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Abstract 29 

We used a large-scale data-driven approach to investigate the role of word form in accessing semantics. 30 

By using distributional semantic methods and taking advantage of an ERP lexical decision mega-study, 31 

we investigated the exact time dynamic of semantic access from printed words as driven by 32 

orthography-semantics consistency (OSC) and phonology-semantics consistency (PSC). Generalized 33 

Additive Models revealed very early and late OSC-by-PSC interactions, visible at 100 and 400 ms, 34 

respectively. This pattern suggests that, during visual word recognition: a) meaning is accessed by 35 

means of two distinct and interactive paths – the orthography-to-meaning and the orthography-to-36 

phonology-to-meaning path –, which mutually contribute to recognition since early stages; b) the 37 

system may exploit a dual mechanism for semantic access, with early and late effects associated to a 38 

fast-coarse and a slow-fine grained semantic analysis, respectively. The results also highlight the high 39 

sensitivity of the visual word recognition system to arbitrary form-meaning relations.  40 

 41 

 42 

 43 

Keywords: phonology-semantics consistency, orthography-semantics consistency, EEG, visual word 44 

recognition, form-meaning relation. 45 
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1. Introduction 47 

Reading is the unique human ability to use visual symbols to access the meaning and sound of words. 48 

Although learning to read requires years, once acquired, this ability is performed quasi-automatically 49 

and near-instantaneously: When facing a written string, the brain of a skilled adult reader can extract 50 

semantic, orthographic, and phonological information in less than half a second. Although there is 51 

consensus that, during reading, people access these three types of information – i.e., orthography, 52 

phonology, and semantics –, the time dynamic of this access is still controversial. At the bulk of the 53 

controversy there is the question as to whether higher-level information (i.e., word meaning) can  54 

contribute to the processing of lower-level information (i.e., word form). The aim of the present study 55 

is to answer this question, by investigating the time-course of the interplay between form and meaning 56 

in reading.  57 

 From a neurocognitive perspective, a widely accepted view of reading assumes that during 58 

word recognition, the extraction of visuo-orthographic features occurring within the left ventral 59 

occipito-temporal cortex is the door for accessing and processing phonological and semantic 60 

information, which comes into play only (relatively) late in time. Support for such a perspective, not 61 

only comes from experiments using metabolic neuroimaging methods and assuming a feed-forward 62 

processing dynamic of the word recognition process – i.e., information flow strictly proceeds from low-63 

level visual features to word representations (e.g., Dehaene & Cohen, 2011; Maurer et al., 2011; 64 

Perrone-Bertolotti et al., 2017; Schurz et al., 2014; Vinckier et al., 2007; but note that these methods 65 

have poor time resolution and are thus inadequate to answer questions about the time dynamics of brain 66 

processing) –,  but also from studies using electrophysiological methods, which usually identify an 67 

early and a late stage of processing during word recognition. In particular, the early stage occurs within 68 

the first ~300 ms after stimulus presentation and is mainly associated to visuo-orthographic processing 69 

and orthography-to-phonology mapping, whereas the late stage goes from ~300 ms onwards and is 70 
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associated with lexical-semantic processing (e.g., Bentin et al., 1999; Carrasco-Ortiz et al., 2017; 71 

Grainger & Holcomb, 2009; Stites & Laszlo, 2017). Recently, Laszlo and Federmeier (2014) recorded 72 

ERPs in a lexical decision experiment with the aim to investigate when orthographic, lexical, and 73 

semantic variables affected word recognition. Their single-level item analyses showed that 74 

orthographic effects started to be reliable after ~130ms, word frequency effects after ~270ms, and 75 

semantic effects only after ~300ms. A similar time dynamic has been also reported by Dufau et al. 76 

(2015), who ran an ERP lexical-decision mega-study and found that the early ~300 ms were affected 77 

by orthographic and lexical variables (e.g., word length, orthographic Levenshtein distance), but not by 78 

semantic ones (i.e., concreteness). The authors concluded that their results suggest “a fast initial feed-79 

forward sweep of neural activity cascading through visual, orthographic, and lexical representations” 80 

(p. 1895).  81 

 An alternative view, however, has been also advanced, in which reading is conceptualized as an 82 

extremely interactive process, with all the levels of analysis – i.e., orthography, phonology, semantics – 83 

synergistically working since the early stage of processing (Harm & Seidenberg, 2004; McClelland, 84 

1979; for a neurocognitive proposal, see Price & Devlin, 2011). In such a view, thanks to the strong 85 

learned associations between semantics and orthography, semantic information may become available 86 

nearly simultaneously with orthographic processing (e.g., Pulvermüller et al., 2009) and actively 87 

contribute to orthographic decoding. Some evidence in accordance with this view has also emerged 88 

from a few EEG studies reporting signs of early semantic processing and thus challenging the 89 

processing unfolding typically advocated by the strict feed-forward perspective (e.g., Chan et al., 90 

2011). Hauk et al. (2012) recorded ERPs while participants performed a lexical decision and a semantic 91 

categorization task. In both tasks, lexical and semantic information were activated nearly 92 

simultaneously, starting to show an effect ~160 ms after word onset (see also Hauk, Patterson, et al. 93 

2006b). Amsel et al. (2013) measured ERPs during a go/no-go semantic categorization task and found 94 
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that information differentiating living from nonliving things becomes available in 160 ms. Since the 95 

same result was not found for information differentiating graspable from ungraspable objects, the 96 

authors suggested that the initial semantic processing computes only coarse-grained conceptual 97 

information. A similar conclusion was also drawn by Louwerse and Hutchinson (2012), who used a 98 

semantic judgment task (and an iconicity task) to investigate the time-course of conceptual processing 99 

in relation to grounded simulation and statistical linguistic frequencies. The authors found that 100 

conceptual-linguistic processing precedes conceptual-grounded processing, starting within 100 ms from 101 

target onset, and concluded that the system quickly extracts meaning through language statistics in 102 

order to provide a first rough representation, which is then qualified by the subsequent (slower) 103 

grounded simulation. 104 

 Early effects of semantics have been reported also by Chen et al. (2015), who used an 105 

EEG/MEG recording to assess how the occipitotemporal cortex responds to orthographic, lexical and 106 

semantic variables in silent reading, lexical decision, and semantic categorization. Their results showed 107 

task-dependent semantic effects around 160 ms in an occipitotemporal region that was also found to be 108 

highly sensitive to word frequency: This pattern speaks in favor of an interactive view, in which all 109 

sources of information jointly contribute to optimize word recognition. Note, however, that the 110 

appearance of early interactive effects seems to be (at least in part) task-dependent – early interactivity 111 

is found with semantic categorization and reading, but not with lexical decision. Thus, early 112 

interactivity might be more a possibility the system exploits when the task requires it, rather than an 113 

intrinsic property of the recognition process. 114 

  In the current study, we present data on the time dynamic of visual word recognition (in a 115 

lexical decision task) and provide clear-cut evidence that semantic processing affects recognition since 116 

its earliest stage, in an early interaction between conceptual information and form-related information. 117 

We used new methods both to analyze ERP data and to measure the interaction between semantic (i.e., 118 
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conceptual) information on the one hand, and orthographic and phonological (i.e., form-related) 119 

information on the other hand. Regarding the latter, our approach is grounded in methods from 120 

distributional semantics (Landauer & Dumais, 1997; Turney & Pantel, 2010), that can provide 121 

cognitively-sound estimates of semantic representations (e.g., Gunther, Rinaldi & Marelli, 2019). In 122 

Distributional Semantics Models (DSM) the meaning of a word can be estimated by the way that it co-123 

occurs with other words in the whole lexicon. Word meanings are represented as vectors based on these 124 

co-occurrences: The more two words occur in similar contexts (i.e., flanked by comparable sets of 125 

words), the more their vectors will be close and their meanings are similar (and vice versa). Similarity 126 

is geometrically expressed as the cosine of the angle formed between two vectors: The more similar the 127 

two vectors, the smaller the angle, the higher their cosine.  128 

 The DSM approach has been successfully adopted in word recognition studies aimed at 129 

analyzing the interplay of form and semantics in visual word recognition (Marelli, Amenta & Crepaldi, 130 

2015; Amenta, Marelli & Sulpizio, 2017; Marelli & Amenta, 2018; Amenta, Crepaldi & Marelli, 2020; 131 

Siegelman et al., 2022). In these studies, DSMs were used to develop new measures that quantify the 132 

relationship between form and meaning, i.e., Orthography- and Phonology-Semantics Consistency 133 

(OSC and PSC). OSC is an estimate of semantic similarity between a string of letters (e.g., widow) and 134 

all its orthographic relatives – i.e., the words in the lexicon that embed that same sequence (e.g., 135 

widower, widowhood, etc.). Mathematically, OSC is formalized as the frequency-weighted average 136 

semantic similarity between the vector of a target word and the vectors of all the words that contain it 137 

(see below). This estimate tells us how consistent is the mapping between form and meaning for each 138 

word. Words with high OSC are those whose orthographic relatives are also semantically associated 139 

