap between the source and target

point clouds, that is, the area of the scene they have in common,

strongly affects the difficulty of a registration problem. For this

reason, the Point Clouds Registration Benchmark provides problems

consisting of pairs of point clouds sampled to cover a range of

overlap between 90% and 60%. The same is true for the initial mis-

alignment associated with a problem: it is randomly generated to

cover the entire range of possible misalignments.

There are two versions of the benchmark: for local algorithms

and for global algorithms. Since all of our chosen methods appear

independent of the initial misalignment, they should be able to solve

the global version of the benchmark, which includes random rotations

between 45° and180° for rotation and a large data set‐specific range

of translations.

Further details on the data and the methodology used to gen-

erate the registration problems can be found on the work of Fontana

et al. (Fontana et al., 2021) and on the original papers of the data sets

(Jeong et al., 2019; Pomerleau et al., 2012; Sturm et al., 2012; Tong

et al., 2013).

The algorithms we selected are of different types. Some are end‐

to‐end approaches to point clouds registration, others are neural

networks used for keypoint detection and descriptor extraction, still

others are for descriptor extraction only. Thus, although they serve

the same purpose, they need to be tested in different ways. There-

fore, we set the parameters of the different approaches to obtain the

best results within the limits of the available hardware. Nevertheless,

we have ensured the greatest degree of uniformity of testing con-

ditions and thus comparability of results.

In the case of techniques that extract keypoints and generate

feature descriptors, we used three different algorithms to estimate

the rototranslation from a set of correspondences: RANSAC, Fas-

tGlobalRegistration, and TEASER. The latter two algorithms are state‐

of‐the‐art and have proven to be very effective in estimating a

transformation even when there are a large number of outliers.

RANSAC, on the other hand, is still one of the most popular algo-

rithms and we therefore think that its results can be valuable to the

community. Regardless of the network used to generate the

F IGURE 1 Hauptgebaude (a) and gazebo_winter (b) sequences from the ETH data sets.

F IGURE 2 The box_met sequence, from the planetary data sets.
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 The pioneer_slam sequence, from the TUM data sets.
[Color figure can be viewed at wileyonlinelibrary.com]
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descriptors, we used the same parameters for the transformation

estimation algorithms. These are as follows:

• To search for the most similar descriptors in the other point

cloud, that is, to estimate correspondences, we used the L2

distance. That is, each descriptor in one point cloud is associ-

ated to the one in the other cloud that has the smallest Eu-

clidean distance. To speed up the calculation, we used a KDtree

data structure.

• correspondences were filtered out based on a “mutual distance”

filter. That is, a pair (descriptorS, descriptorT) is considered a true

correspondence and used for the transformation estimation step

only if descriptorT is closest to descriptorS and vice versa.

• For RANSAC, we used as “max_correspondence_distance” a value

equal to ⋅VOXEL SIZE_ 1.5.

• For Fast Global Registration, we used as “max_correspondence_-

distance” a value equal to ⋅VOXEL SIZE_ 0.5.

• For TEASER we used as “noise_bound” a value equal to

VOXEL SIZE_ .

VOXEL SIZE_ is the leaf size of the voxel grid filter we used to

downsample the point clouds. This parameter is specific to each

approach and specified below.

The values of these parameters have been chosen according to

suggestions of the Open3D framework we used for the experiments

(Zhou et al., 2018).

For approaches that generate feature descriptors but do not

extract keypoints, we used 5000 uniformly sampled points as

keypoints.

As a preprocessing step, we applied a voxel grid filter with a

leaf size of 0.1 m to each point cloud. This step is the same for

most of the approaches. Exceptions are PREDATOR, Geo-

Transformer, FCGF, and RoReg. PREDATOR and GeoTransformer

require a specific voxel size, depending on the data set used for the

training. Therefore, we used a leaf size of 0.025 m with the model

trained on 3DMatch and of 0.30 m with that trained on KITTI, as

recommended by the authors. FCGF has an internal voxel filter;

therefore, we did not use an external one. The leaf size we used is

the same of the other approaches, hence 0.1 m. The voxel size for

RoReg was determined using a specific procedure described in the

corresponding section.

Other parameters are algorithm specific and are described below.

2.2.1 | 3DSmoothNet

3DSmoothNet uses a voxelized SDV representation. Therefore, we

generated it for 5000 randomly selected points. The voxel grid has a

size of 16 × 16 × 16, with a radius of 0.5 and a smoothing kernel

width of 1.75. It should be noted that these are mostly default values

provided by the developers. As we will see in the experimental sec-

tion, they work quite well for a variety of data. We only changed the

voxel radius because most of the point clouds we used were too

sparse to use the default value. Still, we used the same value for each

point cloud, regardless of density.

The feature extraction network does not require any special

parameters except the feature size, which we set to 64.

2.2.2 | Feature metric registration

For FMR we used 10 iterations as suggested by the authors. We

performed experiments with two different pretrained models, trained

with the ModelNet40 and 7Scenes data sets.

2.2.3 | FPFH

FPFH is a nonneural feature. We did not change any parameter

compared with the default settings specified by the authors.

2.2.4 | 3DFeatNet

With 3DFeatNet we used the following parameters:

• Radius for sampling clusters = 2.0

• Maximum number of points to consider per cluster = 64

• Feature dimension size = 32

• Radius for nonmaximal suppression = 0.5

• Minumum response ratio =10‐3.

• Maximum number of keypoints = 1024.

2.2.5 | Fully convolutional geometric features

There are various pretrained models for FCGF. We used the two

models that gave the best results according to the original work.

These are the models trained on 3DMatch and KITTI.

The parameters used with the model pretrained on 3DMatch are

summarized below:

• model = 3dmatch_normalized_5cm_32,

• output features = 32,

• normalized = true,

• conv 1 kernel size = 7,

• D = 3.

Those used with the KITTI pretrained model, instead, are as

follows:

• model = kitti_notnormalized_20cm_32,

• output features = 32,

• normalize = False,

• conv 1 kernel size = 7,

• D = 3.

FONTANA ET AL. | 7
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2.2.6 | DCP

Although we wanted to test the benchmark with DCP as well, we

could not use it with the larger point clouds because we kept running

out‐of‐memory (OOM). This also happened with a very aggressive

down‐sampling step. Therefore, we unfortunately had to discard this

approach.

For the experiments, we used an NVIDIA GeForce GTX 1080 Ti

graphics processing unit (GPU) with 11 Gbytes of memory. DCP

stores point clouds as PyTorch tensors with float32 elements.

Therefore, with our hardware we can use point clouds with a maxi-

mum of 5350 points, that is, 64,200 bytes. In Table 1 we show the

mean number of points which composes the point clouds of

the sequences of the benchmark. As can be seen, even if we doubled

the available memory, we could not apply DCP to most sequences

(take as an example the sequence wood_autumn with an average size

of 36,352 points or the sequence box_met with an average size of

41,452 points).

