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A B S T R A C T   

Hyphenated chromatography is among the most popular analytical techniques in omics related research. While 
great advancements have been achieved on the experimental side, the same is not true for the extraction of the 
relevant information from chromatographic data. Extensive signal preprocessing is required to remove the signal 
of the baseline, resolve the time shifts of peaks from sample to sample and to properly estimate the spectra and 
concentrations of co-eluting compounds. 

Among several available strategies, curve resolution approaches, such as PARAFAC2, ease the deconvolution 
and the quantification of chemicals. However, not all resolved profiles are relevant. For example, some take into 
account the baseline, others the chemical compounds. Thus, it is necessary to distinguish the profiles describing 
relevant chemistry. With the aim to assist researchers in this selection phase, we have tried three different 
classification algorithms (convolutional and recurrent neural networks, k-nearest neighbours) for the automatic 
identification of GC-MS elution profiles resolved by PARAFAC2. 

To this end, we have manually labelled more than 170,000 elution profiles in the following four classes: ‘Peak’, 
‘Cutoff peak’,’ Baseline’ and ‘Others’ in order to train, validate and test the classification models. 

The results highlight two main points: i) neural networks seem to be the best solution for this specific clas
sification task confirmed by the overall quality of the classification, ii) the quality of the input data is crucial to 
maximize the modelling performances.   

1. Introduction 

Omics related research is rapidly increasing [1]. The omics ap
proaches aim at a collective characterization of investigated samples. 
For instance, proteomics focuses on the analysis of the entire set of 
proteins for a given organism [2] and petroleomics studies the compo
sition of petroleum at a molecular level [3]. 

This work is focused on metabolomics and related fields, such as 
foodomics and aroma analysis, where the objects of study are molecules 
with low molecular masses and hyphenated chromatography systems (e. 
g., GC-MS, LC-MS, LC-FTIR, GC-GC-MS LC-LC-MS) are gold standards for 
the quantification of such compounds [4]. 

On the analytical side, the omics experiments fall into two main 
categories, untargeted and targeted. The aim of the untargeted approach 
is the identification and relative quantification of as many compounds as 
possible within the analysed samples. Since the result of the experiment 
is an overview of a specific condition, it is interesting to compare 

different conditions, e.g., healthy/unhealthy, pure/adulterated, and this 
approach can be the starting point for hypothesis generation [5]. On the 
other hand, the targeted approach is focused on a predefined set of 
target molecules, up to tens or hundreds, and the aim is the absolute 
quantification of these compounds. The selection of these molecules is 
generally based on previous knowledge and the experiment is optimized 
for an accurate and reliable calibration in order to verify the experi
mental hypothesis [6]. The two approaches can be seen as comple
mentary to each other: the hypothesis tested with a targeted analysis 
often comes from observations based on experiments performed with an 
untargeted approach. 

Metabolomics experiments generate complex data both in terms of 
size, often in the order of gigabytes, and in terms of structure, since three 
or more dimensions are needed to store the results [4]. For example, 
when dealing with GC-MS measurements, a data matrix is obtained for 
each sample, where for each elution time the respective mass spectra are 
collected. Nowadays, the main bottleneck for omics studies is the 
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analysis rather than the generation and acquisition of the data [7], 
resulting in the need for computational solutions able to speed up the 
analysis assisting the researchers. 

As mentioned before, the complexity of the measured data is an issue 
especially when dealing with untargeted approaches. Untargeted data 
often suffer from drift of the baseline signal, coelution of different 
compounds, and retention time shifts of peaks from sample to sample [8, 
9]. However, it is difficult to optimize the experimental settings when 
the aim is to identify and quantify as many compounds as possible with 
acceptable accuracy. A common practice to simplify the analysis consists 
in defining intervals on the retention time dimension, focusing only on 
the relevant regions of the chromatogram, i.e., the peaks, in order to 
identify and quantify the corresponding compounds. 

A number of different tools are available for the deconvolution and 
extraction of the relevant signals from GC-MS data [10]. A common 
deconvolution approach is Parallel Factor Analysis 2 (PARAFAC2) [11]. 
This modelling approach is based on the deconvolution of experimental 
signals [12,13] to automatically extract and separate the different con
tributions from the raw data, such as the elution profiles of the baseline 
and the peaks, as well as co-eluting peaks. The main advantages of this 
approach are the reproducibility of the results, which is user indepen
dent, and the effectiveness to extract the pure signals (elution profiles 
and mass spectra), increasing the accuracy of both the quantification 
and the identification of chemical compounds [14]. 

