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Abstract. Bike-sharing systems (BSSs) have become integral to ur-
ban mobility, improving accessibility, multimodality of transportation,
and sustainability. This paper presents a novel approach to supporting
decisions on the positioning of docking stations for dock-based BSSs
by leveraging real-world historical mobility data to estimate mobility
demand. In particular, we used taxi travels data as a proxy to generate
a synthetic mobility demand dataset that was exploited to estimate the
locations of a dock-based BSS stations through clustering techniques.
This study aims to improve the practicality of station positioning.
By addressing challenges related to station placement, this research
offers insights into the practical implementation of data-driven ap-
proaches in BSS planning and management, advancing the efficiency
and sustainability of urban bike-sharing systems.

1 Introduction

Urban mobility technologies have experienced a substantial change in
the last two decades, driven by an increasing attention to environmen-
tal sustainability and by a shift of the socio-economic conditions in the
cities. Mobility as a Service (MaaS) is a recent innovative transport
concept that is still surrounded by ambiguity [11]. This term generally
refers to a concept in transportation where various forms of transporta-
tion services, such as public transit, ride-sharing, bike-sharing, and
more, are integrated into a single, accessible platform.

Bicycle sharing is increasingly popular as a sustainable transport
system and as a matter of fact, the number of bike-sharing schemes
has grown significantly worldwide in recent years'. Bike-sharing
systems (BSSs) are bridging gaps in public transportation networks
that might be insufficient to serve an entire urban area. They are
also serving as catalysts for the concept of "sustainable cities" within
urban environments. BSSs offer a multitude of benefits for urban
mobility, including reducing emissions, improving user health and
lifestyle, alleviating traffic congestion, enhancing traffic systems, and
integrating seamlessly with public and multimodal transportation [3].

There are two types of bike-sharing systems: dock-based and dock-
less. Dock-based systems require designated stations for pick-up and
drop-off, demanding careful planning and strategic station placement
based on demand and usage patterns. Service users should not expe-
rience situations in which the do not find available bikes when they
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! In August 2022, there were 1.914 schemes with 8.967.122 bikes, including
194.351 pedal-assisted ones (e-bikes). https://bikesharingworldmap.com/#/
all/2.6/0/51.5/

need one, or cannot drop off a used bike when they reach a destination.
Rebalancing means moving bikes between under- and over-supplied
areas, in an attempt to maximise user satisfaction [19, 22]. In contrast,
dockless systems offer the flexibility of parking anywhere within the
service area. Traditional methods for station placement rely on ex-
isting BSS data [4], which may not be available for new systems or
those in developing regions. However, also these services need to be
implemented carefully: so-called bike-share graveyards® represents an
example in which bike supply was unnecessarily high, but additional
issues are related to blocked paths and irregular parking of these vehi-
cles [5] that decreases the perception of the service quality not just in
the users.

Dock-based bike sharing is therefore likely to remain a reasonably
adopted approach (and even more so for electric bikes): dock position-
ing is a key challenge, minimising unbalanced ridership, where some
stations lack bikes while others overflow. Ideally, stations would be
evenly used, minimizing the need for manual bike redistribution and
maximizing user satisfaction [2]. Despite being a crucial element for
BSS success, station location selection is complex due to factors like
surrounding environment and public transport networks [13].

This paper addresses this challenge by exploring the potential of
leveraging already available dockless MaaS data, such as taxi trip
records, as a proxy for estimating mobility demand. Based on de-
mand data and plausible assumptions about users’ behaviour, what-if
scenarios can be easily created to support dock-based BSS system
dimensioning and station locations. To evaluate bike-sharing station
placement, this approach creates plausible demand for potential bike
trips based on real taxi data. Clustering algorithms are then employed
to identify zones with high potential based on trips. Reasonable as-
sumptions are then employed to evaluate the adequacy of the decisions
about BSS station positioning, again considering demand data based
on real world taxi trips records, also comparing with existing stations.
The adopted approach is exemplified in the context of NYC but the
adopted methods and techniques are of general applicability, and the
only requirements are: (i) a dataset of dockless mobility demand for
supporting spatial decisions (i.e. trips for which user can reasonably
select where to start without moving towards a fixed station), (b) an
estimate (or real world data) of the trend of BSS mobility demand in
time, especially for supporting the evaluation of BSS system station
placement.