2.2.7 | PREDATOR

The parameters used with the model pretrained on 3DMatch are

summarized below:

• voxel size =0.025m.

Those used with the KITTI pretrained model, instead, are as

follows:

• voxel size =0. 3m.

2.2.8 | GeoTransformer

The parameters used with the model pretrained on 3DMatch are

summarized below:

• voxel size =0.025m.

Those used with the KITTI pretrained model, instead, are as

follows:

• voxel size =0.3m.

2.2.9 | RoReg

RoReg also requires a specific voxel size to function properly. We

have calculated it according to the following methodology.

The model we used was trained on 3DMatch with a voxel size of

0.025m; on average, the spatial extent of the point clouds in the

3DMatch data set is 4 m. To determine the voxel size we use for

testing each sequence, we found the bounding box of each point

cloud and used this to calculate the extent of the point cloud. We

averaged these values over each sequence and used as voxel size the

value:

⋅
avg extent_

4
0.025.

The actual voxel size we used for each sequence is shown in

Table 2.

3 | RESULTS

We measure the quality of the results using the normalized distance

defined by the Point Clouds Registration Benchmark (Fontana

et al., 2021). That is, given a source point cloud S, composed of n

points Si, the rototranslation T estimated by a registration technique,

and the ground truth rototranslation G, the quality of the results is

measured by the distance between the source point cloud aligned

with the estimated rototranslation and the source point cloud aligned

with the ground truth rototranslation. The distance is defined as

follows:

⋅ ⋅

∥ ⋅ ⋅ ∥

∥ ∥
D G S T S

n
( , ) =

∑
,

i
G S T S

S S

−

− ¯
i i

i (1)

TABLE 1 Statistics on the number of points composing the point
clouds in the various sequences.

Sequence
Mean number of
points Maximum Minimum

plain 10,961 12,656 8884

stairs 12,685 20,243 6873

apartment 8355 12,275 3966

hauptgebaude 32,111 36,767 28,622

wood_autumn 34,660 38,786 31,601

wood_summer 36,352 46,369 31,436

gazebo_summer 23,626 34,458 15,221

gazebo_winter 26,397 33,054 21,270

box_met 41,452 56,521 23,909

p2at_met 18,113 32,751 6369

pioneer_slam 3802 7834 261

pioneer_slam3 3379 7467 1286

long_office_household 1834 5596 147

urban05 12,170 20,126 5581

Note: The point clouds have been downsampled using a voxel grid filter
with a leaf size of 0.1 m.

8 | FONTANA ET AL.
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where S is the centroid of ⋅S T S, is the application of the roto-

translation T to S, and ∥ ∥x is the L2 norm of the vector x.

The distance D represents the average distance between the

ground truth and the estimated positions of a point, normalized by

the average distance to the centroid of the point cloud. We chose

this distance first to allow comparison with other experiments on the

same benchmark, as described in the work of Fontana et al. Second,

normalization using the distance to the centroid allows meaningful

calculation of aggregate statistics, such as the median. The details and

complete rationale for this distance can be found in the original paper

(Fontana et al., 2021). It is not always easy to visualize how large an

error is just by looking at the metric, as it is dimensionless. For this

reason, we show images of example results corresponding to dif-

ferent degrees of error along with the ground truth for better visu-

alization. These are shown in Figures 4–7. Note that an error of 0.01

corresponds to an essentially perfect alignment, while errors of more

than 0.5 lead to unusable results.

Tables 3‐13 report the median and the 0.75 and 0.95 quantiles of

the experiments performed with the different algorithms. The sta-

tistics were computed both for the results of the registration problem

in each sequence and for all sequences together (the row named

“Total”). Feature extractors require other approaches to match the

extracted features and estimate a rototranslation from them. For this

step, we used RANSAC, FastGlobal Registration, and TEASER, all of

whose results are shown in the tables. FMR, RoReg, and Geo-

Transformer, on the other hand, are end‐to‐end approaches; for this

reason they have only a single set of results.

The metric proposed by the Point Clouds Registration Bench-

mark is a dimensionless quantity, since each error is scaled by the

average distance from the centroid of the point cloud. Therefore, it is

not always easy to identify how large an error is. For this reason, we

also give the residual errors, with respect to the initials. These are

shown in Table 14, which depicts the residual error in percent with

respect to the initial error. Given an initial error erri and a final error

errf , the residual res is defined as

⋅res
err

err
= 100.

f

i

TABLE 2 The voxel size we used to test rotation‐guided
registration.

Sequence Voxel size (m)

apartment 0.07

gazebo_summer 0.2

gazebo_winter 0.2

hauptgebaude 0.2

plain 0.2

stairs 0.1

wood_autumn 0.2

wood_summer 0.2

pioneer_slam 0.04

pioneer_slam3 0.06

long_office_household 0.03

box_met 0.2

p2at_met 0.3

planetary_map 0.7

urban05 0.7

F IGURE 4 A pair of point clouds from the apartment sequence of the ETH data sets, aligned obtaining a final error of 0.01. Notice how the
alignment is substantially perfect. (a) Aligned with the ground truth and (b) result with an error of 0.01. [Color figure can be viewed at
wileyonlinelibrary.com]

FONTANA ET AL. | 9
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Similar to the other columns, this shows the median of the re-

siduals in each sequence and among the entire benchmark. There-

fore, a residual of X% means that for half of the problems, the final

error was X% of the initial error or better. We believe that these

tables can help better identify how effective an algorithm is.

To facilitate the comparison of the different results, we also

show the median residual error of the various approaches in Figures 8

and 9. The y‐axis is truncated at 20%, as otherwise the smaller

residuals, which are the most interesting, would be indistinguishable

from each other.

In addition to the quality of the results, we also show statistics on

the computational resources required by each approach. These have

been collected using a machine equipped with an Intel Core i7 ‐

6850K central processing unit (CPU), with 64 Gbyte of random

access memory and a NVIDIA GeForce GTX 1080 Ti with 11 Gbyte

of memory GPU.

F IGURE 5 A pair of point clouds from the apartment sequence of the ETH data sets, aligned obtaining a final error of 0.1. (a) Aligned with
the ground truth and (b) result with an error of 0.1. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 A pair of point clouds from the apartment sequence of the ETH data sets, aligned obtaining a final error of 0.5. (a) Aligned with
the ground truth and (b) result with an error of 0.5. [Color figure can be viewed at wileyonlinelibrary.com]

10 | FONTANA ET AL.
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F IGURE 7 A pair of point clouds from the apartment sequence of the ETH data sets, aligned obtaining a final error of about 1.1. Notice how
the rotation of the red point cloud is completely wrong. (a) Aligned with the ground truth and (b) result with an error of 1.1. [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 3 Results obtained by employing 3DFeatNet features in conjunction with RANSAC, FastGlobal, and TEASER.

