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Notation

1. G “ pV,Eq: graph.

2. V: set of vertices of the graph G.

3. E Ď V ˆ V: directed edges between the vertices of the graph G.

4. domp¨q: identify the domain of a variable.

5. pa, bq P E: directed edge from a to b.

6. papvq v P V : @v1 P papvq D pv1, vq P E: parent-set of v.

7. chpvq v P V : @v1 P chpvq D pv, v1q P E: children-set of v.

8. φ “ă v1, . . . , vn ą: vi P V, vi P papvi`1q: directed path.

9. anpvjq Ď V s.t. @ vi P anpvjq D φ “ă vi, . . . , vj ą: Ancestral set of vj .

10. depvjq Ď V s.t. @ vi P depvjq D φ “ă vj , . . . , vi ą: Descendant set of vj .

11. a KK b|c: denotes the conditional independence between a and b given c.

12. X : a set of discrete static random variables.

13. X P X : a discrete static random variable.

14. P: set of conditional probability distributions.

15. U : utility function over a static PGM.

16. X: a continuous time stochastic process.

17. X: a set of continuous time stochastic processes.

18. Q: a (conditional) intensity matrix.

19. Q: a set of (conditional) intensity matrices.

20. q: parameter for an exponential distribution.

21. q: parameters for a set of exponential distribution.

22. θ: parameters for a multinomial distribution.

23. θ: parameters for a set of multinomial distributions.

24. I: identity matrix. A bi-dimensional matrix where the main diagonal elements assume value 1
and the off-diagonal elements assume value 0.

25. Rpxq: instantaneous component of a reward function.

26. Cpx, x1q: Lump sum component of a reward function.

27. N : Continuous Time Bayesian Network.
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28. M: Multidimensional Continuous Time Bayesian Network Classifier.

29. x P
Ś

XjPX dompXjq: a specific configuration for a Continuous Time Bayesian Network.

30. σ: Trajectory.

31. σ: set of trajectories.

32. BHPS: British Household Panel survey

33. BN: Bayesian Network.

34. CIM: Conditional Intensity Matrix.

35. CKD: Chronic Kidney Disease.

36. CPT: Conditional Probability Table.

37. CTBN: Continuous Time Bayesian Network.

38. CTBNC: Continuous Time Bayesian Network Classifier.

39. CTMDP: Continuous Time Markov Decision Process.

40. CTMP: Continuous Time Markov Process.

41. DAG: Directed Acyclic Graph.

42. DBN: Dynamic Bayesian Network.

43. EU: Expected Utility.

44. ID: Influence Diagram.

45. MAP: Maximum A Posteriori

46. MEU: Maximum Expected Utility.

47. MLE: Maximum Likelihood Estimation.

48. Multi-CTBNC: Multidimensional Continuous Time Bayesian Network Classifier.

49. PE: Physical Examination.

50. PGM: Probabilistic Graphical Model.

51. Qa: Access blood flow.

52. VA: Vascular Access.



Chapter 1

Introduction

1.1 Motivation
Healthcare, finance, telecommunications, social networks, e-commerce and homeland security, are a
few instances of real world domains where the system to be studied involves several variables whose
value changes over time. Studying such systems consists in understanding how they work, in making
accurate predictions about their evolution over time, and consequently in making effective decisions.
To this extent, huge amount of data are typically collected by measuring the value of several variables
over time, with the aim of modeling the underlying process, i.e., the process which rules the evolution
of the system under study.

In healthcare, the increasing use of digital machines and devices, combined with the availability of
Electronic Health Records (EHR), enable to measure, at different points in time, the value of numerous
variables related to patients. The huge amount of data collected can then be used to study, analyze
and better understand the underlying process which governs the temporal evolution of the patient
disease. This ambitious goal is pursued by feeding collected data into powerful artificial intelligence
and machine learning algorithms which are used to develop and deploy models for making accurate
predictions about the temporal evolution of the patient disease, and for making effective decisions such
that the decision maker is aware of their impact on the patient [1, 2, 3, 4]. The same applies to the
industrial sector, where machines and tools are increasingly equipped with sensors that monitor their
operation by generating data streams [5, 6] with the aim to accomplish diagnostic and/or prognostic
tasks on them. Modeling these type of systems, understanding how they work, i.e., understanding how
they evolve over time, and making proactive and effective decisions, are challenging tasks of paramount
relevance for several reasons.

Many theoretical frameworks have been developed with these goals in mind. For instance, the
evolution of a process over discrete time is modeled by the Markov Chain framework [7], while the
Markov Decision Process expands on the Markov Chain by incorporating decision capabilities. To
capture time as a continuous quantity, researchers have developed a continuous time version of the
Markov Chain [8] and Markov Decision Process [9]. If the process being analyzed can be decomposed
into a set of components (variables) that describe its evolution over time, other frameworks such as
dynamic Bayesian networks (DBNs) [10] or Continuous Time Bayesian Networks (CTBNs) [11] can
be employed. The Point Process framework [12] is useful when events are the main focus and time
matters, but the duration of the event is meaningless or not that relevant to describe and study the
underlying process. If the sequence of events or decisions to be made are the main issue to be addressed
and solved, the influence diagram (ID) framework [13] offers an effective and efficient tool for modelling
the problem and finding the optimal sequence of decisions to be made.

Artificial intelligence, machine learning and in particular deep learning have achieved impressive
results in the last few years. However, it is increasingly understood and agreed on that a prediction
needs to be explained and understood, before being accepted and deployed. In particular, for the do-
mains mentioned above, we are asked to develop efficient algorithms for making accurate predictions,
about the temporal evolution of the system under study, which at the same time must be understood.
Furthermore, it commonly agreed upon that the decision-making task substantially differs from the
prediction task. Indeed, while predictive algorithms substantially solve the problem of approximat-
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12 CHAPTER 1. INTRODUCTION

ing a function, decision-making algorithms, to be reliable, credible, and explainable, must share a
mechanistic model of the underlying process.

DBNs, CTBNs, and IDs, are powerful artificial intelligence and machine learning models which
belong to the class of probabilistic graphical models (PGMs). They have been recognized to offer an
excellent degree of interpretability and explainability, thus helping the domain expert to accomplish
the complex task of understanding the underlying process. Furthermore, these PGMs models allow
combining the available data and the domain expert’s knowledge, which is very often of paramount
importance for discovering/approximating the probabilistic structure of the underlying process. DBNs,
CTBNs, and IDs can be used for performing both prediction and decision-making. Indeed, they
allow making predictions about the future evolution of the underlying process, as well as they allow
estimating the impact of a given decision or a sequence of decisions on the system under study. They
typically allow for a deeper exploration of the model to gain a better understanding of the reasons
why a given response is obtained by the system when making a given decision or sequence of decisions.
In other terms, these models can be exploited to understand the underlying process, by grasping the
mechanics governing its evolution and by identifying situations of particular relevance when the system
under study is evolving over time. Therefore, we made the decision to study CTBNs for modeling the
underlying process when the system under study evolves over time and when we are asked to understand
and explain predictions, as well as to ensure that a decision or a sequence of decisions can be properly
assessed.

1.2 Main Contributions
This dissertation is focused on probabilistic graphical models, with specific reference to: Continu-
ous Time Bayesian Networks and Multidimensional Continuous Time Bayesian Network Classifiers.
All the contributions presented in this document have been published on peer-reviewed journals or
international conferences. In particular, during my Ph.D. I published the followings manuscripts:

• Constraint-Based Learning for Continuous Time Bayesian Networks [14]: describes the first con-
straint based structure learning algorithm for continuous time Bayesian networks. This work,
starting from the definition of conditional independence for a continuous time Bayesian net-
work, identifies suitable hypothesis tests and proposes a modified version of the PC algorithm,
called Continuous Time PC (CTPC). The new algorithm is capable of learning the structure
by exploiting the peculiarities of continuous time Bayesian networks. This paper also presents
a preliminary set of synthetic experiments to empirically highlight strengths and weaknesses of
the new algorithm when compared to the current state of the art.

• A constraint-based algorithm for the structure learning of continuous time Bayesian networks [15]:
this manuscript extends the previous work in [14] by studying effectiveness and efficiency of the
CTPC constraint-based structure learning algorithm. In particular, in this paper, we propose a
parallelized version of the plain vanilla CTPC algorithm which also exploits a cache mechanism.
A rich set of numerical experiments, using synthetic data generated by large continuous time
Bayesian network models, are performed to investigate how the new implementation of the
CTPC algorithm compares to its plain-vanilla version. The results obtained confirm the new
implementation of the CTPC algorithm scales well with respect to both the number of nodes
and the amount of data available for learning when compared to the plain vanilla versions. In
particular, results of numerical experiments confirm that the use of a cache greatly reduces the
time needed by the learning algorithm when compared to the plan vanilla CTPC. This work also
provides a formal analysis of the time complexity of the CTPC algorithm, which shows that its
time complexity is the same as that of the score based algorithm.

• Structure learning algorithms for multidimensional continuous time Bayesian network classifiers
[16]: in this work, I served as second author by helping to extend the constraint-based algorithm
for CTBNs [14] to learn multidimensional continuous time Bayesian network classifiers. This work
introduces two new algorithms: a naive adaptation of the CTPC algorithm and a new algorithm
called Markov-Blanket CTPC, which exploits the peculiarities of the classifier to greatly reduce
the execution time at the cost of slightly reducing the accuracy of the recovered multidimensional
continuous time Bayesian network classifier.
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• Constraint-based and hybrid structure learning of multidimensional continuous time Bayesian
network classifiers: this is an extension of the previous work [16]. This paper presents an
extensive set of numerical experiments as well as a real word dataset, to better understand
strengths and weaknesses of the proposed algorithms. It also introduced the first hybrid structure
learning algorithm for continuous time Bayesian networks and multidimensional continuous time
Bayesian network classifiers. This new algorithm combines the strengths and weaknesses of score
based and constraint based algorithms while achieving good results both in terms of performance
and execution time.

• Analyzing Complex Systems with Cascades Using Continuous Time Bayesian Networks [5]: this
manuscript introduces the concept of sentry state for a continuous time Bayesian network. A
sentry state is a critical configuration of the system under study that triggers a series of significant
events, which in turn lead to a ripple effect. This work presents two algorithms for identifying
a sentry state and describes the results of a set of numerical experiments which confirm their
effectiveness.

• Personalized Arteriovenous Fistula Management through Utility Maximization with Influence
Diagram [4]: in this paper we present a practical application of an Influence Diagram to solve
the problem of early identification of stenosis in vascular access which should be used for the
hemodialysis treatment of chronic kidney disease patients. The model developed allows to make
a decision whether to intervene or not, thus reducing the risk of being too late. The main goal
of this work was to evaluate the influence diagram in a setting where the only available data
are domain expert knowledge and scientific literature. It is worthwhile to mention that, even if
this work was developed during the Ph.D., it will not be further discussed in this dissertation
because it does not introduce any methodological results, and it is not based on the framework
of the CTBNs.

1.3 Overview
The rest of the dissertation consists of six chapters, two giving the main definitions and notation
used in this manuscript, three devoted to present and describe the main contributions of my research
activity, and a final chapter which draws conclusions about what has been achieved by my research
activity. More precisely, the dissertation is organized as follows:

• Chapter 2 introduces continuous time Markov processes, giving the main definitions and the
notation needed to understand continuous time Bayesian networks. In particular, this chapter
gives a formal definition of continuous time Markov process, and shows how to perform parameter
learning and inference for this mathematical model.

• Chapter 3 presents the continuous time Bayesian network framework. This chapter gives a
formal definition of continuous time Bayesian network, shows how to use available data to learn
a continuous time Bayesian network model and how a continuous time Bayesian network can be
extended to include a reward function. In this chapter, a formal definition of multidimensional
continuous time Bayesian network classifier is also given.

• Chapter 4 introduces and describes the main contributions presented in [14] and [15]. In partic-
ular, this chapter is about the first, and up to date the only, constraint based structure learning
algorithm which has been made available in the specialized literature on continuous time Bayesian
networks.

• Chapter 5 is about the main contributions presented in [16] and [17]. In particular, this chap-
ter introduces and describes the first constraint based structure learning algorithm for multidi-
mensional continuous time Bayesian network classifiers and the first hybrid structure learning
algorithm for both continuous time Bayesian networks and multidimensional continuous time
Bayesian network classifiers.

• Chapter 6 introduces and describes the contribution in [5]. In particular, this chapter introduces,
in the continuous time Bayesian networks’ framework, the new concept of sentry state. Further-
more, the chapter also describes a new algorithm to identify a sentry state from a given set of
data when a continuous time Bayesian network model has been previously learnt.
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• Chapter 7: this chapter, starts by commenting on the main contributions of this dissertation,
then it describes and comments their main limitations in theoretical and practical terms. This
chapter closes by illustrating future works and listing potentially interesting extensions of the
continuous time Bayesian networks’ framework.



Chapter 2

Continuous Time Markov Processes

A Continuous Time Markov Process (CTMP) is a probabilistic model which allows describing the
evolution of a discrete state variable over continuous time. The CTMP framework exploit the Markov
property; specifically, in this dissertation, we only consider CTMPs that satisfy the first order Markov
property, i.e., the state of the variable in the future is independent of the past given the state at
present time. CTMPs are the continuous-time counterpart of Markov chains. By modeling time as
a continuous quantity, CTMPs can effectively describe all those processes that evolve asynchronously
over time. Indeed, unlike Markov chains, in CTMPs it is not necessary to specify a sampling frequency.
The main motivation behind the exploration of these probabilistic models is that CTMPs are the basis
for the Continuous Time Bayesian Network Framework that will be presented in Chapter 3.

The rest of the chapter is organized as follows:

• Section 2.1 gives a formal definition of CTMP.

• Section 2.2 presents some methodologies for learning the parameters of a CTMP.

• Section 2.3 introduces and describes a basic algorithm for performing inference on CTMPs.

• Section 2.4 gives the concept of reward function for a CTMP.

• Section 2.5 closes the chapter with a short discussion on CTMPs.

2.1 Formal Definition
A CTMP [18] is a continuous time stochastic process X “ tXptq : t P r0,8qu which satisfies the fol-
lowing Markov property:

Xpt1q KK Xpt3q|Xpt2q, @ t1 ă t2 ă t3, (2.1)
where ¨ KK ¨ | ¨ denotes conditional independence. The state of the process X changes in continuous-
time and takes values in the domain, dompXq which we assume to be a finite set of discrete values.

A CTMP can be formally described as: CTMP “ pX,PX , QXq where:

• X: is a continuous time stochastic process over a finite domain dompXq.

• PX : is the initial distribution at time t “ 0 modeled as a static discrete distribution.

• QX : is an intensity matrix modeling the evolution of the process over time.

In particular, QX is a square matrix where the number of rows and columns equals the number of
possible values (states) that the continuous time stochastic process X can take, i.e., |dompXq|. Each
row of the intensity matrix QX sums up to 0 and models two different processes:

1. The time when the CTMP abandons the current state x P dompXq, which is assumed to be a
random variable following an exponential distribution with parameter qx P R`.

2. The state where X transitions when abandoning the current state x P dompXq, which is assumed
to be a random variable following a multinomial distribution with parameters θxy “

qxy

qx
, x, y P

dompXq, x ‰ y.
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An instance of the intensity matrix QX , when X can take three possible values (states) x1, x2, x3,
i.e., dompX)={x1, x2, x3u, is as follows:

QX “

»

–

´qx1
qx1x2

qx1x3

qx2x1
´qx2

qx2x3

qx3x1
qx3x2

´qx3

fi

fl qxi “
ÿ

i‰j

qxixj , qxixj ě 0 @ i, j. (2.2)

To better understand the nature of QX , it is possible to explore its relationship with the probability
distribution of the process at time t. Accordingly to [18], if we let pptq be the marginal distribution of
the process X at time t; the infinitesimal rate semantics of the intensity matrix QX can be stated as
follows:

ppt` ϵq “ pptqpI ` ϵQXq ` opϵq. (2.3)

If we let ϵ Ñ 0 in the previous equation we get:

lim
ϵÑ0

pppt` ϵq “ pptqpI ` ϵQXq ` opϵqq (2.4)

lim
ϵÑ0

ppt` ϵq ´ pptq

ϵ
“ pptqQX (2.5)

dpptq

dt
“ pptqQX (2.6)

The solution to the first-order homogeneous differential equation (Equation 2.6) is:

ppt` sq “ pptqesQX (2.7)

with s ą 0.