(e.g., widow, widower, widowhood, etc.). PSC is the phonological counterpart to OSC: it is based on 140 

the same methods of OSC, but takes into account phonological relatives in its formalization. In an 141 
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information-theoretic perspective, OSC and PSC are measures of the degree of uncertainty in meaning 142 

access, as respectively informed by orthography and phonology. That is, these metrics capture to what 143 

extent orthographic and phonological features of a word are ambiguous in cueing its meaning: low 144 

OSC and PSC scores indicate that the orthography and phonology of a given word are associated to a 145 

wide, inconsistent semantic range.  146 

Although computed from word forms, OSC and PSC are measures that allow to test the 147 

effective contribution of form-meaning association to word recognition without the need of explicit 148 

semantic tasks or manipulations. Therefore, these measures are good candidates to investigate the 149 

alleged early interactivity of the recognition process. Both OSC and PSC proved to be relevant 150 

predictors of lexical decision latencies in visual word recognition (over and above well known lexical 151 

and semantic predictors, among which: word frequency, length, neighbourhood size, etc; see Marelli et 152 

al., 2015; Amenta et al., 2017; Marelli & Amenta, 2018), showing that, during word recognition, 153 

semantics is accessed by a mutual interaction between phonological and orthographic information 154 

(Amenta et al., 2017). However, what is still unclear from these results is the time-course of this 155 

interaction. Specifically, we do not know how early semantic information starts affecting the process. 156 

In fact, previous studies only analyzed behavioural responses, which are silent on the time dynamics 157 

between phonological, orthographic and semantic information during word processing. As a result, we 158 

do not know when form-to-meaning consistencies begin to exert their influence during word 159 

recognition. In the present study, for the first time, we investigated the impact of OSC and PSC on 160 

ERPs, which are excellent measures to investigate the temporal unfolding of cognitive processing. In 161 

doing so, we were able to isolate the time course of semantic processing (as informed by orthography 162 

and phonology) and identify, with precision, whether it starts playing a role during the very early stage 163 

of word recognition or only later on. With respect to our purpose, OSC and PSC are of great interest for 164 
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multiple reasons: 1) They effectively capture semantic aspects, since they quantify the mapping 165 

between word form and word meaning;  2) they are quantitatively and automatically determined, and 166 

give back quantitative and easy-to-interpret information; 3) they are mainly a-theoretical, with no need 167 

to postulate a-priori, researcher-defined semantic properties; 4) most importantly, they are based on a 168 

neurally plausible measure of semantics (Sassenhagen & Fiebach, 2020; Just et al., 2010; Mitchell et 169 

al., 2008; Pereira et al., 2018) and may contribute to the development of theories of neural 170 

representations. To answer our research question, we capitalized on the ERP mega-study by Dufau et 171 

al. (2015) who collected data on ~1,000 words from 75 participants performing a very simple task, i.e., 172 

lexical decision. This dataset is ideally suited to investigate potential effects of OSC and PSC. In fact, 173 

the recent analyses by Sassenhagen and Fiebach (2020), using the same dataset, showed that these ERP 174 

data encode word properties captured by distributional semantic models, the very same models at the 175 

foundation of OSC and PSC. To detect potential early semantic effects, and to take into account the 176 

potentially complex interactions between variables, we analyzed ERP data by fitting tensor multi-177 

dimensional surfaces with Generalized Additive Models (GAMs; Tremblay & Newman, 2015; Wood, 178 

2017). Offering a convenient way to model complex interactions between continuous variables 179 

(Kuperman et al., 1995), this state-of-the-art approach is particularly suitable for the present study, 180 

whose main aim is to model the exact time dynamics of the interaction between semantic, orthographic 181 

and phonological information (i.e., investigating the unfolding of the three-way interaction between 182 

Time, OSC, and PSC). 183 

2. Methods 184 

2.1 Resource and stimuli. 185 

Stimuli were extracted from the Dufau et al.'s (2015) mega-study, which contains item-level ERP data 186 

for 960 words (with at least 43 trials per word) recorded from 29 sites on the scalp (FP1, FPz, FP2, F7, 187 
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F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C3, Cz, C4, T7, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, 188 

Oz, O2). Reference was placed on the left mastoid. Data were collected from 75 right-handed healthy 189 

young adults (age range: 18-25), all English native speakers. Participants performed a go/no-go lexical 190 

decision task in which they were asked to press a button as soon as possible whenever they detected a 191 

nonword.  Each trial started with a 400-ms presentation of a letter string followed by a 600-ms black 192 

screen. Data are freely available in preprocessed (i.e., filtered, artifact free, and baseline corrected) 193 

epochs going from 100 ms before to 920 ms after stimulus presentation (for further methodological 194 

details on data collection and preprocessing, see Dufau et al., 2015). 195 

 We selected a set of 689 English words for which it was possible to compute separate estimates 196 

of OSC and PSC that dissociated one from the other (see Amenta et al., 2017), for which either PSC or 197 

OSC was different from 1 (see Marelli & Amenta, 2018, for a discussion), and that were also included 198 

in the Kilo-word database (Dufau et al., 2015). Table 1 reports descriptive data for the experimental set. 199 

Frequency values were extracted from SUBTLEX-UK (van Heuven, Mandera, Keuleers, & Brysbaert, 200 

2014). 201 

 Mean SD Q1 Median Q3 

Log Frequency 2.63 0.71 2,24 2,77 3.15 

Orthographic Length 5.68 1.38 4 6 7 

OSC 0.79 0.25 0.69 0.89 0.98 

PSC 0.76 0.28 0.65 0.89 0.98 

 202 
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Table 1. Descriptive data for the experimental items 203 

 204 

Figure 1. Correlations among psycholinguistic variables of the experimental stimuli. The figure reports 205 

the Pearson correlation among variables of the stimuli. Larger circles indicate higher correlation 206 

indexes. Warm and cold colors indicate positive and negative correlations, respectively. 207 

 208 

2.2 Measures. 209 

OSC and PSC were computed following the same procedure and sources described in Amenta et al. 210 

(2017). OSC is defined as: 211 
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 212 

Where t is the target word, rx each of its k orthographic relatives, and frx the corresponding frequencies. 213 

Following Marelli and Amenta (2018), we considered as orthographic relatives each word containing 214 

the target (e.g., unicorn, cornfield, corner, scornful, etc., were all relatives of corn) in the 65,000-word 215 

list identified by Marelli and Amenta (2018). In order to quantitatively capture word meanings, 216 

represented by	𝑡⃑ and 𝑟!⃑in the above formula, we relied on distributional semantics. This computational 217 

approach builds on lexical co-occurrences to induce meaning representations in the form of vectors, 218 

whose proximity can then be used as a proxy for semantic relatedness. Distributional semantics is a 219 

popular approach in the modelling of semantic memory, with several proposals advanced in the 220 

cognitive science literature (for recent reviews see Günther, Rinaldi, & Marelli, 2019; Jones, Willits, & 221 

Dennis, 2015).   222 

A concatenation of UkWac, Wikipedia, and BNC served as the base to build the distributional 223 

model, trained using the word2vec tool (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). Model 224 

parameters were selected following Baroni, Dinu and Kruszewsky (2014): CBOW method with 400-225 

dimension vectors, considering a 5-word window (see Marelli & Amenta (2018) for further details on 226 

computation and validation of the obtained measures). We used the obtained model to compute cos(t,s), 227 

that is, the semantic similarity between a target vector and the vectors of each of its relatives. 228 

 The same procedure and formalization above were used to obtain PSC. The only difference in 229 

the computation lies in how the relatives are defined. For PSC, relatives are phonologically defined: A 230 



12 

phonological relative is a word whose phonological form contains the phonological sequence of the 231 

target word (e.g., basin /ˈbeɪsən/, bacon /ˈbeɪkən/, debate /dɪˈbeɪt/, etc., were all relatives of bay /beɪ/). 232 

Phonological annotations were extracted from CELEX (Baayen et al., 1995). 233 

For more details on how OSC and PSC were computed, we refer to Marelli & Amenta (2018), 234 

and Amenta et al. (2017). 235 

2.3 ERP Statistical analyses. 236 

To assess the effects of OSC and PSC over time we used Genaralized Additive Models (GAMs, 237 

Tremblay & Newman, 2015; Wood, 2017). GAMs are an extension of general linear models (GLMs), 238 

that can easily handle non-linear relationship between the predictors and the dependent variable, and 239 

that in recent years has been successfully applied to ERP studies of word processing (e.g., De Cat et al., 240 

2015; Hendrix et al., 2016; Kryuchkova et al., 2012). Although it is possible to fit non-linearities with 241 

GLMs (for example by including polynomial terms), this should be done with a-priori choices and only 242 

a relatively limited number of non-linear relations can be modeled. GAMs allow to overcome these 243 

limitations: in particular, the non-linear relationship between predictors and the dependent variable are 244 

modeled in a bottom-up fashion with smoothing splines. The actual number of splines used to model 245 

the relationship between predictors and dependent variables and the parameters of these splines are 246 

determined in a bottom-up fashion, according to some criteria. A main advantage of GAMs, as 247 

compared to traditional GLMs, is that they also allow a convenient way to model complex interactions 248 

between continuous variables (Baayen, Kuperman, & Bertram, 2010 ). Shortly, fitting interactions 249 

between continuous variables is potentially challenging for linear models, because the effects are bound 250 

to some specific constraints (of the imposed linear trends) that may cause misfits in the data, especially 251 

for high or low values of the predictors for which the leverage is high. This is due to the relying on a 252 

multiplicative approach (typically applied to interactions used in multiple regression models), that 253 
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imposes a very specific functional form to the interaction (Baayen, Kuperman, & Bertram, 2010). 254 