TEASER RANSAC FastGlobal
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

plain 6.96 11.76 17.23 4.19 7.76 14.28 10.92 14.03 17.00

stairs 1.91 2.58 5.48 2.06 2.72 4.15 2.58 3.65 7.94

apartment 1.54 1.76 2.35 1.42 1.76 2.17 1.78 2.04 2.48

hauptgebaude 1.50 2.15 7.13 1.91 2.66 5.62 2.43 3.36 4.60

wood_autumn 2.28 3.38 5.14 2.88 3.98 5.92 2.23 2.77 3.67

wood_summer 2.05 2.69 3.90 2.54 3.68 5.24 2.20 2.72 3.72

gazebo_summer 2.25 3.59 6.26 2.66 4.04 6.32 2.63 3.44 5.33

gazebo_winter 1.97 3.63 6.37 2.51 3.75 7.10 2.76 3.45 5.60

box_met 14.35 32.12 79.55 9.57 14.19 21.64 8.70 10.87 15.33

p2at_met 9.15 17.00 29.90 8.46 15.42 26.89 7.34 12.90 19.80

planetary_map 42.42 63.00 103.86 35.98 52.49 97.70 27.64 42.94 59.72

pioneer_slam 1.45 2.32 9.62 1.33 1.91 7.64 4.60 6.18 9.85

pioneer_slam3 3.44 6.59 10.58 1.89 4.58 9.02 4.60 6.26 9.43

long_office_household 1.61 2.21 13.86 1.62 2.05 9.71 2.09 3.73 9.26

urban05 2.00 3.15 5.98 2.13 3.20 6.86 2.70 3.42 4.65

Total 2.36 6.34 39.62 2.52 5.50 25.46 3.15 6.92 22.77

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviation: RANSAC, random sample consensus.

FONTANA ET AL. | 11
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TABLE 4 Results obtained by employing FCGF features with the model trained on 3DMatch in conjunction with RANSAC, FastGlobal, and
TEASER.

TEASER RANSAC FastGlobal
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

plain 0.34 2.38 3.33 1.51 6.44 12.33 0.60 1.66 2.38

stairs 0.02 0.04 4.97 0.05 0.08 3.07 0.04 0.09 2.83

apartment 0.03 0.06 1.91 0.04 0.06 1.31 0.04 0.10 1.46

hauptgebaude 0.75 1.56 2.11 0.58 1.41 2.12 0.55 1.11 2.04

wood_autumn 0.03 0.05 0.43 0.93 3.01 4.61 0.11 0.18 0.50

wood_summer 0.03 0.04 0.13 0.11 2.13 4.19 0.11 0.23 0.60

gazebo_summer 0.02 0.04 0.17 0.03 0.06 2.65 0.05 0.19 1.59

gazebo_winter 0.02 0.03 0.06 0.05 0.14 2.90 0.08 0.17 0.68

box_met 7.80 10.25 14.58 7.44 10.04 13.79 7.72 9.86 12.89

p2at_met 5.70 8.43 14.19 8.81 12.50 17.48 4.30 7.60 11.21

planetary_map 52.37 71.92 104.37 11.08 15.63 21.71 30.21 41.74 67.31

pioneer_slam 0.11 0.32 1.60 0.13 0.27 1.51 0.11 0.30 10.35

pioneer_slam3 0.06 0.09 0.18 0.07 0.11 0.15 0.05 0.08 0.18

long_office_household 0.18 0.86 2.55 0.15 0.48 12.39 0.22 1.88 10.46

urban05 3.05 4.19 7.47 2.57 3.75 5.35 1.17 1.83 3.80

Total 0.09 2.48 31.10 0.21 4.00 13.03 0.22 1.95 18.42

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviations: FCGF, fully convolutional geometric features; RANSAC, random sample consensus.

TABLE 5 Results obtained by employing FCGF features with the model trained on KITTI in conjunction with RANSAC, FastGlobal, and TEASER.

TEASER RANSAC FastGlobal
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

plain 9.37 13.93 23.33 6.93 9.58 16.63 3.17 6.44 11.51

stairs 2.93 4.48 8.08 2.44 3.33 7.78 2.21 3.33 5.51

apartment 1.68 2.06 3.22 1.42 1.78 2.18 1.45 1.79 2.23

hauptgebaude 3.16 5.02 8.79 2.74 3.36 4.36 1.26 2.77 6.03

wood_autumn 2.65 3.69 5.94 2.98 3.98 5.39 0.71 1.67 3.24

wood_summer 1.98 2.76 3.54 2.93 3.73 5.23 0.69 1.55 3.07

gazebo_summer 2.93 4.37 7.16 2.73 3.75 5.23 0.95 2.06 4.30

gazebo_winter 3.05 4.55 7.17 3.62 4.78 5.87 0.67 1.84 4.48

box_met 12.96 17.29 28.75 9.08 13.99 22.34 7.79 9.86 13.37

p2at_met 10.59 16.31 27.74 10.67 13.45 21.27 7.15 9.21 14.53

planetary_map 42.37 62.96 99.80 11.41 16.00 28.81 28.93 40.79 67.32

pioneer_slam 6.22 11.74 17.24 2.79 9.89 16.96 5.53 7.98 12.64

pioneer_slam3 9.76 13.51 17.73 4.38 9.36 13.58 4.34 6.04 7.31

long_office_household 2.36 8.18 18.02 1.68 3.55 15.09 3.49 6.93 11.31

urban05 3.35 5.25 12.04 2.68 4.04 6.43 1.70 2.62 4.61

Total 3.78 10.05 29.48 3.36 6.98 16.66 2.28 6.11 19.47

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviations: FCGF, fully convolutional geometric features; RANSAC, random sample consensus.
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TABLE 6 Results obtained by employing FMR with a model trained on Modelnet40 and a model trained on 7scene.

7scene Modelnet40
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

plain 2.14 2.63 3.54 2.03 2.37 2.88

stairs 2.70 4.89 11.05 1.90 3.72 8.81

apartment 1.64 1.90 2.33 1.65 1.85 2.16

hauptgebaude 1.79 2.24 2.81 1.72 2.12 2.50

wood_autumn 2.01 2.39 3.17 1.95 2.33 2.81

wood_summer 1.78 2.31 3.44 1.76 2.06 2.64

gazebo_summer 1.75 2.28 3.43 1.63 2.00 2.90

gazebo_winter 3.04 4.19 7.21 2.71 3.90 6.62

box_met 2.42 2.99 3.35 2.45 2.90 3.29

p2at_met 2.51 3.36 7.20 2.28 2.91 5.18

planetary_map 11.96 18.09 24.69 7.06 10.38 13.64

pioneer_slam 2.13 2.83 4.13 2.26 3.81 9.04

pioneer_slam3 2.14 2.94 3.69 1.93 2.78 3.58

long_office_household 2.03 3.46 18.11 1.94 3.53 13.89

urban05 2.50 4.27 8.64 2.08 3.47 7.96

Total 2.17 3.12 12.20 2.03 2.83 8.42

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviations: FMR, feature metric registration; RANSAC, random sample consensus.

