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A B S T R A C T

Glycoside hydrolases (GHs) are enzymes involved in the degradation of oligosaccharides and polysaccharides. 
The sequence space of GHs is rapidly expanding due to the increasing number of available sequences. This 
expansion paves the way for the discovery of novel enzymes with peculiar structural and functional properties. 
This work is focused on two GHs, Ps_GH5 and Ps_GH50, from the genome of the Antarctic bacterium Pseudomonas 
sp. ef1. These enzymes are in an unexplored region of the sequence space of their respective GH families, not 
allowing a reliable sequence-based function prediction. For this reason, a computational pipeline was developed 
that combines deep learning “dynamic docking” on AlphaFold 3D models with physics-based molecular dy
namics simulations to infer their substrate specificity. From in silico screening of a repertoire of potential oli
gosaccharides, only xylooligosaccharides for Ps_GH5 and galactooligosaccharides for Ps_GH50 emerged as 
catalytically competent substrates. Biochemical characterization agrees with computational simulations indi
cating that Ps_GH5 is an endo-β-xylanase, and Ps_GH50 is active mainly on small galactooligosaccharides. In 
conclusion, this study identifies two novel GHs subfamilies placed in remote regions of the sequence space and 
highlights the efficacy of substrate specificity prediction by computational approaches in the discovery of new 
enzymes.

1. Introduction

Glycoside hydrolases (GHs) catalyze the hydrolysis of glycosidic 
bonds, playing a crucial role in the uptake of carbon sources represented 
by oligo- and polysaccharides [1]. Currently, GHs are grouped in 189 
families cataloged in the CAZy database (http://www.cazy.org/). The 
classification system underlying the CAZy database defines families and 
subfamilies by phylogenetic analysis and the presence of sequences 
clustered around biochemically characterized members [1,2]. The 
biochemical data are usually required for the definition of new GH 
families and subfamilies [1,3].

The number of available GH sequences has increased dramatically 
due to rapid advances in DNA sequencing technologies and targeted 
experimental screening [4], providing new opportunities for the dis
covery of enzymes with novel functions. The exponential increase of 
protein sequences created a significant discrepancy between the number 
of uncharacterized entries that have been automatically annotated in 

CAZy and the number of biochemically characterized enzymes [5]. The 
main consequence of this discrepancy is the existence of large regions of 
sequence space that are currently uncharacterized [4,6]. The accuracy of 
classification and prediction of biochemical properties is therefore 
challenged when new sequences fall into these remote regions. In this 
context, sequence/function similarity network (SSN) and phylogenetic 
approaches may have a limited reliability of functional inference and are 
unable to infer hitherto undiscovered substrate specificities [7]. There
fore, the biochemical characterization of GH sequences belonging to 
remote regions of the sequence space is essential to improve the success 
of functional prediction and classification accuracy [6].

In this frame, GHs from psychrophilic marine microorganisms may 
serve as a source of enzymes from so far unexplored regions of the 
sequence space [8,9]. These organisms have evolved to survive under 
extremely stressful conditions, including low temperatures, high os
motic stress, and low nutrient availability [10,11]. Indeed, psychro
philic marine sediments are characterized by the presence of low 
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amounts of polysaccharides derived from terrestrial plants, such as 
cellulose and xylan, and/or from marine algae, such as laminarin, 
alginate, agar and carrageenan [12]. Psychrophilic marine microbes 
have been reported to secrete extracellular GHs to hydrolyze complex 
polysaccharides such as cellulases (e.g. GH5, GH6, GH9, GH12), xyla
nases (e.g. GH8, GH10, GH11 and GH30), agarases (e.g. GH16, GH50 
and GH117) and carrageenases (e.g. GH16) [13–15]. However, avail
able information might be still largely incomplete calling for the dis
covery and classification of additional enzymes and enzyme families.

In this study, a custom workflow that integrated functional- and 
sequence-based approaches was developed to discover new GHs 
involved in polysaccharide degradation in Pseudomonas sp. ef1 [16]. 
This bacterium, isolated from an Antarctic microbial consortium, is a 
source of unusual GHs previously identified from its genome, such as 
two evolutionary “orphan” GH19s with rare lysozyme activity [17,18]. 
The enzymes described in this study (Ps_GH5 and Ps_GH50) are situated 
in unexplored regions of GH5 and GH50 families sequence space. The 
biochemical characterization reveals that Ps_GH5 is an endo-xylanase, 
while Ps_GH50 is an exo-enzyme with low agarolytic activity and high 
activity on small galactooligosaccharides (GOS). Our in silico and func
tional analyses indicated that these enzymes have uncommon structural 
properties and may belong to new subfamilies.

2. Materials and methods

2.1. Materials

Glucose, galactose, lactose, xylose, ampicillin, tetracycline, κ-carra
geenan, 2,5 dinitrosalicylic (DNS), low-melting point agarose and para- 
nitrophenyl derivatives were purchased from Merck (Merck, Darmstadt, 
Germany). Xylan (code: P-XYLNBE), arabinoxylan (code: P-WAXYL), 
xyloglucan (code: P-XYGLN), mannan (code: P-MANIV) and gal
actomannan (code: P-GGMMV) were purchased from Megazyme Inter
national (Megazyme International, Bray, Ireland). 
Carboxymethylcellulose (CMC, code: 22525.296) and lactose-galactose 
trisaccharide (GOS 3X, code: OG32134) were purchased from VWR In
ternational (Radnord, USA) and Biosynth Carbosynth (Staad, 
Switzerland), respectively.

2.2. Biolog Omnilog® screening of the metabolic activity on 
carbohydrates

Pseudomonas sp. ef1 was grown in Luria-Bertani (LB) broth at 22 ◦C 
as described in [12] until an O.D.600 ≈ 1 was reached. The cell pellet was 
harvested by centrifugation at 4000g for 10 min at 4 ◦C, washed twice 
with physiological solution (0.9 % NaCl), and then resuspended at a 
final O.D.600 of 0.4 in IF-0 GN/GP base solution (Biolog, Newark, DE, 
USA). The cell suspension was supplemented with the Biolog redox mix 
dye E (1 % v/v) and different sterilized solutions of sugars at 0.2 % w/v 
final concentrations. Sugar solutions were prepared by dissolving 
glucose, galactose, xylose, CMC, xylan, xyloglucan and low melting 
point agarose, in MilliQ water at the concentration of 1 % (w/v). Solu
tions containing IF-0 GN/GP base, Biolog redox mix dye E and different 
sugars were used as blanks. The cell suspension supplemented with 
Biolog redox mix dye E without carbon source was used as a negative 
control. Biolog 96-well plates containing either 100 μL of cell suspen
sions or blanks were incubated in the OmniLog® incubator at 25 ◦C for 
48 h. The digital camera was configured to take images every 15 min. 
Omnilog data on physiological responses, which consists of measures of 
redox chemistry activity due to cell respiration, was subtracted from the 
blank contribution, and were analyzed using the OmniLog Software. The 
activity index (normalized between 0 and 3), a parameter that allows the 
ranking and comparison of each respiratory curve, was calculated using 
the dphenome function of the DuctApe package (http://combogenomics. 
github.io/DuctApe/, [19]). Experiments were performed in duplicate 
and reported as a mean ± standard deviation.