GAMs, on the contrary, allow many possible ways to model interactions, and are hence better suited at 255 

capturing complex dynamics in the data.  This is particularly relevant for the present study, in which 256 

our main aim is to model a three-way interaction between Time, OSC, and PSC, that is how the 257 

interaction between OSC, and PSC changes over time. 258 

 In the present implementation, parameters are fit according to the Maximum Likelihood method 259 

(Wood, 2017).  260 

 We fitted a series of separate GAMs (one for each electrode) with the following syntax1:  261 

 
1	Please	note,	that	this	is	a	simplified	syntax.	See	the	Supplementary	Materials	for	full	R	code	used	for	the	analysis.	
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 262 

(1) Ampl~ 263 
                 # main effects 264 
                 s(WordFrequency) + s(Time) + 265 
                 s(NumberOfLetters) + s(psc) + s(osc) + 266 
                 # two-way interactions with Time 267 
                 ti(WordFrequency, Time, k=c(3,10))+ 268 
                 ti(NumberOfLetters, Time, k=c(3,10))+ 269 
                 ti(psc, Time) + 270 
                 ti(osc, Time) + 271 
                 # two-way interaction of psc and osc 272 
                 ti(psc, osc) + 273 
                 # three-way interaction of psc, osc, time 274 
                 ti(psc,osc,Time, k=c(3,3,10)) + 275 
                 # random intercepts 276 
                 s(WORD, bs="re")) 277 
 278 
 279 

 The syntax above indicates that, in each model, Amplitude was the dependent variable, 280 

explained by several predictors: an interaction between Word Frequency and Time, an interaction 281 

between Number of Letters and Time, and an interaction between PSC, OSC, and Time (note that the 282 

order of terms in the interaction is irrelevant).  283 

All interactions were modeled by means of  tensors (i.e., a function that allows modeling 284 

interactions between continuous variables). The parameters specified as “k” indicate the number of 285 

basis functions that are used to define the tensors (Linke & Baayen, 2019). To limit the overfitting of 286 

the data, we opted for a relatively low number of basis functions for Word Frequency, Number of 287 

Letters, PSC, and OSC (i.e., k=3), but we allowed for a relatively higher number for Time (k=10), in 288 

order to be able to capture the expected fluctuation over time of ERP amplitude. The term (WORD, 289 

bs="re") indicates a random effect for WORD in the syntax of the mgcv package. Note that as the Kilo-290 

word corpus includes data averaged across participants we could not include participants as random 291 

factor. Finally, the correlation term refers to that autocorrelation between timepoints, which is highly 292 



15 

expected in the case of time series and is hence taken into account in the model.  293 

After fitting each model a series of diagnostic checks were performed. We inspected residual 294 

distribution and whether the relationship between fitted and observed values was satisfactory. 295 

Correlation among variables is not an issue for GAM, but concurvity (which is the GAM equivalent for 296 

collinearity) may be, and so we inspected concurvity for each term. Finally, as data consisted of time 297 

series and some autocorrelation was expected, we also took into account this parameter. The choice of 298 

autocorrelation parameters (rho = 0.1) was made after a preliminary fit of GAMs and inspecting the 299 

autocorrelation function of model residuals (ACF). Details can be found in Supplementary Materials. 300 

 Although it is generally expected that signals from EEG electrodes would be correlated (due to 301 

volume conduction of EEG sources), we opted not to explicitly model the dependency on electrode 302 

data, to avoid having a model with too many parameters. Given this choice of modeling separately data 303 

for each electrode, the qualitative inspection of the results on electrodes could be taken as diagnostic 304 

for model overfitting (De Cat et al., 2015). Figures were obtained using the erpR package (Arcara & 305 

Petrova, 2017) and custom code. The full code employed in the analysis is available online in the Open 306 

Science Framework (https://osf.io/4e7tq/). It is also possible to fully explore the results interactively 307 

via a ShinyApp available at this link https://giorgioarcara.shinyapps.io/ERP-OSC-PSC/. 308 

No part of the study analyses was pre-registered prior to the research being conducted. 309 
 310 

 311 

3. Results 312 

Results on all models showed significant effects of the interaction between OSC, PSC, and Time for all 313 

electrodes (ps< 0.05). Full results for all the other terms are reported in the Appendix (Table A1 and 314 

A2). Overall, models showed a good fit with an explained variance ranging from 40% to 70%. 315 

  Thanks to the introduction of the term “s(Time)” as main effect in the models’ syntax, we were 316 



16 

able to link up the effects of OSC and PSC to the typical average waveforms studied extensively in the 317 

ERP literature (see Figure 2), especially how the three-way interaction of time, PSC and OSC 318 

modulates this curve.  These models, therefore, allow to uniquely characterize the in-time unfolding of 319 

the effects with extreme precision. For these reasons, when discussing our results we focus mainly on 320 

the timing of the effects and avoid to label them in terms of components (although we discuss them in 321 

relation to the available ERP literature). The main way to interpret results of GAMs with tensor 322 

surfaces (used to investigate the effect of interactions) is through visual inspection.  323 

 324 

Figure 2. Time smooth for a representative electrode (FC1). The traditional positivities and 325 

negativities of ERP deflections are reflected in this smooth.  326 

 327 

 Before discussing the results for PSC and OSC, we inspected the pattern of results for Length 328 
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and Frequency, which have been widely investigated in the ERP literature and can be thus considered 329 

as benchmark effects. The early effects of word length surfaced ~200 ms after stimulus onset, with 330 

more positive amplitude associated with shorter words and negative amplitudes to longer ones on 331 

centro-posterior sites (see Fig. A2 in Appendix). The effect is in line (despite slightly later) with  332 

previous findings (e.g., Assadollahi & Pulvermüller, 2003; Dufau et al., 2015; Hauk, Davis et al., 2006; 333 

Hauk & Pulvermüller, 2004). The effect of word frequency surfaced at ~300 ms and then at ~800 ms 334 

on fronto-central electrodes (see Fig. A3 in Appendix). The time dynamics of the effect is compatible 335 

with the pattern reported in the literature (e.g., e.g., Assadollahi & Pulvermüller, 2003; Dufau et al., 336 

2015; Hauk, Davis et al., 2006; Hauk & Pulvermüller, 2004). Taken together, the results for the effects 337 

of length and frequency indicate the robustness and reliability of our findings. Further details and 338 

figures concerning these effects can be found in the Supplementary materials. 339 

 Turning to the variables of main interest (OSC and PSC), basing on our aims, we focused on 340 

two a-priori selected time points, that are 100 ms and 400 ms: while the former is the lower boundary at 341 

which semantic activation from printed words has been occasionally reported (Dell'Acqua et al., 2010, 342 

Louwerse & Hutchinson, 2012), the latter is the time range at which semantic effects are most typically 343 

observed (e.g., Dufau et al., 2015; Grainger & Holcomb, 2009; Lau et al., 2008). Figure 3 and 4 show 344 

the results of the interaction of OSC, PSC, and Time, at these two timepoints, 100 ms and 400 ms (for a 345 

plot of the grand average of ERPs for all electrodes from the Kilo-word dataset, see Figure A1 in 346 

Appendix; for inspecting the full time course of the interaction, see 347 

https://giorgioarcara.shinyapps.io/ERP-OSC-PSC). Neighbouring electrodes (for which models were 348 

calculated separately) showed similar results, as expected due to electrode amplitude similarity related 349 

to volume conduction.  350 

 As visible in Figure 3, a significant PSC x OSC interaction surfaces at 100 ms with a wide 351 

fronto-central distribution: At very low level of OSC, middle-to-high levels of PSC were associated 352 
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with more negative amplitude. As exemplified in Figure 5 (lower panel, blue blobs), this effect was 353 

long lasting, being visible up to ~250 ms after target onset (for a point-by-point time course, see 354 

https://giorgioarcara.shinyapps.io/ERP-OSC-PSC). Figure 5 also shows that this early effect was absent 355 

at medium (0.5) and high level (0.75) of OSC (medium and upper panel, respectively). 356 

 A second effect also surfaced later on time, when we explored the second time interval of 357 

interest. Figure 4 shows this effect at 400 ms: in fronto-central electrodes, at low and intermediate 358 

levels of OSC, middle-to-high levels of PSC were associated with more negative amplitude. This effect 359 

was visible between ~300 and ~400 ms after word presentation (see also Figure 5 and 6, for details of 360 

the time course on specific electrodes; for a point-by-point time course on the whole scalp, see 361 

https://giorgioarcara.shinyapps.io/ERP-OSC-PSC). Finally, we note that, when exploring late processes 362 

(i.e., later than 400 ms after target presentation), a further effect surfaces between ~750 and ~900 ms, 363 

with a fronto-central distribution: At low levels of OSC, middle-to-high levels of PSC were associated 364 

with more positive amplitude. However, because of our hypotheses, our analyses were focused on two 365 

specific time points clearly associated with semantic processing. Thus, we do not further discuss 366 

unexpected findings raised by a-posteriori visual inspection of our results.   367 

