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1 Introduction

Monte Carlo event generators [1–4], which provide a complete description of the compli-

cated hadronic final state observed in high-energy particle collisions, are essential tools as

their results can be directly compared with experimental measurements. These simulations

combine a calculation of the hard scattering process, usually at next-to-leading order accu-

racy, with parton shower (PS) evolution from the scale of the hard process to a low energy
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scale where non-perturbative hadronization models describe the formation of hadrons from

the quarks and gluons of the perturbative calculation. Together with a non-perturbative

model of multiple parton scattering and decay of the primary hadrons, these generators

simulate the final hadronic state.1

Most of the progress made in this field over the last decade came from matching the

parton shower approximation of QCD radiation with fixed-order matrix elements. This

increased the accuracy of the cross-section calculation and improved the description of

hard radiation, which is not adequately described by the soft and collinear approximations

used in parton shower algorithms. In the last few years however there has been a revival of

work [6–9] to improve the accuracy of the parton shower algorithm in antenna [10–12] and

dipole [13–15] showers, as well as work on amplitude-based evolution to treat subleading

colour effects [16, 17].

A recent work [18] showed that two popular dipole shower algorithms, used in

PYTHIA 8 [19] and Dire [20], have issues even at leading-logarithmic accuracy due to

the way the singular emissions are split between different dipole contributions and how

recoils are handled. The authors considered an initial qq̄ dipole and the emission of two

gluons g1 and g2 that are both soft and collinear to either of the hard partons and widely

separated in rapidity from each other. Given these requirements, the two emissions must

be independent and the double-emission probability is

dP
(2)
soft =

1

2!

2∏
i=1

[
CF

αs(pT i)

π

dφi
2π

dp2
T i

p2
T i

dyi

]
, (1.1)

where yi is the rapidity of the gluon i and pT i is its transverse momentum, all computed in

the original qq̄ dipole frame, where the z axis is aligned with the q direction. The second

gluon, g2, can be emitted either from the q̄ − g1 or from the q − g1 dipole. However,

although g2 may be further from g1 than g1 is from q or q̄, when the event is looked at in

the emitting-dipole frame, g2 may be closer in angle to g1, which will thus play the role

of the emitter. This results in an incorrect colour factor, since CA/2 is assigned instead of

CF. This mistake has no effect at leading colour, since CF → CA/2 in the large number of

colours limit, though it does correspond to an error in the subleading colour contribution.

Furthermore, if g1 is identified as the emitting particle in the emitting dipole, it has to

balance the transverse momentum of g2 and

pT1 → pT1 − pT2, (1.2)

where the bold symbol indicates it is a two-momentum. This implies that pT1 can receive a

substantial modification if the transverse momentum of the second gluon is only marginally

smaller than that of the first emission, thus violating eq. (1.1).

In this paper we will use a similar approach to that of ref. [18] in order to analyse the

behaviour of the improved angular-ordered shower of ref. [21]. The subleading colour issue

does not affect an angular-ordered parton shower, which implements colour coherence by

construction, so that in the above example g2 can only be emitted, with the correct colour

1For a complete review of the approximations and models used see ref. [5].
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factor, in a cone around q or g1 that is smaller than the angle that separates q and g1.

However, the effect of the recoil must be carefully taken into account. The angular-ordered

parton shower, which uses a “global” recoil (the momenta of all partons in the shower are

changed to ensure momentum conservation) and 1 → 2 splittings, is significantly different

from the dipole showers, which implement “local” recoil (where only the momenta of colour-

connected partons change to ensure momentum conservation), as considered in ref. [18].

While some of the issues considered in ref. [18] are irrelevant for parton showers using 1→ 2

kinematics and global recoil, some of the underlying physics issues addressed can occur in

the angular-ordered parton shower, although they manifest themselves in different ways.

In the next section we briefly introduce the relevant features of a massless parton

shower algorithm, including a definition of logarithmic accuracy which will guide our anal-

ysis. In section 3 we present the definitions of the parton momenta and kinematics used

in the angular-ordered parton shower. These are then used to construct three different

interpretations of the evolution variable and consider the logarithmic accuracy of each. We

then discuss the tuning procedure used for the Herwig 7 angular-ordered parton shower

to ensure a like-for-like comparison between new and old evolution variables. Finally we

present our conclusions. In appendix A we discuss a technical detail related to the splitting

g → qq̄ and in appendix B we explicitly show that the current default recoil scheme im-

plemented in Herwig 7 only correctly describes the double-logarithmically enhanced terms,

thus justifying the proposal of a new recoil prescription.

2 Definition of logarithmic accuracy

Fixed-order calculations quickly become cumbersome when we increase the particle multi-

plicity to take into account the emission of extra jets. However, the leading contribution

from such emissions arises in the soft and collinear regions of the phase space, i.e. when we

consider the emission of a gluon with vanishing energy or of a parton whose momentum

is parallel to the momentum of the emitter. In this latter limit the cross section for the

emission of an extra parton is fully factorised, so that we can easily derive the emission

probability

dP =
αs
2π

dt

t
dzP (z), (2.1)

where z is the light-cone momentum fraction (see eq. (3.3)), P (z) are the collinear splitting

functions and t is a scale that approaches 0 in the collinear limit. We see that if we try to

integrate the collinear emission probability in (2.1) over the available phase space, there

is a logarithmic divergence for t → 0. When we consider the emission of a soft gluon, i.e.

when z → 1, we have another source of logarithmic singularities as the splitting kernels all

behave like

lim
z→1

P (z) =
2C

1− z , (2.2)

where C = CA in case of gluon splitting and C = CF if the gluon is emitted from a

quark line. This simple approximation allows us to correctly take into account double

logarithms associated with soft-collinear gluon emission and single logarithms associated

with a collinear branching.
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When we consider n branchings, we can have at most 2n large logarithms, L, of widely

disparate scales of the problem, which arise if all the emissions are simultaneously soft

and collinear: this means that the emission probability is proportional to αnsL
2n, and

we call such contributions leading logarithms (LL). The use of quasi-collinear splitting

functions [22] gives the first next-to-leading (i.e. single) collinear logarithms (NLL), i.e.

αnsL
2n−1, and together with the choice of the two loop running coupling evaluated using

the Catani-Marchesini-Webber scheme [23] at the transverse momentum of the radiated

partons [24], includes all leading (double) and next-to-leading (single) logarithmic contri-

butions, except for those due to soft wide angle gluon emissions.

In general defining a strict logarithmic accuracy for a parton shower algorithm is

difficult. Formally a parton shower algorithm has only leading logarithmic accuracy, al-

though it is able to capture many next-to-leading contributions. There are some classes

of infrared-safe observables where an improved coherent branching formalism leads to full

next-to-leading log accuracy (e.g. in semi-inclusive hard processes such as deep inelastic

scattering and Drell-Yan at large x [23]). In ref. [18] it was shown that in some regions

of the phase space the double-soft-gluon emission probability is not correctly described

by dipole showers. In practice, neglecting subleading colour contributions,2 the parton

shower approximation of eq. (1.1) fails only when the transverse momenta of the two emit-

ted gluons are commensurate and thus the recoil procedure quite significantly changes the

transverse momentum of the first emission. Since logarithms of commensurate scales are

small, it was also found that, for a wide range of event-shape observables, the leading terms

are correct but the next-to-leading logarithmic terms are wrong.

Based on this observation, a necessary (but not sufficient) condition for an algorithm to

be next-to-leading log accurate is that the singularity structure of the spectrum in eq. (1.1)

is reproduced in all the regions of the Lund plane [26], which describes the available phase

space in terms of the transverse momenta and rapidities of the emitted gluons relative to a

suitably-defined frame/axis. As was first pointed out in ref. [26], and exploited in ref. [18]

to understand the logarithmic accuracy of parton showers, the leading-logarithmic gluon

emission is uniform in the plane defined by the logarithm of this transverse momentum

and rapidity. Specific corrections to the uniform distribution can be made in specific

phase space regions, to promote this description to next-to-leading logarithmic. In more

detail, as the cut-off of a parton shower, or value of an event shape observable, is made

logarithmically smaller (O < e−L), the area of the Lund plane increases as the square of

this logarithm, ∼ L2. If a parton shower algorithm makes an order 1 error over an area of

the Lund plane, i.e. a region that grows at rate proportional to L2, we say that it is not

leading-logarithmically accurate. Conversely, if it does not make such an error, we say that

it has the potential to be leading-logarithmically accurate. If a parton shower algorithm

makes an order 1 error only along a line in the Lund plane, i.e. a region that grows at

2In ref. [25] resummed predictions at NLO+NLL accuracy are compared against dipole shower predictions

for the case of 4-, 5- and 6-jet Durham resolutions to assess the impact of subleading colour contributions.