TABLE 7 Results obtained by employing FPFH features in conjunction with RANSAC, FastGlobal, and TEASER.

TEASER RANSAC FastGlobal
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

plain 0.14 1.22 4.81 5.93 8.09 12.32 0.78 1.59 2.66

stairs 0.05 0.51 4.47 1.91 3.86 7.46 0.24 0.72 4.86

apartment 0.02 0.04 1.64 0.10 1.62 4.16 0.05 0.14 1.55

hauptgebaude 0.56 1.59 2.15 1.63 2.82 3.86 0.55 1.16 2.02

wood_autumn 0.06 0.32 2.26 3.02 4.07 5.39 0.31 0.53 1.78

wood_summer 0.05 0.22 1.21 2.88 3.73 5.23 0.34 0.60 1.55

gazebo_summer 0.03 0.07 1.37 2.65 3.56 4.79 0.24 0.57 1.49

gazebo_winter 0.03 0.08 0.68 3.03 4.43 5.85 0.23 0.50 2.10

box_met 7.34 10.29 14.35 7.57 10.84 13.79 7.71 10.14 13.75

p2at_met 4.21 7.64 11.72 8.85 12.57 17.48 4.42 7.55 11.22

planetary_map 45.92 66.15 97.65 11.41 15.67 28.66 29.63 41.77 67.47

pioneer_slam 0.09 0.20 2.04 0.10 0.24 1.45 0.09 0.23 10.37

pioneer_slam3 0.05 0.08 0.28 0.06 0.12 0.35 0.06 0.11 0.33

long_office_household 0.10 0.26 2.38 0.13 0.31 9.25 0.12 1.34 11.68

urban05 2.64 3.71 6.34 2.46 3.62 5.17 1.47 2.27 3.12

Total 0.11 1.95 24.58 2.55 5.00 13.19 0.41 2.10 18.17

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviations: FPFH, fast point feature histograms; RANSAC, random sample consensus.
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TABLE 8 Results obtained by employing 3DSmoothNet features in conjunction with RANSAC, FastGlobal, and TEASER.

TEASER RANSAC FastGlobal
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

plain 0.03 0.05 2.51 0.05 0.09 7.37 1.28 1.96 2.91

stairs 0.01 0.02 0.08 0.03 0.05 4.61 0.98 2.47 5.10

apartment 0.01 0.01 0.02 0.03 0.04 0.05 0.56 1.41 1.85

hauptgebaude 0.79 1.03 2.37 0.01 0.80 1.70 0.66 1.10 2.02

wood_autumn 0.01 0.02 0.02 0.02 0.03 0.06 1.22 1.66 2.91

wood_summer 0.01 0.01 0.02 0.02 0.02 0.04 0.85 1.43 1.97

gazebo_summer 0.01 0.01 0.02 0.01 0.02 0.07 0.73 1.71 3.17

gazebo_winter 0.01 0.01 0.02 0.01 0.02 0.03 0.46 1.39 2.78

box_met 6.95 10.97 16.18 7.03 10.48 14.03 8.79 10.80 15.63

p2at_met 0.12 0.73 9.59 3.73 9.03 15.92 5.46 8.04 13.84

planetary_map 39.20 62.76 103.36 10.80 15.22 20.95 29.88 41.41 68.35

pioneer_slam 0.04 0.09 0.19 0.12 0.24 0.78 0.04 0.10 0.13

pioneer_slam3 0.02 0.03 0.06 0.05 0.08 0.15 0.01 0.03 0.07

long_office_household 0.05 0.12 0.25 0.09 0.20 0.41 0.04 0.10 0.92

urban05 0.62 1.84 3.55 2.24 3.61 4.83 1.70 2.21 3.29

Total 0.02 0.18 23.29 0.04 1.34 12.21 0.97 2.37 18.47

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviation: RANSAC, random sample consensus.

TABLE 9 Results obtained by employing PREDATOR, trained on 3DMatch, in conjunction with RANSAC, FastGlobal, and TEASER.

TEASER RANSAC FastGlobal
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

plain n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

stairs 0.27 1.96 3.59 0.80 3.28 6.64 2.13 2.56 3.45

apartment 0.15 1.23 2.03 2.78 4.03 5.01 1.50 1.70 2.00

hauptgebaude n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

wood_autumn n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

wood_summer n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

gazebo_summer n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

gazebo_winter n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

box_met n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

p2at_met 0.07 0.08 0.09 5.85 8.61 10.81 2.50 2.64 2.76

planetary_map n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

pioneer_slam 0.05 0.07 0.86 0.03 0.07 0.77 0.22 1.43 5.80

pioneer_slam3 0.02 0.03 0.09 0.02 0.03 0.13 1.21 2.35 3.79

long_office_household 0.03 0.06 0.57 0.04 0.08 0.32 0.32 1.39 6.57

urban05 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Total 0.04 0.12 1.91 0.05 1.64 4.57 1.21 1.80 3.99

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviation: n.a., not available; RANSAC, random sample consensus.
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TABLE 10 Results obtained by employing PREDATOR, trained on KITTI, in conjunction with RANSAC, FastGlobal, and TEASER.

TEASER RANSAC FastGlobal
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q median 0.75 Q 0.95 Q

plain 0.21 0.66 2.77 0.20 0.27 1.22 0.44 1.08 2.60

stairs 0.24 1.52 5.71 0.19 0.36 3.23 0.53 1.81 4.23

apartment 0.37 1.40 1.90 0.13 0.19 1.66 0.34 1.35 1.77

hauptgebaude 0.11 1.59 6.18 0.10 0.88 4.18 4.90 6.17 7.52

wood_autumn 0.05 0.07 0.15 0.06 0.10 0.25 2.73 3.08 3.82

wood_summer 0.04 0.07 0.13 0.07 0.10 0.97 2.41 3.07 3.83

gazebo_summer 0.04 0.07 2.03 0.07 0.10 0.82 0.68 2.63 4.37

gazebo_winter 0.03 0.05 0.33 0.06 0.09 0.79 2.21 3.35 5.01

box_met 6.90 10.37 13.44 7.71 10.26 15.52 8.46 10.69 15.92

p2at_met 0.48 5.08 13.54 0.50 6.72 14.14 5.83 9.53 15.92

planetary_map 58.77 85.97 112.36 13.96 21.05 118.67 38.36 53.04 77.98

pioneer_slam 0.62 6.32 10.06 0.42 0.99 3.72 1.62 6.31 7.52

pioneer_slam3 0.33 0.59 2.17 0.23 0.37 0.55 0.31 0.99 6.57

long_office_household 0.64 1.18 3.78 0.29 0.38 3.47 1.14 5.28 578,845.55

urban05 0.07 0.28 2.33 0.16 2.06 4.42 0.71 1.68 4.40

Total 0.14 0.99 10.41 0.14 0.59 9.77 1.89 3.97 10.97

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile of the residual error.