This paper is organised as follows: Section 2 provides an overview

2 https://www.theguardian.com/uk-news/2017/nov/25/
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of existing works for optimizing the positioning of BSS stations.
Section 3.3 presents an overview of the data used in this paper. The
process of synthetic data generation is discussed in Section 4. Section
5.3 provides the experiments on evaluating the positioning of bike-
sharing stations and the analysis of the advantages of our method.
Finally, Section 7 concludes and draws future research directions.

2 Related Work

Regarding the optimization of docking stations’s positioning leverag-
ing dockless MaaS data, the study in [20] discusses the optimization
of virtual station locations in dockless BSS to meet user demand dur-
ing morning and evening rush hours. It presents a mixed-integer linear
programming (MILP) model and a clustering algorithm to maximize
user demand and to solve the parking disorder caused by the systems.
The model considers various parameters such as the number of shared
bikes at virtual stations, the distance between adjacent virtual stations,
and the capacity of each virtual station. It also ensures that virtual
stations are mutually supportive within a certain distance, forming
a mesh structure. The MILP model aims to find the optimal design
scheme for virtual stations under the condition of maximizing user
demand. The proposed method is shown to be superior with respect
to existing works in terms of computational efficiency.

[10] presents a novel approach to predicting the usage and distribu-
tion of bikes in a dockless BSS using journey data. The study focuses
on the city of Nanjing, China, and proposes a multi-input multi-output
(MIMO) prediction model with the Random Forest (RF) approach to
accurately forecast the usage and bike distribution of dockless BSS.
The paper also introduces a forecasting framework based on the us-
age gap, which outperforms traditional departure and arrival-based
predictions. Similarly to our work, this paper aims to use historical
data of dockless MaaS to evaluate the locations of the stations of a
dock-based BSS.

Optimization of the location of bicycle stations in urban areas
of Malaga, Spain, is studied in [6]. The authors employed various
metaheuristic algorithms such as Genetic Algorithm, Particle Swarm
Optimization, etc., which were configured using irace package [14]
to automatically optimize their parameters. Additionally, the paper
aimed to identify models that best cater to the current needs of users.
The input for such models included data from population distribution,
city maps, geographic station locations, and citizen usage patterns
of the current bicycle-sharing system. The study incorporated real-
distance data to determine optimal station locations and considered
the number of inhabitants per neighborhood to align the results with
citizen needs. By comparing the results with an expert’s assignment
from the city council, the study demonstrated improvements of up to
50% in quality when applying metaheuristic techniques.

The effect of price change and travel behavior is studied in [12],
highlighting how when stations are at full capacity users feel discom-
fort because they can not safely park the bike, while if they are empty
users have to walk an additional distance in order to find a usable bike.
Also, their results show that casual users and members have different
travel patterns and price preferences. Those findings provide valuable
insights for bikesharing providers in understanding their user base
and tailoring their services to meet their needs.

The demand for transport and mobility information in the Bio-Bio
Region of Chile is presented in [18]. The approach utilizes geospa-
tial data wrangling and a binary integer mathematical programming
model to identify locations that maximize system coverage based on
realistic travel demand data. Implemented in Python using Geopandas
and LocalSolver libraries, the system is designed to address peak hour

demand and improve overall availability by over 37%. Additionally,
the model incorporates user participation in bike relocation, poten-
tially eliminating up to 80% of the CO2 emissions associated with the
rebalancing process.

Unlike prior works that rely solely on dockless bike-sharing data
or traditional optimization techniques, our approach leverages taxi
trip data, which essentially mimics a dockless system, to assess dock-
based Citi Bike station locations. This allows us to capture a wider
range of user travel patterns beyond the immediate vicinity of stations.
Furthermore, we address the limitations of directly applying synthetic
data generation by creating a novel partially synthetic method. We
strategically combine elements from both taxi and real Citi Bike trip
data, ensuring realistic locations, timings, and spatial distribution
across Manhattan. This overcomes issues like unrealistic locations
and uneven spatial distribution observed with traditional synthetic
data generation methods.

3 Data Profiling

This section provides an overview of the data used for this paper.