In the (strict) large number of colours (LC) approximation significant differences are found, however the

colour treatment of parton showers (that associates CA/2 when a gluon emission come from a gluon leg, CF

from a quark leg) leads to results almost identical to those obtained considering the full-colour dependence.
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rate proportional to L, we say that it is leading-logarithmically accurate but not next-to-

leading-logarithmically accurate. Our aim is to construct an algorithm that makes order 1

errors only at isolated points in the Lund plane, i.e. regions that do not grow with L,

and therefore give rise only to errors in event shape distributions of either next-to-next-to-

leading logarithmic or power-suppressed order. Emission of two gluons of similar transverse

momenta corresponds to a line in the Lund plane and therefore careful consideration of this

configuration is required to reach next-to-leading logarithmic accuracy. The importance of

recoil effects for correct description of this region was first pointed out in ref. [27].

In the following we will consider three recoil scheme prescriptions, one of which leads

to an incorrect kinematic mapping in the soft limit. In appendix B we explicitly show how

this leads to incorrect NLL contributions in the thrust distribution as an example event

shape observable.

3 Kinematics

We will define all momenta in terms of the Sudakov basis such that the 4-momentum of

particle l is

ql = αlp+ βln+ k⊥l, (3.1)

where the reference vectors p and n are the momentum of the parent parton with on-shell

mass m0 and a lightlike vector that points in the direction of its colour partner. They obey

p2 = m2
0, p · n 6= 0, n2 = 0, p · k⊥l = n · k⊥l = 0, (3.2)

so that the transverse momenta are defined with reference to the direction of p and n and

the transverse momentum 4-vector k⊥l is spacelike. If we consider a particle ĩj that splits

into a pair of particles i and j, the light-cone momentum fractions of particles i and j are

defined as

zi =
qi · n
qĩj · n

=
αi
αĩj

= 1− zj . (3.3)

The relative transverse momentum of the branching is given by

q⊥i ≡ k⊥i − zik⊥ĩj = k⊥j − zjk⊥ĩj , (3.4)

and the magnitude of the spatial component is therefore given by

p2
T i ≡ p2

⊥i = −q2
⊥i. (3.5)

The parton shower evolution terminates when

p2
T i < p2

T min, (3.6)

where p2
T min is an infrared cutoff tuned to data of the order of 1 GeV.

For many results we will not need a specific representation of the reference vectors. If

we do need a representation we will use the choice made in ref. [21] for final-state radiation
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with a final-state colour partner, i.e.

p =
Q

2
[1 + b− c, 0, 0, λ] ; (3.7a)

n =
Q

2
[λ, 0, 0,−λ] ; (3.7b)

where Q is the invariant mass of the radiating particle and its colour partner, b = m2
0/Q

2,

c = m2
s/Q

2, λ is the Källén function

λ = λ(1, b, c) ≡
√

1 + b2 + c2 − 2b− 2c− 2bc, (3.8)

and m0, ms are the masses of the radiating particle and its colour partner, respectively.

3.1 Single emission

For the branching 0→ 12, with no further emission we have:

q0 = p+ β0n; (3.9a)

q1 = zp+ β1n+ q⊥; (3.9b)

q2 = (1− z)p+ β2n− q⊥; (3.9c)

where, q⊥ is the transverse momentum 4-vector, m0,1,2 are the on-shell masses of the

particles, z is the light-cone momentum defined in eq. (3.3), β1,2 are determined by the

on-shell condition q2
1,2 = m2

1,2 and β0 by momentum conservation. The virtuality of the

parton initiating the branching is therefore

q2
0 =

p2
T

z(1− z)
+
m2

1

z
+

m2
2

(1− z)
, (3.10)

where q2
⊥ = −p2

T .

3.2 Second emission

We now consider two emissions, the first with z1, q̃1, φ1 and the second from the first

outgoing parton of the first branching with z2, q̃2, φ2, as shown in figure 1.

We define the off-shell momenta of the four partons after the branchings as:

q0 = p+ β0n; (3.11a)

q1 = z1p+ β1n+ q⊥1; (3.11b)

q2 = (1− z1)p+ β2n− q⊥1; (3.11c)

q3 = z1z2p+ β3n+ z2q⊥1 + q⊥2; (3.11d)

q4 = z1(1− z2)p+ β4n+ (1− z2)q⊥1 − q⊥2; (3.11e)

where p2 = m2
0, the βi coefficients are fixed by the on-shell condition and momentum

conservation and the space-like transverse momentum

q⊥i = [0; pT i, 0] = [0; pT i cosφi, pT i sinφ, 0] , (3.12)

– 6 –
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q0, m0

q1, m1, z1

q2, m2, (1− z1)

q3, m3, z1z2

q4, m4, z1(1− z2)q̃1, pT1, φ1

q̃2, pT2, φ2

Figure 1. The kinematics of two branchings in the angular-ordered parton shower. The off-shell

momenta (qi), on-shell masses (mi) and light-cone momentum fractions of the partons are shown

together with the evolution variable (q̃i), transverse momentum (pTi) and azimuthal angle (φi) of

each branching.

such that q2
⊥i = −p2

T i = −p2
T i. The virtualities of the branching partons are:

q2
0 =

p2
T1

z1(1− z1)
+
q2

1

z1
+

m2
2

1− z1
; (3.13a)

q2
1 =

p2
T2

z2(1− z2)
+
m2

3

z2
+

m2
4

1− z2
. (3.13b)

In all the cases we will consider parton 4 will be a gluon, m4 = 0, so that partons 1

and 3 must have the same mass, i.e. m1 = m3. It will also prove useful to define a unit

vector in the direction of the transverse momentum, i.e.

n̂i = [cosφi, sinφi] . (3.14)

4 Interpretation of the evolution variable

In ref. [21] the extension of the original angular-ordered parton shower [28] to include mass

effects and longitudinal boost invariance along the jet axis was presented. In this algorithm

the evolution variable is

q̃2 =
q2

0 −m2
0

z(1− z)
, (4.1)

in order to include mass effects, in particular the correct mass in the propagator, retain

angular-ordering and have a simple single emission probability

dP =
dq̃2

q̃2

αS
2π

dφ

2π
dzPi→jk(z, q̃), (4.2)

where Pi→jk(z, q̃) is the quasi-collinear splitting function [22], z is the light-cone momentum

fraction and φ is the azimuthal angle of the transverse momentum generated in the splitting.

The strong coupling αS is evaluated at the scale

µ = z(1− z)q̃; (4.3)

– 7 –
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from eqs. (4.1) and (3.10) we can see that µ coincides with the transverse momentum of

the splitting [23, 29], which we label pT , if m1 = m2 = 0.

For a single emission (or the last emission in an extended shower) where the children

are on their mass-shell, the kinematics are unambiguously defined by eq. (4.1) and the

ordering variable can be expressed equivalently in terms of q2 and p2
T :

q̃2 =
q2

0 −m2
0

z(1− z)
=
p2
T + (1− z)m2

1 + zm2
2 − z(1− z)m2

0

z2(1− z)2
. (4.4)

However, when the children of a branching go on to branch further so that they are off-

shell, it is clear from eq. (3.13) that we cannot preserve simultaneously q2
0 and p2

T . The

choice of the preserved quantity will determine the interpretation of q̃2. The procedure

used by Herwig is to first generate a value of q̃2, z and φ for a branching and calculate the

preserved kinematic variable from them. Then the upper limit of q̃2 is calculated for each

of the children and the shower proceeds to the next branching. Only at the end of the

whole shower evolution, is the generation of each branching completed by constructing its

kinematics from its (now off-shell) children’s momenta, using the kinematic variable that

had been constructed from q̃2. Thus any other kinematic variables are shifted slightly, to

accommodate the change from on-shell to off-shell kinematics. The interested reader can

find further details concerning the kinematic reconstruction in section 6.1 of ref. [29]. As

the virtuality acquired from the new partons does not depend upon the azimuthal angle, as

can be seen from eq. (3.13), we can already anticipate that the shift in the other kinematic

variables is not affected by the value of φ.