Diagnostics associated to the models showed also good fit to the data, normal distribution of residuals, 368 

good properties in terms of autocorrelation and a reasonable concurvity (i.e., the GAM equivalent of 369 

collinearity) for the main effect of interest (namely the three-way interaction between OSC, PSC and 370 

Time). A high concurvity was found for some nuance variables (that is Frequency and Length). Details 371 

on the diagnostics can be found in the osf link associated with the article (https://osf.io/4e7tq/).    372 
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 373 

Figure 3. Scalp plot of partial effects of the interaction between OSC, PSC, and Time at 100 ms. 374 

Partial effect of OSC, PSC, and Time for each electrode at 100 ms. The contour map for each electrode 375 

is a topographic representation of the partial effect of the interaction between OSC (on the x-axis), 376 

PSC(on the-y axis), in a specific timepoint. Amplitude is codified as colours, using a jet palette: color 377 

towards red indicates positive values, while color towards blue indicates negative values, while colors 378 
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toward green indicate in-between values. Topographic maps have been masked so that only effect 379 

estimates whose confidence interval at 95% did not include zero were included. Electrodes are reported 380 

in a regular grid array that approximate their position on the scalp. Effect on all timepoints can be 381 

inspected with this app https://giorgioarcara.shinyapps.io/ERP-OSC-PSC 382 

 383 

Figure 4. Scalp plot of partial effects of the interaction between OSC, PSC, and Time at 400 ms 384 
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after stimulus offset. The figure shows the  partial effect of OSC, PSC, and Time for each electrode at 385 

400 ms. The contour map for each electrode is a topographic representation of the partial effect of the 386 

interaction between OSC (on the x-axis), PSC(on the-y axis), in a specific timepoint. Amplitude is 387 

codified as colours, using a jet palette: color towards red indicates positive values, while color towards 388 

blue indicates negative values, while colors toward green indicate in-between values. Topographic 389 

maps have been masked so that only effect estimates whose confidence interval at 95% did not include 390 

zero were included. Electrodes are reported in a regular grid array that approximate their position on 391 

the scalp.  392 

 393 
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 394 
 395 
Figure 5. Effect of PSC and OSC over time in frontal electrodes  396 



23 

The figure shows the partial effect of PSC conditioned for three values of OSC (upper panel: OSC set 397 

to 0.75, middle panel: OSC set to 0.5, lower panel: OSC set to 0.25), in two frontal electrodes, F3 and 398 

F4. The contour map is a topographic representation of the partial effect with the itsadug package 399 

default palette: colors toward orange indicate positive values, while colors toward blue indicate 400 

negative values, while colors toward green indicate in-between values. Topographic maps have been 401 

masked so that only estimates whose confidence interval at 95% did not include zero were included.  402 

Effect on all timepoints can be inspected with this app https://giorgioarcara.shinyapps.io/ERP-OSC-403 

PSC 404 

 405 
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 406 

Figure 6. Effect of PSC and OSC over time in parietal electrodes  407 
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The figure shows the partial effect of PSC conditioned for three values of OSC (upper panel: OSC set 408 

to 0.75, middle panel: OSC set to 0.5, lower panel: OSC set to 0.25), in two parietal electrodes, P3 and 409 

P4. The contour map is a topographic representation of the partial effect with the itsadug package 410 

default palette: colors toward orange indicate positive values, while colors toward blue indicate 411 

negative values, while colors toward green indicate in-between values. Topographic maps have been 412 

masked so that only estimates whose confidence interval at 95% did not include zero were included.  413 

Effect on all timepoints can be inspected with this app https://giorgioarcara.shinyapps.io/ERP-OSC-414 

PSC 415 

 416 

4. Discussion 417 

In this study, we used an advanced analytic method  (i.e., Generalized additive models, GAM) to 418 

evaluate the impact of form-meaning relations – as indexed by OSC and PSC – on participants' 419 

electrophysiological response in a lexical decision task with visually presented words. Our results show 420 

very early effects of OSC and PSC, already visible at ~100 ms after word presentation. At this time 421 

point, the interaction between the two variables showed that, on frontal and fronto-central electrodes, at 422 

low values of OSC, higher values of PSC were associated with a larger negativity. Since OSC and PSC 423 

capture the relation between form and meaning, their joint effect indicates an early activation of both 424 

orthography and phonology, which are immediately mapped into semantics to constrain the recognition 425 

process. This early effect is long lasting, being visible up to ~250 ms after word presentation, and is 426 

followed by a second effect showing up between ~300 and ~400 ms after word presentation: OSC and 427 

PSC interacted at frontal and posterior sites, showing that, on frontal sites, at low values of OSC, 428 

middle-to-higher values of PSC were associated to a larger negativity, whereas at posterior sites, at low 429 

values of OSC, low values of PSC were associated to a larger positivity.  430 

 A bimodal time dynamics for semantic processing characterized by a first very early access plus 431 
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a second later processing has been also reported by Hauk, Davis, et al. (2006). In their lexical decision 432 

study with EEG, the authors found semantic effects picking at 160 ms and then at 314 after word 433 

presentation. Also, Dell'Acqua et al. (2010) studied semantic processing by means of the picture-word 434 

interference paradigm and ERPs. The authors found semantic effects at two different latencies, i.e., 106 435 

ms and 320 ms, with semantic processing being again characterized by a comparable bimodal time 436 

dynamics. These findings show converging evidence that semantic information – as accessed by word 437 

forms – contributes to word recognition since the early stages and at multiple times during the process. 438 

Suggestively, a similar dual access to semantic information has been proposed for object recognition. 439 

According to Clarke and Tyler (2015), semantic information can be accessed within 150 ms from the 440 

object presentation, with semantic effects being occasionally visible even earlier than 100 ms (e.g., 441 

Clarke et al., 2013). This fast access allows a coarse semantic analysis of the stimulus which is based 442 

on semantic information the object shares with many other entities (e.g., has legs). The coarse analysis 443 

is sufficient for a coarse categorization – e.g., to distinguish a living from a non-living entity. Later on, 444 

a more fine-grained analysis allows to access to more specific semantic information, permitting, e.g., to 445 

distinguish members belonging to the same category. The visual word recognition system might exploit 446 

the same dual mechanism for semantic access: Moving from this perspective, the early and late 447 

semantic effect we reported might be associated with a coarse and fine grained semantic analysis, 448 

respectively. During the coarse analysis the system might capitalize on the systematic relations between 449 

the word form and its meaning to get a first rough hint of the lexical nature of the stimulus. As a matter 450 

of fact, the activation of semantic information, although coarse, would be a strong evidence to 451 

categorize a printed stimulus as a word and thus accomplish the lexical decision task (for the possibility 452 

of a semantic-based lexical decision in a connectionist perspective, see, e.g., Chuang et al., 2020; Harm 453 

& Seidenberg, 2004; Plaut, 1997). The late effect, instead, would reflect a more fine-grained semantic 454 

analysis which is clearly detectable in our results at 400 ms. This time window is fully in line with 455 
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evidence from the extensive ERP literature on visual word recognition, in which semantic effects are 456 

consistently reported at ~400 ms and typically interpreted as N400 modulations, a component indexing 457 

semantic processing (for reviews, see, e.g., Grainger & Holcomb, 2009; Kutas & Federmeier, 2011; 458 

Lau et al., 2008; in Dufau et al. (2015) the effect of concreteness emerged ~300 ms; in Sassenhagen 459 

and Fiebach semantic properties encoded by distributional word vectors affect ERP responses in a 300-460 

500ms time window). In a recent work using a connectionist model to explore the mechanism 461 

underlying the N400, Rabovsky and McRae (2014) suggested that “N400 amplitudes seem to depend 462 

crucially on the similarity between actual observations and implicit anticipations based on represented 463 

occurrence probabilities as extracted from previously experienced regularities” (p. 83). In other words, 464 

the N400 amplitude would depend on the implicit prediction error, which is the mismatch between the 465 

external world and its internal model continuously updated by the brain. In such a perspective, the 466 

reliability of information at the form (e.g., orthographic) level may affect prediction error at semantic 467 

level: when the link between form and meaning is weak (i.e., when OSC is low), implicit expectations 468 

of irrelevant information is high as orthographic information does not point toward any well-defined 469 

portion of the semantic space.  470 

 It is worth nothing that the time course of the early interaction between OSC and PSC is 471 

typically associated to visuo-orthographic processing, as indexed by effects of letter length, bigram 472 

frequency, and word frequency, all starting within the first 200 ms after stimulus presentation (e.g., 473 

Hauk, Davis et al., 2006; 2009; Laszlo & Federmeier, 2014). Dufau et al. (2015) – who analyzed the 474 

same dataset we used here – reported that the effect of letter length arose at ~100 ms after stimulus 475 

presentation, and was immediately followed by that of word frequency. It must be noted that the 476 

interpretation of the effect of frequency is currently debated. Indeed, frequency might impact word 477 

recognition not because it reflects experience with the presented word form (as implicitly assumed in 478 