Abbreviation: RANSAC, random sample consensus.

TABLE 11 Results obtained by employing GeoTransformer
when trained on 3DMatch.

Sequence Median 0.75 Q 0.95 Q

plain n.a. n.a. n.a.

stairs n.a. n.a. n.a.

apartment n.a. n.a. n.a.

hauptgebaude n.a. n.a. n.a.

wood_autumn n.a. n.a. n.a.

wood_summer n.a. n.a. n.a.

gazebo_summer n.a. n.a. n.a.

gazebo_winter n.a. n.a. n.a.

box_met n.a. n.a. n.a.

p2at_met n.a. n.a. n.a.

planetary_map n.a. n.a. n.a.

pioneer_slam 0.02 0.03 0.05

pioneer_slam3 0.02 0.02 0.06

long_office_household 0.03 0.04 0.08

urban05 n.a. n.a. n.a.

Total 0.02 0.03 0.07

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile

of the residual error.

Abbreviation: n.a., not available.

TABLE 12 Results obtained by employing GeoTransformer
when trained on KITTI.

Sequence Median 0.75 Q 0.95 Q

plain 0.02 0.04 0.14

stairs 0.03 0.05 1.29

apartment 0.05 0.07 1.56

hauptgebaude 0.01 0.02 0.38

wood_autumn 0.01 0.01 0.02

wood_summer 0.01 0.01 0.02

gazebo_summer 0.01 0.02 0.04

gazebo_winter 0.01 0.01 0.03

box_met 0.16 1.86 2.86

p2at_met 0.03 0.07 1.90

planetary_map 5.28 8.06 12.84

pioneer_slam n.a. n.a. n.a.

pioneer_slam3 n.a. n.a. n.a.

long_office_household n.a. n.a. n.a.

urban05 1.47 1.81 2.42

Total 0.03 0.19 4.67

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile

of the residual error.

Abbreviation: n.a., not available.
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Since neural networks are almost exclusively used on GPUs

nowadays, we show the GPU memory required by each technique.

This is a critical requirement as GPUs with large memory are still very

expensive and, if the required memory is not available, the approach

simply cannot be used. Table 15 and Figure 10 show the maximum

GPU memory used by the different approaches in each sequence of

the benchmark. It should be noted that the displayed value was

calculated considering only the cases when the required memory did

not exceed the available memory, so that the network did not receive

OOM errors. However, there are cases where OOM errors actually

occurred; for PREDATOR and GeoTransformer (other technique

never got OOM errors) these are indicated inTable 16. Moreover, we

also show the time used by each approach to align a pair of point

cloud, divided into different phases.

The acronym “n.a.” in Tables 9, 11, and 12 stands for “not

available.” This appears when we were unable to produce results,

mostly due to OOM errors. The exception is GeoTransformer on

sequences from theTUM data sets (pioneer_slam, pioneer_slam3 and

long_office_household), which could not produce results due to the

required voxel‐based subsampling (0.3 m), which in these particular

sequences did not allow one to find enough neighbors in each voxel.

Table 17 and Figure 11 show the execution time of the different

approaches, averaged over all sequences. The times are divided into

Voxel Grid, SDV Voxelization, Features and Registration times, to

distinguish between the different steps of the registration pipeline.

TABLE 13 Results obtained by employing RoReg when trained
on 3DMatch.

Sequence Median 0.75 Q 0.95 Q

plain 5.60 12.87 25.96

stairs 0.02 0.03 0.06

apartment 0.25 1.51 2.56

hauptgebaude 0.03 0.13 10.73

wood_autumn 0.09 0.17 9.31

wood_summer 0.07 0.19 7.04

gazebo_summer 0.05 0.14 9.84

gazebo_winter 0.04 0.09 12.52

box_met 9.93 14.77 26.33

p2at_met 19.58 30.44 40.42

planetary_map 48.62 68.85 105.97

pioneer_slam 0.03 0.07 0.24

pioneer_slam3 0.01 0.03 0.05

long_office_household 0.03 0.05 0.10

urban05 5.22 9.82 14.94

Total 0.11 6.33 37.53

Note: Results are reported as the median, 0.75 quantile, and 0.95 quantile
of the residual error.

TABLE 14 Median of residual errors (%).

Sequence 3DFeatNet FMR FCGF FPFH 3DSmoothNet PREDATOR GeoTransformer RoReg

plain 98.35 83.05 4.48 2.17 0.46 3.19 1.14 70.32

stairs 37.29 68.36 0.59 1.21 0.35 6.01 1.19 0.43

apartment 45.75 49.02 1.10 0.86 0.28 11.39 1.79 9.41

hauptgebaude 59.93 103.86 26.95 15.75 21.23 4.77 0.67 1.35

wood_autumn 69.64 98.16 1.09 2.07 0.38 1.49 0.58 3.13

wood_summer 69.48 82.93 0.92 1.71 0.31 1.44 0.58 2.43

gazebo_summer 79.68 83.44 0.62 0.91 0.31 1.13 0.77 1.45

gazebo_winter 55.95 131.91 0.55 0.81 0.24 0.86 0.46 1.13

box_met 198.54 99.37 107.92 94.62 76.15 82.34 7.25 134.99

p2at_met 103.11 78.68 56.16 40.13 1.47 4.65 1.55 188.41

planetary_map 364.79 247.83 432.42 381.33 374.04 441.33 228.20 423.60

pioneer_slam 10.53 34.27 1.03 0.75 0.35 5.23 n.a. 0.27

pioneer_slam3 37.50 29.06 0.61 0.54 0.17 3.77 n.a. 0.18

long_office_household 9.17 26.44 1.12 0.69 0.32 8.59 n.a. 0.16

urban05 71.28 122.05 107.04 100.60 22.85 2.99 100.00 180.18

Total 63.39 82.04 1.73 1.87 0.47 3.20 1.27 3.10

Note: For non‐end‐to‐end approaches, the transformation has been estimated using TEASER.

Abbreviations: FCGF, fully convolutional geometric features; FMR, feature metric registration; FPFH, fast point feature histograms; n.a., not available;
RoReg, rotation‐guided registration.
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“SDV Voxelization” refers to the SDV voxelization of 3DSmoothNet

and does not include the time required by the voxel grid filter, which

is shown in the column named “Voxel Grid.” FCGF already includes a

voxel grid filter and therefore we did not use an external one. For this

reason, its execution time also includes the application of its internal

voxel grid filter. “Feature” refers to the time required for feature

extraction. It is only given for the approaches that have separate

feature extraction and registration steps, not for the end‐to‐end

approaches. “Registration” refers to the remaining steps, that is, the

estimation of rototranslation from the set of correspondences using

TEASER, for the techniques that require it, or the execution time of

the end‐to‐end approaches.