We will investigate three different choices for the kinematic variable that is preserved.

4.1 pT preserving scheme

The original choice of ref. [21] was to use eq. (4.1) together with the expression of the

virtuality in eq. (3.10), to define the transverse momentum of the branching 0 → 12,

p2
T = z2(1− z)2q̃2 +m2

0z(1− z)−m2
1(1− z)−m2

2z, (4.5)

where on-shell masses, m1,2,3 are used for the particles produced in the branching.

As observed in ref. [30] this choice tends to give too much hard radiation in the parton

shower, as the virtuality of the parent parton can arbitrarily grow after multiple emissions.

4.2 q2 preserving scheme

Ref. [30] suggested that the virtuality of the branching should be determined using the

virtualities the particles produced in the branching develop after subsequent evolution,

such that

p2
T = z2(1− z)2q̃2 +m2

0z(1− z)− q2
1(1− z)− q2

2z. (4.6)

Clearly this is the same as eq. (4.5) if there is no further emission, i.e. q2
1,2 = m2

1,2.

3By default a cut-off on the transverse momentum of the splitting is applied, as described at the beginning

of section 3. However it is possible to choose a cut-off on the virtuality of the emitting parton: if this choice

is adopted, m1,2 are set to the value of the minimum virtualities allowed for particles 1 and 2.
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This choice, however, has the problem that the subsequent evolution of the partons

is not guaranteed to result in a physical, i.e. a p2
T ≥ 0, solution of eq. (4.6). In ref. [30]

it was noted that the vetoing of emissions that give a non-physical solution affected the

logarithmic evolution of the total number of particles, i.e. the leading-logarithmic evolution

was not correct. Hence, if there was no physical solution the transverse momentum was

set to zero such that the virtuality of the branching particle is

q2
0 =

q2
1

z
+

q2
2

(1− z)
. (4.7)

We remark that, even if the transverse momentum pT of the previous emission changes,

the strong coupling of that splitting remains evaluated at z1(1 − z1)q̃1, i.e. the original

transverse momentum in case of massless splitting. Analogously, each emission can be

vetoed only when it is generated, so subsequent emissions will not affect this veto.

4.3 Dot-product preserving scheme

Motivated by the original massless angular-ordered parton shower of ref. [28], where the

evolution variable was related to the dot product of the outgoing momenta, we investigate

the choice

q̃2 =
2q1 · q2 +m2

1 +m2
2 −m2

0

z(1− z)
, (4.8)

where the inclusion of the masses is required to give the correct propagator in the general

case. However, it is not needed for gluon emission, m0 = m1 and m2 = 0, and only becomes

relevant in g → qq̄ branching.

In this case

p2
T = z2(1− z)2q̃2 − q2

1(1− z)2 − q2
2z

2 + z(1− z)
[
m2

0 −m2
1 −m2

2

]
. (4.9)

As before this reduces to the same result in the case of no further emission.

The major advantage of the original massless algorithm [28] was that the subsequent

evolution would always have a physical solution for the transverse momentum. If we

consider gluon emission the condition

q̃2 > 2 max

(
q2

1

z2
,

q2
2

(1− z)2

)
, (4.10)

is sufficient, but not necessary, for there to be a solution for the transverse momentum in

eq. (4.9).

If this inequality is satisfied, the virtuality of the branching parton is

q2
0 = q2

1 + q2
2 + z(1− z)q̃2 ≤ q̃2

2
. (4.11)

Assuming that the branching parton was produced in a previous branching, with light-cone

momentum fraction zi and evolution scale q̃i, the angular-ordering condition ensures that

q̃ < ziq̃i. Hence

q2
0 ≤

z2
i q̃

2
i

2
, (4.12)

– 9 –



J
H
E
P
0
4
(
2
0
2
0
)
0
1
9

so that if eq. (4.10) is satisfied for one branching it will also be satisfied for previous

branchings. So provided that we require

q̃2 > 2 max

(
m2

1

z2
,

m2
2

(1− z)2

)
, (4.13)

wherem1,2 are either the physical, or cut-off masses of the partons, the subsequent evolution

will be guaranteed to have a physical solution for the transverse momentum.

There are two issues with this choice. The first is that if we impose eq. (4.13) on

radiation from a heavy quark with mass m, the transverse momentum of the branching

must satisfy

pT ≥ (1− z)m, (4.14)

which, since pT ∼ (1− z)Eθ corresponds to θ ≥ m/E, i.e. the hard dead-cone [31, 32] the

new algorithm was designed to avoid [21]. In practice we use a cut-off on the transverse

momentum of the emission which is fine for radiation from gluons and light quarks, and also

for the charm quark since the cut-off is close to the charm mass. For the 3rd generation

quarks we get a small fraction of events where the kinematics cannot be reconstructed

(. 0.2 per mille and . 0.5% of q → qg branchings for bottom and top quarks, respectively,

hardly varying with centre-of-mass energy). However this region is subleading, i.e. does

not give rise to either soft or collinear logarithms, and therefore we adopt the approach of

setting the transverse momentum of the emission to zero as above in this case.

The second, although less important, issue is the g → qq̄ branching. The limit in this

case is presented in appendix A. For massive quarks, in particular the bottom quark, this

limit is stricter than the cut-off on the transverse momentum we use. We therefore have

some g → bb̄ branchings where we are forced to set the transverse momentum to zero.

Again this region is subleading (. 0.5% of g → bb̄ branchings, again hardly varying with

centre-of-mass energy) and therefore does not affect the logarithmic accuracy. In this case

the g → qq̄ only gives logarithms of the quark mass, and the neglected region does not

contribute to these logarithms.

A full study of these mass effects is beyond the scope of this work, although very

important and we hope to return to it in the future.

4.3.1 Phase-space corrections

The angular ordering of the parton shower, which allows a consistent treatment of colour

coherence effects, leads to regions of phase space without any gluon emissions. This is the

so-called dead zone.

The choice of the preserved quantity in the presence of multiple emissions can signif-

icantly affect the phase-space region that is filled by the shower. Figure 2 illustrates the

Dalitz plot for e+e− → qq̄. We have clustered the partons using the FastJet [33] imple-

mentation of the kT jet algorithm [34] and we have switched off g → qq̄ splittings in order

to unambiguously define the q and q̄ jets. We can appreciate how little the q2-preserving

scheme populates the dead zone, coloured in yellow, in opposition to the pT -preserving

scheme. This feature is essential when matching to higher order computations, like matrix
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Figure 2. Dalitz plot for e+e− → qq̄ showing the region of phase space filled after multiple

emission from the quark and anti-quark in the angular-ordered parton shower for several choices of

the preserved quantity: pT (upper-left pane), q2 (upper-right pane), dot-product (lower-left pane)

and dot-product plus q2 veto (lower-right pane). The red line illustrates the limits for the first

parton-shower emission and the yellow region corresponds to the dead zone. The variable xi is

defined to be 2Ei/Q, where Ei is the energy of parton i and Q is the total energy, all defined in the

centre-of-mass of the collision.

element corrections, since they will take care to fill this hard region of the phase space. We

notice that the dot-product-preserving scheme (bottom-left pane) displays an intermediate

behaviour between the two older schemes, with the number of points in the dead zone for

the dot-product-preserving scheme about half of that in pT -preserving scheme.

