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Abstract

This PhD thesis explores the phenomenology of black-hole binary systems, with

a particular focus on spin dynamics, instabilities as well as waveform systematic

and population studies applied to the LIGO/Virgo catalog and to simulated

gravitational-wave signals. It exploits a range of advanced statistical techniques,

including Bayesian inference for parameter estimation, hierarchical analyses and

model selection for both current and future gravitational-wave experiments.

The first part of this manuscript explores the impact of two subdominant spin

effects in black-hole binaries and illustrates the prospects for their detection in

upcoming observing runs. First, we investigate the ability of current interferome-

ters, such as LIGO and Virgo, to detect the signature imprinted by two precessing

spins on simulated data using a new formulation of the precession spin parameter

χp. We show that the detection of two-spin effects is within reach of the current

generation of gravitational-wave detectors. Second, we investigate the potential to

detect a precessional instability that occurs in the so-called “up-down” black-hole

binaries, where the primary (secondary) BH spin is aligned (anti-aligned) with

the orbital angular momentum of the binary. Our simulations show that detecting

this instability requires a high (but achievable) detector sensitivity, and that these

sources must reside in specific regions of the parameter space where the instability

can occur and become detectable.

The second part of the thesis moves beyond single-event analysis and focuses on

population studies of merging black holes using third-generation detectors, such as

the Einstein Telescope and Cosmic Explorer. Crucially, this is the first time that

a population analysis with third-generation detectors has been conducted using

the Fisher matrix approximation and allows for efficient forecasting of parameter

uncertainties. This approach provides detailed prediction of how future detectors

will improve our understanding of the mass, spin, and redshift distributions of

black holes, providing critical insights into their astrophysical formation channels.
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Chapter 1

Gravitational waves: the new
frontier in astrophysics

Overview

Chapter 1 serves as a broad introduction of the field of gravitational wave astronomy,

exploring the conceptual basis of General Relativity, the sources of gravitational waves,

and the detection methods used by current observatories like LIGO, Virgo, and KAGRA.

It also highlights the key results from the LIGO-Virgo-KAGRA analyses based on the

third gravitational-wave transient catalog, and discusses the expectations for future

observatories, such as the Einstein Telescope, Cosmic Explorer and the LISA space

mission, in advancing our understanding of black holes and neutron stars.

1.1 A quick tour of General Relativity

The theory of General Relativity (GR), formulated by Albert Einstein in 1915,

revolutionized our understanding of gravity [1]. Unlike the Newtonian framework,

where gravity is a force acting at a distance, GR describes gravity as a manifestation
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of the curvature of spacetime. Using a famous quote by the physicist John Archibald

Wheeler, the essence of GR can be summarized as follows: matter tells spacetime

how to curve, and curved spacetime tells matter how to move [2]. This relationship is

mathematically encapsulated in Einstein’s field equations, Gµν ∝ Tµν , which describe

how the distribution of matter and energy (through the stress-energy tensor Tµν)

determines the curvature of spacetime (through the Einstein tensor Gµν) [3, 4, 5].

GR has been extensively tested over the years and is now regarded as the most

comprehensive theory of gravity. One of the most compelling pieces of evidence

supporting the validity of GR is the observational confirmation of the existence of black

holes (BHs), regions of the spacetime where the gravitational pull is so intense that

not even light can escape. Notably, the detection of gravitational waves (GWs) from

a binary BH merger in 2015 (see Section 1.2.3 for further details) [6], along with the

groundbreaking imaging of the supermassive BH shadows in the M87 galaxy in 2017

and Sagittarius A* in 2022 by the Event Horizon Telescope Collaboration [7, 8], are

among the most direct confirmations of this revolutionary theory. On cosmological

scales, GR represents the foundation of modern cosmology [9]. The Friedmann-Lemâıtre-

Robertson-Walker metric is an exact solution of Einstein’s field equations and describes

an expanding, homogeneous, and isotropic universe [10, 11, 12, 13]. While cosmic

expansion can also be described within the framework of Newtonian gravity under

certain conditions [14] , the prediction of accelerated expansion in the late universe,

confirmed by observations of distant supernovae in 1998 [15, 16], is one of the key

implications of GR.
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1.2 Gravitational Waves from compact binaries

1.2.1 Sources of gravitational waves

Just as electromagnetic waves carry information about the dynamics of charged

systems through space, also changes in a mass-energy distribution should propagate

as waves, conveying information about gravitational dynamics. Predicted by Einstein

more than one century ago [17, 18, 19], GWs are perturbations in the fabric of the

spacetime generated by the acceleration of massive objects and propagating at the speed

of light. Unlike electromagnetic waves, which can radiate through monopole and dipole

moments, GWs are emitted by systems with a time-varying quadrupole moment [20, 3].

The leading-order expression for the amplitude h of GWs, known as the quadrupole

formula, is given by [2, 21]

h ∼ 2G

c4r
Q̈ij, (1.1)

where Q̈ij is the second time derivative of the quadrupole moment tensor of the

mass distribution, G is the gravitational constant, c is the speed of light, and r is the

distance from the source to the observer. Eq. (1.1) describes the emission of GWs by a

gravitating system evolving with time and shows that any form of energy and matter

can be a source of GWs, as long as the second derivative of the quadrupole moment of

the system is non-zero. The factor 2G/c4 ∼ 10−50s2 g−1 cm−1 affects the intensity of

the emitted wave, explaining the typical weakness of GWs. In order to have detectable

signals, GW sources need to be compact and with orbital velocity high enough to

produce strong gravitational fields. Consequently, only the most violent astrophysical

events in the Universe, such as the merger of extremely compact objects, can produce

detectable signals [22]. The most compact objects known so far are BHs and neutron

stars (NSs). When two compact objects orbit around each other, GWs are emitted

carrying away energy and angular momentum from the system, and therefore causing
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them to spiral towards each other down to the merger. Coalescing binary systems

evolve through three stages: the inspiral, during which the gravitational fields and

velocities are still relatively weak, the merger, which occurs when the two objects are

close enough that they start to fuse, and finally the post-merger phase, when the newly

formed object settles down to a stable state. In such systems, the orbital velocities of

the objects can approach a significant fraction of the speed of light, especially in the

final stages of the coalescence.

1.2.2 Gravitational-wave interferometers

The amplitude of GWs from merging compact binaries is typically of the order of

h ∼ 10−21 or lower, which has posed a significant challenge for their discovery. Detecting

GWs requires highly sensitive instrument known as laser interferometers, instruments

with two perpendicular arms with proper length L and two suspended mirrors placed at

the end of each arm [23, 22, 24, 25, 26, 27]. A laser beam is splitted and the two parts

are sent down the perpendicular arms, then reflected off the mirrors and recombined.

When a GW propagate, it stretches and compresses spacetime, causing the proper

distance of these arms to change by an amount ∆L ∼ hL and altering the interference

pattern of the recombined laser beams that can be measured with high accuracy. If we

assume an interferometer with 4-kilometer-long arms, the relative length change that

those instrument need to measure is ∆L ∼ 10−18 m (which is about one thousandth

the size of a proton). Detecting such a tiny variation would require interferometer arms

about 15-20 km long. However, with advanced techniques like power recycling mirrors

and Fabry-Pérot cavities, the effective optical path length is significantly increased,

allowing interferometers to achieve the required sensitivity to detect GWs with arms

that are “only” a few kilometers long [28, 29, 30, 31].

The development of ground-based interferometric detectors dates back to the

1980s [32, 33, 34, 35], and since then, their sensitivity has been continuously improved,
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addressing the main sources of noise, which are seismic noise, quantum noise, and

thermal noise [36, 37, 38]. The currently operating detectors are (i) two LIGO (Laser

Interferometer Gravitational-wave Observatory) interferometers built in the U.S. [35, 39],

(ii) Virgo in Italy [40, 41] and (iii) KAGRA (Kamioka Gravitational Wave Detector)

in Japan [42]. These detectors, with arm lengths of 3-4 km, operate in the frequency

range of 10 Hz to a few kHz, making them sensitive to the mergers of stellar-mass BHs

(around 10–100 M⊙). Simultaneous detections of signals by multiple interferometers

significantly enhance both the confidence of a detection and the precision of the sky

localization and polarization measurements [43, 44].

In the near future, new interferometers will significantly expand our observational

capabilities. The Einstein Telescope (ET) in Europe [45] and the Cosmic Explorer (CE)

in the U.S. [46], that will become operational in ∼ 20 years, will operate in a wider

frequency range, down to 2-5 Hz, and will be able to observe heavier BHs (up to several

thousand M⊙) and earlier stages of binary inspirals. These detectors will improve

sensitivity by an order of magnitude compared to current ones, reducing quantum and

seismic noise with improved cryogenic systems and underground facilities.

LISA (Laser Interferometer Space Antenna), a space-based detector set to launch

in the 2030s, will observe GWs in the millihertz range (0.1 mHz to 1 Hz) [47, 48, 49],

making it capable of detecting supermassive BH mergers (in the range of 104− 107 M⊙).

Pulsar Timing Arrays (PTA) operate at nanohertz frequencies, allowing them to

detect signals from supermassive BH binaries and background GWs. Recently, PTAs

(including the European PTA [50] and NANOGrav [51]) announced potential evidence

of a stochastic GW background, a significant breakthrough that may help study the

evolution of massive BHs across cosmic time [52, 53, 54, 55].
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1.2.3 Where we stand now and where we are going

In September 2015, the Advanced LIGO [39] began its first scientific observing run

(O1). Shortly after, on September 14, 2015, the two LIGO interferometers simultaneously

observed the first gravitational event, GW150914, starting a new era of GW astronomy [6,

56, 57, 58, 59, 60, 61]. This event matched the waveform predicted by GR for the

inspiral and merger of a binary BH with component masses of about 36 and 29 M⊙.

Following the success of O1, LIGO and Virgo conducted their second observing run

(O2) from November 2016 to August 2017 [62, 63, 64]. Several additional detections

were made, including the landmark detection of the first binary NS merger, GW170817,

which was accompanied by an electromagnetic counterpart and confirmed the connection

between NS mergers and short gamma-ray bursts [65, 66, 67, 68, 69].

In the third observing run (O3), which spanned from April 2019 to March 2020, a

variety of remarkable events were observed [70]. Among them, GW190521 stood out as

the most massive binary BH merger detected, with a remnant mass of approximately

142M⊙ , providing direct evidence for the existence of intermediate-mass BHs [71, 72, 73].

Another significant event, GW190814, exhibited the most unequal mass ratio observed

to date. The primary BH had a mass of 23.3M⊙, while the secondary object, with a

mass of 2.6M⊙, could be either the lightest BH or the heaviest NS ever observed, falling

within the lower mass gap [74, 75, 76].

Currently, the fourth observing run (O4), which started in May 2023, is ongoing and

is expected to conclude in June 2025 [77, 78]. The third gravitational-wave transient

catalog (GWTC-3) released in November 2023 now contains ∼ 90 events produced

by the coalescence of BHs and NSs. Over the coming years, many more detections of

compact binary coalescences are expected for the fourth (O4) and fifth (O5) runs. New

observations will be made possible by an increased sensitivity of currently operating

GW detectors as well as the advent of new ground- and space- based facilities, such as

the ET and the LISA space mission. These detectors will reach a level of sensitivity so
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impressive that it will be possible not only to test GR in a genuine strong field regime

(allowing to probe regions closer and closer to the event horizon of a BH) but also to

measure with an extremely high accuracy the waveform parameters, thus placing strong

constraints on the underlying astrophysical formation processes.

1.2.4 Gravitational-wave signal extraction and data analysis

The output of a GW detector, d, can be written as a linear combination of the GW

signal, h(θ), and the noise, n, namely d = h(θ) + n. The noise is usually assumed to

be stationary and Gaussian and since it is not known, it is estimated by the power

spectral density. The astrophysical contribution is encapsulated inside the parameters

of the signal, θ, that characterize compact binary mergers (such as their masses, spins,

sky localization or distance from the observer). Although great efforts are carried

out in order to reduce the sources of noise affecting detectors, the GW signal is still

buried in noisy data and needs to be extracted with efficient methods [79, 80]. This

is typically done using a technique called matched filtering, where a discrete bank of

theoretical waveforms (templates) covering the relevant parameter space θ is compared

against the data to find signals that may originate from binaries with a wide range

of masses and spins [81]. Triggers are generated when a signal matches a template

above a certain signal-to-noise ratio (SNR) threshold. The highest SNR trigger is then

selected for further analysis. Once a potential signal is found, the false alarm rate

(FAR) is calculated to estimate how likely it is that the signal could be caused by noise

fluctuations.

Accurate waveform modeling is crucial for GW detection. One key challenge is that

the shape of the signal, h(θ), cannot be exactly predicted due to the nonlinearity of

Einstein’s field equations, requiring waveform approximations. Different approaches

are used depending on the evolution stage of the binary. During the inspiral, when the

binary components are far apart and the orbital velocities are small, Post-Newtonian
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(PN) methods provide an analytical approximation of the emitted signal [82, 83]. For

the late inspiral and merger, where strong gravity dominates, numerical relativity

(NR) simulations are necessary, though computationally expensive [84, 85]. Complete

waveforms can be constructed by combining PN results for the early inspiral with

NR simulations for the later stages, including merger and post-merger. The two

main approaches used to fill the gap between PN approximations and NR simulations

are Effective One Body (EOB) methods [83, 86] and phenomenological waveform

models [87, 88, 89]. The first combine PN expansions with non-perturbative techniques

to model the full evolution of a compact binary system in a semi-analytical framework.

EOB models are physically motivated but can be computationally intensive. On the

other hand, phenomenological (Phenom) waveforms offer a purely phenomenological

fit to NR data with faster generation times, making them more suitable for extensive

parameter estimation. Additionally, NR surrogate models [90, 91] interpolate between

existing NR simulations to produce accurate waveform approximations with much

lower computational costs, effectively combining the precision of NR with the speed of

analytical models. A key drawback of NR surrogate models is that their accuracy is

limited by the density and frequency range of the available NR simulations they are

built from, as well as the extent of the parameter space these simulations encompass.

After the identification of a signal through GW searches, the next step is to extract

the parameters θ that characterize coalescing binary systems from the data. Parameter

estimation is typically performed using Bayesian inference that aims at reconstructing

the posterior distribution of the parameters θ, given the data and the a-prior knowledge

of the expected astrophysical sources [92, 93, 94]. As the number of GW detections

grows, it becomes increasingly valuable to analyze all events collectively to study the

population properties of binary BHs and NSs (e.g. the BH mass spectrum or the NS

equation of state). Hierarchical Bayesian inference has become the standard method for

such population studies, targeting the posterior distribution of the “hyperparameters”

(usually denoted ad λ), which characterize the underlying population from which individ-
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ual events are drawn [95, 94, 96]. Many codes based on Bayesian inference are currently

available to perform both single-event and population-level parameter estimation (e.g.

LALSimulation [97], Bilby [98, 99], Dingo [100], PyCBC [101], RIFT [102]). Despite

their high reliability, Bayesian inference methods are computationally very expensive

and they will become prohibitive as we move toward the era of third-generation (3G)

detectors that will observe thousands of sources every year, many of with high SNR. At

the moment, the only feasible way to make forecasts for future observatories relies on the

Fisher matrix approximation, which provides a faster, though less precise, method for

estimating parameters in this high SNR regime [103]. As we will discuss in Chapter 4,

various single-event parameter-estimation codes are now available (e.g. GWFast [104],

GWBench [105], GWFish [106]) but there is a lack of tool to make forecasts about

the population properties that will be observed with 3G detectors. There is currently an

effort in performing single-event parameter estimation for 3G detectors with Bayesian

inference methods, using techniques like relative binning –used also for current detectors–

to enhance computational efficiency while preserving accuracy [107].

1.3 Astrophysical black holes

BHs of astrophysical origin span a wide range of masses that is determined by their

formation mechanism and their evolutionary path [108, 109]. Current studies suggest

that astrophysical BHs exists at least in two main categories:

• stellar mass BHs (from few up to hundreds of solar masses) are typically formed

through the gravitational collapse of massive stars or in the coalescence or accretion-

driven processes in binary systems [110, 111, 112, 6]. They have been indirectly

observed through the X-ray emission from accretion disks and through GW

emission, radial velocity measurements, and microlensing effects [113]. A binary

system composed of two stellar mass BHs can form through two main processes:
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(i) dynamical encounters in dense stellar clusters, or (ii) the evolution of isolated

massive binary stars [109, 114, 115, 109]. In the isolated scenario, the formation is

driven by stellar-evolution processes such as mass transfer, tidal interactions, and

stellar winds, without external gravitational influences. In contrast, the dynamical

pathway requires dense environments like globular or nuclear star clusters, where

repeated gravitational interactions perturb BH orbits. The orientation of BH

spins can help distinguish these formation channels, among other properties [116].

Dynamically formed binary BHs tend to have isotropic spin orientations, often

leading to misaligned spins [117, 118, 119, 120]. In isolated binaries, instead, the

common birthplace is expected to imprint a preferential alignment of the BH

spins of the orbital angular momentum.

• supermassive BHs with masses 104M⊙ < m < 1011M⊙ can be found at the center

of most galaxies and are expected to be produced as the result of galaxy mergers

and accretion [121, 122]. So far, supermassive BHs have been observed indirectly

by studying the motion of stars in close orbit around them (as in the case of

the supermassive BH Sgr A∗ in the center of the Milky Way) or by measuring

the X-ray emission from accreting supermassive compact objects [123, 124, 125].

The mechanisms that lead to the formation of supermassive binary BHs are still

not well understood. A complication is due to the so-called final parsec problem,

which occurs when the binary inspiral slows as the BHs approach within a parsec,

requiring additional mechanisms such as stellar scattering or gas interactions

to drive the final merger [126]. Detecting GWs emitted during the merger of

supermassive BHs is one of the main science goals of the LISA space mission.