2.3. Bioinformatics analyses

2.3.1. Annotation of Pseudomonas sp. ef1 GH sequences
The sequences of putative GHs were annotated from Pseudomonas sp. 

ef1 genome (GenBank RefSeq Assembly ID: GCF_007293365.1) with 
hhmscan from HHMER v3.3.2 [20], using the family/subfamily profile 
hidden Markov models from dbCAN2 [21], by applying a restrictive e- 
value of e− 30. The predicted molecular weight was determined with 
Expasy ProtParam [22]. Signal peptides were predicted with SignalP 6.0 
[23]. Annotated GHs were scanned for extracellular enzymes putatively 
involved in the degradation of glucan, xylan, arabinoxylan, xyloglucan 
and agarose (families 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 26, 30, 39, 43, 45, 
48, 50, 51, 86, 118). Two sequences with a predicted signal peptide were 
annotated as GH5 (Ps_GH5, UniProt ID: A0A554AFN4) and GH50 
(Ps_GH50, UniProt ID: A0A554AKC2) and further analyzed.

2.3.2. Sequence space and evolutionary analysis of selected GHs
The sequence spaces of the selected GHs were created with the 

modified scripts from protein cartography (https://github.com/Arcadia 
-Science/ProteinCartography, [24]), a workflow that allows the creation 
of structure-based maps of protein families.

The sequences of Ps_GH5 and Ps_GH50 were used as a query to 
search homologous proteins in the ColabFold database (https://colabfo 
ld.mmseqs.com/, accessed on 21/11/2023). These sequences were then 
filtered by using the HHfilter function of the hh-suite package v. 3.3.0 
[25] to select proteins with a length between 200 and 1000 amino acids, 
a minimum of 80 % sequence coverage and 10 % global identity to the 
query sequences. Maximum 80 % pairwise global sequence identity was 
allowed between the collected sequences. The final list of protein se
quences was created by selecting only those for which a predicted 
structure was available in the PDB (https://www.rcsb.org/) or in the 
AlphaFold database (AFDB, https://alphafold.ebi.ac.uk/). As both GH5 
and GH50 belong to Clan A, characterized sequences from Clan A with a 
global sequence identity of >10 % to the query sequences were retrieved 
from CAZy (http://www.cazy.org, accessed on 21/11/2023) and added 
to the previous list of filtered sequences. For characterized sequences not 
available in the AFDB, the AlphaFold (AF) 3D structure was predicted as 
a monomer by Colabfold 1.5.5 (https://github.com/sokrypton/ 
ColabFold, [26]), using the AlphaFold2_ptm model [27].

Structures were aligned and compared with Foldseek release 8 [28]. 
Max 2000 sequences/structures were used to create the sequence spaces 
of each query sequence. Default protein cartography settings were chosen 
for the rest of parameters. The final 2D representation of the protein 
space was obtained from UMAP analysis of the all-vs-all pair structural 
similarity matrix. UMAP was chosen as it is often better at preserving 
global data structure in the final projection. The sequences were plotted 
as circles and annotated if characterized from known GH families.

For phylogenetic analysis, only the sequences of biochemically 
characterized GHs were used. The substrate specificity of each selected 
sequence was manually retrieved from the literature. To remove 
redundancy, sequences were clustered at 95 % sequence identity 
threshold with cd-hit 4.8.1 (https://github.com/weizhongli/cdhit, 
[29]). Only the 3D models exhibiting a high degree of confidence 
(average plDDT >0.75) were subjected to structural alignment with 
mTM-align (http://yanglab.nankai.edu.cn/mTM-align, [30]). The 
resulting structure-based multiple sequence alignment was trimmed to 
retain only the catalytic domains. Positions with a gap shared by >75 % 
of sequences were removed. A rooted Maximum Likelihood tree with IQ- 
Tree v.2.2.2.7 [31] was estimated using this alignment. The phyloge
netic analysis used the non-time reversible protein substitution matrix 
NQ.pfam (estimated from Pfam version 31 database, [32]) and included 
a gamma distributed rate variation with four categories. Branch sup
ports were obtained by using 1000 ultrafast bootstrap replicates [33] 
and transfer bootstrap expectation [34].
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2.3.3. In silico prediction of enzyme substrate specificity
The substrate specificity of Ps_GH5 and Ps_GH50 was predicted using 

a structure-based approach. The 3D models of Ps_GH5 and Ps_GH50 
were predicted using AF2 and ColabFold v.1.5.5 (https://github.com/ 
sokrypton/ColabFold) to be monomers. The 3D model of Ps_GH5 was 
then docked with cello-oligosaccharides (COS: cellobiose, cellotriose, 
cellotetraose), xylo-oligosaccharides (XOS: xylobiose, xylotriose, xylo
tetraose), manno-oligosaccharides (MOS: mannobiose, mannotriose, 
mannotetraose), arabino-oligosaccharides (AOS: arabinobiose, arabi
notriose, arabinotetraose), and arabinoxylo-oligosaccharides (AXOS: D- 
xylose α-1,2 L-arabinofuranoside, D-xylose α-1,3 L-arabinofuranoside), 
whereas the PS_GH50 model was docked to neoagaro-oligosaccharides 
(NAOS: neoagarobiose, neoagarotetraose, neoagarohexaose), galacto- 
oligosaccharides (GOS: lactose, lactose-galactose trisaccharide, lactose- 
galactose tetrasaccharide). These substrates were generated with gly
cam (https://glycam.org/cb/) in fully hydrogenated states, manually 
checked with Avogadro v.1.2.0 [35] and converted into SMILES format 
with Open Babel v.3.1.0 [36]. The modeled substrates were chosen to be 
representative of the substrate specificity that is typically observed in 
evolutionary-related characterized GHs. Docking simulations were 
performed with DynamicBind v1.0 [37], a deep learning method that 
allows a “dynamic docking” approach in which both protein and ligand 
are flexible. The v2 model (https://zenodo.org/records/10183369) was 
used. The default parameters of DynamicBind v1.0 were used for both 
Ps_GH5 and Ps_GH50. The only exception was the number of denoised 
samples, which was increased to 40. Only PoseBuster-validated protein- 
substrate docking poses were considered [38]. The poses were evaluated 
by combining the DynamicBind confidence score and two Euclidean 
distances: between the catalytic nucleophile Oε and the attacked C1 
(distance C–O) and between the catalytic acid/base Oε and the glyco
sidic O (distance O–O). For each oligosaccharide class, the pose with 
the highest DynamicBind score and both C–O and O–O distances <4 Å 
was considered catalytically competent and subjected to energy mini
mization and refinement through molecular dynamics (MD) simulations 
in an NPT ensemble. The MD simulation protocol was derived from the 
Colab Notebook at https://colab.research.google.com/github/pabl 
o-arantes/making-it-rain/blob/main/Protein_ligand.ipynb [39]. Open 
MM v.7.7 [40] was used as the MD engine. The changes to default pa
rameters were adding a 10 Å padding for the box size, the addition of 
ions only up to neutralization of the system, a 2 ns NVT equilibration 
step at 298 K using the Andersen thermostat with the Verlet integrator 
while position restraining (700 kJ/mol) the heavy atoms of the enzyme 
and the substrate. 2 ns NPT equilibration while keeping the same posi
tion restraining in NVT step. 20 ns of unbiased production MD simula
tions were run in triplicate, saving the system coordinates every 200 ps, 
starting from independent equilibration steps. Unbiased MD frames (300 
in total) were merged and used to calculate MD simulation statistics 
representative of enzyme catalysis and to estimate a binding energy 
using DeepQM [41], a deep learning adaptation of an end-state binding 
free energy approximation method (linear interaction energy, LIE). The 
latter is obtained by replacing the standard molecular mechanics po
tentials (MMPs) with neural network potentials, and by rescaling the 
predicted energy with a linear fit to the absolute binding energy data 
used for training [41]. This choice was made because the DeepQM 
model has been shown to be more accurate than other end-state methods 
that rely on force field-based MMPs. By jointly evaluating the MD 
simulation statistics and DeepQM binding affinity, the best enzyme- 
substrate complexes were selected.