Despite the efficiency of PARAFAC2, the deconvoluted signals have 
to be manually checked, in order to assess if all the contributions have 
been separated or more PARAFAC2 components are needed, and also to 
identify the components that are describing the chemical compounds, i. 
e., the components that are describing the peaks. This step may be time- 
consuming, and it can introduce bias which depends on the user 
selection. 

Expanding the results in Ref. [15], we carried out a comparison of 
different machine learning approaches for the classification of chro
matographic profiles deconvoluted by means of PARAFAC2, with the 
aim to i) speed up the inspection of the resolved profiles, ii) avoid user 
bias and iii) propose an effective and automatic tool to assist researchers 
in the selection of the resolved profiles. These aspects are crucial to 
increase the reproducibility of the results. To this end, in this paper we 
produced a set of semi-quantitative criteria for assessing the quality of 
manually labelled data in order to increase the comparability of future 
developments in this field of research. 

The classification approaches were trained and validated using a 
data set including more than 170,000 elution profiles resolved by means 
of PARAFAC2 and manually labelled accordingly in four classes: ‘Peak’, 
‘Cutoff peak’,’ Baseline’ and ‘Others’. We tested three different classi
fication strategies: k-nearest neighbours (kNN) and two deep learning 
networks based on convolutional and recurrent neural networks, 
respectively. Moreover, results were compared with those obtained with 
a previously published convolutional neural network proposed for the 
same aim [15]. 

2. Materials and methods 

2.1. Data 

Head-space solid-phase microextraction (HS-SPME) GC-MS data 
obtained from 66 olive oil samples were used in this work. The experi
mental details are available elsewhere [16]. Briefly GC-MS data are 
organized in a three-way array corresponding to the elution time scans, 
the m/z s and the sample. In this case the dimensions of the datasets are 
17,849 elution scans x 271 measured m/z x 66 samples. 

2.2. PARAFAC2 theory 

PARAFAC2 is a multiway factorization approach inspired by the 
concept of parallel proportional profiles introduced by Cattel [17]. 

Cattel affirmed that the different signals underlying a given system could 
be described by unambiguous components when the signals are constant 
across different samples but in different proportions. A PARAFAC2 
model can be formalized as follow: 

Xk =ADkBT
k + Ek Eq. 1  

where Xk is the k-th slab of the three-dimensional array X with di
mensions I × J × K. It derives that the matrix Xk has I × J dimensions 
containing the chromatographic run of sample k out of K samples. The xij 
element of Xk is the intensity measured at m/z i, at elution time point j, 
over all I m/z values and J time points. 

A is an I × F matrix where the f-th column contains the resolved mass 
spectrum of factor f of each of the F components included in the 
PARAFAC2 model. 
Dk is a F × F diagonal matrix holding the scores of sample k for each 
factor f. 
Bk is a J × F matrix holding the elution profiles, where the f-th col
umn contains the resolved elution profile of factor f for sample k. 
These resolved elution profiles have been then used as input (inde
pendent variables) to train the classification models. The cross- 
product of each Bk is required to be constant in PARAFAC2. 

PARAFAC2 solutions are unique under mild conditions and details 
about the method and its properties can be found in Ref. [18]. 

2.3. Training, internal validation set and external test set 

A total of 44 intervals on the time dimension have been defined and 
all the intervals were resolved by PARAFAC2 modelling. A total of 306 
PARAFAC2 models were calculated, resulting in 1,214 components. 

A total of 80,124 resolved elution profiles were obtained (1,214 
components x 66 samples) and then used as input for the classification 
models. These profiles were randomly split into two sets: 68,106 profiles 
(85 %) were included in the training set and the remaining 12,018 
profiles (15 %) in the validation set. The models were trained on the 
training set and their hyperparameters were tuned by minimizing the 
prediction error on the validation set. To evaluate the predictive ability 
of the trained models, we considered an external test set containing 
made of 7,673 profiles not from the olive oil dataset, preprocessed with 
PARAFAC2, as the training data. These profiles have been retrieved as a 
subset from the test set in Ref. [14]. 