There are both observational and theoretical indications that intermediate-mass

BHs, which fill the gap between stellar-mass and supermassive BHs, do exist. The most

compelling evidence so far comes from the detection of GW190521 (see Section 1.2.3).

The advent of 3G detectors will enable observations at lower frequencies and detect BHs
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with higher masses, which will greatly improve our understanding of intermediate-mass

BHs. Additionally, it has been suggested that primordial BHs, with masses below that

of the Sun, could have formed in the early universe. However, despite ongoing efforts

to detect them, their existence remains purely speculative for now.

1.3.1 Population-level results from LVK analyses

In Section 1.2.4, we anticipated the importance of population-level analysis in refining

theories of compact object formation and evolution. This section summarizes the key

findings from the LIGO-Virgo-KAGRA (LVK) population analysis based on the GWTC-

3 catalog, focusing on the mass, spin, and redshift distributions of BHs [64, 127, 128].

The BH mass spectrum spans from a few solar masses up to over 100M⊙, with a

power-law trend favoring lower masses. The mass distribution shows peaks at ∼ 10M⊙

and ∼ 35M⊙. The first is likely due to isolated binary evolution, as models often predict

a concentration near 10M⊙ [129, 130, 131]. Dynamical formation in young clusters is

less favored to explain the peak at 10M⊙ because lighter BHs are typically –but not

necessarily– ejected by supernova kicks [132, 133]. The second peak, at ∼ 35M⊙, is

consistent with the formation of stellar-mass BHs via supernova explosions.Notably,

LVK observations provide evidence supporting the presence of a mass gap between

50−120M⊙, which is consistent with predictions from stellar evolution models involving

pair-instability supernovae as a possible mechanism. The absence of a sharp cutoff at

higher masses suggests a possible dynamical origin, such as hierarchical mergers of BHs

in dense stellar clusters.

The majority of the systems display low or moderate spin magnitudes, with the spins

often misaligned relative to the orbital angular momentum of the binary. This suggests

that a significant fraction of these mergers could be the result of dynamical formation

in dense stellar environments. On the other hand, some events, such as GW151226

and GW190517, exhibit higher spins aligned with the orbital plane, indicating that
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isolated binary evolution may also contribute to the observed population of BH mergers.

Observations at the population level further suggest a preference for aligned spins.

In terms of redshift distribution, most GW detections occur at low redshifts (z < 1),

corresponding to relatively recent cosmic history when massive stars would eventually

collapse into BHs. However, binary BHs could have formed at earlier times, with their

mergers being delayed due to evolutionary processes such as interactions in dense stellar

environments or the time required for their orbits to decay. With the advent of 3G

detectors, it is expected that more BH mergers at higher redshifts will be detected,

allowing a better understanding of BH formation in the metal-poor, high-redshift

universe.

1.4 Summary of my PhD activites

The main body of this thesis can be conceptually divided in two parts. The first one,

contained in Chapter 2 and Chapter 3, is related to the exploration of two subdominant

spin effects in both LVK data and simulated signals. In particular, I will illustrate

the prospects for detecting (i) the signature imprinted by two precessing spins on GW

signals coming from the coalescence of BH binaries using a carefully designed estimator

and (ii) a precessional instability that occurs in unstable BH binaries which formed

with aligned spins but enter the detector sensitivity window in precessing configurations.

The material of these two chapters is based on Refs [134] and [135]. The main focus

of the second part of this thesis is shifted from single-event parameter estimation to

population-level analysis and from current detector to 3G interferometers. In Chapter 4,

I present the first forecasts of the measurability of the population properties of binary

BHs that will be observed in the future by ET and CE. The reference for this Chapter

is [136].

During the course of my PhD, I also contributed to four additional projects. The

first three that I will describe are related to precession and eccentricity in BH binaries.
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In Ref. [137], we investigated the detectability of precession and nutation in BH binary

mergers using GW data and injected signals. We found no evidence for those weak spin

effects in current data but future observations (maybe already in O4) could impose

stronger constraints on spin dynamics. In Ref. [138], we implemented the version 2 of the

PRECESSION code, a python module useful to study the spin dynamics of precessing

BH binaries using a multi-timescale approach. Ref. [139] highlight the relevance of

residual eccentricity (below the current detection threshold of LVK) in reconstructing

the formation history of the binary BHs that we observe. Finally, I collaborated to

the work in Ref [140], in which we look for the optimal strategy to identify the two

objects that compose a binary system. While the standard approach labels the objects

according to their masses, we propose a new data-driven strategy for the identification of

object “1” and object “2”. This strategy is based on a semi-supervised machine learning

algorithm known as spectral clustering [141]. The results that we obtain are relevant

since with this new method, spin measurements are way more accurate if compared to

the standard mass-labeling approach, the posterior distributions of masses and spins

become closer to a Gaussian distribution and multimodalities tend to disappear.

During the three year of my PhD, I had the opportunity to supervise four Bachelor

and one Master students. With two of them I started working on the optimal labeling

problem which culminated in the publication of Ref [141]. Another research project

focused on the up-down instability, a topic I will discuss in detail in Chapter 3. This

student was included as a co-author of Ref. [135] for his contribution. In a separate

project I supervised, we applied Bayesian model selection to the binary BHs contained in

GWTC-3 to assess whether the events favored the zero-spin or isotropic spin orientation

hypothesis. Lastly, in the final work I supervised, we investigated whether statistical

or systematic errors are the primary source of inaccuracies in recovering the spins of

highly rotating BHs.

https://dgerosa.github.io/precession/
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Chapter 2

Characterization of merging black
holes with two precessing spins

Overview

Spin precession in merging BH binaries is a treasure trove for both astrophysics

and fundamental physics. There are now well-established strategies to infer from GW

data whether at least one of the two BHs is precessing. In this thesis we tackle the

next-in-line target, namely the statistical assessment that the observed system has two

precessing spins. We find that the recently developed generalization of the effective

precession spin parameter χp is a well-suited estimator to this task. With this estimator,

the occurrence of two precessing spins is a necessary (though not sufficient) condition to

obtain values 1 < χp ≤ 2. Confident measurements of GW sources with χp values in this

range can be taken as a conservative assessment that the binary presents two precessing

spins. We investigate this argument using a large set of > 100 software injections

assuming anticipated LIGO/Virgo sensitivities for the ongoing fourth observing run,

O4. Our results are very encouraging, suggesting that, if such binaries exist in nature
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and merge at a sufficient rate, current interferometers are likely to deliver the first

confident detection of merging BHs with two precessing spins. We investigate prior

effects and waveform systematics and, though these need to be better investigated, do

not find any confident false-positive case among all the configurations we tested. Our

assessment should thus be taken as conservative. The material of this Chapter is based

on Ref. [134].

2.1 Introduction

BH binary spin precession is a key feature of the relativistic two-body problem

[142, 143]. Spin-spin and spin-orbit couplings in GR cause the orbital angular momentum

L and the BH spins S1,2 to jointly precess about the direction of the total angular

momentum J = L+ S1 + S2. This motion induces modulations to both the amplitude

and the phase of the emitted gravitational waves (GWs).

Measurements of spin precession have important repercussions in both astrophysics

and fundamental physics. For the stellar-mass BH binaries observed by LIGO and

Virgo [35, 41], spin precession provides unique leverage to discriminate between

BH binaries formed in isolation and those assembled dynamically in stellar clus-

ters [117, 118, 119, 120]. For the supermassive BH binaries targeted by LISA [47],

spin measurements will provide information on, e.g., the occurrence of prolonged phases

of disk accretion [144, 145]. GW observations of precessing binary BHs also allow us to

constrain modified theories of gravity, especially those with parity-violating interactions

caused by additional fields [146].

While the masses of LIGO/Virgo events are usually well measured, spin effects

provide a subdominant contribution to the emitted radiation and are thus considerably

more challenging to characterize. At present, an unambiguous measurement of BH-

binary spin precession is one of the holy grails of observational GW astronomy.

Data from the first three observing runs of the LIGO/Virgo network have provided
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some evidence for individual BH mergers with highly precessing spins [62, 63, 147, 148].

The most suggestive indication is that from GW200129 065458, where Refs. [149, 150]

found strong evidence for BH-binary spin precession, while Ref. [151] raised potential

issues in the glitch mitigation analysis. For the case of GW190521, a strong precession

signature was also reported [63], though potential degeneracies with the eccentricity still

need to be fully understood [152]. Collective evidence for spin precession was reported

in the context of BH binary populations, with all current fits requiring some misaligned

spins at high confidence [153, 154, 155].

Upcoming instrumental upgrades to the LIGO/Virgo (and hopefully KAGRA)

network [44] are posed to provide increasingly accurate spin measurements. It is

therefore not unreasonable to predict that the next observing run will deliver a confident,

unambiguous identification of BH-binary spin precession. Crucially, measuring orbital-

plane precession corresponds to inferring that at least one of the two BHs has a

misaligned spin [142]. Inferring the presence of two misaligned spins requires extracting

even feebler signatures from the signal, which are related to spin-spin (as opposed to

spin-orbit) terms in the BH binary equations of motion.

This chapter of the thesis tackles such a next-in-line target. We perform > 100

software injections with realistic LIGO/Virgo sensitivity and demonstrate that signals

with large-but-not-extreme signal-to-noise ratio (SNR) ≳ 20 allow us to detect two-spin

effects already in the next LIGO/Virgo observing run (O4). Of course, this statement

relies on the assumption that merging binaries with two large precessing spins exist and

can merge efficiently. But if such GW sources are out there in the Universe, the next

LIGO/Virgo run might provide the first observational constraints of their properties.

Compared to previous analyses which include two precessing spins (e.g., [156, 157,

158]) our investigation relies on a state-of-the-art reformulation of the precession es-

timator χp [159]. This generalizes the commonly used expression [160] by employing

a rigorous post-Newtonian(PN) average over the joint evolution of both spins. Mea-

surements of such an augmented χp for current GW events have been presented in
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Refs. [159, 161]. Crucially for this work, the precession-averaged estimator presents an

exclusion region 1 < χp ≤ 2 that can only be populated by binaries with two precessing

spins. Measuring a binary with χp > 1 at some large confidence (GW astronomers often

use the 90% Bayesian credible interval), would allow us to claim the first detection of

binary BH physics sourced by two precessing spins.

Chapter 2 is organized as follows. Section 2.1 introduces the main topic of this

Chapter, namely the effect of relativistic spin precession in BH binary mergers, together

with current evidence for spin precessing from GWTC-3 both at the single-event and

population level. In Section. 2.2 we present our methodology, including details on the

adopted precession estimator as well as the implemented parameter-estimation pipeline.

In Section 2.3 we present the results of our analysis. In particular, we characterize (i) the

SNR dependence on the resulting χp posterior distributions, (ii) the statistical behavior

of large ensembles of sources, (iii) the impact of the prior, and (iv) the relevance of

waveform systematics. Our conclusions are reported in Sec. 2.4. In the following we

employ geometric units G = c = 1.

2.2 Methods

2.2.1 Spin precession estimators

While the full BH-binary spin properties are in principle described by six degrees of

freedom (three components for two spin vectors), a considerable amount of effort has

been devoted to identifying a reduced number of parameters that encapsulate most of

the information. These are often derived in a PN framework, with the most widely used

quantities being the effective aligned spin χeff [162, 163, 164] and the effective precessing

spin χp [159, 160]. Alternative approaches include extending the precession estimator

to a two-dimensional vector [165], exploiting the precession/nutation amplitudes and

frequencies [166, 137], and computing the fraction of the SNR contained in the spin
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modulations [167].

Let us consider a BH binary where q = m2/m1 ≤ 1 is the mass ratio, χi ∈ [0, 1] are

the dimensionless spin magnitudes, θi are the angles between the spins and the orbital

angular momentum, and ∆Φ is the angle between the projections of the two spins onto

the orbital plane.

The effective aligned spin is defined as [162]

χeff =
χ1 cos θ1 + qχ2 cos θ2

1 + q
. (2.1)

This is the spin quantity that affects the GW phase at the leading spin-dependent order

and is a constant of motion at 2PN [163, 164]. The effective spin χeff was recognized as

the best measured spin parameter since the very first GW detections, the key reason

being that it directly impacts the length of the signal.

The spin-precession parameter χp ∝ |dL̂/dt| tracks the change of the direction of

the orbital angular momentum L over time t [160, 159]. It was originally introduced by

Schmidt et al. [160] as a building block toward the construction of precessing waveforms.

Their definition reads

χ(heu)
p = max

(
χ1 sin θ1, q

4q + 3

4 + 3q
χ2 sin θ2

)
, (2.2)

which in this work we refer to as “heuristic χp.” This precessing spin parameter is

defined in the domain χ
(heu)
p ∈ [0, 1]. Unlike χeff , the parameter χp depends on the

projections of the spins onto the orbital plane, χi sin θi, implying that a confident

measurement of χp > 0 requires that at least one of the two BH spins was misaligned

before merger, and hence that the system was precessing.

Gerosa et al. [159] recently pointed out that Eq. (2.2) was derived by preferentially

selecting some terms when averaging over the spin motion. Mathematically, this is

reflected in the maximization operation reported in Eq. (2.2), which selects one of the
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two BHs as dominant to the precession dynamics, thus obfuscating two-spin effects.

Relaxing this approximation yields a generalized parameter [159]

χ(gen)
p =

[(
χ1 sin θ1

)2

+

(
q
4q + 3

4 + 3q
χ2 sin θ2

)2

+ 2q
4q + 3

4 + 3q
χ1χ2 sin θ1 sin θ2 cos∆Φ

] 1
2

,

(2.3)

where the angles θ1(t), θ2(t), and ∆Φ(t) all vary jointly with time. This can be averaged

over a single precession cycle to obtain

χ(av)
p =

1

τ

∫ τ

0

χ(gen)
p (t)dt, (2.4)

where τ is the precession period. We argue this should be regarded as a more solid

estimator because, although it is not a constant of motion like χeff , it at most varies

only over the longer radiation-reaction timescale. In the following, we refer to Eq. (2.4)

as the “averaged χp” parameter. In practice, we perform the integral in Eq. (2.4)

using a 2PN quasiadiabatic approach where the precession cycle is parametrized by

S(t) = |S1(t) + S2(t)| [168, 164]. We refer the reader to Ref. [164] for details on the

derivation of Eqs. (2.3) and (2.4), but stress that the starting point is simply the

derivative dL̂/dt.

The reformulation of the precession parameter defines an extended range χ
(av)
p ∈ [0, 2].

As shown in Ref. [159], the heuristic and averaged definitions of χp have the same

single-spin limit, which implies that the range of the latter cannot be freely absorbed

with a normalization factor. From Eq. (2.3), it is immediate to see that χp > 1 requires

both χ1 sin θ1 ̸= 0 and χ2 sin θ2 ̸= 0, i.e., the binary must have two precessing spins.

Such sources can lie in 0 ≤ χp ≤ 1, but both spins being misaligned is requisite in

the two-spin domain. From Eq. (2.3), there is a larger volume of parameter space

where χp > 1 for comparable mass binaries q ≲ 1 compared to asymmetric sources with
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q ≪ 1. This is expected, as two-spin effects are highly suppressed in the in the low-mass

ratio limit where S2/S1 ∝ q2 ≪ 1 (cf. Ref. [169] for more work on spin precession in

asymmetric binaries).

2.2.2 Parameter estimation pipeline

As is common practice in GW parameter estimation, we employ the following

fifteen parameters to describe compact-binary coalescences: detector-frame total mass

M = m1 +m2, mass ratio q = m2/m1, dimensionless spin magnitudes χ1,2, tilt angles

θ1,2, azimuthal spin angle ∆Φ, azimuthal angle ϕJL between the total and orbital

angular momenta, luminosity distance DL, right ascension α, declination δ, polar angle

θJN between total angular momentum and the line of sight, polarization ψ, time tc and

phase ϕc of coalescence [97].

We explore the joint Bayesian posterior distribution of these parameters under a

Gaussian noise likelihood (e.g., [170]) using the parallelized Bilby pipeline [98, 99] and

its underlying Dynesty implementation of nested sampling [171]. Our runs make use

of 2048 live points, a number of autocorrelation equal to 50, a random walk sampling

method, and a likelihood marginalized over time and distance. Runs are halted when

the log-evidence gain falls below 0.1.

We consider a three-detector network consisting of LIGO Livingston, LIGO Hanford,

and Virgo with their projected sensitivities for the ongoing fourth observing run O4 [44].

We consider data segments of 4 s, set a lower frequency cutoff of 20 Hz, assume a

sampling frequency of 2048 Hz, and zero noise. Time-varying quantities are quoted

when the detector-frame emission frequency of the dominant mode is 20 Hz. This choice

has a negligible impact on the averaged χp estimator because it only varies on the long

inspiral timescale of the binary evolution; see Ref. [159]. Unless stated otherwise, we

quote our results using medians and 90% equal-tailed credible intervals.

We adopt uninformative priors as commonly used in current LIGO/Virgo analyses [62,
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63, 147, 148]. Specifically, priors on the detector-frame masses are chosen to be uniform

in m1,2 ∈ [5, 100]M⊙, with further constraints imposed on the mass ratio q ∈ [1/8, 1] and

detector-frame chirp mass Mc ∈ [10, 60]M⊙. For most of our runs, priors on the spins

are taken to be unform in magnitude χ1,2 ∈ [0, 0.99] and isotropic in directions. In the

following, we will refer to this as our “standard” spin prior. To better explore prior effects,

some of our runs are performed with a “volumetric” spin prior p(χi) ∝ χ2
i , corresponding

to spin vectors that are uniformly drawn in volume (e.g., [172, 173, 62]). The luminosity

distance prior is taken to be uniform in comoving volume with DL ∈ [100, 5000] Mpc.
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Figure 2.1: Prior distributions for the heuristic (blue) and averaged (red)
χp estimators. Dotted curves are computed assuming the standard spin prior
p(χ) = const.; dashed curves instead assume a volumetric prior p(χ) ∝ χ2.