3.1 Data Sources

This paper utilizes two publicly available datasets:

e NYC yellow taxi trip data’: This dataset contains historical trip
information for the iconic NYC yellow cabs. These taxis oper-
ate exclusively through street hails, meaning pickups are not pre-
arranged but flagged down on the street. The number of yellow
cabs is limited by a finite number of medallions issued by the
Taxi & Limousine Commission (TLC), but the service is generally
considered safe, very affordable, and relatively widespread. We
employed several months of data from this service from 2015 and
2016 (afterwards the publicly shared data was much less granular
— zone maps instead of GPS locations), as a proxy for mobility
demand, especially concerning the spatial dimension (in general
one waits for an available taxi where the trip should start).

e Citi Bike trip history data*: This dataset provides historical trip
records for Citi Bike, a dock-based bike-sharing system serving
NYC with a very good coverage. We particularly employed this
dataset as an indicator of the amount and timing of BSS demand, in
particular for sake of evaluation of the BSS station location choice.

Due to the inherent differences between yellow taxis and dockless
bike-sharing systems, a preliminary analysis is necessary to assess the
suitability of using taxi data as a proxy for dockless BSS data.

3.2 Data Preprocessing

Both datasets provide trip origin and destination points (in WGS84
coordinates) and timestamps. However, Citi Bike data only provides
station locations, not trip distances. Location data is transformed from
WGS84 (EPSG:4326) to UTM zone 18N (EPSG:3261822) for simpli-
fied calculations while maintaining distance precision (all distances
are provided in meters).

We restrict our analysis to trips within Manhattan Island in March
2016 (the last month for which GPS data about trips is available) for
the yellow taxis data, and July 2022 for Citi Bike (the last month

3 NYC TLC Trip Record Data. URL: https://www.nyc.gov/site/tlc/about/
tle-trip-record-data.page.
4 Citi Bike System Data. url: https://citibikenyc.com/system-data


https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
https://citibikenyc.com/system-data
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Figure 2: Manhattan Trips: Taxi vs. Bike (30 min duration)

available when the present study started, and the month with higher
number of travels in the available time frame). This initial filtering
yields 10,121,415 taxi trips and 2,294,969 bike trips. To focus on
meaningful journeys, we further exclude circular trips and those below
a certain distance (details provided in Section 3.3). This additional
filtering refines our data to 8,532,937 taxi trips and 1,977,808 bike
trips.

3.3 Data Analysis

Trip patterns differ by season and time. Taxis are more popular in
colder months and at night due to comfort and safety concerns. Bike
usage increases in summer. Weekday trips for both taxis and bikes
show morning and evening peaks, likely reflecting commute patterns.
Weekends see a shift towards afternoon trips, likely for leisure activ-
ities. A nighttime peak, especially prominent in taxi data, suggests
trips home after evenings out. Both taxi and bike trips concentrate in
Manbhattan’s southern half (both origin and destination points), and
they are more sparse in northern areas, with a slight midtown density
boost near Central Park. Weekdays and weekends show no signifi-
cant spatial distribution difference. Due to trip volume and density,
identifying additional, and more fine grained, trends from a map view
is challenging. However, zooming in reveals specific patterns, such
as reversed trends between morning and afternoon demand peaks
(e.g respectively starting and ending nearby busy hubs such as cer-
tain subway stations). In general, we observed patterns that are in
tune with current literature on spatial-temporal analysis of demand
patterns [16].

Trip duration and distance are also investigated: the Manhattan
distance (city-block or taxicab distance) is employed as the metric to
measure and compare trip distances [7]. We excluded circular trips
(origin and destination identical) as they provide minimal value and
can hinder analysis: they were more frequent in the bike data (over
5%), likely due to false starts or re-docking attempts, as most circular
bike trips were very short (under 1 minute). Given the rarity of long
bike trips, we retained trips under 5,000 meters (Manhattan distance).
This approach preserved around 90% of bike trips and 85% of taxi
trips, resulting in more balanced and realistic distributions. (Figure 1).
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The results align with expectations: taxi trips take on average 12
minutes, while bikes take nearly 14 minutes. This difference can be
attributed to the inherent speed advantage of cars. Additionally, unlike
taxi passengers, cyclists may make stops during their journeys, further
contributing to the discrepancy between trip distance and duration,
particularly for bicycles (Figure 2).