Example 2.1 (Evolution of weather condition in continuous time). Assume we want to model the
evolution of the weather condition in continuous time for a given location, and that the weather’s
condition can take one of the following three values (states):

• sun

• rain

• storm

A possible CTMP for describing the evolution of the weather condition in continuous time consists
of: i) a stochastic process X which can take one of the following values; sun, rain, storm, i.e., where
dompXq “ tsun, rain, stormu, ii) an initial distribution PX , giving the probability of observing each
of the following values (states); sun, rain, storm at time 0, and iii) an intensity matrix QX which is
used to specify:

• the parameters of three exponential distributions, where each exponential distribution is associ-
ated with one of the following states; sun, rain, storm, and models the time to transition from the
current state to a different one, i.e., the time for the weather condition to abandon the current
state to transition to a different one,

• the parameters of three multinomial distributions, each one associated with a specific state of
the weather’s condition, i.e., dompXq “ tsun, rain, stormu, and describing how the weather
condition transitions from one state to another one.

2.2 Parameter Learning
The representation of a phenomenon modeled by a CTMP consists of a sequence of time-indexed
events, one for each transition from one state to another. More formally, we say that a realization of
a CTMPs is a trajectory, being a right-continuous, and piece-wise constant function of time:

σ “ txt0, s0y, xt1, s1y, ..., xtI , sIyu, t0 ă t1 ă ¨ ¨ ¨ ă tI and si P dompXq @i P p0, Iq. (2.8)
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Accordingly to [11] the likelihood of a trajectory is defined as the product of the conditional prob-
abilities of each event, formally as follows:

ppσq “

init distribution
hkkkkkkkkikkkkkkkkj

PpXpt0q “ s0q

I´1
ź

i“0

¨

˚

˚

˝

density of duration
hkkkkkkkkikkkkkkkkj

qsie
´qsi pti`1´tiq

pr of trans
hkkikkj

qsi,si`1

qsi

˛

‹

‹

‚

(2.9)

“ PpXpt0q “ s0q

I´1
ź

i“0

e´qsi pti`1´tiq
I´1
ź

i“0

qsi,si`1 (2.10)

while the corresponding log-likelihood of a trajectory is defined as follows:

ln ppσq “ lnPpXpt0q “ s0q ´

I´1
ÿ

i“0

qsipti`1 ´ tiq `

I´1
ÿ

i“0

ln qsi,si`1
(2.11)

Looking at Equation 2.11 we can identify the sufficient statistics of a trajectory:

• T rss: the total time spent in state s.

• N rs, s1s: the number of transitions from state s to s1

We can now rewrite Equation 2.11 as follows:

ln ppσq “ lnPpXpt0q “ s0q ´
ÿ

s

T rssqs `
ÿ

s‰s1

N rs, s1s ln qs,s1 s0, s, s
1 P dompXq (2.12)

In case there is more than one trajectory, the Equation 2.12 still holds true, and the sufficient statistics
are given by the sums of the sufficient statistics over the individual trajectories.

After giving the concepts of trajectory, likelihood, log-likelihood and sufficient statistic, we now
introduce the process of parameter estimation. The Maximum Likelihood Estimation (MLE) can be
obtained by differentiating Equation 2.12 as follows:

d ln ppσq

dqs,s1
“
N rs, s1s

qs,s1
´ T rss @s ‰ s1 (2.13)

to obtain the following parameters:

q̂s,s1 “
N rs, s1s

T rss
@s ‰ s1 (2.14)

q̂s “
ÿ

s‰s

N rs, s1s

T rss
@s (2.15)

The literature also proposes a Maximum A Posteriori (MAP) approach to estimate the parameters
[18]. This approach is particularly useful when the availability of data is limited. Indeed, in such a
condition, MAP allows exploiting a prior distribution over the parameters. For the CTMPs, it is used
an independent gamma distribution for each parameter qs,s1 ,@s ‰ s1. given the two hyperparameters
αs,s1 , τs,s1 for each gamma distribution. In particular, the MAP estimation of parameters turn out to
be as follows:

q̂s,s1 “
N rs, s1s ` αs,s1

T rss ` τs,s1
@s ‰ s1 (2.16)

q̂s “
ÿ

s‰s1

N rs, s1s ` αs,s1

T rss ` τs,s1
@s (2.17)

An alternative approach for the MAP estimation of the parameters is discussed in [11]. Considering
that the intensity matrix of a CTMP can be decomposed as follows:

θX “

»

–

0 θx1x2
θx1x3

θx2x1
0 θx2x3

θx3x1 θx3x2 0

fi

fl qX “
“

qx1
, qx2

, qx3

‰

(2.18)
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Figure 2.1: Weather condition: partial trajectory for the area of Brescia (North-east Italy).

where qX is the main diagonal of the intensity matrix QX and models the set of exponential distri-
butions governing when a transition occurs, while θX describes the set of multinomial distributions
governing where the CTMP transition when abandoning the current state. The main diagonal of θX is
filled with 0 while each off-diagonal element is computed starting from QX : θxy “

qxy

qx
, x, y P dompXq,

x ‰ y. Starting from this decomposition of the parameters [11] identify two classes of prior: the
gamma distribution for qX and the Dirichlet distribution for θX . Specifically:

• For each exponential parameter qs P qX a gamma distribution with parameters αs and τs is
used.

• For each multinomial distribution (one for each row of θX) a Dirichlet distribution with param-
eters αs,s1 @s ‰ s1 s.t.

ř

s1 αs,s1 “ αs

Using this formulation of parameters and prior distributions for the MAP the parameters can be
estimated as follows:

θ̂s,s1 “
αs,s1 `N rs, s1s

αs `
ř

s‰s2 N rs, s2s
@s ‰ s1 (2.19)

q̂s “
αs `

ř

s‰s1 N rs, s1s

τs ` T rss
@s (2.20)

Example 2.2 (Evolution of weather condition in continuous time - Area of Brescia). The meteorolog-
ical website ilmeteo has a section dedicated to day by day meteorological history of most Italian cities
1. For this example, we are interested in the data from the city of Brescia (North east Italy) for the
time frame 2003-2022. Given the trajectory of the weather condition for the area of Brescia (Figure
2.1), we first compute the corresponding sufficient statistics:

N Sun Rain Storm
Sun 0 640 336 T Sun Rain Storm
Rain 657 0 129 5060 1583 661
Storm 319 146 0

The sufficient statistics described by the N matrix count how many times the weather condition
transitions from one state to another, according to the available data. For example, by the first row of
the above matrix, we can state that the weather condition transitioned 640 times from the state sun to
the state rain and transitioned 336 times from the state sun to the state storm. The sufficient statistic
described by T shows the number of days that a given weather condition, i.e., sun, rain, storm, has
been observed.

The second and last step consists of computing the intensity matrix by using the MLE approach
(Equations 2.14, 2.15):

Qweather’s-condition “

»

–

´0.193 0.126 0.067
0.415 ´0.497 0.082
0.483 0.221 ´0.704

fi

fl

From this matrix we can extract different information. For example, the main diagonal represents
the average frequency of transitions per time unit; consequently, its reciprocal represents the average

1www.ilmeteo.it/portale/archivio-meteo- September 04Th, 2023

https://www.ilmeteo.it/portale/archivio-meteo


2.3. INFERENCE 19

residence time in any specific state. As a result, we can conclude that the average duration of a period
without precipitation is 1

0.193 “ 5.18 days.
It is worthwhile to mention that for this example, the static distribution P, i.e., the distribution

at time zero (t “ 0), has been deliberately ignored. The main motivations behind this decision are as
follows:

1. Since only one trajectory (2003-2022) was used for this example, then only one observation for
the time t0 January 1, 2003 is available.

2. It is almost always the case that the only component of interest is the dynamic one. As regards
the distribution at time t0, it is common practice to use a uniform distribution.

2.3 Inference
The most basic kind of inference that can be made over a CTMP is the inference where no evidence,
except for the starting time t “ 0, is available for the considered stochastic process. Exact inference
can be made using Equation 2.7. However, this approach suffers the following issues:

• The matrix exponential operation cannot be exactly computed.

• Accordingly to [19], all the approximation present in literature have limitations.

• The matrix exponential makes inference intractable even for CTMPs of modest size.

A different approach, based on Monte Carlo (MC) simulation, can be exploited to overcome the
above issues. Indeed, MC simulation overcomes all the issues related to matrix exponentiation, but
this is achieved at the expenses of the exactness of obtained inference.

Algorithm 1 Forward Sampling for CTMP.
procedure CTMP-Sample(Xp0q, tend)

t Ð 0, σ Ð tx0, Xp0qyu Ź Initialization
loop

∆t Ð draw a sample from an exponential with rate qXptq Ź Time to transition sampling
if t` ∆t ą tend then

Add xtend, Xptqy to σ
return σ

end if
Xpt` ∆tq Ð draw a sample from a multinomial with θXptq Ź Next state
t Ð t` ∆t
Add xt,Xptqy to σ

end loop
end procedure

The Algorithm 1 allows generating a trajectory σ starting from a CTMP, an initial state Xp0q and
an ending time tend. The sampling procedure exploits the decomposability of the intensity matrix.
First, it uses the parameter qXptq to determine when the next transition occurs (Time to transition
sampling); then it draws a sample from the multinomial distribution with parameter θXptq.
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Figure 2.2: These figures depict how the probability of each possible state of the weather condition
changes in continuous time for the city of Brescia, as modeled by using the CTMP presented in the
Example 2.2. Specifically, Figure 2.2a shows how the probability for each possible state of the weather
condition changes in continuous time when the initial (t “ 0) weather condition is sunny, i.e., the
initial state of the weather is assumed to be sun. Figures 2.2b and 2.2c do the same as Figure 2.2a for
those cases where the initial (t “ 0) weather condition are assumed to be rain and storm respectively.

Algorithm 2 Approximated inference without evidence for a CTMP
procedure CTMP-inference-approx(Xp0q, tinference, iterations)

for all x P dompXq do Ź Initialization
Crxs Ð 0

end for
for i Ð 1 to iterations do

σ Ð CTMP-SAMPLEpXp0q, tinferenceq Ź Generate trajectory
Xptinferenceq Ð last state of σ Ź Extract last state
CrXptinferenceqs` “ 1 Ź Update the counted

end for
return C{iterations Ź Normalization of the counter vector to obtain the probabilities

end procedure

Algorithm 2 implements the approximated inference based on MC simulation. The algorithm
returns the probability distribution at time tinference starting from the state Xp0q. The variable
iterations determines the number of trajectories generated to estimate the distribution of interest; the
more trajectories are used, the more accurate the result will be.

Example 2.3 (Inference on weather conditions - City of Brescia). Assume we are interested in esti-
mating the probability of a specific weather condition for the next day. Given the parameters value
estimated in the Example 2.2, we can use an inference algorithm to estimate the probability distri-
bution of the weather condition. We start by distinguishing among three different cases: today is i)
a sunny day, ii) a rainy day or iii) a stormy day. Then we have two options, i.e., we can apply the
exact algorithm (Equation 2.7) or the approximate algorithm based on MC simulation (Algorithm 2).
In this case, we are faced with a few states, thus we can compute the desired probability distribution
by applying the exact algorithm to obtain the following:

Sun Rain Storm
Sun 0.86 0.10 0.04
Rain 0.31 0.63 0.06
Storm 0.35 0.15 0.5

Figure 2.2 depicts the evolution, in continuous time, of the weather condition over the course of a
month, when assuming the first day (t “ 0) was a sunny day, a rainy day or a stormy day. Observing
the 3 figures we can conclude that the probability values associated with the three states of the weather
condition converge to the same values just after few days. Informally, we can understand that a sunny
day 10 days ago has little to do with the weather of today. Formally we say that the model reaches
steady state.
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There are more sophisticated inference algorithms that deal with the presence of evidence [11], [20].
However, these algorithms do not fall within the scope of this thesis, and consequently they will not
be discussed.

2.4 Reward Function
Accordingly to [9], a reward function is a function that maps the states of a CTMP onto a real number.
A reward function consists of two quantities,

• Rpxq : dompXq Ñ R, the instantaneous reward for staying in state x and

• Cpx, x1q : dompXq ˆ dompXq Ñ R, the lump sum reward when the CTMP transitions from state
x to state x1.

The estimation of a utility function for a CTMP can be performed in two ways: i) the Finite-horizon
expected reward and ii) the Infinite-horizon expected discounted reward [9].

Following the Finite-horizon expected reward approach we evaluate the reward function up to a
specific point in time:

Vtend
pxq “ Ex

«

ti`1“tend
ÿ

i“0

CpXptiq, Xpti`1qq `

ż ti`1

ti

RpXptiqqdt

ff

: ti ă ti`1 (2.21)

where tend is the ending time and Exp¨q is the expectation when conditioning on Xp0q “ x, and the
ti’s are the transition times.

The Infinite-horizon expected discounted reward approach does not define any time horizon, but to
ensure convergence, it relies on a discount factor:

Vγpxq “ Ex

«

8
ÿ

i“0

e´γti`1CpXptiq, Xpti`1qq `

ż ti`1

ti

e´γtRpXptiqqdt

ff

: ti ă ti`1 (2.22)

where γ ą 0 is referred to as the discounting factor.
Regardless of the approach used, it is always possible to compute the reward function for a tra-

jectory. Thus, it is straightforward to apply the Monte Carlo method to estimate an approximate
expected reward. The Algorithm 3 shows the code for the approximated estimation of the infinite
horizon expected reward. In order to estimate the expected reward, we need to set the values of the
following hyperparameters:

1. γ: the discounting factor;

2. tend: the ending time for each trajectory;

3. iterations: the number of trajectories to be generated.

Choosing the discounting factor γ and the ending time tend, we implicitly decide on the importance
of the distant future and the appropriate values depend on the specific application. On the other
hand, the variable iterations controls the trade-off between the quality of the approximation and
its computational cost; it is possible to choose its value by using a stopping-rule approach based on
variance following what proposed and described in [21].

Also, the finite horizon expected reward can be obtained from Algorithm 3 by setting the discount
factor γ to 0.

Example 2.4 (Reward on weather condition - City of Brescia). In the previous section we asked how
likely a specific weather condition would happen in the near future. Now we ask a slightly different
question: “How many sunny days will there be in the next week?”

Answering this question can be done by exploiting the instantaneous component of a given reward
function. Since we are not interested in the weather change but only in the number of days we can
ignore the lump sum component. The instantaneous component can be conveniently set as follows:

Rpxq “

#

1, if x “ sun

0, otherwise
Cpx, x1q “ 0 @x, x1 P dompXq
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Algorithm 3 Approximated estimation of the infinite horizon expected reward for a CTMP
procedure CTMP-infinite-horizon-reward-approx(Xp0q, γ, tend, iterations)

reward Ð 0
for i Ð 1 to iterations do

σ Ð CTMP-SAMPLEpXp0q, tendq Ź Generate trajectory
r Ð

řti`1“tend

i“0 e´γti`1CpXptiq, Xpti`1qq `
şti`1

ti
e´γtRpXptiqqdt Ź Estimate the reward of σ

reward` “ r Ź Update the total reward
end for
return reward{iterations Ź Estimate the expected reward

end procedure

Now, since the lump sum reward is set to 0, and the instantaneous reward is set to 1 only for
x “ sun, by using the finite horizon approach the expected reward will turn out to be exactly the
expected number of sunny days. Applying Algorithm 3 with γ “ 0.0, tend “ 7, iterations “ 5000
for all the possible meteorological conditions we obtain the following results, depending on the initial
weather condition Xp0q, i.e., the weather condition at time 0:

Xp0q Expected number of sunny days
Sun 5.29
Rain 3.69
Storm 3.86

2.5 Discussion
In this chapter we introduced and described the CTMPs framework, together with how to learn a
CTMP from data, and how to make inference for a CTMP in the case where no evidence is available. We
also introduced the concept of utility function and a Monte Carlo simulation algorithm for estimating
the expected reward on a given CTMP. The main strength of CTMPs is their ability to model time as
a continuous variable. Thanks to this feature, CTMPs are able to effectively model phenomena that
evolve at very different speeds. Furthermore, the creation of a CTMP is event-based; consequently,
the resulting trajectory turns out to be extremely compact. The discrete-time counterpart of CTMPs,
i.e., Markov Chains, struggle with the discretization issue because they require to sample the process
accordingly to the fastest transition. Consequently, in the best case the discretization generates an
extremely less compact trajectory and in the worst case it could significantly distort the process
modeled.

The main limitation of CTMPs is that they become unmanageable, especially concerning inference,
already for domains consisting of small number of states. However, it is important to mention that
the following chapter will introduce and describe a specialization of CTMPs which overcomes this
limitation.



