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Abstract
Bayesian optimization (BO) based on the Gaussian process model (GP-BO) has become the most used approach for the global 
optimization of black-box functions and computationally expensive optimization problems. BO has proved its sample effi-
ciency and its versatility in a wide range of engineering and machine learning problems. A limiting factor in its applications 
is the difficulty of scaling over 15–20 dimensions. In order to mitigate this drawback, it has been remarked that optimization 
problems can have a lower intrinsic dimensionality. Several optimization strategies, built on this observation, map the original 
problem into a lower dimension manifold. In this paper we take a novel approach mapping the original problem into a space 
of discrete probability distributions endowed with a Wasserstein metric. The Wasserstein space is a non-linear manifold 
whose elements are discrete probability distributions. The input of the Gaussian process is given by discrete probability 
distributions and the acquisition function becomes a functional in the Wasserstein space. The minimizer of the acquisition 
functional in the Wasserstein space is then mapped back to the original space using a neural network. Computational results 
for three test functions with dimensionality ranging from 5 to 100, show that the exploration in the Wasserstein space is 
significantly more effective than that performed by plain Bayesian optimization in the Euclidean space and its advantage 
grows with the dimensions of the search space.

Keywords Bayesian optimization · Wasserstein distance · Gaussian processes

1 Introduction

1.1  Motivation

The challenge of Bayesian Optimization (BO) in high 
dimensional problems has been addressed mapping it into 
low-dimensional problems defined on subsets of variables. 
Kandasamy et al. (2015), Moriconi et al. (2020) or exploit-
ing a lower intrinsic dimensionality. To tackle the issue of 
high dimensionality a different approach is proposed in the 
present paper mapping the original problem into a space of 
discrete probability distributions.

We consider the optimization of a black-box, expensive, 
multi-extremal function f (x):

where X  is the search space and neither gradient nor convex-
ity information are available.

Consider the following composite function for i = 1,… , n

where h1(x),… , hn(x) is the univariate point cloud associ-
ated to x.

In the specific case of a linear scalarization of a 
multi-objective problem, f (x) =

∑n

i=1
�ihi(x) and each 

vector h1(x),… , hn(x) is the point cloud associated to x . 
Another class of problems which yield naturally a distri-
butional representation of a candidate solution are simula-
tion–optimization problems. This is the case in which the 
objective function is the average performance of a system 
where f (x,w) is the value of f (x) under the environmental 
condition w and p(w) represents the “relevance” of condi-
tion w (probability of its occurrence or the fraction of time 
that condition w occurs). Another setting is the hyper-
parameter optimization of a machine learning algorithm 
via k-fold cross validation, with f (x,w) a loss function 
(e.g., predictive accuracy, fairness, explainability, etc.) on 

(1)f (x) ∶ x ∈ X ⊂ ℝ
d
→ R

(2)f (x) = C
(
h1(x),… , hn(x)

)
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fold w using hyperparameter configuration x . The point 
clouds lay onto a metric space—i.e., the space of discrete 
probability distributions—in which a metric defines the 
distance between two points in that space, with the prop-
erties of positiveness, symmetry, and triangle inequality. 
Due to the nature of elements belonging to this space, 
the most appropriate distance between them is a distance 
between probability distributions. In this paper we focus 
on the Wasserstein (WST) distance and embed the origi-
nal optimization problem in the metric space whose ele-
ments are discrete probability distributions, which we call 
Wasserstein space W . Wasserstein distance, also known 
as the Optimal Transport (OT) distance, is a mathemati-
cally principled method to align probability distributions. 
Originated by a paper of Monge (1781), it received its 
linear programming formulation in Kantorovich (1942). 
A complete mathematical formulation is in Villani (2009) 
while Peyré and Cuturi (2019) offer a complete review 
of recent theoretical and computational advances. The 
Wasserstein distance has been widely applied in machine 
learning from shape analysis (Gangbo and McCann 2000) 
to image interpolation, domain adaptation (Redko et al. 
2019), parameter estimation in simulation models (Öcal 
et al. 2019), structured data on graphs (Vayer et al. 2018), 
active learning (Frogner et al. 2019), and adversarial net-
works (Arjovsky et al. 2017). The Wasserstein distance 
has many important properties: its representational capa-
bility has been shown by embedding in W  a variety of 
complex objects like images, networks, and words. An 
explanation of the interest in the Wasserstein distance 
is that Euclidean embeddings of data are flawed as they 
account for the correspondence of each feature indepen-
dently of the other features. Bayesian Optimization (BO) 
algorithms have so far largely focused on problems where 
inputs are represented as numerical and categorical vari-
ables in Euclidean spaces. A significant advance is pro-
vided in Jaquier and Rozo (2020) which extends BO to 
Riemannian manifolds.