Dufau et al.), but rather as an epiphenomenon of conceptual familiarity (Baayen, Feldman and 479 
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Schreuder, 2006). The nature of the frequency effect will hence be intrinsically semantic, capturing the 480 

ease of accessibility to the word-denoted concept. In such a perspective, the findings by Dufau et al. 481 

(2015) may be (at least in part) reconciled with our results: their reported frequency effect  might 482 

reflect the same conceptual-access process that emerges, in our analyses, as an early interaction 483 

between OSC and PSC. 484 

 From a modeling perspective, the presence of an interaction between OSC and PSC, as well as 485 

its time dynamics, clearly supports the view that word meaning is accessed by means of two distinct 486 

and interactive paths – i.e., the orthography-to-meaning and the orthography-to-phonology-to-meaning 487 

path – which mutually contribute to word recognition. The time dynamics of the effect indicates that, as 488 

soon as a printed string is presented, both paths become immediately active: Within 100 ms, the reader 489 

starts accessing orthographic, phonological and semantic information, which can be all used to reach a 490 

decision. Of course, this does not mean that in this short time frame a complete speech-level phonetic 491 

process takes place (i.e., involving the full reactivation of the auditory form of a word) or that the 492 

visual information related to the printed word is reactivated; rather coarse-grained, abstract 493 

phonological and orthographic representations become available and inform word processing (for very 494 

early effects (i.e., within 100 ms) of phonological activation in printed word processing, see, e.g., Klein 495 

et al., 2015; Wheat, Cornelissen, Frost, & Hanse, 2010). At the cognitive level, our findings fit with 496 

Harm and Seidenberg's (2004) connectionist model of word recognition, in which activations of both 497 

orthography and phonology directly co-occur for accessing word meaning. Of particular interest, in this 498 

model, meaning is determined by both paths simultaneously, with semantic patterns reflecting “the 499 

joint effects of input from different sources” (p. 663). Thus, as soon as orthographic information 500 

becomes available, it directly spreads to semantics and phonology, and phonology, in turn, spreads to 501 

semantics itself. As a result, orthography, phonology, and semantics all contribute in parallel to 502 

recognize a printed stimulus as a word since the early stage of processing. A further promising 503 
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interpretative framework comes from the recent work by Chuang et al. (2020), in which the mapping 504 

between form and meaning is linearly modeled via regression. Chuang's simulations show that the 505 

consistency between the semantic vectors estimated by the two possible reading routes (orthography-506 

based vs. phonology-based) determines lexical processing. This result can be interpreted as evidence 507 

for the two routes interacting during stimulus evaluation, rather than learning. 508 

There are some technical details that are important to note for a correct interpretation of our 509 

results. The first is that the scalp distribution of effects can be dependent on the reference used. In this 510 

case, we kept the left-mastoid reference (as from the recording), but a different reference could lead to 511 

different spatial distribution of the effects. This is not a specific issue of GAMs, but of any EEG 512 

experiment (Luck, 2014). The second one is that each effect that is discussed should not be considered 513 

alone, but always in the context of the overall model. In particular, this means that the evidenced 514 

effects of OSC and PSC over time were found in the context of a model that also accounts for the 515 

impact of number of letters and frequency. This latter detail could explain small discrepancies with 516 

other studies on the Kiloword dataset, which differently modeled the effects of predictors and took into 517 

account different variables (e.g., see results obtained with the same dataset in Dufau et al., 2015). 518 

Finally, it is important to stress that the current implementation of GAM used in the study does not 519 

allow to identify when a particular interaction becomes significant (or not): this would require the 520 

development of a GAM implementation, which is beyond the scope of the present study. Rather, the 521 

model we used here helps at capturing the time-related dynamics of complex interactions (such as the 522 

one between OSC, PSC, and Time) suggesting when higher and more relevant effects were evidenced, 523 

and can provide indications that may guide future research (and analysis) focusing on directly testing 524 

when effects arise.  525 

 To conclude, in the present study we investigated the time-course of semantic processing in 526 

visual word recognition by using neurally-plausible distributional semantic measures and state-of-the 527 
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art data-analytic techniques, and capitalizing on lexical decision data from an ERP mega-study. We 528 

reported a bimodal timed dynamic of semantic processing with a very early interaction effect of OSC 529 

and PSC – likely associated with a first coarse semantic analysis – and a later interaction effect – likely 530 

associated with a fine-grained semantic access. These findings indicate that the recognition system is 531 

highly sensitive to form-meaning relations established at different levels of granularity, confirming the 532 

central role of systematicity (i.e., the statistical relationship between the patterns of letter/sound for a 533 

group of words and their usage, Dingemanse et al., 2015) in supporting word identification. 534 

Remarkably, investigating such a process was made possible by measures rooted in distributional 535 

semantics. Distributional models offer a convenient and increasingly popular method to quantitatively 536 

characterize semantic memory, which builds on cognitively-plausible association mechanisms and was 537 

shown to provide meaningful predictions for a number of psychological phenomena (Gunther, Rinaldi 538 

& Marelli, 2019). The learning procedures leading to semantic representations in distributional models 539 

might be the very same that lead to the form-meaning associations captured by the PSC-by-OSC 540 

interaction, and explain the remarkable readers' ability to exploit systematicity (Baayen et al., 2011; 541 

Chuang et al., 2019), i.e., the stable link between word's form properties and meaning based on 542 

statistical co-occurrence (Dingemanse et al., 2015). Systematicity may be helpful for readers: 543 

orthographic (and phonological) similarity among words with similar meaning may support both word 544 

learning and lexical organization, offering a clustering principle to group words. 545 

 546 
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Appendix 718 

Table A1. The table shows the results of the linear term for all the models (one for each electrode) fit 719 

on Kilo-word data. The first column reports the electrode name; the second column report the term 720 

name. The third column reports the effect Estimate (i.e., β); The fourth column reports the Standard 721 

Error; the fifth and the sixth columns report the t value and the p-value. The fifth column reports the  p-722 

values corrected with False Discovery Rate (FDR) method. 723 

 724 

Electrode term Estimate SE t-value p-value p-bonf p-fdr 

T8 (Intercept) -0.8 0.04 -19.9 <0.001 <0.001 <0.001 

CP1 (Intercept) -1.52 0.05 -29.34 <0.001 <0.001 <0.001 

CP6 (Intercept) -0.77 0.04 -17.64 <0.001 <0.001 <0.001 

C3 (Intercept) -1.33 0.05 -27.56 <0.001 <0.001 <0.001 

Cz (Intercept) -1.86 0.05 -35.03 <0.001 <0.001 <0.001 

C4 (Intercept) -1.43 0.05 -27.21 <0.001 <0.001 <0.001 

P7 (Intercept) -0.05 0.03 -1.47 0.141 1.00 0.141 

Pz (Intercept) -1.5 0.05 -27.99 <0.001 <0.001 <0.001 

P3 (Intercept) -0.78 0.05 -17.29 <0.001 <0.001 <0.001 

T7 (Intercept) -0.67 0.04 -17.6 <0.001 <0.001 <0.001 

Fp2 (Intercept) -0.81 0.06 -13.05 <0.001 <0.001 <0.001 
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FC2 (Intercept) -1.68 0.05 -32.84 <0.001 <0.001 <0.001 

Fp1 (Intercept) -0.92 0.06 -15.78 <0.001 <0.001 <0.001 

CP5 (Intercept) -0.74 0.04 -18.27 <0.001 <0.001 <0.001 

O2 (Intercept) 0.76 0.04 19.05 <0.001 <0.001 <0.001 

P8 (Intercept) 0.2 0.04 5.63 <0.001 <0.001 <0.001 

F3 (Intercept) -1.5 0.05 -31.03 <0.001 <0.001 <0.001 

Fz (Intercept) -1.63 0.05 -30.93 <0.001 <0.001 <0.001 

FC1 (Intercept) -1.7 0.05 -33.96 <0.001 <0.001 <0.001 

F4 (Intercept) -1.51 0.05 -31.14 <0.001 <0.001 <0.001 

FC6 (Intercept) -1.25 0.04 -27.77 <0.001 <0.001 <0.001 

P4 (Intercept) -0.73 0.05 -15.58 <0.001 <0.001 <0.001 

CP2 (Intercept) -1.56 0.05 -29.94 <0.001 <0.001 <0.001 

F8 (Intercept) -1.11 0.04 -24.93 <0.001 <0.001 <0.001 

F7 (Intercept) -1.04 0.04 -26.13 <0.001 <0.001 <0.001 

Oz (Intercept) -0.15 0.04 -4.02 <0.001 0.002 <0.001 

FC5 (Intercept) -1.21 0.04 -29.47 <0.001 <0.001 <0.001 

Fpz (Intercept) -1.04 0.06 -18.4 <0.001 <0.001 <0.001 
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O1 (Intercept) 0.62 0.04 14.92 <0.001 <0.001 <0.001 

	725 
 726 
 727 

Table A2. The table shows the results of the smooth terms for all the models (one for each electrode) 728 

fit on Kilo-word data. The first column reports the electrode name; the second column reports the 729 

smooth term name; The third column reports the Effective degrees of freedom (which is a value related 730 

to the number of parameters used to estimate the smooth function), The fourth column reports the 731 