Chapter 3

Continuous Time Bayesian
Networks

3.1 Introduction
Probabilistic graphical models (PGMs) are a class of powerful and expressive models based on the
concept of declarative representation. Accordingly to [22], the key property of a declarative represen-
tation is the separation between knowledge and reasoning. In this way, we can disentangle the task of
model elicitation from the reasoning engine. Such a disentanglement allows accomplishing the model
elicitation task by exploiting domain expert knowledge, as well as by using the available data or by
combining domain expert knowledge together with the available data. Furthermore, the disentangle-
ment of the reasoning engine, from the model elicitation task, brings the advantage that we can design
and develop a suite of general purpose algorithms.

When working with complex systems, the ability to deal with the uncertainty, arising both from
simplifications in modeling, and from a natural non-determinism of the studied process, is fundamental.
Declarative representations (model-based methods) cover a wider area than PGMs. Indeed, PGMs
specialize the concept of declarative representation to model complex systems dealing with uncertainty.

The PGMs framework also provides a tool for taking advantage of the structure in complex prob-
ability distributions. There are two equivalent views for interpreting the graph structure of PGMs.
The first interpretation highlights the compact representation of a set of independence that hold true
for the underlying probability distribution. The second one identifies in the graph the definition of
a skeleton for compactly representing the underlying probability distribution. Instead of explicitly
modeling each possible assignment for all the considered variables, it is possible to decompose the
probability distribution into smaller factors, each one being defined on a smaller number of possible
configurations.

In a probabilistic graphical model (PGM), we can distinguish between the graphical aspect also
known as qualitative aspect and the probabilistic or quantitative aspect. As a matter of fact, the
qualitative aspect of a PGM is a graph representing the interactions among a set of variables, where
each variable is represented as a vertex in the graph, and the interactions are represented as oriented
edges between vertices. The quantitative aspect describes the strength of such interactions.

In this dissertation, we will focus on two kinds of graph, Directed Acyclic Graphs (DAG) and
Directed possibly cyclic Graphs.

Graphs Graphs have been used as an intuitive way of representing a set of dependencies and inde-
pendencies in order to allow an effective communication and discussion. One of the most common class
of graph used to describe such set of (in)dependencies is the directed acyclic graph (DAG) (Figure
3.1a). This kind of graph can be seen as a factorized representation of a joint probability distribution,
and it is used by many PGMs such as: Bayesian Networks (BN) [23], Influence Diagrams (ID) [24]
and Dynamic Bayesian Networks (DBN) [25]. Another common class of graphs that will be explored
in this thesis is the one of directed, possibly cyclic graphs (Figure 3.1b). This kind of graph is used
as a factorized representation of a joint probability distribution for the model of Continuous Time
Bayesian Networks (CTBN)[11].

23
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Figure 3.1

Formally, a graph is a pair G “ pV,Eq where V is a finite set of distinct vertices and E Ď V ˆ V
is a set of edges. An ordered pair pa, bq P E is a directed edge from vertex a to vertex b; a is called
parent of b and b is called child of a. In general, the set of parents of a node v is denoted as papvq

and the set of children is denoted as chpvq. A directed path φ “ă v1, . . . , vn ą: vi P V is a sequence
of distinct vertices such that vi P papvi`1q or equivalently vi P chpvi´1q; given the above definitions,
we can introduce the concept of ancestral set anpvq Ď V and descendent set depvq Ď V. A node vi is
an ancestor of vj if a path directed from vi to vj exists. Similarly, a node vj is a descendent of vi if a
path directed from vi to vj exists. A cycle is a directed path φ “ă v1, . . . , v1 ą where the first node
of the path is also the last node of the path. A directed graph with no cycles is called Directed Acyclic
Graph (DAG).

Probabilities The quantitative aspect of PGMs consists of the probability distribution which models
the underlying process of the system under study. While the qualitative aspect (the graph) is similar
among the different models, the quantitative aspect can be significantly different, especially between
static/discrete time models i.e. BN, DBN, ID and continuous time models i.e. CTBN, Continuous
Time Markov Process (CTMP) [26]. If we take into account only discrete variables over a finite domain,
we can clearly see the difference between static/discrete time models and continuous time models. The
quantitative aspect of BNs and IDs for discrete variables is based on conditional probability tables
(CPTs) which are used to describe the joint probability of observing a specific configuration of the
network. Also DBNs exploit the concept of CPTs. However, in DBNs and especially in 2TDBNs, the
variables can be represented more than one time, and each representation is associated with different
times. The quantitative aspect of CTMPs and CTBNs, instead of using CPTs, relies on conditional
intensity matrices (CIMs) that describe the evolution of the process over time by modeling when a
transition occurs and what will be the new state after the transition occurred.

3.2 Conditional Continuous Time Markov Processes
A CTMP is a homogeneous Markov process; this means that the next state only depends on the current
state. Unfortunately, such process does not exploit the factorization property of Bayesian Networks,
and thus it does not enjoy a synthetic and expressive state space representation. However, conditional
Markov processes allow overcoming such a limitation [11].

A conditional Markov process is an inhomogeneous Markov process in which, for any given random
variable, the intensities are a function of the current state of a particular set of other variables, which
also evolve as Markov processes. Therefore, intensities vary over time, but not as a function of time.

To clarify how a conditional Markov process is described, let X be a random process whose domain
is dompXq “ tx1, . . . , xmu and assume that it evolves as a Markov process Xptq. Furthermore, assume
that the dynamics of Xptq are conditionally dependent from a set U of random variables evolving over
time. Then the dynamics of Xptq can be fully described by means of a conditional intensity matrix
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(CIM), which can be written as follows:

QX | u “

»

—

—

—

–

´qx1 | u qx1x2 | u ¨ ¨ ¨ qx1xm | u

qx2x1 | u ´qx2 | u ¨ ¨ ¨ qx2xm | u

...
... . . . ...

qxmx1 | u qxmx2 | u ¨ ¨ ¨ ´qxm | u

fi

ffi

ffi

ffi

fl

.

A CIM is a set of intensity matrices, one intensity matrix for each instance of values u to the set of
variables U.

The diagonal elements of QX are such that qxi
“

ř

xj‰xi
qxixj

, where qxi
is the parameter of

the exponential distribution associated with the state xi of the variable X. Therefore, 1{qxi
is the

expected amount of time that variable X stays in state xi before transitioning to a different state xj
when U “ u. The off-diagonal elements qxixj are proportional to the probability that X transitions
from state xi to state xj when U “ u.

The process X can be equivalently summarized with two independent sets of parameters:
• qX “

␣

qxi|u,@xi P dompXq
(

, the set of intensities of the exponential distributions of the waits
until the next transition.

• θX “
␣

θxixj |u “ qxixj |u{qxi|u,@xi, xj P dompXkq, xi ‰ xj
(

, the probabilities of transitioning to
specific states.

The log-likelihood for a conditional CTMP can be derived from Equation 2.12. as follows:

LLX “
ÿ

uPU

˜

´
ÿ

s

T rs|usqXs|u `
ÿ

s‰s1

N rs, s1|us ln qs,s1

¸

s, s1 P dompXq (3.1)

where T and N are the conditional sufficient statistics:
• T rs|us represents the residence time of the process in the state s P dompXq when u P U.

• N rs, s1|us represents the number of transitions from state s P dompXq to state s1 P dompXq with
s ‰ s1 when u P U.

3.3 Continuous Time Bayesian Network
Continuous Time Bayesian Networks (CTBNs) are a class of probabilistic graphical models combining
Bayesian networks [22] and CTMPs to model discrete-state continuous-time dynamical systems [11].
Just as CTMPs overcome the problems related to the discretization of time for MCs, similarly CTBNs
solve the problem of having to discretize time in Dynamic Bayesian Networks. Furthermore, CTBNs
exploit the natural factorization of many phenomena, thus allowing for a more compact representation
with respect to the CTMPs counterpart.

Other models that can represent discrete-state continuous time processes include Poisson networks
[27], cascade of Poisson process model [28], piecewise-constant intensity models [29], forest-based point
processes [30], and graphical models for marked point processes [31]. The main advantages of CTBNs,
when compared to the models above, are:

• their graphical structure makes it possible to understand and explain the underlying stochastic
process they model,

• prior knowledge from domain experts can be integrated in structure learning by setting a list of
forbidden arcs and a list of included arcs.

However, CTBNs have a number of limitations: they do not allow modeling continuous state variables;
they do not model point events very well, particularly if there are non-temporal values associated with
the events; structure learning and inference are computationally challenging.
Example 3.1 (Hungry? - Eating? - Full Stomach?). This example shows how to use a CTBN to
model the process that governs being hungry. Figure 3.2 depicts the structure of a simple CTBN,
which models the effect that eating has on the content of the stomach of an individual. Furthermore,
the content of the stomach has an effect on whether the individual is hungry or not, which in turn has
an effect on the individual to start eating.
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Full
Stomach?

Eating? Hungry?

Figure 3.2: CTBN Example - Eating? Hungry? Full Stomach?

3.4 Formal Definition
A CTBN is a tuple N “ xP0,X,G,Qy specified by:

• An initial probability distribution P0, given as a Bayesian network over X.

• A set of L local variables X “ tX1, . . . , XLu such that each variable Xj P X takes value on a
finite domain dompXjq.

• A continuous-time transition model, specified as:

– a directed (possibly cyclic) graph G with node set X;
– a set of conditional intensity matrices Q for each process Xj P X.

Differently from classical BNs, a CTBNs allow for cycles in the graph G. Each edge of the graph G has
a temporal connotation, therefore the evolution of the state of a variable Xi can be directly influenced
by the state of a variable Xj and, at the same time, the state of the variable Xi can directly influence
the evolution of the state of the variable Xj .

Since CTBNs are a probabilistic graphical model designed to represent the evolution of a process
over time, by far the most important component is the dynamic one. On the contrary, the BN
describing the initial probability distribution P0 can be in general safely ignored and replaced with a
non-informative distribution, such as the uniform one.

3.4.1 Generative Semantic
The fundamental assumption made by CTBNs, to exploit the factorization of the state space, is that
two variables cannot transition at the same time. This assumption is justified because the variables in
a CTBN represent distinct aspects of the world.

Similarly to a CTMP the realization of a CTBN is a trajectory and can be formally described as
follows:

σ “ txt0, s0y, xt1, s1y, ..., xtI , sIyu, t0 ă t1 ă ¨ ¨ ¨ ă tI and si P
ą

XjPX

dompXjq @i P p0, Iq. (3.2)

where
Ś

denotes the Cartesian product.
Starting from a CTBN N , and exploiting the assumption just stated, it is possible to specify

a generative process through a procedure that takes the initial state of the CTBN and generates a
trajectory.



3.4. FORMAL DEFINITION 27

Algorithm 4 represents for CTBNs what Algorithm 1 represents for CTMPs. The main difference
is that the algorithm for CTBNs (Algorithm 4) exploits the factorization of the process by enforcing
that only a single variable at a time can transition.

Figure 3.3 depicts the state space for the Example 3.1 where the nodes represent the possible
configurations of the CTBN and the edges represent the allowed transitions (only one variable at a
time can change its state).

Algorithm 4 Forward Sampling for CTBN.
procedure CTBN-Sample(Xp0q, tend)

t Ð 0, σ Ð tx0,Xp0qyu Ź Initialization
loop

for all Xi P X s.t. TimepXiq is undefined do Ź Time to transition sampling
∆t Ð draw a sample from an exponential with rate qXiptq|papXiptqq

TimepXiq Ð t` ∆t
end for
j “ argminXiPX rTimepXiqs Ź Transitioning variable
if TimepXjq ą tend then

Add xtend, Xptqy to σ
return σ

end if
xj Ð draw a sample from a multinomial with θXjptq|papXjptqq Ź Next state
t Ð TimepXjq

Add xt,Xptqy to σ
Undefine TimepXjq and TimepXiq @Xi P papXjq Ź Reset the time to transition

end loop
return σ

end procedure

Full Stomach=N,
Hungry=N,
Eating=N

Full Stomach=N,
Hungry=N,
Eating=Y

Full Stomach=N,
Hungry=Y,
Eating=N

Full Stomach=Y,
Hungry=N,
Eating=N

Full Stomach=N,
Hungry=Y,
Eating=Y

Full Stomach=Y,
Hungry=N,
Eating=Y

Full Stomach=Y,
Hungry=Y,
Eating=N

Full Stomach=Y,
Hungry=Y,
Eating=Y

Figure 3.3: State Space CTBN Example - Eating? Hungry? Full Stomach? - Nodes represent states
of the CTBN, two states are adjacent if a transition from one to the other, and vice versa, is possible.
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3.5 Parameter Learning
Since a CTBN is composed by L conditional CTMPs, we can compute its log-likelihood by combining
the log-likelihoods of different CTMPs as follows:

LLN “
ÿ

XPX

LLX (3.3)

Analogously to the approach described in Section 2.2 for CTMP, it is possible to learn in closed
form the parameters of a CTBN when a set of trajectories are available. Accordingly to what presented
in [11], the log-likelihood of a CTBN (Equation 3.3) is maximized by the following MLE approach for
the parameters associated with each variable Xj P X.

q̂x,x1|u “
N rx, x1|us

T rx|us
q̂x|u “

ÿ

x‰x1

N rx, x1|us

T rx|us
@x, x1 P dompXjq, x ‰ x1, u P dompUjq (3.4)

where Uj “ papXjq is the parentset of Xj . Alternatively, we can learn q and θ parameters separately,
according to the following:

q̂x|u “
ÿ

x‰x1

N rx, x1|us

T rx|us
θ̂x,x1|u “

N rx, x1|us
ř

x‰x2 N rx, x2|us
@x, x1, x2 P dompXjq, x ‰ x1, u P dompUjq

(3.5)
The literature also presents a MAP or Bayesian approach to learn the parameters [18]. This ap-

proach is useful when the availability of data is limited and allows to define the Bayesian score required
in the score based structure learning. The prior distribution introduced is a Gamma distribution for
each parameter qx,x1|u. The hyper-parameters for the prior distribution can be interpreted as follows:

• αxx1|u: is an imaginary count of transitions from x to x1 when the parentset is such that u P

dompUq.

• τx|u: is an imaginary residence time for the state x when the parentset is such that u P dompUq.

The parameters for each Xj P X can be estimated following the MAP approach by using the
following equations:

q̂x,x1|u “
Nrx,x1|us`αxx1|u

T rx|us`τx|u
@x, x1 P dompXjq, x ‰ x1, u P dompUjq

q̂x|u “
ř

x1‰x

Nrx,x1|us`αxx1|u
T rx|us`τx|u

@x P dompXjq, u P dompUjq
(3.6)

As it happens for CTMPs, MAP estimation for CTBNs can be obtained by an alternative approach,
i.e., by decomposing the intensity matrix according to the two processes modelled by q and θ. For
each variable Xi P X we use two classes of prior: the gamma distribution for qXi

and the Dirichlet
distribution for θX . Specifically:

• For each exponential parameter qx P q a gamma distribution with parameter αx|u and τx|u is
used.

• For each multinomial distribution (one for each row of θXi
) a Dirichlet distribution with param-

eters αx,x1 @x ‰ x1 s.t.
ř

x1 αx,x1 “ αx

Using this formulation the parameters can be estimated as follows:

q̂x|u “
αx|u`

ř

x‰x1 Nrx,x1|us

τx|u`T rx|us
@x, x1 P dompXjq, x ‰ x1, u P dompUjq

θ̂x,x1|u “
αx,x1|u`Nrx,x1|us

αx|u`
ř

x‰x2 Nrx,x2|us
@x, x1, x2 P dompXjq, x ‰ x1, u P dompUjq

(3.7)

3.6 Structure Learning
The structure of a CTBN, i.e., the graph G, it is almost always unknown, unless we perfectly know the
system to represent and/or we can resort to domain expert knowledge. Starting from the correct graph
G is a fundamental assumption for the CTBN to be effective when studying a given system. Indeed, an
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incorrect CTBN’s structure leads, under the most favorable setting, to an inefficient representation of
the system under study, i.e., one where more arcs and parameters have to be used, but almost always
it results into the wrong model of the system we want to study.

The above mentioned reasons make the problem of recovering the correct structure G of the CTBN
to be an extremely challenging problem which, accordingly to the specialized literature, can be tackled
by using one of the following three approaches:

1. Knowledge elicitation; using prior knowledge made available by a domain expert, i.e., an expert
of the domain to be modeled and analyzed.

2. structure learning algorithm; learning happens by only using the available data, i.e., the available
trajectories.