Figure 2.1 shows the resulting prior probability density for the heuristic and the

averaged χp definitions. At low values of χp, the prior distributions of the two estimators
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are qualitatively very similar. This behavior was explicitly imposed in Ref. [159] when

generalizing the χp definition. By construction, the region of 1 < χp ≤ 2 is not allowed

for the heuristic formulation and, consequently, the prior distribution of χ
(heu)
p is steeply

truncated at χp = 1. On the other hand, the prior distribution of χ
(av)
p extends into the

two-spin region χp > 1. However, under these commonly used assumptions, the tail at

large χp values is very sparsely populated. From Eq. (2.3), reaching χp ≈ 2 requires

systems with q ≈ 1, χ1,2 ≈ 1, θ1,2 ≈ π/2, and ∆Φ ≈ 0. Such a strong prior suppression

is a key element of our analysis and suggests that current GW data are being analyzed

with a prior that strongly disfavors the region of parameter space that is exclusive to

two-spin physics. Although still present, this effects is less prominent for the volumetric

spin prior. More quantitatively, we find p(χp > 1) = 0.02 and 0.07 for the averaged

estimator under the standard and volumetric prior, respectively.

For the majority of our runs, we employ the IMRPhenomXPHM [174, 175, 89]

waveform model for both injection and recovery. This is a state-of-the-art frequency-

domain approximant that captures spin precession without relying on a single-spin

approximation. Selecting the same model for both injection and recovery allows us

to first isolate statistical effects without systematics. Waveform systematics are then

explored with a dedicated analysis where we select different models for injection and

recovery. In particular, we use the time-domain model IMRPhenomTPHM [176] as

well as the numerical-relativity surrogate NRSur7dq4 [177]. Unlike its frequency-

domain counterpart, IMRPhenomTPHM does not rely on the stationary phase

approximation, making it better suited for short signals or those dominated by the

merger and ringdown phases. When recovering with NRSur7dq4, we restrict our

prior to q > 1/6, which corresponds to the extended range of validity of the model.

Because this approximant only covers ∼ 20 orbits before merger, we also restrict our

priors to m1,2 ∈ [35, 150]M⊙ and Mc ∈ [40, 60]M⊙ to ensure the signal is fully above

the low-frequency cutoff of 20 Hz.
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Figure 2.2: Posterior distribution of the heuristic (blue) and averaged (red)
χp precession estimator for the single-system series described in Sec. 2.3.1.
Panels from left to right and top to bottom shows results for the same source
injected at increasing SNRs and decreasing luminosity distance DL. Solid
and dashed lines indicate the true value and the median of the recovered
posterior. The shaded areas indicate the 90% (CI) credible intervals.

2.3 Results

2.3.1 Single-system series

As a first step, we highlight the main implications of the χp reformulation on GW

parameter estimation. To this end, we present a series of six software injections where

the same binary is observed at different SNRs. We select a source with χ
(heu)
p = 0.67 and

χ
(av)
p = 1.22 > 1, which thus contains two prominently precessing spins. In particular,

the injected system has M = 54.1M⊙, q = 0.96, χ1 = 0.56, χ2 = 0.7, θ1,2 = π/2,
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Figure 2.3: Skewness (upper panel) and kurtosis (lower panel) of the χp

posterior distribution as a function of the SNR for the six injections described
in Sec. 2.3.1. Blue and red scatter points refer to the heuristic and averaged
χp definition, respectively. The dotted lines represent the values of the
skewness and kurtosis calculated from the priors.

∆Φ = 0.1, θJN = 1.0, ϕJL = 1.0, α = 0.75, δ = 0.5, ψ = 1.0, ϕc = π/4, tc = 0.0. We

select increasing values of the luminosity distance DL = 200, 500, 700, 900, 1300, 1700

Mpc while keeping the detector-frame mass M fixed. The corresponding three-detector

network SNRs are ρ = 124, 44, 35, 27, 19, and 14. We use the IMRPhenomXPHM

waveform model for both injection and recovery and employ standard uninformative

priors.

Our results are illustrated in Fig. 2.2. As one moves from the lowest to the highest

value of the SNR, the recovered posteriors of both the averaged and the heuristic χp
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converge to the injected values. This is expected because we have used the same signal

model for injection and recovery and we are not considering a specific noise realization.

For the system with the lowest SNR ρ = 14, the posteriors of our two χp definitions

largely overlap. Quoting median and 90% credible interval, we find χ
(av)
p = 0.95+0.43

−0.37,

which implies that we cannot confidently tell that the source has two misaligned spins.

As the SNR increases, so does our ability to infer that the binary has two precessing spins.

For the system with the largest SNR ρ = 124, the two marginalized χp distributions are

almost completely detached. The posterior of the heuristic χp is by definition truncated

at χp = 1 because Eq. (2.2) allows only for the contribution from a single, dominant

spin. On the contrary, considering our averaged definition yields χp = 1.22+0.09
−0.09 for

ρ = 124, implying one infers the presence of two precessing spins with a credibility of

p(χp > 1) = 99.9%.

Figure 2.2 also shows that the posterior of the averaged χp is closer to a Gaussian

compared to that of the heuristic estimator. This indicates that, if a significant non-

Gaussianity in the heuristic χp posterior were to appear in GW data, it could be taken

as a potential indication that some additional two-spin physics is present but is being

missed because of the suboptimality of the employed estimator.

This argument is further explored in Fig. 2.3, where we show the skewness and

kurtosis for the same six injections presented in Fig. 2.2. These quantities are related

to the third and fourth moments of the distribution and describe the departure from

Gaussianity; both are zero for normally distributed data, with the skewness quantifying

the left-right asymmetry and the kurtosis quantifying the weight of the tails [178].

Figure 2.3 shows that both skewness and kurtosis of the averaged χp are approximately

distributed around 0. On the other hand, the skewness (kurtosis) of the heuristic χp

strongly increases (decreases) with the SNR. This indicate that (i) the heuristic χp

posteriors have thinner tails compared to a normal distribution and that (ii) their left

tail is more pronounced compared to the right tail. These features can be taken as a

quantification of the artificial cutoff at χp = 1, an assumption that is naturally relaxed
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when considering the averaged χp estimator.

2.3.2 Parameter-space exploration

Using the same settings, we now target the statistical properties emerging from

a large number of injected signals. Ideally, one would want to inject signals drawn

from the prior (this is necessary, for instance, to present a probability-probability

plot [179]). In our case, such a procedure would be highly suboptimal and ultimately

computationally intractable because, as shown in Fig. 2.1, the two-spin region with

χp > 1 corresponds to a very low prior volume (where from now on in this chapter

we only refer to the average formulation of χp). Most of the injections would thus be

placed in the region where only one of the two spins dominates. We thus opt for an

injection distribution with χp uniform in [0, 2] which, although of dubious astrophysical

relevance, is well suited to assess the statistical property of the proposed estimator.

More precisely, we draw values of χp and then reweight samples of the intrinsic binary

properties drawn from the uninformative prior (Sec. 2.2.2) to the injection distribution

using an acceptance/rejection scheme with an absolute numerical tolerance of 0.04

between the original and resampled values of χp. We have verified that this choice does

not significantly impact our results. Since precession effects are subdominant in the

waveform, when selecting the extrinsic properties for injections we only consider sources

with ρ > 20, i.e., ≈ 2 times larger than the current detection threshold [148].

Figure 2.4 shows the recovered posteriors, obtained using the standard priors, of

the averaged χp parameter as a function of the true values for 100 such injections. One

can divide the parameter space into four distinct regions, acting much like a confusion

matrix in statistics.

(i) True negatives (bottom-left quadrant in Fig. 2.4): injected χp < 1 and recovered

χp < 1. The injected configurations are not unique to sources with two precessing

spins and are recovered as such.
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Figure 2.4: Set of 100 injections obtained by reweighting the averaged χp

prior toward a uniform distribution in [0, 2]. The medians (scatter points)
and symmetric 90% credible intervals (error bars) of the recovered posteriors
are plotted against the true values χinj

p . Vertical and horizontal dotted lines
indicate χp = 1 while the dashed diagonal line corresponds to χp = χinj

p ,
i.e., successful recovery. The three-detector SNRs of the injected sources are
reported on the color scale.

(ii) False positives (top-left quadrant in Fig. 2.4): injected χp < 1 and recovered

χp > 1. For these sources, one infers the presence two precessing spins even if

they might not be present.

(iii) False negatives (bottom-right quadrant in Fig. 2.4): injected χp > 1 and recovered

χp < 1. In this region sources have two precessing spins but one is not able infer
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Figure 2.5: Adjusted posterior quantile Q for the posterior distribution of
the averaged χp parameter. Sources above (below) the horizontal dotted line
indicate cases cases where χp is overestimated (underestimated). To guide the
eye, the diagonal dashed line shows a simple linear fit Q = −0.54χinj

p + 0.18.
The color scale indicates the SNRs of the sources.

their occurrence from the signal.

(iv) True positives (top-right quadrant in Fig. 2.4): injected χp > 1 and recovered

χp > 1. These sources are characterized by two precessing spins and one can

successfully infers that this is the case.

For each posterior distribution, we compute the fraction of the samples in each of

these four regions and then compute the arithmetic mean over the injected sample

(this is equivalent to assuming a flat population prior on χp because our injections are

distributed uniformly). We report 47.45% of true negatives, 0.55% of false positives,
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7.01% of false negatives, and 44.98% of true positives.

From Fig. 2.4, the signals with higher SNR lie closer to the injected values and

present thinner posterior distributions, as expected. In the true negative region, the

recovered posteriors are distributed around the true value without evident systematic

trends. On the other hand, when χp > 1, the recovered posteriors systematically

underestimate the true value. While this is, in general, true for most systems, in a few

cases this is sufficient to cause false negatives.

One can further quantify this behavior using the adjusted posterior quantile

Q = 2

∫ χinj
p

0

p(χp) dχp − 1 ∈ [−1, 1], (2.5)

where p(χp) is the posterior distribution and χinj
p is the true value. The ideal case where

the median of p(χp) coincides with the true value corresponds to Q = 0. Obtaining

Q > 0 (Q < 0) instead implies that the amount of precession in the system is being

overestimated (underestimated), and 100|Q| < X implies that the injected value is

inside the X% symmetric confidence interval of the recovered posterior. The values of

Q for our 100 injections are shown in Fig. 2.5. We find a strong decreasing trend of Q

for increasing values of χp, which becomes particularly evident in the χp > 1 region.

Our analysis indicates that, in general, statistical errors cause an underestimate of

χp whenever χp > 1. In other words, given a waveform model, sources with two-spin

precession require larger SNR for accurate measurement (cf. [180, 181]).

With a completeness of 86.5% and a contamination of 1.2%, our results are, overall,

are extremely encouraging.1 The broader conclusion is that sources with χp > 1 and

sufficiently high SNR ρ ≳ 20 in O4 can, in principle, be correctly identified as affected

by two precessing spins.

1As common in binary classification [178], we define completeness = true positives / (true positives
+ false negatives) and contamination = false positives / (true positives + false positives).
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2.3.3 Impact of the prior
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Figure 2.6: Recovery of the averaged χp estimator with different priors
and SNRs. The left and right panel shows results for sources injected with
χp = 0.48 and χp = 1.92, respectively (black vertical lines). The red and
green posterior distributions are obtained under the standard and volumetric
priors, respectively, and the same SNRs used in Sec. 2.3.2. For the yellow
distributions, the SNR was boosted by a factor ≈ 3. Dashed lines indicate the
medians of the posteriors while the shaded area indicates the 90% credible
interval.

Our parameter-space exploration highlights a generic tendency to underestimate

precession effects whenever χp > 1. The steep feature at χp ≈ 1 shown in Fig. 2.1

strongly suggests that this statistical bias is driven by the employed prior. To verify this,

we select two injections among the 100 we have just presented with posterior quantile

Q ≈ −1, i.e. where the displacement between the injected and recovered values of χp

is maximized. More specifically, the two systems we consider have χp ∈ {0.48, 1.92},
Q ∈ {−0.98,−1}, and ρ ∈ {32.8, 23.6}, respectively.

In Fig. 2.6 we compare the posterior distributions obtained under the standard

uniformative prior as in Sec. 2.3.2 against additional inference runs where we instead take

a volumetric prior on the spins. The latter choice enhances the prior weight assigned
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to configurations with large spins (cf. Fig. 2.1). For the injection with χp = 0.48

(left panel), we recover χp = 0.20+0.22
−0.16 with the standard prior and χp = 0.38+0.14

−0.16

with the volumetric prior. This example shows that simply changing the prior to

an alternative that is equally well motivated —why should vectors like the spins be

distributed uniformly in magnitude instead of volume?— can significantly mitigate

the inferred bias. In this case, the posterior quantile increases from Q = −0.98 to

Q = −0.75. The improvement is less evident, but still present, for the injection with

χp = 1.92, where a volumetric prior yields χp = 1.28+0.37
−0.49 compared to χp = 1.10+0.46

−0.49

for the standard prior.

Figure 2.6 also shows additional runs where the same sources are considered at

higher SNR, larger by a factor ≈ 3, using the standard priors. As already shown in

Sec. 2.3.1, the posterior tends toward the true values for louder sources. Prior effects

are still evident, with the true value remaining outside the 90% credible interval. More

specifically, for these high-SNR runs we find χp = 0.42+0.04
−0.05 and χp = 1.71+0.14

−0.19 for the

χp = 0.48 and χp = 1.92 case, respectively.

2.3.4 Waveform systematics

All the analyses illustrated so far were performed using the same waveform model

for both injection and recovery and, therefore, do not capture systematic errors due

to any mismodeling of the signal. Binaries with prominent spin effects are harder to

model, implying that the χp > 1 region we are interested in is also where discrepancies

between different approximants are more likely to appear.

Figure 2.7 and Table 2.1 illustrate the posterior distribution of the averaged χp

parameter when different models are used in injection and recovery. We test vari-

ous combinations of the IMRPhenomXPHM [89], IMRPhenomTPHM [176], and

NRSur7dq4 [177] waveform models. We concentrate on two systems selected from

the 100 injections presented in Sec. 2.3.2. In particular, we consider one source with



2.3 Results 33

χp = 1.57 characterized by two prominently precessing spins as well as a control case

with χp = 0.43. The SNRs computed using IMRPhenomXPHM are ρ = 90.3 and

ρ = 107.3, respectively. Both sources have sufficiently large detector-frame total masses

M ≳ 125M⊙ such that the signal is short enough to be simulated with NRSur7dq4.

The cases where the signal is injected with NRSur7dq4 are arguably more realistic

as this model is proven to be more accurate, i.e., closer to numerical-relativity simu-

lations [177], though the model does require extrapolation at the low-q and high-χ1,2

edges of the parameter space we consider. For both the analyzed cases, the posteriors

are relatively well centered on the true values whenever the injection and recovery are

performed with the same waveform model.

The most evident feature from Fig. 2.7 is that systematic biases increase dramatically

for higher values of χp. This statement holds even though our analyzed low-χp (high-χp)

case has a higher (smaller) SNR and should thus be more (less) susceptible to waveform

systematics.

For the χp = 0.43 source (left panels in Fig. 2.7), the injected value lies inside the

90% credible interval of the posterior for most the waveform combinations we tested.

The only exception is the case where we inject with the NRSur7dq4 and recover with

IMRPhenomXPHM. This run shows the largest quantile Q = −0.93 which tentatively

suggests a lower accuracy of that model to spin precession, at least for this specific set

of parameters. This conclusion is reinforced by our results obtained when the source

is generated with IMRPhenomTPHM but recovered with IMRPhenomXPHM:

the injected value is barely inside the 90% credible interval with posterior quantile is

Q = −0.88.

For the second case studied here with χp = 1.57 (right panels in Fig. 2.7), waveform

systematics are severe. All waveform combinations where we inject and recover with

different models return posterior distributions that are inconsistent with the true value

at extremely high confidence (so high that we cannot meaningfully quantify it with the

samples at our disposal). The worst cases appears to be those when we recover with
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Figure 2.7: Posterior distributions of the averaged χp parameter obtained
with seven different combinations of waveform models. The left (right)
panels show results for a source injected with χp = 0.43 and M = 131.1M⊙
(χp = 1.57 and M = 130.8M⊙) The top panels show results obtained
with the two phenomenological models IMRPhenomXPHM (“PhenX”) for
χp = 0.43 (ρ = 107.3) and for χp = 1.57 (ρ = 90.3) and IMRPhenomTPHM
(“PhenT”) for χp = 0.43 (ρ = 93.6) and χp = 1.57 (ρ = 81.7). The bottom
panels show results obtained in combination with the numerical-relativity
surrogate model NRSur7dq4 (“NRSur”) for χp = 0.43 (ρ = 100.2) and
for χp = 1.57 (ρ = 75.6). For each case, the label reported before (after)
the hyphen in the legend refers to the waveform model used at the injection
(recovery) stage. The injected values are indicated with black vertical lines.
Medians and 90% credible interval of the posterior distribution are indicated
with dashed lines and shaded areas, respectively.

IMRPhenomXPHM, which produce a χp posterior that is entirely below unity.