In this paper we extend the distributional approach to 
BO by encoding the geometry of the data generated in 
the sequential optimization process and performing the 
search in W . The key advantage of BO is its well-known 
sample efficiency. The main question considered in our 
study is whether its sample efficiency can be further 
improved by embedding the optimization process in W . 
An important result is the development of a multi-layer 
perceptron (MLP) to map the results obtained by BO in 
W  back to original search space X  . The resulting algo-
rithm BOWS (Bayesian Optimization in the Wasserstein 
Space), at least for the test functions considered, outper-
forms “Euclidean” BO already in 10 dimensions and its 
competitive edge increases substantially as the dimension 

of the search space increases. We have only considered 
the case in which the probability measures are univariate 
discrete probability distributions (aka point clouds).

1.2  Related works

The use of Gaussian Processes with probabilistic inputs has 
been proposed in Candelieri et al. (2022a), but the use of the 
WST distance in optimization problems is still a sparsely 
explored field. The issue of placing optimization in the space 
of probability distributions has been analyzed in Zhang 
et al. (2018) where policy optimization in reinforcement 
learning is modelled using Wasserstein gradient flows and 
Zhang et al. (2019) where the problem of approximating 
the posterior distribution in Thompson sampling is solved 
via Wasserstein gradient flow providing also a theoretical 
guarantee of convergence. Since Thompson sampling (TS) is 
used both for sampling a Gaussian process as also as acqui-
sition function in the Bayesian optimization framework, an 
optimal transport based efficient computational strategy for 
performing TS is directly relevant for optimization. TS is 
a sequential optimization process based on the following 
steps: updating a posterior depending on the set of observa-
tions, drawing a sample from posterior as an approximation 
to the function to be minimized, minimizing this sample 
function to identify the next candidate point and evaluating 
the objective function at that point. However, calculating 
exact posterior distributions is intractable for all but the sim-
plest models. Therefore, the development of computationally 
efficient approximate methods for the posterior distributions 
is a crucial problem for scalable TS.

In Gong et al. (2019) and Liu and Wang (2016) it is shown 
how batch-BO enables to transform the optimization of the 
acquisition function into finding the optimal distribution in the 
space of all distributions. The resulting quantile variational 
optimization is then solved using Stein variational gradient 
descent. The use of gradient flows in the Wasserstein space 
has been proposed in Salim et al. (2020) for the identifica-
tion of OT maps. Wasserstein gradient flows have been also 
suggested in Rout et al. (2021) and Liutkus et al. (2019) 
for solving the optimization problems arising in generative 
modelling. Another problem which has been formulated as 
optimization over data-generating joint probability distribu-
tions is the dataset transformation from unlabelled to labelled 
(Alvarez-Melis and Fusi 2021) using a particle-based method. 
The same approach has been proposed in Alvarez-Melis and 
Fusi (2020) for transfer learning via OT.

The theoretical framework of the previous papers has 
been reconsidered and focused on BO (Crovini et al. 2022) 
where the authors propose a batch sequential algorithm 
based on the Expected Improvement (EI) acquisition func-
tion, which is transformed into an acquisition functional 
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defined over a space of probability measures. The key 
result is that this functional is concave, according to the 
strong factorization assumption that the probability meas-
ure of the batch points takes the form of a product meas-
ure. However, the concavity result is derived only for the 
batch-EI. The optimization of the acquisition functional 
is then based on its gradient flow over W  . Two formu-
lations of the gradient flow on the space of probability 
measures are considered: the Stein gradient flow and the 
particle-based Wasserstein gradient flow. The estimation 
of batch-EI and the computation of its gradient flow are 
quite complex involving the solution of the non-linear 
Fokker–Plank equation.