To increase the number and the variability of the data, all the profiles 
have been duplicated by horizontally flipping them, resulting in a total 
of 136,212 training, 24,036 validation and 15,346 test profiles, 
respectively. 

2.4. Labelling 

All the profiles have been manually labelled according to four clas
ses: ‘Peak’, ‘Cutoff peak’, ‘Baseline’ and ‘Other’. First, each profile was 
linearly interpolated to a length of 50 points and normalized to unit 
vector, i.e., vectors with norm equal to one. This preprocessing equalizes 
the dimensionality of the elution profiles and, thus, allows the labelling 
of profiles with different lengths. At the same time, the normalization 
maximizes the comparability of the profiles. The preprocessing has been 
adopted according to the preprocessing routine defined in Ref. [14]. In 
order to be consistent during the manual evaluation of the elution 
profiles, we have defined a set of rules, represented in Fig. 1, to assist the 
visual labelling of the profiles. 

The rules applied during the manual labelling were the following:  

• A profile visually assessed as a peak, was retained as such if the main 
peak had a normalized maximum intensity higher than 0.1, while the 
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rest of the profile had a normalized intensity lower than 0.1 (Fig. 1 B, 
C)  

• A profile visually assigned to the class ‘Cutoff peak’ was retained as 
such when the main peak had a normalized maximum intensity 
higher than 0.1 (Fig. 1 A, B), and a clear inflection point was visible 
(Fig. 1 A, B); while the rest of the profile had a normalized intensity 
lower than 0.1. 

• A profile was assigned to the class ‘Baseline’ when a flat or mono
tonically increasing or decreasing profile was present (considering 
reasonable noise), (Fig. 1 D), with a difference between the 
maximum and minimum signal value smaller than 0.2. Baseline 
profiles may show a negative peak (Fig. 1C).  

• A profile was assigned to the class ‘Other’ if it did not meet the 
criteria for the above classes. 

It should be noted that this set of rules does not include any indi
cation about the overall shape for any of the considered classes: this 
means that the rules cannot be automatically applied for the labelling of 
the profiles. 

All the profiles were thus manually labelled by visual inspection and 
with the application of the semi-quantitative rules. Details about the 
class distribution and the number of profiles for the training, validation 
and test set are shown in Table 1. 

2.5. Classification models 

A brief overview of the theory behind the classification models used 
in this study is given, together with details about their optimization. 

2.6. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) are a family of neural net
works widely applied in image analysis. Several different variations in 
CNN architectures have been proposed, but in general they consist of 
stacked convolutional and pooling layers, followed by one or more fully 
connected layer(s). The convolutional layer is the core of a CNN, and it is 
based on a set of trainable filters or kernels. Basically, it can be seen as a 
pattern extractor. The filter considers only a portion of the input data to 
find specific parts. 

The inputs are convolved with the weights, which are optimized in 
the training phase, to obtain a new feature map. The result of this 

operation is the input for an activation function. Formally the convo
lution operation can be written as: 

Yk = f (Wk ×X) (Eq. 2)  

where X is the input matrix or the output of the previous layer and Wk is 
the k-th filter related to the k-th feature map Yk and f represents the 
activation function. 

The pooling layer reduces the dimension of the feature map through 
information compression. There are two main strategies: max and 
average pooling. In the former case the pooling will extract the 
maximum value while in the latter the values are averaged. 

The convolutional and pooling layers are followed by fully connected 
layer(s), which interprets the features selected by the previous layers. 
For classification problems the last layer uses a SoftMax operator which 
is a function providing a normalized probability distribution over the 
possible classes, four in our case. 

In this paper the architecture of the CNN model has been retrieved by 
Ref. [15]. The network is made of four convolutive layers followed by 
two dense layers. Details about the settings and optimization of the CNN 
model can be found in Ref. [15]. 