2.4. Production and purification of the recombinant enzymes

Sequences coding for Ps_GH5 and Ps_GH50, were optimized for 
expression in Escherichia coli cells, chemically synthesized (Genscript, 
Piscataway, NJ, USA) and cloned in frame with a C-terminal 6X His-Tag 
into pET22 plasmid (EMD, Millipore, Billerica, MA, USA) between MscI 
and XhoI sites. E. coli OrigamiB (DE3) cells and E. coli BL21 (DE3) cells 

(EMD, Millipore, Billerica, MA, USA) were used as hosts for the heter
ologous expression of Ps_GH5 and of Ps_GH50, respectively.

Recombinant enzymes were produced in Zym 5052 medium [42], 
added of 100 mg/L of ampicillin (Merck, Darmstadt, Germany) for E. coli 
BL21 (DE3) and 100 mg/L tetracycline and ampicillin (Merck, Darm
stadt, Germany) for E. coli OrigamiB (DE3) cultures. The cultures were 
incubated at 25 ◦C for 24 h and then harvested by centrifugation at 4000 
xg for 10 min at 4 ◦C. Recombinant enzymes were extracted and purified 
as described in [12]. Purified Ps_GH5 and Ps_GH50 were suspended in 
100 mM sodium phosphate buffer (PB), pH 7. Protein concentration was 
determined by the Bradford protein assay (Bio-Rad, California, USA) 
using bovine serum albumin as a standard.

2.5. Quaternary structure

The quaternary structure was determined by SEC analysis using an 
NGC Quest 10 Plus Chromatography System (Bio-Rad, California, USA) 
equipped with a Superdex 10/200 column (Cytiva, Marlborough, US) 
with a cutoff of 10–600 kDa, as described in [12].

2.6. Determination of functional properties

Substrate specificity was assessed using the following substrates: 
para-nitrophenyl β-D-glucopyranoside (pNPG), ortho-nitrophenyl β-D- 
galactopyranoside (oNPGal), para-nitrophenyl β-D-xylopyranoside 
(pNPXyl), para-nitrophenyl β-D-mannopyranoside (pNPMan), para- 
nitrophenyl β-D-fucopyranoside (pNPFuc), para-nitrophenyl β-D-cello
bioside (pNPClb), 4-Nitrophenyl-β-D-glucuronide (pNPGlcA), 4-Nitro
phenyl-α-L-arabinofuranoside (pNPAra), xylan, arabinoxylan, CMC, 
mannan, galactomannan, κ-carrageenan and GOS 3X. Reactions were 
performed in 100 μL volume at 35 ◦C in PB with 50 μg of enzyme and 10 
mM of nitrophenyl glycoside derivatives or 1 % w/v of polysaccharides. 
The reactions with nitrophenyl glycoside derivatives were stopped, after 
15 min, by the addition of 100 μL of 1 M Na2CO3 pH 11. The absorbance 
was measured at either 420 nm for oNPG (εoNP: 4.6 mM− 1 ⋅cm− 1) or at 
405 nm for the other substrates (εpNP: 18.6 mM− 1 ⋅cm− 1) with a 
VICTOR™ X Multilabel Plate Reader (PerkinElmer Inc., USA).

Activity on polysaccharides was determined by the DNS assay. 
Enzymatic reactions were conducted in a solution 1 % w/v of the poly
saccharide (in PB) and a final concentration of 0.5 mg/mL of each pu
rified enzyme, at 35 ◦C, at 800 rpm in a thermal shaker (Eppendorf, 
Hamburg, Germany). After 1 h of incubation, 400 μL of DNS reagent was 
added and the reaction was heated at 99 ◦C for 5 min to inactivate the 
enzyme and develop the assay [43]. Then 150 μL of Rochelle salt (40 % 
w/v) was added to all reactions to stabilize the final colour. Absorbance 
was measured at 540 nm using a VICTOR™ X Multilabel Plate Reader 
(PerkinElmer Inc., USA). The calibration curves were constructed using 
known concentrations of pure glucose, xylose and galactose to quantify 
released sugars.

The optimal catalysis conditions were determined in PB using either 
1 % w/v xylan or 10 mM oNPG as substrates, for Ps_GH5 and Ps_GH50, 
respectively. The optimal pH of catalysis was measured in the pH range 
3.0–10.0 at the optimum temperature (Topt). The Topt was recorded in the 
temperature range 10–90 ◦C, at pH 7 for both enzymes. Experiments 
were performed in triplicate and results are reported as a mean ±
standard deviation.

2.7. Analysis of polysaccharide degradation products

The analysis of hydrolysis products from polysaccharides was carried 
out by high-performance anion-exchange chromatography with pulsed 
amperometric detection (HPAEC-PAD) using a Dionex ICS-6000 system 
equipped with an Ag/AgCl pH reference electrode, and a gold working 
electrode for the detection (Dionex Corporation, CA, USA). Enzymatic 
reactions were set up as previously described (see Section 2.5), using 
xylan and arabinoxylan for Ps_GH5 or low-melting point agarose and 
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GOS 3X for Ps_GH50. Reactions involving Ps_GH5 were analyzed using a 
CarboPac PA200–3 mm column (Thermo Fisher Scientific, Waltham, 
MA, USA), with a flow rate of 0.3 mL/min. The temperature of the auto- 
sampler and column was set at 10 and 30 ◦C, respectively. Initial con
ditions were set to 0.1 M NaOH (eluent A) followed by a linear gradient 
towards an increasing proportion of a solution of 0.1 M NaOH +0.5 M 
NaOAc (eluent B). The gradient reached 60 % of solution B in 20 min. On 
the other hand, digestions involving Ps_GH50 were analyzed on a 

CarboPac PA210-Fast-4 μm column (Thermo Fisher Scientific, Waltham, 
MA, USA), with a flow rate of 0.6 mL/min and the temperature of the 
auto-sampler and column set as previously stated. Elution was achieved 
by a gradient (from 2 mM to 100 mM) of sodium hydroxide. All samples 
were centrifuged, diluted with dH2O and filtered before analysis. 
Products of digestion were identified and quantified according to stan
dard curves prepared in the range of 25–0.1 mg/L. All measurements 
were run in quintuplicate and the mean values ± SD are reported.

Fig. 1. Identification of GH enzymes contained in the genome of Pseudomonas sp. ef1. (A) Metabolic activity of Pseudomonas sp. ef1 recorded at OmniLog® in the 
presence of various sugars. The OmniLog® experiment is performed in duplicate and standard deviations are omitted for clarity (n = 2). (B) Localization of putative 
GH coding genes in the Pseudomonas sp. ef1 genome assembly. The annotated GHs are highlighted in different colors, according to their physiological role. “intr.”: 
intracellular; “extr.”: extracellular. (C–D) Sequence space of Ps_GH5 (C) and Ps_GH50 (D) shown as UMAP plots. The sequence space was created as described in the 
Material and Methods section. Empty circles: sequences of uncharacterized GHs; colored circles: sequences of characterized enzymes.
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2.8. Thermal stability assay

Thermal unfolding was determined by recording the circular di
chroism (CD) signal at fixed wavelength of 220 nm over a temperature 
range from 10 ◦C to 90 ◦C with a Jasco J815 spectropolarimeter (JASCO 
Europe, Lecco, Italy). Measurements were carried out at a protein con
centration of 4 μM in a 0.1 cm pathlength quartz cuvette and a tem
perature slope of 1 ◦C/min.