While a more complete investigation on waveform systematics is beyond the scope of
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χinj
p = 0.43

PhenX PhenT NRSur

Q χp Q χp Q χp

PhenX 0.06 0.43+0.07
−0.08 -0.6 0.38+0.08

−0.13 – –

PhenT 0.88 0.5+0.06
−0.07 0.04 0.43+0.07

−0.07 – –

NRSur -0.93 0.34+0.08
−0.08 -0.08 0.42+0.09

−0.16 -0.3 0.41+0.07
−0.08

χinj
p = 1.57

PhenX PhenT NRSur

Q χp Q χp Q χp

PhenX -0.6 1.53+0.08
−0.09 -1 0.71+0.06

−0.07 – –

PhenT -1 0.56+0.01
−0.01 -0.47 1.54+0.08

−0.08 – –

NRSur -1 0.55+0.03
−0.03 -1 0.96 +0.2

−0.22 -0.48 1.53 +0.1
−0.12

Table 2.1: Posterior quantiles Q, medians, and 90% credible intervals
of the averaged χp estimator from analyses performed with three different
waveform models: IMRPhenomXPHM (“PhenX”), IMRPhenomTPHM
(“PhenT”), and NRSur7dq4 (“NRSur”). The top (bottom) table shows
results for injections with χp = 0.43 (χp = 1.57). In each table, the rows
(columns) indicate the waveform used for signal injection (recovery).

this work, the selected cases studied here tentatively indicate that current state-of-the-

art approximants struggle at providing a consistent modeling of the signal in the χp > 1

region, to a level that will be significant for the heavy, loud sources expected in O4. The

discrepancies between the waveform models in the high-precession limit are potentially

expected due to the differences in the prescriptions for the spin dynamics between the

models. In IMRPhenomXPHM, the precession angles are calculated by applying the

stationary phase approximation to the multi-timescale scale analysis of the precession

equations [164, 182]. The prescription is then artificially extended through the merger

and ringdown beyond its regime of validity. In IMRPhenomTPHM, the precession

angles are calculated by direct integration of the equations of motion, coupled to a

semianalytical approximation for the merger-ringdown that relies on an angular velocity
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determined by the quasinormal mode frequencies of the remnant BH [183].

Waveform developers are actively working toward calibrating PN-based waveform

models using numerical-relativity simulations with precessing spins (e.g., [184]), which

will hopefully alleviate the systematic deviations reported here. It is also important

to stress that, for this exercise, we had to select sources with high-enough mass such

that the signal is fully covered by NRSur7dq4, but these are also the systems where

the precession signature is expected to be weaker. This is because precession cycles are

contained in the low-frequency part of the signal that gradually falls out of band as the

total mass increases.

On a more positive note, the conclusion that emerges here is that waveform systematic

do not produce false positive: if a future observation will deliver χp > 1 at high

confidence, it appears safe to claim that the BH binary had two precessing spin.

2.4 Final remarks

If an incoming LIGO/Virgo source is composed of merging BHs with two precessing

spins, will we able to tell? In this chapter we provide a statistical assessment of this

question using a large set of software injections.

For dimensionality reduction and interpretation purposes, it is useful to have a single

parameter that can capture the effect of precession in GW data. We employ a recent

generalization [159] of the effective precessing spin χp [160]. Unlike its predecessor,

the augmented formulation does not assume that one of the two spin dominates the

dynamics. In particular, the region of the parameter space 1 < χp ≤ 2 is exclusive to

binaries with two precessing spins. Because spin-spin couplings in GW data provide

a weak contribution to the waveform, measuring a source with χp > 1 also requires

sensitive detectors. While such a detection has not occurred in current data [159, 161],

our software injections at O4 sensitivity demonstrate that this goal is well within our

reach.
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Figure 2.8: Joint posterior distribution of the tilt angles θ1 and θ2 for
the single-system series described in Sec. 2.3.1. Darker (lighter) curves
and histograms refer to sources at smaller (larger) distance. Contour level
correspond to 90% credible intervals.

In this chapter, we have concentrated solely on inference of precession with the χp

estimator. With the BH-binary parameter space spanning 15 dimensions, our large set of

injections naturally contains much more information that could potentially be extracted

(including, but not limited to, different spin precession estimators, correlation between

the effective spins and other binary parameters, and the vector spin components them-

selves). In order to facilitate further exploitation, our posterior chains are made publicly

available in their entirety at github.com/ViolaDeRenzis/twoprecessingspins [185]. The

https://github.com/ViolaDeRenzis/twoprecessingspins
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total computational budget to collect these data amounts to about half a million CPU

hours.

It is important to stress that the occurrence of two precessing spins is a necessary,

but not sufficient, condition to obtain values χp > 1, (i.e., being in this region implies

the source has two precessing spins, but not vice versa). Such large values of χp require a

considerable fine-tuning of the binary’s intrinsic parameters (large spin magnitudes, mass

ratios close to unity, spins coplanar with the orbit and aligned with each other). This

makes our assessment very conservative and lets us identify sources with smoking-gun

evidence of two-spin precession.

As the detectors’ sensitivities increase and one moves beyond effective-spin parametriza-

tions, inference on the higher-dimensional spin parameter space will hopefully allow us

to relax such conservative assumptions. Looking ahead in this direction, constraining

a source away from the edges of the θ1–θ2 plane can also be taken as a telltale sign

of two-spin precession (recall that 0 ≤ θi ≤ π). Figure 2.8 shows the joint posterior

distribution of the spin tilts for the series of injections described in Sec. 2.3.1 where,

indeed, nonprecessing configurations can be largely excluded. One point worth stressing

is the short-timescale dependence of the tilt angles, which results in deeper issues when

performing population studies [186]. In contrast, the formulation of χp explored here

only varies on the longer radiation-reaction timescale —which is the best one can hope

for in the absence of additional constant of motions besides χeff [163]. While future

third-generation detectors will improve spin measurements, constraining the individual

tilt angles is expected to remain challenging (see the discussion in Chapter 4.4.4). Thus,

for the current generation of detectors, the parameter χp provides a pragmatic and

robust approach to capture double-spin precession, even if more detailed constraints

may eventually become achievable.

Our large-scale injection study shows that BH binaries with two prominently pre-

cessing spins at sufficiently high SNR can be generically identified as such. We also

pointed out how the departure from Gaussianity of the χp distribution can be a precious
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indicator of the suboptimality of the adopted indicator. At the same time, prior effects

and waveform systematics introduce some interpretation issues that need to be further

explored.

Of all the software injections we performed with different source parameters and

waveform models, we did not detect a single confident false positive (i.e., a source with

χp < 1 which is erroneously recovered as having χp > 1). Our study strongly indicates

that, should a confident detection with χp > 1 be made in O4, this would provide a

conservative and safe claim of the first observation of a merging BH binary with two

precessing spins –except for possible noise issues such as glitches.
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Chapter 3

Parameter estimation of binary
black holes in the endpoint of the
up–down instability

Overview

Black-hole binary spin precession admits equilibrium solutions corresponding to

systems with (anti-) aligned spins. Among these, binaries in the up-down configuration,

where the spin of the heavier (lighter) black hole is co- (counter-) aligned with the orbital

angular momentum, might be unstable to small perturbations of the spin directions.

The occurrence of the up-down instability leads to gravitational-wave sources that

formed with aligned spins but are detected with precessing spins. We present a Bayesian

procedure based on the Savage-Dickey density ratio to test the up-down origin of

gravitational-wave events. This is applied to both simulated signals, which indicate

that achieving strong evidence is within the reach of current experiments, and the

LIGO/Virgo events released to date, which indicate that current data are not informative

enough. The material of this Chapter is based on Ref [135].
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up–down instability

3.1 Introduction

Gravitational-wave (GW) detections provide measurements of the intrinsic properties

of astrophysical black holes (BHs), notably their masses and spins. At the time of

writing, ground-based interferometers LIGO and Virgo have observed about mergers of

stellar-mass BHs with false alarm rates < 1 yr−1 [62, 63, 147, 148] and substantially

more detections are expected from the upcoming observing runs [187, 44].

GWs emitted during the inspiral of BH binaries are mostly beamed along the direction

of the orbital angular momentum L. If the spins of the two BHs S1,2 are misaligned

with L, couplings between these three momenta cause them to precess [142, 143].

The resulting motion imparts characteristic modulations to the amplitude and phase

of emitted GWs. From an astrophysical perspective, measuring spin precession is

important to elucidate the possible astrophysical formation pathways of BH binaries,

with large spin misalignments thought to be indicative of sources formed via dynamical

interactions [115, 188].

Configurations with spins that are either aligned or anti-aligned with the orbital

angular momentum are equilibrium solutions of the relativistic spin-precession equations.

This means that binaries that are exactly aligned will remain so. There are four

such cases, which we refer to as up–up, down–down, down–up, and up–down, where

“up” (“down”) indicates spins that are parallel (anti-parallel) to the orbital angular

momentum and the direction before (after) the hyphen refers to the more (less) massive

BH. Crucially, equilibrium does not imply stability. Reference [189] showed that, while

up–up, down–down, and down–up binaries are always stable, up–down binaries can be

unstable to spin precession. For these sources, infinitesimal perturbations to the spin

directions cause large precession cycles. In particular, up–down binaries are stable at
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early times and turn unstable at the critical orbital separation [189]

rUD+ =

(√
χ1 +

√
qχ2

)4
(1− q)2

M , (3.1)

where χi = Si/m
2
i are the Kerr parameters of the BHs, q = m2/m1 ≤ 1 is the mass

ratio, and M = m1 +m2 is the total mass of the system.1 The up–down instability was

first derived using a Post-Newtonian (PN) approach [189] and then confirmed using

both independent PN codes [190, 191] and numerical-relativity simulations [192].

Measuring the up–down instability in GW data would provide a direct observation

of an exquisite feature of the two-body problem in general relativity. At the same

time, the up–down instability might also dilute the effectiveness of the spin orientations

in discriminating BH-binary formation channels: GW sources that are observed with

precessing spins in the LIGO/Virgo band did not necessarily form with misaligned

spins. Rather, the spins used to be (anti-) aligned and became misaligned before

merger. The flip side of the same coin is that observing unstable binaries will point

toward a formation channel that can conceivably explain binaries with up–down spins.

Notably, this might include active galactic nuclei (AGN) disks surrounding supermassive

BHs [193, 194], where the spins of embedded stellar-mass BH binaries are expected to

either align or anti-align with the angular momentum of the disk [195].

The up–down instability provides a testable prediction for GW observations. Refer-

ence [196] showed that unstable up–down BHs do not disperse in the available parameter

space but converge to a well-defined endpoint late in the inspiral. This is a precess-

ing configuration where all three angular momenta S1,S2, and L are coplanar, and

furthermore, the two BH spins are collinear, namely [196],

cos θ1 =
χ1 − qχ2

χ1 + qχ2

, (3.2)

1Throughout the chapter we use natural units where c = G = 1.
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up–down instability

cos θ2 =
χ1 − qχ2

χ1 + qχ2

, (3.3)

ϕ12 = 0 , (3.4)

where θi indicate the tilts angles between Si and L, and ϕ12 indicates the azimuthal

angle between the two BH spins measured in the orbital plane. After the instability

is triggered, binaries reach this analytical endpoint after the orbital separation has

decreased by only ≲ 100M [196]. Therefore, binaries that form as up–down and become

unstable will appear in our detectors with spin orientations that are well approximated

by Eqs. (3.2–3.4).

In this chapter of the thesis, we perform Bayesian parameter estimation of precessing

BH binaries in the endpoint of the up–down instability. Should an unstable up–down

binary enter the LIGO band, can we tell that this source was originally stable and

aligned? In statistical terms, this is a model-selection problem between a broader

hypothesis where binaries are generically precessing and a narrower hypothesis with

constraints given by Eqs. (3.2–3.4). We apply this line of reasoning to both simulated

signals and the current catalog of GW events. By employing the Savage-Dickey

density ratio, we compute the odds in favor of the up–down hypothesis over that of

generically precessing BH binaries. Crucially, this only requires an inference run with

the uninformative prior, with the odds computed by post-processing the recovered

posterior samples.

Chapter 3 is organized as follows. In Sec. 3.2 we derive the statistical framework and

describe how it can be used to assess whether observed binaries are in the endpoint of

the up–down instability. In Sec. 3.3 we present our results for an injection campaign and

real sources, and also demonstrate that evolving binary BH spin posteriors backwards

in time is a useful diagnostic when investigating the up–down instability. We finish

with our conclusions in Sec. 3.4.
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3.2 Methods

3.2.1 Gravitational-wave signals

We first consider synthetic GW signals from individual binary BH coalescences

on quasi-circular orbits and target the statistical inference of all 15 parameters of

the problem. These are two detector frame masses m1,2, six spin degrees of freedom

(magnitudes χ1,2, tilts θ1,2, azimuthal angles ϕ12 and ϕJL), and seven extrinsic parameters

(luminosity distance DL, sky location α, δ, polar angle θJN , polarization ψ, coalescence

time tc, and phase ϕc).

Signals are analyzed using the parallel version of the bilby inference code [98, 99].

We use the IMRPhenomXPHM approximant [89] for both injection and recovery.

We consider a three-detector network made of LIGO Livingston, LIGO Hanford, and

Virgo at the sensitivity expected for the ongoing O4 run. We use data segments of

4 s, a sampling frequency of 2048Hz, a low-frequency cutoff of 20Hz, and zero noise.

Spin orientations are quoted at a reference frequency of 20Hz. We use the dynesty

sampler [171] with 2048 live points, a random walk sampling method, a number of

autocorrelation equal to 50, and a likelihood that is marginalized over time and distance.

Our priors are those commonly used in the standard LIGO/Virgo analyses [62, 63,

147, 148]. In particular, detector-frame component masses are distributed uniformly in

m1,2 ∈ [5, 100]M⊙ with bounds in mass ratio q ∈ [1/8, 1] and detector-frame chirp mass

M ∈ [10, 60]M⊙ while spins are distributed uniformly in magnitude χ1,2 ∈ [0, 0.99] and

isotropically in directions.

In the following, we also postprocess GW data using publicly available posterior

samples for the GWTC-2.1 [147] and the GWTC-3 [148] data releases. Among the

available datasets, we use results from the IMRPhenomXPHM waveform model where

the merger rate is uniform in comoving volume and source-frame time. We consider

binary BH mergers with false alarm rates < 1 yr−1 in at least one of the detection
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pipelines. From these, we exclude all the events that potentially contain a neutron star.

The resulting list of 69 events is reported in Table 3.1.

When needed, we covert between PN orbital separation r and GW frequency fref

using the 2PN expressions from Ref. [143].

3.2.2 Savage-Dickey density ratio

Given the data d associated with a measurement, and model hypothesis H charac-

terized by parameters θ, the Bayesian evidence is defined as

Z(d|H) =

∫
L(d|θ,H)π(θ|H) dθ , (3.5)

where L is the likelihood and π is the prior distribution. Model selection in favor of, say,

a “narrow” model HN over a “broad” model HB requires computing the posterior odds

O =
Z(d|HN)

Z(d|HB)

π(HN)

π(HB)
, (3.6)

where the first term (ratio of the evidences) is the Bayes factor B. Values of the posterior
odds are often associated to descriptive terms using the so-called Jeffrey scale [197],

where | lnO| < 1 is classified as “inconclusive,” 1 < | lnO| < 2.5 is classified as as

“weak” evidence, 2.5 < | lnO| < 5 is classified as “moderate” evidence, and | lnO| > 5 is

classified as “strong” evidence. The sign of the log Bayes factor indicates which of the

two models is statistically favored, with lnO > 0 signaling a preference for HN over

HB. In the following, we consider equal model priors such that O = B.

Let us now assume that model HN is nested within HB. That is, among the

parameters θ = {φ, γ}, a subset of parameters φ is common to both models, while the

other parameters γ are constrained to γN(φ) in the narrow model. Let us also assume
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Event lnB Event lnB
GW150914 0.14 GW190731 140936 0.11
GW151012 0.54 GW190803 022701 0.11
GW151226 0.50 GW190805 211137 0.61
GW170104 −0.02 GW190828 063405 0.3
GW170608 0.18 GW190828 065509 0.15
GW170729 0.47 GW190910 112807 −0.06
GW170809 0.26 GW190915 235702 0.29
GW170814 −0.06 GW190924 021846 0.31
GW170818 0.58 GW190925 232845 0.24
GW170823 0.26 GW190929 012149 −0.15

GW190408 181802 0.02 GW190930 133541 0.59
GW190412 0.6 GW191103 012549 0.58

GW190413 052954 −0.01 GW191105 143521 0.06
GW190413 134308 0.07 GW191109 010717 −0.83
GW190421 213856 0.09 GW191127 050227 0.31
GW190503 185404 −0.04 GW191129 134029 0.33
GW190512 180714 0.33 GW191204 171526 0.79
GW190513 205428 0.48 GW191215 223052 0.11
GW190514 065416 −0.01 GW191216 213338 0.27
GW190517 055101 0.53 GW191222 033537 −0.16
GW190519 153544 0.35 GW191230 180458 0.25

GW190521 −0.26 GW200112 155838 0.07
GW190521 074359 −0.42 GW200128 022011 0.46
GW190527 092055 0.23 GW200129 065458 0.63
GW190602 175927 0.44 GW200202 154313 0.1
GW190620 030421 0.52 GW200208 130117 −0.04
GW190630 185205 −0.15 GW200209 085452 0.21
GW190701 203306 0.05 GW200216 220804 0.26
GW190706 222641 0.8 GW200219 094415 0.05
GW190707 093326 0.04 GW200224 222234 0.2
GW190708 232457 0.15 GW200225 060421 −0.11
GW190720 000836 0.58 GW200302 015811 0.05
GW190725 174728 0.39 GW200311 115853 0.32
GW190727 060333 0.44 GW200316 215756 0.57
GW190728 064510 0.32

Table 3.1: Current GW events and their Bayes factors in favor of the
up–down hypothesis over generic spin precession. We select events with false
alarm rates < 1 yr−1 in at least one of the LIGO/Virgo searches, excluding
those that can potentially include a neutron star.
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that the prior on φ is the same for the two models. In symbols, this is

π(φ|HN) = π(φ|γ = γN(φ),HB) . (3.7)

Within these assumptions, the Bayes factor in favor of the narrow model reduces to

B =

∫
p(φ, γ = γN(φ)|d,HB)∫
π(φ′, γ = γN(φ)|HB)dφ

′
dφ . (3.8)

A formal proof of Eq. (3.8) is presented in Appendix 3.4. For the specific case where

γN does not depend on φ, one has

B =
p(γ = γN|d,HB)

π(γ = γN|HB)
, (3.9)

where the numerator (denominator) corresponds to the posterior (prior) marginalized

over the common parameters φ. Equation (3.9) is the so-called Savage-Dickey density

ratio [198]. The key, practical advantage of both these expressions is that they only

depend on the broad model HB. One does not need to perform inference in the narrow

model HN, which can be challenging for non-trivial submanifolds γN(φ). It is sufficient

to sample the broad model HB and then evaluate the resulting posterior and prior

probability densities at the location prescribed by the narrow model.