F IGURE 8 The median residual errors of the different approaches on sequences from the ETH data sets, in percentage w.r.t. the initial
error. FCGF, fully convolutional geometric features; FMR, feature metric registration; FPFH, fast point feature histograms; RoReg, rotation‐
guided registration. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 The median residual errors of the different approaches on sequences from the Planetary, TUM and Kaist data sets and among the
whole Benchmark (“Total”), in percentage w.r.t. the initial error. FCGF, fully convolutional geometric features; FMR, feature metric registration;
FPFH, fast point feature histograms; RoReg, rotation‐guided registration. [Color figure can be viewed at wileyonlinelibrary.com]

FONTANA ET AL. | 17

 15564967, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rob.22417 by C

ochraneItalia, W
iley O

nline L
ibrary on [16/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Finally, we also reproduced a very robotic problem. The

sequences from the TUM data sets were originally recorded by a

robot navigating in an office‐like environment. Therefore, we decided

to reconstruct the robot's trajectory by aligning each point cloud with

the previous one, as is done in simultaneous localization and mapping

(SLAM), but without loop closure, which is beyond the scope of this

paper. We then compared the estimated poses with the ground truth

and computed the errors and the corresponding statistics according

to Equation (1). For these experiments, we selected the best ap-

proaches that emerged from the previous results in terms of the

quality of the alignment. These are 3DSmoothNet, RoReg, FPFH,

PREDATOR, and FCGF. Table 18 shows the results of these

experiments.

4 | DISCUSSION

4.1 | Quality of the registration

Before discussing the results, we need to make some considerations.

First, the Point Clouds Registration Benchmark is very challenging,

especially in its global version that we used. In particular, the data sets

TABLE 15 The maximum memory usage for each sequence, in MiB, of the various approaches.

Sequence 3DFeatNet FCGF FMR 3DSmoothNet PREDATOR GeoTransformer RoReg

plain 8484 1038 1404 5660 1398 1160 10,626.0

stairs 8486 1148 1880 5658 1462 1208 11,160.0

apartment 4354 1034 1318 5658 1166 1006 9494.0

hauptgebaude 8486 1268 2970 5658 2160 1884 10,826.0

wood_autumn 8486 1288 3072 5660 2318 2126 10,788.0

wood_summer 8486 1336 3470 5664 2662 2034 11,060.0

gazebo_summer 8484 1246 2798 5660 1992 1590 11,024.0

gazebo_winter 8484 1248 2696 5658 2190 1758 11,166.0

box_met 8486 1380 3972 5660 2664 2000 10,626.0

p2at_met 8500 1184 2576 5664 2230 1920 10,626.0

planetary_map 8500 1300 4936 5664 11,168 6970 10,626.0

pioneer_slam 8500 996 920 9248 1076 914 11,168.0

pioneer_slam3 8486 986 826 5664 1056 936 10,862.0

long_office_household 8486 996 950 5664 1052 850 10,736.0

urban05 8492 1096 1734 5658 10,646 8806 10,626.0

Total 8500 1380 4936 9248 11,168 8806 11,168.0

Abbreviations: FCGF, fully convolutional geometric features; FMR, feature metric registration; MiB, Mebibyte.

F IGURE 10 The maximum memory usage, in
MiB, of the different approaches. FCGF, fully
convolutional geometric features; FMR, feature
metric registration; MiB, Mebibyte. [Color figure
can be viewed at wileyonlinelibrary.com]
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in the planetary section, the box_met, p2at_met, and planetary_map

sequences, are very challenging due to the high repetitiveness of the

environment. The urban05 sequence is also very challenging in the

global version of the benchmark because the point clouds are very

small (they contain only a few points) and sparse.

The second consideration is that most of the approaches we

have considered were originally tested on much simpler problems

and sometimes on single objects rather than on complex scenes.

Therefore, it is not surprising that some of them do not perform well

on real‐complex data sets.

Nevertheless, we still consider very valuable a fair comparison of

challenging data sets. The Point Clouds Registration Benchmark was

originally developed to represent problems encountered in real‐world

robotics applications. This is in contrast to the tendency we analyzed

to test algorithms on simple data sets, often comparing them only to

very old traditional algorithms, such as ICP. On the other hand, we

are interested in finding out whether neural‐based registration al-

gorithms are really useful in practice and whether they have any

advantages over effective traditional techniques, especially consid-

ering the additional computational resources required.

TABLE 16 Number of out‐of‐memory errors of PREDATOR and
GeoTransformer, using models pretrained on KITTI and 3DMatch.

PREDATOR GeoTransformer
Sequence KITTI 3DMatch KITTI 3DMatch

plain 0 100 0 100

stairs 0 48 0 100

apartment 0 5 0 100

hauptgebaude 0 100 0 100

wood_autumn 0 100 0 100

wood_summer 0 100 0 100

gazebo_summer 0 100 0 100

gazebo_winter 0 100 0 100

box_met 0 100 0 100

p2at_met 0 98 0 100

planetary_map 74 102 0 100

pioneer_slam 0 0 0 11

pioneer_slam3 0 0 0 30

long_office_household 0 0 0 13

urban05 0 100 0 100

Total 74 1053 0 1256

Note: Other techniques never got out‐of‐memory errors and are not
shown.

TABLE 17 Average execution time, in seconds, of the different approaches.

Voxel grid SDV voxelization Feature Registration Total

3DFeatNet 0.19 n.a. 20.133 0.231 20.554

FCGF n.a. n.a. 0.357 7.393 7.750

FMR 0.19 n.a. n.a. 0.230 0.42

FPFH 0.19 n.a. 0.277 3.079 3.546

3DSmoothNet 0.19 2.028 1.560 3.187 6.965

PREDATOR 0.17 n.a. 0.272 1.213 1.655

GeoTransformer 0.17 n.a. n.a. 0.465 0.635

RoReg 0.17 n.a. 6.000 3.786 9.956

Abbreviations: FCGF, fully convolutional geometric features; FMR, feature metric registration; FPFH, fast point feature histograms; n.a., not available;

RoReg, rotation‐guided registration; SDV, smoothed density value.

F IGURE 11 Average execution time, in seconds, of the various
approaches, divided into the different phases. FCGF, fully
convolutional geometric features; FMR, feature metric registration;
FPFH, fast point feature histograms; RoReg, rotation‐guided
registration; SDV, smoothed density value. [Color figure can be
viewed at wileyonlinelibrary.com]
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Of the approaches we have tested, 3DSmoothNet, FCGF,

PREDATOR, GeoTransformer, RoReg, and FPFH (which is not based

on a neural network) have achieved satisfactory results. This

becomes particularly clear when looking at Table 14, which compares

the residuals of the algorithms we tested. Most of these algorithms

are actually feature extractors. Therefore, we need another algorithm

to estimate a rototranslation from a set of features. We tested each

approach with RANSAC, FastGlobal and TEASER. However, TEASER

consistently achieved the best results, hence, in Table 14 and in the

rest of the discussion we consider only results obtained using

TEASER (if necessary). GeoTransformer, PREDATOR, FMR, and

FCGF were tested with different pretrained models. While all results

are listed in the previous tables, in Table 14 we only show the results

of the model with the best performance. This is FCGF trained on

3DMatch, FMR trained on modelnet40, and GeoTransformer and

PREDATOR trained on KITTI.