2.7. (Bilinear)Long short-term memory 

Recurrent neural networks (RNNs) are a family of neural networks 
used to deal with sequential data [19]. In this work, we used RNNs with 
Long short-term memory (LSTM) units, which were proposed to solve 
the vanishing and exploding gradient problem affecting the training of 
vanilla RNNs [20] and to capture long-range dependencies between 
sequence data. In speech recognition, where LSTM networks are widely 
used, long-range dependencies are important since the meaning of a 
sentence change depending on how the words are arranged, so keep 
track of the reciprocal positions of the words, even when they are not 
immediately next to each other, is crucial to understand the sense of the 
phrase [21]. The same concept can be applied in our context. For 
instance, let consider a ‘Peak’ and a ‘Cutoff peak’: in general, these 
profiles are both characterized by the same patterns, e.g., peak or flat 
curves. The difference between a peak and a cutoff peak is how these 
patterns are placed through the profile. Therefore, it is important to 
‘remember’ how the different, and even distant, parts of a profile are 
organized. The LSTM networks are specifically designed to handle this 
kind of task. 

RNNs compute a hidden vector h, which is updated at each t-th time 
step as follows: 

ht = tanh(Wht− 1 + Ixt) (Eq. 3)  

where tanh is the hyperbolic tangent function, W is the recurrent weight 
matrix, I is a projection matrix and xt is the t-th element of the vector x (1 
× T) where T is equal to 50 (normalized length of the profiles). The 
hidden state h is used to compute z, the output of the RNN cell: 

zt = softmax(Wht− 1) (Eq. 4) 

Fig. 1. Graphical representation of the labelling criteria. The dotted line highlights the 0.1 threshold.  

Table 1 
Class distribution and number of profiles included in the training, validation, 
and test sets.  

Set Other Peak Cutoff peak Baseline Total 

Training 30.5 % 
41,528 

18.9 % 
25,794 

6.6 % 
8,932 

44 % 
59,958 

136,212 

Validation 29.7 % 
7,150 

19.5 % 
4,698 

6.4 % 
1,548 

44.3 % 
10,640 

24,036 

Test 34.5 % 
5,296 

24 % 
3,682 

15.1 % 
2,312 

26.4 % 
4,056 

15,346  
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By using z as the input to another RNN, different RNNs can be 
stacked together or with traditional fully connected layers creating 
deeper architectures and allowing to predict the class label for each 
profile. 

When applied to profiles, x = {x1, x2, …xT}, RNN layers process one 
xt at a time, based on the preceding portions of the profile and a prob
ability estimation. More specifically, RNNs model a dynamic system, 
where the hidden state (ht) of the network at any t-th position in the 
profile is not only dependent on the current observation (xt), but also 
relies on the previous hidden state (ht-1). 

The core of the LSTM is a memory cell, mt, which represents the 
information of the inputs observed to the current time-step. The LSTM 
cell has the same inputs (i.e., the previous hidden state ht-1 and the input 
xt) and provides the same outputs (ht and zt) as a vanilla RNN cell but 
controls the information flow by memory gates (update, forget and 
output gates). In particular, the forget and update gates determine the 
information to keep for later stages, by updating mt. The output gate 
computes the outputs as functions of xt, ht-1 and the memory cell vector 
mt-1. This setting allows LSTMs to retain important features detected 
during earlier stages in the sequence, thereby capturing long-distance 
dependencies. 

The most common version of LSTM is unidirectional, i.e., the input 
features are processed from left to right (forward direction). In this 
work, we also considered bidirectional LSTM (BILSTM) which allows 
simultaneous forward and backward prediction [22]. 

2.8. (BI)LSTM optimization 

The general architecture for all the recurrent models tested during 
the optimization included the following layers: an input layer, (BI)LSTM 
layer(s), a fully connected layer and an output layer. This architecture 
implies the tuning of the hyperparameters listed in Table 2. In particular, 
two values of initial learning rate were considered (0.001 and 0.01). The 
input layer is made of 50 neurons (i.e., the length of the normalized 
profiles) and this was kept constant across all the tested networks. We 
have tried one, two or three stacked layers of (BI)LSTM followed by one 
fully connected layer. The same layer type has been used for each layer, 
therefore no combinations of LSTM and BILSTM layers have been tested 
in multiple layers models. 

The number of neurons in the first layer was set to 16 or 32 or 48, and 
the number of neurons was halved each time for each successive (BI) 
LSTM layer, i.e., the number of neurons for the second and third layer 
was half and a fourth of the neurons in the first layer, respectively. 

To avoid overfitting, we introduced a dropout of 0.25 as a regulari
zation term for the first layer, but we also considered unregularized 
networks (i.e., dropout equal to 0). 