Reference degrees of freedom (used to calculated statistics, and p-values); the fifth and the sixth 732 

columns report the F value and the p-value. The seventh column reports the  p-values corrected with 733 

False Discovery Rate (FDR) method. 734 

Electrode term Estimated df Reference df F value p-value p-bonf p-fdr 

T8 s(WordFrequency) 1.01 1.01 0.09 0.771 1,00 0.857 

 s(Time) 9,00 9,00 9011.79 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.01 1.01 2.79 0.096 1,00 0.148 

 s(psc) 1,00 1,00 0.14 0.713 1,00 0.825 

 s(osc) 1,00 1,00 0.51 0.474 1,00 0.603 

 ti(WordFrequency,Time) 17.03 17.88 62.44 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.54 17.97 78.07 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.15 15.84 23.78 <0.001 <0.001 <0.001 
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 ti(osc,Time) 14.69 15.68 21.19 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.77 1.77 0.8 0.428 1,00 0.557 

 ti(psc,osc,Time) 31.26 34.27 17.52 <0.001 <0.001 <0.001 

 s(WORD) 677.61 683,00 147.16 <0.001 <0.001 <0.001 

CP1 s(WordFrequency) 1,00 1,00 0.14 0.713 1,00 0.825 

 s(Time) 9,00 9,00 17435.91 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.01 1.01 2.2 0.139 1,00 0.21 

 s(psc) 1,00 1,00 0.12 0.733 1,00 0.83 

 s(osc) 1,00 1,00 0,00 0.994 1,00 0.996 

 ti(WordFrequency,Time) 17.02 17.88 51.27 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.26 17.93 126.43 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.31 15.91 26.08 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.28 15.88 33.86 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 0,00 0.995 1,00 0.996 

 ti(psc,osc,Time) 30.16 33.71 7.66 <0.001 <0.001 <0.001 

 s(WORD) 678.86 683,00 166.34 <0.001 <0.001 <0.001 

CP6 s(WordFrequency) 1.01 1.01 0.01 0.903 1,00 0.941 
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 s(Time) 9,00 9,00 5923.03 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.01 1.01 2.74 0.099 1,00 0.152 

 s(psc) 1,00 1,00 0.01 0.918 1,00 0.95 

 s(osc) 1.01 1.01 0.21 0.641 1,00 0.772 

 ti(WordFrequency,Time) 16.96 17.86 59.23 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.48 17.97 123.91 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.31 15.91 24.86 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.69 15.59 27.46 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.1 1.1 0.09 0.824 1,00 0.887 

 ti(psc,osc,Time) 31.54 34.74 13.27 <0.001 <0.001 <0.001 

 s(WORD) 678.17 683,00 144.63 <0.001 <0.001 <0.001 

C3 s(WordFrequency) 1,00 1,00 0.37 0.542 1,00 0.673 

 s(Time) 9,00 9,00 19555.86 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 1.31 0.252 1,00 0.36 

 s(psc) 1,00 1,00 0.2 0.653 1,00 0.775 

 s(osc) 1,00 1,00 0,00 0.948 1,00 0.976 

 ti(WordFrequency,Time) 17.39 17.95 50.54 <0.001 <0.001 <0.001 
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 ti(NumberOfLetters,Time) 17.2 17.92 109.18 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.07 15.83 20.5 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.21 15.84 51.2 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 0.04 0.843 1,00 0.902 

 ti(psc,osc,Time) 30.44 33.85 12.42 <0.001 <0.001 <0.001 

 s(WORD) 678.9 683,00 167.99 <0.001 <0.001 <0.001 

Cz s(WordFrequency) 1.01 1.01 0.08 0.782 1,00 0.859 

 s(Time) 9,00 9,00 23831.26 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.01 1.01 2.77 0.096 1,00 0.148 

 s(psc) 1,00 1,00 0.14 0.711 1,00 0.825 

 s(osc) 1.01 1.01 0.13 0.724 1,00 0.828 

 ti(WordFrequency,Time) 17.37 17.95 59.63 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.02 17.88 125.46 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.22 15.89 19.63 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.26 15.86 38.39 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.09 1.09 0.52 0.477 1,00 0.603 

 ti(psc,osc,Time) 30.97 34.12 12.63 <0.001 <0.001 <0.001 
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 s(WORD) 677.98 683,00 139.02 <0.001 <0.001 <0.001 

C4 s(WordFrequency) 1,00 1,00 0.05 0.816 1,00 0.882 

 s(Time) 9,00 9,00 16377.35 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 2.89 0.089 1,00 0.139 

 s(psc) 1,00 1,00 0.09 0.761 1,00 0.851 

 s(osc) 1,00 1,00 0.28 0.6 1,00 0.725 

 ti(WordFrequency,Time) 17.2 17.92 54.99 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.08 17.89 112.57 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.05 15.81 22.41 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.23 15.41 24.75 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 0.12 0.723 1,00 0.828 

 ti(psc,osc,Time) 29.93 33.37 10.88 <0.001 <0.001 <0.001 

 s(WORD) 678.82 683,00 164.73 <0.001 <0.001 <0.001 

P7 s(WordFrequency) 1,00 1,00 1.14 0.285 1,00 0.399 

 s(Time) 9,00 9,00 2108.81 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.02 1.02 0.14 0.731 1,00 0.83 

 s(psc) 1,00 1,00 0.2 0.653 1,00 0.775 
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 s(osc) 1,00 1,00 0,00 0.976 1,00 0.989 

 ti(WordFrequency,Time) 17.12 17.9 147.2 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.44 17.96 63.54 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.55 15.96 30.83 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.51 15.94 33.77 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 0.33 0.566 1,00 0.697 

 ti(psc,osc,Time) 31.67 34.88 14.73 <0.001 <0.001 <0.001 

 s(WORD) 678.61 683,00 156.83 <0.001 <0.001 <0.001 

Pz s(WordFrequency) 1,00 1,00 1.05 0.304 1,00 0.419 

 s(Time) 9,00 9,00 11425.04 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 4.49 0.034 1,00 0.056 

 s(psc) 1,00 1,00 0.1 0.759 1,00 0.851 

 s(osc) 1,00 1,00 0.07 0.793 1,00 0.866 

 ti(WordFrequency,Time) 17.26 17.93 70.88 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 16.78 17.81 144.9 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.07 15.79 26.39 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.26 15.87 32.74 <0.001 <0.001 <0.001 
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 ti(psc,osc) 1.04 1.04 0,00 0.978 1,00 0.989 

 ti(psc,osc,Time) 30.67 34.08 12.32 <0.001 <0.001 <0.001 

 s(WORD) 678.34 683,00 147.75 <0.001 <0.001 <0.001 

P3 s(WordFrequency) 1.01 1.01 0,00 0.966 1,00 0.983 

 s(Time) 9,00 9,00 7175.85 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.01 1.01 1.07 0.303 1,00 0.419 

 s(psc) 1.01 1.01 0.02 0.883 1,00 0.931 

 s(osc) 1.01 1.01 0.07 0.797 1,00 0.866 

 ti(WordFrequency,Time) 17.11 17.9 70.67 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.28 17.94 114.74 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.48 15.94 28.98 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.42 15.93 35.7 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.05 1.05 0.39 0.534 1,00 0.666 

 ti(psc,osc,Time) 31.35 34.64 10.66 <0.001 <0.001 <0.001 

 s(WORD) 678.57 683,00 156.49 <0.001 <0.001 <0.001 

T7 s(WordFrequency) 1,00 1,00 3.44 0.064 1,00 0.102 

 s(Time) 9,00 9,00 12864.33 <0.001 <0.001 <0.001 
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 s(NumberOfLetters) 1.01 1.01 0.19 0.679 1,00 0.798 

 s(psc) 1.01 1.01 1.28 0.262 1,00 0.371 

 s(osc) 1,00 1,00 0.01 0.911 1,00 0.946 

 ti(WordFrequency,Time) 17.26 17.93 48.97 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.48 17.97 66.57 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.44 15.93 47.1 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.4 15.91 50.11 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.52 1.52 0.2 0.645 1,00 0.774 

 ti(psc,osc,Time) 33.93 35.68 31.35 <0.001 <0.001 <0.001 

 s(WORD) 678.57 683,00 172.55 <0.001 <0.001 <0.001 

Fp2 s(WordFrequency) 1,00 1,00 7.45 0.006 1,00 0.011 

 s(Time) 9,00 9,00 15552,00 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 4.11 0.042 1,00 0.07 

 s(psc) 1,00 1,00 1.68 0.195 1,00 0.289 

 s(osc) 1,00 1,00 3.51 0.062 1,00 0.099 

 ti(WordFrequency,Time) 17.55 17.97 150.97 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.19 17.93 55.21 <0.001 <0.001 <0.001 
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 ti(psc,Time) 14.99 15.83 22.55 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.29 15.89 47.41 <0.001 <0.001 <0.001 

 ti(psc,osc) 3.25 3.25 1.76 0.189 1,00 0.281 

 ti(psc,osc,Time) 31.17 34.03 38.96 <0.001 <0.001 <0.001 

 s(WORD) 676.68 683,00 165.59 <0.001 <0.001 <0.001 

FC2 s(WordFrequency) 1,00 1,00 0.51 0.474 1,00 0.603 

 s(Time) 9,00 9,00 21009.88 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 2.31 0.128 1,00 0.195 

