UNIQUE CONTINUATION FROM A CRACK’S TIP
UNDER NEUMANN BOUNDARY CONDITIONS

VERONICA FELLI AND GIOVANNI SICLARI

ABSTRACT. We derive local asymptotics of solutions to second order elliptic equations at the
edge of a (N — 1)-dimensional crack, with homogeneous Neumann boundary conditions pre-
scribed on both sides of the crack. A combination of blow-up analysis and monotonicity ar-
guments provides a classification of all possible asymptotic homogeneities of solutions at the
crack’s tip, together with a strong unique continuation principle.
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1. INTRODUCTION

In this paper we establish a strong unique continuation principle and analyse the asymptotic
behaviour of solutions, from the edge of a flat crack I', for the following elliptic problem with
homogeneous Neumann boundary conditions on both sides of the crack

_Au:f'u,, IHBR\F,
(1) otu 0w r
vt v 0, onl,

where
Br={zcRY :|z| <R} CcRY, N>2
I is a closed subset of RV~ x {0} with C''*!-boundary, and the potential f satisfies either assump-

tion (@) or assumption (@) below. The boundary operators 88% and 86”—: in (m) are defined

as
el (ulyy) wma 2Em (], ),

where we are denoting, for all r > 0,
Bf i={(z,zn_1,7n) € B, :anx >0}, B :={(2',on_1,2n) € B, : x5 <0},

being the total variable z € RY written as = (z/,zy_1,2n5) € RV "2 x R x R.

The interest in elliptic problems in domains with cracks is motivated by elasticity theory, see
e.g. [24, L1]. In particular, in crack problems, the coefficients of the asymptotic expansion of
solutions near the crack’s tip are related to the so called stress intensity factor, see [L1]. We refer
to [9, 10, 15] and references therein for the study of the behaviour of solutions at the edge of a
cut.

We recall that a family of functions F = {f; }icr, with f; : A — R, A C R satisfies the strong
unique continuation property if no function in F, besides possibly the trivial null function, has a
zero of infinite order at any point xy € A. The first significant contribution to the study of strong
unique continuation for second order elliptic equations was given by Carleman in [g] for bounded
potentials in dimension 2, by means of weighted a priori inequalities. The so-called Carleman
estimates are still today one of the main techniques used in this research field. They have been
adapted by many authors to generalize Carleman’s results and prove unique continuation for more
general classes of elliptic equations. Among the numerous contributions in this area we mention
M, 23, 28, B2] and in particular [25], where strong unique continuation is established under sharp
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scale invariant assumptions on the potentials. Garofalo and Lin developed in [21] an alternative
approach to the study of unique continuation, based on local doubling inequalities, which are in
turn deduced by the monotonicity of an Almgren type frequency function, see [3]. In the present
paper we follow this latter approach and study the Almgren frequency function A around the
point 0 lying on the edge of the crack. The frequency N is defined as the ratio between the local
energy function

B() = o [ (VuP = fut)ds

T

and the local mass or height

1
H(r) :ZWAB u? do,

ie.

The boundedness of the frequency function N will imply a strong unique continuation principle
from the edge of I'. Furthermore, the monotonicity properties of the quotient N will allow us
to obtain energy estimates, which will be combined with a blow-up analysis for scaled solutions.
In this way we will be able to prove that any u € H*(Bg \ I') weakly solving @) behaves,
asymptotically at the edge of the crack I', as a homogeneous function with half-integer degree
of homogeneity. We mention that an analogous procedure for classifying all possible asymptotic
homogeneity degrees of solutions by monotonicity formula and blow-up analysis was introduced
in [1§, 19, 20] for equations with singular potentials and adapted to domains with corners in [17].

The derivation of a monotonicity formula around a boundary point presents some additional
difficulties with respect to the interior case, due to the role that the regularity and the geometry
of the domain may play.

Among papers dealing with unique continuation from the boundary under homogeneous Dirich-
let conditions we cite [, 2, 17, 26]. Instead, for Neumann problems, we refer to [1] and [B0] for
the homogeneous case and to [14] for unique continuation from the vertex of a cone under non-
homogeneous Neumann conditions. We also mention that unique continuation from Dirichlet-
Neumann junctions for planar mixed boundary value problems was established in [16].

In order to estimate the derivative of the Almgren frequency function, see Proposition , a
Pohozaev type identity is needed. However, the high non-smoothness of the domain Bg \ I' at
points on the edge of the crack causes two kinds of difficulties in its proof. A first difficulty is
a lack of regularity that can prevent us from integrating Rellich-Necas identities of type (66). A
second issue is related to the interference with the geometry of the crack, which manifests in the
form of extra terms, produced by integration by parts, which could be problematic to estimate.

In [12], where homogeneous Dirichlet conditions on the crack are considered, this latter difficulty
is overcome by assuming a local star-shapedness condition for the cracked domain. This geometric
assumption forces the extra terms, produced by integration by parts, to have a sign favourable
to the desired estimates. The problem produced by lack of regularity is instead solved in [12]
by approximating B, \ I' with a sequence of smooth domains Q,, C B,. The solutions u,
of approximating problems in 2, converge in H'(B,) to the solution of the original cracked
problem for r € (0, R) small enough. Each function u,, is sufficiently regular to satisfy a Pohozaev
type identity, in which it is possible to pass to the limit as n — co. In this way it is possible to
establish the inequality needed to estimate the derivative of the Almgren frequency function.

In the present paper we use a similar approximation technique, which however entails additional
difficulties and requires substantial modifications due to the Neumann boundary conditions. In
particular, the existence of an extension operator for Sobolev functions on €2,,, uniform with respect
to n, is obvious under Dirichlet houndary conditions but it turns out to be more delicate in the
Neumann case, see Proposition . Furthermore the different boundary conditions produce
remainder terms with different signs, requiring a modified profile for the approximating domains,
see Section R.3.
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Unlike [[12], we do not require any geometric star-shapedness condition on the crack I'; limiting
ourselves to a Cll-regularity assumption, see (M) below. The removal of the star-shapedness
condition assumed in [[12] requires a more sophisticated monotonicity formula, which is developed
for the auxiliary problem (%obtained after straightening the crack I' with a diffeomorphism
introduced in [[1], see Section P.1. We mention that the same diffeomorphism is used for fractional
elliptic equations, with a similar purpose, in [13]. The effect of this transformation straightening
the crack is the appearance of a variable coefficient matrix in the divergence-form elliptic operator.
As a consequence an adaption of the definition of the energy F and the height H in (a) and (pg)
is needed.

To state the main results of this paper, we introduce now our assumptions on the crack I' and
the potential f. We suppose that I' is a closed set of the form

(2) I':={(x1,0): 21 €[0,400)} if N=2

and

(3) I:={(z",2n_1,0) eRY : g(2') < an_1} if N >3,
where

4) g:RV2 R, geCH(RNT?),

and

() 9(0) =0, Vg(0)=0.

Assumption (a) is not restrictive, being a free consequence of an appropriate choice of the Cartesian
coordinate system. We are going to study the behaviour of solutions to ([lf) near 0, which belongs
to the edge of the crack I' defined in (E)*(E)

Furthermore we assume that f : Bg — R is a measurable function for which there exists
€ € (0,1) such that either

(H1) feWhE T (BR\T),
or
(H2) N >3 and |f(z)] <c|z|727%¢ for some ¢ > 0 and for all z € Bg.

For every closed set K C RV~1 x {0} and r > 0, we define the functional space H&,BBT (B \ K)
as the closure in H'(B, \ K) of the set

{ve H (B, \ K) : v =0 in a neighbourhood of 9B, }.
A weak solution to (E) is a function u € H*(Bg \ T') such that

/ (V- Y — fud)dy = 0,
Br\T'

for all ¢ € H&,aBR(BR \ D).
The following unique continuation principle for solutions to (ﬂ) is our main result.

Theorem 1.1. Let u be a weak solution to @) with T as in (E) 7(5) and f satisfying either (@)
or (@) If u(z) = O(|z|*) as |x| — 0% for all k € N, then u =0 in Bg.

In Theorem @ we provide a classification of blow-up limits in terms of the eigenvalues of the
following problem

_ASNflw = /”)Z)a on SV-! \ %,
(6) oty 9y
ovt v
on the unit (N — 1)-dimensional sphere SV =1 := {z € RY : |z| = 1} with a cut on the half-equator

Y= {(:L'/,SCN_l,O) esh-1. IN-1 2 0}7

0, on X,
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where, letting ey := (0,...,1),

Sf71 = {(2/,an_1,2N) € SNy > 0}, sh-1.— {2, xn_1,2Nn) € SNy < 0},

the boundary operators % are defined as
oY oy
6V7+ = _VS$71 (’lp}si—1> *EN and 8V7_ = VS§71 (w|sjj—1) *EN,

see Section @ for the weak formulation of (E) In Section @ we prove that the set of the

eigenvalues of (E) is {py : k € N} where

k(k +2N —4)
4

As a consequence of the classification of blow-up limits, we obtain the following unique continuation
result from the edge with respect to crack points.

U = , keN.

Theorem 1.2. Let u be a weak solution to @) with T' as in (E) 7(5) and f satisfying either (@)
or (HY). Let us also assume that u vanishes at 0 at any order with respect to crack points, namely
that either Trf u(z) = O(|2|%) as |2| = 0%, z € T, for allk € N or Try u(z) = O(|z|F) as 2| — 07,
z €T, for all k € N, where Trlf u, respectively Tri u, denotes the trace 0fu|B+, respectively u|B,,
onT'. Then u =0 in Bg. " "

If N > 3, we can combine the blow-up analysis with an expansion in Fourier series with respect
to a orthonormal basis made of eigenfunctions of (fj). This allows us to classify the possible
asymptotic homogeneity degrees of solutions at 0.

Theorem 1.3. Let N >3 and let u € HY(Bgr \T), u # 0, be_a non-trivial weak_solution to (E),
with T defined in (E) —(B) and f satisfying either assumption (HI) or assumption (H2). Then there
exist kg € N and an eigenfunction Y of problem (ff), associated to the eigenvalue py,, such that,

letting
kg T
P(z):=|z|2Y | — |,
=l ()

we have that
_ ko 1—ka . 2
A Zu(d) =@ and AT (Vpru) (A) = Ven\p® in L°(B1)

as A = 01, where

(7) .= {%Z(x/,.’ENfl,O)ERNZ{L'Nfl20}
and Vp\r and VRN\f denote the distributional gradients in Br \ T and RN \ r respectively.

A more precise version of Theorem @, relating ko to the limit of a frequency function and
characterizing the eigenfunction Y, will be proved in Section f, see Theorem p.3.

