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Dpb4 promotes resection of DNA double-strand
breaks and checkpoint activation by acting in two
different protein complexes
Erika Casari 1, Elisa Gobbini1, Marco Gnugnoli 1, Marco Mangiagalli 1, Michela Clerici 1 &

Maria Pia Longhese 1✉

Budding yeast Dpb4 (POLE3/CHRAC17 in mammals) is a highly conserved histone fold

protein that is shared by two protein complexes: the chromatin remodeler ISW2/hCHRAC

and the DNA polymerase ε (Pol ε) holoenzyme. In Saccharomyces cerevisiae, Dpb4 forms

histone-like dimers with Dls1 in the ISW2 complex and with Dpb3 in the Pol ε complex. Here,

we show that Dpb4 plays two functions in sensing and processing DNA double-strand breaks

(DSBs). Dpb4 promotes histone removal and DSB resection by interacting with Dls1 to

facilitate the association of the Isw2 ATPase to DSBs. Furthermore, it promotes checkpoint

activation by interacting with Dpb3 to facilitate the association of the checkpoint protein

Rad9 to DSBs. Persistence of both Isw2 and Rad9 at DSBs is enhanced by the A62S mutation

that is located in the Dpb4 histone fold domain and increases Dpb4 association at DSBs.

Thus, Dpb4 exerts two distinct functions at DSBs depending on its interactors.
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DNA double-strand breaks (DSBs) are harmful genomic
lesions that threaten genome stability and cell survival.
Eukaryotic cells use two main pathways for the repair of

DSBs: non-homologous end-joining (NHEJ) and homologous
recombination (HR)1,2. HR requires that the 5′ strands at both
DSB ends undergo nucleolytic degradation (resection), generating
3′-ended single-stranded DNA (ssDNA) tails that can invade the
undamaged homologous DNA template3. DSB resection is initi-
ated by the binding to the DSB ends of the evolutionarily con-
served Mre11-Rad50-Xrs2/NBS1 (MRX/N) complex4. The Sae2
protein (CtIP in mammals) activates a latent endonuclease
activity of Mre11, which cleaves the 5′-terminated strands at both
DNA ends5. The resulting nick generates an entry site for both
Mre11, which degrades back toward the DSB end in a 3′–5′
direction, and the long-range resection Exo1 and Dna2 nucleases,
which catalyze extended resection in a 5′–3′ direction away from
the DSB6–13. The MRX complex is also necessary to recruit Exo1
and Dna2 to DSBs3.

Repair of DNA DSBs occurs within chromatin, raising the
question of how DSBs can be detected, signaled, and repaired
within this context. Different subfamilies of chromatin-
remodeling enzymes catalyze a broad range of chromatin mod-
ifications, which include sliding histone octamer across the DNA,
changing the conformation of nucleosomal DNA, or the com-
position of the histone octamer14. Eukaryotes have four sub-
families of chromatin-remodeling factors, namely SWI/SNF,
ISWI, CHD, and INO80/SWR. In yeast, the RSC and the SWI/
SNF complexes, two members of the SWI/SNF chromatin
remodeler family, promote MRX recruitment to DSBs and DSB
resection by catalyzing eviction of nucleosomes adjacent to a
DSB15–17. ssDNA generation at the DSB ends requires also the
Ino80 complex that participates in the eviction of nucleosomes on
either side of a DSB18–21.

Generation of DSBs elicits a cellular response, termed DNA
damage checkpoint, that senses DNA damage and transduces this
information to regulate several cellular processes, including cell
cycle progression, DNA repair, and DNA replication22. Key
players of the checkpoint cascade include the Saccharomyces
cerevisiae protein kinases Mec1 and Tel1, as well as their mam-
malian orthologs ATR and ATM23. Upon DNA damage recog-
nition, these apical kinases activate the downstream effector
kinases Rad53 (CHK2 in mammals) and Chk1. Rad53 and Chk1
activation require Rad9, which acts both as an adaptor between
Mec1 and Rad53 and as a scaffold to promote Rad53 autopho-
sphorylation and activation24–26.

In S. cerevisiae, Mec1 activation requires additional factors
including the highly conserved Ddc1-Mec3-Rad17 (hereafter
called 9-1-1) complex and the replication factor Dpb11 (TopBP1
in mammals)27–29. The 9-1-1 complex, structurally related to the
replication sliding clamp PCNA, recruits to DNA damaged sites
Dpb11, which in turn interacts with the checkpoint protein
Rad930–32. Dpb11–Rad9 interaction requires cyclin-dependent
kinase (Cdk1)-mediated Rad9 phosphorylation on the S462 and
T474 residues, which bind directly to the N‐terminal domain of
Dpb1132.

Dpb11 is also part of the DNA polymerase ε (Pol ε) holoen-
zyme, which is largely responsible for leading-strand synthesis
during DNA replication. Pol ε consists of Pol2, Dpb2, Dpb3
(POLE4 in mammals), and Dpb4 (POLE3/CHRAC17 in mam-
mals) subunits33–35. Both Dpb3 and Dpb4 contain a histone fold
domain, through which they interact to form a H2A–H2B-like
complex that is not essential for cell viability in budding
yeast36,37. In both yeast and mammals, the Dpb3–Dpb4 complex
binds H3–H4 tetramers and facilitates their transfer onto the
leading strand during DNA replication through an intrinsic
chaperone activity38,39. Interestingly, genetic studies reveal a role

for Dpb3 and Dpb4 in maintaining the silenced state of
chromatin40–42, suggesting that a defect in parental H3–H4
transfer in dpb3Δ and dpb4Δ cells might compromise epigenetic
inheritance. The maintenance of heterochromatin silencing also
involves the catalytic subunit of Pol ε40,41 and this function
appears to be dependent upon Dpb3 and Dpb4, which bind
double-stranded DNA (dsDNA) and increase Pol ε association to
it43.

Of note, in yeast, Drosophila melanogaster, and humans, Dpb4/
POLE3/CHRAC17 is also a component of the ISW2/hCHRAC
chromatin-remodeling complex40,44,45, which catalyzes nucleo-
some sliding through the ATPase motor protein Isw2/hSNF2H46.
In the budding yeast ISW2 complex, Dpb4 interacts with the
histone fold protein Dls1 that is considered a Dpb3 paralog47. In
the mammalian ISW2 complex, the catalytic hSNF2H subunit has
been implicated in the repair of DSBs by stimulating the asso-
ciation to them of the recombination protein BRCA148, while the
noncatalytic ACF1 subunit directly interacts with the NHEJ
protein complex KU70-KU80 and promotes its accumulation to
DSBs49,50.

Here we show that the lack of S. cerevisiae Dpb4 reduces both
histone removal from the DSB ends and MRX accumulation at
DSBs. The poor MRX retention in dpb4Δ cells leads to a defective
DSB resection. Furthermore, the lack of Dpb4 impairs activation
of the checkpoint response by reducing Rad9 association to DSBs.
Dpb4 promotes DSB resection and checkpoint activation by
acting in two different protein complexes. In fact, Dpb4 interacts
with Dls1 to promote Isw2 association to DSBs, histone removal,
and DSB resection, while it interacts with Dpb3 to promote Rad9
association to DSBs and checkpoint activation.