Other results are related to BO over Riemannian mani-
folds (Jaquier and Rozo 2020) focused on Robot Learning 
and Jacquier et al. (2020) focused on high dimensional BO, 
proposing an approach that builds, on the theory of Rie-
mannian manifolds, a representation of the objective func-
tion in a low dimensional latent space.

The issue of Distributionally Robust Optimization (DRO) 
is analysed in Lau and Liu (2022) who propose a Wasser-
stein barycentric ambiguity set and (Liu et al. 2022). Closer 
to the focus of our paper is Kandasamy et al. (2018) which 
use a kernel induced by the WST distance in a BO frame-
work to search for the best neural network architecture.

Another possible approach for learning from distributions 
is to consider Reproducing Kernel Hilbert Spaces (RKHS). 
The kernels associated to probability distributions, in par-
ticular the Hilbertian kernel on probability measures have 
been first proposed in Hein and Bousquet (2005). A solution 
to the problem in the setting of Hilbert spaces has been pro-
vided in Peyré and Cuturi (2019). It must be remarked that 
in the case of multivariate distributions the construction of 
positive definite kernels on sets of probability measures is 
not straightforward.

1.3  Our contributions

A key contribution of this paper is to show that mapping 
candidate solutions from the search space into univariate 
discrete probability measures, specifically point clouds, 
associated to the components of the objective function, can 
be applied to obtain a BO algorithm where the Gaussian 
process and the acquisition function are defined over W . The 
mapping back from W into the original search space X  is 
accomplished by a neural network. An indication of the con-
vergence is obtained from a measure of concentration around 
the global optimum in W as the ambiguity set built upon the 
WST distance between point clouds. Preliminary compu-
tational results on additive benchmark functions show that 
the relative performance of the BOWS algorithm improves 
over plain BO, both in terms of function evaluations and 

wall-clock time, as the dimension of the search space X  
increases.

1.4  Organization of the paper

The contents of the paper are organized as follows. Section 2 
provides background knowledge about Wasserstein distance 
and the optimal transport formulations. Section 3 establishes 
the BOWS algorithm and proposes a neural network which 
maps the probability distributions from W into X  . Section 4 
describes the experimental set-up including the algorithms 
considered and the parameters values for benchmarking 
BOWS and the computational results over the test functions. 
Section 5 provides conclusions and perspectives.

2  Methodological background

2.1  The Wasserstein distance between point clouds

Consider two univariate point clouds, respectively denoted 
with � =

(
h(1),… , h(n)

)
 and � =

(
g(1),… , g(m)

)
 . Since the 

WST distance is originally defined between two probability 
measures, the two point clouds are mapped into discrete prob-
ability distributions. Given a point cloud � , the associated 
probability measure is given by:

Given two point clouds, their WST distance  
is W2(�,�) = min

P∈U(n,m)

√
⟨P,C2⟩ , with C2 ∈ ℜn×m is the cost 

matrix between the points of the two clouds and P is the 
coupling matrix where Pi,j denotes the weight of the assign-
ment of h(i) tog(j) , and U is the set of all the possible assign-

m e n t s ,  t h a t  i s 

U(n,m) =
{
P ∈ ℜn×m

+
∶ P1m =

1

n
1n,P

T1n =
1

m
1m

}
.

The optimal coupling P∗ = argmin
P∈U(n,m)

√
⟨P,C2⟩ can be 

obtained through the simplex algorithm.
Since our case study considers univariate point clouds with 

the same cardinality (i.e., the number n of objective function’s 
components), the computation of W2(�,�) can be simplified 
as:

where h̃(i) and g̃(i) denote the sorted samples of the two point 
clouds.

(3)� =
1

n

n∑
i=1

�h(i)

(4)W2(�,�) =

�
1

n

∑n

i

���h̃
(i) − g̃(i)

���
2
� 1

2
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2.2  The “vanilla” Bayesian optimization

A Gaussian Process (GP) is a probability distribution over 
functions denoted as f (x) ∼ GP(�(x), k

(
x, x

�)
) where �(x) is 

the mean function of the GP and k
(
x, x′

)
 is the covariance 

function (aka kernel). Therefore, GP is as a collection of 
random variables, any finite number of which have a joint 
Gaussian distribution and f (x) can be considered as a sample 
from a multivariate normal distribution (Archetti and Can-
delieri 2019; Frazier 2018).