The paper is organized as follows. In Section an equivalent problem in a domain with a
straightened crack is constructed. Sections contains some trace and embedding inequalities for
the space H'(B, \ T'). Section @ is devoted to the construction of the approximating problems.
In Section B we develop the monotonicity argument, which is first used to prove Theorem and
later, in Section 4.2, to perform a blow-up analysis and prove TheoremE, taking into account
the structure of the spherical eigenvalue problem () studied in Section §.1l. Finally Theorem
is proved in Section Bp

2. AN EQUIVALENT PROBLEM WITH STRAIGHTENED CRACK AND APPROXIMATION PROCEDURE

In this section we first introduce an equivalent problem with a straightened crack; then we de-
velop an approximation procedure regularizing the domain, for which suitable trace and embedding
inequalities are needed.
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2.1. An equivalent problem with straightened crack. In this section we straighten the
boundary of the crack in a neighbourhood of 0. If N > 3 we use the local diffeomorphism F
defined in [13, Section 2], see also [1]; for the sake of clarity and completeness we summarize its
properties in Propositions and ﬁ below, referring to [L3, Section 2] for their proofs. If N = 2,
the crack is a segment and we simply take F = Id, where Id is the identity function on R2.

Proposition 2.1. [13, Section 2] Let N > 3 and " be defined in (E) with g satisfying (@) and (B)
There exist F = (Fy,...,Fy) € CHYRN,RY) and ry > 0 such that F|, : B., = F(B,,) is a

diffeomorphism of class C*1,

F(y',0,0) = (v, g(y),0) for any ' € RN"', and F(IT'NB,)=TNF(B,),

with T as in (H) Furthermore, letting Jp(y) be the Jacobian matriz of F aty = (v, yn—1,yn) € By,
and

(8) A(y) = |det Jr () |(Jr ()" ((Tr(y) )7,
the following properties hold:
i) Jr depends only on the variable y' = (y',yn—1) and

Jr(y) = Jr(y") =1dy + O(ly"]) as |y"| = 07,

where Idy denotes the identity N x N matriz and O(|y”|) denotes a matriz with all entries
being O(ly") as |y"| — 0F;

ii) det Jp(y) = det Jp(y',yn—1) =1+ O(|y'|*) + O(yn—-1) as /| = 0t and yn_1 — 0;

sas OF; _ OFNn __ . _ OFN __ .
iii) By = o =0 foranyi=1,...,N —1 and Ty =1

iv) the matriz-valued function A can be written as

(9) Aly) =AY, yn—1) = ( D(yﬂéﬂ\’*l) det JF(S,,yN—l) ) ’

/ _ (Idn—2+O0(y'*) + Olyn—1) O(yn-1)
(10) D(yvnyl) —( N2 O(yN—l) N 1+O(‘y/|2)N+1O(yN_1) )

where Idy _o denotes the identity (N —2) x (N —2) matriz and O(yn—_1), respectively O(|y']?),
denotes blocks of matrices with all entries being O(yn—1) as yn—1 — 0, respectively O(|y'|?)
as ly'| = 0.

v) A is symmetric with coefficients of class C% and
1
(11) §|z\2 <A(y)z-2<2|z? forallzeRY andy € B,,.
e note that implies that Y ~pvy < 2 for all y € B,,. We also observe
W h implies that [[A(y)| ;@ gy < 2 for all B,,. We also ob
(12) A=1dy, ifN=2.
Moreover (E), (@) easily imply that
(13) Ay) = Ay") =1dy +O(ly"]) as |y"| — 0"

Under the same assuptions and with the same notation of Proposition @, we define

(14) w(y) :== A(yy)|y2y and B(y) := f;(é/))y for any y € B, \ {0}.
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Proposition 2.2. [13, Section 2] Under the same assumptions as Proposition @, let i and 3 be
as in (l4). Then, possibly choosing r1 smaller from the beginning,

(15) S <uly) <2 oranyy e By, \ {0},
(16) p(y) =1+0(lyl) as [yl — 0%,
(17) Vu(y) = O(1) as |yl — 0.
Moreover (8 is well-defined and
(18) B(y) =y +O0(yl*) = O(lyl) as y| — 0%,
Js(y) = A(y) + O(ly|) = Idn +O(|yl) as [y| = 0T,
(19) div(8)(y) = N+ O(lyl) as |y| = 07.

We also define dA(y)zz, for every z = (21,...,2y) € RN and y € B,,, as the vector of RY with
i-th component, for i = 1,..., N, given by

N
das,
(20) (dA(y)z2)i = hél Tyizhzlm

where we have defined the matrix A = (agp)kp=1,.. ~ in (E)

Remark 2.3. For any measurable function f : F(B,,) — R we set

f:B., =R, f:=|detJp|(foF).
Then, in view of i) and ii) in Proposition EI the function f satisfies assumptions (@) or (@)
on B,, if and only if f satisfies assumptions (@) or (@) on F(B;,).

It is easy to see that, if u is a solution to (m), then the function U := uo F belongs to H'(B,, \T)
and is a weak solution of the problem

—div(AVU) = fu, in B,, \T,
(21) i
AVTU vt = AV U -v~ =0, onT,

where
VU =V (U

s ), VU=V(U
1
By saying that U is a weak solution to (@) we mean that U € H'(B,, \T') and

/ (AVU -V¢ — fUp)dy =0
B, \T

,__+:
BE)’ and v~ = —v (0,...,1).

for all ¢ € H pp (By, \ I).

2.2. Traces and embeddings for the space H'(B,, \T). In this section, we present some trace
and embedding inequalities for the space H'(B,, \ I') which will be used throughout the paper.
We define the even reflection operators

R+(U)(y,7yN—17yN) = v(y/7yN—17 |yN|)7
R™()(y' ynv—1,yn) = vy, xn -1, —~|yn]),
and observe that, for all 7 > 0, Rt : H'(B, \T) — H'(B,) and R~ : H(B, \T) — H'(B,). We

have that R*(v), R~ (v) € LP(B,) for some p € [1,00) if and only if v € LP(B,); in such a case we
have that

(22) IR @)y = 20l gy IR @y = 20002,

and

1 _
(23) 101505,y = 5 (IRF @0 s,) + 1R @) s, -
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Furthermore, for every v € H'(B, \ T'),

(24) [ o= 5 ([ vRr @R [ vR- @Ry

Proposition 2.4. For any r > 0 there exists a linear continuous trace operator
v HY(B, \T) — L*(0B,).

Furthermore v, is compact.

Proof. Since B, and B,  are Lipschitz domains, there exist two linear, continuous and compact
trace operators v~ : H*(B;") — L?(0B; N0B,) and ~,” : H(B,”) — L*(0B,” N 0B,.). By setting

ks A — .
Tr (U)(y)a if yn < 07
we complete the proof. O

Letting ~,- be the trace operator introduced in Proposition @, we observe that

(29 [omwras =5 ([ p®t@pas+ [ e epas)

s T

for every v € H'(B, \ T'). With a slight abuse of notation we will often write v instead of 7,.(v)
on 0B,.

Proposition 2.5. If N >3 and r > 0, then, for any v e H' (B, \T),

N —2\2 2 N -2
(26) (7) / L dr < / Vol?de +——— [ v2ds.
2 B, |7 BT 2r Jas,
Prooé By scaling, %}, Theorem 1.1] proves the claim for R*(v) and R~ (v). Then we conclude
by (&), (&), and (3. O

Proposition 2.6. Let N > 2 and g > 1 be such that ¢ < 2* = % ifN>3andqg< oo if N =2.
Then

HY(B,\T) c LYB,) for everyr >0
and there exists Sy 4 > 0 (depending only on N and q) such that

NE-—a)+ 1
(27) [0l a5,y < Sar™SF5 ([ woPde s [ atas),
" B\ T JoB,

for allv >0 and v € H'(B, \T).

Proof. Since
(/ \Vv|2dx—|—/ v2dS>
B B,

is an equivalent norm on H'(B;), from a scaling argument and Sobolev embedding Theorems it
follows that, for all ¢ € [1,2*] if N > 3 and ¢ € [1,00) if N = 2, there exists Sy 4 > 0 such that,
for all » > 0 and v € H*(B,),

N(2-q)+2 1
lollom,) < Swar™ (/ Vol dz + ;/aB v dS>'

Using (@), (@), (@) and (@) we complete the proof. O
Proposition 2.7. For any r >0, h € L2 ¢(B,) with € > 0, and v € H (B, \ T), there holds

1
(28) /\h|v2§nh(r) / \w?dwf/ 02ds ) .
B B\l T JoB,

where
2N + 4e
(29) M (r) = Snq.

N —2+2¢

4e
hl|| w~ rN+2  and =
||L7+€(B,.) qE
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Proof. For any v € H' (B, \T)

) 2/4e
e <inl e ([ o ao)
i ) 1 )
hHL%JrS(B,,,)TNJrz (/B‘\f\ |Vl dx + T/BBTU dS)

T

thanks to Holder’s inequality and (@) O

Remark 2.8. If f satisfies ), then f € L T¢(Bg), so that Proposition @ applies to potentials
satisfying either (H1) or (H2)

Remark 2.9. By (@), (@) and (@), for any r € (0,71), h € L2¢(B,), and v € H' (B, \T), we
have that

< SN,qe

2
/ |Vo|? dy < 2/ (AVv - Vv — hv?) dy + 2np,(r) / |Vv|2dy+f/ w*dS
B\l B\’ B, \I' T JoB,

r

and therefore, if 7, (r) < 3,

2 dnp (1) 2
30 / Vquygi/ AVv - Vv — ho? dy—i—i/ pv=dS.
B0 Lo V= T o VW T2 Jon,

2.3. Approximating problems. In this section we construct a sequence of problems in smooth
sets approximating the straightened cracked domain. We define, for any n € N\ {0},

gn R =R, g,(t) :=nt*
and, for any r € (0,7],
Q= {(y",yn-1,yn) € Br 1 yn—1 < gnlyn)}
and
Loy = {(y',yN,hyN) €B,:yn_1= gn(yN)} = aQn,r N B,.
The domains (2, , approximate B, \f in the following sense: for every y € By \f, there exists
7 € N\ {0} such that y € Q,,, for all n > @n. Moreover ,,, NI = 0 for any r € (0,r1] and

n € N\ {0}. We also note that Q,, , is a Lipschitz domain and T, , is a C?-smooth portion of its
boundary.