3. Combining the above approaches; using a structure learning algorithm which allow to combine
the available data with the knowledge elicited from the domain expert.

In this subsection we focus on the second approach, i.e., the one which learns the graph G by
using only the available trajectories while ignoring any prior knowledge, by assuming such knowledge
is not made available to the learning algorithm. According to the specialized literature, the task of
learning the graph G using only the available data can be accomplished by two main types of learning
algorithms:

• Score Based.

• Constraint Based.

The score based algorithm presented in [11] casts the problem of learning the graph G of a CTBN
in an optimization problem, i.e., a problem where we must find the graph G˚ which, given a trajectory
σ, maximizes the following posterior:

lnP pG |σq9 lnP pGq ` lnP pσ |Gq (3.8)

where P pGq is the prior distribution over the space of graphs spanning X and P pσ |Gq is the marginal
likelihood of the data, i.e., the trajectory, given the graph G averaged over all possible parameter
values. The simplest algorithm which is typically used to solve the learning problem is the hill climbing
algorithm.

On the other hand, the class of constraint based algorithms (extensively presented in Chapters 4
and 5) is based on hypothesis testing with the aim to identify conditional dependencies and conditional
independencies among the variables X.

3.7 Reward Factorization
In order to exploit the factorization of a CTBN also with the introduction of a reward function, it is
fundamental that also the reward function is factorized. In [32], the authors proposed to introduce
an instantaneous reward function for each node. The authors of [33] present a factorization function
capable of modeling both instantaneous and lump-sum rewards. Accordingly to these works, for each
node Xj P X of a CTBN the following quantities are introduced:

• RXj
pxq : dompXjq Ñ R, the instantaneous reward for staying in state x and

• CXj
px, x1q : dompXjq ˆ dompXjq Ñ R, the lump sum reward when Xj transitions from state x

to state x1.

The authors of [33] allows for interactions among the variables introducing the synergy nodes.
However, in this work, we assumed that there is no interaction between the reward functions of

the variables. Therefore, we can derive the equations for the estimation of the expected reward from
Section 2.4 as follows. In the Finite-horizon expected reward approach, we evaluate the reward function
up to a specific point in time:
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Vtend
pxq “ ENx

»

–

ti`1“tend
ÿ

i“0

ÿ

XjPX

ˆ

CpXjptiq, Xjpti`1qq `

ż ti`1

ti

RpXjptiqqdt

˙

fi

fl : ti ă ti`1 (3.9)

where tend is the ending time and ENxp¨q is the expectation when conditioning on Xp0q “ x, with
x P

Ś

XjPX dompXjq and where the ti’s are the transition times.
The Infinite-horizon expected discounted reward approach does not define any time horizon, but to

ensure convergence, it relies on a discount factor:

Vγpxq “ ENx

»

–

8
ÿ

i“0

ÿ

XjPX

ˆ

e´γti`1CpXjptiq, Xjpti`1qq `

ż ti`1

ti

e´γtRpXjptiqqdt

˙

fi

fl : ti ă ti`1 (3.10)

where γ ą 0 is referred to as the discounting factor.
It is worthwhile to mention that the lump sum reward can be used as an indicator of transition.

In order to achieve such goal we and let the instantaneous reward be zero while the lump sum reward
is configured as follows:

CXj px, x1q “ 1, @x ‰ x1 P dompXjq @Xj P X (3.11)

This uses of the lump sum reward will be further discussed in Chapter 6.

3.8 Multidimensional CTBN Classifier
The work [34] presents an extension of the CTBN, Continuous Time Bayesian Network Classifier
(CTBNC), a class of supervised classification models. With a CTBNC, it is possible to classify a
trajectory introducing a new variable Y (the class node) such that the new model can be described as
a touple ă N , P pY q ą and satisfy the following characteristics:

• G is connected

• PapY q “ H: the class variable is associated with a root node in the graph G.

• Y does not depend on time.

The paper [35] generalize the CTBNC developing a Multidimensional CTBNC (Multi-CTBNC). A
Multi-CTBNC is a tuple M “ă X ,X,G,P,Q ą where:

• X : is the set of discrete class variables. These variables do not depend on time.

• X: is the set of continuous time discrete random variables modelling the process over time.

• G “ pV,Eq is a directed possibly cyclic graph where:

– V “ X Y X is the set of the graph.
– EX Ă X ˆ X is the set of edges representing the relations among the class variables.
– EX Ď X ˆ X is the set of edges representing the relations among the continuous time

discrete random variables.
– EB Ď X ˆX: is the set of edges representing the relation from the class variables X to the

continuous time variables X.
– E “ EX Y EX Y EB

• P: is the set of conditional probability tables for the class variables X .

• Q: is the set of CIM for the continuous time variables X.

The class variables X do not depend on time, thus the Multi-CTBNC models deals with them as
a classical BN. Therefore, we can split a Multi-CTBNC in three components:
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• The class subgraph GX “ pX ,EX q is the component modelled by a BN describing the relation
among the class variables. As a result, the graph must be a DAG.

• The feature subgraph GX “ pX,EXq is defined by a CTBN that model the relations between
feature variables. Since it is a CTBN, cycles may appear.

• The bridge subgraph GB “ pV,EBq represents the dependencies of the features variables from
the class variables. Since all the edges in start from a variable c P X and end in a variable x P X,
it is a bipartite graph.

3.9 Discussion
This chapter, in combination with Chapter 2, introduces a set of minimal notions required to better
understand the contributions presented in Chapter 4, 5 and 6. Specifically, in this chapter we presented
the CTBN model, which belongs to the class of PGMs and is capable to model the evolution of a process
over time by exploiting the factorization of the associated state space. We also introduced the concept
of reward function of a CTBN and the possibility of using a CTBN as a multidimensional classifier.

Similarly to the CTMP, the CTBN can also model the evolution of a process without the need to
choose a temporal granularity. The structure of the CTBN, that allows the factorization while enforcing
the conditional independence among the variables, results into a directed possibly cyclic graph. This
allows us to have an insight about the behavior of the model while allowing expert knowledge to be
easily incorporated.
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Chapter 4

A Constraint-Based Algorithm for
Structure Learning

Learning the structure of a BN is a problem that is well explored in the literature. Several approaches
have been proposed, spanning score-based, constraint-based and hybrid algorithms; recent reviews are
available from [36], [37]. Score-based algorithms find the BN structure that maximizes a given score
function, while constraint-based algorithms use statistical tests to learn conditional independence rela-
tionships (called constraints) from the data and infer the presence or absence of particular arcs. Hybrid
algorithms combine aspects of both score-based and constraint-based algorithms. It is worthwhile to
note that CTBNs are a special case of the local independence model [31],[38],[39] for which a general
structure learning algorithm has been made available. In particular, [40] proposed a structure learning
algorithm for local independence graphs. In their work, the authors studied independence models
induced by directed graphs (DGs) by formalizing the properties of abstract graphoids that ensure that
the global Markov property holds for a given directed graph. [40] applied their theoretical arguments
to the Ito diffusion as well as the event process, which are both related to CTBNs. Therefore, the
algorithm we propose in [15] can be considered as an instance of that presented by [40], even if we
independently formulated and developed our structure learning algorithm that is specifically designed
for CTBNs. After a brief introduction to constraint-based algorithms for BNs, we propose such an
algorithm for CTBNs.

4.1 Constraint-Based Algorithms for BNs
Constraint-based algorithms for BN structure learning originate from the Inductive Causation (IC)
algorithm from [41] for learning causal networks. IC starts (step 1) by finding pairs of nodes connected
by an undirected arc, as those are not independent given any other subset of variables. The second
step (step 2) identifies the v-structures Xi Ñ Xk Ð Xj among all pairs Xi and Xj of non-adjacent
nodes which share a common neighbor Xk. Finally, step 3 and 4 of IC identify compelled arcs and
orient them to build the completed partially oriented DAG (CPDAG) that describes the equivalence
class the BN falls into.

However, steps 1 and 2 of the IC algorithm are computationally unfeasible for non-trivial problems
due to the exponential number of conditional independence relationships to be tested.

The PC algorithm, which is briefly illustrated in Algorithm 5, was the first proposal addressing
this issue; its modern incarnation is described in [42], and we will use it as the foundation for CTBN
structure learning below. PC starts from a fully-connected undirected graph. Then, for each pair of
variables Xi, Xj it proceeds by gradually increasing the cardinality of the set of conditioning nodes
UXiXj

until Xi and Xj are found to be independent or UXiXj
“ X ztXi,Xju. The remaining steps are

identical to those of IC.
Neither IC nor PC (or other constraint-based algorithms, for that matter) require a specific test

statistic to test conditional independence, making them independent from the distributional assump-
tions we make on the data.

33
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Algorithm 5 PC Algorithm
1. Form the complete undirected graph G on the vertex set X .

2. For each pair of variables Xi,Xj P X , consider all the possible separating set, from the smallest
(UXiXj

“ ∅) to the largest (UXiXj
“ X ztXi,Xju). If there is not any set UXiXj

such that,
Xi KK Xj |UXiXj

then the edge Xi ´ Xj is removed from G.

3. For each triple Xi,Xj ,Xk P G such that Xi ´ Xj , Xj ´ Xk, and Xi, Xj are not connected, orient
the edges into Xi Ñ Xj Ð Xk if and only if Xj R UXiXj for every UXiXj that makes Xi and Xk

independent.

4. The algorithm identifies the compelled directed arcs by iteratively applying the following two
rules:

(a) if Xi is adjacent to Xj and there is a strictly directed path from Xi to Xj then replace
Xi ´ Xj with Xi Ñ Xj (to avoid introducing cycles);

(b) if Xi and Xj are not adjacent but Xi Ñ Xk and Xk ´ Xj , then replace the latter with
Xk Ñ Xj (to avoid introducing new v-structures).

5. Return the resulting CPDAG G.

4.2 The CTPC Structure Learning Algorithm
CTBNs differ from BNs in three fundamental ways: BNs do not model time, while CTBNs do; BNs are
based on DAGs, while CTBNs allow cycles; and BNs model the dependence of a node on its parents
using a conditional probability distribution, while CTBNs model it using a CIM. These differences
make structure learning a simpler problem for CTBNs than it is for BNs.

Firstly, learning arc directions is an issue in BNs but not in CTBNs, where arcs are required to follow
the arrow of time. Unlike BNs, which can be grouped into equivalence classes that are probabilistically
indistinguishable, each CTBN has a unique minimal graphical representation [43]. For instance, let a
CTBN N have graph G “ tX Ñ X 1u: unless trivially X and X 1 are marginally independent, G cannot
generate the same transition probabilities as any CTBN N 1 with graph G1 “ tX Ð X 1u.

Secondly, in CTBNs we can learn each parent set papXkq in isolation, thus making any structure
learning algorithm embarrassingly parallel. Acyclicity imposes a global constraint on G that makes it
impossible to do the same in BNs.

Thirdly, each variable Xk is modelled conditional on a given function of its parent set papXkq: a
conditional probability table for (discrete) BNs, a CIM for CTBNs.

However, a CIM QXk|U describes the temporal evolution of the state of variable Xk conditionally
on the state of its parent set U. Hence, we can not test conditional independence by using classical
test statistics like the mutual information or Pearson’s χ2 that assume observations are independent
[22]. Instead, we need to adapt our definition of conditional independence to CTBNs in order to design
a constraint-based algorithm for structure learning.

Definition 4.1. Conditional Independence in a CTBN
Let X be a set of variables modelled as conditional CTMP. We say that Xi is conditionally inde-

pendent from Xj given UXiXj
Ď XztXi, Xju if

QXi | x,u “ QXi | u @x P dompXjq,@u P dompUXiXj q. (4.1)

where QXi | Xj ,UXiXj
is the CIM for the variable Xi given the separation set UXiXj

Y tXju and
QXi | UXiXj

is the CIM for the variable Xi given the separation set UXiXj
. If UXiXj

“ ∅, then
Xi is said to be marginally independent from Xj .

It is important to note that Definition 4.1 is not symmetric: it is perfectly possible for Xi to be condi-
tionally or marginally independent from Xj , while Xj is not independent from Xi. This discrepancy
is, however, not a practical or theoretical concern because arcs are already non-symmetric (they must
follow the direction of time) and therefore we only test whether Xi depends on Xj if Xj precedes Xi

and not the other way round.
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As for the test statistics, we can test for conditional independence using qXk|u (the waiting times)
and, if we do not reject the null hypothesis of conditional independence, we can perform a further test
using θXk|u (the transitions).

Note that conditional independence can be established by testing only the waiting times qXk|u if
the CTBN contains only binary variables because the transition is deterministic for a binary node.
Instead, in the general case in which variables can take more than two values, testing for conditional
independence involves both waiting times and transitions.

Since we consider that rates are the most important characteristic to assess in a stochastic process,
we decide without loss of generality to test qXk|u first, and then θXk|u.

For qXk|u, we define the null time to transition hypothesis as follows.

Definition 4.2. Null Time To Transition Hypothesis
Given Xi, Xj and the conditioning set UXiXj

Ď XztXi, Xju, the null time to transition hypothesis
of Xj over Xi is

qx|x1,u “ qx|u @x P dompXiq,@x
1 P dompXjq,@u P dompUXiXj q.

For θXk|u, we define the null state-to-state transition hypothesis as follows.

Definition 4.3. Null State-To-State Transition Hypothesis
Given Xi, Xj and the conditioning set UXiXj Ď XztXi, Xju, the null state-to-state transition

hypothesis of Xj over Xi is

θx¨|x1,u “ θx¨|u @x P dompXiq,@x
1 P dompXjq,@u P dompUXiXj

q

Definition 4.2 characterizes conditional independence for the times to transition for variable Xi

when adding (or not) Xj to its parents; Definition 4.3 characterizes conditional independence for the
transitions of Xi when adding (or not) Xj to its parents.

To test the null time to transition hypothesis, we use the F test to compare two exponential
distributions from [44]. In the case of CTBNs, the test statistic and the degrees of freedom take form

Fr1,r2 “
qx u

qx|x1,u
, with r1 “

ÿ

yPdompXiq

N rx, y|x1,us, r2 “
ÿ

yPdompXiq

N rx, y|us. (4.2)

To test the null state-to-state transition hypothesis, we investigated the use of the two-sample
chi-square and Kolmogorov-Smirnov tests [45]. For CTBNs the former takes form:

χ2 “
ÿ

x1PdompXiq

pK ¨N rx, y|x1us ´ L ¨N rx, y|usq2

N rx, y|x1,us `N rx, y|us
, (4.3)

K “

d

ř

yPdompXiq N rx, y|us
ř

yPdompXiq N rx, y|x1,us
, L “

1

K
, (4.4)

and is asymptotically distributed as a χ2
|dompXiq|´1. The latter is defined as

Dr1,r2 “ sup
yPdompXiq

ˇ

ˇΘxy|u ´ Θxy|x1,u

ˇ

ˇ , Θxy “
ÿ

zPdompXiq
zďy

θxz. (4.5)

After characterizing conditional independence, we can now introduce our constraint-based algo-
rithm for structure learning in CTBNs. The algorithm, which we call Continuous-Time PC (CTPC),
is shown in Algorithm 6.

The first step is the same as the corresponding step of the PC algorithm in that it determines the
same pattern of conditional independence tests. However, as discussed above, the hypotheses being
tested are the null time to transition hypothesis and the null state-to-state transition hypothesis.
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Algorithm 6 Continuous-time PC Algorithm
1. Form the complete directed graph G on the vertex set X.

2. For each variable Xi P X:

2.1 Set U :“ tXj P X : Xj Ñ Xiu, the current parent set.
2.2 Set b :“ 0

2.3 While b ă |U|:
2.3.1 For each Xj P U, test Xi KK Xj |UXiXj

for all possible subsets of size b of UzXj .
2.3.2 As soon as Xi KK Xj |UXiXj for some UXiXj , remove Xj Ñ Xi from G and Xj from

U.
2.3.3 Set b :“ b` 1

3. Return directed graph G.

The second step of CTPC differs from that in the PC algorithm. Since independence relationships
are not symmetric in CTBNs, we can find the graph G of the CTBN without identifying and then
refining a CPDAG representing an equivalence class. Therefore, steps 3 and 4 of the PC algorithm are
not needed in the case of CTBNs.

CTPC starts by initializing the complete directed graph G without self loops (step 1). Note that
while loops (that is, arcs like Xi Ñ Xi) are not included, cycles of length two (that is, Xi Ñ Xj and
Xj Ñ Xi) are, as well as cycles of length three or more.