Let denote with X1∶N =
{
�(i)

}
i=1,…,N

 a set of N points in 
Ω ⊂ ℜd and with y1∶N =

{
f
(
�(i)

)
+ �

}
i=1,..,N

 the associated 
function values, possibly noisy with � a zero-mean Gaussian 
noise � ∼ N

(
0, �2

�

)
 . Then the posterior predictive mean �(�) 

and standard deviation �2(�) , conditioned on X1∶N and y1∶N , 
are given by the following equations:

where k
(
�,X1∶N

)
=
{
k
(
�, �(i)

)}
i=1∶N

 and K ∈ ℜN×N with 
entries Ki,j = k

(
�(i), �(j)

)
.

The acquisition function manages the balance between 
exploration and exploitation, it is the key driver of the 
sample efficiency of BO and is an important concept also 
outside machine learning (Candelieri et al. 2021). It drives 
the search of the new evaluation points towards regions of 
the search space with potential better values of the objec-
tive function either because value of �(�) is better or the 
uncertainty represented by �2(�) is high (or both). A widely 
used acquisition function is the Confidence Bound (Lower 
and Upper, respectively for minimization and maximization 
problems):

where ξ is the parameter to manage the exploration/exploita-
tion trade-off.

3  The Bayesian optimization in Wasserstein 
space algorithm

3.1  Preliminaries

First, we recall here, and also introduce, some useful 
notations:

(5)�(�) = k
(
�,X1∶N

)[
K + �2

�
I
]−1

y1∶N

(6)�2(�) = k(�, �) − k
(
�,X1∶N

)[
K + �2

�
I
]−1

k
(
X1∶N , �

)

(7)UCB(�) = �(�) + �
1

2 �(�)

(8)LCB(�) = �(�) − �1∕2�(�)

• X ⊂ ℝ
d is the Euclidean original search space.

• y ∈ ℝ is the co-domain of the objective function f (�).
• W ⊂ ℝ

n is the (unknown) co-domain of the objec-
tive function’s observable components, that are 
h1(�),… , hn(�)—or compactly the point cloud � ∈ W.

• �(�) and �2(�) are the predictive mean and variance of a 
GP defined over the space of point clouds, W , and com-
puted according to (5) and (6) where � ∈ X  is replaced 
by� ∈ W.

• � ∶ W → X  is a mapping from the space univariate prob-
ability distributions back to original search space.

3.2  The BOWS’s GP

For the GP model, we have decided to adopt the (Euclidean) 
Squared Exponential (SE) kernel, operating on the space 
W , that is the n-dimensional space whom the point clouds 
belong to. Specifically, the (Euclidean) SE kernel is:

with � the so-called length-scale hyperparameter which is 
tuned via MLE. If � ∈ � the kernel is said isotropic, while 
it is anisotropic if � ∈ �n.

Although using a Euclidean-based kernel on W can seem 
a contradiction (Candelieri et al. 2022b) prove that using a 
Euclidean SE kernel between univariate probability meas-
ures is equivalent to using a non-stationary anisotropic 
Wasserstein-based SE kernel, that is:

with W2

2

(
H,H

′
)
 computed as in (4).

3.3  The BOWS’s acquisition function

As the test problems considered in the paper are minimiza-
tion problems, we will use LCB as acquisition function. The 
main difference with respect to the vanilla BO is that here 
LCB is defined—as well as the GP—over W instead of X  . 
Thus, minimizing LCB leads to the next point cloud �̂(N+1) 
giving the best exploration–exploitation trade-off, that is:

It is important to remark that, contrary to the search space 
X  that is defined by the user and usually box-bounded, there 
not exists any preliminary information about Ω ⊂ W . The 
unknown search space problem is intractable to solve in 

k
�
�,��

�
= e

−
‖�−�

� ‖
2

2�2

k
(
�,��

)
= e

−
W2
2

(
H,H

′
)

2�2

(9)��(N+1) = argmin
�∈Ω⊂W

LCB(�)
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practice. Therefore, we decided to dynamically set up the 
search space Ω , according to the point clouds observed 
so far. This kind of procedure—which is mandatory in 
our case—it has been anyway proposed in vanilla BO, 
quite recently and named “weakly specified” search space 
(Nguyen et al. 2017).