Proposition 2.10. Let v(y) be the outward normal vector to 0y, », iny. Then

(31) y-v(y) <0 forallyely,,,
(32) Aly)y-v(y) <0 forally €Ly, .
Proof. As a first step we notice that
1 4 1
(33) gn(t) — gtg;l(t) =nt* — gnt4 = —gnt4 <0, gu(t)—tg,(t) <0

and that
(0,1, —g,,(yn))

W)= T )

forally eI'y, .

Then, for all y € I',, -,

o) o= 0L —gn(yn)) _ 9n(yn) —yngn(yn)
W) y= "=y AL (¥ gn(yn ), yn) T (o) =<
due to (@) We have then proved (@) (and (@) in the case N = 2 in view of (@))
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If N > 3, possibly choosing r; smaller in Proposition @, for all y € I'y, », we have that

L+ (95, (yn))?A(y)y - v(y) = gn(yn) (1 + O(ly']) + O(yn—1)) — det Jr(y) yn gy (yn)

3 1 3 1
< ign(yN) - ingil(yN) = i(gn(yN) - gyNgﬁab(yN)%
thanks to ii) in Proposition EI, (E) and (@) Then, by (@) we finally obtain () also for
N > 3. U

Let
RY :=={y = (v yn—1,un) €RY :yy > 0} and RY := {y = (¢, yn—1,yn) € RY 1 yn < 0}.
For any r € (0,71] and n € N\ {0} let
(34) QF =, NBF, Q. :=Q,NB, Su,:=0Q,N0B,.
For all n € N'\ {0} we also define
Ky ={y = yn—1,yn) € RY :either yy 1 < galyn) or |y > 71},
Koo ={y= (" yn-1,yn) € RY :either yny_1 < gn(yn) or |yl >}
Since €, , is a Lipschitz domain, for any r € (0,71] and n € N\ {0} there exists a trace operator
Vo Hl(QmT) — L2(8Qn,r).

)

We define
H&,Sn,r(Qn,r) ={u € Hl(Qn,T) “Ynr(w) =0o0n Sy, }

The following proposition provides an extension operator from Hg g () to H'(B,, \ T) with
an operator norm bounded uniformly with respect to n.

Proposition 2.11. For any r € (0,71) and n € N\ {0} there exists an extension operator

(35) 2,r : H&,Sn,r (Qn,r) — Hl(Bm \f)
such that, for any ¢ € H&Sn (Qnr)s
(36) nr@g, =0, E.(0)=00nQup \ Uy, €,.(0) € Hypp, (Br, \ D),
and

1/2
(37) 160+l 1 5,5y < 016l ) = 00( /Q (¢* +1V9P) dy) :

n,r

where cg > 0 is independent of n, r, and ¢.

Proof. Tt is well known that, since K. and K, ., are uniformly Lipschitz domains, there exist

n,ri

continuous extension operators & : H'(K;, ) — H'(RY) and &, : H'(K, ) — H'(RY), see
[29], [7] and [27]. Furthermore, since the Lipschitz constants of the parameterization of OK,f,
and 0K, . are bounded uniformly with respect to n, there exists a constant C' > 0, which does

not depend on n, such that

(38) Hg;i_(v)HHl(Rf) < C”UHHl(K,t,.l) and Hg’;(w)HHl(le) < C”wHHl(K;”)
for all v € HY(K}, ) and w € H (K, ).

If $ € Hj g  (Q,) then the trivial extension ¢4 of ¢|,+ to K7, belongs to H'(K,, ) and
the trivial extension ¢_ of (/)|Q,’ to K, ,, belongs to H'(K,,, ). Then we define

0 L 6:(¢3+)(y)7 if (/NS B;rl’
nr($)) = {an@)(y), ity e B,

which belongs to H'(B,, \ T') and satisfies (@) in view of (@) Furthermore (@) follows directly
from the definition of £} .. O
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The following proposition establishes a Poincaré type inequality for H& s, T(Qn,r)—functions,
with a constant independent of n.

Proposition 2.12. For any r € (0,71], n € N\ {0} and ¢ € H&S ()

(39) / Sy < / IVI2 dy

i
and

(40) 16llmz (@) = (/Q [Vo|? dy>

is an equivalent norm on H&Sn (Qnr)-

1
2

Proof. For any ¢ € C°°(,, ) such that ¢ = 0 in a neighbourhood of S, , we have that
div(¢®y) = 20V -y + N¢°
so that
N[ wa=-2 [ oveyayr [ eyvass [ Gart [ Vopay
Qp,r Qe A Qn,r

n,r

sincey-v<0onl, , by(@). Then we may conclude that

2 r?
dy <
/quﬁ VSN o

for all ¢ € C>°(€Q,,,-) such that ¢ = 0 in a neighbourhood of S,, .. Since €2, , is a Lipschitz domain,
(BY) holds for any ¢ € Hy g  (Qn) by [, Theorem 3.1]. The second claim is now obvious. ~ [J

Vol dy,

n,r

From now on we consider on Hj g () the norm ||- ||H5 . defined in (@)

Proposition 2.13. Let r € (0,71), n € N\ {0}, h € L>+<(B,) with ¢ > 0, and q. be as in (@)
Then, for any ¢ € H&,Sn (),

N —1+r} =
(a1) | nietay < S s Iy [ I90R d

Proof. We have, for every ¢ € Hj g (),

2 0 2 0
f v [ e @R dy < e < /e

2
0 2
o [, 7RO dy

N+2f
<Sn ,qe”

qe
N dy>
r1

N —1+7r?
<t tn Wy, [ V9P

thanks to Holder’s inequality, (@)7 Proposition , and Proposition . O

Hereafter we fix a potential f satisfying either (@) or (@) and define f := |det Jp| (f o F) as
in Remark @ Thanks to Remark we have that f satisfies either (H1|) or (@) as well. If f
(and consequently f) satisfies (@)7 we define

_4de
N+2e

‘S‘N,qe

n, i fly) >
(42) Faly) =4 fly), i If(y)|<n
—n, if f(y) <

so that
(43) fn € L®(B,,) and |f,| <|f|] a.e. in B, forallne N\ {0}
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and
(44) fn— fae inB,,.
If f satisfies (@), we just let

(45) fn:=f foranyn e N.

We observe that

(46) fo—f in L%“(Brl) as n — 0o

as a consequence of (%, (@) and the Dominated Convergence Theorem if assumption (@) holds
and f, is defined in (49)), in view of Remark R.§; on the other hand ({§) is obvious if assumption

(@) holds and f,, is defined in ({5).
Since under both assumptions (H1) and (@) we have that f € L2 T¢(B,,) (see Remark @),
by the absolute continuity of the Lebesgue integral we can choose rg € (0,min{1,r1}) such that

1 N —
(47) 17];(7“0)<§ and cZ ~

2 4e
+ 1 S N+2e
_ 1 Ng‘]er].

f||L%+€(Br,-O) < Z?

where ge and 7y are defined in (@)

Let U = uoF', where u is a fixed weak solution to (m) and F is the diffeomorphism introduced in
Section EI, so that U weakly solves (El) For any n € N\ {0}, we consider the following sequence
of approximating problems, with potentials f, defined in ({g)f(@)

—div(AVU,) = fuUn, i Qures
(48) AVU, -v =0, on 'y s
Yn,ro (Un) = VTn,ro (U)a on Sn,roa

with rg as in (@) A weak solution to problem (@) is a function U,, € H'(Qy,,,) such that
Up—U€Hg  (Qr,) and

/ (AVU, - V6 — fuUnd) dy = 0
Q

n,ro

for all ¢ € H&,Sn,r(, (Qnr). If U,, weakly solves (@), then W,, :=U - U, € H&,Sn,ro (Qnr,) and

(49) /Q (AVW, -V — fuWas) dy = / (AVU -6 — f,Ué)dy

n,rg Qn,ro

for any ¢ € Hj g (Qnry)-
For every n € N\ {0}, let us consider the bilinear form

n,7TQ

(50)  Bn:Hgs,, () X Hys,  (Qur) = R, Bu(v,¢) = /Q (AVv - V¢ — fov9)dy,
nro

and the functional
(51) Lus Hys,,, ) 2R Ln(@)i= [ (AVU- Vo= £,U8)dy

Proposition 2.14. The bilinear form B, defined in (@) is continuous and coercive; more precisely

1
(52) B (¢, ¢) > ||¢|@15st o (Rnr) for all ¢ € H&SWO (Qnro)-

Furthermore the functional L, defined in (El) belongs to (Hj g " (Qnr0))* and there exists a
constant £ > 0 independent of n such that

(53) L@ < Noliy,. () Jorall @€ Hs, (ury).

n,rg
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Proof. The continuity of B, and (% easily follow from (@),(@), (@) and (@) Thanks to
Holder’s inequality, (@), (ﬂ), (@), (11f) and (@)

La(@)] < 29U a0 1oLy . (Qn,mﬁ(/B |f|U2dx> (/Q |f|¢>2dx>
70 o

1 1 ’
< |2|vU N UPde+ — U?ds
< | 2090l 1) + 5 y/17070) ( /B WG /6 \ ) 10l (@)

70

n,7T0

thus implying (@) O

Corollary 2.15. Let u be a weak solution to and U =uo F. Let either (@) hold and {f.}
be_as in (E), or (@) hold and {f.} be as in (42). Let ro be as in (1) and ¢ be as_in Proposition
14. Then, for any n € N\ {0}, there exists a solution W,, € Hg g . Qo) of (@) such that

(54) IWallig . (@) 4E

Proof. The existence of a solution W, _of (@) follows from the Lax-Milgram Theorem, taking into
account Proposition . Estimate @) follows from (@) and (@) with ¢ = W,. O

We are now in position to prove the main result of this section.

Theorem 2.16. Suppose that f satisfies either (@) or (@ u s a weak solution o @)7 and
U=wuoF with F_as in Section [2.1. Let {f,},en satisfies (15) under hypothesis (HI) o

(82)
under hypothesis (@) Let rg € (0,r1) be as (W7). Then there exists {Upn}nen oy € H'(By, \T)
such that U, weakly solves (@) for any n € N\ {0} and U, — U in H'(B,, \T) as n — oo.
Furthermore U, € H*(Qy.) for any r € (0,79) and n € N\ {0}.