4 Synthetic Data Generation

Within this work we explore the use of a dockless dataset describing
mobility demand (yellow taxi data, in the performed experiments)
to perform analyses aimed at supporting decisions on numbers and
location of dock-based BSS stations. To support this work we also
have available time, starting, and destination stations from travels
related to Citi Bike BSS.

We first of all construct a synthetic BSS demand for a typical
(working) day: about 54 thousand trips. We generate a set of synthetic
trips based on the actual temporal distribution of Citi Bike trips, as
shown in Figure 3. In particular, we generate a synthetic starting time
for the trips extracted, and we need to spatially position the trip, so
we generate start and end locations and an appropriate arrival time. To
do this, we look within the taxi dataset for actual trips whose starting
time is closest to the one of the extracted trip. Preliminary tests with
this extremely simple stochastic sampling method showed that the
uneven spatial distribution of trips within both of the datasets would
imply an extremely low number of travels in the northern part of the
map, while the vast majority of trips would concentrate in southern
Manhattan. To avoid this problem, we divided Manhattan into three
zones: top (where bike trips outnumber taxi trips, and both are much
scarcer than the rest of Manhattan), mid (densities are more balanced
between taxi and bike trips, and travel density is medium), and bot
(taxi trips are more frequent compared to bike trips, and mobility
demand is very high compared to top and mid areas). The algorithm
we devised therefore selects the starting and destination locations from
the taxi dataset both considering the starting time, but also preserving
a balance between areas, granting a reasonable number of travels in
the top and mid zones, to ensures a more realistic spatial distribution
for the synthetic data, reflecting the actual usage patterns of dockless
bikes across different areas of Manhattan. Since taxi trips represent
actual locations on accessible roads, our synthetic trips originate and
terminate at realistic spots within Manhattan.

The synthetic data shows a slightly lower number of very short trips,
and correspondingly an increase in longer trips compared to the real
data (Figure 4). Despite these discrepancies, the overall distributions
remain remarkably similar.

To estimate synthetic trip durations, we analyzed speeds from the
real bike data. The arrival time is calculated using a Weibull distri-
bution [17] fitted to these speeds (Figure 5). This approach helps us
account for abnormally long trips likely caused by pauses during the
bike ride, such as stopping for a coffee or waiting at a red light. While
perfectly simulating these pauses is difficult, using a low speed in the
Weibull distribution provides a close approximation.

The average extracted speed is 3.4 m/s (12 km/h), which is lower
than typical cycling speeds. This could be due to factors like traffic
congestion or underestimation of actual trip distances in the taxi data.
To further evaluate the quality of the synthetic data, a quality report
was obtained using the Synthetic Data Metrics library (sdm)?.

The report reveals a high degree of similarity between the distri-
butions of real and synthetic data for various parameters (92.19%).

5 Synthetic Data Metric Library. URL: https://docs.sdv.dev/sdmetrics
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Figure 4: Real vs. Synthetic Trips Distance Distributions

Data preparation, including optional steps like time-period selection,
can be the most time-consuming part. However, saving intermediate
datasets can accelerate this process. Once the data is prepared, the
core algorithm execution takes less than a minute.

This partially synthetic data generation method provides a fast and
effective way to create data with a realistic spatial distribution and
temporal patterns, overcoming the limitations encountered with pure
synthetic data generation.

We initially also experimented additional techniques offered by the
Synthetic Data Vault (SDV) library®, experimenting with its synthe-
sizers (statistics and machine learning based functions for generating
synthetic data). Two approaches were tested: (i) Gaussian Copula
Synthesizer, which uses classical ML technique to learn from real
data to generate synthetic data, and (ii) CTGAN Synthetizer, which
uses GAN-based approach that promises high-fidelity synthetic data
with sufficient training time. Unfortunately, both methods yielded
unsatisfactory results. Several issues were apparent:

e Unrealistic locations: Many generated points fell outside Manhat-
tan (and particularly in the Hudson or East rivers) or on inaccessible
roads, rendering them unusable.

e Central Park concentration: An unrealistic abundance of start-
ing/ending points appeared in Central Park.

o Southern Manhattan bias: The uneven distribution of points would
basically exclude northern Manhattan, that would be essentially
not represented in the synthetic dataset.