In order to enforce the similarities between the dot-product preserving scheme and

the q2 one, that is the current Herwig default, we implemented a rejection veto to avoid

generating too large virtualities. Indeed the virtuality of the shower progenitor, i.e. the

emitter particle that was present prior to the shower, increases when multiple emissions

are generated, only in the q2-preserving scheme is it kept fixed. To this end, let us consider
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the two-body phase space for the process e+e− → qq̄, which reads

dΦ2(s,m2,m2) =
dΩ

32π2
λ

(
1,
m2

s
,
m2

s

)
, (4.15)

where Ω is the solid angle that describes the direction of the quark and λ is the Källén

function introduced in eq. (3.8). When n emissions are generated the phase space becomes

dΦn+2 = dΦ2(s, k2
q , k

2
q̄ )

n∏
i=1

dq̃2
i

(4π)2
zi(1− zi)dzi

dφi
2π

, (4.16)

where k2
l is the virtuality developed by the shower progenitor l = q, q̄. Thus, if we want to

factorize the phase space over the original two-body one, we need to include the Jacobian

factor

J =
dΦ2(s, k2

q , k
2
q̄ )

dΦ2(s,m2,m2)
=

λ(s, k2
q , k

2
q̄ )

λ(s,m2,m2)
. (4.17)

Since J < 1, we can simply implement a reweighting procedure: at the end of the showering

phase we generate a random number r smaller than 1 and we accept the event only if r < J ,

otherwise we shower the event anew. Looking at the Dalitz plots (bottom panel of figure 2),

we see that while this has only a modest effect, it does somewhat suppress, about a 10%

reduction, the events in the dead zone. Note that these plots are all made with the same

set of parameters.

5 Assessing the logarithmic accuracy

The angular-ordered parton shower has the correct single-emission probability by construc-

tion. However it is still instructive to calculate the Lund variables, i.e. the transverse mo-

mentum k⊥ and rapidity y, to see how the Herwig variables relate to the physical ones. For

a single gluon emission, m0 = m1 = m and m2 = 0, all three choices for the interpretation

of the evolution variable are identical, giving

k2
⊥ = p2

T = (1− z)2
(
z2q̃2 −m2

)
≈ z2(1− z)2q̃2 ≈ ε2q̃2, (5.1a)

y =
1

2
ln

[
(1 + b− c+ λ)2Q2(1− z)2

4p2
T

]
≈ ln

[
Q(1− z)

pT

]
≈ ln

[
Q

q̃

]
, (5.1b)

where λ = λ(1, b, c). The first approximation is that both the radiating particle and the

spectator are massless, i.e. m→ 0, and the second approximation is that the emitted gluon

is soft, i.e. z = 1− ε with ε→ 0. The Herwig soft collinear gluon emission probability from

a massless quark line is given by

dP Hw7
soft = CF

dq̃2

q̃2

αS(z(1− z)q̃)

2π
dz

(1 + z2)

1− z
dφ

2π
≈ CF

dq̃2

q̃2

αS(εq̃)

π

dε

ε

dφ

2π
, (5.2)

if we rearrange the above expression in terms of the Lund variables kT and y we reproduce

the correct form of the soft collinear emission probability

dP = CF
αs(k⊥)

π

dk2
⊥

k2
⊥
dy

dφ

2π
. (5.3)

– 12 –



J
H
E
P
0
4
(
2
0
2
0
)
0
1
9

We now need to investigate the accuracy for two successive gluon emissions, i.e. m0,1,3 =

m, m2,4 = 0. In particular, in angular-ordered parton showers, one can obtain strongly

disordered regions in which a second emission is much harder (in energy, contribution to

jet virtuality or transverse momentum) than the first. We therefore have to check that the

kinematics of the softer first gluon are not disturbed by the second harder one.

The different schemes only affect the relationship between the transverse momenta and

the evolution variable, this means that the kinematics are the same in all three schemes

when expressed in terms of the transverse momenta. The Lund variables for the two

emissions are therefore:

k2
⊥1 = p2

T1; (5.4a)

y1 =
1

2
ln

[
(1 + b− c+ λ)2Q2(1− z1)2

4p2
T1

]
; (5.4b)

k2
⊥2 = (pT2 − (1− z2)pT1)2; (5.4c)

y2 =
1

2
ln

[
(1 + b− c+ λ)2Q2z2

1(1− z2)2

4k2
⊥2

]
. (5.4d)

All three choices of evolution variable are identical for one emission, therefore

p2
T2 = (1− z2)2

[
z2

2 q̃
2
2 −m2

]
, (5.5)

and the virtuality of the branching parton is

q2
1 = z2(1− z2)q̃2

2 +m2. (5.6)

For the first branching the relationships depend on our choice of reconstruction scheme.

5.1 pT preserving scheme

If we use the pT preserving scheme

p2
T1 = (1− z1)2

[
z2

1 q̃
2
1 −m2

]
, (5.7)

the final virtual mass of the original parton is

q2
0 =

p2
T1

z1(1− z1)
+
q2

1

z1
= z1(1− z1)q̃2

1 +
z2(1− z2)q̃2

2

z1
+m2, (5.8)

and

p2
T2 = (1− z2)2

(
z2

√
q̃2

2 −
m2

z2
2

n̂2 − z1(1− z1)

√
q̃2

1 −
m2

z2
1

n̂1

)2

, (5.9)

where we recall that n̂i is a unit vector parallel to pT i, see eq. (3.14).
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In the massless and soft limits, z1,2 → 1 such that z1,2 = 1 − ε1,2 and ε1,2 � 1, the

Lund variables are

k2
⊥1 ≈ ε21q̃2

1; (5.10a)

y1 ≈ ln

[
Q

q̃1

]
(5.10b)

k2
⊥2 ≈ ε22(q̃2n̂2 − ε1q̃1n̂1)2; (5.10c)

y2 ≈
1

2
ln

[
Q2

(q̃2n̂2 − ε1q̃1n̂1)2

]
; (5.10d)

In the soft limit

q2
0 = ε1q̃

2
1 + ε2q̃

2
2 +m2. (5.11)

As the limit from angular-ordering is q̃1 ≥ q̃2 we see that for

ε2q̃
2
2 > ε1q̃

2
1, (5.12)

there is a disordered region where the contribution of a second harder gluon to the virtuality

of the original parton is dominant. In this disordered region, k⊥2 � k⊥1 so that we can

neglect ε1q̃1 relative to q̃2 and the kinematics are effectively independent. However, there

is a region in which the transverse momentum of the first emission overwhelms that of the

second, if q̃2 < ε1q̃1 = k⊥1. This is the region in which the emission angle of the second

gluon is smaller than the recoil angle of the quark from the first gluon (figure 3). It is

an issue because we have measured the transverse momentum and rapidity relative to the

fixed jet axis, not the local axis of emission.4 If we calculate the Lund variables using q3

as the axis:

k2
⊥1 ≈ ε21(q̃1n̂1 + ε2q̃2n̂2)2; (5.13a)

y1 ≈
1

2
ln

[
Q2

(q̃1n̂1 + ε2q̃2n̂2)2

]
; (5.13b)

k2
⊥2 ≈ ε22q̃2

2; (5.13c)

y2 ≈ ln

[
Q

q̃2

]
. (5.13d)

The second gluon variables are now the same as the single emission case, eq. (5.1), thus

retaining the correct behaviour in the soft limit. The first gluon variables are correct this

time, because q̃2 is always smaller than q̃1 and the factor of ε2 makes it arbitrarily smaller.

Thus, this scheme is accurate to leading logarithmic order as it reproduces the correct

behaviour of the soft, collinear splitting function.

5.2 q2 preserving scheme

For the q2 preserving scheme

p2
T1 = max

(
z2

1(1− z1)2q̃2
1 +m2z1(1− z1)− q2

1(1− z1), 0
)

= max
(
(1− z1)

[
(1− z1)(z2

1 q̃
2
1 −m2)− z2(1− z2)q̃2

2

]
, 0
)
, (5.14)

4Similar issues were discussed in the context of CAESAR resummation, see ref. [35] appendix C.
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fixed jet axis

q1

q2
q0

q4

q3

Figure 3. Region in which the emission angle of the second gluon is smaller than the recoil angle

of the quark from the first-gluon emission.

so that the transverse momentum is non-zero if

(1− z1)(z2
1 q̃

2
1 −m2) > z2(1− z2)q̃2

2. (5.15)

In the limit that both z1,2 → 1 then

p2
T1 = max

(
ε1(ε1(q̃2

1 −m2)− ε2q̃2
2), 0

)
, (5.16)

so that in the soft limit the transverse momentum is non-zero for massless partons if

ε1q̃
2
1 > ε2q̃

2
2, (5.17)

which is effectively the requirement that the generated virtualities are ordered, which is

clearly violated in the disordered region we are concerned about.