Proof. Let 79 € (0,71) be as in (% For any n € N\ {0}, let W,, € Hjg  (Qnr,) be the
solution to (19) given by Corollary . Then U — W,, weakly solves problem (1§) and we define
U, =U- f%ro(Wn), with fgmo being the extension operator introduced in Proposition R.11. We
observe that U, € H'(B,, \T'). To prove that U,, converges to U in H'(B,, \T') as n — oo, we
notice that

N—l—l—r%

2 2
HU_UTL”Hl(BTO\f) < ”WnHHl(Q < 4c N1

norg) =

/ (AVWn VW, — anTZL) dy,
Q

n,ro

by Proposition , (@), and (@) Therefore it is enough to prove that
(55) lim (AVW,, - VW,, — f,W2)dy = 0.

n—00 Qg

Let

(56) Opn = (Br, \T)\ Qg
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for any n € N\ {0}. Since W,, € H} - (Qn,ry) solves (@) and U is a solution to (@), by Holder’s
inequality, ([L1]) and Proposition we have that

’/ (AVW,, - VW, anZ)dy‘

/Q (AVU - V(€),. (W) — fal €2, (W) dy

n,ry

/ AVU V(L (W) — ful €0, (W) dy

Br \I
- [ VU TR, (1)~ BV, (W) dy\

\/ (AVU V(€L (W) = FUE,, W dy+ [ (F= F)U€L,, W) dy
r \T By \I

7/0<AVU V(L (W) — full €2, (W) dy

<

| v, n>>—fnU§2,m<Wn>>dy\+ [ G- mue,,
O, B

1

<2 ||VU||L2 On) HVﬁn o n)HLQ(B”\f‘) + ||fn||L%+E(O ) HU”L%(O Hg’ﬂ TO n)HLqe(BTl)

+ ||f_an ﬂ+e(B )”UHL% By,) Hfg,ro(Wn)HLqe(Brl)

VN —1+72
< 400570 (2 HVU||L2(O )y TV SN, T N+2€

\/ﬁ fHL%JrE(On) ||U||L46(On)

N+26
SN,qe

F=all e 10lzacan) )

where ¢ is defined in (@) and we have used (@), (@)7 (@), (@)7 and (@) in the last inequality.
We observe that

lim |0,| =0,
n—o0

where |O,,| is the N-dimensional Lebesgue measure of O,,. Then, since VU € L*(B,, \T), U €
L% (B,,) by Proposition and f € L2T(B,,), (@) follows by the absolute continuity of the
integral and convergence (46).

We observe that f,U,, € L?(, ). Indeed, under assumption (@)7 by Remark @ we have that
fe VVI’%J“E(BT1 \ I') and then, by Sobolev embeddings and Hélder’s inequality, we easily obtain
that f,U, = fU, € L*(Q.r,). Under assumption (@), fn is defined in C(]@) and f, € L>*(B,,),
hence f,U, € L2(Qmﬂ0).

Since T, ,, is C*°-smooth and f,,U,, € L*(Qy.,), by classical elliptic regularity theory, see e.g.
[22, Theorem 2.2.2.5], we deduce that U, € H?*(Qy,) for any r € (0,79). The proof is thereby
complete. O

3. THE ALMGREN TYPE FREQUENCY FUNCTION

Let u € HY(Br \ T') be a non-trivial weak solution to (m) and U = wo F € HY(B,, \T) be
the corresponding solution to (@) Let 9 € (0,min{1,71}) be as in (7). For any r € (0, rg], we
define

1
(57) H(r) = — / LU dS,
r dB,
where p is the function introduced in (@), and
1 Frr2
(58) TNQ/ LAV 0 ay

Proposition 3.1. If r € (0,7¢] then H(r) > 0.
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Proof. We suppose by contradiction that there exists r € (0,7¢] such that H(r) = 0. By (@), it
follows that U weakly solves (@) with the extra condition U = 0 on dB,. Then by (@) we obtain
that U = 0 on B,. By classical unique continuation principles for elliptic equations, see e.g. [21],

we conclude that © = 0 on Bg, which is a contradiction. O
Proposition 3.2. We have that H € W21 ((0,70]) and
1 ou
59 H(r)=—— (2 U—dS UV -vdS
(59) 0= (2f, w0+ [ vPvevas)
2 ou
_ +
= TNl/BT,uUanS’—i—H(r)O(l) asr — 07,

in a distributional sense and for a.e. r € (0,79).

Remark 3.3. To explain in what sense the term ‘g—g in (@) is meant, we observe that, if VU is

the distributional gradient of U in B,, \T, then VU € L?(B,,,RY) and U .=vU- % € L*(B,,).
By the Coarea Formula it follows that VU € L?(9B,,RY) and %—g € L*(0B,) for a.e. r € (0,71).

Proof. For any ¢ € C5°(0,ro) we define v(y) := ¢(|]y|). Then we have

| e = [ ;( [ ds) §(r) dr

r

- /B . ﬁu(y)UQ(y)W(y) Cydy+ /B ﬁu@)zﬂ(y)ww ydy

= —/ i %(QM(y)v(y)U(y)VU(y) y+ (@)U (y)Vily) - y) dy
B\l |yl
2

o ou (|
[ o [ ([ o

which proves (@) thanks to (@) Since r~N+1 is bounded in any compact subset of (0, 7], then, by
(@), (@) and the Coarea Formula, H and H' are locally integrable so that H € W, ((0,70]). O

Now_we turn our attention to E. Henceforth we let {f,} be as in (@), if f satisfies (@), or
as in (@)7 if f satisfies ), and we consider the sequence {U,} converging to U in H'(B,, \T')
provided by Theorem .

Remark 3.4. By Proposition @ and (@), U, — U in L%(B,,). Then, since f, — f in
Lz%¢(B,,) by (@v), from Holder’s inequality it easily follows that

(60) lim [ |fU?~ [, Upldy =0.
0

Moreover, if f satisfies (@), Vfe L2 +(B,,,RY) and hence

(61) lim (Vf-B)(U* - U dx =0,
n— o0 Bro\F

since the vector field 8 defined in (@) is bounded in view of (@)

Lemma 3.5. If F,, — F in L*(B,,), then there exists a subsequence {F,, }ren such that, for a.e.
r € (0,79),

lim |F'— F,, |dS=0 and lim F,,. dS = FdS,
k—oo aBT k—oco Snva aBT

where the notation Sy, has been introduced in (@)

Proof. Let hy(r) := [,5 |Fn — F|dS. Since, by assumption and the Coarea Formula,

0
lim |F — F,|dy = lim / hy(r)dr =0,
o n—oo [

n—oo B
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we have that h,, — 0 in L'(0,70). Hence there exists a subsequence {hy,, }ren converging to 0 a.e.
in (0,79). Therefore F,,, — F in L'(0B,) for a.e. r € (0,79). It follows that, for a.e. r € (0,7),

/ F, dS— | FdS=
s 9B,

XS, (Fny — F)dS +/ (xs,, —1)FdS—0
- 0B,

0B,

as k — oo, thus yielding the conclusion. O

Proposition 3.6. We have that E € Wl’l((O,ro]),

loc

(62) E(r) = % UAVU -vdS = gH’(r) +7rH(r)O(1) asr— 07
r 9B,

and

, 1 . 1 ~
(63) E'(r)=(2~N) 5 /BT\f(AVU VU = U dy + /8 (AVU - VU — fU?)dS

r

in the sense of distributions and for a.e. r € (0,7¢).

Proof. The fact that E € WX ((0,70]) and (@) follow from the Coarea Formula and (@) To
prove (62) we consider the sequence {U,} introduced in Theorem D.16. For every r € (0,79) and
n € N\ {0},
1 1
TN—_Z/Q (AVU, - VU, — f,U2) dy = TN—_z/ U, AVU, -vdS

since U, solve (@) and U,, € H*(Q by Theorem . Thanks to Remark @,the Dominated
Convergence Theorem, and Lemma @, we can pass to the limit, up to a subsequence, as n — oo
in the above identity for a.e. r € (0,rg), thus proving the first equality in (@) To prove the
second equality in (@) we define

py)By) —y) Ay AWy-y

((y) = = -
|yl [yl ly[?
Then, since ¢(y) -y =0and ¢-(0,...,0,1) = 0 on I, we have that
1
/ UAVU -vdS — uUa—U dsS == ¢-V(U?*dS
9B, o,  Ov 2 JoB,

1
= _7/ div(¢Q)U?dS = rN"1H(r)O(1)
2 Jog,
as r — 0, where we have used in the last equality the estimate

div(O)(y) = (Vf;(y) - “fjly) Bly) —y) + *ﬁ(divw)(y) _N)=0()

which follows from Proposition @ Then we conclude by (@) O

The approximation procedure developed above also allows us to derive the following integration
by parts formula.

Proposition 3.7. There exists a set M C [0,79] having null 1-dimensional Lebesgue measure
such that, for all v € (0,70] \ M, AVU -v € L*(0B,.) and

/ ~AVU.qudxz/ fU¢dx+/ (AVU -v)pdS
BT B, 8B,

for every ¢ € H*(B,, \f‘), where AVU - v on 0B, is meant in the sense of Remark @

Proof. Since U, — U in H'(B,, \ T) in view of Theorem , by Lemma @ there exist a
subsequence {U,, } and a set M C [0, 7] having null 1-dimensional Lebesgue measure such that
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AVU -v € L*0B,) and AVU,, -v — AVU - v in L*(0B,) for all » € (0,79] \ M. Since
U, € H*(Q,,) for any r € (0,79) and n € N'\ {0} by Theorem , from @ it follows that

/ (AVU, - Vo — fullnd) dy / GAVU, - v dS.
Qnr S

n,r

Arguing as in the proof of Proposition @, we can pass to the limit along n = ny as k — oo in
the above identity for all r € (0,79] \ M, thus obtaining the conclusion. O

Theorem 3.8. (Pohozaev type inequality) Under either assumption (@) or assumption (@), for

any r € (0,79] we have that
A v|?
(64) r/ AVU-VUd522r/ AVU - v
OB, OB

AVU - i
h dS—&—/B\f( VU - VU)div(B) dy

AVU -1 -
+2/ MfUdy+/ (dAVUVU) - Bdy — 2/ J5(AVU) - VU dy,

which can be rewritten as
~ AVU - |2
(65) 7’/ (AVU~VU—fU2)d522r/ [AVU -v” s
B, 8B 2

+/ ~(AVU.vzf)div(ﬁ)dy+/ (Fdiv(8) + VF-8) U2 dy
B, \T B, \TI'

+/ ~(UZAVUVU)-ﬁdy—z/ J5(AVU) - VU dy

B\ B\l

if [ satisfies (@)

Proof. By Theorem we have that U, € H%(Q,,,) for any r € (0,79) and n € N\ {0}. Then,

since A is symmetric by Proposition P.1|, we may write the following Rellich-Necas identity in a
distributional sense in €, .