Long-term thermal stability was evaluated at 35, 45 and 55 ◦C, by 
incubating the enzyme in PB, pH 7, at a concentration of 0.5 mg/mL and 
measuring the residual CD signal (220 nm) and specific activity using 

xylan and oNPG as substrates for Ps_GH5 and Ps_GH50, respectively. 
Activity was determined as previously described. Experiments were 
performed in triplicate.

3. Results

3.1. Identification of extracellular GHs in the genome of Pseudomonas sp. 
ef1

To guide the search in the genome of Pseudomonas sp. ef1 for se
quences potentially encoding CAZymes involved in polysaccharide 

Fig. 2. Evolutionary analysis of Ps_GH5 and Ps_GH50. The rooted maximum likelihood phylogenetic trees of the catalytic domain of Ps_GH5 (A) and Ps_GH50 (B). To 
calculate the branch support values, 1000 ultra-fast bootstrap replicates were performed; only the values <96 are reported. For the sake of clarity, some subtrees were 
collapsed to facilitate the visualization of the main clusters. The horizontal bar represents the scale of the fraction of expected substitutions per site. The phylogenetic 
tree was visualized with FigTree v1.4.4 (https://github.com/rambaut/figtree/releases) and customized. Sequences are labeled with either their Uniprot ID or the 
UniParc ID (label starting with “UPI”).
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degradation, a preliminary screening was designed using the Biolog 
Omnilog® system. This system was used to test if Pseudomonas sp. ef1 
can metabolize monosaccharides (glucose, galactose and xylose) and 
polysaccharides (xylan, arabinoxylan, CMC and low melting point 
agarose). Pseudomonas sp. ef1 turned out to be metabolically active on 
all tested sugars at varying degrees, with glucose being the substrate on 
which a greater metabolic activity is observed (activity index: 3), fol
lowed by agarose and CMC (activity index: 2) and all other sugars (ac
tivity index: 1) (Fig. 1A).

Genome analysis identified 27 genes encoding putative GHs 
(Fig. 1B), which are associated with various physiological roles, 
including bacterial wall shaping or hydrolysis, storage sugar synthesis 
and utilization, and sialidase activity. The Biolog Omnilog data were 
used to filter the putative GHs identified by the genome analysis. Indeed, 
only the GHs putatively involved in the degradation of polysaccharides 
metabolized by Pseudomonas sp. ef1 were considered. Following this 
step, six predicted proteins belonging to five different families were 
selected: two GH3s (GenBank Protein IDs: WP_041478900, 
WP_041477342), GH5 (GenBank Protein ID: WP_04147731 4), GH16 
(GenBank Protein ID: WP_081932489), GH17 (GenBank Protein ID: 
WP_041479600), and GH50 (GenBank Protein ID: WP_041478046). Of 
these, only the GH5 and GH50 sequences contain an N-terminal signal 
peptide predicted for secretion, suggesting that these enzymes may act 
extracellularly and are involved in the initial steps of polysaccharide 
degradation. Therefore, these two enzymes, Ps_GH5 and Ps_GH50, were 
selected for further sequence and structural analyses to predict their 
functional specificity.

3.2. Phylogenetic analyses of Ps_GH5 and Ps_GH50

The sequence diversity of Ps_GH5 and Ps_GH50 was investigated by 
combining the sequence space of their families with phylogenetic ana
lyses. The sequence space of the two selected enzymes was generated 
using a dataset containing sequences of GHs sharing a global sequence 
identity higher than 10 % with Ps_GH5 or Ps_GH50 and whose 3D 
structure is available in PDB or in AFDB. The space of Ps_GH5 contains 
sequences belonging to GH5 subfamily 8 (GH5_8), GH39 and GH51 
(Fig. 1C), suggesting that Ps_GH5 is evolutionarily related also to the 
GH39 and GH51 families. On the other hand, only GH50 family se
quences are contained in the sequence space of Ps_GH50 (Fig. 1D). By 
mapping the characterized GHs in the sequence space, it is evident that 

both sequences, especially Ps_GH5, are in an unexplored region, with 
global sequence identity <30 % to any biochemically characterized 
homologue available in the CAZy database.

To infer the substrate specificity of the two selected enzymes, we 
explored the phylogenetic relationship in the frame of characterized 
GHs only, by using a structure-based alignment of the catalytic domains, 
to avoid any bias due to recent duplications and horizontal gene trans
fers of accessory domains. Ps_GH5 is nested in a cluster that includes 
GH39 enzymes (Fig. 2A), which are mostly β-xylanase in Bacteria and 
α-L-iduronidase in Eukaryotes. This cluster is related to GH5_8 (β-man
nanase) and GH51 (mostly α-L-arabinofuranosidase), with the latter 
being the more distant in evolutionary terms. GH39s with catalytic 
domains evolutionary closest to Ps_GH5 were isolated from P. aeruginosa 
PsIG (PDB ID: 4ZN2, Uniprot ID: Q9I1N2, [44,45], 18 % global sequence 
identity to Ps_GH5) and from Bacteroides cellulosilyticus WH2 (Uniprot 
ID: A0A0N7IFL6, [46], 16.3 % global sequence identity to Ps_GH5). 
Although the specificity of such GH39s was not clarified, PsIG has a 
degradative effect on the complex secreted extracellular matrix of 
P. aeruginosa, which contains a repeating pentasaccharide consisting of 
D-mannose, D-glucose, and L-rhamnose 3:1:1 [47].

The phylogenetic tree of GH50s reveals five distinct clusters 
(Fig. 2B). Cluster 3 is the largest and contains only exo-β-agarases. 
Clusters 2, 4 and 5 contain enzymes with both exo- and endo-β-agarase 
activities, while cluster 1 contains enzymes with exo-lytic activity. Only 
one GH50, related to cluster 1, is active on lactose instead of agarose. 
The catalytic domain of Ps_GH50 is phylogenetically related to the GH50 
enzyme from Phocaeicola plebeius DSM 17135 (PDB ID: 5T3B, Uniprot 
ID: B5CY86, 16.8 % global sequence identity to Ps_GH50). This enzyme 
does not exhibit the expected β-agarase activity and does not show 
detectable activity on other related polymeric algal galactans [48]. 
Concerning GH50 evolution, enzymes with exo-activity are more distant 
from the root of the tree than those with endo-activity, suggesting that 
during the evolution of this family an independent loss of the endo- 
activity occurred. Collectively, Ps_GH5 and Ps_GH50 are evolution
arily located in a region of the sequence space that is poorly explored 
and characterized, with an unknown specificity for the closest 
homologs.