The number of neurons in the fully connected layer is the same as the 
last (BI)LSTM layer. Three different activation functions have been 
considered: ReLU, sigmoid and hyperbolic tangent. The output layer 
with a SoftMax function (four neurons, one for each class) has been kept 
constant across all the models. Two optimizations algorithms or solvers 
have been tried: Adam and RMSProp [23]. 

A preliminary optimization of the hyperparameters has been 

performed by means of a full grid search considering the combination of 
all the parameters listed in Table 2, for a total of 432 tested networks. 
The ten architectures with the best classification performances (highest 
Non-Error Rate on the validation set, see next paragraph) have been 
selected; each network was replicated five times to test its stability. 
Since no significant differences have been found across the five replicas 
of the same architecture (Fig. S1), the overall best model considering the 
NER in validation has been selected. The final parameters for the 
selected model are shown in Table 2. 

2.9. K nearest neighbours 

The k Nearest Neighbours (kNN) algorithm is a benchmark classifi
cation method [24]. A sample is classified according to the most rep
resented class among the k nearest training samples (neighbours). The 
Euclidean metric has been used for the distance calculation. The optimal 
number of neighbours k has been optimized testing different values from 
1 to 10, 20, 30, 40 and 50: the optimal k value (4) was found minimizing 
the classification error on the validation set (Fig. S2). 

2.10. Classification diagnostics 

The classification performance has been evaluated by means of 
confusion matrices and derived measures [25]. The classification results 
can be summarized in the so-called confusion matrix, which is a G × G 
matrix, where G corresponds to the number of modelled classes. Each 
element ckg of the confusion matrix represents the number of samples 
belonging to class k predicted as class g. 

The sensitivity (Sng) for the gth class is defined as: 

sng =
cgg

ng
, (Eq. 5)  

where cgg is the number of samples of the gth class correctly classified 
and ng corresponds to the total number of samples that belong to the gth 
class. The Non-Error Rate (NER, also known as Balanced Accuracy) is 
defined as the mean of class sensitivities: 

NER=

∑G

g=1
Sng

G
(Eq. 6) 

The precision (Prg) corresponds to the ratio of samples of class g 
correctly classified over the number of the samples predicted into the gth 
class: 

Prg =
cgg

n′
g

(Eq .7) 

As such the precision is used to quantify how many of the samples 
predicted as class g are actually belonging to that class. 

Receiver Operating Characteristics (ROC) curves are a graphical tool 
for the diagnosis of a classification model [26]. The curve for a given 
class g is obtained by plotting the False Positive Rate (FPR) versus Sng, 
also known as True Positive Rate (FPR), as a function of a moving 
classification threshold. The AUC corresponds to the value of the area 
under the ROC curves. 

2.11. Software 

The PARAFAC2 models have been calculated with PARADISe [14] 
version 5.8, available at (https://ucphchemometrics.com/paradise/ 
(Sep 27, 2023). The models have been calculated with the 
non-negative fast algorithm [27]. 

All the classification measures have been calculated by means of 
routines in the classification toolbox for MATLAB [28], available at 
https://michem.unimib.it/download/matlab-toolboxes/classification- 
toolbox-for-matlab/(Nov 2, 2021). 

Table 2 
Optimized and selected parameters for the RNN models.  

Parameters Option 
1 

Option 2 Option 
3 

Selected 
Option 

Initial learning rate 0.001 0.01  0.001 
Neurons Type LSTM BILSTM  BILSTM 
Dropout 0 0.25  0.25 
Solver Adam RMSprop  RMSprop 
Activation function ReLu tanh sigmoid tanh 
Num of (BI)LSTM Layers 1 2 3 3 
Num of Neurons in the first 

(BI)LSTM layer 
16 32 48 48  
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The computations, optimization, training and test of the models have 
been performed in MATLAB (MATLAB 2021a, The MathWorks, Inc. 
Natick, Massachusetts, United States). The deep neural networks have 
been calculated with the MATLAB deep network designer toolbox. 

3. Results and discussion 

The classification performances obtained on the training, validation 
and the external test set are summarized in Fig. 2 in terms of NER. All the 
NER values are reported in Table S1. Overall, the classification perfor
mances of the models can be considered satisfactory. 