Step 2 iterates over the Xi to identify their parents U. This is achieved in step 2.3.1 by first testing
for unconditional independence, then by testing for conditional independence, gradually increasing the
cardinality b of the considered separating sets.

Each time Algorithm 6 concludes that Xi is independent from Xj given some separating set, we
remove the arc from node Xj to node Xi in step 2.3.2. At the same time, we also remove Xj from the
current parent set U. The iteration for Xi, Xj terminates either when Xj is found to be independent
from Xi or when there are no more larger separating sets to try because b “ |U|; and the iteration
over Xi terminates when there are no more Xj to test.

CTPC checks the null time to transition hypothesis (Definition 4.2) by applying the test for two ex-
ponential means in (4.2). On the contrary, the null state- to-state transition hypothesis (Definition 4.3)
can be tested using two different tests: the two sample chi-square test in (4.4) and the two sample
Kolmogorov- Smirnov test in (4.5). We call these two options CTPCχ2 and CTPCKS, respectively.

The proposed algorithm is able to recover the true graph under the standard assumptions of the
PC algorithm:

1. The faithfulness assumption.

2. The database consists of a set of independent and identically distributed cases.

3. The database of cases is infinitely large.

4. The causal sufficiency assumption, that is, no hidden (latent) variables are involved.

5. The statistical tests make no type-I or type-II errors [46].

CTPC could be extended to account for hidden variables. However, this extension would not be
straightforward and would have a high computational complexity. In the case of score-based structure
learning, [47] used the Structural Expectation Maximization algorithm for this purpose, while [48]
developed a novel gradient-based approach to structure learning which makes it possible to learn
structures of previously inaccessible sizes. However, to the best of our knowledge, no constraint-
based algorithm for learning the structure of CTBNs with latent variables has been presented in the
literature. The results presented and discussed in [40] may allow the CTPC to be extended to handle
hidden variables.
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4.3 CTPC computational complexity
The computational complexity of estimating the network structure of a CTBN from data using the
CTPC algorithm depends on the following quantities: the number of nodes, the number of parents of
each node and the number of transitions.

In Appendix A we presented the computational complexity of learning the stucture of a CTBN
using CTPC summarized in the following table:

Case Complexity
Best Case Opn2 ¨ p2 ¨ η3 ` 2 ¨ ψqq

Worst case Opn ¨ 2n ¨ pηn ` n ¨ ψqq

General case O
´

nρ`2

pρ`1q! ¨ pηρ`3 ` pρ` 2q ¨ ψq

¯

where n is the number of nodes, η is the maximum node cardinality present in the network, ψ is the
number of transitions occurring in the dataset and ρ is the maximum parent set size present in the
network.

Nodelman [11] states that the CTSS algorithm for CTBNs is polynomial in the number of variables
(n) and in the size of the dataset (ψ) when a maximum number of parents is given. The general case
of the CTPC, for a constant value of ψ and n, is also polynomial. However, in the CTPC algorithm
it is natural to bound the size of the separating sets in the conditional independence tests but not the
size of the parent sets because CTPC does not operate on parent sets explicitly. Bounding the size
of the separating sets also results in a time complexity similar to the CTSS, but has the drawback of
producing denser networks because it potentially makes some independence relationships impossible
to establish.

4.4 Numerical Experiments
We now assess the performance of CTPC against that of the CTSS algorithm from [11] using synthetic
data. In particular, we generate random CTBNs as the combinations of directed graphs and the
associated CIMs; and we generate random trajectories from each CTBN.

Note that we only generate connected networks, hence the number of edges in a network is bounded
below by n´ 1.

We measure the performance of the learning algorithms using the F1 score over the arcs, which is
defined as

F1 “ 2 ¨
precision ˆ recall

precision ` recall
.

Since there is no score equivalence in CTBNs, nor are networks constrained to be acyclic, comparing
graphs is equivalent to evaluating a binary classification problem.

Furthermore, we compare the two algorithms by their scaled difference in Bayesian Information
Criterion (BIC), the latter defined as in [22]:

∆BIC% “
BICCTSS ´BICCTCP

BICCTSS
¨ 100

with
BIC “ lnpL̂q ´

1

2
k lnpψq (4.6)

and where k is the number of parameters in the learned CTBN model, ψ is the number of transitions
while L̂ is the corresponding data likelihood.

After a first set of experiments presented in a preliminary work [14] we found that the CTPCχ2

performs marginally better than CTPCKS ; thus, we concentrated the esperiments only on CTPCχ2 .
Then, in the extended version [15] we set up a full factorial experimental design over different num-
bers of nodes n “ t5, 10, 15, 20u, network densities1 t0.1, 0.2, 0.3, 0.4u, number of states for the nodes
|dompXiq| “ t2, 3, 4u. For each network, we generate 300 trajectories that last on average 100 units of

1network density “
Number of edges

n¨pn´1q
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time each. We perform 10 replicates for each simulation configuration except for the networks with
20 ternary nodes and network density equal to 0.4, for which we only perform 3 replicates. We did
not consider quaternary networks with 20 nodes because it is unfeasible to learn them on the available
hardware.

We perform the experiments using new, implementations of the CTSS algorithm and of the CTPCχ2

algorithm2 that can handle larger networks and that can learn the parent set of each node in parallel.
Those implementations are parallelized but use more memory, requiring a more powerful machine with
8 cores and 64GB of memory.

The results of our simulation study are summarized in Figure 4.1, in Figure 4.2, in Figure 4.3 and
in Figure 4.4.
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Figure 4.1: Each of the plots on this figure represents the average F1 score and the standard deviation
of the constraint-based algorithm and the CTSS one, against the number of nodes for a specific
combination of network density and node cardinality.

2The new implementations provided by Filippo Martini and Luca Moretti are available at https://github.com/
madlabunimib/PyCTBN.

https://github.com/madlabunimib/PyCTBN
https://github.com/madlabunimib/PyCTBN
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Figure 4.2: Each of the plots on this figure represents the average ∆BIC% and the standard deviation
against the number of nodes for a specific combination of network density and node cardinality.

Figure 4.1 shows that the CTSS algorithm is the best choice for networks consisting of binary nodes.
However, the CTPCχ2 and the CTSS perform similarly for networks with ternary and quaternary
nodes. Furthermore, the performance of the CTPC algorithm, if compared with the CTSS one, seems
to improve with the increase in the number of nodes and in the network density.

We can see from Figure 4.1 and Figure 4.3 that the execution time increases when the network
density increases, and that both algorithms perform poorly for dense networks. This behavior may be
attributed to the method used to generate the trajectories that does not increase their size when the
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Figure 4.3: Each of the plots on this figure represents the average execution time in seconds and the
standard deviation of the constraint-based algorithm and the CTSS one, against the number of nodes
for a specific combination of network density and node cardinality.
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network density increases.
Figure 4.2 shows something different. Indeed, if we consider the ∆BIC% as an evaluation metric,

we note the CTSS algorithm to be at least as good as the CTPC algorithm in almost every experiment.
Figure 4.4 shows an important difference between the two algorithms; the CTSS algorithm achieves

a precision of 1 in almost all simulations. However, the constraint-based algorithm has a better recall
for the networks with ternary and quaternary nodes.
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Figure 4.4: Each of the plots on this figure represents the average Precision, Recall and their respective
standard deviations of the constraint-based algorithm and the CTSS one, against the number of nodes
for a specific combination of network density and node cardinality.

Until now, we tested the CTPC algorithm with small to medium networks consisting of up to 20
nodes. To evaluate the execution time of CTPC with larger networks, we combined up to 5 networks
with 20 binary nodes and network density 0.1. The results presented in Table 4.1 show that CTPC is
able to learn networks with up to 100 nodes in a reasonable amount of time. It is important to note
that the tested networks are scattered. 3 It was also necessary to use a machine with 256GB of memory
to carry out the experiments. The huge memory requirement is closely related to our implementation.
In fact, due to the python Global Lock Interpreter, we couldn’t use a multi-thread architecture but we
had to use a multi-process one. Since each process is independent, it requires a copy of the dataset to
be loaded into the ram. Furthermore, the space complexity is closely related to the network density.4

3Networks composed by disjoint sub-networks that are collated together in such a way to maintain sparsity.
4A CIM for a binary node with 99 binary parents would require learning and storing 2101 values that would occupy

about 1019TB.
5This value was estimated as it was not possible to perform the experiment with the amount of memory available to

us.
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Cardinality Execution Time (single core) Execution Time (two cores)
20 4m 4m
40 50m 50m
60 4h15m 3h40
80 13h30m 8h47
100 30h28m 21h19m 5

Table 4.1: Execution time of the CTPC on big, sparse networks

4.5 Discussion
In this chapter we introduced the first implementation of a constraint-based algorithm for structure
learning in CTBNs, which we called CTPC, comprising both a suitable set of statistics for testing
conditional independence and a heuristic algorithm based on PC. We also derived the complexity of
this new algorithm, finding that it is similar to the CTSS one.

CTPC has better structural reconstruction accuracy, compared to the only CTSS algorithm pre-
viously available in the literature [11], when variables in the CTBN can assume more than two values.
For binary variables, that CTSS algorithm performs well, but its performance rapidly degrades as
variables are allowed to have increasingly more states. However, if we compare the two algorithms
in terms of BIC the CTSS is the best option in all the performed experiments. A major limitation
of the proposed constraint-based algorithm is the computational cost, which becomes problematic in
domains with more than 20 variables. However, the CTSS algorithm has the same limitation.
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Chapter 5

Constraint-based and hybrid
structure learning of
multidimensional continuous-time
Bayesian network classifiers

When the continuous time Bayesian network classifier (CTBNC) was first presented [34], the only
structure learning algorithm by that time was the score based one, i.e., the structure learning algorithm
introduced and described in [11]. The same was true for the paper generalizing the CTBNC to the
Multi-CTBNC [35], where structure learning was performed by using the same score based algorithm
as the one used for learning the structure of CTBNC.

In this chapter, we introduce and describe a new set of constraint based structure learning al-
gorithms [17], which have been developed by collaborating with the authors of CTBNC and Multi-
CTBNC. These algorithms exploit the specific structure of the Multi-CTBNC, which consist of the
following three main components; i) class subgraph, ii) feature subgraph, and iii) bridge subgraph, to
extend the constraint based CTPC algorithm, originally designed for learning the structure of CTBNs,
to learn the structure of Multi-CBTNC.

A rich set of numerical experiments has found that the new structure learning algorithms are more
efficient and empirically faster, although less robust than the original CTPC algorithm, which is not
specialized to leverage on the particular structure of Multi-CTBNC. Furhtermore, we carreid out a
set of experiments over the British Household Panel survey [49] where the constraint based algorithms
obtained the best performaces. However, as we will see in Section 5.4, execution time performance
improvement is traded for prediction performances.

5.1 Constraint Based Algorithm - naive adaptation
In order to adapt the original constraint based algorithm, it is fundamental to take into account the
main components of the Multi-CTBNC, i.e., i) the class subgraph, ii) the feature subgraph, and iii)
the bridge subgraph. The class subgraph GX consists of a Bayesian network (BN), thus its structure
can be learnt by applying a standard constraint based algorithm for BNs (i.e. Algorithm 5), while the
feature subgraph and the bridge subgraph can be learned together by adapting the CTPC algorithm
(Algorithm 6).

A naive adaptation of the CTPC algorithm to learn the structure of a Multi-CTBNC (Algorithm 7)
presents the following differences when compared to the original version designed to learn the structure
of CTBNs:

• The initial graph G for learning the structure of a Multi-CTBNC is not the complete graph, as
it happens with the initial graph for learning the structure of a CTBN. Indeed, the initial graph
G of a Multi-CTBNC is set in such a manner that only those edges which are allowed in a Multi-
CTBNC are included. Consequently, no edges directed from a feature node to a class node are

43
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allowed. Furthermore, we are not interested to learn edges between class nodes, because those
edges are learned by the PC algorithm for BNs. More formally, the complete feature subgraph
GX consists in all the directed edges pXi, Xjq where Xi, Xj P X and Xi ‰ Xj ; while the complete
bridge subgraph GB consists in all the directed edges (Xi, Xjq where Xi P X and Xj P X.

• Since we need to learn only the edges of feature and bridge subgraphs but not those of the
class subgraph, the loop at line 3 of Algorithm 7 iterates only over the feature nodes of the
Multi-CTBNC.

Algorithm 7 Naive adaptation of the CTPC Algorithm for Multi-CTBNC
1. Add the edges of the complete directed graph GX to G

2. Add the edges of the complete directed graph GB to G

3. For each variable Xi P X:

3.1 Set U :“ tXj P X Y X : Xj Ñ Xiu, the current parent set.
3.2 Set b :“ 0

3.3 While b ă |U|:
3.3.1 For each Xj P U, test Xi KK Xj |UXiXj for all possible subsets of size b of UzXj .
3.3.2 As soon as Xi KK Xj |UXiXj

for some UXiXj
, remove Xj Ñ Xi from G and Xj from

U.
3.3.3 Set b :“ b` 1

4. Return directed graph G.

5.2 Markov Blanket CTPC
The naive approach presented in the previous section is an elementary adaptation of the CTPC algo-
rithm, which does not exploit in any manner the peculiar characteristics of the Multi-CTBNC.

In this section we introduce and describe a novel and original constraint based structure learning
algorithm [17] which goes under the name of Markov blanket-based continuous time PC (MB-CTPC).
This algorithm exploits the fact that a Multi-CTBNC comprises a bipartite graph, namely the bridge
subgraph, and takes into account the ultimate objective of such a model, i.e. multidimensional classi-
fication.

The MB-CTPC algorithm leverages on the fact that the evidence on the nodes belonging to the
Markov Blanket of the class nodes is sufficient to perform the classification task. In practice, the
MB-CTPC algorithm implements a set of rules which avoid testing for those independencies that are
irrelevant to accomplish the multidimensional classification task.

The pseudocode presented in Algorithm 8 describes the MB-CTPC algorithm. The first steps of
the algorithm consists in learning the structure of the class subgraph and fill the feature and bridge
subgraphs. These steps are exactly the same used for the naive adaptation of the CTPC algorithm.
Step 4 identifies all the descendents of the class variables. This step provides a superset of the bridge
subgraph and also gives us valuable information which can be exploited to prune the feature subgraph,
thus avoiding testing for many irrelevant conditional independencies. This is made possible because, if
a pair of feature nodes do not share the same parent class variables, information does not flow at least
in one direction, and thus at least one edge can be safely removed from the graph of the Multi-CTBNC.
Based on these intuitions, Step 5 applies the following 3 rules to prune the feature subgraph, and thus
to reduce the computational effort:

• Rule 1: if a feature node is not a descendent of a class node, then all the edges directed from
other feature nodes to the given feature node can be safely removed.
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Algorithm 8 MB-CTPC Algorithm for Multi-CTBNC
1. G Ð Learn the class subgraph using the classical PC algorithm over the class variables X .

2. Add the edges of the complete directed graph GX to G

3. Add the edges of the complete directed graph GB to G

4. G Ð Apply the CTPC algorithm only for the edges in the bridge subgraph.

5. For each Xi, Xj P X s.t. Xi ‰ Xj

5.1 If X X papXiq “ H

5.1.1 Remove Xj Ñ Xi from G
5.2 Else If X X papXiq X papXjq “ H and X X papXjq ‰ H

5.2.1 Remove Xj Ñ Xi and Xi Ñ Xj from G
5.3 Else If ppapXiqzpapXjqq X X ‰ H and papXjq ‰ H

5.3.1 Remove Xi Ñ Xj from G

6. G Ð apply the CTPC algorithm starting from G instead of the complete graph.

7. Return directed graph G.

• Rule 2: if two feature nodes are descendent of the class subgraph, but they do not share any
class variable in their parent set, we can safely remove all the edges connecting these two feature
nodes.

• Rule 3: if two feature nodes Xi and Xj are descendent of the class subgraph and only a subset
of the class variables in Xi are shared with the parent set of Xj , then we can remove the edge
pointing from Xi to Xj , i.e., we can remove the edge Xi Ñ Xj .

Finally, Step 6 applies the CTPC algorithm to the pruned graph G.
It is worthwhile to mention that, since at Step 1 of Algorithm 8 the PC algorithm is used and at

Step 4 the CTPC algorithm is used, the MB-CTPC algorithm inherit the complexity of both the PC
and the CTPC algorithms.