Fig. 3. Computational workflow for predicting substrate specificity. A) The putative substrates to screen are selected based on the results obtained from metabolic 
screening and phylogenetic analyses (A). The 3D structure of Ps_GH5 and Ps_GH50 was predicted with AF and the 3D models were used to screen the selected 
substrates employing a “dynamic docking” approach (B). The catalytically competent enzyme-substrate complexes were identified and refined by MD simulations and 
ML rescoring (LIE using neural network potentials).
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3.3. In silico screening of substrates putatively hydrolyzed by Ps_GH5 and 
Ps_GH50

Considering the orphan evolutionary placement of Ps_GH5 and 
Ps_GH50, a structural bioinformatics pipeline was employed to predict 
their substrate specificity (Fig. 3). This pipeline starts from the infor
mation derived from the metabolic capacity of Pseudomonas sp. ef1 and 
from phylogenetic analyses and includes the following steps: (i) pre
diction of the 3D structure of Ps_GH5 and Ps_GH50 with AF (average 
plDDT of Ps_GH5 and Ps_GH50 are 91.67 and 87.21, respectively, 
Fig. S1); (ii) screening of different oligosaccharides through a “dynamic 
docking” approach; (iii) identification of the catalytically competent 
enzyme-substrate complexes; and (iv) refinement by MD simulations 
and rescoring with LIE using neural network potentials.

According to AF models, Ps_GH5 (34.0 KDa, 318 AA) is organized in 
a catalytic domain with the classical (α/β)8 TIM barrel fold of clan A 
(Fig. 4A). In contrast, Ps_GH50 (89.2 KDa, 822 AA) is a two-domain 
enzyme that includes a putative β sheet-rich N-terminal agarose- 
binding domain (homologous to the CBM11 domain described in [49]) 
and a mainly α catalytic domain, an extension of the classical (α/β)8 TIM 

barrel fold of clan A, as also shown in [50]. This architecture closely 
resembles that of characterized GH50 enzymes with an accessory 
binding domain, except for two regions, a loop located between amino 
acids 395 and 426 and residues 793–822 at the C-terminal end (Fig. 4B). 
Both loops are predicted to be disordered by the consensus method 
MobiDB-lite 3.0 [51].

These models were docked with a list of oligosaccharides represen
tative of the substrates metabolized by Pseudomonas sp. ef1 and those 
hydrolysed by phylogenetically closest homologs. More in detail, 
Ps_GH5 was docked with disaccharides (2X), trisaccharides (3X) and 
tetrasaccharides (4X) derived from arabinan (AOS), cellulose (COS), 
xylan (XOS) and mannan (MOS). The α-L-arabinofuranosidase activity, 
typical of some GH51 active on arabinoxylan [52,53], was tested by 
docking with D-xylose-α-1,2-L-arabinofuranoside and D-xylose-α-1,3-L- 
arabinofuranoside (AXOS). Ps_GH50 was docked with 2X (neo
agarobiose), 4X and 6X oligosaccharides (NAOS) derived from agarose 
degradation, and with 2X, 3X and 4X GOS, containing glucose at the 
non-reducing end. Since loops could play a crucial role in the interaction 
between enzyme and substrate [54], a full conformational sampling of 
both substrate and enzyme was considered in the docking step. Ps_GH5 

Fig. 4. 3D model of Ps_GH5 and Ps_GH50. Left: 3D model of Ps_GH5 (A) and Ps_GH50 (B) were predicted using AF2 in the absence of substrate. The catalytic domains 
are colored in magenta, and the catalytic residues are represented as red sticks and labeled with one-letter code. Right: substrate binding site complexed with XOS 4X 
for Ps_GH5 and GOS 4X for Ps_GH50. The docking poses were extracted from the MD frame with the more negative DeepQM score (higher affinity). Residues that 
interact with the substrate (distance <4 Å to the substrate) are shown as ball-and-sticks and labeled with one-letter code. Subsites are numbered according to [77]. 
The docked substrates are visualized in ball-and-sticks with carbon atoms green colored. The C–O and C–C distances are marked by a black dashed line.
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and Ps_GH50 can be catalytically docked with most of the tested sub
strates (Table S1). The only exceptions are COS 3X and COS 4X for 
Ps_GH5 and NAOS 2X for Ps_GH50. Moreover, Ps_GH50 was competent 
only for the β-1,4-glycosidic bonds that linked the neoagarobiose units 
in the tested NAOS 4X and 6X. Specifically, the highest DynamicBind 
scores are observed with the 4X oligosaccharides for Ps_GH5 and with 
both the GOS 4X and NAOS 6X for Ps_GH50. To verify if the catalytically 
competent docking poses of the substrates are physically plausible, after 
preliminary screening with DynamicBind, these most promising sub
strates for each oligosaccharide class were selected for MD refinement. 
The refined enzyme-substrate complexes were evaluated through the 
measurement of average C–O and C–C catalytic distances, as well as 
through the analysis of the DeepQM score, which predicts the interac
tion energy from an end-state simulation more accurately than tradi
tional approaches relying on force field terms [41]. Among the docked 
substrates, XOS 4X can be simulated in a catalytically competent binding 
mode for Ps_GH5, while D-xylose α-1,3-L-arabinofuranoside is found in a 
suboptimal catalytically competent binding mode (Table 1). All the 
other tested substrates (COS 4X, MOS 4X and AOS 4X) interact in non- 
catalytic binding modes during MD simulations with Ps_GH5. In the 
case of Ps_GH50 the GOS 4X remained in a catalytically competent mode 
only for part of the simulations, including the most energetically favored 
conformation (Table 1). Consequently, the analyses of C–O and C–C 
distances indicate a suboptimal binding mode, as evidenced by the 
average values, which are slightly higher than the threshold value (4.0 
Å).

Overall, the bioinformatics pipeline enabled the prediction of the 
substrate specificity of the two enzymes. It was determined that Ps_GH5 
is likely to be active on xylan and possibly also on arabinoxylan poly
saccharides, while Ps_GH50 may be more efficient in degrading β-1,4 
bonds of GOS than NAOS. To validate these predictions, Ps_GH5 and 
Ps_GH50 were recombinantly produced in E. coli cells and purified by 
metal-affinity chromatography (Fig. S2). Both enzymes were soluble and 

in a monomeric state (Table S2).

3.4. Biochemical features of Ps_GH5 and Ps_GH50

The substrate specificity of recombinant Ps_GH5 and Ps_GH50 was 
investigated using ortho- and para-nitrophenyl sugars derivatives as well 
as different polysaccharides reported in the Material and Methods sec
tion. These sugars are representative of those metabolized by Pseudo
monas sp. ef1 and those tested in silico.

The extent of the hydrolytic activity on polysaccharides was pre
liminarily determined with the DNS assay. Ps_GH5 shows a faint specific 
activity on pNPXyl (0.3 ± 0.1 U/mg) and is active in the hydrolysis of 
xylan and arabinoxylan. On the other hand, Ps_GH50 shows hydrolytic 
activity towards oNPG (4.4 ± 0.2 U/mg) and only a weak activity on 
agarose, as indicated by the DNS assay (equivalent sugars released: 19.5 
± 5.7 μg/mL). Therefore, xylan and oNPG were selected as substrates to 
determine the biochemical properties of Ps_GH5 and Ps_GH50, respec
tively. Both enzymes are active in a pH range of 5.0 to 9.0, with an 
optimum pH of 7.0 and 8.0 for Ps_GH5 and Ps_GH50, respectively 
(Fig. 5A, B). Ps_GH5 exhibits highest activity at 45 ◦C and retains ≃ 90 % 
of its activity at 40 ◦C (Fig. 5C), whereas Ps_GH50 showed the optimal 
activity at 55 ◦C (Fig. 5D) and a broader temperature profile compared 
to Ps_GH5. Both enzymes are active to different extents at 10 ◦C: 
Psd_GH5 retains 10 % of its activity, while Ps_GH50 retains 15 %.