NERs are always higher than 85 % for all the models when looking at 
training, validation and test sets. The kNN model has the highest NER 
considering both training and validation sets, which might be expected, 
considering the model structure, the low number of neighbours and how 
the two sets have been produced. However, the kNN model shows the 
biggest variation in NER values between the training set and the other 
sets, in particular the NER value decreases of 3 % and 7 % for the 
validation and the test set, respectively. 

The deep learning models are characterized by more stable results 
when looking at the performances obtained on the training and vali
dation sets. For the CNN model the NER for the training is slightly higher 
than that of the validation set (+0.5 %) and lower with respect to the test 
set (− 2.6 %). Considering the BILSTM model, the difference between the 
NER values is 0.2 % between training and both validation and test sets. 

3.1. Diagnostics of the results on the external test set 

In order to further compare the classification performances of the 
three models on the external test set, the aggregated confusion plot, the 
NER, the class sensitivities and precisions of the three models achieved 
on the external test set are shown in Fig. 3. All the values for these 
classification measures are listed in Table S1. 

The aggregated confusion plot derives from the combined analysis of 
the classification results by the three models. In this plot, the agreement 
across the three models is reported in a particular representation of a 
confusion matrix with a Venn-like diagram. 

A given profile can be classified as belonging to a given class by i) all 
the three models (one possible combination), ii) two models (three 
possible combinations), or iii) only a single model (for a total of three 
models), giving a total of seven possible combinations. 

Each profile was assigned to one or more of these combinations ac
cording to the concordance/discordance of the predictions with respect 
to the experimental class. In the i × j cell of the aggregated confusion 
plot, the number of profiles from the i-th class predicted as class j is 
represented in a graphical way, considering the seven combinations 
mentioned above. It means that, for each cell, seven numbers, one for 
each combination, should be given. 

So, for instance, the 1 × 1 cell of the aggregated confusion plot re
ports how many profiles labelled as ’Other’ were correctly predicted as 
’Other’ by: (1) all the models, i.e., all concordant predictions, (2) CNN 
and BILSTM models, (3) BILSTM and kNN models, (4) kNN and CNN 
models, or uniquely by (5) CNN or (6) BILSTM or (7) kNN. For ease of 
visualization, within each cell of the aggregated confusion plot we 
defined seven regions, one for each of the possible combinations. Spe
cifically, for each square we defined: (1) a black central square that 
represents the concordant predictions across all the models, (2) a purple 
area for the CNN and BILSTM models concordant predictions, (3) a pink 
region for the BILSTM and kNN models concordant predictions, (4) a 
light blue area for the kNN and CNN models concordant predictions and 
(5) blue, (6) red and (7) grey area for CNN, BILSTM and kNN pre
dictions, respectively. 

The actual number of profiles for each area is reported on each 
areaFigure. 

From the aggregated confusion plot represented in Fig. 3, it is 
possible to see that the black areas have the highest values on the di
agonal. This suggests that most often the models classify the profiles 
consistently to each other and that the predictions are correct, as ex
pected looking at the NER values reported in the right bottom square 
(Fig. 3 cell 5 × 5, Table S1) and in Fig. 2. 

Considering the sensitivity for the class ’Other’, the CNN and the 
BILSTM models perform better compared to the kNN model (cell 1 × 5, 
Fig. 3). This can be explained looking at the values in the grey and purple 
areas in cell 1 × 1 (Fig. 3) indicating that the CNN and the BILSTM 
correctly classify many more profiles belonging to this class compared to 
kNN. It means that the same profiles are assigned to a wrong class by the 
kNN model. The difference between CNN and BILSTM in terms of sen
sitivities is due to the set of profiles correctly classified uniquely by the 
CNN model (blue area in cell 1 × 1 Fig. 3). 

Most of the misclassified ’Other’ profiles by the kNN model are 
assigned to the class ’Peak’ while for the BILSTM model the errors are 
equally distributed between the class ’Peak’ and ‘Baseline’, as suggested 
by the higher values of the grey, pink and red areas in the cell 1 × 2 and 
1 × 4 (Fig. 3). Taking advantage of the aggregated confusion plot, we 
have been able to easily identify these profiles. In most of the cases, the 
profiles resemble a peak but do not fulfil the criteria applied during the 
labelling. For instance, these profiles show some spikes beyond the 0.1 
threshold in addition to the main peak. Another subset of these mis
classified profiles is characterized by a certain amount of noise. 