 s(psc) 1,00 1,00 0.98 0.321 1,00 0.435 

 s(osc) 1,00 1,00 0.06 0.807 1,00 0.875 

 ti(WordFrequency,Time) 17.56 17.97 96.08 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.2 17.92 101.03 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.89 15.74 16.53 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.99 15.77 31.96 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 1.09 0.296 1,00 0.411 

 ti(psc,osc,Time) 31.24 34.24 16.48 <0.001 <0.001 <0.001 

 s(WORD) 678.03 683,00 138.34 <0.001 <0.001 <0.001 
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Fp1 s(WordFrequency) 1,00 1,00 1.76 0.185 1,00 0.277 

 s(Time) 9,00 9,00 19878.27 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 6.54 0.01 1,00 0.017 

 s(psc) 1,00 1,00 0.33 0.566 1,00 0.697 

 s(osc) 1,00 1,00 1.32 0.252 1,00 0.36 

 ti(WordFrequency,Time) 17.51 17.97 151.91 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.37 17.95 74.3 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.99 15.82 20.83 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.93 15.72 43.45 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.43 1.44 0.44 0.688 1,00 0.807 

 ti(psc,osc,Time) 32.48 34.97 27.61 <0.001 <0.001 <0.001 

 s(WORD) 678.94 683,00 187.32 <0.001 <0.001 <0.001 

CP5 s(WordFrequency) 1,00 1,00 0.39 0.534 1,00 0.666 

 s(Time) 9,00 9,00 9992.98 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.01 1.01 1.05 0.312 1,00 0.427 

 s(psc) 1,00 1,00 0.02 0.894 1,00 0.934 

 s(osc) 1,00 1,00 0,00 0.951 1,00 0.976 
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 ti(WordFrequency,Time) 16.87 17.84 67.18 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.38 17.95 116.95 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.51 15.95 30.74 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.46 15.93 48.15 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.05 1.05 0.02 0.934 1,00 0.964 

 ti(psc,osc,Time) 32.14 35.09 9.7 <0.001 <0.001 <0.001 

 s(WORD) 679.24 683,00 184.74 <0.001 <0.001 <0.001 

O2 s(WordFrequency) 1.01 1.01 0.03 0.864 1,00 0.919 

 s(Time) 8.99 9,00 10630.81 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.87 1.87 7.38 0.007 1,00 0.012 

 s(psc) 1.01 1.01 0.08 0.775 1,00 0.858 

 s(osc) 1.01 1.01 0.2 0.648 1,00 0.775 

 ti(WordFrequency,Time) 16.96 17.87 75.19 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.35 17.95 89.98 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.8 15.74 14.59 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.36 15.9 25.84 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.42 1.42 0.73 0.581 1,00 0.709 
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 ti(psc,osc,Time) 32.36 35.18 12.75 <0.001 <0.001 <0.001 

 s(WORD) 672.54 683,00 73.58 <0.001 <0.001 <0.001 

P8 s(WordFrequency) 1.01 1.01 1.1 0.294 1,00 0.409 

 s(Time) 8.99 9,00 1575.4 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.91 1.91 9.27 0.002 0.548 0.003 

 s(psc) 1,00 1,00 0.62 0.433 1,00 0.56 

 s(osc) 1.01 1.01 0.55 0.455 1,00 0.584 

 ti(WordFrequency,Time) 16.99 17.87 81.03 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.6 17.98 114.14 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.26 15.9 22.06 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.52 15.53 18.86 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.69 1.69 2.03 0.258 1,00 0.367 

 ti(psc,osc,Time) 34.09 35.74 21.05 <0.001 <0.001 <0.001 

 s(WORD) 675.25 683,00 110.13 <0.001 <0.001 <0.001 

F3 s(WordFrequency) 1,00 1,00 0.93 0.335 1,00 0.452 

 s(Time) 9,00 9,00 22196.73 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 2.6 0.106 1,00 0.163 
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 s(psc) 1,00 1,00 1.83 0.176 1,00 0.265 

 s(osc) 1,00 1,00 0.02 0.892 1,00 0.934 

 ti(WordFrequency,Time) 17.64 17.98 119.12 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.4 17.96 82.36 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.48 15.56 13.7 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.01 15.79 39.46 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.04 1.04 1.16 0.286 1,00 0.399 

 ti(psc,osc,Time) 31.93 34.79 22.34 <0.001 <0.001 <0.001 

 s(WORD) 678.15 683,00 141.93 <0.001 <0.001 <0.001 

Fz s(WordFrequency) 1,00 1,00 1.33 0.248 1,00 0.358 

 s(Time) 9,00 9,00 21108.02 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 1.66 0.197 1,00 0.29 

 s(psc) 1,00 1,00 1.54 0.213 1,00 0.312 

 s(osc) 1,00 1,00 1.03 0.313 1,00 0.427 

 ti(WordFrequency,Time) 17.61 17.98 133.67 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.37 17.95 86.63 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.74 15.72 13.41 <0.001 <0.001 <0.001 
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 ti(osc,Time) 15.25 15.87 40.03 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.04 1.04 0.79 0.382 1,00 0.505 

 ti(psc,osc,Time) 31.13 34.3 18.15 <0.001 <0.001 <0.001 

 s(WORD) 678.21 683,00 143.85 <0.001 <0.001 <0.001 

FC1 s(WordFrequency) 1,00 1,00 3.16 0.075 1,00 0.119 

 s(Time) 9,00 9,00 22941.21 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 1.22 0.269 1,00 0.379 

 s(psc) 1,00 1,00 0.65 0.421 1,00 0.55 

 s(osc) 1,00 1,00 0.08 0.783 1,00 0.859 

 ti(WordFrequency,Time) 17.6 17.98 106.35 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.35 17.95 100.77 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.87 15.77 14.2 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.01 15.78 39.09 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.04 1.04 0.79 0.384 1,00 0.507 

 ti(psc,osc,Time) 31.05 34.23 15.65 <0.001 <0.001 <0.001 

 s(WORD) 677.98 683,00 137.12 <0.001 <0.001 <0.001 

F4 s(WordFrequency) 1,00 1,00 0.12 0.731 1,00 0.83 
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 s(Time) 9,00 9,00 20280.88 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 6.44 0.011 1,00 0.019 

 s(psc) 1,00 1,00 1.39 0.238 1,00 0.346 

 s(osc) 1,00 1,00 1.41 0.237 1,00 0.346 

 ti(WordFrequency,Time) 17.56 17.97 123.07 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.34 17.95 91.72 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.12 15.33 16.11 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.93 15.74 33.47 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.03 1.03 0.7 0.406 1,00 0.533 

 ti(psc,osc,Time) 30.78 33.88 19.52 <0.001 <0.001 <0.001 

 s(WORD) 678.04 683,00 138.63 <0.001 <0.001 <0.001 

FC6 s(WordFrequency) 1,00 1,00 0.62 0.433 1,00 0.56 

 s(Time) 9,00 9,00 16640.15 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 4.01 0.045 1,00 0.074 

 s(psc) 1,00 1,00 0.81 0.366 1,00 0.492 

 s(osc) 1,00 1,00 0.33 0.566 1,00 0.697 

 ti(WordFrequency,Time) 17.39 17.95 86.61 <0.001 <0.001 <0.001 
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 ti(NumberOfLetters,Time) 17.39 17.96 90.35 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.68 15.62 20.66 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.2 15.32 27.48 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 0.19 0.67 1,00 0.791 

 ti(psc,osc,Time) 31.7 34.46 18.45 <0.001 <0.001 <0.001 

 s(WORD) 678.45 683,00 151.08 <0.001 <0.001 <0.001 

P4 s(WordFrequency) 1,00 1,00 0.59 0.442 1,00 0.57 

 s(Time) 9,00 9,00 5531.4 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.02 1.02 4.08 0.045 1,00 0.074 

 s(psc) 1,00 1,00 0.11 0.74 1,00 0.836 

 s(osc) 1,00 1,00 0.04 0.848 1,00 0.905 

 ti(WordFrequency,Time) 17.02 17.88 59.75 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.39 17.95 141.08 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.42 15.93 22.25 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.46 15.93 32.07 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.03 1.03 0.31 0.582 1,00 0.709 

 ti(psc,osc,Time) 27.8 31.57 13.71 <0.001 <0.001 <0.001 
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 s(WORD) 677.71 683,00 129.69 <0.001 <0.001 <0.001 