(66) div((AVU,, - VU,)B —2(8-VU,)AVU,) = (AVU, - VU,) div(5)
—2(8-VU,)div(AVU,,) + (dAVU,VU,) - 8 — 2J3(AVU,) - VU,.
Slnce U Q) and the components of A and § are Lipschitz continuous by Propositions
and then (AVU,VU,)B —2(8 - VU,)AVU,) € WH1(Q, ). Therefore we can integrate

both sides of (69) on the Lipschitz domain Q,, , and apply the Divergence Theorem to obtain, in
view of (@) and (@),

AVU,, -v|? Avy -
(67) r/ (AVUn.VUn—2VUM”|> dS+/ (AVU, - VU)LY as
S’V‘LT‘ n,r
AVU, -
:/ (AVUn~VUn)div(ﬂ)dy+2/ yfnUndy
Qo Qe

+ / (dAVU,VU,) - Bdy — 2 / J5(AVU,) - VU, dy.
Q Q

n,r n,r

From Proposition , (@), and (@) it follows that, for all n € N\ {0} and r € (0,79),

Av -
(63) / (AVU, - VU, 22
Tpr

ds <0.

From Theorem 7 we recall that U,, — U strongly in H'(B,, \ T'), while Propositions @ and
imply that
(69) uw€ L>(B,,,R), BecL>®®B,,,RY), divpe L®(B,,,R),
da; j
a“} € L®(B,,,RM").
Oun Jijh=r..n

A€ L™(B,,, RV, {
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Furthermore, under assumption (@), we have that, by Sobolev embeddings (see Proposition @),
if N >3, then f,, = f € LN(B,,) and U,, — U strongly in L? (B,,), whereas, if N = 2, then
fn = f € L20+9/0=9(B_ Y and U, — U strongly in LU*9)/¢(B, ); then, since VU, — VU in
L?(B,,), Hélder’s inequality ensures that

(70) fuUnAVU, -y — fUAVU -y in L'(B,,).

Under_assumption (@), we have that Hardy’s inequality (see Proposition @), Proposition @
and ([13) yield that

/ | fay(U, — U)? dy < constrge/ ly|2|U, —UPdy — 0 asn— oo
B B

0 T0
which, thanks to Proposition @ again and the Dominated Convergence Theorem, easily implies
that
fayUn = fyU  in L*(B,,),
thus proving (@) also under assumption (@)

Then, thanks to the Dominated Convergence Theorem, (@), (@) and Lemma % we can pass
to the limit_in (67) as n — oo, up to a subsequence, and, taking into account (pg), we obtain
inequality (@)

If assumption (@) holds then by (@), (@) and Proposition @ we have that

A Un' 3
(71) 2/Q %fnUn dyzZ/Q (8- VU, fU dy

n,r n,r

:—/ (fdiv(ﬁ)+vf-ﬁ)U,%dy+r/ fU,%dSJr/ fU%B-vds.
Qv Spor .

We define
Of,.:==0,nBf, O,,:=0,NB,
rf . =T.,,NnBf T, :=T,,NB.,

where O,, is defined in (@) Taking into account that §-v = % v =0 on 90,5, NIRY since
v=—(0,...,1) and (B) holds, the Divergence Theorem yields that

(72) / ngﬁ-udsz—r/ fU%B-vdS
g 20}t -NOB,

+/o+ (fUﬁdivB—s—Uﬁvf.ﬁ +2fUnVUn-ﬁ) dy.

n,r

By (@)7 (@), and Lemma @ there exists a subsequence {f U2 B - v}ken converging in L'(9B;)
and hence equi-integrable in 9B, for a.e. r € (0,r), hence

lim ngkﬁ -vdS =0 forae re(0,r).
k=0 Joof, ,noB,
Since VU,, — VU in L*(B;:.RN), U, — U in L%(B}}) and f € LN*2¢(B;}) by (@) and classical
Sobolev embeddings, from (@) and Holder’s inequality we deduce that
fU. VU, -8 — fUVU-B in L*(B}),
so that {fUnVUn - B}nen is equi-integrable in B;’(‘]. Therefore

lim fUNVU, -Bdy =0 forall re (0,r0).

n— oo O;t,r
Moreover, also {div3 f U2 4+ U2V f - B},en is equi-integrable thanks to (@) and (EI) It follows
that
lim (divB fU? +Vf-BU2)dy =0 for all r € (0,r0).

n—roo
sz’,r
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Then from (@) we conclude that

lim fUZ B-vdS =0.

k— o0 szm

In a similar way we obtain that limy_, fF_ ngkﬁ -vdS =0 so that
o

lim fU2 B-vdS =0.
k— oo Fnk,r

Therefore (@) follows by passing to the limit in (@) and (a) as n — oo along a subsequence,
taking into account Proposition @, the Dominated Convergence Theorem, (R(), Remark and
Lemma B.5 (]

Proposition 3.9. For a.e. r € (0,79)

AVU - 2
(73) E’(r)zer*N/ [AVU - v” g

+r1’N/ (div(8) + 2 — N)AVU - VU dy
B, H B\l

+r1‘N/B . (f(div(B) + N —2)+Vf-B)Udy

+r1—N/B \jdAVUVU) -ﬁdy—%l‘N/B . Js(AVU) - VU dy,
AL at

if (1) hotds, and

P
(74) E’(r)22r2‘N/ [AVU - v[? ds — r2=N

fU%dS + (N — 2)7‘1_N/ fU? dy
B, H 8B, B,

AVU -y =

JRE /B \f(AVa.VU)(div(BH?—N) dy +2T1_N/B fo

AL H
+ rl—N/ (dAVUVU) - Bdy — 2r1—N/ ~J3(AVU) - VU dy
B\l B\
if () hotds.
Proof. Estimates (@)—(@) are direct consequences of (@), (@), and (@) O
We now introduce the Almgren frequency function, defined as
E(r)
H(r)
The above definition of A is well posed thanks to Proposition Ell

(75) N:(0,70) 5 R, N(r):=

Proposition 3.10. If either assumption (@) or assumption (@) hold, then N € WI})’Cl((O,ro])
and, for any r € (0,7¢],

(76) N(r) > =2n3(r).
Furthermore, for a.e. v € (0,r9),

(77) N'(r) > V(r) +W(r)
where

or (( Jos, 5P S ) ( fp, 1S = (fp, UAVU - dS>2>
>0

(78) V(r) = 2
(fop, nU2as)

(79) W(r)=0 (r%*ﬁ) (1+N(r)) asr—0".
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Proof. Since 1/H,E € W,21((0,70]), then N' € W5} ((0,7¢]). Furthermore (@) directly im-
plies ([f6).
By(2), for a.e. 7 € (0,79)

oy BOHE) — B _ BWH) - 2E%0)  BroW)
NO==""Tm T me D
E'(r)H(r) — 274728 UAVU -vdS)?
_EWHD - Hz(é‘)mr Lo

as r — 07. By Proposition @, Proposition @, (@) and (@)

/ ) ((AVU - VU)(div(B) + 2 — N) — 2J3(AVU) - VU + (dAVUVU) - 5) dy
BT

SO(r)/ VU dy
BT

< O(r)/ (AVU - VU - fU*)dy + O (TW) / pU?dS asr— 0.
BT 9B,
By (B9), (Bd), and (1)
/ futdy<o (TW) / VU2 dy+0 (TW‘N) / U2 ds
B, B, \I' 0B

By

as 7 — 07 and, by (1Y), the same holds for [, (div3 — N + 2)fU? dy. In the same way from (@)
it follows that, if (H1|) holds,

/vf.ﬂU%lygo(rﬁ)/ ~(AVU~VUdy—fU2)+O(r%)/ uU? ds
B, B\T 9B,

asr — 0t.

Under assumption (@)7 by Remark @, (@), (@), (@) (@), (@) and Holder’s inequality,

AVU -y - ~
/ ~ nydy:0<r>/ VU dy
B\’ M B\’

2

< 06 VUl iy ( [ 1w dx)

Nl

so(r“ﬁ) / ~(AVU-VU—fU2)dy+Lr/ pU?ds | x
B\l ne(r) B,

. 2
X / (AVU~VU—fU2)dy+f/ pU%ds
B.\T " JoB,

<0 (r) /Br\f(AVU VU = JU2)dy + O (r~ et /SBT U dS.

N=

Under assumptions (@)7 thanks to Remark @ and (@),
fU?ds =0 (r*7?) / pU? ds.
B, B,

Collecting the above estimates, we conclude that (ﬁ), (@) and (@) follow from (@)or (@) under
hypotheses (@) or (@) respectively. From the Cauchy—Schwarz inequality we also deduce that
V>0 ae. in (0,79). O

We now prove that A/ is bounded.
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Proposition 3.11. There exists a constant C' > 0 such that, for every r € (0,7¢],
(80) N(r)y<C.
Proof. By Proposition there exists a constant £ > 0 such that, for a.e. r € (0,79),
(N +1)(r) 2 W(r) > —rr™ 5 (N (r) + 1),
Since N'+1 > 0 by (@) and the choice of rq in (@), it follows that
(log(N + 1)) > —rr~1Hwem,

An integration over (r,rg) yields

N(r) < =1 +exp (HNL%rgﬁfV) (N (ro) +1)
and the proof is thereby complete. O
Proposition 3.12. There exists the limit
(81) = Tl_i>r([)l+ N(r).

Furthermore v is finite and v > 0.
Proof. From Proposition and (@) there exists a constant £ > 0 such that

N'(r) > W(r) > —rr 552 (W(r) + 1) > —k(C + 1)r "% for ae. r € (0,7).
Then

4 (py + HEEVINE29 ) 5

dr 4e
for a.e. r € (0.79). We conclude that _lim, ,o+ AN (r) exists; moreover such a limit is finite thanks
to (@) and (@) Furthermore from (@) and ([/6) we deduce that v > 0. O

Proposition 3.13. There exists a constant a > 0 such that, for every r € (0, 1],

(82) H(r) < ar?.

Furthermore for every o > 0 there exist oy > 0 and v, € (0,7r0) such that, for every r € (0,7,],
(83) H(r) > a,r®e.

Proof. For the proof in a similar situation we refer to [18, Lemma 5.6]. O

Proposition 3.14. The limit lim,_,o+ r~2YH(r) exists and is finite.

Proof. For the proof in a similar situation we refer to [18, Lemma 6.4]. O

From the properties of the height function H derived above, in particular from estimate (@),
we deduce the unique continuation property stated in Theorem [L.1l.