3.4  Mapping from W back to X

We need to map �̂(N+1) back to X  to obtain the associated 
value �(N+1) and, consequently y(N+1) and the actual �(N+1) . 
Indeed, it is important to remark that any possible mapping 
is anyway affected by some reconstruction error. The map-
ping � ∶ W → X  is performed by a MLP trained using the 
sets H1∶N =

{
�(i)

}
i=1∶N

 and X1∶N =
{
�(i)

}
i=1∶N

 as input and 
output, respectively. The number of layers of the MLP has 
been set to three and in each layer the number of neurons is 
max(n, d) . The MLP is retrained at each iteration or after a 
given number of iterations, according to the user’s prefer-
ences and available computational budget. On the contrary, 
the GP model is always trained at each iteration (as usual in 
BO). The MLP model provides the new point �(N+1) which 
yields y(N+1) = f

(
�(N+1)

)
 and concurrently the actual �(N+1).

The additional computational complexity of BOWS with 
respect to vanilla BO is given by the training of the MLP, 
mapping from W back to X  . A rough indication of the com-
putational complexity is O(m1 × m2 × m3 × m4) . Where m1 
is the number of epochs; m2 is the number of training exam-
ples; m3 is the number of objective function’s components; 
m4 is the number of neurons. The computational overhead 
due to working in W and the ensuing need to map back to 
X  is substantial and explains why the wall-clock time of 
BOWS is poorer than vanilla BO. It is a reasonable cost to 
pay for the improvement in sampling efficiency as it will be 
shown in the computational results in the following section.

4  Computational results

4.1  Experimental setting

The algorithms have been implemented using BoTorch (Bal-
andat et al. 2020) a Python library for Bayesian Optimiza-
tion part of the PyTorch framework. BoTorch provides an 
easy-to-use interface for defining, managing, and running 

sequential experiments and a modular interface for com-
posing Bayesian optimization primitives as probabilistic 
models, acquisition functions, and optimizers. The compu-
tational results reported in this section have been obtained 
using UCB (with � = 4 ) and a gradient based optimizer. 
Three test functions have been considered (Table 1) with 
dimensionalityd = 5, 10, 15, 20 . For each experiment 10 
independent runs have been executed with 20d iterations 
and d initial points.

4.2  Experimental results

In this section, the computational results on the three test 
functions reported in Table 1 are presented, considering 
dimensionality d = 5, 10, 15, 20.

As shown in Table 2, considering Alpine01 and Vincent, 
BOWS has a better overall performance respect to vanilla 
BO; the advantage increases in higher dimensionality. In 
Fig. 1 is highlighted that BOWS converges faster to an opti-
mal solution, in terms of iterations, particularly consider-
ing higher d . In the case of Michalewicz, BOWS generally 
performs worse than standard BO. The gap in performances 
decreases increasing the dimensionality. 

To explain the different behaviour of BOWS with the 
Michalewicz test function we have to look at the MLP error. 
The error is defined in the Wasserstein space as 

Table 1  Test functions Function Equation Search space Global minimum

Alpine01
f (x) =

∑d

i=1

���xisin
�
x
i

�
+ 0.1x

i

���
[−10, 10]d f (0) = 0

Michalewicz
f (x) = −

∑d

i=1
sin

�
x
i

�
sin2k

�
ix

2

i

�

�
[0,�]d f (0) = 1.8013

Vincent f (x) =
∑d

i=1
sin

�
10log

�
x
i

��
[0.25, 10]d f (7.706281) = −d

Table 2  Best seen averaged over 10 trials, with its standard deviation

The best result for each experiment is highlighted in bold

Best seen

Function Dimension BO BOWS

Alpine01 5 0.83 ± 1.08 2.85 ± 0.68
10 9.02 ± 3.83 1.88 ± 1.03
15 21.44 ± 2.33 1.62 ± 0.46
20 30.26 ± 3.20 1.8 ± 0.76