CP2 s(WordFrequency) 1,00 1,00 0.28 0.597 1,00 0.724 

 s(Time) 9,00 9,00 15677.93 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.02 1.02 3.94 0.048 1,00 0.078 

 s(psc) 1,00 1,00 0.13 0.72 1,00 0.828 

 s(osc) 1,00 1,00 0.07 0.796 1,00 0.866 

 ti(WordFrequency,Time) 16.69 17.78 43.55 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.37 17.95 140.56 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.22 15.88 20.38 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.2 15.85 34.89 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 0.03 0.872 1,00 0.925 

 ti(psc,osc,Time) 31.1 34.37 10.56 <0.001 <0.001 <0.001 

 s(WORD) 678.5 683,00 153.08 <0.001 <0.001 <0.001 

F8 s(WordFrequency) 1,00 1,00 0.98 0.321 1,00 0.435 

 s(Time) 9,00 9,00 16874.28 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 2.95 0.086 1,00 0.135 

 s(psc) 1,00 1,00 0.31 0.579 1,00 0.709 
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 s(osc) 1,00 1,00 1.58 0.208 1,00 0.306 

 ti(WordFrequency,Time) 17.42 17.96 107.59 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.34 17.95 60.92 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.76 15.67 21.54 <0.001 <0.001 <0.001 

 ti(osc,Time) 14,00 15.29 23.47 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.06 1.06 0,00 0.963 1,00 0.983 

 ti(psc,osc,Time) 31.47 34.36 17.56 <0.001 <0.001 <0.001 

 s(WORD) 678.55 683,00 155.71 <0.001 <0.001 <0.001 

F7 s(WordFrequency) 1.02 1.02 0.08 0.766 1,00 0.854 

 s(Time) 9,00 9,00 22258.8 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 3.77 0.052 1,00 0.084 

 s(psc) 1,00 1,00 0.11 0.745 1,00 0.839 

 s(osc) 1,00 1,00 0.15 0.695 1,00 0.812 

 ti(WordFrequency,Time) 17.42 17.95 113.98 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.57 17.98 83.7 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.62 15.61 19.33 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.93 15.77 35.51 <0.001 <0.001 <0.001 
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 ti(psc,osc) 1.1 1.1 0.97 0.37 1,00 0.493 

 ti(psc,osc,Time) 33.11 35.4 28.18 <0.001 <0.001 <0.001 

 s(WORD) 678.47 683,00 154.5 <0.001 <0.001 <0.001 

Oz s(WordFrequency) 1.01 1.01 0.02 0.885 1,00 0.931 

 s(Time) 8.99 9,00 4708.52 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.01 1.01 6.83 0.009 1,00 0.015 

 s(psc) 1,00 1,00 1.33 0.249 1,00 0.358 

 s(osc) 1,00 1,00 0.19 0.663 1,00 0.784 

 ti(WordFrequency,Time) 17.25 17.93 80.61 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 16.65 17.79 93.73 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.09 15.82 24.71 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.93 15.74 22.36 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.04 1.04 0.82 0.368 1,00 0.492 

 ti(psc,osc,Time) 28.53 32.49 10.11 <0.001 <0.001 <0.001 

 s(WORD) 675.53 683,00 91.56 <0.001 <0.001 <0.001 

FC5 s(WordFrequency) 1.01 1.01 1.74 0.185 1,00 0.277 

 s(Time) 9,00 9,00 20878.18 <0.001 <0.001 <0.001 
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 s(NumberOfLetters) 1,00 1,00 2.31 0.128 1,00 0.195 

 s(psc) 1,00 1,00 0.53 0.464 1,00 0.594 

 s(osc) 1,00 1,00 0,00 0.996 1,00 0.996 

 ti(WordFrequency,Time) 17.53 17.97 84.24 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.42 17.96 89.79 <0.001 <0.001 <0.001 

 ti(psc,Time) 14.49 15.56 14.19 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.66 15.62 37.99 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.03 1.03 0.43 0.526 1,00 0.661 

 ti(psc,osc,Time) 32.17 34.96 21.89 <0.001 <0.001 <0.001 

 s(WORD) 678.29 683,00 146.02 <0.001 <0.001 <0.001 

Fpz s(WordFrequency) 1,00 1,00 3.18 0.074 1,00 0.118 

 s(Time) 9,00 9,00 18818.55 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1,00 1,00 5.41 0.02 1,00 0.033 

 s(psc) 1,00 1,00 0.44 0.509 1,00 0.642 

 s(osc) 1,00 1,00 3.17 0.076 1,00 0.119 

 ti(WordFrequency,Time) 17.57 17.98 158.09 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.28 17.94 71.12 <0.001 <0.001 <0.001 
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 ti(psc,Time) 14.43 15.61 14.66 <0.001 <0.001 <0.001 

 ti(osc,Time) 15.11 15.8 47.01 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.39 1.39 0.21 0.782 1,00 0.859 

 ti(psc,osc,Time) 32,00 34.65 28.84 <0.001 <0.001 <0.001 

 s(WORD) 678.82 683,00 178.99 <0.001 <0.001 <0.001 

O1 s(WordFrequency) 1,00 1,00 0,00 0.993 1,00 0.996 

 s(Time) 9,00 9,00 11284.97 <0.001 <0.001 <0.001 

 s(NumberOfLetters) 1.03 1.03 0.83 0.381 1,00 0.505 

 s(psc) 1,00 1,00 0.04 0.838 1,00 0.9 

 s(osc) 1,00 1,00 0.02 0.874 1,00 0.925 

 ti(WordFrequency,Time) 17.47 17.96 132.06 <0.001 <0.001 <0.001 

 ti(NumberOfLetters,Time) 17.28 17.94 58.92 <0.001 <0.001 <0.001 

 ti(psc,Time) 15.31 15.9 18.45 <0.001 <0.001 <0.001 

 ti(osc,Time) 14.99 15.76 23.25 <0.001 <0.001 <0.001 

 ti(psc,osc) 1.02 1.02 0,00 0.957 1,00 0.979 

 ti(psc,osc,Time) 31.59 34.75 15.17 <0.001 <0.001 <0.001 

 s(WORD) 675.96 683,00 97.12 <0.001 <0.001 <0.001 
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 735 

 736 

Table A3. To justify the use of a three-way interaction between time, OSC and PSC in the models used 737 

in the analysis (full models), we ran a simplified version of such models (simple models), not including 738 

the interaction of interest. We then compared both models’ fit to the data by means of the Akaike 739 

Information Criterion (AIC). For all electrodes, the AIC of the full model was smaller than the AIC of 740 

the simple one, meaning that the inclusion of the three-way interaction improved the fit. The table 741 

shows results of the model comparison. The first column reports the electrode names. The second and 742 

third column represent the AIC for the models used in the analysis (full model) and the simplified one 743 

(simple model). The fourth column represent the difference between the AIC of the full and the simple 744 

models. 745 

Electrode AIC full model AIC simple model AIC difference 

T8 538939.49 539511.95 -572.46 

CP1 610297.19 610523.73 -226.54 

CP6 573308.27 573740.02 -431.75 

C3 583443.92 583834.2 -390.28 

Cz 650101.06 650503.55 -402.49 

C4 618256.41 618589.2 -332.79 

P7 439040.03 439525.34 -485.31 

Pz 641645.63 642037.37 -391.74 
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P3 573014.05 573353.37 -339.32 

T7 484714.19 485812.92 -1098.73 

Fp2 644742.73 646036.95 -1294.22 

FC2 637309.73 637846.86 -537.13 

Fp1 623615.11 624553.24 -938.13 

CP5 502205.68 502518.25 -312.57 

O2 659015.17 659445.64 -430.47 

P8 552052.39 552784.02 -731.63 

F3 613711.95 614460.46 -748.51 

Fz 641073.56 641665.94 -592.38 

FC1 632134.11 632637.78 -503.67 

F4 618864.86 619500.6 -635.74 

FC6 576844.1 577448.22 -604.12 

P4 616210.26 616624.49 -414.23 

CP2 627412.84 627748.01 -335.17 

F8 568629.99 569199.96 -569.97 

F7 529915.78 530885.83 -970.05 
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Oz 608948.16 609251.25 -303.09 

FC5 551247.69 551985.12 -737.43 

Fpz 622312.89 623284.35 -971.46 

O1 625214.61 625717.43 -502.82 

  746 
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Figure A1. ERP grandaverage of Kilo-word stimuli. The figure shows the grandaverage including 747 

all words of Kilo-word database used for the analysis. Only words in which both OSC and PSC were 748 

equal to 1 were excluded from the initial set.  749 
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Figure A2. Scalp plot of partial effects of the interaction between Length and Time. The contour 750 

map for each electrode is a topographic representation of the partial effect of Time (in the x-axis) and 751 

Length (in the y-axis). Amplitude is codified as color using a jet palette: color towards red indicates 752 

positive values, while color towards blue indicates negative values, while colors toward green indicate 753 

in-between values. Topographic maps have been masked so that only effect estimates whose 754 

confidence interval at 95% did not include zero were included. Electrodes are reported in a regular grid 755 

array that approximate their position on the scalp.      756 

  757 
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Figure A3. Scalp plot of partial effects of the interaction between Frequency and Time. The 758 

contour map for each electrode is a topographic representation of the partial effect of Time (in the x-759 

axis) and Frequency (in the y-axis). Amplitude is codified as color using a jet palette: color towards red 760 

indicates positive values, while color towards blue indicates negative values, while colors toward green 761 

indicate in-between values. Topographic maps have been masked so that only effect estimates whose 762 

confidence interval at 95% did not include zero were included. Electrodes are reported in a regular grid 763 

array that approximate their position on the scalp.       764 
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Figures A4 - A33. Histograms of residuals for each electrode’s model. Residuals of all the models 767 

were normally distributed. 768 
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