Thermal stability experiments, carried out by CD spectroscopy, show 
that Ps_GH50 (Tm of 62.9 ± 1.2 ◦C) is more thermostable than Ps_GH5 
(Tm of 55.0 ± 0.8 ◦C, Fig. 5E, F). This behavior was also observed in 
long-term thermal stability assays performed at 35 and 45 ◦C. Ps_GH5 is 
completely inactivated after five and one days of incubation at 35 ◦C and 
45 ◦C, respectively (black line in Fig. 6A, B). This enzymatic inactivation 
is due to heat-induced loss of secondary structure, as reported by 
monitoring the CD signal at 220 nm (black line in Fig. 6C, D). In contrast, 
Ps_GH50 maintains 60 % of its activity and 75 % of the CD signal after 
seven days of incubation at 35 ◦C (red line in Fig. 6A, B), and 35 % of 
both activity and CD signal after seven days at 45 ◦C (red line in Fig. 6C, 
D).

3.5. Determination of degradation products obtained from hydrolysis 
reactions with Ps_GH5 and Ps_GH50

To gain further insight into the mechanisms of polysaccharide hy
drolysis, the degradation products obtained in the presence of Ps_GH5 
and Ps_GH50 were analyzed by HPAEC-PAD after 2 and 24 h of incu
bation. The degradation reactions were carried out at 35 ◦C, which 
proved to be a good compromise between the optimal temperature for 
catalysis and the thermal stability of the enzymes (Figs. 5 and 6). Ps_GH5 
is active on xylan, releasing mainly XOS (xylotriose 3X, xylotetraose 4X, 
and xylopentose 5X) and small amounts of xylose (Fig. 7A, B). A similar 
degradation pattern was observed in the presence of arabinoxylan 
(Fig. 7D), although approximately 10 times lower sugars were released 
with respect to the use of xylan as substrate (Fig. 7E). Overall, these 
results indicate that Ps_GH5 is an endo-xylanase, with the capacity to 
release only a faint amount of α-L-arabinose units when arabinoxylan is 
used as a substrate (Fig. 7C, F). These findings are consistent with the in 
silico simulations, which predicted the optimal interaction of Ps_GH5 
with XOS 4X and suboptimal interaction with D-xylose α-1,3-L- 
arabinofuranoside.

As concerning Ps_GH50, the HPAEC-PAD chromatograms of agarose 
degradation products do not show any peaks, probably due to the very 
low concentration and/or to the length of the hydrolysis products, which 
may exceed the column cut-off. On the other hand, Ps_GH50 appears 
more active in the hydrolysis of the GOS 3X, yielding galactose and 
glucose as the predominant degradation products after 2 and 24 h of 
reaction (Fig. 8A and B). Following a 24-h reaction, the molar ratio of 
galactose to glucose was observed to be 1.7. Additionally, the presence 
of lactose and galactobiose was detected, indicating that the hydrolysis 

Table 1 
MD refinement of docked poses to predict substrate specificity. The binding free 
energy is estimated by DeepQM score. The DeepQM score and the catalytic 
distances are averaged over three independent MD simulation runs. The values 
in the brackets are those from the simulation frame with the more negative 
DeepQM score (higher predicted affinity). The best metrics for each enzyme are 
shown in bold. Distances <4 Å were considered catalytically competent (see 
Materials and methods for further details).

Enzyme Substrate DeepQM 
scorea

Distance 
C–O (Å)

Distance 
O–O (Å)

Ps_GH5 COS 2X − 2.48 ±
0.52 
(− 4.22)

5.27 ± 0.55 
(5.1)

6.39 ± 1.35 
(5.1)

XOS 4X ¡3.06 ± 
0.58 
(¡4.68)

3.67 ± 
0.53 
(3.6)

4.02 ± 0.40 
(3.6)

MOS 4X − 2.89 ±
0.74 
(− 4.57)

4.83 ± 1.70 
(4.4)

4.97 ± 1.43 
(4.5)

AOS 4X − 3.32 ±
1.00 
(− 6.11)

5.27 ± 1.57 
(4.4)

5.65 ± 0.80 
(5.4)

D-xylose α-1,2-L- 
arabinofuranoside

− 2.63 ±
0.80 
(− 4.2)

4.39 ± 0.76 
(4.2)

4.86 ± 1.88 
(3.5)

D-xylose α-1,3-L- 
arabinofuranoside

− 2.72 ±
0.70 
(− 4.40)

3.49 ± 
0.86 
(3.3)

5.07 ± 0.68 
(4.4)

Ps_GH50 NAOS 6X − 3.87 ±
0.79 
(− 6.11)

4.68 ± 1.17 
(3.6)

5.51 ± 1.05 
(4.6)

GOS 4X − 3.57 ±
0.73 
(− 5.94)

4.17 ± 
0.42 
(3.9)

4.12 ± 1.07 
(3.2)

a The lower the better. Please refer to (40) for further explanations.
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reaction is not yet complete. The experimental results and molecular 
docking simulations are in accordance with the hypothesis that Ps_GH50 
is more efficient on GOS and capable of hydrolysing both β1–4 glycosidic 
bonds between glucose and galactose and between two galactose moi
eties, potentially releasing galactose, lactose and galactobiose from GOS 
hydrolysis (Fig. 8C).

3.6. Structural analysis of the substrate binding site of Ps_GH5 and 
Ps_GH50

The substrate binding sites of Ps_GH5 and Ps_GH50 were predicted 
by analyzing the interactions between Ps_GH5 and xylotetraose, and 

Ps_GH50 and GOS 4X in the best (in terms of DeepQM score) docking 
poses. In both enzymes the substrates interact with two Glu residues at ≃
6 Å distance to each other (E142 and E242 for Ps_GH5, E691 and E529 
for Ps_GH50), which are the catalytic dyad (nucleophile and acid/base, 
respectively, Fig. 4A, B). This distance is consistent with a retaining 
hydrolytic mechanism that has been previously reported for other en
zymes belonging to the GH5, GH39 and GH50 families (http://www. 
cazy.org/GH5.html, http://www.cazy.org/GH39.html, http://www. 
cazy.org/GH50.html).

In Ps_GH5, the substrate binding site is a shallow cleft, comprising at 
least four distinct subsites (− 1, +1, +2 and +3). The structure of the 
substrate binding site of Ps_GH5 was superimposed on those of two 

Fig. 5. Biochemical features of Ps_GH5 and Ps_GH50. Effects of pH on the activity of Ps_GH5 (A) and Ps_GH50 (B). Temperature profile of Ps_GH5 (C) and Ps_GH50 
(D). The activity of Ps_GH5 and Ps_GH50 were monitored using xylan and oNPG as substrates, respectively. Thermal denaturation profiles of Ps_GH5 (E) and Ps_GH50 
(F), determined by CD spectroscopy. Ellipticity values were recorded at 220 nm during heating from 10 to 90 ◦C. The initial CD signal was taken as 100 % for 
normalization. The dashed gray line corresponds to Tm temperatures. All the experiments were performed in triplicate and standard deviation is represented (n = 3).
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evolutionary closest homologs, namely GH5_8 from Thermomonospora 
fusca (PDB: 2MAN) and GH39 from P. aeruginosa (PDB: 4ZN2). The 
structural comparison shows that the residues at subsites − 1 and + 1 
exhibit comparable physicochemical properties, whereas the main dif
ferences are observed at subsites +2 and +3, which are more hydro
philic in Ps_GH5 than in its closest homologs (Fig. 9A). Notably, these 
subsites do not contain bulky aromatic residues usually observed in GH5 
and GH39 counterparts. It is conceivable that residue R185 in subsite +2 
plays a role in substrate positioning or stabilization within the active site 
(Figs. 9A and 4A).