Results
The dpb4-A62S allele exacerbates the sensitivity to camp-
tothecin of tel1Δ and sae2Δ cells more severely than DPB4
deletion. Cells lacking Tel1 are specifically sensitive to camp-
tothecin (CPT)51, which stabilizes DNA topoisomerase I cleavage
complexes, yielding to replication-dependent DSBs52. We have
previously searched for extragenic mutations that exacerbated the
CPT hypersensitivity of tel1Δ cells53. Genome sequencing and
genetic analysis revealed that one of the mutations responsible for
the increased CPT sensitivity of tel1Δ cells was a single nucleotide
change in the DPB4 gene that caused the replacement of Ala62
with Ser. The synthetic cytotoxicity caused by the dpb4-A62S
allele turned out to be not specific for tel1Δ cells (Fig. 1a), as the
same mutation also exacerbated the sensitivity to CPT of sae2Δ
cells (Fig. 1b).

To understand whether the dpb4-A62S mutation exacerbates
the DNA damage sensitivity of tel1Δ and sae2Δ cells by
disrupting Dpb4 function, we analyzed the effect of DPB4
deletion. dpb4Δ tel1Δ and dpb4Δ sae2Δ cells were less sensitive to
CPT than dpb4-A62S tel1Δ and dpb4-A62S sae2Δ cells, respec-
tively (Fig. 1a, b), suggesting that the synthetic effect caused by
the dpb4-A62S allele is not due to loss of Dpb4 function.
Although the DPB4 deletion increased less severely the DNA
damage sensitivity of tel1Δ and sae2Δ cells compared to dpb4-
A62S, dpb4Δ cells were more sensitive than dpb4-A62S cells not
only to a high CPT dose, but also to phleomycin and methyl
methanesulfonate (MMS) (Fig. 1c). Altogether, these data suggest
that the dpb4-A62S allele increases the DNA damage sensitivity of
tel1Δ and sae2Δ cells by altering specific Dpb4 function(s).

Dpb4 promotes DSB resection and MRX association at DSBs.
To assess the possible role of Dpb4 in DSB repair, we directly
monitored ssDNA generation at the DSB ends by deleting DPB4
or introducing the dpb4-A62S allele in a haploid strain carrying
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the HO gene under the control of a galactose-inducible promoter.
In this strain, production of the HO endonuclease by galactose
addition leads to the generation at the MAT locus of a single DSB
that cannot be repaired by HR due to the lack of the homologous
donor loci HML and HMR54. Cells exponentially growing in
raffinose were transferred to galactose to induce HO expression
and genomic DNA was analyzed at different time points after HO
induction. Because ssDNA is resistant to cleavage by restriction
enzymes, progressively longer restriction fragments terminating
at the broken end are generated as 5′–3′ nucleolytic degradation
uncovers one after another SspI site (Supplementary Fig. 1). The
progression of resection can be monitored by following the
kinetics of appearance of these longer restriction fragments after
denaturing gel electrophoresis and Southern blot analysis with a
ssRNA probe that anneals to the unresected strand at one side of
the DSB. The intensity of each resection band to the total amount
of DSB products is used to measure the kinetics of resection. As
previously observed54,55, the resection products persisted
throughout the experiment, suggesting that resection initiates
asynchronously after HO-catalyzed DSB formation. The appear-
ance of the ssDNA intermediates at the HO-induced DSB was less
efficient in both dpb4Δ and dpb4-A62S cells compared to wild-
type cells, with dpb4Δ cells showing the strongest resection defect
(Fig. 2a, b).

The MRX complex binds rapidly to DSBs, where it initiates
DSB resection23. Thus, we used chromatin immunoprecipitation
(ChIP) and quantitative real-time PCR (qPCR) to monitor Mre11
recruitment near the HO‐induced DSB in wild-type, dpb4Δ and
dpb4-A62S cells expressing fully functional Myc‐tagged Mre11
(Supplementary Fig. 2a). As resection of the DSB ends has the
potential to cause a 50% decrease of input DNA, the ChIP signals
were normalized not only to the efficiency of DSB induction, but
also to the corresponding input for each time point. Mre11
association to the HO-induced DSB was lower in dpb4Δ and
dpb4-A62S cells than in wild-type cells (Fig. 2c), with dpb4Δ cells
again showing the strongest reduction. This decreased Mre11
recruitment was not due to lower Mre11 protein levels, as similar
Mre11 amounts could be detected in protein extracts from wild-
type, dpb4Δ, and dpb4-A62S cells (Fig. 2d). The reduction of
Mre11 association at DSBs correlates with the severity of the DSB
resection defect displayed by dpb4Δ and dpb4-A62S cells,

suggesting that the decreased Mre11 persistence at DSBs can
account for the resection defect displayed by these mutants.

Dpb4 promotes histone removal near DSBs. DSB repair occurs
within a chromatin context, in which DNA is packaged into
nucleosomes. The density of nucleosome packaging has the
potential to influence DSB repair and is regulated by ATP-
dependent chromatin remodelers, which use the energy derived
from ATP hydrolysis to evict, assemble, reposition or exchange
histones throughout the genome46. Chromatin immunoprecipi-
tation experiments indicate that nucleosomes are removed
around a DSB in both yeast and mammalian cells, supporting the
hypothesis that nucleosomes represent barriers to nuclease
activity15–21,56,57.

Dpb4 is part of the chromatin-remodeling ISW2/hCHRAC
complex40,44,45, which catalyzes nucleosome sliding58–60. Thus,
we asked whether the poor Mre11 association and the resection
defect displayed by dpb4Δ and dpb4-A62S cells are due to
nucleosome retention at the DSB ends. We used ChIP analysis
and qPCR to evaluate histone H2A and H3 occupancy
centromere‐proximal to the irreparable HO-induced DSB at the
MAT locus. To exclude possible effects of DNA replication on
histone association to DNA, HO expression was induced by
galactose addition to G2‐arrested cells that were kept arrested in
G2 with nocodazole. As expected, H2A and H3 signals near the
HO-induced DSB decreased in wild-type cells, while they
remained high in both dpb4Δ and dpb4-A62S cells, with dpb4Δ
cells showing the strongest removal defect (Fig. 2e). Taken
together, these findings indicate that Dpb4 is required for
nucleosome removal at DSBs, suggesting that the lack of this
function can account for both the poor MRX association at DSBs
and the delay of DSB resection of dpb4Δ and dpb4-A62S cells.