In the ordered region in which a solution is possible, the Lund variables, calculated

relative to the q3 axis are:

k2
⊥1 ≈ ε21q̃2

1 − ε1ε2q̃2
2; (5.18a)

y1 ≈
1

2
ln

[
Q2

q̃2
1 − q̃2

2
ε2
ε1

]
; (5.18b)

k2
⊥2 ≈ ε22q̃2

2; (5.18c)

y2 ≈ ln

[
Q

q̃2

]
. (5.18d)

In the bulk of the region, the q̃2
2 terms are negligible. However, along the “line” ε2q̃

2
2 ∼ ε1q̃2

1

the generated k2
⊥1 value is wrong by a factor of order 1. Moreover, for most reasonable

event shapes, e.g. thrust, the first gluon is the dominant one. Therefore this is a next-to-

leading-logarithmic (NLL) error, i.e. the double logarithmic behaviour is correct, while the

single soft logarithm is incorrect. An explicit derivation for the case of the thrust is given

in appendix B.

In the disordered region, pT1 = 0, therefore the Lund variables are:

k2
⊥1 ≈ ε21p2

T2 ≈ ε21ε22q̃2
2; (5.19a)

y1 ≈
1

2
ln

[
Q2

p2
T2

]
≈ 1

2
ln

[
Q2

ε22q̃
2
2

]
; (5.19b)
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with k2
⊥2 and y2 given by eq. (5.18). While the kinematics of the second gluon are cor-

rect, kinematics of the first gluon are completely wrong in this region in the Lund plane.

This could, in principle, be a leading-log effect. However, for the example of the thrust

distribution, in this region the second gluon is the hardest one and the first gluon gives a

sub-leading contribution to the observable. Therefore, again, it is only along the line at

the edge of this region that one gets a significant effect and it is a NLL error. We conclude

that the q2 preserving looks undesirable, in reconstructing incorrect kinematics over a finite

area of the Lund plane. In practice this leads to a NLL error in the thrust distribution (see

appendix B). Related problems with the q2-preserving scheme were also noted in ref. [36].

5.3 Dot-product preserving scheme

In the dot-product preserving scheme the transverse momentum of the second branching

is unchanged but for the first it becomes

p2
T1 = z2

1(1− z1)2q̃2
1 − q2

1(1− z1)2 = (1− z1)2
[
z2

1 q̃
2
1 − z2(1− z2)q̃2

2 −m2
]
. (5.20)

The difference relative to eq. (5.14) looks minor, but now we have to compare q̃2
1 with ε2q̃

2
2,

q̃2
2 has to be smaller than q̃2

1 and the factor of ε2 makes it parametrically smaller. The

second term can therefore never be as large as the first.

The virtuality of the first parton is

q2
0 = q̃2

1z1(1− z1) + q̃2
2z2(1− z2) +m2, (5.21)

which for soft emissions can be dominated by the second emission for ε2 > ε1. In this case

the transverse momentum of the second branching is

p2
T2 = (1− z2)2

(
z2

√
q̃2

2 −
m2

z2
2

n̂2 − z1(1− z1)

√
q̃2

1 −
m2

z2
1

− z2(1− z2)q̃2
2

z2
1

n̂1

)2

(5.22)

In the massless and soft limits the Lund variables, with respect to the direction of p, are

k2
⊥1 ≈ ε21(q̃2

1 − ε2q̃2
2); (5.23a)

y1 ≈
1

2
ln

[
Q2

q̃2
1 − ε2q̃2

2

]
(5.23b)

k2
⊥2 ≈ ε22(q̃2n̂2 − ε1q̃1n̂1)2; (5.23c)

y2 ≈
1

2
ln

[
Q2

(q̃2n̂2 − ε1q̃1n̂1)2

]
, (5.23d)

while with respect to the direction of q3 they become

k2
⊥1 ≈ ε21(q̃2

1 + ε2q̃
2
2); (5.24a)

y1 ≈
1

2
ln

[
Q2

q̃2
1 + ε2q̃2

2

]
(5.24b)

k2
⊥2 ≈ ε22q̃2

2; (5.24c)

y2 ≈ ln

[
Q

q̃2

]
. (5.24d)
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5.4 Global recoil

We also need to consider the impact of the implementation of the global recoil in Herwig 7.

For simplicity we will consider the case of two final-state particles, the generic case can be

found in ref. [29]. We have a particle a with momentum

qa =
√
s [1, 0, 0, 0] , (5.25)

which splits into particles b and c, whose momenta are given by

pb =

√
s

2
[1 + b− c, 0, 0,+λ (1, b, c)] , pc =

√
s

2
[1− b+ c, 0, 0,−λ (1, b, c)] , (5.26)

where λ is the Källén function defined in eq. (3.8) and b = m2
b/s, c = m2

c/s. During the

shower evolution the particles acquire a virtuality q2
b = b′s and q2

c = c′s and their momenta

are modified

qb = pb + βb nb, (5.27)

qc = pc + βc nc, (5.28)

where

nb =

√
s

2
λ (1, b, c) [1, 0, 0,−1] , nc =

√
s

2
λ (1, b, c) [1, 0, 0,+1] , (5.29)

and

βb =
s(b′ − b)
2pb · nb

, βc =
s(c′ − c)
2pc · nc

. (5.30)

However, if we want to have two particles with invariant mass q2
b and q2

c , whose three-

momentum is parallel to the direction of pb and pc respectively, the two particles must

have four-momentum equal to

q′b =

√
s

2

[
1 + b′ − c′, 0, 0,+λ

(
1, b′, c′

)]
, q′c =

√
s

2

[
1− b′ + c′, 0, 0,−λ

(
1, b′, c′

)]
. (5.31)

As qb + qc = q′b + q′c, they can be simply related by a Lorentz transform along the pb (pc)

direction. The boost parameter for b is

β(b) =
((b+ b′)(1 + b− c) + λ(b− b′))((b− b′)(1 + b− c) + λ(b+ b′))− 4b2λ′(1 + b′ − c′)

((b− b′)(1 + b− c) + λ(b+ b′))2 + 4b2(1 + b′ − c′)2
,

(5.32)

where we have used the shorthand notation λ = λ(1, b, c) and λ′ = λ(1, b′, c′). The ex-

pression may look complicated, but if we consider that b, c, b′ and c′ are all much smaller

than 1, we get

β(b) ≈ c′ − c, β(c) ≈ b′ − b. (5.33)

Also the partons which have qb (qc) as shower progenitor need to be boosted along the

direction of the progenitor. This boost will leave the transverse momentum, the light-cone

– 17 –



J
H
E
P
0
4
(
2
0
2
0
)
0
1
9

momentum z and the ordering variable q̃ (since it is expressed in terms of scalar products

and z) invariant, but not the rapidity of the particles.

Indeed the rapidities of partons having the b as shower progenitor are slightly shift

towards smaller values

∆yb =
1

2
log

(
1− β(b)

1 + β(b)

)
≈ −β(b), (5.34)

and the rapidities of those coming from the c cascade are slightly pulled in the opposite

direction

∆yc =
1

2
log

(
1 + β(c)

1− β(c)

)
≈ β(c), (5.35)

where we expand the result because the boost parameter is generally much smaller than

1, being of the order of (q2 − m2)/s, where q2 is the virtuality developed by the colour

partner of the shower progenitor and m2 its mass.