On the contrary, Ps_GH50 possesses a tunnel-shaped catalytic grove 
with at least four distinct subsites (− 2, − 1, +1 and + 2, Fig. 4B). 
Comparison of the 3D model of Ps_GH50 with and without GOS 4X 
shows a distinct reorientation of loop 395–426 during the docking step, 
to form a part of the − 2 subsite through the interaction of residue A412 
(Fig. 4B). This region, comprising also W456, Q743 and L750, is the 
most diverse with respect to the closest evolutionary homologs from 
Paraglaciecola hydrolytica (Uniprot ID: A0A136A0R9) and from Victi
vallis vadensis (Uniprot ID: UPI0001C016FF, Fig. 9B): Q743 is present in 
all the homologs, L750 is present only in Ps_GH50, while W456 is 
conserved in the non-agarolytic GH50 from V. vadensis and absent in 
P. hydrolytica agarase. The physicochemical properties of the other 
subsites are quite conserved.

4. Discussion

Pseudomonas sp. ef1 is an Antarctic bacterium isolated from the mi
crobial consortium of Euplotes focardii. This bacterium has received 
attention for its ability to synthesize silver nanoparticles and encode two 
orphan GH19s with lysozyme activity instead of the typical chitinolytic 
one [17,55]. Despite its ability to metabolize cellulose along with 
various polysaccharides of terrestrial (xylan and arabinoxylan) and 
marine (agarose) origin, only two extracellular enzymes, Ps_GH5 and 
Ps_GH50, have been identified to be involved in polysaccharide degra
dation. Strikingly, Ps_GH5 and Ps_GH50 are not active on cellulose, 
suggesting that the genome of Pseudomonas sp. ef1 contains other GH(s) 
that evade the conventional methods of sequence annotation.

Since Ps_GH5 and Ps_GH50 share <30 % sequence identity with the 
characterized enzymes of their respective families, they lie in an unex
plored region of the sequence and structural space. This makes it chal
lenging to infer the substrate specificity of Ps_GH5 and Ps_GH50 using 
traditional sequence-based enzyme discovery methods (phylogenetic 
relationships [56], SSNs [7], and BLAST searches) or recently developed 
deep learning methods (Table 2).

The workflow proposed in this study allows for the prediction of 
substrate specificity by integrating a “dynamic docking” method with a 
physics-based MD sampling approach. In our pipeline, the metabolic 
capacity of Pseudomonas sp. ef1 was used to drive genome analysis and 

Fig. 6. Long-term thermal stability. Relative activity of Ps_GH5 (black) and Ps_GH50 (red) determined at 35 ◦C (A) and 45 ◦C (C). The activity of Ps_GH5 and 
Ps_GH50 were monitored using xylan and oNPG as substrates, respectively. Relative CD signals of Ps_GH5 (black) and Ps_GH50 (red) recorded at 220 nm after 
incubation at 35 ◦C (B) and 45 ◦C (D). All the experiments were performed in triplicate and the standard deviation is reported (n = 3).
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to select substrates for the in silico screening. To simplify simulation and 
reduce computational resources, these substrates were represented as 
medium-chain oligosaccharides. Computational simulations indicate 
that Ps_GH5 interacts in a catalytically competent manner mainly with 
XOS 4X and less efficiently with D-xylose-α-1,3-L-arabinofuranoside, 
representing xylan and arabinoxylan. These simulations are in accor
dance with the experimental results, which show a more marked activity 
towards xylan than arabinoxylan. Regarding the substrate specificity of 
Ps_GH50, although its structure-based prediction is more challenging 
owing to the presence of a disordered loop 395–426, there is good 

agreement between the computational simulation and Ps_GH50 activity. 
Indeed, the experimental results indicated that Ps_GH50 exhibits greater 
activity on small GOS than agarose, which is in accordance with the best 
distance metrics in the computational simulation. A comparison of 
Ps_GH5 and Ps_GH50 with their biochemically characterized homologs 
reveals that both enzymes exhibit distinctive enzymatic activities that 
have not been previously reported in their homologs (Table S3). Despite 
the challenges posed by the low sequence identity and the absence of a 
systematic approach to studying polysaccharide degradation, it can be 
concluded that, based on both computational and functional analyses, 

Fig. 7. Xylan and arabinoxylan degradation in the presence of Ps_GH5. (A) HPAEC-PAD chromatogram of xylan degradation products obtained after 2 h and after 24 
h of incubation. (B) Quantification of xylan degradation products obtained after 24 h of reaction. (C) Scheme of the degradation pattern of xylan in the presence of 
Ps_GH5; red arrows indicate the β1–4 glycosidic bonds hydrolyzed by Ps_GH5. (D) HPAEC-PAD chromatogram of arabinoxylan degradation products obtained after 2 
h and after 24 h of incubation. (E) Quantification of arabinoxylan degradation products obtained after 24 h of reaction. (F) Scheme of the degradation pattern of 
arabinoxylan in the presence of Ps_GH5; red arrows indicate the β,1–4 glycosidic bonds hydrolyzed by Ps_GH5, with the probability of hydrolysis proportional to the 
colour intensity. Reactions were performed with either 1 % w/v of xylan or arabinoxylan and 0.5 mg/mL of Ps_GH5 at 35 ◦C with shaking. All the experiments were 
performed in quintuplicate and standard deviation is reported in panels B and E (n = 5).
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Ps_GH5 and Ps_GH50 are likely to belong to novel subfamilies of GH5/ 
GH39 and GH50, respectively.

This study highlights the efficacy of dynamic docking simulations to 
infer substrate specificity especially for enzymes with flexible active 
sites, such as cold-active enzymes [57]. In general, the proposed work
flow, which combines dynamic docking and MD simulations, could be 
applied in a wide range of scenarios to predict and describe the substrate 
specificity of enzymes, including those poorly represented in training 

datasets, such as sequences from metagenomic campaigns or from de 
novo design [58–62]. In addition, this computational workflow can be 
integrated with conventional high-throughput activity-based assays for 
the discovery of novel catalytic functions [63].

In the context of a general low sequence identity with their closest 
evolutionary homologs, we focused on the peculiarities of the active 
sites of the two enzymes, as our workflow allowed us to have a direct 
interpretation of the inferred substrate specificity. The active site of 

Fig. 8. GOS degradation in the presence of Ps_GH50. (A) HPAEC-PAD chromatograms of GOS degradation at time 0 and after 2 and 24 h of incubation in the presence 
of Ps_GH50. Reactions were carried out at 35 ◦C in the presence of 0.5 mg/mL of Ps_GH50 and 1 % w/v of GOS. (B) Quantification of galactose and glucose after 2 and 
24 h of incubation in the presence of Ps_GH50. (C) Scheme of GOS 3X hydrolysis in the presence of Ps_GH50; red arrows indicate the β1–4 glycosidic bonds attacked 
by Ps_GH50. All the experiments were performed in quintuplicate and standard deviation is reported in panel B (n = 5).