Dpb4 promotes checkpoint activation in response to DSBs. The
lack of Dpb4 impairs DSB resection, Mre11 association at DSBs,
and histone removal more severely than the presence of the
Dpb4-A62S mutant variant (Fig. 2). However, Dpb4-A62S
exacerbates the DNA damage sensitivity of both tel1Δ and
sae2Δ cells more severely than DPB4 deletion (Fig. 1a, b), sug-
gesting that the synthetic effects caused by Dpb4-A62S are due to
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Fig. 1 The dpb4-A62S mutation exacerbates the CPT sensitivity of tel1Δ and sae2Δ cells. a–c Exponentially growing cell cultures with the indicated
genotypes were serially diluted (1:10) and each dilution was spotted out onto YEPD plates with or without camptothecin (CPT), phleomycin (phleo), or
methyl methanesulfonate (MMS) at the indicated concentrations.
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(r1 through r6) detected by the probe. b Densitometric analysis of the resection products. The mean values of three independent experiments as in a are
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changes of Dpb4 function in cellular processes other than DSB
resection.

DSB formation leads to the activation of a checkpoint response
that depends primarily on Mec1, which promotes activation of
the Rad53 effector kinase61. Rad9 links the signal transduction
from Mec1 to Rad53 by acting as a scaffold to allow Rad53
intermolecular autophosphorylation and activation24–26. We
measured checkpoint activation in dpb4Δ and dpb4-A62S cells
after HO-induced DSB formation or phleomycin treatment, by
following Rad53 phosphorylation that is required for activation of
Rad53 as a kinase and is detectable as a decrease of its
electrophoretic mobility. When HO was induced by galactose
addition to exponentially growing cells, the amount of slowly
migrating phosphorylated Rad53 was much lower in dpb4Δ cells
than in wild type (Fig. 3a). Similar results were obtained also
when exponentially growing cells were treated with the radio-
mimetic drug phleomycin (Fig. 3b), indicating that Dpb4 is
required to activate a checkpoint in response to DSBs. By
contrast, the amount of the slowest migrating Rad53 form was
slightly higher in dpb4-A62S cells than in wild-type cells and
further increased in dpb4-A62S tel1Δ and dpb4-A62S sae2Δ cells
compared to dpb4-A62S, tel1Δ, and sae2Δ cells both after HO

induction (Fig. 3a) and phleomycin addition (Fig. 3b). Thus, the
lack of Dpb4 reduces Rad53 activation in response to DSBs,
whereas the Dpb4-A62S mutant variant enhances it.

As Dpb4 was shown to facilitate the association of the
checkpoint protein Rad9 with telomeres by an unknown
mechanism62, we analyzed Rad9 association at the HO-induced
DSB by ChIP analysis and qPCR in cells expressing fully
functional HA-tagged Rad9 (Supplementary Fig. 2b). Rad9
association to the HO-induced DSB was decreased in dpb4Δ
cells compared to wild type, while it was increased in dpb4-A62S
cells (Fig. 3c), although similar Rad9 amounts could be detected
in protein extracts prepared from wild-type, dpb4Δ and dpb4-
A62S cells (Fig. 3d). These findings indicate that Dpb4 promotes
Rad9 association at DSBs and checkpoint activation, and that this
Dpb4 checkpoint function is enhanced by the dpb4-A62S
mutation that leads to an increased Rad9 persistence at DSBs.

The finding that the dpb4-A62S allele increases Rad53
activation raises the possibility that the severe DNA damage
hypersensitivity of dpb4-A62S tel1Δ and dpb4-A62S sae2Δ cells
compared to tel1Δ and sae2Δ cells might be due to the
hyperactivation of the checkpoint response. If this were the case,
either RAD9 deletion or expression of the kinase defective
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rad53-K227A (rad53-kd) allele should decrease the DNA damage
hypersensitivity of dpb4-A62S tel1Δ and dpb4-A62S sae2Δ cells.
Indeed, RAD9 deletion suppressed the CPT hypersensitivity of
dpb4-A62S tel1Δ cells, as dpb4-A62S tel1Δ rad9Δ cells were as
sensitive to CPT as tel1Δ rad9Δ cells (Fig. 4a). Furthermore,
RAD9 deletion was epistatic to dpb4-A62S with respect to the
CPT sensitivity of sae2Δ cells. In fact, dpb4-A62S sae2Δ rad9Δ
cells, which were less sensitive to DNA damaging agents than
dpb4-A62S sae2Δ cells, were as sensitive as sae2Δ rad9Δ cells
(Fig. 4b).

Unfortunately, due to the poor viability of rad53-kd tel1Δ
double mutant even in the absence of DNA damaging agents, we
could not evaluate the effect of the rad53-kd allele on dpb4-A62S
tel1Δ cells. In any case, expression of rad53-kd, which partially
suppressed the DNA damage sensitivity of sae2Δ cells63, was
epistatic to dpb4-A62S with respect to the CPT sensitivity of
dpb4-A62S sae2Δ cells, as dpb4-A62S sae2Δ rad53-kd cells were as
sensitive to CPT as sae2Δ rad53-kd cells (Fig. 4c). Thus, Rad9 and
Rad53 kinase activity are required for Dpb4-A62S to increase the

DNA damage sensitivity of tel1Δ and sae2Δ cells, suggesting that
the enhanced checkpoint activation by Dpb4-A62S leads to DNA
damage-induced lethality in the presence of unrepaired DNA
lesions.

Dpb4 and Dot1 promote Rad9 association to DSBs by acting in
the same pathway and independently of Dpb11 and γH2A. In
both yeast and mammals, Rad9 association with chromatin
involves at least three pathways. First, Rad9 is constitutively
bound to chromatin even in the absence of DNA damage through
an interaction with histone H3 methylated at Lys79 (H3‐K79me),
a modification that is catalyzed by the methyltransferase
Dot164–69. Furthermore, phosphorylation of Ser462 and Thr474
Rad9 residues by Cdk1 leads to Rad9 interaction with Dpb1132,70,
which is recruited to DSBs by the 9-1-1 complex29,71. Finally,
DNA damage induces Rad9 binding to histone H2A that has been
phosphorylated at Ser129 (γH2A) by the checkpoint kinases
Mec1/ATR and Tel1/ATM55,72–74.
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Fig. 4 Dpb4-A62S increases the DNA damage sensitivity of tel1Δ and sae2Δ cells in a Rad9- and Rad53-dependent manner. a–c Exponentially growing
cultures with the indicated genotypes were serially diluted (1:10) and each dilution was spotted out onto YEPD plates with or without CPT.
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To investigate whether Dpb4 promotes Rad9 association to
DSBs by acting in one of the above pathways, we analyzed the
contribution of Dpb4 in supporting Rad9 association to DSBs in
cells that were defective in Rad9 binding to either H3‐K79me,
γH2A, or Dpb11. As expected, the lack of Dot1, which abolishes
H3‐K79me generation64–66, decreased Rad9 association to the
HO-induced DSB (Fig. 5a). A similar decrease of Rad9
persistence at DSBs could be detected upon expression of either
the rad9‐S462A, T474A (rad9-STAA) (Fig. 5b), or the hta1-S129A
allele (Fig. 5c), which abolish Rad9–Dpb11 interaction and γH2A
generation, respectively. Interestingly, DPB4 deletion did not
further decrease the amount of Rad9 bound to DSBs in dot1Δ
cells (Fig. 5a), indicating that Dpb4 and Dot1 promote Rad9

association at DSBs by controlling the same pathway. By contrast,
Rad9 association at DSBs was markedly decreased in both rad9-
STAA dpb4Δ (Fig. 5b) and hta1-S129A dpb4Δ (Fig. 5c) double
mutants compared to each single mutant, indicating that Dpb4
function in promoting Rad9 association at DSBs occurs
independently of Rad9-γH2A and Dpb11–Rad9 interactions.
Consistent with this conclusion, when HO was induced in
exponentially growing cells expressing fully functional Dpb4-HA-
tagged protein (Supplementary Fig. 2c), Dpb4 recruitment to the
HO-induced DSB requires neither the 9-1-1 complex nor the
interaction between 9-1-1 and Dpb11. In fact, the lack of Ddc1 or
the presence of the ddc1-T602A allele, which specifically abrogates
9-1-1 binding to Dpb1131, did not decrease Dpb4 association to
the HO-induced DSB (Fig. 5d).