While the GAN-based technique offered slightly better results, its
training time was excessively long.

5 Evaluation

To identify proposed BSS station locations, we employed a clustering
algorithm (e.g., K-means [8], OPTICS [1]) to strategically group the
synthetic mobility demand data. These groupings, termed "virtual
station zones," represent areas with a high potential for successful
bike-sharing station deployment. Subsequently, these virtual stations

6 Synthetic Data Vault. URL: https://sdv.dev/
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are validated by comparing them to the locations of existing stations.
This comparison serves a two-fold purpose: firstly, it verifies if the
virtual stations align with areas exhibiting strong user demand based
on existing bike trips. Secondly, it allows us to identify potential
discrepancies between the virtual and physical stations, informing
future refinements and optimizations.

Virtual Station Identification: Virtual station locations are ob-
tained by applying a clustering algorithm to the starting points of taxi
trips. Three algorithms were tested: K-means, OPTICS, and HDB-
SCAN [23]. The tests were conducted on two subsets of the dataset:
one containing trips from 7am to 10am, and another containing trips
from 5pm to 8pm, the time frames associated to peak number of
travels. K-means was ultimately chosen as the most suitable option
due to computational complexity limitations. Running OPTICS and
HDBSCAN on the entire dataset proved challenging due to memory
constraints. Additionally, K-means offered considerably faster exe-
cution times. For instance, the longest K-means execution took 17
seconds, whereas the shortest OPTICS execution took 278 minutes.
Another advantage of K-means is that it does not require parameter
tuning, unlike OPTICS and HDBSCAN, whose results can vary signif-
icantly depending on the chosen parameters. Furthermore, K-means
is the only algorithm among the three that allows for the extraction of
a fixed number of clusters. It also intrinsically computes the centroids
of the clusters, while for OPTICS and HDBSCAN this would require
an additional step. Finally, OPTICS and HDBSCAN encountered
difficulties in positioning clusters in the northern area of Manhat-
tan, which was not a significant issue for K-means, as illustrated in
Figure 6.

Matching Trips with Nearest Stations in Bike Sharing Systems:
Assigning generated synthetic trips to the nearest bike-sharing station
is critical for evaluating station positioning. While seemingly straight-
forward, optimizing this task becomes crucial when dealing with large
datasets. To achieve fast execution times, we leverage SciPy’s KDTree
class’. Stations are organized into a k-dimensional tree, enabling effi-
cient nearest-neighbor lookups. When querying the tree, the method
returns both the index of each neighboring station and the Euclidean
distance between each queried point and its closest neighbor. This
information is then used to join the datasets by associating station
details with trip information. Since origin and destination stations
require separate analysis, we perform the procedure twice. Running
this algorithm on a day’s worth of trips (around 54 thousand) and the
648 Citi Bike stations takes only 1 second.

7 SciPy KDTree. url: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.spatial. KDTree.html
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5.1 Evaluation criteria

This section outlines the evaluation metrics used to assess the ef-
fectiveness of the proposed virtual station in comparison to existing
bike-sharing stations. These metrics will provide insights into factors
such as station usage, trip distance, and overall service coverage.

Station Departures/Arrivals: These metrics represent the number
of trips originating from and ending at each station, respectively. A de-
sirable scenario involves a somewhat correlated number of departures
and arrivals, indicating a healthy exchange of bikes. A significant
disparity between departures and arrivals would suggest that a station
is either running out of available bikes or becoming overloaded.

Station Usage: This metric sums the two previously defined metrics,
representing the total number of trips originating from or ending at
each station. Ideally, every station should have positive usage (with
bikes being both picked up and dropped off); a lack of usage could
indicate poor station placement. A low average usage might suggest
an excessive number of stations, while very high outliers represent
overused stations. The number of stations that are never selected is
also tracked.

Distance: This refers to the Euclidean distance between the trip’s
origin and destination points and the closest operational bike-sharing
stations. While a low average distance is desirable for user conve-
nience, it should not come at the expense of inefficient station distribu-
tion. A very low average distance could indicate an overconcentration
of stations in a specific area. This creates two problems. First, sta-
tions placed too close together become inefficient due to redundancy.
Second, other areas of the city might be left underserved, resulting in
sporadically high distances for some trips.