Fig. 9. Comparison of the substrate binding sites of Ps_GH5 (A) and Ps_GH50 (B) with those of their evolutionary closest homologs. The substrate binding residues of 
Ps_GH5 and Ps_GH50 are represented as in ball-and-sticks and colored in magenta. In panel A the non-conserved residues of GH5 from T. fusca (PDB: 2MAN) and 
GH39 from P. aeruginosa (PDB: 4ZN2) are colored in cyan and yellow respectively. In panel B the non-conserved residues of the 3D model of GH50 from P. hydrolytica 
(Uniprot ID: A0A136A0R9) and from V. vadensis (Uniprot ID: UPI0001C016FF) are colored in cyan and yellow respectively. Non-conserved loops surrounding the 
entrance of the substrate-binding tunnel are shown in cartoons. Subsites are numbered according to [77] and based on Fig. 3.
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Ps_GH5 is shallower and more hydrophilic than those of its structural 
homologs from the two closest GH families, namely GH5_8 from T. fusca 
(PDB: 2MAN) and GH39 from P. aeruginosa (PDB: 4ZN2). The afore
mentioned features indicate a prominent role of electrostatic and polar 
interactions in the correct positioning of the substrate. Although the 
substrate binding residues are not conserved, a similar prevalence of 
charged/hydrophilic residues in positions +2 and +3 was observed in 
GH39 from Bacteroides cellulosilyticus [46] and from Xanthomonas citri 
[64]. More in detail, our structural analyses suggest that the R185 res
idue, situated in subsite +2, is a determinant of substrate specificity. 
Nevertheless, a high-resolution complex between Ps_GH5 and XOS and 
additional structural investigations of the enzyme-substrate interaction 
are necessary to elucidate the function of this residue.

The active site of Ps_GH50 is a tunnel-shaped catalytic groove with 
four subsites from − 2 to +2, as observed in other exo-acting GH50s 
[49,50,65]. In contrast, 3D models of characterized endo-type GH50s 
display at least eight different subsites, from − 4 to +4 [66]. The peculiar 
specificity of Ps_GH50 for GOS can be attributed to loop 395–426 and 
the presence of W456 on top of subsite − 2, which may contribute to an 
increase in steric bulk, thereby negatively affecting the required posi
tioning of the 3,6-anhydro-α-L-galactopyranose moiety of the neo
agarobiose subunits. In general, the structural reasons for the substrate 
specificity of GH50s are still unclear due to the paucity of available 3D 
structures, the scarcity of activity data on GOS, and the conservation of 
most of the active site residues in non-agarolytic GH50s, such as those 
from V. vadensis [67] and from Bacteroides plebeius [48].

As the selected enzymes were identified in the genome of an Ant
arctic bacterium, the hallmarks of cold adaptation were sought. Both 
enzymes show activity at 10 ◦C, and enzymatic inactivation precedes the 
loss of secondary structure, with a temperature gap of 10 ◦C and 7.9 ◦C 
for Ps_GH5 and Ps_GH50, respectively. These two features represent the 
main characteristics of cold adaptation as reported for other cold-active 
enzymes [68–71]. In terms of thermal stability, Ps_GH5 is less thermo
stable than Ps_GH50, which behaves as a mesophilic enzyme. A similar 
behavior was observed in other cold-active agarases isolated from the 
Antarctic Pseudoalteromonas sp. NJ21 and Vibrio natriegens WPAGA4, 
which effectively hydrolyse agarose at 40 ◦C [72,73]. Although this 
behavior may seem peculiar, it is not unusual to encounter psychrophilic 
enzymes that couple cold activity with high thermal stability [74–76]. 
The low sequence identity of both Ps_GH5 and Ps_GH50 with respect to 
their mesophilic or thermophilic homologs makes it difficult to identify 
the cold adaptation mechanisms. However, in Ps_GH50, the extended 
and disordered loops 395–426 and 793–822, which are absent in its 
homologs, may play a role in activity at low temperatures by increasing 
the structural flexibility of the enzyme. To test this hypothesis, further 
work is required to solve the experimental 3D structure and to perform 
rational design mutagenesis.

5. Conclusion

In this study, a functional and sequence-based workflow was devel
oped to discover two novel enzymes from the genome of Pseudomonas 
sp. ef1 belonging to potentially new subfamilies of the GH5/GH39 and 
GH50 families. These enzymes are putatively secreted and are involved 
in the degradation of complex sugars such as xylan and arabinoxylan for 
Ps_GH5 and GOS for Ps_GH50. In conclusion, Ps_GH5 and Ps_GH50 
belong to the repertoire of unusual GHs found in the Pseudomonas sp. ef1 
genome, which enables the organism to cope with both low tempera
tures and low nutrient availability.

CRediT authorship contribution statement

Marco Orlando: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Methodology, Investigation, Formal 
analysis, Data curation. Alessandro Marchetti: Writing – review & 
editing, Visualization, Investigation, Data curation. Luca Bombardi: 
Writing – review & editing, Visualization, Investigation, Data curation. 
Marina Lotti: Writing – review & editing, Writing – original draft, Su
pervision, Conceptualization. Salvatore Fusco: Writing – review & 
editing, Writing – original draft, Supervision, Methodology, Data cura
tion, Conceptualization. Marco Mangiagalli: Writing – review & edit
ing, Writing – original draft, Validation, Supervision, Data curation, 
Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests:

Marco Mangiagalli reports financial support was provided by Uni
versity of Milan-Bicocca. Marina Lotti reports financial support was 
provided by University of Milan-Bicocca. Salvatore Fusco reports was 
provided by Ministero dell'Università e della Ricerca (MUR). If there are 
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VIPER are the pair score of the enzyme-substrate interaction, the catalytic efficiency was reported for CatPred, the values reported for TurNup and DeepEnzyme refer to 
the catalytic constant (s− 1). The mean and standard deviation values were obtained by running the models with the oligomers of different lengths. EC 3.2.1.4: endo-1,4- 
β-D-glucanase; EC 3.2.1.8: endo-1,4-β-D-xylanase. EC 3.2.1.81: endo-β-agarase. NA: not available.

Enzyme Blast 
top-1 hita

CLEAN [78] Substrate ProSmith [79] TurNup [80] CatPred [81] DeepEnzyme [82] VIPER  
[83]

Ps_GH5 NA EC 3.2.1.4 
(Low confidence)

COS 0.050 ± 0.017 37.99 ± 1.82 6.99 ± 2.25 5.74 ± 0.002 0.053 ± 0.020
XOS 0.017 ± 0.005 42.55 ± 6.07 4.79 ± 1.14 5.28 ± 0.05 0.096 ± 0.033
MOS 0.05 ± 0.017 40.26 ± 1.82 7.74 ± 2.45 5.74 ± 0.002 0.052 ± 0.018
ARAO 0.030 ± 0.017 43.67 ± 10.87 3.25 ± 0.59 5.49 ± 0.18 0.134 ± 0.027
AXOS 0.03 ± 0 99.25 ± 3.68 6.68 ± 0.88 5.62 ± 0.027 0.154 ± 0.07

Ps_GH50 EC 3.2.1.81 EC 3.2.1.8 NAOS 0.183 ± 0.176 119.74 ± 42.96 17.09 ± 3.79 12.96 ± 0.66 0.057 ± 0.037
GOS 0.063 ± 0.012 145.35 ± 0 11.14 ± 3.65 12.17 ± 0.28 0.055 ± 0.017

a The Blast search was performed on the Uniprot Swissprot database (Release 2024_04). The prediction is the E. C. number of the top-1 hit according to default Blast 
ranking, accessed through https://www.uniprot.org/blast. A maximum e-value of e− 10 was used.
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