5.3 Hybrid structure learning algorithm
The strengths and weaknesses of score-based and constraint-based algorithms are specific to each of
them, and the selection of the algorithm is usually based on the given context. However, hybrid
algorithms, combining the best aspects of both score-based and constraint-based approaches [50],
[51], [52], [53] are made available by the PGMs literature. In this section, we introduce and describe a
hybrid algorithm which has been specifically designed for learning the structure of Multi-CTBNC. The
algorithm consists of two pruning phases, where the first one exploits conditional independence tests
to find the initial structure of the Multi-CTBNC, while the second phase consists of a maximization
step to refine the initial structure of the Multi-CTBNC. Depending on the considered subgraph, we
have the following:

• Class subgraph: the PC algorithm for BNs is used to recover the undirected graph (skeleton).
Then, the hill climbing algorithm (score based) is used to learn the optimal directed graph by
starting from the empty graph, while allowing the insertion of only those edges that are contained
in the found skeleton.

• Bridge and feature subgraph: in the pruning phase, the CTPC algorithm finds an initial
structure. In the maximization phase, the hill-climbing optimizes the likelihood to identify the
possibly optimal subset of edges to be included from the initial structure found by the CTPC
algorithm. In the pruning phase, the maximum size of the separation set determines how much
the initial graph has to be ”refined”.
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5.4 Experiments
This experimental section aims to compare the classification performance of a Multi-CTBNC learned
with different structure learning algorithms over several synthetic datasets. Furthermore, we tested
the algorithm on a real dataset. The compared algorithms are the following:

Score based algorithms The score based algorithms we consider are the hill climbing and the tabu
search with tabu list of size 5. The used scores are BIC and BDe.

Constraint based algorithms The constraint based algorithms we consider are the naive adapta-
tion of the CTPC and the MB-CTPC.

Hybrid Algorithms The considered hybrid algorithm combines CTPC, implementing the pruning
step, and the hill climbing using the BIC score implementing the maximization step. We tested the
hybrid algorithm with the separation set size set equal to zero and to one.

To obtain a fair comparison of different algorithms, we evaluated the learned models by using
several performance measures by means of a 5-fold cross-validation scheme. The experiments were run
on a 4.20 GHz Intel Core i7-7700 K with 32 GB of RAM using Windows 10. The structure learning
algorithms were developed in Java, while software and datasets are made freely available on GitHub
1.

5.4.1 Performance measures
It is worthwhile to mention that, since the final goal of a Multi-CTBNC is to solve a supervised
classification task, all the performance measures evaluate and compare the learned models based on
their capability to correctly classify previously unseen instances. The performance measures we use
are the following ones:

• Global accuracy [54]: the ratio of trajectories correctly classified for all class variables. A
trajectory is considered to be correctly classified only if all the class variables are correctly
classified, thus such performance measure is formally defined as follows

Acc “
1

N

N
ÿ

l“1

δpx̂ l,x lq, (5.1)

where x̂ l represents the predicted classes associated with the l-th trajectory, while x l represents
the real classes, while δ is the Kronecker’s delta function which returns 1 if x̂ l “ x l, 0 otherwise.

• Mean accuracy [54]: mean of the accuracies obtained for each class variable separately and
formally defined as follows:

Acc “
1

|X |

|X |
ÿ

i“1

1

N

N
ÿ

l“1

δpx̂li, xliq, (5.2)

where x̂li and xli are respectively the predicted and real class values for the l-th trajectory and
i-th class variable.

• Global Brier[55]: it evaluates the probability distribution of the predicted variables with respect
to the real classes, and it is formally defined as follows:

Bs “
1

N

N
ÿ

l“1

|I|
ÿ

g“1

pppX “ xg|X “ xlq ´ δpx g,x qq
2
, (5.3)

where I “
Ś

XPX dompX q is the space of joint configurations of the class variables. Smaller
values of Global Brier score correspond to better classifications.
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Performace measure Results of ... are Better Worse Same Than
Global accuracy Hill climbing [BIC] 10.56% 5.93% 83.52% Hill climbing [BDe]

Hill climbing [BIC] 1.20% 0.83% 97.76% Tabu search [BIC]
CTPC 17.69% 42.31% 40.00% Hill climbing [BIC]

MB-CTPC 1.76% 39.26% 58.98% CTPC
Hybrid (separation set = 0) 1.76% 0.00% 98.24% Hybrid (separation set = 1)
Hybrid (separation set = 0) 5.56% 34.54% 59.91% Hill climbing [BIC]
Hybrid (separation set = 0) 22.96% 20.56% 56.48% CTPC

Mean accuracy Hill climbing [BIC] 11.39% 6.48% 82.13% Hill climbing [BDe]
Hill climbing [BIC] 1.20% 1.20% 97.59% Tabu search [BIC]

CTPC 22.39% 39.44% 39.17% Hill climbing [BIC]
MB-CTPC 1.67% 40.28% 58.06% CTPC

Hybrid (separation set = 0) 1.85% 0.00% 98.15% Hybrid (separation set = 1)
Hybrid (separation set = 0) 9.35% 31.85% 58.80% Hill climbing [BIC]
Hybrid (separation set = 0) 22.59% 21.76% 55.65% CTPC

Global Brier score Hill climbing [BIC] 24.81% 18.89% 56.30% Hill climbing [BDe]
Hill climbing [BIC] 5.15% 5.28% 89.54% Tabu search [BIC]

CTPC 19.91% 59.81% 20.28% Hill climbing [BIC]
MB-CTPC 11.85% 53.52% 34.63% CTPC

Hybrid (separation set = 0) 3.52% 2.59% 93.89% Hybrid (separation set = 1)
Hybrid (separation set = 0) 7.41% 49.26% 43.33% Hill climbing [BIC]
Hybrid (separation set = 0) 34.54% 23.80% 41.67% CTPC

Learning time Hill climbing [BIC] 37.04% 62.96% 0.00% Hill climbing [BDe]
Hill climbing [BIC] 37.96% 62.04% 0.00% Tabu search [BIC]

CTPC 99.54% 0.46% 0.00% Hill climbing [BIC]
MB-CTPC 98.15% 1.85% 0.00% CTPC

Hybrid (separation set = 0) 36.11% 63.89% 0.00% Hybrid (separation set = 1)
Hybrid (separation set = 0) 90.28% 9.72% 0.00% Hill climbing [BIC]
Hybrid (separation set = 0) 4.63% 95.37% 0.00% CTPC

Table 5.1: Percentage of datasets in which structure learning algorithms achieve better, worse or
identical results accordingly to the Wilcoxon signed-rank test with significant level of 0.05.

5.4.2 Experimental results on synthetic data
In this section, we briefly summarize the performances achieved by different structure learning algo-
rithms when applied to different synthetic datasets.

During the synthetic experiments the hyperparameters of the constraint based algorithms have
been setted as follows:

• Significance Level (class subgraph): 0.05

• Significance level (bridge and feature subgraph): 10´5

• Separation set size for the hybrid algorithm: 0, 1

The generation of the synthetic datasets has been performed by considering the following parame-
ters and parameters values:

• Number of feature variables: 5, 10, 20

• Cardinality of feature variables: 2, 3, 4, 8

• Number of class variables: 4

• Cardinality of class variables: 2, 3

• Density of class subgraph: 30%

• Density of bridge subgraph: 5%, 10%, 20%

• Density of feature subgraph: 5%, 10%, 20%
1https://github.com/carlvilla/Multi-CTBNCs

https://github.com/carlvilla/ Multi-CTBNCs
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Algorithm Acc Acc Br Learning time (s)
Hill climbing [BIC] 0.63 ˘ 0.27 0.87 ˘ 0.11 0.46 ˘ 0.31 108 ˘ 138
Tabu search [BIC] 0.63 ˘ 0.27 0.87 ˘ 0.11 0.46 ˘ 0.31 107 ˘ 137
Hill climbing [BDe] 0.62 ˘ 0.27 0.87 ˘ 0.12 0.47 ˘ 0.31 106 ˘ 136
CTPC 0.64 ˘ 0.27 0.87 ˘ 0.11 0.45 ˘ 0.31 42 ˘ 47
MB-CTPC 0.61 ˘ 0.26 0.86 ˘ 0.11 0.48 ˘ 0.29 22 ˘ 23
Hybrid (separation set = 0) 0.62 ˘ 0.27 0.87 ˘ 0.12 0.47 ˘ 0.31 50 ˘ 57
Hybrid (separation set = 1) 0.62 ˘ 0.27 0.87 ˘ 0.12 0.47 ˘ 0.31 45 ˘ 51

Table 5.2: Overall performances of the structure learning algorithms.

• Number of trajectories for each dataset: 5000

• Ending time for each trajectory: 20

For each combination of the above parameters, 5 datasets have been generated, thus a total of 1080
datasets have been generated. The Wilcoxon signed-rank test with a significance level of 0.05 has been
used to compare the performance of different algorithms applied to different datasets. Specifically, for
each pair of algorithms and for each performance measure we computed the number of dataset where
the two algorithms performed the same and the number of datasets where one algorithm performed
statistically better than the other one. The most relevant findings of such results are summarized
in Table 5.1. First of all, we compared the score based algorithms available finding that the Hill
climbing, which optimizes the BIC score, performs statistically better than itself when using the BDe
score as well as when Tabu search is used to optimize the BIC score. This finding holds true also when
comparing Hill Climbing, when optimizing the BIC score, to both the constraint based and the hybrid
algorithms. To further explore the performance of the algorithms under comparison we computed
mean and standard deviations (summarized in Table 5.2). This table shows that, even if the score
based is statistically better than both the constraint based and the hybrid algorithms, the overall
performance are really close. Furthermore, both Table 5.1 and Table 5.2 show that the constraint
based algorithm and the hybrid one require a statistically smaller amount of execution time to learn
the structure of the network. We are aware of the fact that the execution time is strongly entangled
with the implementation. However, we directly implemented all the algorithms as described in the
literature. Furthermore, the ”heaviest” component of the learning algorithm is the computation of the
sufficient statistics and this component is shared by all the implementations. For this reason, even if
we are aware of the fact that the execution time does not share the same level of objectivity with the
other metrics, we think that it is still a metric worthy to mention.

It is worthwhile to mention that, similarly to what was observed for CTBNs, also for the Multi-
CTBNC, the constraint based approach outperforms the score based one when the cardinality of the
nodes increases. This limitation of the CTPC algorithm is partially overcome by the hybrid algorithm
which, by combining the score based approach with the constraint based approach, manages to obtain
good performances even with low cardinalities while maintaining an acceptable execution time.

5.4.3 Experimental results on real data
In the previous subsection we compared the performances of the different structure learning algorithms
for Multi-CTPC using synthetic data that allowed for complete control over the experimental setting.
However, the experiments with synthetic data do not answer to the question: is there any real-world
scenario were the constraint based approach can be effectively applied? For this reason, we decided to
conduct a new set of experiments over the British Household Panel survey (BHPS) [49]. The BHPS
dataset was collected in 18 waves during the period 1991-2009 with the goal of understanding the
evolution of social and economic change at individual level and household level in Britain. The survey
collects information from 29702 individuals on more than 1300 variables.

The task we carried out over the BHPS dataset was a multi-label classification over the following
variables:

• Dental check-up: a binary variable that denotes if the individual has had a dental check-up in
the last year.



5.5. DISCUSSION 49

Algorithm Acc Acc Br Learning time (s)
Hill climbing [BIC] 0.203 ˘ 0.001 0.777 ˘ 0.001 0.899 ˘ 0.001 11.5 ˘ 0.5
Tabu search [BIC] 0.203 ˘ 0.001 0.777 ˘ 0.001 0.899 ˘ 0.001 11.0 ˘ 0.4
Hill climbing [BDe] 0.218 ˘ 0.002 0.790 ˘ 0.001 0.886 ˘ 0.002 10.8 ˘ 0.2
CTPC 0.380 ˘ 0.002 0.869 ˘ 0.001 0.793 ˘ 0.001 47.5 ˘ 7.8
MB-CTPC 0.385 ˘ 0.001 0.861 ˘ 0.001 0.787 ˘ 0.001 23.5 ˘ 3.0
Hybrid (separation set = 0) - - - -
Hybrid (separation set = 1) 0.157 ˘ 0.002 0.765 ˘ 0.001 0.921 ˘ 0.001 57.7 ˘ 17.5
Hybrid (separation set = 2) 0.160 ˘ 0.002 0.769 ˘ 0.001 0.919 ˘ 0.001 17.8 ˘ 0.6

Table 5.3: Overall performances of the structure learning algorithms on BHPS dataset.

• Employment status: a categorical variable describing the current employment status of the in-
dividual. It can assume one of the following values: self-employed, in paid employment, unem-
ployed, retired, maternity leave, looking after family or home, full-time student, long-term sick
or disabled, on a government training scheme, others.

• Limb, back or neck problems: a binary variable that denotes if the individual has any disability
or problems related to arms, legs, hands, feet, back or neck.

• Lives with partner: a binary variable that denotes if the individual lives with her/his spouse or
partner.

• Responsible adult for child: a binary variable that denotes if the individual is responsible for a
child under 16 years old.

• Sex: sex of the individual

• Smoker: a binary variable that specifies if the individual smokes.

For the feature variables, we selected a subset of discrete-state variables related to health, work,
household, and other personal information. The BHPS dataset contains a high level of missing values.
Therefore, during the selection of the features, we discarded all the variables with more than 3% of
missing data. Specifically, we considered: — Employee or self-employed — Region or metropolitan
area — Had paid work last week — Number of people in household — looked for work in last 4 weeks
— Hospital inpatient last year — Alcohol or drugs — Household type — Health hinders dressing up
— Working age — How far health limits work — Health limits daily activities — Marital status — Is
dependent child — No health problems — Health limits work — Vision problems — Stomach, liver,
kidneys or digestive problems — Migraine — Anxiety or depression — Diabetes — Hearth, blood
pressure or blood circulation problems — Hearing problems — Breathing problems — Epilepsy.

Each sequence extracted from the BHPS dataset contains the survey results of a single individual.
For each sequence we generated as many trajectories as the number of changes in the class variables
plus one.

We designed the experiment as 10-fold cross-validation, and we compared the performances of
the different algorithms in the classification task with the same metrics used in Section 5.4.2. The
average results of this experiment are reported in Table 5.3. On this specific dataset, the constraint
based algorithms (CTPC and MB-CTPC) performed better than score based and hybrid algorithms
with the drawback of having a higher execution time. Furthermore, unlike the results obtained with
synthetic data, in this case the score based algorithm using BDe score performed better than the one
using BIC score. Finally, the worst results were achieved by the hybrid algorithms and, in the case of
separation set equal to 0, the computational resources used were not enough to learn the structure.
This behavior can be traced back to the fact that, in the pruning phase, the hybrid algorithm removes
too few edges, requiring the maximization phase to deal with an extremely dense structure.

5.5 Discussion
In this chapter we introduced the MB-CTPC, i.e. the first constraint-based algorithm specifically
designed for learning the structure of a Multi-CTBNC. We also introduced the first hybrid structure
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learning algorithm for both CTBN and CTBNC. For the purpose of evaluating the structure learning
algorithms, we performed a set of synthetic experiments for a total of 1080 datasets. The score based
structure learning algorithm obtaining statistically better results in more synthetic dataset at the cost
of a higher execution time.

We also performed an experiment on real data using the BHPS dataset and, in this particular case,
the constraint based algorithm achieved better performance at the cost of a higher execution time.

In conclusion, we want to stress out the fact that the there is not an overall best structure learning
algorithm. Consequently, it is essential to take into account all of them since, the optimality of one
algorithm over the others largely depends on the specific context.



Chapter 6

Sentry State for CTBN

Interacting systems of events may exhibit cascading behavior, where events tend to be temporally
clustered. While the cascades themselves may be obvious from the data, it is important to understand
which are the conditions that may trigger them.. For this purpose, we propose a modeling framework
based on CTBNs to analyze cascading behavior in complex systems [5]. This framework allows us to
describe how events propagate through the system and to identify likely sentry states, that is, system
states that may lead to imminent cascading behavior. Moreover, CTBNs have a simple graphical
representation and provide interpretable outputs, both of which are important when communicating
with domain experts.

The evaluation of the sentry state concept was carried out with a set of synthetics experiment.
Furthermore, we used the dataset provided by the European Spallation Source (ESS), a large research
facility, to evaluate the sentry state approach on real data. Specifically, in Section 6.5, we analyzed the
logs produced by the facility’s monitoring/alarm system to assist operators in pinpointing the most
crucial alarms that could potentially trigger a chain reaction of failures.