Proof of Theorem . Let u be a weak solution to (E) such that u(x) = O(|z|*) as |z| — 0% for
all £ € N. To prove that v = 0 in Br, we argue by contradiction and assume that « % 0. Then
we can define a frequency function for U = wo F as in (a), (@) and (@) Choosing k € N
such that k& > v + %, we would obtain that H(r) = O(r?*) = o(r*»*?) as r — 0, contradicting
estimate (B3). O

4. THE BLOW-UP ANALYSIS

In this section we perform a blow-up analysis for scaled solutions to (Ej) To this aim we first
study the spectrum of (f), which plays a crucial role in the classification of blow-up profiles.
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4.1. Neumann eigenvalues on SV~1\ 3. In this section we study the spectrum of (B) We
recall that 1 € R is an eigenvalue of (E) if there exists v € HY(SV=1\ X)\ {0} such that

(84) / Vsn-n\5t) - Vgn-1\50dS = u/ YpdS for any ¢ € HY(SV1\ ¥).
SN-1\% SN-1\%

A Reélich—Kondrakov type theorem is needed to apply the classical Spectral Theorem to prob-
lem (B).

Proposition 4.1. The embedding H*(SN=1\ X) — L*(SN~1) is compact.

Proof. Let {¢,, }nen be a bounded sequence in H!(SV =1\ ). We observe that S171 and SV 1 are

smooth compact manifolds with boundary and that the sequences of restrictions {¢”|SN*1}neN
T

and {(Z)n‘SN_l }neN are bounded in Hl(S]_X_l) and H'(SY1) respectively. Then we can extract

nen converges in L2(SY™1) by the classical Rellich-

Kondrakov Theorem on compact manifolds with boundary, see [5]. Proceeding in the same way
for {¢n, ’SN’I }nEN in H*(SY™1), we conclude that there exists a subsequence {ns, then which

converges both in L? (S]_V*l) and in Lz(Sj\_ffl), hence in L2(SN-1). O

a subsequence {¢y, tren such that {qbn‘SN—l}
+

Proposition 4.2.

(i) The point spectrum of (E) is a diverging and increasing sequence of non-negative eigenval-
ues {pk tken of finite multiplicity and the eigenvalue pg = 0 is simple. Letting N be the
multiplicity of py and Vi be the eigenspace associated to py, there exists an orthonormal
basis of L*(SN~1) consisting of eigenfunctions {Yy.i}ken.i=1... N, such that {Yi}iz1. N,
is a basis of Vi for any k € N.

(i) For any k € N

k(k + 2N — 4)

(85) o = 1
Moreover any eigenfunction of (E) belongs to L>°(SN—1).

Proof. The proof of (i) follows from the classical Spectral Theorem for compact self-adjoint oper-
ators, taking into account Proposition Y.1. We prove now (ii). If 4 is an eigenvalue of (fj) and ¥

. . . _ —92\2
an associated eigenfunction, let o := —¥ + 4/ (%) + p and

W (rf) := r°¥(9), for any r € [0,00), # € SV 71\ .

Since W is an eigenfunction of (B) then W is harmonic on B; \ T’ and %t}f = %TKV =0onT.
Therefore we deduce from [10] that there exists k € N such that ¢ = & and so u = w.

Moreover from [[10] it also follows that W € L®(B;) hence ¥ € L>(SN-1).
Viceversa, if we let kK € N and define W in cylindrical coordinates as

kt
W (2,7 cos(t), rsin(t)) := r? cos (2> for any 2’ € RN=2, 1 €[0,00), and t € [0, 27],

then W is harmonic on B; \ T’ and %J;KV = %;KV = 0 on I. Since W is homogeneous of degree
k/2, then

W(rf) = rglll(o), for any 7 € [0,00), and § € SN\ %,
where ¥ = W|SN_1. Then from

P <k(k42)\ﬂ(9) + w\l/(ﬁ) + Agwllll(ﬁ)) =0, r€[0,00), SN \x,

we deduce that ¥ solves (B) with p = w. -
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Remark 4.3. The traces of eigenfunctions of problem (E) on both sides of ¥ (i.e. the traces of
restrictions to Sf ~!and 85 ~1) cannot vanish identically.
Indeed, if an eigenfunction ¥ associated to the eigenvalue py is such that the trace of \II|SN71
+

on ¥ vanishes, then the function W (z) := |x|*/?¥(x/|x|) would be a harmonic function in RN \ T
satisfying both Dirichlet and Neumann homogeneous boundary conditions on the upper side of
the crack, thus violating classic unique continuation principles.

4.2. The blow-up analysis. Throughout this _section we let u € H'(Br \ T) be a non-trivial
weak solution to (m) with f satisfying either (@) or (@)7 U=wuoF € H (B, \T) be the
corresponding solution to (RI), ro be as in (#7) and 1 be as in Proposition @ For all A € (0,79),
let

(86) W(y) == for any y € By-1,, \ T

For any A € (0,79) it is easy to verify that W* € HY(By-1,, \I') and W* satisfies

/ AW () - Voly) dy — N2 / FON WA ()éy) dy = 0
By-1, \[

BA_17‘1

for any ¢ € H&vaBrlrl (Ba-1p, \f) In other words W is a weak solution of
—div(AA)VIWA) = N2 F (A )W, in By-1,, \ T,
ANV vt = ANV WA v~ =0, onT,

for any A € (0,7¢). Since By C By-1,,, for all A € (0,r9), it follows that, for any A € (0,79),

(87) /B ACOTIG) - Vo dy 37 [ FOpW o) dy =0

By

for any ¢ € Hy 55, (B1 \ T). Furthermore by a change of variables, (@) and (@),
(88) / p(AO)|[W(0)|2dS =1 for every A € (0,r¢).
SN—-1

Proposition 4.4. Let W be as in (E) Then {W*}xe(0,r0) 15 bounded in H' (B, \T).
Proof. We have

A2-N 2 4n7(N)
VW2 dy = / VU 2dy< — = N(N\ +f7.
/Bl\f' PWE Y Sy VWIS T N T

by (Bd). Then thanks to (8d), (d), (td), ), (1), and Ed) we conclude. O

The following proposition is a doubling type result.

Proposition 4.5. There exists a constant Cy > 0 such that for any X € (0,%) and T € [1,2]

(39) S H(TN) < HQ) < GH(T),
1
(90) / WA (y) Py < 2V Cy / WA )P dy,
BT Bl
and
o [ vwwkay <o [ mwte)Pay,
B\l B\l
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Proof. From (@), (t@)7 (@), and (@) we deduce that there exist two constants k3 > 0 and kg > 0
such that, for any r € (0,79),

2 25(r) _H'(r) _2N(r) k1 _ K2
r r H(r) r - r

Then (@) follows from an 1ntegrat10n in (A\,TA) of the above inequality. Furthermore from (@)
we obtain that, for any A € (0,7) and T € [1,2],

-N N
Ry = s [ W00t < s [ wwR
—cu2¥ [ W)
B

In the same way (@) follows from (@) O

Proposition 4.6. Let M be as in Proposition @ and W be defined in (@) Then there exist
M >0 and Ao > 0 such that for any X € (0, \o) there exists Tx € [1,2] such that XTI\ ¢ M and

(92) / OWAAS <M [ (VWP + W) dy
BBTA BT)\\F
Proof. Since {W*}¢(0,r0/2) is bounded in H(B; \ I') by Proposition @, (@) and (@), then
(93) limsup/ (VW2 + W) dy < +oo.
A—=0t JBo\T

By the Coarea formula, for any A € (0, %) the function
)= [ (VWP AR dy
BT
is absolutely continuous in [1, 2] with weak derivative
gr(r) :/ (VW2 + W2 dS for a.e. € [1,2],
4B,
where the integral [, |[VW*|2dS is meant in the sense of Remark @ To prove the statement

we argue by contradiction. If the conclusion does not hold, for any M > 0 there exists a sequence
{An}nen C (0,79/2) such that lim, o A, = 0 and

/ (|VW>\" 2
0B,

for any n € N and r € [1,2] \ 5~M, and hence for a.e. 7 € [1,2]. Hence

+ [WAn + WA ?) dy

3 ds > M/ (VW2
B\

g, (r) > Mgy, (r) for any n € Nand a.e. r € [1,2].
An integration in [1,2] yields
limsup gy, (1) < e limsup gy, (2)
n—soc0 n—o00
hence

hmlnfgk( ) < e Mlimsup gx(2).
A—0t A—0+

In view of (@), letting M — oo we conclude that

lim inf (VW + W ?) dy = 0.
A—0t Bl\f‘

Then there exists a sequence {p,, } xen such that We» — 0 strongly in H(B;\TI') as n — co. Due to
the continuity of the trace operator v; defined in Proposition ﬁand (ILG), this is in contradiction
with (Bd). O
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Proposition 4.7. There exists M > 0 such that
/ IVWATN2dS <D for all A € (O,min{%o,Ao}) .
SN—l

Proof. Since

AN H(\)
VWA 2gs = 22 / VUMy)?dS =T33 N / VW2 dS,
[ 19w as = S [, Ivuon N HOT o, T

then, by (@)7 (@)7 (Eb, (@), and the fact that 1 < Ty < 2, for any A € (O7 min {%", )\0}) we have
that

/ |VWAT*|2dS§201M/ (VWP + W) dy
SN71 BT)\\F

<2V M (IVWDAPR 4+ [WDA2) dy.

B;\[

Therefore we conclude thanks to Proposition @ O

Thanks to the estimates established above, we can now prove a first blow-up result.

PI‘O%OSitiOD 4.8. Letu € H? (BR@, u# be a non-trivial weak solution to (m), with I defined
H?2

in ,(E) and f satisfying either (H1) or (HY), and let U = wo F be the corresponding solution
to (Rl). Let ~y be as in (@3 Then
k

(94) there exists ko € N such that v = ?0.
For any sequence {\p}tnen with lim, oo A\, = 0 there exists a subsequence {A,, tren and an
eigenfunction ¥ of problem (E) associated to the eigenvalue iy, such that ||¥| 2gv-1) =1 and

U()‘ley) Y . 1 I

— = Y'Y | = strongly in H*(B1 \ T).