Service coverage: It refers to the percentage of Manhattan Island
accessible by bike within a reasonable distance of a virtual station.
We define a location as "served" if it is within 400 meters (quarter-
mile) of a station, 5 minutes walk, which is in line with other related
work [15]. This distance balances convenience with practicality: a
1.6-kilometer (one-mile) walking radius would render the system
impractical for many short trips. It is important to consider some
nuances when analyzing coverage. Central Park’s vast size might
require a higher service radius to achieve full accessibility within
the park itself. A high overall coverage indicates a well-distributed
network with minimal underserved areas. However, consider that the
400-meter radius represents a sort of worst-case scenario for accessing
stations, since they can be much closer one from another if the demand
in the area is high.

All of the quantitative evaluations we are going to describe employ
data from April 2015 for generating a typical work day starting from
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Figure 7: Station usage - Citi Bike stations
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Figure 8: Station usage - Virtual stations (648)

the actual usage of the yellow taxi system, for extracting spatial
aspects of the demand, and of the Citi Bike BSS system, for the
temporal distribution of travels during the day.

5.2 Evaluation of the use of existing Citi Bike stations

The evaluation uses the current placement of the actual 648 Citi
Bike stations in Manhattan as the benchmark for assessing alternative
configurations of stations locations. It is important to acknowledge
that Citi Bike’s service area extends beyond Manhattan, encompassing
other boroughs and nearby cities. While some outlying stations might
not be as relevant for this specific analysis, they remain crucial for the
overall system’s functionality.

Station usage: An interesting aspect of the current Citi Bike sta-
tion placement is the uneven distribution of daily usage, as shown in
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Figure 9: Station usage - Virtual stations (500)
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Citi Bike Virtual Stations (648) Virtual Stations (500)
Station Usage Distance (in m) Station Usage Distance (in m) Station Usage Distance (in m)
Dep. | Arr Ov. Dep. Arr. Dep. | Arr Ov. | Dep. Arr. Dep. | Arr. Ov. Dep. Arr.

min 0 0 0 1 1 3 6 9 1 1 4 15 19 1 1

max 1085 | 973 | 2058 | 406 452 440 374 814 850 919 686 469 1055 973 962

mean - - - 101 106 - - - 61 73 - - - 72 84
median 47 52 97 95 101 82 74 148 55 66 91 98 190 66 77

skew 277 | 255 | 2.68 | 0.51 0.57 1.78 | 1.69 | 1.63 | 2.81 2.79 2.11 1.71 1.88 2.64 2.62
umased | ye 3 |20 |- - o | o | o - - oo | o | - .
stations

Dep. (Departures); Arr. (Arrivals); Ov. (Overall)
Table 1: Citi Bike vs. Virtual Stations evaluation criteria - usage data is evaluated on a daily basis (April)

Table 1. The median usage sits at a relatively low 97, with a single
outlier boasting over 2,000 trips. This highlights a disparity in user
demand across different station locations. Further emphasizing this
point, is the imbalance between departures and arrivals. A significant
number of stations (46) have zero recorded departures, while a smaller
number (31) have not seen any arrivals. There are also 20 completely
unused stations. Figure 7 shows that stations with high usage are
basically clustered in central and southern Manhattan, with the abso-
lute busiest located in Midtown South. Conversely, the northern and
southeastern regions see significantly lower usage, with most unused
stations concentrated at the very top of the island.

It is worth noting that this distribution could be partially explained
by the data only including trips starting and ending within Man-
hattan. Excluding journeys that traverse boroughs might skew the
results towards stations within the island itself. Nevertheless, a clear
north-south divide in usage is evident, suggesting potential areas for
improvement in station positioning or service offerings. Inevitably,
usage metrics are not necessarily in tune with coverage.

Distance to Stations: The average Euclidean distance (the distance
from the trip’s origin and destination points to the selected stations)
to a Citi Bike station in Manhattan is approximately 100 meters (Ta-
ble 1), considered a highly walkable distance. However, the maximum
distance is higher than the 400-meter threshold typically used for
service coverage calculations. In fact, there are 16 cases where the
distance exceeds this limit, with the farthest station reaching 452
meters. While this is a rare event, it highlights that there are potential
gaps in service coverage for certain areas.