6.1 Naive Approach
Informally, a cascade of events is a fast sequence of transitions; where fast is relative to the rest of
the transitions that are observed during the evolution of the process. Starting from this informal
definition, we can develop a naive approach to identifying such cascades in a trajectory. Firstly, we
need to identify two quantities: - λft: the fast threshold determines when two consecutive transitions
are considered to occur fast. - λmcl: the minimum cascade length determines the minimum number of
fast consecutive events to be considered a cascade.

Given the two parameters, the identification procedure consists of iterating over the entire trajectory
and identifying subsets of consecutive transitions with length at least λmcl and with a transition time
between each pair of consecutive events of less than λft (Algorithm 9). This approach can also be
used to identify a sentry state. Once a cascade of events has been identified, the sentry state is the
state from which the cascade begins.

The main limitation of this approach is the difficulty of identifying the correct parameters, as it
requires knowing in advance common durations and sizes of event cascades.

In addition, we define two simple quantities: Naive Count - the number of times a state starts a
cascade, and Naive Score - the fraction of times that observing a specific state coincides with the start
of a cascade.

6.2 Sentry State Identification
Given a CTBN, we are interested in understanding its cascading behavior. We are in particular
interested in identifying what we will call sentry states. A sentry state is a state which may trigger a
ripple effect, that is, a sequence of fast transitions. It is important to stress that we are interested in
states that start a cascade of events. Intuitively, this means that we are assuming the existence of at
least one state in the state space graph which is directly connected to the sentry state and which has
a much smaller expected number of transitions than the sentry state itself.

51
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Algorithm 9 Naive cascade identification algorithm
procedure naive-cascade-identification(σ, λft, λmcl)

for all event σi P σ do
dti “ Timepσiq ´ Timepσi´1q Ź Compute the delta time between an event and its predecessor.

end for
Identify the set s such that:

• s P s is a sequence of contiguous events in σ

• each event in σi P s has dti ă λft

• |s| ě λmcl

• s Ć s

return s
end procedure

In order to identify a sentry state, we need to take a further step from the heuristic definition of
a sentry state we have just given and formalize the concept. For this purpose, we first compute the
expected (discounted) number of transitions for each state of the CTBN. This can be achieved by using
the lump sum reward in (3.11) to obtain the Expected Discounted Number of Transitions (EDNT) of
each state x.

EDNTγpxq “ ENx

»

–

8
ÿ

i“0

ÿ

XjPX

e´γti`1CpXjptiq, Xjpti`1qq

fi

fl : Cpx, x1q “ 1. (6.1)

There is no guarantee that a state with high EDNT is often the starting point of a cascade. States
that tend to occur in the middle of a cascade may easily have a high EDNT if the cascade tends to
continue after reaching that state. We are interested in early detection of cascades, and the solution
we propose is to take into account the number of transitions in the neighborhood NeGs

pxq of the state
x P S. For this purpose, we define a new quantity called Relative Expected Discounted Number of
Transitions (REDNT),

REDNTγpxq “ max
x1PNeGs pxq

EDNTγpxq

EDNTγpx1q
(6.2)

where γ in (6.1) and (6.2) is the discounting factor as in (3.10), and the neighborhood in (6.2) refers
to the undirected state space graph (see Figure 3.3). The central idea is that a large ratio between
two adjacent states implies that transition from one to the other leads to a significant change in the
expected discounted number of transitions. We will use REDNT to identify potential sentry states
(states with high values of REDNT are likely sentry states).

One could propose other ways to aggregate EDNT across different states. We focus on REDNT as
defined above in the interest of brevity.

An approach involving the use of the RDNT would require exploring the entire state space. How-
ever, if we have an insight on the specific problem that we want to address this may not be necessary.
For example in the case in which all the nodes describe alarms (binary events); we are interested to
identify which is the combination of alarms responsible to start a cascade. Specifically, If we let s̄
denote the number of alarm that are on in the state s “ ps1, s2, . . . , sLq, s̄ “

řL
i“1 si; in the alarm

data application, we are mostly interested in sentry states such that s̄ is fairly small. States with large
s̄ may also have large REDNT values; however, these are states that occur when a cascade is already
happening. As we want early detection, we should focus on sentry states such that s̄ is small.

6.3 Monte Carlo Algorithm
We are now left with the problem of estimating the EDNT of each state from which we can compute
the REDNT. We propose a Monte Carlo approach based on Algorithm 4 from [11]. This sampling
algorithm starts from an initial state Xp0q and generates a single trajectory σ ending at time tend.
After the initialization phase, the algorithm enters into a loop. At each iteration, the algorithm samples
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Algorithm 10 Approximated estimation of the EDNT
procedure EDNT-approx(Xp0q, γ, tend, iterations)

reward Ð 0
for i Ð 1 to iterations do

σ Ð CTBN-SAMPLEpXp0q, tendq Ź Generate trajectory (Algorithm 4)
r Ð

ř|σ|´1
i“0 e´γti`1CpXptiq, Xpti`1qq Ź Estimate the EDNT of σ

reward` “ r Ź Update the total reward
end for
return reward{iterations Ź Estimate the expected reward

end procedure

a time to transition for each of the variables, identifies the next transitioning variable, generates the
next state, and resets the time to transition for the transitioned variable and all its children. The
Algorithm 10, combines Algorithm 4 with (6.1) to compute

{EDNT γpxq “
1

|σ|

ÿ

σPσ

|σ|
ÿ

i“0

e´γtiCpxptiq, xpti`1qq (6.3)

where |σ| is the number of trajectories generated by Algorithm 4 and |σ| represents the number of
events in the trajectory σ.

In order to compute {EDNT γ , we need to set the values of the following hyperparameters:
1. γ, the discounting factor;

2. tend, the ending time for each trajectory;

3. |σ|, the number of trajectories to be generated.
Choosing the discounting factor γ and the ending time tend, we identify the time horizon of interest
and appropriate values, depend on the application. On the other hand, |σ| controls the trade-off
between the quality of the approximation and its computational cost: We can choose its value using a
stopping-rule approach based on variance, as proposed in [21].

6.4 Synthetic experiments
We now study the performance of the proposed approach. We generate synthetic data from CTBNs
such that the sentry states are known. Data is generated from different CTBNs. In all of them,

• each process, Xj P X, has a binary state space.

• the CTBN consists of slow processes and fast processes.

• each process, Xj P X, replicates the state of its parent processes, papXjq.

• if a process, Xj P X, has more than one parent, it stays in state 0 with high probability if at
least one of its parents is in state 0.

Experiment 1 The first synthetic experiment is based on a CTBN model whose graph G is a chain
consisting of three nodes A, B, and C (Figure 6.1a). The corresponding CIMs for the processes A,
B, and C are shown in Table 6.1. This CTBN describes a structured stochastic process such that the
root process, A, changes slowly from the state no-alarm (0) to the state alarm (1) and vice versa. This
can be seen from the CIM corresponding to the process A. The CIMs associated with processes B and
C make these two processes replicate the state of their parent process, and this happens at a faster
rate. Therefore, starting from p0, 0, 0q, if process A changes its state, process B quickly changes its
state to match that of its parent A. The same holds true for the process C. For this reason, we expect
tA “ 1, B “ 0, C “ 0u to be a sentry state because as soon as the process A transitions from state 0
to state 1, a fast sequence of transitions (a cascade of events) makes the processes B and C transition
from state 0 to state 1. This behavior is shown in Figure 6.1b. Estimates of the REDNT quantity are
shown in Table 6.2 and they confirm that tA “ 1, B “ 0, C “ 0u is a sentry state.
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A 0 1 A B 0 1 B C 0 1
0 -1.0 1.0 0 0 -0.1 0.1 0 0 -0.1 0.1
1 5.0 -5.0 1 15.0 -15.0 1 15.0 -15.0

1 0 15.0 -15.0 1 0 -15.0 15.0
1 0.1 -0.1 1 0.1 -0.1

Table 6.1: Conditional Intensity Matrices used for the example in Figure 6.1a. Process A has no
parents and therefore its transition rate only depends on its own state: If A is in state 0 (off ), then
its transition rate (to state 1 (on)) is 1.0. Process B has a single parent, process A. The states of
processes A and B determine the transition rate of process B. If A is in state 0 (off ) and B is in state
0 (off ), then B transitions to state 1 (on) with rate 0.1. A CTBN is defined from its CIMs and its
initial distribution. Its graph illustrates the dependence structure in the CIMs.

A B C EDNT REDNT Naive Score Naive Count
1 0 0 6.316 1.589 0.35 304
1 0 1 6.444 1.359 0.21 13
0 1 0 5.394 1.357 0.16 41
0 0 1 4.740 1.192 0.03 26
0 1 1 5.511 1.163 0.22 153
1 1 0 6.173 1.145 0.08 57
1 1 1 5.455 1.0 0.03 19
0 0 0 3.976 1.0 0.02 24

Table 6.2: Values of EDNT, REDNT, Naive Score, and Naive Count for the CTBN depicted in Figure
6.1a. Higher values of REDNT indicate CTBN states that are more likely to be sentry states. One
should note that high-scoring states with few alarms (bold rows) are more interesting in our application
as they correspond to states that occur before strong cascading behavior.

Experiment 2 The second synthetic experiment is based on the CTBN shown in Figure 6.2a which
consists of a slow cycle (A, B, C) and a fast chain (D, E, F ). In this CTBN, the sentry state is
expected to be tA “ 0, B “ 0, C “ 1, D “ 0, E “ 0, F “ 0u. Figure 6.2b shows that this state
triggers a fast sequence of alarms in the chain (D, E, F ) and a slow sequence of alarms in the
cycle (A, B, C). Estimates of the REDNT quantity are shown in Table 6.3 and they confirm that
tA “ 0, B “ 0, C “ 1, D “ 0, E “ 0, F “ 0u is a sentry state.

Comparison We compare the REDNT method to the naive approach proposed in Section 6.2.
In synthetic data it is easier to identify the two parameters of the naive approach. Each synthetic
experiment has only two transition rates and we can let the parameter λft 1 be the median elapsed
time between two consecutive events when combining events of all types. The parameter λmcl

2 can
be determined based on the structure of the network. For instance, in the example in Figure 6.1a we
expect a cascade to have at least two transitions,

tA “ 1, B “ 0, C “ 0u Ñ tA “ 1, B “ 1, C “ 0u Ñ tA “ 1, B “ 1, C “ 1u.

To identify sentry states using the naive approach we should simply identify the cascades of events
and compute the fraction of times that observing a specific state coincides with the start of a cascade.
We are interested in sentry states with a low number of active alarms. For this reason, we consider
only states such that the number of active alarms is less than or equal to the size of the largest parent
set in the true graph. The naive approach and the REDNT both produce a list where states are
ordered from the most likely sentry state to the least likely. We compare the two approaches with
the Jaccard similarity [56] using the K most likely sentry states. We tested our approach on the 6
different structures with different numbers of nodes depicted in Figures 6.1a, 6.4, 6.5, 6.6, 6.2a, and
6.7. Results are reported in Figure 6.3. In every experiment, the two methods share at least one state
in their top-two lists. It is important to emphasize that the parameters of the naive method have been

1Threshold between a slow and a fast transition.
2It determines the minimum number of fast consecutive events to be considered a cascade.
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Figure 6.1: (a) depicts the graph G of a CTBN. Its CIMs are in Table 6.1. Slow processes are
represented by solid line nodes, while fast processes are represented by dashed line nodes. Colors and
filling describe the most likely sentry state, s “ ps1, s2, s3q, in this system: If a node has green border
and it is filled, the corresponding alarm is 1 (on) in s. If a node has red border and it is not filled, the
corresponding alarm is 0 (off ) in s. (b) shows an example trajectory from the CTBN represented in
Figure 6.1a. Each function in the plot represents the evolution of one of the three binary processes,
A, B, and C.
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Figure 6.2: (a) Graph G of a CTBN model consisting of six processes. The graph G contains the cycle
(A, B, C) as well as the chain (D, E, F ). See the caption of Figure 6.1 for an explanation of the node
colors.

set knowing the length of cascades. Conversely, the REDNT method does not require this knowledge
in order to identify sentry states.

X Y Z A B

Figure 6.4: Graph G of a CTBN model consisting of a chain of five processes.

A B
C D

E

Figure 6.5: Graph G of a CTBN model consisting of five processes, including a cycle.
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A B C D E F EDNT REDNT Naive Score Naive Count
0 0 1 0 0 0 12.98 1.46 0.24 2172
0 0 0 1 0 0 11.33 1.28 0.25 2156
0 1 0 0 0 0 10.76 1.21 0.04 848
0 0 0 0 1 0 10.75 1.21 0.14 1533
1 0 0 0 0 0 10.24 1.15 0.02 341
0 0 0 0 0 1 9.90 1.12 0.03 651
0 0 0 0 0 0 8.87 1.0 0.01 426

Table 6.3: Values of EDNT, REDNT, Naive Score, and Naive Count of the states with at most one
active alarm for the CTBN depicted in Figure 6.2a.
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Figure 6.3: This figure reports the Jaccard similarity@k between the REDNT and the naive approach.
The x-axis represents the number of states taken into account from the ordered lists generated by the
two methods. The structures of the networks used for the experiments, in order of appearance in the
plot, are depicted in Figures 6.1a, 6.4, 6.5, 6.6, 6.2a, and 6.7.
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Figure 6.6: Graph G of a CTBN model consisting of five processes. The graph G contains a bifurcation
after the root node A.
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Figure 6.7: Graph G of a CTBN model consisting of nine processes and with a more complex structure.
The sentry state has three active alarms.
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Figure 6.8: Graph G of the CTBN learned from the ESS data set. Nodes with green border and
background represent active alarms, while nodes with red border and no background indicate inactive
alarms.

6.5 ESS Data Set
The European Spallation Source ERIC (ESS) is a large research facility which is being built in Lund,
Sweden. Its main components include a linear proton accelerator, a tungsten target, and a collection
of neutron instruments [57]. It comprises numerous systems, including an integrated control system
[58]. The facility has a goal of 95% availability, and state-of-the-art alarm handling may contribute to
reaching this goal.

Operators of large facilities are often facing large quantities of data in real time, and good tools
may help system understanding and support decision-making. Operators rely on alarm systems to
warn them about unexpected behavior. However, alarm problems are common [59]. One example is
that of cascading alarms. In large facilities, different alarms monitor different processes and when an
issue occurs this may result in a large number of alarms that occur within a short time frame due
to the interconnectedness of the different processes. Operators will often find it difficult to respond
to such cascades, as hundreds or thousands of alarms may sound, making it difficult to identify the
underlying issue.

The alarm system has two purposes. One, it should help operators foresee and mitigate fault
situations. Two, it should help operators understand a fault situation. In this chapter, we illustrate
how the methods we propose can help achieve these goals using data from the accelerator cryogenics
plant at ESS, which has been in operation since 2020.

The data set consists of observations of 138 alarm processes from January 2020 to March 2023.
No structure was provided, thus we use the score-based structure learning algorithm presented in [11].
We chose not to use the constraint-based algorithm [15] because, in the case of binary variables, it has
been shown to be outperformed by the score-based algorithm. The score-based algorithm penalizes
the size of the parent sets, leading to sparsity in the graphical structure. For this data, the learned
graph is composed of disconnected components. We only present the results of applying the REDNT
method for one of them. The most likely sentry state has the alarm SpeedHighFault set to on and
everything else set to off (see Figure 6.8). We observe that the connected component which contains
SpeedHighFault is a rooted directed tree, and that SpeedHighFault is the root. This means that an
alarm in SpeedHighFault propagates along the directed paths in the tree. A CTBN assumes that at
most one event occurs at any point in time. This is reasonable in this application because of the high
sampling rate.

The four PressureRatioHighFault alarms in Figure 6.8 could be verified as consequences of the root
cause SpeedHighFault, both from documentation and by an experienced operator. On the other hand,
the alarms StateIntervened, CabinetFault, and StateFault were not evident from the documentation
and were not expected to be related to the root alarm SpeedHighFault. If these connections are real,
this information is relevant to operators, as they may look for reasons for this connection and enhance
their process understanding. Moreover, the identified root alarm SpeedHighFault can be given a high
priority to ensure that the operators will be made aware of a potential cascade starting from this
alarm.

The CTBN was learned with no structural input, but using a prior distribution one can provide
engineering knowledge to a Bayesian learning method. We believe that the graphical output can be
shown to and interpreted by engineers; however, user studies are needed to validate this. Moreover,
the sentry states that are identified can be presented to the operators. In the example shown in figure
6.8 the sentry state is covered by an already existing alarm, but if a more complex sentry state had
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been identified then an additional alarm would be needed. Using domain expertise, one can assign
appropriate instructions to sentry states and these can be presented to operators when the machine
reaches a fault state. When we have learned a CTBN from data, we may also compute the probability
of reaching each of the sentry states from the current state. This can be provided to operators in real
time to facilitate early mitigation. This should be studied in detail in future work.