3.2.3 Application to up–down binaries

For the specific case we are addressing here, the broad model HB is that of generically

precessing BH binaries described in Sec. 3.2.1. The narrow model HN consists of binaries

in the endpoint of the up–down instability, which are subject to the three constraints
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of Eqs. (3.2–3.4). From these, we define the parameters γ = {γ1, γ2, γ3}, where

γ1 =
cos θ1 − cos θUD(q, χ1, χ2)

2
, (3.10)

γ2 =
cos θ2 − cos θUD(q, χ1, χ2)

2
, (3.11)

γ3 =
1

π
arctan

(
sinϕ12

cosϕ12

)
, (3.12)

and

cos θUD(q, χ1, χ2) =
χ1 − qχ2

χ1 + qχ2

. (3.13)

While not unique, we find this parametrization convenient because all the γi are

defined2 in [−1, 1] and the up–down endpoint is mapped to γ = (0, 0, 0). We apply

the transformations of Eqs. (3.10–3.12) to both prior and posterior samples, estimate

the corresponding probability density functions using three-dimensional Kernel Density

Estimation (KDE), and evaluate the Bayes factor from Eq. (3.9). We use Gaussian

kernels and a bandwidth of 0.2 [199].

An example of this procedure is shown in Fig. 3.1. We consider a synthetic source in

the endpoint of the up–down instability with tilt angles cos θ1 = cos θ2 = cos θUD = 0.103

and ϕ12 = 0. The injected system hasm1 = 49.5M⊙ m2 = 39.4M⊙, χ1 = 0.92, χ2 = 0.94,

DL = 845 Mpc, θJN = 0.37, ϕJL = 5.71, α = 6.11, δ = 0.24, ψ = 2.28, tc = −0.069 s (in

GPS time), and ϕc = 5.12. The prior and posterior KDEs are evaluated at the origin of

the {γ1, γ2, γ3} cube (black lines in Fig. 3.1). The Savage-Dickey estimate of the Bayes

factor is lnB = 5.11. For equal priors, this corresponds to strong evidence that the

source is indeed in the up–down endpoint. Figure 3.1 also shows that the posteriors of

the rescaled parameters γi are somewhat close to a multivarate Gaussian distribution;

this not a generic feature but rather a consequence of the relatively high signal-to-noise

ratio (SNR), which for this specific injection is 60.

2The trigonometric manipulation in Eq. (3.12) is necessary because ϕ12 ∈ [0, 2π].
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Figure 3.1: Joint posterior distributions of the rescaled parameters γ =
{γ1, γ2, γ3} defined in Eqs. (3.10–3.12). Contour levels correspond to 50%,
90%, and 99% credible regions. Red dashed lines in the 1D marginals indicate
the 90% credible intervals. Solid black lines mark the location of the narrow
model γ = 0, i.e., the endpoint of the up–down instability. Black scatter
points indicate the value of the posterior (red) and prior (blue) distributions
at the endpoint, which are the key ingredients entering the Savage-Dickey
evaluation of the Bayesian odds.

3.3 Results

3.3.1 Comparing posteriors

Before reporting Bayes factors, it is informative to compare posterior distributions

against the predictions of Eqs. (3.2–3.4). This a preliminary step which is often used to
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Figure 3.2: Panels from left to right and from top to bottom show parameter-
estimation results for the same GW source injected at decreasing (increasing)
values of the SNR (luminosity distance DL). The upper subpanels show
posterior distributions of cos θ1 (blue), cos θ2 (green), cos θUD (orange) and
the prior distribution of cos θUD (dark red); the prior distributions of cos θ1,2
are flat. The lower subpanels show posterior (pink) and prior (dark red)
distributions of sinϕ12. Black vertical lines indicate the injected values.
Dashed vertical lines mark the medians of each distribution while shaded
areas indicate the 90% credible intervals.

identify promising candidates for a model-selection analysis.

We consider six synthetic signals describing binary BHs that are in the endpoint of

the up–down instability when entering the LIGO band at the reference frequency of 20

Hz. We use the same set of source parameters as in Fig. 3.1. In particular, we fix the

detector-frame masses and inject source waveforms with SNR = 150, 100, 80, 60, 40, 20,

corresponding to luminosity distances DL = 338, 508, 634, 845, 1268, 2538 Mpc. The
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PN orbital separation of the binary at fref = 20 Hz is r20Hz ≃ 10M , while the critical

separation for the instability is rUD+ = 266M . The condition rUD+ − r20Hz > 100M

ensures that the predicted endpoint well describes these unstable up–down sources

[196].

Our results are shown in Fig. 3.2, where each panel correspond to a different source.

The upper subpanels compare the posterior distributions of cos θ1,2 (as obtained from our

parameter-estimation analysis) against that of cos θUD [as obtained from substituting the

posterior samples of q, χ1, χ2 into Eq. (3.13)]. Note how the prior distribution of cos θud

peaks toward positive values, while those of cos θ1,2 are flat. Close agreement between

the posteriors of cos θ1, cos θ2, and cos θUD provide a qualitative (but not quantitative)

indication that the theoretical prediction of the up–down instability is a reasonable

description of the data. The lower subpanels report the posterior distribution of sinϕ12,

where values close to zero 0 indicate a preference for the up–down hypothesis.

As expected, posteriors for the lowest SNRs tend to cover a large portion of prior

range. As the SNR increases, the recovered posteriors approach the injected values that

define the endpoint of the up–down instability. In particular, for the case of the highest

SNR = 150, we find cos θUD = 0.122+0.068
−0.061 and ϕ12 = 0.004+0.460

−0.485 (where we quote the

median and 90% credible interval), compared to the injected values cos θUD = 0.103

and ϕ12 = 0.

Note that systematic effects are not captured in both these results and the rest of

the chapter because we perform zero-noise runs and use the same waveform model for

both injection and recovery. Waveform systematics in the specific region of parameter

space where the up–down instability take place still need to be investigated. Based on

the discussion in Section 2.3.4, the IMRPhenomXPHM waveform model may encounter

limitations in accurately modeling systems with high precession. Such scenarios typically

arise for mass ratios close to unity, high spin magnitudes, and tilt angles near to 90

degrees.

We further note a common feature that characterize all cases shown in Fig. 3.2,
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including those at low SNR. While the recovered values of cos θ1,2 depart from the

injected values as the SNR decreases, the medians of cos θUD tend to remain closer to

that of the injected endpoint. This seems to indicate that, if the source is truly in the

endpoint of the up–down instability, the estimator cos θUD might be more accurate than

cos θ1,2. We interpret this as a consequence of more accurate measurements of q and

χ1,2 compared those of the spin tilts. This implies we can measure what the endpoint

of a binary would be from the q–χ posteriors. However, inferring that the given source

is in fact in its endpoint requires computation of posterior odds.

3.3.2 Model selection

While comparing posteriors as in Fig. 3.2 provides a useful indication of a potential

up–down signature, this statement needs to be quantified with a full Bayesian model

selection. For the same series of six injections, Fig. 3.3 shows the Bayes factor in favor

of the up–down hypothesis over that of generic BH binaries computed using the Savage-

Dickey density ratio (orange points). The Bayes factor increases from lnB ∼ 1.96 for

SNR = 20 (weak evidence) to lnB ∼ 6.89 for SNR = 150 (strong evidence). While

this is a controlled experiment where the true source parameters are injected in the

up–down configuration, the successful recovery of a large value of B indicates that data

are informative about this property in a concrete measurement setting.

We repeat the same study for six additional series of BH binaries in the up–down

endpoint with different parameters θ (gray points) which are part of the broader set

of injections described in Sec. 3.3.4. As expected, the Bayes factor increases with

the SNR in all cases, though the overall normalization depends on the other source

parameters. For the case discussed above and shown with orange scatter points, a

strong evidence in favor of the nested model is achieved at SNR ≳ 60 —values within

reach of next LIGO-Virgo observing run [44]. However, this is not generic. We find that

the distinguishability power critically depends on the source parameters. Even among
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Figure 3.3: Natural logarithm of the Bayes factor in favor of the up–down
hypothesis as a function of the SNR. We consider the same sources as in
Fig. 3.2 (orange scatter points) as well as six other series of BH binaries in
the up–down endpoint (gray scatter points). Horizontal dashed lines indicate
the threshold values of the Bayes factor in the Jeffrey scale. Crosses indicate
the sources shown in Fig. 3.4.

this limited set, there are cases that provide only weak or even inconclusive evidence

even at SNR = 150.

3.3.3 Backpropagation

We can further visualize the up–down signature of BH binaries by back-propagating

posteriors samples [186, 191]. If a detected source is truly an unstable up–down binary,
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Figure 3.4: Joint posterior distribution of the tilt angles θ1 and θ2 for the
sources described in Sec. 3.3.3 and marked with crosses in Fig. 3.3. The left
(right) panel shows a case that presents strong (inconclusive) evidence in
favor of the up–down hypothesis. Posterior samples are evolved numerically
from fref = 20 Hz (red) to 0 Hz (blue). Solid black lines indicate the injected
values. Contour levels mark the 50%, 90%, and 99% credible regions.

evolving it backward in time should allow us to see it in the up–down spin configuration

instead of the particular precessing configuration as observed. For a given injection, we

numerically evolve each posterior sample backward from detection at fref = 20 Hz to

past-time infinity at fref = 0 Hz using precession-averaged PN equations as implemented

in Refs. [200, 201]. This procedure requires q, χ1,2, θ1,2, ϕ12, and r at fref = 20 Hz

as inputs and returns the values of the tilt angles θ12 at 0 Hz (ϕ12 does not enter the

dynamics at infinitely large orbital separations [164, 201]).

Figure 3.4 shows two examples which were selected from those of Fig. 3.3. Both

sources have SNR = 150; one provides strong evidence in favor of the up–down endpoint

(left panel, lnB = 6.31) while the other returns an inconclusive result (right panel,

lnB = 0.22). The parameters of the former are listed in Sec. 3.2.3 while those of

the latter are m1 = 26M⊙, m2 = 26M⊙, χ1 = 0.17, χ2 = 0.57, θ12 = 2.15, ϕ12 = 0,
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DL = 190.06 Mpc, ψ = 2.89, ϕ = 3.33, α = 3.78, δ = −0.081, θJN = 0.41, ϕJL = 3.71,

and tc = −0.01 s.

For the binary with large B (left panel in Fig. 3.4), the posterior distribution at 0

Hz is constrained to be close to an aligned binary with up–down spins. In particular,

we find cos θ1 > 0.80 and cos θ2 < −0.99 at 90% confidence. This result is an additional,

visual indication that data taken at ∼ 20 Hz are well described by a BH binary that

used to be aligned but is being observed precessing.

On the other hand, for the inconclusive case (right panel in Fig. 3.4), the joint

distribution of cos θ1 and cos θ2 at fref = 0 Hz occupies a much broader region of the

prior volume (cos θ1 > −0.65 and cos θ2 < 0.41 at 90% confidence). As indicated by

the Bayes factor, this is a source where data are compatible with a variety of precessing

configurations, some that did and some that did not form with up–down spin directions.

3.3.4 Injection campaign

We now investigate the distinguishability of up–down sources in a wider region of

the parameter space. We construct a set of injections by drawing binaries from the

standard uninformative priors; we sample q and χ1,2 and enforce cos θ1,2 and ϕ12 from

Eqs. (3.2–3.4). We then impose the following constraints:

(i) We only consider binaries with rUD+ − r20Hz > 200M , which is a conservative

condition to ensure that the analytical instability endpoint well describes binaries

that formed in the up–down configuration.

(ii) We further require sources to have SNR > 20, thus adopting a threshold that is

about twice the current detection limit [62, 63, 147, 148]. Spin effects are known

to be challenging to measure [180, 181, 134] and the model-selection problem

tackled here inevitably requires loud signals.

Our results are shown in Fig. 3.5, where we report the Bayes factor as a function of
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Figure 3.5: Natural logarithm of the Bayes factor B as a function of the
mass ratio q for a set of 151 GW signals injected in the endpoint of the
up–down instability. The critical orbital separation rUD+ is reported on the
color bar and the size of each scatter point is directly proportional to the
three-detector SNR. Horizontal dashed blue lines correspond to the threshold
values of the Jeffrey scale for weak, moderate, and strong evidence. The
scatter points connected by vertical lines are sources that were injected and
recovered both with (upper markers, circles) and without (lower markers,
triangles) higher-order modes.

the mass ratio q, the critical separation rUD+, and the SNR. It is immediate to note

that all injections have mass ratios q ≳ 0.8; this is a direct consequence of selecting

binaries with a large value of rUD+ ∝ (1− q)−2 [cf. Eq. (3.1)] and is largely independent

of the total mass M which only enters the source-frame/detector-frame conversion of
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the frequency.

Among the 151 sources we select, we find that 31 present inconclusive evidence in

favor of the up–down origin, 45 sources present weak evidence, 73 present moderate

evidence, and 2 present strong evidence (recall that we are assuming equal model priors

such that the posterior odds and the Bayes factor coincide).

We find a broad trend indicating that binaries with more unequal masses tend to

have larger Bayes factors while binaries with close-to-equal masses cover a larger range

of Bayes factors. The value of q is closely correlated with rUD+ from Eq. (3.1), which

implies that pinpointing the up–down origin of binaries with lower values of the critical

separation rUD+ is going to be somewhat easier (as long as rUD+ is still sufficiently large

that the analytical endpoint provides a reasonable prediction, see above).

Figure 3.6 shows Bayes factors and SNRs for the same set of injections (blue

triangles). As expected the two are positively correlated (cf. Fig. 3.3), though with a

large dispersion, including several loud sources that still return an inconclusive model

selection. Even SNRs as large as ∼ 200 do not guarantee a decisive model selection

result since the value of B strongly depends on the specific parameters of the source.

A key ingredient to this analysis is the inclusion of higher-order emission modes

in the adopted waveform model. Higher harmonics can break degeneracies between

the mass and spin parameters [202, 203, 204, 89], thus aiding our model selection

problem. We further investigate this point by considering seven sources among those

with the smaller and larger values of q from our set and repeat their analysis without

higher-order modes. As expected, we find that the the Bayes factor decreases, with

differences (in logarithmic scale) that are up to ∼ 1.5.

3.3.5 Current gravitational-wave data

Finally, we apply our model-selection analysis as described in Sec. 3.2.2 to current

GW events reported up to GWTC-3. We analyze the 69 binary BH coalescences listed
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in Table 3.1 (see Sec. 3.2.1).

Figure 3.6 (orange circles) compares the Bayes factor and the source SNR (estimated

using the median of the optimal network SNR posterior samples).

The Bayes factor in favor of the up–down hypothesis for current GW signals lies

within the range lnB ∈ [−0.8, 0.8], which is inconclusive. None of the current events

support the up–down endpoint model, but they do not allows us to exclude it either.

This is somewhat expected given that SNRs of current event are ≲ 30, which is unlikely

to provide meaningful constraints (cf. Fig. 3.3 and 3.6). Our finding agrees with previous

analyses [62, 63, 147, 148] indicating that current data provide loose constraints on the

orientations of individual BH spins, which in turn are key ingredients in the up–down

model selection problem. We conclude that the current catalog of GW events does not

contain promising up–down candidates.

At the same time, we note that the Bayes factor for the entire observed catalog∑
i lnBi ≃ 15 shows a preference for the narrow hypothesisHN. Properly quantifying the

astrophysical relevance of this finding requires a deeper investigation on the systematics

of the single-event Bi’s as well as additional population modeling to include selection

effects.

3.4 Final remarks

In this work, we performed parameter estimation of BH binaries that have encoun-

tered the up–down instability [189]. Binaries that are formed with the spin of the

heavier (lighter) BH aligned (anti-aligned) with the orbital angular momentum might

enter the LIGO/Virgo band with significant spin precession. Their final configuration

(i.e., the endpoint of the up–down instability) can be computed in closed form [196] and

allows us to test the up–down origin of precessing binary BHs. More ambitiously, one

could also target up–down binaries as they become unstable (i.e. r = rUD+) and start

precessing. While worthy of further investigation, the rate of these events is presumably
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Figure 3.6: Natural logarithm of the Bayes factor as a function of the SNR
for 151 simulated sources (blue triangles) and 69 GW events from GWTC-3
(orange circles). Vertical dashed orange lines indicate the threshold values of
the Jeffrey scale for weak, moderate, and strong evidence. The upper panel
shows an histogram of the Bayes factors.

very low.

We presented a statistical approach based on the Savage-Dickey density ratio for the
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calculation of the Bayes factor and applied it to both simulated signals (which act as a

control set) and current GW events. The identification of unstable up–down binaries

depends on the source SNR, with higher-order emission modes providing an important

contribution. At least within the limited set of injections performed here, we find that

SNRs greater than ∼ 100 are required. However, this is a necessary but not sufficient

condition for the up–down origin to be distinguishable, as the resulting posterior odds

strongly depends on the source parameters. Our model selection analysis is slightly

more discriminative for sources with unequal masses and, consequently, with smaller

values of rUD+. Posterior samples for all the injections presented in this chapter are

publicly available at github.com/ViolaDeRenzis/updowninjections [205].

Among the current LIGO/Virgo events, we do not find promising candidates that

could be interpreted as binary systems that were originally aligned in the up–down

configuration. This result is not surprising, given the present SNRs which are ≲ 30.