Service Coverage: As expected, the current Citi Bike station place-
ment achieves excellent service coverage, reaching 98% (Figure 10
-left). Nonetheless, as previously said, this comes at the cost of a low
(and sometimes even very low) usage of some stations.

5.3 Virtual stations evaluation

This section explores the potential benefits of using virtual stations
to optimize Citi Bike’s service in Manhattan. The initial analysis em-
ploys a configuration with 648 virtual stations, mirroring the current
number of physical stations. This experiment was performed as a
first what-if analysis trying to understand what would be the implica-
tions of just changing the locations, and not the number, of stations
in the BSS system. We also considered a hypothetical situation in
which only 500 stations were to be positioned, and we estimate the
negative implications that the reduction of costs for the creation and
maintenance of such infrastructure would imply.

Station usage patterns: The usage patterns for virtual stations (648)
show a more balanced number of departures from those observed in
the existing Citi Bike network (Table 1). Unlike the current situation
with numerous unused stations, the virtual configuration eliminates
this issue entirely. This placement prioritizes areas with high demand,

resulting in a more balanced distribution of service load across sta-
tions. The median usage increases to 148 compared to Citi Bike’s
97, while the maximum total usage is significantly lower at 814 with
respect to 2058 of the overall usage of the current situation. This
shift suggests a reduction in heavily overloaded stations and a more
equitable distribution of ridership among stations. Figure § visually
depicts this altered usage distribution. Stations with high usage are
more concentrated in areas with high ridership. In contrast, stations
near Central Park experience a decrease in usage due to the higher
density of stations in that area, leading to a more balanced service
offering. Conversely, the northern area now contains a lower number
of stations that, however, have a higher usage level, indicating a more
cost effective coverage for this region. The situations for the what-if
analysis in which just 500 stations were positioned (see the data in Ta-
ble 1 and the spatial distribution and usage in Figure 9) pushes further
the changes already visible in the previous experiment: median station
usage is almost double than for the actual Citi Bike infrastructure,
station density in the northern area is further (but marginally) reduced,
with a slight reduction of the number of stations in situations already
served in the upper east side and in the southern east area.

Distance to stations: Virtual stations (648) achieve significantly
lower average and median distances compared to Citi Bike stations
(Table 1). The mean distance drops to 61 meters, with a median value
of 54 meters, which is nearly half the distance observed with physical
stations. This substantial reduction highlights a noticeable advantage
of virtual stations — the ability to strategically position service in areas
with high demand, leading to improved accessibility for users. This
translates to improved accessibility and potentially increased ridership.
The higher skew value further supports this by indicating that the dis-
tribution of distances is not symmetrical: the positive skew suggests
that more values are in the "lower range" (shorter distances) compared
to the "higher range" (longer distances). However, the maximum
overall distance observed with virtual stations grows significantly,
reaching around 900 meters, which exceeds the acceptable 400-meter
limit for service coverage calculations. This growth represents the
trade-off inherent in virtual station placement: while accessibility im-
proves in high-demand areas, some sparsely populated areas (or areas
with lower demand) might experience a decrease in service coverage.
Analogous considerations can be done for 500 virtual stations what-if
analysis: while the mean overall distance is still lower than the one
associated to the Citi Bike infrastructure, growing marginally (about
10 meters) from the 648 virtual stations configuration, the maximum
distance grows about 100 meters, without really changing much an
already problematic but infrequent set of situations.

Service coverage: The virtual station (648) configuration prioritizes
service quality in congested areas by sacrificing some overall service
coverage. As a result, the service coverage drops to around 88%:
while this remains an acceptable level, it raises questions about service
equity and accessibility in areas with limited virtual stations. Reducing
the number of stations to 500, the service coverage further drops but
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very marginally, to 85.4%, despite the reduction of almost 23% of
the stations. Figure 10 visually compares the coverage of the three
configurations.