The performance of the different algorithms on sequences from

different data sets varies greatly; therefore it is worth looking at

each data set individually. On sequences from the ETH data sets

(plain, stairs, apartment, hauptgebaude, wood_autumn, wood_sum-

mer, gazebo_summer, and gazebo_winter), 3DSmoothnet achieved

the best results, with the median of the residuals almost always

below 1%, that is, the alignment was almost perfect. RoReg also

performed very well, with the exception of the plain sequence,

where we achieved significantly poorer results. It should be noted

that this sequence represents an environment that is very different

from the others and more similar to that of the planetary data sets,

which could be the reason for this difference. With the exception of

3DFeatNet and FMR, the other approaches obtained worse, but still

very good results. It should be noted that FCGF, FPFH, and

3DSmoothNet performed much worse on the hauptgebaude

sequence than on others of the ETH data sets. However, a solution

with a residual error of 20% can still be considered usable as global

alignment (which is usually refined later). On the other hand,

PREDATOR and especially GeoTransformer performed well on this

sequence too. A characteristics which distinguish the hauptgebaude

sequence is the high degree level of repetitivity. Therefore, it could

be that GeoTransformer and PREDATOR perform properly under

such conditions too. However, this is preliminar hypothesis only and

should be confirmed by further experiments in highly repetitive

environments. The relatively worse performance of some algorithms

on the hauptgebaude sequence could also be caused by a non-

optimal choice of parameters. It should be noted that comparing

approaches without fine‐tuning the parameters specifically for each

sequence is an objective of the Point Clouds Registration Bench-

mark and this work. Indeed, in a real‐world application, it is often

impossible to tune the parameters with exactly the same data that

will be used when the system is deployed. Therefore, we believe

that fine‐tuning leads to experiments with unrealistically good

results that do not correspond to the practical experience of the

end user.

On sequences from the planetary data sets, the performances

are very different. While on the p2at_met sequence 3DSmoothNet,

PREDATOR and GeoTransformer achieved good results, only the

latter approach was able to obtain usable solutions on the box_met

sequence, which is remarkable. It is quite surprising that some ap-

proaches performed well on the p2at_met sequence and much worse

on the box_met, as the two sequences are very similar: they depict

the same environment and were recorded under very similar condi-

tions. This is an indication of how susceptible most approaches might

be to even small changes in the data. On the other hand, the pla-

netary_map sequence is so hard (probably to much) in its global

variant that it is not surprising that none of the approaches worked

properly on it.

The sequences from the TUM data sets (pioneer_slam, pio-

neer_slam3, and long_office_household) represent an indoor office

environment and are therefore a good indicator of the performance

of the different approaches in indoor robotic applications. We can

see that the same observations we made for the ETH data sets hold.

On the one hand, this is to be expected, since indoor environments

are also represented in some ETH sequences. On the other hand, it

should be noted that the point clouds of the TUM data sets were

created with an RGB‐D camera, while those of the ETH were created

with a laser scanner. We believe that the ability of some approaches

to generalize to other types of sensors, without retraining, is

remarkable. Moreover, also 3DFeatNet and FMR, which produced

TABLE 18 Results of the best approaches on sequences from the TUM data sets.

3DSmoothNet FPFH RoReg
Sequence Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

pioneer_slam 0.068 0.13 0.52 0.087 0.16 1.17 0.047 0.11 1.27

pioneer_slam3 0.047 0.073 0.17 0.059 0.12 0.77 0.032 0.057 0.53

PREDATOR FCGF
Median 0.75 Q 0.95 Q Median 0.75 Q 0.95 Q

pioneer_slam 0.054 0.12 1.11 0.075 0.33 1.14

pioneer_slam3 0.036 0.063 0.55 0.059 0.096 0.64

Note: Each point cloud was aligned with the previous one to reconstruct the trajectory of the robot.

Abbreviations: FCGF, fully convolutional geometric features; FPFH, fast point feature histograms; Q, quantile; RoReg, rotation‐guided registration.
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mostly unusable results on other sequences, were able to produce

usable results, albeit worse than those of the other approaches.

As for the urban05 sequence from the Kaist data set, this is

certainly very challenging, especially because of the sparsity of the

point clouds. Only 3DSmoothNet and PREDATOR were able to

correctly align the point clouds, with the latter approach achieving

quite good results, with a residual of about 3%. It should be noted

that PREDATOR was trained on KITTI, which is quite similar to the

Kaist data set. However, it is also true that other approaches trained

on KITTI, such as GeoTransformer, could not achieve the same

results.

To summarize, we can conclude that 3DSmoothNet obtains the

best results overall with a median residual error of 0.47%. However,

other approaches are able to achieve similar results, with a high

variability between different sequences. We believe that the per-

formances of the FPFH features are remarkable as they are very

close to those of the other approaches, while they are not based on a

neural network and therefore, they do not require any GPU and are

much less computationally intensive.

We expected that the degree of overlap between the source and

target point clouds would influence the registration accuracy. How-

ever, our analysis showed no correlation between the degree of

overlap and the quality of the results. This lack of correlation may be

attributed to the presence of other influencing factors, such as initial

misalignment and scene geometry. In particular, the scene geometry

has a significant influence that may mask the effects of other

parameters. Due to the lack of a clear correlation, we chose not to

include the correlation with the degree of overlap in the results.

Nonetheless, our full results are publicly available, including the

overlap values according to the methodology described in Fontana

et al. (2021), so that interested readers can independently reproduce

the correlation statistics.

4.2 | Memory usage

Regarding the GPU memory usage, there is lot of variability among

different approaches. 3DSmoothNet, which performs very well in

terms of accuracy, has a relatively low memory usage, with a maxi-

mum of less than 6GiB, except for the usage for the pioneer_slam

sequence. Also noteworthy are the results of FCGF, which requires

very little GPU memory (with a maximum of 1380 MiB [Mebibyte]),

but can still achieve very good results.

On the contrary, the memory consumption of RoReg, and

especially of PREDATOR and GeoTransformer is very high when they

are trained on 3DMatch. As can be seen in Table 16, the latter two

got 100 OOM errors on many sequences. Considering that there are

100 registration problems per sequence, we can conclude that they

are hardly usable in such a configuration. This is the reason for the

“n.a.” results in Tables 9 and 11. On the other hand, these two net-

works, when trained on KITTI, have a lower memory footprint (except

for the planetary_map sequence, which however consists of very

large point clouds) and have few or no OOM errors, while performing

very well in terms of quality of the results. This leads us to believe

that the data used for training can strongly influence not only the

accuracy of the technique but also its memory consumption. This is

probably due to the different subsampling used for the internal

representation of the point clouds.