Looking at the precision for the class ’Other’ obtained by the three 
models (cell 5 × 1 Fig. 3), it is possible to notice that the trend is the 
opposite compared to the sensitivities. In this case, the kNN achieved the 
best result, while the CNN the worst and still the BILSTM in the middle. 
The smaller precisions for the two deep learning methods are reflected in 
the aggregated confusion plot. The high value of the blue, pink and red 
areas in the 2 × 1 and 3 × 1 cells in Fig. 3 suggests that BILSTM and CNN 
tend to classify as ’Other’ more profiles belonging to different classes 
compared to the kNN model. Visually inspecting these profiles, we found 
that in most of the case there is some residual noise, and the misclassi
fication can be related to that. This observation supports the hypothesis 
that the deep leaning models are overestimating the influence of noise 
for the classification of the profiles while the KNN is less sensitive to this 
aspect. 

Considering the class ’Other’, the difference of the sensitivities be
tween the CNN and the kNN model is 25%, while in terms of precision 
the difference between the kNN and CNN is around 4 %. While the lower 
precision of the deep learning models can be related to an over
estimation of the noise influence, the lower sensitivity of the kNN model 
can indicate that kNN is underestimating the same aspect. 

Moreover, considering the CNN and kNN models, the difference of 
the sensitivities and the precisions suggests that the underestimation of 
the kNN is more pronounced compared to the overestimation of the 
CNN. The BILSTM seems the more balanced model. This different 
behaviour of the models influences the results for the remaining classes, 

Fig. 2. NER values for the three trained models (CNN, BILSTM, kNN) consid
ering the training, validation and test sets. 
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in particular for the ’Peak’ class. In this case, the kNN has the greatest 
sensitivity, followed by BILSTM and CNN (cell 2 × 5, Fig. 3, Table S1). 
This is due to the profiles labelled as ’Peak’ but classified as ’Other’ by 
the CNN and BILSTM models (blue, pink and red areas, 2 × 1 and 3 × 1 
cells, Fig. 3), as discussed before. It means that the kNN model can 
correctly classify the highest number of profiles labelled as ’Peak’ 
compared to BILSTM and CNN. The difference in the sensitivities for the 
‘Peak’ class between the kNN and the CNN is 6 %. Looking at the pre
cisions for the class ’Peak’ (cell 5 × 2, Fig. 3), the trend is the opposite: 
the CNN has the best precision and the kNN the worst. The grey, light 
blue and light red areas, related to the classifications of the kNN model, 
show the higher values in the cells 1 × 2 and 3 × 2, indicating that kNN 
tends to assign to the class ’Peak’ profiles belonging to different classes. 
In particular, the difference of precisions between the CNN and kNN is 
20 %. This can be explained considering the criteria adopted during the 
labelling, where a little difference can discriminate between a class or 
another. Such small differences between different classes can be prob
lematic to detect for a local model as kNN. 

Considering the class ’Cutoff peak’, the BILSTM model has the 
highest sensitivity and the CNN the smallest one (cell 3 × 5, Fig. 3). As 
for the class ’Peak’, the sensitivity of the CNN model is lower compared 
to the other models, because it tends to classify more profiles as ’Other’. 
This tendency increases the precision for the CNN model which is the 

highest also for this class. However, the differences among the three 
models for this class are less evident and the performances are satis
factory for all the models. 

All the three models had excellent performances considering the 
class ’Baseline’, both in terms of sensitivities and precisions (cells 4 × 5 
and 5 × 4, respectively, Fig. 3, Table S1). Looking at the aggregated 
confusion plot, the number of profiles classified as ’Baseline’ from all the 
three models and actually belonging to this class is 3995 (black area, cell 
4 × 4 Fig. 3 and Fig. S3) over a total number of 4056 profiles labelled as 
’Baseline’ in the external test set (Table 1). Thus, the 98.4% of the 
’Baseline’ profiles have been correctly classified by all the classification 
models, further indicating the excellent performances for this class. 