Let us now discuss the impact of global recoil for soft emission in the massless limit,

i.e. for b = c = 0. Let us assume for simplicity that b is a quark q and c is an anti-quark

q̄. If we use the default Herwig 7 settings, partons originated from b will all have positive

rapidity and the single emission probability in the soft limit is

dPq→qg = CF
αs(pT )

π

dφ

2π

dp2
T

p2
T

dyΘ(y) , (5.36)

while the probability of a soft-emission originated from c is given by

dPq̄→q̄g = CF
αs(pT )

π

dφ

2π

dp2
T

p2
T

dyΘ(−y) , (5.37)

and the sum of the two contributions yields

dPsoft = CF
αs(pT )

π

dφ

2π

dpT
p2
T

dy. (5.38)

However, after we apply our global recoil, the rapidity of the partons gets shifted, to the

left for partons coming from b and to the right for those coming from c, causing a double

counting of the central-rapidity region. If we call β̄ the average boost-parameter that is

applied after the global recoil, eq. (5.38) will be modified to

dP Hw7
soft = CF

αs(pT )

π

dφ

2π

dp2
T

p2
T

dy
[
1 + Θ

(
|y| < β̄

)]
. (5.39)

Nevertheless, given the fact that β̄ is of the order q2/s and for soft emission typically

q2 � s, this is a power-suppressed effect, i.e. non-logarithmic, and therefore does not alter

the logarithmic accuracy of the parton shower.
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6 Tuning

The new interpretation of the evolution variable means that the hadronization parameters

(which are highly sensitive to the PS algorithm) have to be retuned. In order to do so, we

follow the same strategy as in ref. [30]: simulated events are analysed with Rivet [37], which

also enables a comparison with experimental results. The dependence on the hadronization

and parton shower parameters [38] is interpolated by the Professor program [39], which also

finds the set of values which best fit the experimental measurements. In our case, where

observables were measured by multiple experiments, only the most recent set of data is

used. We have not included LHC data in the tuning due to the high CPU-time require-

ment. We consider only the transverse momentum (pTmin) and not the virtuality as a

cutoff parameter.

In order to tune the shower and light quark hadronization parameters we used data on

jet rates and event shapes for centre-of-mass energies between 14 and 44 GeV [40–43], at

LEP1 and SLD [42–47] and LEP2 [42, 43, 46, 47], particle multiplicities [44, 45] and spec-

tra [44, 45, 48–60] at LEP 1, identified particle spectra below the Υ(4S) from Babar [61],

the charged particle multiplicity and distributions from [62–67] for centre-of-mass ener-

gies between 14 and 61 GeV, the charged particle multiplicity [68, 69] and particle spec-

tra [68, 70, 71] in light quark events at LEP1 and SLD, the charged particle multiplicity

in light quark events at LEP2 [72, 73], the charged particle multiplicity distribution at

LEP 1 [74–76], and hadron multiplicities at the Z-pole [77], and data on the properties of

gluon jets [78, 79].

The hadronization parameters for charm quarks were tuned using the charged multi-

plicity in charm events at HRS [64], SLD [69] and LEP2 [72, 73], the light hadron spectra

in charm events at LEP1 and SLD [68, 70, 71], the multiplicities of charm hadrons at the

Z-pole [44, 77], and charm hadron spectra below the Υ(4S) [80–82] and at LEP1 [83].

The hadronization parameters for bottom quarks were tuned using the charged mul-

tiplicity in bottom events at HRS [64], SLD [69] and LEP2 [72, 72, 73], the light hadron

spectra and event shapes in bottom events at LEP1 and SLD [43, 68, 70, 71, 79], the mul-

tiplicities of charm and bottom hadrons at the Z-pole [44, 77], charm hadron spectra at

LEP1 [50, 83] and the bottom fragmentation function measured at LEP1 and SLD [84–87].

Professor offers the possibility to weight each observable differently: we adopted the

same weights as in ref. [30]. Furthermore, as in [30], to prevent the fit being dominated by

a few observables with very small experimental uncertainty, we impose a minimum relative

error of 5% in the computation of the chi-squared χ2.

The following procedure is adopted to tune Herwig 7.

1. First the strong coupling computed in the CMW scheme [23] αCMW
s , the minimum

transverse momentum allowed in the showering phase pmin
T , and the light quark

hadronization parameters are tuned to event shapes, charged-particle multiplicity

and identified-particle spectra and rates which only involve light quark hadrons. This

class of observables is labelled as “general” in table 2.
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2. The hadronization parameters for bottom quarks are then tuned to the bottom quark

fragmentation function, event shapes and to the identified-particle spectra from bb̄

events.

3. The hadronization parameters involving charm quarks are then tuned to identified-

particle spectra and measurements of event shapes from charm events.5

4. We then vary one parameter at a time to see if our tune corresponds to the minimum

of the χ2. In case any of the parameters are significantly displaced from the minimum,

we retune them all (this time considering all the experimental distributions for light,

bottom and charm quarks together).

5. We repeat the previous step except that now if any parameters are too far from the

minimum of the χ2, their values are adjusted by hand. In particular, this is needed

for bottom quark hadronization parameters like ClMaxBottom which Professor is not

able to tune: this behaviour was also found in ref. [30].

The values of the default parameters and the new ones we find with our tuning proce-

dure are shown in table 1. The χ2 per degree of freedom computed with the observables

used for the tune, together with some recent data from the ATLAS experiment [88] which

is sensitive to both quark and gluon jet properties, are shown in table 2.

From table 1 we can notice that the four reconstruction choices correspond to four

significantly different values of the strong coupling, where smaller values correspond to the

schemes that give a poorer description of the non-logarithmically enhanced region of the

spectrum. The introduction of the veto procedure in the dot preserving scheme indeed

induces a 4% enhancement in αs.

7 Results

In this section we present the results of our simulations, in order to compare the predictions

obtained with the several implementations of the recoil discussed above. We first discuss

the LEP results, for which Herwig provides matrix-element corrections (MEC), and then

LHC ones for which Herwig does not.

7.1 LEP results

The first event-shape distribution we consider is thrust, figure 4. We find the well-known be-

haviour of the pT -preserving scheme, which overpopulates the non-logarithmically-enhanced

region of phase space that is already filled by MEC and corresponds to the tail of the

distribution. Although the dot-product scheme performs better than the pT one it still

overpopulates the dead zone, however the description of the tail of the spectrum improves

if we include the rejection veto described in section 4.3.1. In the right panel of figure 4 an

expanded view of the small 1− T region is displayed, where we notice that the new choice

of the recoil yields a better agreement with data.

5Charm parameters are the last to be determined, since charm hadrons are also produced from b-hadron

decays.
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Preserved pT in [30] q2 in [30] pT q2 qi · qj qi · qj+veto

Light-quark hadronization and shower parameters

AlphaMZ (αCMW
s (MZ)) 0.1087 0.1262 0.1074 0.1244 0.1136 0.1186

pTmin 0.933 1.223 0.900 1.136 0.924 0.958

ClMaxLight 3.639 3.003 4.204 3.141 3.653 3.649

ClPowLight 2.575 1.424 3.000 1.353 2.000 2.780

PSplitLight 1.016 0.848 0.914 0.831 0.935 0.899

PwtSquark 0.597 0.666 0.647 0.737 0.650 0.700

PwtDIquark 0.344 0.439 0.236 0.383 0.306 0.298

Bottom hadronization parameters

ClMaxBottom 4.655 3.911 5.757 2.900 6.000 3.757

ClPowBottom 0.622 0.638 0.672 0.518 0.680 0.547

PSplitBottom 0.499 0.531 0.557 0.365 0.550 0.625

ClSmrBottom 0.082 0.020 0.117 0.070 0.105 0.078

SingleHadronLimitBottom 0.000 0.000 0.000 0.000 0.000 0.000

Charm hadronization parameters

ClMaxCharm 3.551 3.638 4.204 3.564 3.796 3.950

ClPowCharm 1.923 2.332 3.000 2.089 2.235 2.559

PSplitCharm 1.260 1.234 1.060 0.928 0.990 0.994

ClSmrCharm 0.000 0.000 0.098 0.141 0.139 0.163

SingleHadronLimitCharm 0.000 0.000 0.000 0.011 0.000 0.000

Table 1. The Monte Carlo parameters obtained for different choices of the preserved quantity in

the angular-ordered shower.