Michalewicz 5 – 2.33 ± 0.34 – 1.21 ± 0.43
10 – 4.06 ± 0.41 – 3.23 ± 1.01
15 – 4.98 ± 0.43 – 4.16 ± 0.59
20 – 6.08 ± 0.62 – 5.4 ± 0.62

Vincent 5 – 3.54 ± 0.63 – 3.89 ± 0.75
10 – 5.24 ± 0.61 – 8.11 ± 1.27
15 – 7.04 ± 0.85 – 11.54 ± 2.20
20 – 8.59 ± 1.27 – 15.52 ± 2.08
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1

N

∑N

i=1
W
�
�̂(i),�(i)

�
 . In the case of Alpine01 and Vincent 

the error appears to slightly decrease with the increasing of 
the iterations (Fig.  2). This is coherent to the fact that 
increasing the iterations means a higher number of training 
points for the neural network. In the case of Michalewicz, 
the error shows a completely opposite behaviour, meaning 
that the MLP cannot properly map the function’s compo-
nents from W back to the search space X  . This behaviour is 
particularly marked for higher dimensionality of the search 
space.

The main difference between Michalewicz and the other 
two test function is that the Michalewicz’s components 
depend on the number of dimensions d , and in particular 
they get more complex as d increases (Fig. 3). Specifically, 

the number of local minima is d! . In the case of Alpine01 
and Vincent the complexity of the components does not 
depend on the dimensionality d.

The difference in complexity of the functions’ compo-
nents can also be seen by looking at the correlation between 
�(i) and �(i) for i = 1,… ,N . As shown in Table 3, in the case 
of Michalewicz, the Pearson correlation is much lower than 
the other two test functions, meaning a higher complexity in 
finding a mapping function.

Since mapping the Michalewicz’s components back to 
the search space is more complex a possible solution is to 
increase the number of hidden layers of the MLP. Figure 4 
and Fig. 5 show that with 5 hidden layers the performance 
of BOWS for Michalewicz improves and the MLP error 
decreases.

Fig. 1  Best seen over iterations for the two algorithms and the three test functions. The line represents the mean over 10 independents runs while 
the shaded area is the standard deviation
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Fig. 2  MLP’s error over iterations for the three test functions. The line represents the mean over 10 independents runs while the shaded area is 
the standard deviation. The error is computed in the Wasserstein space instead of the Euclidean space

Fig. 3  Michalewicz’s components sin(x)sin2k
(

ix
2

�

)
 with i = 1, 5, 10, 20
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5  Conclusions and future works

The main conclusion is that a distributional representation 
of points in the search space as point clouds can be effec-
tively applied to Bayesian optimization. The Wasserstein 
distance has been chosen because it’s a metric, captures 
complex relationships between inputs, neighbourhood 
sizes and connectivity and provides geometrically mean-
ingful distances. Computational experiments show, both in 
terms of function evaluations and wall clock time, how the 
new method in two out of three benchmark functions out-
performs vanilla Bayesian optimization and its advantage 
increases with the dimension of the search space.

Future works should address the following main issues:

• Methodological advances to improve the optimization of 
the acquisition function considering also, from a theo-
retical standpoint, both the differentiability of the WST 

distance and the relation between the gradient flows of 
the objective function and the transport map.

• A full analysis of the optimization problems which fit 
into the BOWS framework. The distributional approach 
is natural for simulation–optimization problems over 
discrete structures, sensor placement in physical and 
informational networks and stochastic vehicle routing. 
Also, the issue of high dimensionality and the underlying 
additive structure should be further analyzed.

Additional experiments are required for a more extensive 
numerical validation of the proposed approach.
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Table 3  Pearson correlation between �(i) and �(i) for i = 1,… ,N

d Alpine01 Michalewicz Vincent

5 0.4754 0.3243 0.4510
10 0.4686 0.2865 0.3808
15 0.3508 0.2102 0.3729
20 0.3924 0.1560 0.3756

Fig. 4  Best seen over iterations of Michalewicz considering the 5 layers MLP in BOWS

Fig. 5  MLP’s error over iterations of Michalewicz considering the 5 layers MLP in BOWS

https://github.com/andreaponti5/bows
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