Future LIGO/Virgo upgrades as well as new facilities will largely increase the

available statistical sample [187, 44]. The methodology developed in this work provides

a straightforward, post-processing operation that can be performed on posterior samples

from future GW catalogs. Looking ahead, testing the up–down hypothesis is particularly

relevant in the context of supermassive BH binaries observed by LISA. Some of those

sources are expected to have SNRs as large as ∼ 3000 [47] and their spins might be

brought to the up–down configuration by interactions with galactic-scale accretion

disks [195, 206, 207].

A future detection of the up–down instability presents the opportunity to confirm

this prediction of the general-relativistic two-body problem.

https://github.com/ViolaDeRenzis/updowninjections


62
Chapter 3 Parameter estimation of binary black holes in the endpoint of the

up–down instability

Appendix

Savage-Dickey density ratio

Following the notation introduced in Sec. 3.2.1, let us assume that we have some

observed data d and two hypotheses such that

HN : HB ∧ γ = γN(φ) . (3.14)

With this definition, the evidence of the narrow model is

Z(d|HN) =

∫
L(d|φ,HN) π(φ|HN)dφ

=

∫
L(d|φ, γ=γN(φ),HB) π(φ|γ=γN(φ),HB) dφ . (3.15)

One can manipulate the first term in the integrand using Bayes’ theorem,

L(d|φ, γ=γN(φ),HB) =
p(φ, γ=γN(φ)|d,HB)Z(d|HB)

π(φ, γ=γN(φ)|HB)
, (3.16)

and write the Bayes factor in favor of the narrow model as

B =
Z(d|HN)

Z(d|HB)

=

∫
dφp(φ, γ=γN(φ)|d,HB)

π(φ|γ=γN(φ),HB)

π(φ, γ=γN(φ)|HB)
. (3.17)

The rule of conditional probability implies

π(φ, γ=γN(φ)|HB)

π(φ|γ=γN(φ),HB)
= π(γ=γN(φ)|HB)

=

∫
π(φ′, γ=γN(φ)|HB)dφ

′ , (3.18)
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where in the second equality we have explicitly indicated the marginalization over the

common parameters. This yields

B =

∫
p(φ, γ=γN(φ)|d,HB)∫
π(φ′, γ=γN(φ)|HB)dφ

′
dφ , (3.19)

which is equal to Eq. (3.8).

The Savage-Dickey density ratio is recovered by a suitable change of variables:

{φ, γ} −→ {φ̄ = φ, γ̄=γ − γN(φ)} . (3.20)

The determinant of the resulting Jacobian is

det

∂φ̄/∂φ ∂φ̄/∂γ

∂γ̄/∂φ ∂γ̄/∂γ

 = det

 1 0

−dγN/dφ 1

 = 1 (3.21)

such that, for any probability distribution P , one can simply write

P (φ, γ=γN(φ)) = P (φ, γ̄ = 0) . (3.22)

With this transformation, Eq. (3.19) reduces to

B =

∫
p(φ, γ̄ = 0|d,HB)dφ∫
π(φ′, γ̄ = 0|HB)dφ

′
=
p(γ̄ = 0|d,HB)

π(γ̄ = 0|HB)
, (3.23)

as reported in Eq. (3.9), see also Ref. [208].
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Chapter 4

Forecasting the population
properties of merging black holes

Overview

Third-generation gravitational-wave detectors will observe up to millions of merging

binary black holes. With such a vast dataset, stacking events into population analyses

will arguably be more important than analyzing single sources. We present the first

application of population-level Fisher-matrix forecasts tailored to third-generation

gravitational-wave interferometers. We implement the formalism first derived by Gair

et al. [MNRAS 519, 2736 (2023)] and explore how future experiments such as Einstein

Telescope and Cosmic Explorer will constrain the distributions of black-hole masses,

spins, and redshift. Third-generation detectors will be transformative, improving

constraints on the population hyperparameters by several orders of magnitude compared

to current data. At the same time, we highlight that a single third-generation detector

of triangular shape and a network of separated detectors will deliver qualitatively similar

performances. Obtaining precise measurements of some population features (e.g. peaks

https://doi.org/10.1093/mnras/stac3560


66 Chapter 4 Forecasting the population properties of merging black holes

in the mass spectrum) will require only a few months of observations while others (e.g.

the fraction of binaries with aligned spins) will instead require years if not decades.

We argue population forecasts of this kind should be featured in white papers and

feasibility studies aimed at developing the science case of future gravitational-wave

interferometers.

The material contained in this Chapter is based on Ref. [136].

4.1 Introduction

Gravitational-wave (GW) astronomy is quickly turning into a big-data discipline.

We now have hundreds of detections, which will become thousands in a few years and

millions in a few decades. The focus of GW inference is thus shifting from inferring the

parameters of single events to those of the entire population of detected sources.

Current population analyses of LIGO/Virgo data [209, 128, 127] are providing

precious information on the physical processes that drive black holes (BHs) and neutron

stars to merger [115, 188, 194]. In particular, there is strong indication that the merger

rate of stellar-mass BHs falls to ∼ zero for sources of masses ≳ 60 M⊙ but piles up at

∼ 35M⊙. The spins of merging stellar-mass BHs show some preference for dimensionless

magnitudes ≲ 0.3 and some degree of co-alignment with the orbital angular momentum

of the respective binaries. Besides marginal distributions, the growing GW dataset is now

allowing us to explore correlations between parameters [210, 211, 212, 213, 214, 215, 216].

State-of-the-art population analyses are tackled using hierarchical Bayesian statis-

tics [217, 96]. In short, one assumes an underlying inhomogeneous Poisson process and

marginalizes over the parameters of the single events (e.g. masses, spins, etc.) while

retaining information on the “hyperparameters” that describe the entire population

of sources (e.g. mass cutoffs, spectral indexes, etc.). Current state-of-the-art imple-

mentations rely on recycling single-event posterior distributions for the computation of

marginal integrals, as well as on injection campaigns to estimate selection biases via
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reweighted Monte Carlo integration [218, 219]. This requires careful handling of both

finite-sampling and selection effects [220]. While under control for the time being, the

feasibility of these techniques with much larger catalogs remains an open question.

The future of ground-based GW astronomy is under active planning, with flagship

projects such as Einstein Telescope (ET) [221] and Cosmic Explorer (CE) [46] that

promise to observe virtually all the BH binaries merging in the visible Universe, with

detection rates of O(105/yr) [222, 223]. At present, running full Bayesian schemes on

such large catalogs is both too costly and premature, if feasible at all. Science forecasts

largely rely on the Fisher information matrix formalism [103], which approximates

the single-event likelihood in the high signal-to-noise ratio (SNR) limit. Fisher codes

tailored to third-generation (3G) detectors include GWFast [104], GWBench [105],

GWFish [106], TiDoFM [224], and the code used in Ref. [225]. All such codes

provide forecasts for the parameter estimation of single events rather than of population

parameters.

On the other hand, in the third-generation (3G) era the focus of GW science will

definitely be on populations. With the exception of prominent outliers, it is easy to

image how the analysis of a single event will not be relevant when there are millions of

similar sources sitting next to it. Despite this quite obvious statement, current forecasts

presented in “colored books” to funding agencies for the identification of the ET and

CE science cases still rely on single-event analyses [226, 227, 228, 223]. We believe this

is a severe limitation.

In this chapter of the thesis, we present the first population-level Fisher matrix

implementation tailored to 3G detectors. The relevant equations have been developed

by Gair et al. [229], who first wrote down the Fisher-like expansion of the population

likelihood including selection effects. Their expressions have so far only been applied to

toy models. Here we significantly broaden the scope of the analysis to state-of-the-art

parameterized population models, presenting detailed predictions for 3G detectors.

We argue forecasts of this kind should be featured in future design documents to
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appropriately assess the outstanding science we will be able to deliver with facilities of

the caliber of ET and CE.

Chapter 4 is organized as follows. Section 4.2 introduces the Fisher formalism for

both individual-event and population inference. Section 4.3 provides details on the

implementation of our code, alongside a description of the population models used

throughout this study. Section 4.4 presents our population-inference results, with a

particular focus on the detector network as well as the astrophysical distributions of

masses, spins, and redshift. Finally, Sec. 4.5 summarizes our main findings and discusses

their implications.

4.2 Formalism

In the following, d indicates the data of a single GW signal, {d} indicates data of

a set of signals, θ indicates the parameters of individual events, and λ indicates the

hyperparameters describing the populations.

4.2.1 Single-event inference

Under the assumption that the noise is stationary and Gaussian, the likelihood of

the event parameters is given by [230]

p(d|θ) ∝ exp

[
−1

2

(
d− h(θ)|d− h(θ)

)]
, (4.1)

where h(θ) is the gravitational signal and (·|·) indicates the noise-weighted inner product.

For a given BH binary with true parameters θ̄, the elements of the Fisher information

matrix are given by

Γθ,ij ≡ −
〈
∂2 ln p(d|θ)
∂θi∂θj

〉∣∣∣∣
θ=θ̄

=

(
∂h

∂θi

∣∣∣∣ ∂h∂θj
) ∣∣∣∣

θ=θ̄

, (4.2)
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where the expectation value ⟨·⟩ is taken over noise realizations. The covariance matrix is

given by Γ−1
θ such that the errors on each parameter θi are given by the diagonal elements

(Γ−1
θ )

1/2
ii . The Fisher matrix provides a Gaussian approximation to the likelihood in the

high-SNR limit. This is equivalent to approximating the posterior distribution p(θ|d) if
one assumes that the prior over θ is flat across the support of the likelihood itself.

4.2.2 Population inference

The chosen population model is encoded in the probability distribution ppop(θ|λ)
that predicts the likelihood of compact objects merging with parameters θ for a given

choice of the population λ. The population likelihood marginalized over the event rate

is given by [217, 96]

p ({d}|λ) ∝ pdet(λ)
−Ndet

Ndet∏
k=1

∫
p(dk|θ)ppop(θ|λ) dθ , (4.3)

where Ndet is the number of detected events in the catalog. While state-of-the-art, this

expression assumes that GW events are statistically independent. This is an excellent

approximation for LIGO/Virgo but a poorer one for ET and CE where multiple signals

might overlap in the same stretch of data [231, 232]. Performing GW population

analyses with overlapping signals is an unsolved problem.

The term pdet(λ) in Eq. (4.3) is the fraction of detected events in the population

described by λ, i.e.

pdet(λ) =
Ndet

N
=

∫
pdet(θ)ppop(θ|λ) dθ ≤ 1 , (4.4)

where N is the total number of mergers and pdet(θ) is the probability of observing a

merging binary with parameters θ, which in turn encodes a model for the detector. For

simplicity and as common practice in the field, we use the SNR as a ranking statistics



70 Chapter 4 Forecasting the population properties of merging black holes

and set

pdet(θ) =
1

2

{
1 + erf

[
ρ(θ)− ρth√

2

]}
, (4.5)

where ρth is a fixed threshold and ρ(θ) =
√
(h(θ)|h(θ)) is the optimal SNR. Equa-

tion (4.5) includes the variance of the SNR due to noise realizations but not the effect

of multiple detectors [233]. We neglect this subtlety in favor of an efficient numerical

implementation and use Eq. (4.5) also for detector networks, adding the SNRs of each

instrument in quadrature. In particular, we set ρth = 12.

The Fisher-matrix approximation of the likelihood in Eq. (4.3) has been worked

out in Ref. [229]. Assuming a true population described by λ̄, the elements of the

hyper-Fisher matrix are

Γλ,ij ≡ −
〈
∂2 ln p ({d}|λ)

∂λi∂λj

〉 ∣∣∣∣
λ=λ̄

, (4.6)

which we write as a sum of five leading contributions1

Γλ,ij = N (ΓI,ij + ΓII,ij + ΓIII,ij + ΓIV,ij + ΓV,ij) , (4.7)

where

ΓI,ij= −
∫
∂2ln[ppop(θ̄|λ)p−1

det(λ)]

∂λi∂λj

∣∣∣∣∣
λ=λ̄

pdet(θ̄)ppop(θ̄|λ̄)dθ̄ , (4.8)

ΓII,ij=
1

2

∫
∂2ln det(Γθ+H)

∂λi∂λj

∣∣∣∣∣
λ=λ̄

pdet(θ̄)ppop(θ̄|λ̄)dθ̄ , (4.9)

ΓIII,ij= −1

2

∫
∂2
[
(Γθ+H)−1

kl

]
∂λi∂λj

∣∣∣∣∣
λ=λ̄

Γθ,kl ppop(θ̄|λ̄)dθ̄ , (4.10)

1The symbol Γλ here indicates the hyper-Fisher matrix and not its single-event contribution as in
Ref. [229]. With this notation, the components of Γ−1

λ directly provide the hyperparameters errors
and correlations for an astrophysical population of N events. Compared to the derivation presented in
Ref. [229], this is equivalent to absorbing a factor of N into the definition of Γλ and a factor of p−1

det(λ)
into the definitions of ΓI−V.
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ΓIV,ij= −
∫
∂2
[
Pk(Γθ+H)−1

kl

]
∂λi∂λj

∣∣∣∣∣
λ=λ̄

Dl ppop(θ̄|λ̄)dθ̄ , (4.11)

ΓV,ij= −1

2

∫
∂2
[
Pk(Γθ+H)−1

kl Pl

]
∂λi∂λj

∣∣∣∣∣
λ=λ̄

pdet(θ̄)ppop(θ̄|λ̄)dθ̄ . (4.12)

Here, Γθ is the single-event Fisher matrix defined in Eq. (4.2) and

Pi =
∂ ln ppop(θ|λ)

∂θi

∣∣∣∣
θ=θ̄

, (4.13)

Hij = −∂
2 ln ppop(θ|λ)
∂θi∂θj

∣∣∣∣
θ=θ̄

, (4.14)

Di =
∂pdet(θ)

∂θi

∣∣∣∣
θ=θ̄

=
∂pdet
∂ρ

∂ρ

∂θi

∣∣∣∣
θ=θ̄

. (4.15)

From these expressions, one can compute the covariance matrix Γ−1
λ and thus the errors

on the population hyperparameters (Γ−1
λ )

1/2
ii .

In the limit where the uncertainties on the parameters of the individual sources

are negligible, one has Γθ → ∞ which implies ΓII−V → 0 because Γθ +H ∼ Γθ, hence

(Γθ + H)−1 → 0, and ∂Γθ/∂λ = 0. The population Fisher matrix Γλ can thus be

approximated with the first term ΓI of Eq. (4.8), which we expect to be the dominant

contribution in our forecasting exercise (cf. Ref. [229]).

4.2.3 Interpretation

Equations (4.7–4.12) were computed assuming a Fisher-matrix description for the

single-event likelihoods as well as large number of events, namely Ndet → ∞ [229]. The

appropriate limit for a population Fisher analysis is that of many and well-measured GW

signals. In this limit, the population Fisher matrix scales with the size of the catalog as

Γλ ∝ 1/
√
Ndet, cf. Eqs. (4.4) and (4.7) for any given population with efficiency pdet(λ̄).

Crucially, the expressions above provide the population Fisher matrix only up to

additional corrections scaling with inverse powers of Ndet. This implies that Γλ is not
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guaranteed to be positive definite, thus casting some issues on the interpretation of

its inverse as a covariance matrix. In practice, however, all diagonal terms (Γ−1
λ )ii are

positive and those cases where the Fisher matrix Γλ is non-positive definite are due to

a small but negative eigenvalue. If off-diagonal terms are needed (e.g. when drawing

corner plots), we regularize Γ−1
λ by replacing the negative eigenvalue with its absolute

value and projecting it back to the original coordinate space.

4.3 Implementation

4.3.1 Approximants and detectors

We implement the population Fisher-matrix formalism described above in the

Python programming language, leveraging the infrastructure of the single-event Fisher

code GWfast [104]. All derivatives with respect to λ are performed with automatic

differentiation via jax [234].

We use the IMRPhenomXPHM [174, 175, 89] waveform model, and perform the

single-event Fisher analysis in terms of the parameters θ̃ = {Mz, η, χ1, χ2, ϕJL, ϕ12, θ1, θ2,

dL, α, δ, θJN, ψ, tc, ϕc}. These are the detector-frame chirp mass Mz, the symmetric

mass ratio η, the dimensionless spin magnitudes χ1,2, tilt angles θ1,2, the azimuthal spin

angle ϕ1,2, the azimuthal angle ϕJL between the total and orbital angular momenta, the

luminosity distance dL, the sky position coordinates α, δ, the polar angle θJN between

total angular momentum and the line of sight, the polarization angle ψ, the time of

coalescence tc and the phase at coalescence ϕc (see Ref. [222]). We assume a flat ΛCDM

model with Planck18 parameters [235].

We apply Gaussian priors to the spin magnitudes and angular spin parameters; this

serves two purposes: avoiding singular matrices Γθ̃ and incorporating information on

the physical range of some parameters. In the Fisher-matrix formalism, applying a prior

consists in adding a prior matrix to the Fisher Γθ̃ [103]. Our prior matrix is diagonal, with
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elements chosen as the inverse variances of the Gaussian priors we impose. Specifically,

the diagonal elements corresponding to the spin magnitudes, spin orientations, and

azimuthal angles are {σ−2
χ1
, σ−2

χ2
, σ−2

ϕJL
, σ−2

ϕ12
, σ−2

θ1
, σ−2

θ2
} = {1, 1, (2π)−2, (2π)−2, π−2, π−2}.

All other elements are set to zero.

Note the set of parameters θ̃ is not equivalent to the set θ entering our population

analysis (see below), the difference being in the mass and redshift parameters. We

rotate the Fisher matrix Γθ̃ computed by GWFast to obtain Γθ. In particular, one has

Γθ = JTΓθ̃J where J = dθ̃/dθ is the Jacobian of the rotation between the θ̃ and the θ

parameters. In practice, this means we are assuming the likelihood is Gaussian also in

the θ parameters; this is motivated by the large SNRs delivered by 3G detections.