Preserved pT q2 qi · qj qi · qj+veto

χ2 per d.o.f. considering several set of observables

general 4.406 3.152 3.735 3.352

bottom 5.964 6.494 5.127 4.118

charm 2.306 1.725 1.838 1.912

ATLAS jets 0.1598 0.4124 0.1925 0.5396

χ2 per d.o.f. considering sub-samples of the “general” observables

mult 3.031 2.757 2.822 2.776

event 6.959 3.461 5.191 3.877

ident 10.706 9.950 9.777 10.105

jet 4.579 3.226 4.093 3.638

gluon 1.128 1.174 1.237 1.216

charged 5.439 2.515 3.724 2.856

Table 2. The χ2 per degree of freedom for different choices of the preserved quantity in the

angular-ordered shower, obtained with the distributions we used to tune the light, bottom and

charm parameters respectively. The χ2 corresponding to ATLAS jets, particle multiplicities (mult),

event shapes (event), identified-particle spectra (ident), quark jets (jet), gluon jets (gluon) and

charged particle distributions (charged) are also shown.
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Figure 4. The thrust at the Z-pole compared with data from the DELPHI [44] experiment. In the

right panel a zoom for small 1− T values is shown.
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Figure 5. Thrust major (left) and minor (right) at the Z-pole compared with data from the

DELPHI [44] experiment.

Very similar conclusions can be drawn from the thrust major and minor (figure 5)

distributions, and from the plots of the C- and D-parameters (figure 6). For all the event

shape distributions except for D, all the options over-populate the first bin, but the q2 and

dot-product-plus-veto are similar to each other and closest to the data.

Looking at the behaviour of the jet resolution parameter in figure 7 we observe that

the pT -scheme most closely matches the data in the large − log(y23) (small y23) tail of

the distribution. However, in the small − log(y23) region the q2 scheme yields a better

description of the data. The dot-product scheme with the veto behaves very similar to the

q2 scheme, while the scheme without the veto is similar to the pT scheme in the tail of the

distribution and to the q2 one in the opposite limit, thus retaining the best description of

the data over the whole range.
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Figure 6. C (left) and D (right) parameters at the Z-pole compared with data from the DEL-

PHI [44] experiment.

b

b

b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b

b
b
b
b

b

b

b

b

b

b

b

b

b b

b

b
b

b

b

b Data
pT
q2

q1 · q2
q1 · q2+veto

10−3

10−2

10−1

Durham jet resolution 3 → 2 (ECMS = 91.2 GeV)

1/
σ
d
σ
/
d
ln
(y

23
)

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

1 2 3 4 5 6 7 8 9
0.6
0.8

1
1.2

1.4
1.6

− ln(y23)

M
C
/D

at
a

b

b

b
b

b
b

b
b b b b b b b b b b b b b b b b b b b b b b

b
b

b
b

b

b

b

b

b

b

b

b

b

b b

b

b
b

b

b

b Data
pT
q2

q1 · q2
q1 · q2+veto

10−3

10−2

10−1

Durham jet resolution 3 → 2 (ECMS = 91.2 GeV), zoom

1/
σ
d
σ
/
d
ln
(y

23
)

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

1 2 3 4 5 6
0.8

0.9
1

1.1
1.2
1.3

− ln(y23)

M
C
/D

at
a

Figure 7. Jet resolution parameter from a 3-jet configuration to a 2-jet configuration at the Z-pole

compared with data from the ALEPH [47] experiment. In the right panel an expanded section of

the same plot is shown.

In figure 8 we show the multiplicity distribution of charged particles in gluon jets for

two different gluon energies. We see that the differences between all of the recoil schemes

are much smaller than the experimental error and in general they all give a good agreement

with the data.

The schemes all fail to describe the peak region of the b fragmentation function, with

the different options making little difference, see figure 9. Nevertheless, the dot-product-

plus-veto scheme gives the best overall description of b data, as can be seen from table 2.

While all the data shown for e+e− collisions was used as part of the tuning, this is true

for all the tunes and therefore the differences are due to the improvements in the parton

shower.
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Figure 8. Multiplicity distribution of charged particles in gluons jets for two different gluon energies

compared with data from OPAL [78].
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Figure 9. Fragmentation function of weakly-decaying B-hadrons compared with data from

DELPHI [86].

7.2 LHC results

Data from jets at the LHC seem to prefer the pT scheme as shown in figure 10. However,

this behaviour is due to the absence of MEC in Herwig for the events we are simulating.

This implies that the dead zone remains unpopulated and the migration of events in this

region partially solves the lack of hard emission generation. Nevertheless we do expect

that matching with higher order computations will lead to the same behaviour that we

find in LEP observables, i.e. that the pT scheme yields too much hard radiation, while for

the q2 scheme, for which the kinematics of subsequent soft emissions are not guaranteed

to be independent, we expect worse behaviour in the opposite region of the spectrum, and

the dot-product-preserving scheme features intermediate properties. This data was not

included in the tuning.
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Figure 10. The average number of charged particles in jets (left) and the difference between the

average number of particles in central and forward jets (right) as a function of the jet transverse

momentum compared with data from the ATLAS experiment [88].

8 Conclusions

The pioneering work in ref. [18] investigated the logarithmic accuracy of dipole showers by

focusing on the pattern of multiple emissions. Driven by this work, we have studied how

different choices of the recoil scheme in Herwig can impact the logarithmic accuracy of the

distributions.

We investigated the original choice of ref. [21], where the transverse momentum of the

emission is preserved during the shower evolution, and the alternative proposal to preserve

the virtuality of the splitting, introduced in ref. [30]. We observed that although the latter

prescription retains in general a good description of the experimental data, it breaks the

formal logarithmic accuracy of the parton shower, as multiple soft emissions well separated

in rapidity are not independent. On the other hand, the older recoil scheme overpopulates

the non-logarithmically-enhanced region of the phase space, which should not be filled by

the parton shower, but instead by higher order computations.

Due to the undesirable features of these recoil schemes, we proposed an alternative

interpretation of the angular-ordering variable that well describes the process of multiple

independent soft emission and retains a good agreement with data while also considering

the hard tail of the distributions. In order to enforce the correct behaviour in the hard

region of the spectrum, we implemented a veto that suppresses large virtualities at the end

of the parton shower. This veto applies only to final state radiation and in the future we

plan to propose an extension which also includes initial state radiation. In the present work

we mainly focused on the case of a massless emitter. The study of mass effects is crucial

in assessing the accuracy of the parton shower and will be considered in future works.
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A g → qq̄ branching in the dot-product preserving scheme

In the case of g → qq̄ branching the transverse momentum of the splitting, eq. (4.9),

becomes

p2
T = z2(1− z)2q̃2 − (q2

1 −m2)(1− z)2 − (q2
2 −m2)z2 −m2, (A.1)

where m is the quark mass. So requiring

q̃2 > 2 max

(
q2

1 −m2

z2
+

m2

2z2(1− z)2
,
q2

2 −m2

(1− z)2
+

m2

2z2(1− z)2

)
, (A.2)

is sufficient, but not necessary, for there to be a physical solution in this case. In this case

the virtuality of the branching is

q2
0 = q2

1 + q2
2 + z(1− z)q̃2 − 2m2 ≤ q̃2

2
, (A.3)

which again will allow a solution but give a stricter limit.

B Impact of the recoil scheme on the logarithmic accuracy of the thrust

distribution

In this appendix we prove that the thrust is described only to LL accuracy in the q2-

preserving scheme, as this recoil scheme prescription introduces incorrect NLL terms at

order α2
s. To do so, we make use of the same methodology employed in section 4 of

ref. [18], which relies on the CAESAR formalism [35]. We introduce Σ(L), which is the

probability an event shape has a value smaller than exp(−L). We have already seen in

section 2 that when we perform an expansion in the strong coupling, αs, at most 2 powers

of L appear for each power of αs, i.e.