H(\n,) [yl

Proof. Let W* be as in (@) for any A € (0, min {2, Ao }) and let us consider a sequence {A, }nen
such that lim,, .o A, = 0. From Proposition (WA 2 X € (O,min{%‘],)\o})} is bounded in
H(B; \T). Therefore there exists a subsequence {W*" ™}, oy ¢ HY(By \T') and a function
W e HY(B; \T) such that W**™ i — W weakly in H'(B; \ T'). By compactness of the trace
operator -y, (see Proposition @)7 (@), and (@), it follows that

(95) W?2dsS =1
8B1

and so W # 0 on By \ T. )
By Hoélder’s inequality and (@) we have that, for every ¢ € H(B; \ T),

(96)

A2 : FOYW(y)e(y) dy‘

svnm.)(l)(/ VWA dy + / |WA|2ds> (/ Vel dy + ¢2ds>.
B\l 9B, B)\[ 9B,

By (@) and a change of variables we have that

LN Wiz
(o7 Ry 1) = S [ 1001 ay )

de
= SN,g ATFE

1

f”L%“(BU —0 asA—0".
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From (@), (@), the boundedness of {WW*} in H'(B; \ T") (established in Proposition @) and of
the traces (following from Proposition @), we deduce that

(98) dm [ FOu T, W ot dy = o
1

for every ¢ € H' (B \Ii)
Let ¢ € Hj 5p, (B1\T). We can test (@) with ¢ to obtain

(99) /B \F A, T, y) VWD (y) - Vo (y) dy

= 0T, [ FOw T, )W ()6 () dy,
1
for any k € N. Since W™+ ne — W weakly in H'(By \ T'), by (E) we have that

(100) klim A T, ) VWD (y) - V(y) dy = / VW -Vody.
=0 J B\ Bi\T

Therefore, for any ¢ € H&,aBl (B; \T') we can pass to the limit as k — oo in (@) thus obtaining,
in view of ([L0() and (Pg),

VW -Ve¢dy =0,
B\l
i.e. W is a weak solution of
—AW =0, on By \T,
(101) FW oW 0 P
Ea e on I

We note that, by classical elliptic regularity theory, W is smooth in B; \f‘ }
In view of (@r) and Propositions @ and B.7, by scaling we have that, for every ¢ € H'(B; \TI),

(z) [ \F A, T, ) VWD (y) - Vo(y) dy

- ()\leTAnk )2 B f()\nkT/\ﬂk y)W)\nkTAnk (y)¢(y) dy

N /33 (A()‘nkTAnk y)VW)\nkTAnk (y> : V) ¢(y> ds.

Thanks to Proposition @ and (El) there exists a function h € L?(0B;) such that
(103) (A, T, y) VWD (y) - v) —= b weakly in L*(9By),

up to a subsequence. By the weak convergence WD W oin H'(B, \I), (@), (@)7 and
(), passing to the limit as k — oo in (), we obtain that

(104) VW - Vedy = hé dS
B\l 0B,

for any ¢ € H' (B, \f) From the compactness of the trace operator v; (see Proposition @) and
(@) it follows that

lim (A(An, T, y) VWD () ) W Tani () dS = AW dS.
k—o0 6B1 k 8B1

Therefore, recalling estimates (@), (@), and the boundedness of {W*} in H'(B, \f)7 choosing
¢ = WD in ) and passing to the limit as kK — oo, we obtain that

(105) lim A Ty, y) VWD g wwAneDang gy — / AW dS.
k— o0 B\l k OBy
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From () and (@) it follows that

lim A Ty, y) VWA Do o gwwAneDan, gy — / VW |2 dy
k—o0 B\l k Bl\f‘

and so, thanks to (@),

(106) WD 5 W strongly in H'(By \ I).

For any k € N and r € (0,1) let us define
Fulr) = rziN/ ~(A()‘nkT)\nk y)VW)\”kTA"k WAk Tan,
BT

— T, 2 F O I, ) WA o 2 dy,

Hy(r) = Tl_N/ O, T, y) [T
9B,

2dS, and Ni(r):=

n

By a change of variables it is easy to verify that, for any r € (0,1),
E E(\,, Ty, T
G O Do, 7) =N, T, 1)
Hi(r)  H(An,Ix,,7) g
For any r € (0,1), we also define

Hup(r) = rl_N/

OB,

(107) Ni(r)

E
\W|*dS, Ew(r) ::r2_N/ |[VWPdy and Ny (r) := W(r).
. B\I Hyy (r)

The definition of ANw _is well posed. Indeed, if Hy (r) = 0 for some r € (0,1), then we may
test the equation (ﬁl) on B, with W and conclude that W = 0 in B,. Thanks to classical
unique continuation principles for harmonic functions, this would imply that W = 0 in By, thus
contradicting (99).

Thanks to (|LOG (@)—(@) together with the boundedness of {W*} in H'(B; \ T), (B), (@),
and Proposition , passing to the limit as k& — oo in ([L07) we obtain that

(108) Nw (r) = klim Ni(r) = klim N, Ty, )=~ foranyre (0,1).

ni

Then Ny is constant in (0, 1). Following the proof of Proposition in the case f=0and g =0
(where g is the function defined in (H)ffa)), so that A =Idy and p = 1, we obtain that

2 (( Jon, |B51 aS) (fom, W2dS) = (fop, WY dS)2>
(Jop, W2 dS>2

2
for a.e. v € (0,1). It follows that ([, |9Y]" dS) ([,p, W2dS) = (fyp, WSEdS) " for ac.
r € (0,1), i.e. equality holds in the Cauchy-Schwartz inequality for the vectors W and %—VX in
L?(0B,) for a.e. v € (0,1). It follows that there exists a function ((r) such that
ow
(109) W(r@) = ((r)W(rf) for any § € S¥71\ ¥ and a.e. 7 € (0,1].

Multiplying by W (rf) and integrating on SN¥~! we obtain

0=Ny(r)> >0

/S oW (Or)W (r8) dS = ((r) W2(0r)dsS,

N-—-1 6V SN—-1

so that ((r) = 2’?“}’[/((72) = 1 by Proposition @ and () Integrating (@) between r € (0, 1) and
1 we obtain that

W(rf) = r"W(160) = r"¥ () for any § € S¥ 1\ ¥ and any r € (0, 1],

where ¥ = Wign-1\5;. Then ¥ € H'(SV~!\ ¥); furthermore, substituting W (rf) = r7¥(6) in
(IL01)) we find out that W is an eigenfunction of (ff) with (v + N — 2)v as an associated eigenvalue.
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Hence by Proposition @ there exists kg € N such that (y + N — 2)y = w. Recalling
from Proposition B.12 that v > 0, we then obtain (@)

To conclude the proof it is enough to show that W*m« — W strongly in H'(By \ I') (possibly
along a subsequence). Since {W*n }pen is bounded in H'(B; \T) by Proposition @ there exists
a function W € H'(B; \T) and T € [1,2] such that W*" — W weakly in H'(B; \ T') and
Ty, — T, up to a subsequence.

Moreover, since {W*" P ri Yy ey and {|[ VWA Ani |V oy converge strongly in L2(By) by (),
they are dominated by a measurable L?(B;)-function, up to a subsequence. Similarly, thanks to
(BY), we can suppose that, up to a subsequence, the limit

()‘nka )
= i "k
C=
exists and it is finite and strictly positive. Then for any ¢ € C°(B;) we have that
lim Wk”k( )o(y)dy = lim T / W (T, y)¢(Tn,, y) dy
[e’e] B _,

k—oc0

Any,

H(\, T
lim T)]\V N )\nk T’\"k n.k( )(Zs(T)\ y) dy
k—oo "Mk Tk

TNV [ W) dy =V [ W/T)o) dy,

BT*I Bl
thanks to the Dominated Convergence Theorem. By density the same holds for any ¢ € L?(B;).
It follows that Whne — /W (-/T) weakly in L?(B;). Hence, by uniqueness of the weak limit, we
have that W () = /(W (-/T) and W — \/CW (-/T) weakly in H'(B; \ I'). Furthermore

im [ WA @Ry = Jim T [ W@, R dy
k— oo Bl\f k— oo Tk 1 \F
Ank
_ N N-—2 kT~ Ang T, Any, 2
im0 2 e | Ty

Ang

—rc [ WPy = [ V)R
BTfl\F Bl
Then we can conclude that Wi — W = /(W (-/T) ﬁong@ in H'(B \I‘ . Moreover,

by compactness of the trace operator v; (see Proposition ), and (BY), we deduce that
Jon, W2dS = 1. Then, since W (rf) = r# ¥(0), we deduce that

= /W (%0) = (Tio>%rk20\l’(9) = <T<k) W (ro)

and . c
1= W?dS=_—> [ W?dS=_—,
9B, T Jop, T*o
thanks to (@) Therefore W = W and the proof is complete. O

We are now in position of prove Theorem E

Proof of Theorem |1.4. Let us assume that Tr{ u(z) = O(|z|¥) as [2| = 0%, z € T, forall k € N
(a similar argument Works under the assumption Trp u(z) = O(|z|*)). Letting U = uo F, by the
properties of the diffeomorphism F described in Proposition @ we have that Tr U(z) = O(|z|%)
as |z| = 07, so that, for all k € N,

(110) INF T U)o gymm) = 0 as A — 07,
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On the other hand, if, by contradiction, u # 0, by Proposition @ and classical trace theorems
there exist kg € N, a sequence \,, — 07, and an eigenfunction ¥ of problem (B) such that

(a11) nlgrolo [ Trli U()Z;'()){LL;(Bmf) _ HTrlir (|y\7\1’ (%))‘

where the above limit is nonzero thanks to Remark @ Combining () and () we obtain

# 0,

L2(B1NI)

that
vV H(M,
lim #:O for all k € N,
n— oo n
thus contradicting estimate (@) O

5. ASYMPTOTICS OF THE HEIGHT FUNCTION H(\) AS A — 0", WHEN N >3

In dimension N > 3, we can further specify the behaviour of U()\-) as A — 0T, deriving the
asymptotics of the function H(\) appearing as a normalization factor in the blowed-up family
(@) Let {Yki}ren,i=1,..n, be the basis of L2(SV~1) given_by Proposition @ Let N > 3,
u € HY (B \T') be a weak solution to (E), with I" defined in %( ) and f satisfying either @)
or (@)7 and let U = u o F' be the corresponding solution to (R1)). For any A € (0,79), k € N and
i=1,..., N we define

(112) Ori(A) = AN_lU(Ae)Yk,i(e)ds
and
(113)  Trs(V) ::_/ (A —Tdy)vo - Yo Y/l
B\l lyl
+ f(y)U(y)Yk,i(y/lyl)dwa/ (A—T1dn)VU - LY5i(y/ly]) dS.
By OBy ‘y|

Proposition 5.1. Let kg be as in Proposition B Then, for anyi=1,..., Ny, and r € (0,ro],

L IN+ko—4 [T oy ko

) eraa) =3 pualr) 4 g ey [ Tt
k —N+2—ko r

* m/o s%ilrko,i(s)@) +0()\k70) as A — 0t.