Different interactors support Dpb4 functions in DSB resection
and checkpoint activation. The Dpb4 protein is shared by two
highly conserved protein complexes: the chromatin-remodeling
ISW240,44,45 and the Pol ε complexes33–35. In both complexes,
Dpb4 forms a dimer that resembles H2A–H2B by interacting
with two different histone fold proteins: Dls1 in the ISW2 com-
plex and Dpb3 in the Pol ε complex35,40,45.

Both Pol2 and Dpb2 subunits of the Pol ε complex are essential
for cell viability. We, therefore, investigated the effects of deleting
DPB3, DLS1, and the ATPase encoding gene ISW2 in order to
assess the contribution of Pol ε and ISW2 complexes in
supporting Dpb4 functions in DSB resection and checkpoint
activation. Deletion of ISW2 and DLS1, but not of DPB3, severely
reduced removal of H2A (Fig. 6a) and H3 histones (Supplemen-
tary Fig. 3) from the HO-induced DSB. Furthermore, isw2Δ and
dls1Δ cells showed decreased Mre11 association to the HO-
induced DSB, whereas dpb3Δ cells did not (Fig. 6b). Consistent
with the finding that Isw2 is the catalytic subunit, whereas both
Dpb4 and Dls1 help nucleosome sliding by ISW259, isw2Δ cells
showed a more severe impairment of Mre11 association to the
HO-induced DSB compared to both dpb4Δ and dls1Δ cells
(Fig. 6b). DPB4 deletion did not further decrease the amount of
Mre11 bound at DSB in isw2Δ cells (Fig. 6b), indicating that
Dpb4 and Isw2 promote MRX association by acting in the same
pathway. Finally, both isw2Δ and dls1Δ cells were defective in
resection of the HO-induced DSB compared to wild-type cells
(Fig. 6c, d). Altogether, these findings indicate that Dpb4
promotes histone removal, MRX association to DSBs, and DSB
resection by acting in the ISW2 complex.

It has been proposed that Dpb4 acts as an anchor point on
DNA for Isw275, prompting us to test whether the defect in
histone removal in dpb4Δ cells is due to a decreased association of
the Isw2 catalytic subunit to DSBs. The amount of Isw2 bound at
the HO-induced DSB was markedly reduced in dpb4Δ cells
(Fig. 6e), although similar Isw2 levels were present in both wild-
type and dpb4Δ cell extracts (Fig. 6f), indicating that Dpb4
promotes Isw2 association to DSBs. By contrast, dpb4-A62S cells,
which showed defective nucleosome eviction from DSBs (Fig. 2e),
exhibited increased Isw2 persistence at the HO-induced DSB
(Fig. 6e), suggesting that not only a decreased but also an
increased Isw2 association at DSBs might impair histone removal.
Consistent with this hypothesis, deletion of the negatively charged
C terminus of the D. melanogaster Dpb4 ortholog enhances DNA
binding but inhibits nucleosome sliding59.

In agreement with the conclusion that Dpb3 did not support
Dpb4 function in removing histones and in promoting Mre11
association to DSBs (Fig. 6a, b), dpb3Δ cells were not defective in
DSB resection (Fig. 7a and Supplementary Fig. 4). Instead, Dpb3,
but not the ISW2 complex, supports the Dpb4 function in
checkpoint activation. In fact, dpb3Δ cells, but not isw2Δ cells,
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Fig. 5 Dpb4 promotes Rad9 association at DSBs independently of γH2A
and Dpb11–Rad9 interaction and by acting in the same pathway of Dot1.
a–d Exponentially growing YEPR cell cultures of JKM139 derivative strains
were transferred to YEPRG to induce HO expression. Relative fold
enrichment of Rad9-HA (a–c) and Dpb4-HA (d) at the HO-induced DSB at
the MAT locus was evaluated after ChIP with anti-HA antibody and qPCR.
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gene. The mean values of three independent experiments are represented
with error bars denoting s.d. ***p < 0.005; *p < 0.05 (unpaired two-tailed
Student’s t-test).
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showed decreased Rad53 phosphorylation after HO induction
(Fig. 7b) or phleomycin treatment (Fig. 7c). Similarly, dpb3Δ cells,
but not isw2Δ cells, showed reduced Rad9 association at the HO-
induced DSB compared to wild-type cells (Fig. 7d). The lack of
Dpb4 did not further decrease the amount of Rad9 bound at DSB
in dpb3Δ cells, indicating that Dpb3 and Dpb4 act in the same
pathway to promote Rad9 association to DSBs (Fig. 7d).
Consistent with the finding that the ISW2 complex is not
involved in checkpoint activation, Isw2 and Dls1 proteins are not
required to increase the DNA damage sensitivity of dpb4-A62S
tel1Δ cells, as dpb4-A62S dls1Δ tel1Δ and dpb4-A62S isw2Δ tel1Δ

cells were as sensitive to CPT as dpb4-A62S tel1Δ cells (Fig. 7e, f).
Altogether, these findings indicate that Dpb4 acts in the ISW2
complex to promote MRX association at DSBs and DSB resection,
whereas it acts with Dpb3 to promote checkpoint activation.

The Dpb3–Dpb4 heterodimer is part of the Pol ε
holoenzyme35, which was previously shown to promote check-
point activation in response to DNA replication stress76–79. The
Dpb3–Dpb4 complex was shown to enhance both the processivity
of Pol ε42,43,80 and the DNA binding activity of Pol241. The Pol ε
checkpoint function relies on the C-terminal domain of Pol2,
which is essential for cell viability, making it difficult to assess
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whether Dpb3–Dpb4 promotes Rad9 association to DSBs and
checkpoint activation by acting within the Pol ε complex. As the
enhanced checkpoint activation caused by Dpb4A62S is likely due
to the increased Rad9 association to DSBs, if the Dpb4 checkpoint
function involves the Pol ε holoenzyme, Dpb4A62S should cause
an increased Pol2 persistence to DSBs. To exclude possible effects
of DNA replication, HO expression was induced by galactose
addition to G2‐arrested cells that were kept arrested in G2 with
nocodazole. Following HO induction, Pol2 was recruited to the
HO-induced DSB (Fig. 7g). Furthermore, although wild-type,
dpb4Δ, and dpb4-A62S cells contained a similar amount of Pol2
(Fig. 7h), the A62S mutation increased Pol2 occupancy at the
HO-induced DSB, whereas the lack of Dpb4 decreased it (Fig. 7g),
suggesting that Dpb4 might act through Pol ε to promote
checkpoint activation in response to DSBs.