6.6 Discussion
In this work we defined the concept of sentry states in CTBNs, and we presented a naive approach
and a heuristic (REDNT) for identifying such sentry states. The synthetic experiments showed that
REDNT can identify the configuration of the network from which a fast sequence of events starts. A
key limitation is the fact that the REDNT heuristic is computed for each state, and the number of
states is exponential in the number of nodes. However, the simplicity of its implementation and the
effectiveness showed in the synthetic experiments make the REDNT heuristic attractive. Moreover,
only states with few active alarms may be of interest, and this reduces the computational cost. The
proposed heuristic assigns a score to each state in the state space of a CTBN; a possible extension of
this work is the identification of the contribution of each process to the REDNT.

This work laid the theoretical groundwork for the implementation of online early warning systems
based on the identification of sentry states. In practical implementations, a list of sentry states can
be provided to domain experts for them to formulate appropriate actions in order to mitigate alarm
cascades. This is left for future work. Moreover, the graph representing a learned CTBN indicates
how the behavior of each alarm process depends on the states of the other alarm processes. This graph
also represents conditional independence in the system. In future work, we hope to demonstrate that
the intended end users, engineers and system operators, also find this graphical tool useful.



Chapter 7

Conclusions

This chapter summarizes the main contributions of our research activity during the last three years,
while also clarifying their main limitations. Directions for further research activities, as well as po-
tentially interesting extensions to the framework of continuous time Bayesian networks, are presented
and discussed.

The main goals pursued during the PhD can be summarized as follows: i) to design and develop
new algorithms for learning the structure of a continuous time Bayesian network, when temporal
data is available, ii) to design and develop new algorithms that, starting from a learnt continuous
time Bayesian network model, are capable to extract knowledge about the underlying data-generating
process of the system under study.

7.1 Main Contributions
The main contributions which we developed during the PhD and that are presented in this dissertation
are as follows:

• Chapter 4 - CTPC Algorithm: presents and describes the first constraint based structure
learning algorithm for continuous time Bayesian networks. In this work, we identified three
independence tests suitable for the specific characterization of the continuous time Bayesian net-
work model while exploiting the conditional independence definition provided by [11]. In detail,
we modified the PC algorithm, initially proposed for Bayesian networks, to fit the continuous
time Bayesian networks’ framework. A study of the time complexity of the proposed structure
learning algorithm has been carried out. This study proved that the complexity of this new
algorithm is comparable to the complexity of the score based algorithm, which is the only other
structure learning algorithm made available in the specialized literature for learning the structure
of a continuous time Bayesian network. The chapter also includes the results of a rich set of
synthetic numerical experiments carried out to evaluate the new algorithm and to compare its
performance to that of the CTSS algorithm. According to the results of these synthetic numerical
experiments, it is possible to conclude that usually, the new algorithm (CTPC) performs better
than the score based (CTSS) counterpart in the case of variables which can take more values.
However, the CTPC algorithm suffers the following main limitations:

– Although, as demonstrated in [14] and [15], CTPC and CTSS share the same computational
complexity, the CTSS algorithm allows limiting the size of the parent set, thus reducing its
computational complexity at the cost of a sparser learned network, while the same does not
hold true for the CTPC algorithm.

– The high number of sequential hypothesis tests which have to be carried out to identify a
conditional (in)dependence between two variables, makes the CTPC algorithm to suffer the
well-known multiple comparisons’ problem.

• Chapter 5 - structure learning for Multi-CTBNC: adapts the CTPC algorithm to mul-
tidimensional continuous time Bayesian network classifiers. New structure learning algorithms,
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specifically designed for solving the supervised classification problem, are developed. In particu-
lar, three new structure learning algorithms, for the multidimensional continuous time Bayesian
network classifiers, are developed:

– A naive adaptation of the CTPC to solve a supervised classification problem.
– The MB-CTPC algorithm: an adaptation of the CTPC algorithm, specifically developed

for the multidimensional continuous time Bayesian network classifiers. This algorithm ex-
ploits the information gathered from learning the bridge-subgraph, to drastically reduce the
number of conditional independence tests to be performed, at the cost of a slight decrease
in classification performance.

– A set of hybrid algorithms that combine the strengths of constraint based and score based
algorithms. These are also the first hybrid algorithms presented for both multidimensional
continuous time Bayesian network classifiers and for continuous time Bayesian networks as
well.

The CTPC naive adaptation for multidimensional continuous time Bayesian network classifiers
shares the same limitations of the original CTPC algorithm. Those limitations are shared also
by the MB-CTBN algorithm. The hybrid algorithm manages to overcome at least in part the
problem of multiple hypothesis tests, since, it limits the size of the parent set, and thus as a
consequence it also limits the number of tests to be carried out.

• Chapter 6 - Sentry State for CTBN: defines the concept of sentry state for continuous
time Bayesian networks and describes two algorithms to identify these states. This contribution
extracts useful information from a given continuous time Bayesian network with the goal to better
understand the underlying data generating process and thus to provide the domain expert with
useful insights. More precisely, this contribution aims to identify the states from which a ripple
effect develops. This information is extremely useful for the alarm network by helping to identify
those states which represent the most dangerous alarm configurations. The main drawback of
this contribution is that, even if the REDNT concept strogly relay on the factorization of the
CTBN, neither the definition nor the algorithm take any advantage from the structure of the
CTBN. As a result, the proposed algorithm is exponential in the number of nodes, thus making
even medium-sized networks computationally intractable.

7.2 Future works
During the development of the contributions presented in this dissertation, I identified a set of possible
extension and future works that I will now list briefly.

Multiple comparisons’ problem in CTPC. Statistics is well aware of the multiple comparison
problem. This problem occurs whenever simultaneously testing multiple hypotheses. In the case of the
CTPC algorithm, to identify the conditional independence between two nodes given a separation set,
a batch of hypothesis tests are performed and all of them must not reject the null hypothesis. Thus,
the significant level selected for one test does not directly reflect the Type-I error for the identification
of a conditional independence. Consequently, the multiple comparison problem, significantly affects
the algorithm by greatly increasing the associated Type-I error. Various solutions have been proposed
in the specialized literature [60] which can be investigated to address the multiple comparison problem
for the specific case of the CTPC algorithm.

New hypothesis tests for CTPC. The current version of the CTPC algorithm consists of three
hypothesis tests: two are related to the multinomial distribution and the third one relates to the
exponential distribution. However, different kinds of hypothesis tests and also different definitions of
conditional independence for CTBNs could be explored.

Adaptation of HITON-PC to CTBN. The HITON-PC algorithm presented in [61] introduces
a new algorithm for identifying the Markov Blanket of a given variable. Although this algorithm was
designed for the variable selection task, the insights presented in the article could be transferred to
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structure learning by decreasing the number of hypothesis tests to be performed, thus bringing to a
more efficient version of the CTPC algorithm.

New algorithms for Sentry State identification. For the CTMP framework, closed form algo-
rithms for evaluating a reward function [9] are available. However, the only implementation currently
available for sentry state identification is based on Monte Carlo Simulation. New approaches could be
explored by using an adapted version of the closed-form algorithm for exploiting the CTBN structure.

Explore new definitions for the Sentry State identification problem. The current definition
of sentry state requires identifying a specific state for all the variables in the CTBN. A different
approach worth exploring might be to identify the node or set of nodes having the greatest impact to
start a chain of events.

Continuous Variables for CTBN. The continuous time Markov processes and the continuous
time Bayesian networks frameworks both model the evolution of a finite state process over continuous
time. This is a strong limitation, because many real world phenomena deal with continuous quantities
evolving in continuous time. The easiest solution consists in performing a discretization of the contin-
uous quantities, and then in applying standard algorithms for continuous time Markov processes and
continuous time Bayesian networks. However, the discretization process is extremely critical and can
strongly bias the real distribution. According to the specialized literature on Bayesian networks, the
following two approaches can be pursued to overcome such a limitation:

• Introducing continuous nodes. This approach is applied by conditional linear Gaussian Bayesian
networks [62]. An adaptation of this approach to continuous time Bayesian networks requires
to identify an appropriate distribution for describing continuous variables and to rethink many
inference algorithms.

• Introducing the discretization in the learning process. This approach is well studied for standard
Bayesian networks [63]. An adaptation of this approach requires only to rethink the learning
phase of continuous time Markov processes and continuous time Bayesian networks.

Finally, the specialized literature on state space models and CTMPs addresses this issue. The
papers [64], [65] addressed the problem of continuous variables for state space model by applying an
automatic discretization. Even if this approach is promising, it is still a discretization, and furthermore,
it requires the discretized function to be bounded. Another interesting paper is [66], where the authors
pointed out the strong link between stochastic differential equations and CTMP, showing that, for a
specific subset of problems (i.e., the SIR model), it is possible to describe the phenomena both with
CTMP and stochastic differential equations.
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Appendix A

CTPC computational complexity

To compute the time complexity of CTPC, first recall that:

• ψ is the number of transitions occurring in the data set;

• X is the set of nodes of the CTBN;

• n is the number of nodes of the CTBN;

• Xk P X is the node associated with the k ´ th random variable;

• |Xk| is the cardinality of the node Xk;

• η “ maxpt|Xk| : Xk P Xuq is the maximum node cardinality present in the network;

• papXkq Ă X is the parent set of node Xk;

• |papXkq| is the size of the parent set papXkq;

• ρ “ maxpt|papXkq| : Xk P Xuq is the maximum parent set size present in the network;

• T, N : are the sets of sufficient statistics.

The structure of the CTPC algorithm can be represented with a series of blocks nested within each
other (Figure A.1):

1. Compute the CIM: learn the CIM of a node from a data set given a separating set.

2. Test Independence: test the independence between two nodes given a separating set.

3. Learn the parent set (one node): learn the parent set of a node.

Compute the CIM

Test independence

Learn the parent set
(one node)

Learn the network's structure

Figure A.1: Conceptual model of the CTPC algorithm.
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4. Learn the network’s structure: learn the parent set for each node in the network.

We derive the complexity of the CTPC algorithm in a bottom-up fashion, that is, by using the com-
plexity of the inner blocks to derive the complexity of the outer blocks.

A.1 Compute the CIM
This is the innermost box in Figure A.1. The tasks requiring the largest number of operations, which
determine the leading terms of the computational complexity, are the following:

• Computing the sufficient statistics T andM over the subset of the dataset containing the analyzed
node and its parent set: Oppρ` 1q ¨ ψq.
This complexity rise from the fact that, to learn the sufficient statistics, we need to scroll to the
entire dataset composed by ψ transitions and check if the variable for which we are learning the
CIM or one of its parents (at most ρ parents) transitioned to a new state.

• Computing the CIM Q, given the sufficient statistics T and N . For this task we need to compute
an intensity matrix of dimension at most η2 (where η is the biggest domain for a variable in the
CTBN under analysis) for each combination of possible realizations of the parent set Opηρq. The
resulting complexity is: Opηρ ¨ η2q “ Opηρ`2q

The overall time complexity of this box can be computed as a summation of the two componets and
it is equal to: Oppρ` 1q ¨ ψq ` ηρ`2q.

A.1.1 Test Independence
For this box, we characterize separately the best case and the worst case computational complexity.
Recall that, in order to access the conditional independence of the variable Xi P X given the variable
Xj P X and a separation set S Ă X, we need to learn the CIM of the variable Xi given the separation
set and the potetial parent, then we need to perform two classes of hypothesis tests: one to verify
the null time to transition hypothesis and one to verify the null state-to-state transition hypothesis. If
all the test accept the null hypothesis, we can say that the two variables are independent given the
separation set.

• Best Case: when the first hypothesis test fails. The most complex operations are:

– The computation of the CIM: Oppρ` 1q ¨ ψ ` ηρ`2q.
– The computation of one test: Op1q.

Since the computational complexity of one test is Op1q, we can ignore it in the overall complexity
of this case.

• Worst Case: when no hypothesis test fails. The most complex operations are:

– The computation of the CIM: Oppρ` 1q ¨ ψ ` ηρ`2q.
– Performing all the hypothesis tests, η t-tests (each with complexity Op1q) and η chi-square

tests (each with complexity Opηq) for each possible value of the parent set ηρ: Opηρ`1 `

ηρ`2q “ Opηρ`2q.

These two operations are performed in sequence. It follows that to identify the overall complexity
of this case it is sufficient to add the complexities of the two operations.

Therefore, the complexity of the independence test can be summarized as:

Case Complexity
Best Case Oppρ` 1q ¨ ψ ` ηρ`2q

Worst case Oppρ` 1q ¨ ψ ` 2 ¨ ηρ`2q
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A.2 Learn the parent set (one node)
For this box of the algorithm, we distinguish three cases:

• Best Case: the target node has no parents and the hypothesis tests correctly identify it, thus
the most complex operation is:

– The independence test (worst case): Op2 ¨ ηρ`2 ` pρ` 1q ¨ ψq.
If the node under analysis has no parents, it follows that, for this case, ρ “ 0 because ρ
identify the number of parents. We need to test all the possible independences with empty
separation set, hence we perform n´ 1 Ñ Opnq tests (one for each variable in the CTBN).
The overall complexity of this case can be computed by multiplying the complexity of the
worst case for the hypothesis test by the number of test performed and it is equal to:
Opn ¨ p2 ¨ η3 ` 2 ¨ ψqq.

• Worst case: all nodes are parents of the current node, thus the most complex operation is:

– The independence test (best case): Oppρ ` 1q ¨ τ ` ηρ`2q. The target node depends on
all other nodes (ρ “ n ´ 1). Indeed, even if there is a dependence, it is possible that
an hypothesis test does not identify it by chance (Type II error) or because that specific
exponential distribution or multinomial distibution is not affected by the state of the parent
under analysis. However, for simpliciy, we assume that the first independence test always
fail rejecting the independece hypothesis. The algorithm evaluates all possible parent sets,
the number of which can be calculated as follows:

O

˜

n´1
ÿ

r“1

pn´ 1q!

r! ¨ pn´ 1 ´ rq!
¨ pηr`2 ` pr ` 1q ¨ ψq

¸

which simplifies to Op2n ¨ pηn`1 ` n ¨ ψqq since

Opηr`2 ` r ¨ ψq „ Opηn ` n ¨ ψq.

and
n´1
ÿ

r“1

pn´ 1q!

r! ¨ pn´ 1 ´ rq!
Ñ Op2nq

• General case: The General case is similar to the worst case with one important difference:
ρ can assumes any value less than n ´ 1 instead of being equal to n ´ 1. The most complex
operations are:

– Independence test (best case): Oppρ` 1q ¨ψ` ηρ`2q. All the tests until that conditional on
the true parent set of size ρ fail. Therefore, the algorithm evaluates all possible parent sets
of size ď ρ` 1 , resulting in the following complexity:

O

˜

ρ`1
ÿ

r“1

pn´ 1q!

r! ¨ pn´ 1 ´ rq!
¨ pηr`2 ` pr ` 1q ¨ ψq

¸

. (A.1)

Noting that:

Opηr`2 ` pr ` 1q ¨ ψq Ñ Opηρ`3 ` pρ` 2q ¨ ψq,

O

˜

ρ`1
ÿ

r“1

pn´ 1q!

r! ¨ pn´ 1 ´ rq!

¸

Ñ O

ˆ

nρ`1

pρ` 1q!

˙

.

the computational complexity in (A.1) simplifies to:

O

ˆ

nρ`1

pρ` 1q!
¨ pηρ`3 ` pρ` 2q ¨ ψq

˙
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In conclusion, the complexity of the three cases can be summarized as follows:

Case Complexity
Best Case Opn ¨ p2 ¨ η3 ` 2 ¨ ψqq

Worst case Op2n ¨ pηn ` n ¨ ψqq

General case O
´

nρ`1

pρ`1q! ¨ pηρ`3 ` pρ` 2q ¨ ψq

¯

A.2.1 Learn the network’s structure
In Section A.2 we presented the computational complexity of learning the parent set of a single node.
In order to have the complexity of the CTPC algorithm we just need to multiply those equations by
n. The computational complexity of the CTPC algorithm can be summarized as follows:

Case Complexity
Best Case Opn2 ¨ p2 ¨ η3 ` 2 ¨ ψqq

Worst case Opn ¨ 2n ¨ pηn ` n ¨ ψqq

General case O
´

nρ`2

pρ`1q! ¨ pηρ`3 ` pρ` 2q ¨ ψq

¯
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