6 Considerations, Limitations, and Lessons Learned

Leveraging multiple datasets, such as taxi trips and bike-sharing
records, can provide valuable insights into mobility patterns and de-
mand distribution. In fact, integrating real-world data sources allows
for a more comprehensive understanding of urban mobility dynamics,
enabling informed decision-making in station placement. The present
experiments show how relatively simple techniques can be employed
to support what if analyses to explore the implications of choices
about the dimensioning and location of BSS stations. The main driver
for this kind of work is the potential for cost reduction: physical BSS
stations have significant expenses not just associated to the initial
setup, but also to rebalancing and maintenance ®. The 500 stations sce-
nario we elaborated was a rather extreme experiment showing that a
mostly acceptable service quality can be achieved with a significantly
lower number of stations. We do not pretend that this kind of setup
would be immediately applicable, but it could represent a serious start-
ing point, produced with a simple automatic procedure, that could be
then integrated with a potentially limited budget of additional stations
to be tactically located to reduce the issues of underserved areas, re-
ducing maximum travel distance on foot to reach a station. This kind
of human intervention would however be necessary, even considering
the numerous simplifications that we carried out and the limitations of
the proposed approach; to mention a few notable ones (i) we did not
make micro-level considerations about the placement of stations, and
about the practical possibility to set up such an infrastructure on those
points; (ii) we assumed an extremely simple decision making process
for service users, that does not even consider the possibility to opt out
due to issues such as bike unavailability or unavailability of space to
drop off a bike at the destination station, and we did not consider at all
service pricing; (iii) we did not consider station capacity and issues
related to travels not ending in the planned station due to the fact that
it is full (although we expect this approach to reduce the issue, at least
keeping the same number of stations); (iv) the evaluation is taken not
considering the dynamics of actually setting up the infrastructure, and
does not consider competition by other services.

We did not explicitly consider tactical positioning nearby public
transportation system hubs, like subway stations, or particular points
of attraction, but we expect that the adopted mobility demand data,

8 Here’s why it costs 6 K per Citi Bike bicycle. url: https://www.silive.com/
news/2017/04/heres_why_it_costs_6k_per_citi.html

in particular the taxi dataset, already mostly captures implications of
the actual city structure, at least at the time of the data acquisition.
This represents an additional limit of the approach: we considered a
decision support system in which data describing the spatial side of
demand as well as the overall service usage and temporal distribu-
tion (or a forecast of them) are available, but we know that a city’s
infrastructure and citizens’ behaviours do change.

The actual value of the present work lies in the exploration of the
trade-offs implied by system dimensioning and location decisions,
in which sustainability, not just of the overall planet, but also — at a
much finer and modest scale — of the provisioning of a BSS service
requires balancing principles (equal access of mobility services to
citizens) and practical aspects (careful considerations about costs).
Offering a capillary service even in areas in which demand is scarce
might have an impact on service cost for users that are mostly not
interested in having such a high coverage, or it could require increased
forms of subsidization by municipalities. From this perspective, this
work would require additional analyses in the vein of [9], but this
kind of approach and developed simple systems for analyzing data
and exploring, also visually, the implications of some choices about
the transport and mobility infrastructure can represent a relevant
contribution to participatory decision making processes [21].

7 Conclusions and Future Work

This paper has presented a data driven method to support decisions
about the dimensioning and location of BSS stations. We employed
data describing actual trips of a dockless mobility system (yellow taxi
data) and an actual BSS system (Citi Bike) to feed a clustering based
approach for stations positioning. We exemplified the approach and
evaluated it employing data from NYC. We showed that this approach
can be used to explore the inherent trade-off between service coverage
and cost effectiveness of the BSS infrastructure.

There are different future directions to improve this work. One key
area of exploration involves incorporating station size limitations into
the analysis. This would allow for a more granular evaluation of how
reducing the number of stations actually impacts the system. Beyond
station size and rebalancing, there is also the challenge of low-density
coverage: how can we improve virtual station distribution in areas with
fewer trips? This is a crucial question that future research can address.
Another important direction lies in manipulating the historical data
itself. Currently, the synthetic dataset generation process is tailored
specifically to Manhattan Island. Developing an algorithm that is
adaptable to different geographical contexts, and maybe also travel
modes, is needed. Finally, the "what-if" scenario potential of the
synthetic dataset should not be overlooked: we can easily modify this
data to create anticipated real-world situations and test the efficiency
of various MaaS systems under those conditions. This would be a
powerful tool for future MaaS planning and development.
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