The A62S mutation favors the formation of high order
Dpb4–Dpb3 and Dpb4–Dls1 complexes on DNA. Dpb4, Dpb3,
and Dls1 contain a histone fold (helix–turn–helix–turn–helix)
domain (Fig. 8a), through which they interact to form H2A–H2B-
like Dpb3–Dpb4 and Dls1–Dpb4 heterodimers40,44,45,81.
Sequence and structural analyses indicate that the A62 residue is
localized on the α2 helix within the histone fold domain and
interacts with I74 and I87 residues that are localized on the α3
helix of the histone fold domain of Dpb3 and Dls1, respectively
(Fig. 8b).

The A62S mutation did not impair Dpb3–Dpb4 and
Dls1–Dpb4 complex formation in vivo. In fact, when Dpb4-HA
or Dpb4A62S-HA was immunoprecipitated with anti-HA anti-
bodies, a similar amount of Dpb3-Myc could be detected in the
immunoprecipitates (Supplementary Fig. 5a). Similarly, when
Dls1-HA was immunoprecipitated with anti-HA antibodies,
similar amounts of Dpb4-Myc and Dpb4A62S-Myc could be
detected in the immunoprecipitates (Supplementary Fig. 5b).

The lack of Dpb4 impairs the association to DSBs of both Isw2
and Pol2, whereas the A62S mutation increases it, prompting us
to test whether the functions of Dpb4 in both histone eviction and
checkpoint activation rely on its DNA binding activity that can be
enhanced by the A62S mutation. When HO was induced by
galactose addition to G2-arrested cells that were kept arrested in
G2 with nocodazole to exclude the possible effect of DNA
replication, Dpb4 was efficiently recruited close to the HO cut site
(Fig. 8c). Although the A62S substitution did not affect Dpb4
protein level within cells (Fig. 8d) and the addition of the HA tag
at the Dpb4A62S C terminus did not alter the DNA damage
sensitivity of dpb4-A62S cells (Supplementary Fig. 2c), the
amount of Dpb4A62S bound at the HO-induced DSB was higher
than that of wild-type Dpb4 (Fig. 8c). This finding suggests that
the A62S mutation increases the Dpb4 association to dsDNA.

To investigate whether the A62S mutation enhances Dpb4
occupancy at DSBs by increasing the DNA binding affinity of
Dpb3–Dpb4 and/or Dls1–Dpb4 complexes, we expressed and
purified Dpb3–Dpb4, Dpb3–Dpb4A62S, Dls1–Dpb4, and
Dls1–Dpb4A62S heterodimers as soluble protein complexes from
Escherichia coli cells (Supplementary Fig. 6a, b). Circular
dichroism (CD) spectra of Dpb3–Dpb4 and Dls1–Dpb4 present
two minima at 208 nm and 222 nm, which are typical of α-helix
structures (Supplementary Fig. 6c, d). The CD spectra of
Dpb3–Dpb4A62S and Dls1–Dpb4A62S are similar to those of the
wild-type complexes, indicating that the A62S substitution does
not affect the protein secondary structure (Supplementary
Fig. 6c, d). The thermal stability of the chimeric heterodimers
was investigated by CD spectroscopy at a fixed wavelength (208
nm) in the 25–90 °C temperature range. The unfolding transition
midpoint temperatures (Tm) of Dpb3–Dpb4 and Dls1–Dpb4 are
61.57 ± 0.39 and 57.05 ± 0.31 °C, respectively, whereas the A62S
mutation decreases the Tm of Dpb3–Dpb4 and Dls1–Dpb4
complexes of ~3 and 2 °C, respectively (Supplementary Fig. 6e, f),
suggesting that the A62S mutation induces slight conformational
changes in both complexes.

To test the DNA binding properties of these protein
complexes, increasing concentrations of purified Dpb3–Dpb4,
Dpb3–Dpb4A62S, Dls1–Dpb4, and Dls1–Dpb4A62S protein com-
plexes were incubated with a fixed amount of a 61-mer dsDNA
substrate to test their ability to bind DNA in a gel electrophoretic
mobility shift assay (EMSA). As previously reported41, the
addition of wild-type Dpb3–Dpb4 or Dls1–Dpb4 complexes
was capable of shifting the dsDNA oligomer into a distinct slower
migrating band (Fig. 8e, f), indicating that both complexes can
bind dsDNA. Notably, both Dpb3–Dpb4A62S and Dls1–Dpb4A62S

were capable of generating a similar slower migrating band
although less efficiently compared to the corresponding wild-type
complexes (Fig. 8e, f). However, they both showed the appearance
of a second slower migrating band (Fig. 8e, f), suggesting that the
A62S amino acid substitution favors a transition to higher-order
Dpb3–Dpb4–DNA and Dls1–Dpb4–DNA complexes that can
explain the increased amount of Dpb4 bound to DSBs detected
by ChIP.

Discussion
Our data show that the conserved histone fold protein Dpb4 is
involved in at least two aspects of the cellular response to DSBs:
(i) it promotes MRX association to DSBs, thus allowing DSB
resection; (ii) it promotes Rad9 association to DSBs, thus allowing
checkpoint activation. We found that Dpb4 is required to remove
histones around a DSB. As the presence of nucleosomes inhibits
resection both in vitro and in vivo57,82, these data support the
view that failure to remove histones from the DSB ends can

Fig. 6 The lack of Dls1 and Isw2, but not of Dpb3, impairs histone removal, MRX association to DSBs, and DSB resection. a HO expression was induced
at time zero by galactose addition to G2-arrested cells that were kept arrested in G2 by nocodazole. Relative fold enrichment of H2A at the HO-induced
DSB was evaluated after ChIP with an anti-H2A antibody. The mean values of three independent experiments are represented with error bars denoting s.d.
See source data file for statistical analysis. b Exponentially growing YEPR cell cultures were transferred to YEPRG to induce HO expression. Relative fold
enrichment of Mre11-Myc at the HO-induced DSB was evaluated after ChIP with anti-Myc antibody and qPCR. The mean values of three independent
experiments are represented with error bars denoting s.d. ***p < 0.005 (unpaired two-tailed Student’s t-test). c DSB resection. YEPR exponentially growing
cell cultures were transferred to YEPRG at time zero to induce HO production. SspI-digested genomic DNA was analyzed as in Fig. 2a. d Densitometric
analysis of the resection products. The mean values of three independent experiments as in (c) are represented with error bars denoting s.d. See source
data file for statistical analysis that was performed using unpaired two-tailed Student’s t-test. e Exponentially growing YEPR cell cultures of JKM139
derivative strains were transferred to YEPRG to induce HO expression. Relative fold enrichment of Isw2-HA at the HO-induced DSB was evaluated after
ChIP with anti-HA antibody and qPCR. The mean values of three independent experiments are represented with error bars denoting s.d. ***p < 0.005; **p <
0.01; *p < 0.05 (unpaired two-tailed Student’s t-test). f Western blot with anti-HA antibodies of protein extracts from exponentially growing cells. The
experiment was performed independently three times with similar results.
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account for the decreased MRX association to DSBs and the
resection defect of dpb4Δ cells.