Σ(L) =
∞∑
n=0

2n∑
m=0

cm,nα
n
sL

m +O(αse
−L) (B.1)

and therefore αnsL
2n are the LL contributions and αnsL

2n−1 are the NLL ones. For many

event shapes, including the thrust, the expression for Σ(L) can be rearranged to give

Σ(L) = exp [Lg1(αsL) + g2(αsL) + αsg3(αsL) + . . .] +O(αse
−L), (B.2)

where the LL terms are contained in g1(αsL), while the NLL terms are in g2(αsL).
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The Herwig single emission probability can be written as

dP Hw7
soft =

2αsCF
π

dq̃

q̃

dε

ε
=

2αsCF
π

dpT
pT

dη = ᾱ
dpT
pT

dη (B.3)

where ᾱ = 2αsCF
π , and pT = εq̃ and η = log(εQ/pT ) are the Lund variables. The impact of

the incorrect shower mapping can be written as

δΣ(L) = ᾱ2

∫ +∞

−∞
dη1

∫ −|η1|
−∞

d`1

∫ +∞

−∞
dη2

∫ −|η2|
−∞

d`2 f(η1, η2)

∫ 2π

0

dφ12

2π
(B.4)

×
[
Θ
(
e−L − Vcorrect(η1, `1, η2, `2, φ12)

)
−Θ

(
e−L − VPS(η1, `1, η2, `2, φ12)

)]
,

where we have replaced the 1/2! multiplicity factor with the ordering condition

f(η1, η2) =

{
Θ(η2 − η1) if η1η2 < 0

Θ(|η2| − |η1|) if η1η2 > 0
(B.5)

i.e. either η1 is in the left hemisphere and η2 is in the right, or they are both in the same

hemisphere and ordered with respect to each other. `i = log(pT i/Q) and V is the shape

observable expressed in terms of the Lund variables, the subscript “correct” means that V

is calculated using the correct double-soft kinematics where pT1 ≡ ε1q̃1 is the transverse

momentum of the first emitted gluon, while “PS” denotes the result obtained using the

kinematics of the Herwig parton shower (in the double-soft limit).

In section 5 we have shown that the double-soft kinematics are correctly mapped if

the transverse momenta or the dot products of the momenta of the emitted particles are

preserved, so here we only need to consider the case of the q2-preserving scheme, which

gives inaccurate kinematics when the two gluons are emitted from the same progenitor.

We therefore only need to consider positive rapidities, provided we include a factor of 2

δΣ(L) = 2ᾱ2

∫ +∞

0
dη1

∫ −η1
−∞

d`1

∫ +∞

0
dη2

∫ −η2
−∞

d`2 Θ(η2 − η1)

∫ 2π

0

dφ12

2π
(B.6)

×
[
Θ
(
e−L − Vcorrect(η1, `1, η2, `2, φ12)

)
−Θ

(
e−L − VPS(η1, `1, η2, `2, φ12)

)]
.

The correct expression for the thrust is

1− T =
pT1e

−η1 + pT2e
−η2

Q
=

p2
T1

ε1Q2
+

p2
T2

ε2Q2
= e`1−η1 + e`2−η2 . (B.7)

In the case of the q2-preserving scheme the contribution of the first gluon is modified:

we label the new transverse momentum and rapidity as pT1 and η1 respectively, while we

denote by pT1 and η1 the original values. Therefore from eq. (5.14) we can read that

p2
T1 → p2

T1 = max

(
p2
T1 −

ε1
ε2
p2
T2, 0

)
. (B.8)

By observing that the recoil prescription does not change the light-cone momentum fraction

of the first gluon, i.e.

ε1 =
pT1

Q
eη1 =

pT1

Q
eη1 , (B.9)

– 27 –
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we can write

1− T =
pT1e

−η1

Q
+
pT2e

−η2

Q
=

p2
T1

ε1Q2
+

p2
T2

ε2Q2

= max

(
p2
T1

ε1Q2
,
p2
T2

ε2Q2

)
= max(e`1−η1 , e`2−η2). (B.10)

By comparing eq. (B.7) and eq. (B.10), we notice that the two expressions coincide in the

strongly ordered region, thus we expect the effect of the incorrect kinematic mapping to

show only at NLL. By performing the calculation we indeed find that

δΣ(L) = ᾱ2

∫ +∞

0
dη1

∫ −η1
−∞

d`1

∫ +∞

0
dη2

∫ −η2
−∞

d`2

∫ 2π

0

dφ12

2π

×
[
Θ
(
e−L−e`1−η1−e`2−η2

)
−Θ

(
e−L−max(e`1−η1 ,e`2−η2)

)]
= 2ᾱ2

∫ ∞
0

dx1

∫ (L+x1)/2

0
dη1

∫ ∞
x1

dx2

∫ (L+x2)/2

0
dη2

[
Θ(1−e−x1−e−x2)−1

]
, (B.11)

where in the first line we have removed the theta function coming from the angular-ordering

condition, Θ(η2 − η1), and included a factor of 1/2 as the integrand is symmetric in the

exchange 1 ↔ 2. In the second line we have defined xi = ηi − `i − L and reinserted an

ordering x2 > x1. Now, the only dependence on L is in the limits on the η integrals, which

are trivial, and we can read off the leading power in L,

= − ᾱ
2

2
L2

∫ ∞
0

dx1

∫ ∞
x1

dx2 Θ(e−x1 + e−x2 − 1) +O(ᾱ2L)

= − ᾱ
2

2
L2

∫ log 2

0
dx1 [− log(ex1 − 1)] +O(ᾱ2L)

= − ᾱ
2

2

π2

12
L2 +O(ᾱ2L)

= −C
2
F

6
α2
sL

2 +O(α2
sL). (B.12)

This proves that this choice of the kinematic mapping introduces a NLL discrepancy at

order α2
s (while in the case of dipole showers, the first NLL discrepancy appears at order

α3
s [18]).
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any medium, provided the original author(s) and source are credited.

References

[1] J. Bellm et al., HERWIG 7.1 Release Note, arXiv:1705.06919 [INSPIRE].

[2] J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196

[arXiv:1512.01178] [INSPIRE].

– 28 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1705.06919
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06919
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://arxiv.org/abs/1512.01178
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.01178


J
H
E
P
0
4
(
2
0
2
0
)
0
1
9
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[20] S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C

75 (2015) 461 [arXiv:1506.05057] [INSPIRE].

[21] S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12

(2003) 045 [hep-ph/0310083] [INSPIRE].

– 29 –

https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3012
https://doi.org/10.1088/1126-6708/2009/02/007
https://arxiv.org/abs/0811.4622
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4622
https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.1016/j.physrep.2011.03.005
https://arxiv.org/abs/1101.2599
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2599
https://doi.org/10.1103/PhysRevD.36.61
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D36,61%22
https://doi.org/10.1103/PhysRevD.39.156
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D39,156%22
https://doi.org/10.1016/0010-4655(91)90051-L
https://inspirehep.net/search?p=find+J+%22Comput.Phys.Commun.,64,67%22
https://doi.org/10.1007/BF01559457
https://inspirehep.net/search?p=find+J+%22Z.Physik,C54,397%22
https://doi.org/10.1103/PhysRevD.84.054003
https://arxiv.org/abs/1102.2126
https://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2126
https://doi.org/10.1007/JHEP10(2013)127
https://arxiv.org/abs/1303.4974
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4974
https://doi.org/10.1016/j.physletb.2017.05.011
https://doi.org/10.1016/j.physletb.2017.05.011
https://arxiv.org/abs/1611.00013
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.00013
https://doi.org/10.1007/JHEP10(2017)093
https://arxiv.org/abs/1705.00982
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.00982
https://doi.org/10.1103/PhysRevD.96.074017
https://doi.org/10.1103/PhysRevD.96.074017
https://arxiv.org/abs/1705.00742
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.00742
https://doi.org/10.1103/PhysRevD.98.074013
https://arxiv.org/abs/1805.03757
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.03757
https://doi.org/10.1007/JHEP07(2012)042
https://arxiv.org/abs/1201.0260
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0260
https://doi.org/10.1007/JHEP05(2018)044
https://arxiv.org/abs/1802.08531
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.08531
https://doi.org/10.1007/JHEP09(2018)033
https://arxiv.org/abs/1805.09327
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09327
https://doi.org/10.1140/epjc/s2004-02084-y
https://arxiv.org/abs/hep-ph/0408302
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0408302
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://doi.org/10.1140/epjc/s10052-015-3684-2
https://arxiv.org/abs/1506.05057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.05057
https://doi.org/10.1088/1126-6708/2003/12/045
https://doi.org/10.1088/1126-6708/2003/12/045
https://arxiv.org/abs/hep-ph/0310083
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0310083


J
H
E
P
0
4
(
2
0
2
0
)
0
1
9
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