We identified the profiles misclassified by all the models, represented 
by the black areas in the off-diagonal cells for a total of 310 profiles (2 % 
of all the profiles in the external test set). For the cells 3 × 4 (experi
mental class: ‘Cutoff peak’; predicted: ‘Baseline’), 4 × 2 (experimental 
class: ‘Baseline’; predicted: ‘Peak’) and 4 × 3 (experimental class: 
‘Baseline’; predicted: ‘Cutoff peak’), no misclassified profiles from all the 
models were found. In all the other cases, it can be seen that mis
classifications mostly depend on borderline profiles (i.e., profiles at the 
edge between two classes) and by errors of the labelling phase. For 
instance, in the most representative group corresponding to the cell 3 ×
1 (experimental class: ‘Cutoff peak’; predicted: ‘Other ‘), the profiles do 

Fig. 3. Aggregated confusion plot for the three approaches (CNN, BILSTM and kNN in blue, red, and grey, respectively) calculated for the external test set. Details 
about construction and interpretation are given in the text (Results section). The size of the areas is proportional to the logarithm of the number of profiles. Sen
sitivities, precisions and NER are also reported as bar plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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not clearly show the inflection point or the tail is slightly over the 0.1 
threshold. Also it is possible to notice that some of the profiles have an 
expected label that is not correct, probably depending on mislabelling 
during the manual classification of the profiles. All the profiles are 
shown in Fig. S3. Extending the same trend also for the validation and 
the training sets, some underestimation of the classification perfor
mances can be assumed. 

3.2. Computational time 

We compared the computational time required by the different 
models to perform the classification on the 24,036 profiles of the vali
dation set (Table 3). The calculation has been performed with an Intel® 
Core™ i7-6950X CPU processor with a dedicated RAM of 32 GB. The 
time needed by CNN and the BILSTM models are comparable, the 
slightly longer running time for the CNN model can be explained by the 
greater number of hidden layers. On the other side, the kNN model re
quires significantly more time compared to the other two models, i.e., it 
is about 20 times slower. The difference in time required by the models 
to perform the classification task is important in this context, consid
ering that the analysis of a full GC-MS dataset would produce a 
considerably high number of profiles. 

3.3. Comparison with literature model 

In order to further evaluate the classification approaches, we 
compared the classification models to the convolutional neural network 
described in Ref. [15]. The comparison is based on the ROC curves for 
the class ’Peak’ for the respective external test sets. The curves are 
shown in Fig. 4. Since these results are based on different test sets, the 
comparison is qualitative with the aim to verify the influence of the data 
more than the classification performance. 

The ROC curve for the deep neural network considering the ‘Peak’ 
class in Ref. [15] was already next to the top left corner, nonetheless the 
curves for the three models trained on our data show a further 
improvement. The AUC reported in Ref. [15] was already high, reaching 
0.95, however both the CNN and the BILSTM models have an even 
higher value, equal to 0.96 and 0.97, respectively, suggesting that the 
adopted criteria for the labelling of the profiles made possible a slight 
increase of the classification performances. Considering the kNN model, 
the AUC for the ‘Peak’ class is 0.94, slightly lower compared to the CNN 
and the BILSTM models. The AUC value for all the classes for the CNN, 
BILSTM and kNN models is reported in Table S1. 

4. Conclusions 

In this work we have developed three classification models for the 
shape recognition of resolved chromatographic profiles. The models 
have been trained with PARAFAC2 resolved profiles, which were 
manually labelled in four classes: ‘Peak’, ‘Cut off peak’, ‘Baseline’ and 
‘Other’, according to previous works. 

The performances of the models have been analysed by means of an 
aggregated confusion plot where the classification results of the three 
models have been merged, resulting in a deeper insight of the different 
model trends. Overall, all the three models seem effective. Nonetheless, 
there are hints suggesting that the two models based on deep neural 
networks are learning the underlying criteria applied during the label
ling process from the data, while the kNN model seems less robust 
compared to the other two. 

Overall, the analysis of the results obtained considering the external 
test set allowed to characterize the three models, where in general the 
CNN has the highest precisions and tends to classify more profiles as 
‘Other’, the kNN has the highest sensitivities, but fails to properly 
classify borderline profiles and the BILSTM seems as a compromise be
tween the other two methods. Moreover, the computational times 
indicate the two deep learning approach as significantly faster compared 

to the kNN model. 
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