Dpb4 is shared by two highly conserved protein complexes: the
chromatin-remodeling ISW2/hCHRAC, which is known to slide
nucleosomes by disrupting histone–DNA interactions46,83,84, and
the Pol ε, which is implicated in DNA replication and hetero-
chromatin maintenance40,41. In both complexes, Dpb4 interacts
with a histone fold protein, namely Dls1 in the ISW2 complex
and Dpb3 in the Pol ε complex, to form H2A–H2B-like
complexes40,44,45,81.

We found that Dpb4 promotes DSB resection by acting with
Dls1 and Isw2 subunits of the ISW2 complex, whereas it facil-
itates Rad9 association to DSBs and checkpoint activation by
acting with Dpb3. In fact, similar to DPB4 deletion, the lack of
Dls1 or Isw2, but not of Dpb3, severely reduces histone removal
from the DSB ends, MRX association to DSBs and DSB resection.
By contrast, the lack of Isw2 does not reduce checkpoint activa-
tion and Rad9 association to DSBs. Rather, the Dpb4 checkpoint
function relies on Dpb4 interaction with Dpb3, whose lack
reduces Rad9 association to DSBs and DSB-induced Rad53
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phosphorylation. The lack of Dpb4 does not further reduce Rad9
persistence at DSBs in dpb3Δ cells, indicating that Dpb3 and
Dpb4 promote Rad9 association to DSBs by acting in the same
pathway. The Dpb4-mediated histone removal and Rad9 loading
to DSBs occurs independently to each other, as the lack of Isw2
impairs histone removal from DSBs but not Rad9 association to
DSBs, whereas the lack of Dpb3 impairs Rad9 association to DSBs
but not histone removal from DSBs. Furthermore, the finding
that dpb3Δ cells, but not isw2Δ cells, showed reduced Rad53
activation indicates that the checkpoint defect of dpb4Δ cells is
caused by the decreased Rad9 association at DSBs, rather than by
the reduced amount of ssDNA caused by defective resection.

The function of Dpb4 in promoting Isw2 and Rad9 association
to DSBs is enhanced by the A62S mutation that leads to an
increased Dpb4 persistence at DSBs, suggesting that the Dpb4
functions in both chromatin-remodeling and checkpoint activa-
tion rely on its DNA binding property. Interestingly, although the
A62S mutation slightly reduces the DNA binding affinity of both
Dpb3–Dpb4 and Dls1–Dpb4 complexes, it favors the formation
of higher-order DNA–Dpb3–Dpb4 and DNA–Dls1–Dpb4 com-
plexes. Although the nature of these complexes requires further
investigation, their formation suggests that the increased amount
of chromatin-bound Dpb4A62S detected by ChIP is due to a
transition to high stoichiometry protein–DNA complexes.

The Dpb4A62S mutant variant enhances Isw2 association to
DSBs but reduces histone removal from the DSB ends. Similarly,
deletion of the negatively charged C terminus of the D. melano-
gaster Dpb4 ortholog enhances DNA binding but inhibits
nucleosome sliding59, suggesting that not only a poor, but also an
increased Isw2 persistence to DSBs impairs Isw2 activity. As
nucleosome mobilization by Isw2 involves DNA translocation
inside the nucleosome that requires Isw2 ability to break and
reform DNA-histone contacts85, increasing the interaction
between Isw2 and the nucleosomal DNA might enhance the
energetic barrier to nucleosome repositioning, thus explaining the
histone removal defect of dpb4-A62S cells.

The Dpb3–Dpb4 complex is flexibly tethered to the core sub-
units of Pol ε35, which was previously shown to activate a
checkpoint in response to DNA replication stress independently
of the 9-1-1 complex76–79. This finding raises the question of
whether Dpb3–Dpb4 dimer acts through Pol ε to activate the
checkpoint. We found that Pol2 is recruited to DSBs indepen-
dently of DNA replication and Dpb4A62S leads to an increased
Pol2 association at DSBs, suggesting that Dpb4 might act within
the Pol ε holoenzyme to enhance Rad9 association to DSBs and
checkpoint activation.

One possibility is that Dpb4 promotes Rad9 association to
DSBs by directly recruiting Rad9 to the DSB sites. However, we
failed to detect any interaction between Dpb4 and Rad9 by

coimmunoprecipitation. Interestingly, Dpb4 promotes Rad9
association to DSBs by acting in the same pathway of Dot1, which
is known to drive Rad9 association to DSBs by catalyzing H3-K79
methylation. H3-K79 is constitutively methylated by Dot1 in both
mammalian and yeast cells68,69,86. Furthermore, at least in human
cells, irradiation does not lead to increased histone H3-K79
methylation67, raising the question of how DNA DSBs expose
methylated H3-K79 to Rad9 recognition. The Dpb3–Dpb4
complex has been shown to bind histones H3 and H4 in the
context of chromatin, and to possess intrinsic H3–H4 chaperone
and DNA supercoiling activities38,39. Thus, it would be tempting
to speculate that the Dpb3–Dpb4 complex, possibly as part of the
Pol ε holoenzyme, induces re-deposition/exchange of histones H3
and H4 at the DSB ends, where subsequent H3 methylation by
Dot1 would lead to exposure of histone H3 to Rad9 recognition
(Fig. 8g).

In conclusion, we propose that the Dls1–Dpb4 dimer binds the
DSB ends and facilitates the loading of the ISW2/hCHRAC
complex, which in turn promotes MRX association to DSBs and
DSB resection by sliding/removing nucleosomes from the DSB
ends (Fig. 8g). The Dpb3–Dpb4 complex, in turn, promotes Rad9
association to the DSB and checkpoint activation by inducing
exposure of histone H3 to Rad9 binding. Because Dpb4 is evo-
lutionarily conserved, it will be interesting to investigate whether,
depending on its interactors, it plays similar roles in DSB resec-
tion and checkpoint activation also in mammalian cells.

Methods
Yeast strains and media. S. cerevisiae is the experimental model used in this
study. Strain genotypes are listed in Supplementary Table 1. Strain JKM139, used to
detect DSB resection and to perform ChIP analysis, was kindly provided by J.
Haber (Brandeis University, Waltham, USA). The ddc1-T602A and the rad9-STAA
alleles were kindly provided by J. Diffley (The Francis Crick Institute, London UK)
and B. Pfander (Max Planck Institute of Biochemistry, Martinsried, Germany).
Gene disruptions and tag fusions were generated by one-step PCR and standard
yeast transformation procedure. Primers used for disruptions and gene tagging are
listed in Supplementary Table 2. Cells were grown in YEP medium (1% yeast
extract, 2% bactopeptone) supplemented with 2% glucose (YEPD), 2% raffinose
(YEPR) or 2% raffinose and 3% galactose (YEPRG). All experiments were per-
formed at 26 °C.