We compare results obtained assuming a single, triangular shaped ET interferometer

against a detector network composed of ET and two CE detectors [223, 228]. Specifically,

we use the 10 km noise curve for ET from Ref. [223] assuming a nominal location in

Sardinia, Italy, and CE noise curves assuming two interferometers with arm lengths of

40 km and 20 km in the USA [236, 228]. We set a minimum frequency of 2 Hz.

4.3.2 Population models

The results presented in this work rely on a standard parametric population model

ppop(θ|λ) borrowed from current LIGO/Virgo/KAGRA analyses [127]. We tackle

population inference on source-frame masses, spin magnitudes, spin tilts, and redshifts,

i.e. θ = {m1,m2, χ1, χ2, θ1, θ2, z,Ω} We assume that ppop(θ|λ) is separable over the

source parameters as follows

ppop(θ|λ) = p(m1,m2|λm)p(χ1|λχ)p(χ2|λχ)

× p(θ1|λθ)p(θ2|λθ)p(z|λz)p(Ω) , (4.16)
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where λ = {λm, λz, λχ, λθ}. The symbol Ω collectively denotes all other parameters

entering the GW approximant. Omitting some parameters in population inference

is actually equivalent to assuming an astrophysical model where those parameters

are distributed as in the Bayesian priors p(Ω) used in the underlying single-event

analyses [96]. However, note that while the parameters Ω factor out in ppop, they do

enter the detectability function pdet.

We briefly summarize the population models used in this work as follows, see

Table 4.3. Appendix 4.6 provides a more detailed description of these models.

• Mass distribution. We use a slightly edited version of the popular Power–Law

+ Peak model [127, 237, 95] with 9 free hyperparameters

λm = {αm, βq, λpeak, µm, σm,mmin,mmax, σl, σh}

. The distribution of the primary mass m1 is described by a power-law with slope

−αm extending between a minimum mass mmin and a maximum mass mmax. A

Gaussian feature is included to account for a possible concentration of events

just close to the pair-instability supernova mass gap. This Gaussian peak is

characterized by weight λpeak, median µm, and standard deviation σm. The mass

ratio q is modeled by a power-law with spectral index βq. The distributions of

m1 and q are smoothed over a range of masses σl (σh) at the low (high) end of

the mass function. Our smoothing prescription differ by that used elsewhere in

the literature. In particular, we opted for polynomial smoothing functions for

compatibility with the adopted automatic-differentiation strategy and numerical

efficiency; see App. 4.6.

• Redshift distribution. We use the so-called Madau–Dickinson profile [238] for

the star formation rate distribution. This is parameterized by λz = {αz, βz, zp},
namely the redshift zp at which the star formation rate peaks and the power-law
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indices αz and βz that govern the rise and fall of the star formation rate at low

and high redshifts, respectively.

• Spin distribution. The spin distribution is modeled after LIGO/Virgo’s Default

model where λχ = {αχ, βχ} and λθ = {ζ, σt} [127, 116]. The component spin mag-

nitudes are independently drawn from a Beta distribution with shape parameters

αχ and βχ. The distribution of the spin tilt cosines have a uniform component

(describing dynamically formed binaries with isotropically oriented spins) and a

truncated Gaussian component with mean 1, weight ζ and standard deviation σt

(modeling BH binaries formed in isolated environment with preferentially aligned

spins).

Unless stated otherwise, we adopt fiducial values for the mass and spin hyperparam-

eters λm, λχ, λθ using the medians of the marginalized distributions from GWTC-3 [127]

and fiducial values of λz from Ref. [238]. In particular, we set αm = 3.4, βq = 1.1,mmin =

9.1 M⊙,mmax = 87 M⊙, λpeak = 0.039, µm = 34 M⊙, σm = 3.6 M⊙, σl = 4 M⊙, σh =

20 M⊙, αz = 2.7, βz = 3, zp = 2, αχ = 1.6, βχ = 4.12, ζ = 0.66, σt = 1.5. Note that our

choice for the minimum mass mmin = 9.1 M⊙ is different with respect to the median

value of ∼ 5 M⊙ reported in Ref. [127]. This is because of the adopted smoothing

function (see App. 4.6). In our implementation one has that the population distribution

function is zero for m ≤ mmin − σl. As a result, our parameter mmin is shifted by σl

(which has fiducial value 4 M⊙) compared to that of Ref. [127].

4.3.3 Monte Carlo integrations and regularization

We approximate Eqs. (4.4) and (4.8–4.12) with Monte Carlo integration. In particu-

lar, we cast those expressions as

I(λ̄) =

∫
X(θ̄, λ̄)pdraw(θ̄) dθ̄ ≃

1

Ndraw

Ndraw∑
i

X(θ̄i, λ̄) , (4.17)
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where θ̄i ∼ pdraw(θ̄).

The injection distribution pdraw(θ̄) is chosen to improve convergence. For instance, it

is convenient to use shallower power-laws (with spectral indexes closer to 0) to prevent

undersampling in regions of the parameter space where ppop(θ̄|λ̄) is low but relevant for

a specific element of λ̄ (notably, this is the case of mmax). For the mass model, we use

a draw population with αm = βq = 0.5 and σh = 20 M⊙. For all other hyperparamters,

it is sufficient to draw samples using the true values λ̄.

The subdominant terms ΓII−V depend on the single-event Fisher matrices Γθ evalu-

ated at the draws θ̄i. If some of these sources have low SNRs and/or are located at the

edge of the parameter space, this might result in occasionally large numerical errors on

Γθ, which in turn make the computation of Γλ numerically unstable. As a regularization

strategy, we restrict the computation of the Monte Carlo sum in Eq. (4.17) to the inner

95% quantile of the evaluations X(θ̄i, λ̄). At least for the GWFast implementation and

using Ndraw = O(105), this is sufficient to obtain stable results. For additional regular-

ization purposes, we also set ppop(θ|λ) = 0 whenever this is < 10−12. This helps avoiding

numerical instabilities when taking derivatives with respect to the hyperparameters λ

and we verified it does not affect our results in any meaningful way.

In the following, the number of significant digits used when presenting the results is

determined by the variance of the adopted Monte Carlo estimators.

4.4 Results

We now present our results, starting from a broad overview and then exploring

forecasts for mass, redshift, and spins in more details.

Figure 4.1 shows the relative errors σλ/λ of the 16 population hyperparameters as a

function of the observation time for both the ET and ET+2CE configurations assuming

our fiducial model. Results corresponding to Tobs = 10 yr are also reported in Table 4.1,

together with time required to achieve 1% accuracy in each of the hyperparameters. We
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ET ET+2CE
σλ/λ [10−3] T1% [yr] σλ/λ [10−3] T1% [yr]

αm 1.5 0.2 1.3 0.2
βq 7.1 5.1 6.6 4.3
λpeak 5.8 3.4 5.4 2.9
µm 0.7 0.1 0.6 0.04
σm 5.7 3.3 5.2 2.7
mmin 1.1 0.1 0.9 0.1
mmax 15.7 > 10 15.1 > 10
σl 2.7 0.7 2.5 0.6
σh 10.3 > 10 9.7 > 10
αz 6.7 4.5 5.9 1.4
βz 5.6 3.1 3.8 0.2
zp 4.7 2.2 3.7 1.4
αχ 1.7 0.3 1.5 0.2
βχ 1.8 0.3 1.5 0.2
ζχ 9.8 9.7 8.9 7.9
σt 5.3 2.8 5.1 2.6

Table 4.1: Summary results from our fiducial model, see also Fig. 4.1. For
ET and ET+2CE, we report relative errors σλ/λ after 10 years of observation
as well as the required time to achieve a percent-level accuracy σλ/λ = 1%.
For readability, parameters are divided into four blocks (broad mass features,
mass cutoffs, redshift, spins) as in Fig. 4.1.

divide our hyperparameters into four groups, separating those relative to broad mass

features (αm, βq, µm, σm, λpeak), muss cutoffs (mmax, mmin, σh, σl), redshift (zp, αz, βz)

and spins (αχ, βχ, ζ, σt). We consider a cumulative observation time Tobs ∈ [0, 10] years

and compute the corresponding number of detected events Ndet as described in App. 4.6.

For our fiducial model, an observation time of 10 years corresponds to ∼ 5 × 105

(∼ 7 × 105) detected events and a detection efficiency pdet(λ) ≃ 69% (96%) for ET

(ET+2CE).

For the case of ET, Fig. 4.2 shows the joint distributions of the mass, spins, and

redshift parameters, including their covariances. A similar plot where we compare (with

caveats) against current results from LIGO/Virgo is presented in App. 4.7. 3G detectors

will be transformative, improving population constraints by orders of magnitudes.
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Figure 4.1: Relative errors of the model hyperparameters λ as a function
of the observation time (bottom x-axis) for ET (left panels) and ET+2CE
(right panels) assuming our fiducial population model. The upper x-axis
indicates the corresponding number of detected events, which depends on the
chosen detector network. The four rows correspond to the hyperparameters
governing broad mass features, mass cutoffs, merger redshift evolution, and
BH spins. To guide the eye, the dashed horizontal lines mark the threshold
for percent-level accuracy, σλ/λ = 1%. Some of these results are also reported
in Table 4.1.
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Figure 4.2: Hyperparameter uncertainties and their correlations assuming
the ET detector and our fiducial population model. Contours indicate 90%
credible intervals and black dashed lines indicate the injected values. We
show results for catalogs of Ndet = 104, 105, 106 events (darker to lighter)
corresponding to Tobs ≃ 0.2, 2, 19 years.

We also present some variations around the fiducial model, changing in particular the

maximum mass mmax, the peak of the redshift distribution zp, and the aligned/isotropic

mixing fraction ζ for the spin directions. These results are presented in Figs. 4.3, 4.4,

4.5, and Table 4.2.

4.4.1 Detector networks

The most evident feature from Fig. 4.1 is the scaling

σλ
λ

∝ σλ ∝ 1√
N

∝ 1√
Ndet

∝ 1√
Tobs

, (4.18)
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which is a direct consequence of Eqs. (4.4), (4.7), and (4.27).

From Fig. 4.1 and Table 4.1, we predict that the ET and ET+2CE will measure the

population properties of BH binaries equally well, at least qualitatively. While there

are small quantitative differences, the overall picture is very similar between the two

cases. Adding additional 3G detectors to the network will not be crucial for measuring

the intrinsic population properties of merging BHs. This result is largely expected, for

a few reasons:

(i) The overall scale of the problem is set by the number of detections. In the

expressions above, this is indicated by the weight pdet(θ̄)ppop(θ̄|λ̄) in the dominant

ΓI integral of Eq. (4.8). For a given intrinsic number of events N (or equivalently

Tobs), upgrading from ET to ET+2CE improves population constraints by as little

as

1−
√

pdet,ET(λ̄)

pdet,ET+2CE(λ̄)
∼ 15% . (4.19)

This is only an approximate estimate because the detectable population pdet(θ̄)ppop(θ̄|λ̄)
is integrated over an additional derivative term in Eq. (4.8) and additional sub-

dominant terms ΓII−V are present.

(ii) While the individual-event measurement accuracies Γθ improve with multiple

detectors, they enter the population Fisher matrix only through the subdominant

terms ΓII−V.

(iii) In this work and as currently done in most of the literature (but see Ref. [239] for

a notable exception) we only consider the population of masses, spins, and redshift.

As is already the case for LIGO and Virgo, the accuracy of these parameters is

largely dominated by the single most sensitive instrument in the network. On the

other hand, it is well known that expanding the network greatly pays off in terms

of source localization.
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(iv) We restrict our study to the global population of sources and assume the BH

merger rate roughly follows the star formation rate, i.e. most of the events

have z ≲ 2. At these redshifts, the coverage provided by even a single ET

instrument of triangular shape is essentially complete. This conclusion cannot

be straightforwardly applied to putative sub-populations of sources at very high

redshifts, e.g. those coming from population-3 stars [240] or primordial BHs [241].

While the ET+2CE network has a larger detection horizon compared to ET alone,

detecting binaries at cosmological distances does not imply an accurate inference

of their source parameters [242, 243].

4.4.2 Mass distribution

The primary mass distribution of binary BHs inferred from GWTC-3 spans from

a few solar masses up to around 90 M⊙. It shows a power-law behavior, with a

Gaussian component at ∼ 35 M⊙, which is below the pair-instability supernova mass

gap that is predicted by stellar evolution models for BHs with masses in the range

∼ 40− 120 M⊙ [244, 245, 246, 247]. The astrophysical origin of this excess is uncertain.

The primary mass spectrum reveals another notable peak at ∼ 10 M⊙, which has been

suggested as an indicator of a significant contribution from isolated binary evolution [131,

129, 248]. The absence of a sharp cut-off for masses ≳ 40M⊙ might point to evolutionary

paths in dynamical environments, including the occurrence of hierarchical mergers

and/or formation in environments like galactic nuclei [249, 250, 194].

Figure 4.1 and Table 4.1 show that hyperparameters such as the minimum mass

mmin, the spectral index αm, and the position of the Gaussian peak µm in the primary

mass spectrum are measured with high precision, reaching 1% accuracy in just a few

months of 3G operation. All of these are parameters that impact the population

where the event rate is sufficiently large (i.e. close to the “top” of the underlying

power-law structure). Measuring mmin will test the occurrence of the putative mass
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gap between BHs and neutron stars, measuring αm will indicate whether the BH mass

spectrum is shallower or steeper than that of stars, and measuring µm will delineate

the boundary between BHs formed through supernova explosion and those limited by

pair instabilities, shedding light on the underlying physics of core collapse. Note that

the hyperparameter µm can also have other astrophysical interpretation and allow us

to explore alternative formation channels, such as hierarchical mergers, direct collapse,

and primordial BHs, shedding light on the diverse processes driving core collapse. The

secondary-mass spectral index βq is measured less accurately than that of the primary

mass αm. This is due to both m1 being easier to constrain than m2, but also to the

specific functional form of ppop(θ|λ) used here, which is written as two independent

contributions p(m1)p(m2|m1).

In contrast, parameters such as the maximum mass mmax and the smoothing length

σh are harder to measure because they affect the low-rate region of the population (at

the “bottom” end of the underlying power-law). The accuracy of both these parameters

does not go below 1% accuracy even after 10 years of 3G observations.

The corner plot of Fig. 4.2 shows that, as expected, the cutoff parameters at both

the lower and upper ends of the mass spectrum exhibit distinct correlations with their

respective smoothing hyperparameters. Specifically, the minimum mass mmin shows a

positive correlation with σl, indicating that an increase in mmin can be compensated by

a simultaneous increase in σl while still fitting the same population model. Conversely,

the maximum mass mmax displays a negative correlation with σh; thus, an increase

in mmax necessitates a corresponding decrease in σh to maintain the same probability

density function ppop(θ|λ).
We also observe a positive correlation between mmin (and thus σl) and the spectral

index αm. This is because both a steeper power-law (larger αm) and a more extended

mass spectrum (lower mmin ) predict a larger number of low-mass detections. We do

not observe a similar correlation between αm and mmax because there are significantly

fewer events at the upper end of the mass spectrum. A similar but weaker behavior is
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observed also for the secondary-mass spectral index βq.

The minimum mass mmin (and consequently σl) is also correlated with the fraction

of sources in the Gaussian component λpeak. As mmin and σl increase, the contribution

provided by the power-law component decreases (the power-law is “shorter”) and thus

the weight of the Gaussian peak must increase. We further observe a negative correlation

between the spectral indices αm and βq of the primary and secondary mass distribution,

respectively. This can be understood as follows: a higher value for the primary mass

spectral index, i.e. a steeper power-law, results in a larger number of light events,

consequently flattening the mass ratio distribution, and thus lowering the value of βq.

In Fig. 4.3 and Table 4.2, we present two model variation to study the measurability

of the upper cutoff mmax. The impact of these model variations on pdet(λ) is of O(10−4),

such that a given value of Tobs corresponds to GW catalogs of essentially the same size

Ndet.

(i) First, we vary the maximum mass mmax = 60 M⊙, 70 M⊙, 87 M⊙ while keeping

all other hyperparameters fixed to their fiducial values, including the high-mass

smoothing σh. We find that the uncertainties on the maximum mass increase

with the value of the maximum mass itself. After Tobs = 10 years, ET will be able

to constrain the maximum mass with absolute errors of ±[1.159, 8.780, 13.623]×
10−1 M⊙ for mmax = [60, 70, 87] M⊙. Lowering the value of mmax shifts the

cutoff closer to the region of the mass spectrum where the event rate is higher.

Consequently, the greater density of observed events provides more statistical

information, allowing for more precise population constraints. A lower value of

the maximum mass also decreases the errors on the smoothing parameter σh; this

might be due to the correlation between σh and mmax highlighted above. The

errors on the other mass hyperparameters remain approximately constant under

these model variations.

(ii) Second, we simultaneously vary the maximum massmmax = 60M⊙, 70M⊙, 87M⊙
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and the smoothing length σh = 47 M⊙, 37 M⊙, 20 M⊙ such that their sum

mmax + σh = 107 M⊙ remains constant. Contrary to the previous case, here we

find that errors on the maximum mass and that of the smoothing parameter σh

decrease with the value of mmax. In this controlled experiment, lower values of

mmax imply higher values of σh and thus a smoother high-mass end of the mass

spectrum. Such prominent smoothing reduces the importance of the features near

the cutoff, making it harder to pinpoint the exact location of mmax. As a result,

the uncertainty on both mmax and σh increases with decreasing mmax.

There is an important statistical caveat that affects some of the results we just

described. Errors on broad features scale as the square root of the number of data-points,

which is indeed the prediction of Eq. (4.18): σλ ∝ 1/
√
Ndet. This agrees with one’s

intuition from the central limit theorem. However, the case of cutoff parameters is

different and, instead, errors are expected to scale as 1/Ndet (this is the popular “German

tank” problem in statistics [251]). This property is not captured by the Fisher matrix

formalism, which expands the likelihood around the true value λ̄ — an expansion that

should not be allowed at the edge of a distribution. While mitigated by the smoothing

parameters σh and σl, this caveat affects our Fisher-based error estimates of mmin and

mmax. Our results are therefore conservative: we predict a 1/
√
Tobs scaling but this

could actually be as rapid as 1/Tobs. This same feature was already noted in single-event

parameter estimation when experimenting with truncated waveforms [252].