Proof. For any k € N and any ¢ = 1,..., Ny we consider the distribution {y; on (0, r¢) defined as
20 Crio iy = [ ) ( [, F00U00,..0 dsg) i
[ A1) VU Y (N Yona 010 d,
By \T

for any w € D(0, 7).
Since Yy ; € L .(0,70) by (), we may consider its derivative in the sense of distributions. A

loc
direct calculation shows that

(115) ki) = AN

in the sense of distributions on (0,7¢). From the definition of ( ;, (@), and the fact that Yj ; is a
solution of (B4) we deduce that

N -1
—Li) = Tk + S50k (N) = GeaY)

in the sense of distribution in (0,7(); the above equation can be rewritten as

7(>\N71+k()\7§¢k7i()\))’)/ = AN*Hng,iO\),



UNIQUE CONTINUATION FROM A CRACK’S TIP UNDER NEUMANN BOUNDARY CONDITIONS 29

thanks to (@) Integrating the right-hand side of the equation above by parts, since () holds,
we obtain that, for every r € (0,r9), k € Nand i = 1,..., N, there exists a constant ¢y ;(r) such
that

‘ k L
B pra(N) = —AVHET () — SA VL (C’%m # [ ds)

in the sense of distribution on (0,70). Then @ () € W21 (0,79) and a further integration yields

loc

(116) ori(A) =A% <r— ori(r) + / sTNFI=E T (s) ds)
A

(/ g NH1-k <Ck,i(7")+/ tgflT;“-(t) dt> ds
A s

_k 2N +k—4 T _k
(’l‘ ggpk’i(T)—‘rm/)\ s N+1 éTk,z(S)dS)

ke (r)r N2k ANty o
Az 7 i 2 T, .
4 AN+k-2) 2N+h-2) C’“(’")*/A t ki(t) dt

Now we claim that, if kg is as in Proposition @, then

[N

(VB

A

+
Do |

[SIE

A

(117) the function s — s*N“*kTOTkO,Z-(s) belongs to L'(0, 7).
To this end we will estimate each terms in () Thanks to (@), Holder’s inequality, a change of

variables and Proposition .4, we have that

N—lY ]
/ (A 1dy)VU - Vn-1Y,i (y/]yl)
BAT |

< const (/ i |VU|2dy> (/ i VSNIYkO,i(y/yDzdy)
BAF BT

2
< consts Z s H(s) </ VWA (y))? dy) < const sV 1\ /H(s).
B\

From Holder’s inequality, (@), (@), and Proposition @ it follows that

(/B |f(y)|y,3oyi(y/|y)dy>

s

dy

1Y
<eonst [ o VWL,
B:\I' [yl

S

1
2

‘/B f(y)U(y)Yko,i(y/Iyl)dy‘ < (/B FW)IU(y) dy)

} !
< const sV (/B . VU |? dy+8N2H(S)> (/ i IVYko,z‘(y/ly)IQdy+$N2>

< const sV "Dt wi H(s).

Furthermore, in view of (@), for a.e. s € (0,79) we have that

[ a-tamv. kao,xy/wnds\ < comsts [ [VUIViulu/lu)] dS
OBs |y| OB,

and an integration by parts and Holder’s inequality yield, for any r € (0, ro],

T ko _ _m
[t ([ wuimslas ) as =2 [ w0,
0 9B, B

k " k
e (voae ) [ovnt ( / ~w|yko,i<y/|y|>|d5> ds
0 B\

< const (rl—kfz"\/ﬁrw /OT P Mds) ,
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reasoning as above. In conclusion, combining the above estimates with (@) and (@), we obtain
that, for any r € (0, 7g],

(118) / s_N+1_kTO|TkO,i(s)\ ds < const (rl_k‘é‘o VH(r) —|—/ s~ P H(s) ds)
0 0
r 2e— N 4e
< const <r +/ §NF2e ds) < const r N+2e
0
which in particular implies () By (), it follows that, for every r € (0, 7],

ko [ ko 2N + kg — 4 N1k keoCrg i (1)r—N+2=ko
119 A ; i L S =R () ds — 0,
(119) 2 <r 2 Pho,i(T) + 2N + ko —2) //\ s > Ty ils)ds AN T k=2

=0 ()\%0) =0 ()\*N”*%O) as A — 07

and s — 5%_1Tk07i(s) belongs to L'(0,7q).
Next we show that for every r € (0,rg)

.
(120) Cho i (T) +/ £F 17, (8 dt = 0.
0

We argue by contradiction assuming that there exists r € (0,79) such that () does not hold.
Then by (E) and ()

121 A BN ey, ) dt A= ot
3 ~N —,:—_ . 2 . .
( ) SOkOJ( ) Q(N + k_o _ 2) CkOy'L(T) +/}\ k07l( ) as

From Holder’s inequality, a change of variables, and (@)

70 ) U 2
/ A3 oy (V)2 dX < / AN=3 (/ |U(A€)|2dS) d\ = / %dy < 400
0 0 SN-1 By, v
thus contradicting ( . Hence ) is proved.
Furthermore from ([L1§) and ([L2(])

. ro, A
(122) ‘)\_N+2_%l(cko,i(r)+/ t%l_lTkO’i(t)dt>’:)\_N+2_k§ / £ 1T () dt
A 0

A
k
S)\—N+2—§/ tN—2+k0
0

t—N“—%TW(t)‘ dt

ko A _N+1—Fo _4e_ 4 ko +
<\ ‘t 2Tk0,i(t)’dt=0(xw+zs ) as A — 0F.
0

Then the conclusion follows form ()7 (), and () O

Proposition 5.2. Let v be as in (@) Then

lim =2 H(r) > 0.

r—0t
Proof. For any A € (0,7¢) the function U(\-) belongs to L?(S¥~1!). Then we can expand it in
Fourier series respect to the basis {Y% i }ren,i=1,....n, introduced in Proposition :

oo Ng

UA) =Y ori(\Yei in L* (SN,

k=0 i=1
where we have defined ¢y, ; () in () for any k € Nand any i = 1,..., N;. From (@), a change
of variables and the Parseval identity

oo Ng

(123) HO) =(1+00) [ U*00)dS = (1+00) Y Y lonsP,

C k=0 i=1
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We argue by contradiction assuming that lim,_,o+ r*Y H(r) = 0. Then by (), letting kg be as
in (b4,
lim A~ % ‘Pkoz()\) =0 foranyi=1,..., Ng,.

A—=0+
From () it follows that
_ko 2N + ko —4 T _ ko
(124) r 2 Sokoﬂ-(r) -+ 2(]\[-’—]%—2)/; S N+1-5 Tk071;(8) ds

koT_N+2_ko r ko
+2(N+ko—2)/ Thoils)ds =0
for anyre(O,@) andany i =1,..., N,

In view of (84), (112), (L1d), and (@j, (L24) implies that

(125) VHO) WA, : dS = @iy i(N) = O(Aﬁ“%) as A — 0F

SN-1

foralli=1,..., Ny,. From (@) with o = N‘fze we have that /H \/aT/\ T3 ina
neighbourhood of 0, so that () implies that

(126) WYy, dS = o(A%) —o(1) asA— 0"
SN-1

foralli=1,..., Ng,.
On the other hand by Proposition @ and continuity of the trace map 71 (see Proposmon @

for every sequence \,, — 07, there exist a subsequence {\,, } and ¥ € span{Yy,;, : m =14,..., Ni,}
such that
(127) ¥ p2@v-1y=1 and W — ¥ in L*(SV71).
From () and () it follows that
0= lim WA W dS = | U[72en1y = 1,

k—oo JgN-1

thus reaching a contradiction. O
We are now ready to prove he following result, which is a more complete version of Theorem @

Theorem 5.3. Let N > 3 and let u € H*(Bg \ T') be_a non-trivial weak solution to (m), with T
defined in (E) 7(5) and f satisfying either assumption (HY) or assumption (HY). Then there exists
ko € N such that, letting N be as in Section

(128) lim A'(r) = "0

r—0+ 2"
Moreover if Ny, is the multiplicity of the eigenvalue py, of problem (E) and {Yko,i}izl,..»,NkO is a
L2(SN~1)-orthonormal basis of the eigenspace associated to jiy,, then

(1200 A Fu(d) 5@ and AF (Vgru) (M) = Ve p® in L2(B1)  as A — 07,

where

(1, an, ) #(0,...,0) and, for alli € {1,2,..., Ny, },

(130) a; = ro/2 /S]H w(F(r0))Yi,,i(0) dS

1 T(9_N— %0 kos%ofl
+M/O ( SN+ -1 ~ 2pN—2+ko Thoi(s) ds
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for any r € (0,79) for some ro > 0, where we have defined Yy, ; in () and F is the diffeomor-
phism introduced in Proposition @

Proof. () directly comes from (94). Let U = uw o F and {A,}nen be a sequence such that
lim,, o0 A, = 0. By Proposition and Proposition there exist a subsequence {\,, }ren and
constants a1, ..., an, such that (a1y..., an,,) # (0,...,0) and

_ko N Y

20 k ~
A2 Uny) = 1912 ) @iV <|y|> in H (B, \T) as k — oo.
i=1
Now we show that the coefficients aq, . .. s QN do not depend on {\, }nen nor on its subsequence
{An; tren. Thanks to the continuity of the trace operator v; introduced in Proposition
k Nrko

A Un,) = Y Yy in L2(SVTY) ask — oo

i=1

""o

and therefore, letting ¢y, ; be as in () forany i =1,..., Ng,,

. Nko
lim A~ % gy i(An,) = lim Ao l2U (X 0) Yo i(0) dS = Zaj/ Yio.j Yio.i dS = .
k— o0 ’ k—oo JgN-1 = S§N—1

On the other hand by ()
.y ko _ko 2N + ko —4 _Nt1-ko
i 3 i 0n) = F o) + ey [ E T d
kOT—N-‘rQ—kO T ko 1
—_— T Y g,i(s) ds,
- 2(N+k072)/0 §F " Yhoa(s) ds
and r € (0,79], where we have defined Yy, ; in () We deduce that

ON +ho—4 [T N1t

i 21, i(s)d

2(N+k:0—2)/0 s ko.i(8) ds
kOT_N+2_kO

r ko,
o 7T Yioi(s)d
+2(N+k072)/0 5 Thoi(s) ds

and so a; does not depend on {\, }nen nor on its subsequence {\,, }ren thus implying that

foralli=1,..., N

0

k
(131) oy = r_Togakm(r) +

NkO
(132) ANEUOw) = 1y F Y Y. <y|) in HY(B; \T) as A — 0+
: y
=1
To prove () we note that
A Fua) = A FUONGA(), Y (A—%”u(/\x)) -V (A—%"U(Ax)) (Gr(2)) g, (@),

where Gy (z) = $F~2(A\z) and F is the diffeomorphism introduced in Proposition EI We also
have by Proposition that

Ga(z)=2z+0(\) and Jg(x)=Idy+O(N)
as A — 01 uniformly respect to z € By. Then from () we deduce () and () follows from

(131) and (112). 0
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