Search for mutations that sensitize tel1Δ cells to CPT. To search for mutations
that sensitize tel1Δ cells to CPT, tel1Δ cells were mutagenized with ethyl metha-
nesulfonate and plated on YEPD plates. Approximately 100000 survival colonies
were replica plated on YEPD plates with or without CPT. Clones sensitive to CPT
were transformed with a plasmid containing wild-type TEL1 to identify those that
lost the DNA damage hypersensitivity. The corresponding original clones were
then crossed with wild-type cells to identify by tetrad analysis the clones in which
the increased DNA damage sensitivity was due to the simultaneous presence of
tel1Δ and a single-gene mutation. This mutation was identified by genome
sequencing and genetic analyses. To confirm that the dpb4-A62S mutation was
responsible for the increased DNA damage sensitivity of tel1Δ cells, a KANMX
gene was integrated downstream of the dpb4-A62S stop codon and the resulting

Fig. 7 The lack of Dpb3, but not of Isw2, impairs Rad9 association to DSB and checkpoint activation. a DSB resection. YEPR exponentially growing cell
cultures were transferred to YEPRG at time zero to induce HO production. SspI-digested genomic DNA was analyzed as in Fig. 2a. The experiment was
performed independently three times with similar results; see Supplementary Figure 4 for the densitometric analysis of the resection products from three
independent experiments as in a. b YEPR exponentially growing cell cultures of JKM139 derivative strains were transferred to YEPRG at time zero to induce
HO. Protein extracts were subjected to western blot analysis with anti-Rad53 antibodies. c Phleomycin (10 μg/mL) was added to exponentially growing
cells followed by western blot analysis with anti-Rad53 antibodies. The experiments in b and c were performed independently two times with similar
results. d Exponentially growing YEPR cell cultures of JKM139 derivative strains were transferred to YEPRG to induce HO expression. Relative fold
enrichment of Rad9-HA at the HO-induced DSB was evaluated after ChIP with anti-HA antibody and qPCR. The mean values of three independent
experiments are represented with error bars denoting s.d. ***p < 0.005 (unpaired two-tailed Student’s t-test). e, f Serial dilutions of exponentially growing
cultures onto YEPD plates with or without CPT. g HO expression was induced at time zero by galactose addition to G2-arrested cells that were kept
arrested in G2 by nocodazole. Relative fold enrichment of Pol2-HA at the HO-induced DSB was evaluated after ChIP with anti-HA antibody and qPCR. The
mean values of three independent experiments are represented with error bars denoting s.d. ***p < 0.005; **p < 0.01; *p < 0.05 (unpaired two-tailed
Student’s t-test). h Western blot with anti-HA antibodies of protein extracts from G2-arrested cells. The experiment was performed independently three
times with similar results.
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After DSB formation, the Dls1–Dpb4 dimer promotes the association of Isw2 to DSBs, which catalyzes nucleosome sliding/removal and facilitates MRX
association to them. The Dpb3–Dpb4 dimer, possibly in complex with Pol ε, in turn, uses its histone chaperone activity to induce re-deposition/exchange of
H3 and H4 histones (dark violet), whose subsequent H3 methylation by Dot1 (red dots) leads to H3 exposure to Rad9 recognition.
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strain was crossed to tel1Δ cells to verify by tetrad dissection that the increased
CPT sensitivity cosegregated with TEL1 deletion and the KANMX allele.

DSB resection. YEPR exponentially growing cell cultures of JKM139 derivative
strains, carrying the HO cut site at the MAT locus, were transferred to YEPRG at
time zero. SspI-digested genomic DNA was run on alkaline agarose gels and
visualized after hybridization with a single-stranded RNA probe that anneals with
the unresected strand at one side of the HO-induced DSB87. This probe was
obtained by in vitro transcription using Promega Riboprobe System-T7 and
plasmid pML514 as a template. Plasmid pML514 was constructed by inserting in
the pGEM7Zf EcoRI site a 900-bp fragment containing part of the MAT locus
(coordinates 200870 to 201587 on chromosome III). Quantitative analysis of DSB
resection was performed by calculating the ratio of band intensities for ssDNA and
the total amount of DSB products. The resection efficiency was normalized with
respect to the HO cleavage efficiency for each time point. Densitometric analysis of
band intensities was performed using Scion Image Beta 4.0.2 software.

Spot assays. Cells grown overnight were diluted to 1 × 107 cells/mL. 10-fold serial
dilutions were spotted on YEPD with or without DNA damaging drugs. Plates were
incubated for 3 days at 28 °C.

Western blotting. Protein extracts for western blot analysis were prepared by
trichloroacetic acid (TCA) precipitation. Frozen cell pellets were resuspended in
100 μL 20% TCA. After the addition of acid-washed glass beads, the samples were
vortexed for 10 min. The beads were washed with 200 μL of 5% TCA twice, and the
extract was collected in a new tube. The crude extract was precipitated by cen-
trifugation at 850 × g for 10 min. TCA was discarded and samples were resus-
pended in 70 μL 6× Laemmli buffer (60 mM Tris pH 6.8, 2% SDS, 10% glycerol,
100 mM DTT, 0.2% bromophenol blue) and 30 μL 1M Tris pH 8.0. Prior to
loading, samples were boiled at 95 °C and centrifuged at 850 × g for 10 min. The
supernatant containing the solubilized proteins was separated on 10% poly-
acrylamide gels. Rad53 was detected by using anti‐Rad53 polyclonal antibodies
(ab104232) (1:2000) from Abcam.

HA- or Myc-tagged proteins were detected by using anti-HA (12CA5) (1:2000)
or anti-Myc (9E10) (1:1000) antibodies, respectively.