4.3 | Execution time

Of the various approaches, only GeoTransformer and FMR show a low

average execution time (less than 0.5 s). In contrast, 3DSmoothNet,

which achieved very good results and has a low memory usage, has a

very high execution time of about 6.8 s. As expected, there seems to be a

trade‐off between GPU memory consumption and execution time, as

approaches, such as GeoTransformer and PREDATOR, which have very

high memory consumption, take much less time than others with low

memory usage, such as 3DSmoothNet or FCGF. 3DFeatNet seems to be

an outlier, with an average execution time of more than 20 s. Therefore,

given the quality of its results, we would not recommend it for general‐

purpose point cloud registration. The performance of FPFH is remark-

able: although it is already a few years old and not based on a neural

network, it is still able to achieve almost state‐of‐the‐art results with an

execution time that is still below that of the other best approaches. In

addition, it does not require GPU memory and can therefore be used on

a much broader variety of machines.

As can be seen from Figure 11, the execution time is dominated by

the “Registration” phase, with the sole exceptions of 3DFeatNet and

RoReg. For approaches that are not end‐to‐end, and therefore have

separate phases for feature extraction and transformation estimation, the

“Registration” time is that required by TEASER to estimate a roto-

translation from the set of correspondences. Therefore, we can state that

the bottleneck, at least on our test machine, is the CPU rather than the

GPU, sinceTEASER is executed on the CPU. Moreover, the “Registration”

times of GeoTransformer and FMR are much lower, which confirms our

hypothesis, as these are end‐to‐end approaches that run entirely on a

GPU. On the contrary, the execution time of RoReg is very high, although

it is not the highest. It is dominated by the “Feature” phase, which is to be

expected given the way RoReg works. Indeed, it has to extract features

from the source and target point cloud after applying several different

rotations, hence the high computational cost of this step.

4.4 | SLAM‐like registration

Considering the results in Table 18, we can say that the selected ap-

proaches got very good comparable median results when trying to

reconstruct the trajectory of a robot by aligning consecutive point

clouds. This is expected, since consecutive point clouds usually have a

larger overlap and smaller misalignment w.r.t. the problems in the

benchmark we used in the previous test. The only significative difference

regards the 0.95th quantile. Here 3DSmoothNet significantly outper-

forms all the other three approaches, with a much smaller error. This

means that, the worst alignments of 3DSmoothNet are better than those
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of the other techniques. While this may seem a lesser advantage, it has

to be noted that when recostructing a trajectory, a single large error can

cause serious problems, for example, by making harder to detect loop

closures that are essential in SLAM applications. For these reasons,

3DSmoothNet appears to be the best choice when considering merely

the quality of the result. However, it has much larger execution times

(see Table 17); hence, its use for real‐time trajectory estimation appears

unfeasible at the moment, although it is a great choice for off‐line

mapping. RoReg, which performs best in terms of median error, has a

similar issue: its use does not currently seem feasible for this type of

problem due to its large execution time.

4.5 | Future directions

An initial consideration to note is that the majority of existing approaches

have been trained on two data sets: either 3DMatch or KITTI. However,

neither of these data sets adequately represents natural environments.

While KITTI captures outdoor scenes, it focuses on road environments,

which significantly differ from the natural settings found, for example, in

the planetary data sets (box_met, p2at_met, and planetary_map). This

disparity may explain the comparatively poorer performances on

sequences from these sequences. Of course, training neural networks on

data sets that better reflect the testing environment holds the potential

for substantial performance enhancements.

Natural environments, in particular, are inadequately represented

in current point cloud registration data sets. While acquiring high‐

quality ground truth data sets in natural outdoor environments may

pose challenges, it is a necessary endeavor to advance research in

this domain. For instance, the rise of robotic agriculture is likely to

necessitate more data to improve existing techniques. However, it is

noteworthy that certain approaches exhibit remarkable generaliza-

tion capabilities across diverse conditions, such as registering point

clouds recorded with light detection and rangings, even when trained

on RGB‐D data sets.

Recent methods like PREDATOR and GeoTransformer have

demonstrated good performance in terms of residual error. Never-

theless, their considerable memory requirements pose challenges,

making them less practical for aligning large point clouds, such as

those encountered in the Point Clouds Registration Benchmark. This

problem becomes even more important when considering robotic

applications, which usually have hardware limitations in terms of size,

weight and power consumption.

A critical point is the remarkable discrepancy between the per-

formance of some approaches reported in the original papers and the

actual results of our testing activity, which we believe reflects prac-

tical, albeit difficult, use cases well. This, together with the very large

memory requirements of some approaches, such as DCP, which we

were unable to test, highlights the need for more realistic experi-

ments when proposing new techniques. Although some proposals

have indeed been tested under very realistic conditions, this is still

not common. By “more realistic” we mean, for example, testing on

complex data representing different types of environments, so that

the generalization capabilities of an approach are properly empha-

sized. It also means that a model trained on data generated with one

type of sensor should be tested on data produced with another one,

which was already the case with only a few of the best proposals.

Finally, specifying the memory and computational requirements of

the proposals can also help in evaluating the techniques and

assessing when they are truly applicable.

Another critical point is not evident from the results we have

shown, but is nevertheless important: it is the time needed to make

some approaches work with experiments other than those of the

original papers. We were able to reproduce all the original experi-

ments without any problems. However, there were relevant problems

when we had to adapt the approaches to solve problems from the

Point Clouds Registration Benchmark. Some were easy to adapt, but

others required a lot of work, often on undocumented code. To make

a technique truly applicable in practise, it is therefore important to

provide an easy‐to‐use interface. An example could be a function or

script to align any two point clouds, similar to what is done for tra-

ditional approaches, like ICP or GICP in the Point Cloud Library (Rusu

& Cousins, 2011). In contrast, with most machine learning‐based

approaches, we had to write a custom data loader for our problems,

which in some cases meant a significant effort.

5 | CONCLUSIONS

We compared well‐known neural‐based point cloud registration

techniques on the Point Clouds Registration Benchmark, to assess

their practical applicability to robotic applications. The results show

that there is a lot of variability in their performances when applied to

real‐complex data, in contrast to the much simpler experiments

usually performed by the original authors. The results varies, of

course, between different approaches, but also when the same

approach is applied to different data, even from similar environments.

3DSmoothNet appears to be the best solution available, considering

its excellent results, which are very consistent even between differ-

ent kinds of data. This is especially true if we consider its relatively

low GPU memory requirements. FCGF and RoReg are also capable of

obtaining very good results, albeit with a larger variability among

different data sets. PREDATOR and GeoTransformer seems very

promising, however they requires a large GPU memory, at least when

applied to large point clouds, such as those from the Point Clouds

Registration Benchmark. Special considerations must be done re-

garding FPFH features. Their performance is very close to that of the

best approaches. This is remarkable, especially considering the little

computational resources they require.
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