Chromatin immunoprecipitation and qPCR. YEPR exponentially growing cell
cultures of JKM139 derivative strains, carrying the HO cut site at the MAT locus,
were transferred to YEPRG at time zero. Crosslinking was done with 1% for-
maldehyde for 5 min (Mre11), 10 min (Rad9), or 15 min (Dpb4, Dpb4A62S, Pol2,
Isw2, H3, and H2A). The reaction was stopped by adding 0.125 M glycine for 5
min. Immunoprecipitation was performed by incubating samples with Dynabeads
Protein G (ThermoFisher Scientific) for 3 h at 4 °C in the presence of 5 μg anti-HA
(12CA5) or anti-Myc antibodies (9E10). H2A and H3 histones were immuno-
precipitated by using 5 μg anti‐H2A (39945, Active Motif) and 4 μg anti-H3
(ab1791, Abcam) antibodies, respectively. Quantification of immunoprecipitated
DNA was achieved by qPCR on a Bio-Rad CFX Connect™ Real-Time System
apparatus and Bio-Rad CFX Maestro 1.1 software. Triplicate samples in 20 μL
reaction mixture containing 10 ng of template DNA, 300 nM for each primer, 2×
SsoFast™ EvaGreen® supermix (Bio-Rad #1725201) (2× reaction buffer with
dNTPs, Sso7d-fusion polymerase, MgCl2, EvaGreen dye, and stabilizers) were run
in white 96-well PCR plates Multiplate™ (Bio-Rad #MLL9651). The qPCR program
was as follows: step 1, 98 °C for 2 min; step 2, 90 °C for 5 s; step 3, 60 °C for 15 s;
step 4, return to step 2 and repeat 40 times. At the end of the cycling program, a
melting program (from 65 to 95 °C with a 0.5 °C increment every 5 s) was run to
test the specificity of each qPCR. Data are expressed as fold enrichment at the HO-
induced DSB over that at the non-cleaved ARO1 locus, after normalization of the
ChIP signals to the corresponding input for each time point. Fold enrichment was
then normalized to the efficiency of DSB induction. For histone loss, the fold
enrichment from each sample after HO induction was divided by the fold
enrichment from uninduced cells, and log2 of the resulting values was calculated.
Oligonucleotides used for qPCR analyses are listed in Supplementary Table 3.

Coimmunoprecipitation. Total protein extracts were prepared by breaking cells in
400 μL of buffer containing 50 mM HEPES pH 7.5, 300 mM NaCl, 20% glycerol, 1
mM sodium orthovanadate, 60 mM β‐glycerophosphate and protease inhibitor
cocktail (Roche Diagnostics). An equal volume of breaking buffer was added to
clarified protein extracts and tubes were incubated for 2 h at 4 °C with 50 μL of
Protein G-Dynabeads and 5 μg anti-HA (12CA5) antibodies. The resins were then
washed twice with 1 mL of breaking buffer and once with 1 mL PBS. Bound
proteins were visualized by western blotting with anti-HA (12CA5) (1:2000) or
anti-Myc (9E10) (1:1000) antibodies after electrophoresis on a 10 or 15% SDS-
polyacrylamide gel.

Purification of Dpb3–Dpb4 and Dls1–Dpb4 heterodimers. Design, expression,
and purification of Dpb4 heterodimers were performed as previously described88.
Briefly, the genes coding for Dpb4, Dpb4A62S, Dpb3, and Dls1 were optimized for
the expression in E. coli cells and chemically synthesized (Genscript, Piscataway,

NJ, USA). DPB4 and DPB4-A62S genes were cloned in frame with a C-terminal
6xHis-Tag into pET-21a vector (EMD, Millipore, Billerica, MA, USA) between
NdeI and XhoI sites. The DPB3 and DLS1 genes were cloned in frame with a C-
terminal Strep-Tag into a modified pET-28 vector between NcoI and XhoI sites. E.
coli BL21 (DE3) cells were co-transformed with the above plasmids to obtain
Dpb3–Dpb4, Dpb3–Dpb4A62S, Dls1–Dpb4, and Dls1–Dpb4A62S heterodimers.
Transformed cells were selected on LB agar plates supplemented with ampicillin
(100 mg/L) and kanamycin (50 mg/L). Heterodimers were produced in auto-
induction ZYM-5052 medium89 supplemented with ampicillin (100 mg/L) and
kanamycin (50 mg/L), extracted and purified by immobilized ion metal affinity
chromatography (Jena Bioscience, Jena, Germany) followed by Strep purification
on Strep-Tactin resin (IBA Lifesciences, Gottingen, Germany). High-concentrated
fractions were buffer-exchanged with phosphate buffer (10 mM, pH 7) by gel
filtration on PD-10 columns (GE Healthcare, Little Chalfont, UK). Protein con-
centration was determined by the Bradford assay (Bio-Rad, Hercules, USA), using
bovine serum albumin as a standard. SDS-PAGE was performed on 14% acryla-
mide gels and stained with Gel-Code Blue (Pierce, Rockford, USA) after electro-
phoresis. Broad-range, pre-stained molecular-mass markers (GeneSpin, Milan,
Italy) were used as standards.

Circular dichroism spectroscopy. CD spectra of purified proteins were obtained
in phosphate buffer at the concentration of 2 μM with a J-815 spectropolarimeter
(JASCO, Europe, Lecco, Italy), using a 0.1-cm path length cuvette. Spectra were
collected in the 190-260 range with 0.2 nm data pitch and 20 nm/min scanning
speed. All spectra were corrected for buffer contribution, averaged from four
independent acquisitions, and smoothed by using a third-order least-square
polynomial fit. Thermal denaturation ramps were obtained measuring the variation
of CD signal at 208 nm when progressively heating the sample from 25 to 90 °C.
Data were analyzed with OriginPro 2020 (OriginLab Corporation, Northampton,
USA). Measurements were performed in triplicate.

Electrophoretic mobility shift assay (EMSA). EMSA was performed by incu-
bating 1.5 pmol of 61 bp 32P-labeled dsDNA (5′‐GACGCTGCCGAATTCTAC
CAGTGCCTTGCTAGGACATCTTTGCCCACCTGCAGGTTCACCC‐3′)43 with
purified Dpb3–Dpb4 and Dpb3–Dpb4A62S (0, 0.75, 1.5, 3, 7, 13, 20 pmol) or
Dls1–Dpb4 and Dls1–Dpb4A62S (0, 20, 40, 80, 100, 120, 160 pmol) in ice for 10 min
in binding buffer (20 mm HEPES‐NaOH pH 7.5, 0.5 mM EDTA, 0.05% NP‐40,
10% (v/v) glycerol and 60 μg/mL BSA) to a final volume of 50 μL. Reactions were
loaded on a non-denaturing 6% acrylamide/bisacrylamide gel and separated by
running for 2 h at 150 V at 4 °C using a low‐ionic strength buffer (6.73 mM Tris‐
HCl pH 7.5, 3.3 mM NaOAc pH 5 and 1mM EDTA). Gels were soaked for 15 min
in 10% methanol, 10% acetic acid solution, vacuum-dried and exposed to an
autoradiography film.

3D modeling. The 3D structure of the Dpb3–Dpb4 heterodimer was extracted
from PDB 6WJV35. The 3D model of Dls1 was predicted by I-TASSER web
server90 and superimposed on the 3D structure of Dpb3 in the Dpb4–Dpb3 het-
erodimer using Pymol 2.4.1 software. The figures were prepared using UCSF
Chimera X 0.93 software91.

Statistical analysis. Statistical analysis was performed using Microsoft Excel
Professional 365 software. P-values were determined by using an unpaired two-
tailed t-test. No statistical methods or criteria were used to estimate the size or to
include or exclude samples.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are in the paper and Supplementary Information. The structure of Dpb4/Dpb3
was extracted from PDB 6WJV. All data are available from the authors upon reasonable
request. Source data are provided with this paper.
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