4.4.3 Redshift distribution

Current GW data provide conclusive evidence that the BH merger rate evolves

with redshift. Assuming the merger rate evolves as R(z) = R0(1 + z)κ, GWTC-3

data indicate κ ∼ 3 [127], which is consistent with the rise of the star-formation rate

with redshift in the local Universe [253, 254, 255, 133]. Modeling the evolution of the

merger rate with redshift using a single power-law is not appropriate for 3G detectors
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σλ [10−2]

mmax = 60 M⊙ mmax = 70 M⊙ mmax = 87 M⊙
σh = 20 M⊙ σh = 20 M⊙ σh = 20 M⊙

αm 0.28 0.25 0.51
βq 0.71 0.80 0.78
λpeak 0.02 0.02 0.02
µm 2.47 2.52 2.29
σm 2.49 2.99 2.05
mmin 1.02 0.95 0.97
mmax 11.59 87.80 136.23
σl 1.15 1.08 1.08
σh 11.77 131.20 205.65

mmax = 60 M⊙ mmax = 70 M⊙ mmax = 87 M⊙
σh = 47 M⊙ σh = 37 M⊙ σh = 20 M⊙

αm 0.56 0.54 0.51
βq 0.82 0.81 0.78
λpeak 0.02 0.02 0.02
µm 2.40 2.40 2.29
σm 2.15 2.14 2.05
mmin 0.94 0.93 0.97
mmax 169.90 160.62 136.23
σl 1.03 1.03 1.08
σh 264.31 245.29 205.65

zp = 1 zp = 2 zp = 5
αz 3.32 1.81 0.92
βz 1.35 1.67 2.95
zp 0.70 0.94 1.78

ζ = 0.1 ζ = 0.66 ζ = 1
αχ 0.27 0.28 0.28
βχ 0.72 0.73 0.73
ζ 0.32 0.65 0.70
σt 20.95 7.99 5.62

Table 4.2: Summary results from a few model variations. We show absolute
errors σλ after 10 years of observation with ET. Starting from our fiducial
model, we vary one or two parameters at a time. In particular, we explore
variations of the maximum mass mmax (fist block of cells), the maximum
mass mmax and the smoothing paramenter σh (second block of cells), the
peak of the redshift distribution zp (third block of cells), and the fraction
of binaries with aligned spins ζ (fourth block of cell). The fiducial model
corresponds to mmax = 87 M⊙, zp = 2, and ζ = 0.66 as indicated in boldface.
Related results are presented in Figs. 4.3, 4.4, 4.5.
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because their detection horizon extends far beyond the peak of the star-formation rate.

This is indeed the key reason behind choosing the Madau–Dickinson profile instead,

cf. Sec. 4.3.2.

The third row of Fig. 4.1 illustrates the relative errors on the redshift hyperparameters

for the fiducial model, assuming either ET or ET+2CE. Again, we report qualitatively

similar performances for both detector configurations. However, when compared to

masses and spins, the redshift distribution is more prominently affected by the expansion

of the detector network. This is because a network of well-separated interferometers

has better sky localization capabilities, thus breaking the known degeneracy with the

distance to the source, and thus with the redshift (let us recall that here we are fixing

the cosmology). Improvements saturate as Tobs increases and marginal gains require

longer times. For our fiducial model, we find that all parameters associated with the

redshift evolution achieve 1% accuracy within a range of 2 months to 1.5 years when

using ET+2CE, whereas the single ET configuration requires 2 to 4.5 years (Table 4.1).

Figure 4.2 shows that all the redshift hyperparameters are tightly correlated. In

particular, there is a positive (negative) correlation between βz (αz) and the peak of

the star formation rate zp. This is largely because we are keeping the local merger rate

R0 fixed. If the redshift peak is higher, the merger rate must be steeper at high redshift

and shallower at low redshift.

Finally, Fig. 4.4 shows a model-variation study where we shift the peak of the

redshift distribution zp = 1, 2, 5, considering a single ET instrument. We find that the

errors decrease with increasing zp, which is once more a direct consequence of our rate

choice. Fixing the local rate R0 implies that these different models refer to Universes

with a different number of BH mergers N (and thus a different number of detected

events Ndet); cf. App. 4.6.2. In this context, assuming a model with a large value of zp

corresponds to assuming more merging BHs, which in turn results in better population

constraints. An alternative choice would be to fix the total merger rate instead of the

local value R0.
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maximum zp as a function of the observation time Tobs (bottom x-axis) for
a single ET instrument. We consider three models with zp = 1, 2, and 5;
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the 90% credible interval. Related results are presented in Table 4.2.

4.4.4 Spin distribution

As for the spin distribution, current GW data reveals evidence of both aligned and

misaligned spins. Systems with large spin-orbit misalignment suggest formation in

dynamically active environments like globular clusters, where interactions can randomize

spin directions; on the other hand, aligned spins suggest formation from isolated binary

stars [256, 118, 116, 257]. The BH spin magnitudes contain information on the details
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of stellar collapse including the efficiency of angular momentum transfer between stellar

cores and envelopes as well as the occurrence of previous mergers [258, 259, 260, 129].

Figure 4.1 and Table 4.1 show that, among the spin hyperparameters, those with

tighter constraints are the shape parameters entering the Beta distribution of the spin

magnitudes. Both ET and ET+2CE achieve percent-level accuracy for αχ and βχ

after just a few months of operation. In contrast, the hyperparameters associated with

the spin orientations exhibit much longer timescales to reach similar accuracy levels.

In particular, the mixing fraction ζ requires nearly 10 years of observations for both

configurations to achieve an accuracy of 1%. Note that, for the spin case, the population

Fisher terms ΓII−V become almost comparable to ΓI, meaning that the single event

errors on the spins are no longer irrelevant for the population analysis.

Our results suggest that the broad program of pinpointing the BH binary formation

channel using the spin orientations will face some serious challenges, even in the 3G

era. A crucial element on this point will be the achieved low-frequency sensitivity of

ET and CE. For the noise curves used here, we have f ≳ 2 Hz for ET and f ≳ 5 Hz for

CE. Pushing the low-frequency requirement will allow the inspiral phase, where spins

are prominent observables, to be better resolved, which impacts both accuracies and

event rates.

The corner plot in Fig. 4.2 shows that the hyperparameters modeling the spin

magnitudes and those modeling the spin directions are respectively correlated within

their own groups. In particular, we find a positive correlation in both (αχ − βχ) and

(ζ − σt). We do not observe any meaningful cross-correlations between hyperparameters

modeling the spin magnitudes and those modeling the spin orientations, which is

expected being the two distributions independent.

Finally, in Fig. 4.5 we study the measurability of the relative weight of the isotropic

(ζ = 0) and aligned (ζ = 1) component of the spin-direction population, which is meant

to capture the fraction of systems originating from dynamical and isolated channels [116].

We vary ζ = 0.1, 0.66, 1 while keeping all other hyperparameters fixed to their fiducial
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values. Table 4.2 shows that varying ζ does not influence the absolute errors on either

αχ or βχ (which agrees with the statement above about these parameters being largely

uncorrelated). On the other hand, we observe that the error on σt raises (lowers) for

smaller (larger) values of ζ. This can be traced to the fact that larger values for ζ

predict more events in the Gaussian component, which is then easier to characterize.

Finally, we find that the absolute uncertainty on ζ diminishes for lower values of this

hyperparameter. As previously remarked, for the spin case single-event parameter

reconstruction is found to be relevant through the terms ΓII−V. For lower values of ζ a

larger fraction of the events have precessing spins, in which case tilt angles are easier to

reconstruct as compared to θi ∼ ±π/2.

4.5 Final remarks

We presented a Fisher-matrix implementation to forecast the population properties

of merging BH binaries detectable by 3G observatories such as ET and CE. The starting

point of this work is the formalism developed by Gair et al. [229]. Our results show that

future detectors will improve the precision with which we can constrain the population

of compact binaries by orders of magnitude compared to LIGO/Virgo, with error bars

on the hyperparameters tightening at a rate ∝ 1/
√
Tobs. This is actually a conservative

estimate, as some of the edge parameters could actually improve as fast as 1/Tobs (the

so-called “German tank” problem [251]).

While prospects are exciting, our analysis also reveals that, at least when modeling

the population of masses, spins, and redshift, a single ET instrument of triangular shape

and a network of ET and two CE’s will return qualitatively similar constraints. We

expect similar conclusions to hold true also in the case of two L-shaped ET detectors

[223]. This point is worth investigating more thoroughly.

We predict that some of the key mass-related hyperparameters, such as the minimum

BH mass mmin and the spectral index of the primary mass distribution αm can reach sub-
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90% credible interval. Related results are presented in Table 4.2.
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percent accuracy within a few years of observation. The best-measured hyperparameter

is µm, i.e. the position of the Gaussian peak. This is particularly promising, showing

that 3G detectors will be able to deliver precision science on localized features in the

population of merging compact objects. On the other hand, we predict that the upper

edge of the primary mass spectrum mmax as well as the fraction of binaries with aligned

vs misaligned spins are significantly harder to measure, reaching an accuracy of 1%

only after ≳ 8 years of operations and several hundreds of thousands of events. This

questions the feasibility of their related science case, namely pair-instability physics

and formation channels, respectively.

We hope this work will move the signpost from individual events to populations

of events in the context of 3G-detector forecasts. This is particularly timely given

the current planning activities regarding the construction of such facilities. Beside 3G

detectors, our tool could also be useful for current LIGO/Virgo analyses where, even

though this Fisher approach is unreliable, it could provide some intuition about the

response of specific parametric population models.

Our implementation is built on top of the GWFast code [104] and will be made

publicly available in due course. While state-of-the-art for LIGO/Virgo and O(100)

events, the population models implemented here are admittedly too simple for 3G

detectors, where the much larger statistics will allow probing far more features in the

compact-binary population. Developing forecasts in this direction is left to future work.
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Appendix A:

4.6 Details of the population models

In this appendix we provide details about the parameterized population models used

in this chapter; a concise list of the relevant hyperparameters is provided in Table 4.3

together with the adopted fiducial values. We stress that, while here we describe only

the adopted models, the developed code can trivially be extended to implement different

distributions.

4.6.1 Mass population model

For the BH masses we adopt the Power–Law+Peak model first introduced

in [128]. The primary (heavier) object is distributed according to

p(m1|λm) ∝ [(1−λpeak)

× P(m1| −αm,mmin − σl,mmax + σh)

+ λpeakN (m1|µm, σm)]S(m1|mmin − σl, σl)

× [1− S(m1|mmax, σh)] , (4.20)

where P(m1| − αm,mmin − σl,mmax + σh) is a power-law distribution with spectral

index −αm normalized in the interval [mmin − σl,mmax + σh], N (m1|µm, σm) is a

normalized Gaussian distribution with mean µm and standard deviation σm. For

the smoothing functions S, we design and employ a different prescription compared to

that of Ref. [128, 127]. The specific functional form of their smoothing is numerically

challenging to treat with automatic differentiation. We also note that their functions

only tend to zero, without actually reaching the limit value. We use the following

polynomial filter, which smoothly evolves from 0 to 1 with vanishing first and second
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derivatives at the edges:

S(x|x0, σx) =


0 x < x0 ,

f(x|x0, σx) x0 ≤ x ≤ x0 + σx ,

1 x > x0 + σx ,

(4.21)

f(x|x0, σx) =
(x−x0)3

σ5
x

[10σ2
x−15σx(x−x0)+6(x−x0)2] , (4.22)

where x0 represents the lower edge, below which the filter vanishes, and σx controls the

width of the transition. The above definition of the filter makes our implementation

numerically stable when computing derivatives, and further allows to analytically

compute the normalization of the chosen mass distribution, resulting in a faster numerical

evaluation. Within our setting, the filtered mass distribution vanishes at mmin − σl and

at mmax + σh, with the onset of the filtering being at mmin and mmax.

As for the mass of the secondary object, the distribution is given by a power-law

with the modified smoothing function described above

p(m2|λm,m1) ∝ P(m2|βq,mmin − σl,m1)

× S(m2|mmin − σl, σl)

× [1− S(m2|mmax, σh)] , (4.23)

which is then normalized (again analytically) in the interval [mmin − σl, m1] depending

on m1, ensuring that
∫
p(m1,m2|λm) dm2 = p(m1|λm).

4.6.2 Redshift population model

The population Fisher matrix depends on the numberN of detectable (not necessarily

detected) BH mergers, cf. Eq. (4.7). We assume that the merger rate only depends on
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the redshift z, i.e.
dN

dtsdVc
= R0ψ(z|λz) , (4.24)

where ts is the source-frame time, Vc is the comoving volume, is R0 the local merger rate

at z = 0, and ψ(z) is a function modeling the star-formation rate such that ψ(z = 0) = 1.

For the latter, we adopt the Madau-Dickinson profile [238], which has the following

functional form [261]

ψ(z|λz) =
[(1 + zp)

αz+βz + 1] (1 + z)αz

(1 + zp)αz+βz + (1 + z)αz+βz
, (4.25)

where αz (βz) model the rise (decline) of the function at low (high) redshift, and zp

models the peak of the star-formation rate. The redshift distribution of the events is

then given by [262, 237]

p(z|λz) ∝ ψ(z|λz)
dVc
dz

1

1 + z
. (4.26)

The total number of mergers is given by

N =

∫
dN

dtsdVc

dVc
dz

dts
dtd

dzdtd

= TobsR0

∫ ∞

0

ψ(z|λz)
1

1 + z

dVc
dz

dz , (4.27)

where td is the time at the detector, dts/dtd = 1/(1 + z), and
∫
dtd = Tobs is the data

taking period. In Sec. 4.4, we use the expressions above to estimate the time Tobs needed

to observe a given number of detected events Ndet = Npdet(λ). The conversion between

Tobs and N depends only on the redshift hyperparameters λz while the conversion

between N and Ndet depends on all hyperparameters λ as well as the chosen detector.

In this work, we fix the local merger rate to R0 = 17 Gpc−3 yr−1 [127]; computing the

Fisher-matrix error on R0 is a natural extension of this work and requires generalizing

Eq. (4.3) to the non-marginalized population likelihood (see App. A of Ref. [229]).
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4.6.3 Spin population model

For the spins we again follow [128, 127] and adopt their Default model. This

features a Beta distribution for the (independent) spin magnitudes

p(χi|λχ) = Beta(χi|αχ, βχ) , i = {1, 2} , (4.28)

where αχ and βχ are the shape parameters for the distribution. These can be converted

into mean and variance, which are used in some of the GW literature to characterize

the spin distribution.

The angles θi between each spin and the orbital angular momentum of the binary

are drawn (again independently) from

p(cos θi|λθ) = ζNtr(cos θi|1, σt) + (1− ζ) I(cos θi) , (4.29)

where Ntr(cos θi|1, σt) denotes a truncated Gaussian distribution between [−1, 1] cen-

tered on 1 and with standard deviation σt, and I(cos θi) denotes an isotropic distribution

in [−1, 1].

Appendix B

4.7 LIGO/Virgo vs 3G

In Fig. 4.6 we compare our results against those obtained with current LIGO/Virgo

data. For concreteness, we consider our fiducial model and ET with Ndet = 105

(Tobs ≃ 2 yr). We use public LIGO/Virgo/KAGRA data products from GWTC-3 [127],

selecting data from their Power–Law Plus Peak mass distribution, Default spin

model, and Power–Law redshift model.

While indicative, there are important caveats to this comparison. As discussed in
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Figure 4.6: Same as Fig. 4.2 but comparing results assuming Ndet = 105

detections with ET (Tobs ∼ 2 yr, light curves) against current constraints
from LIGO/Virgo data (LVK, dark curves). See App. 4.7 for important
caveats.

App. 4.6.1, the smoothing function we adopt differs from that of Ref. [127]. First, we

smooth both the lower and upper ends of the mass spectrum while they only smooth

the lower end. The parameters σh and σl have different meanings in the two cases,

and are thus omitted from Fig. 4.6. Moreover, while in our case the mass distribution

vanishes at m ≤ mmin − σl, in the prescription used by LIGO/Virgo/KAGRA it instead

vanishes at m ≤ mmin. For a fairer comparison, we artificially shift the GWTC-3 mmin

posterior by σl = 4 M⊙. As for the redshift distribution, the Power–Law model used

in Ref. [127] is described by a single hyperparameter κ, that can only be approximately

compared to αz from the Madau–Dickinson model.
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Parameter Description Fiducial

λm Mass model: Power–Law Plus Peak
αm Spectral index for the power-law of the pri-

mary mass distribution.
3.4

mmin Minimum mass of the power-law component
of the primary mass distribution.

9.1 M⊙

mmax Maximum mass of the power-law component
of the primary mass distribution.

87 M⊙

λpeak Fraction of binary BHs in the Gaussian com-
ponent.

0.039

µm Mean of the Gaussian component in the
primary mass distribution.

34

σm Width of the Gaussian component in the
primary mass distribution.

3.6

βq Spectral index for the power-law of the mass
ratio distribution.

1.1

σl Width of mass smoothing at the lower end
of the mass distribution.

4.0

σh Width of mass smoothing at the upper end
of the mass distribution.

0.5

λz Redshift model: Madau–Dickinson
αz Power-law index governing the rise of the

star formation rate at low redshift.
2.7

βz Power-law index governing the decline of
the star formation rate at high redshift.

3.0

zp Redshift at which the star formation rate
peaks.

2.0

λχ, λθ Spin model: Default
αχ Mean of the Beta distribution of the spin

magnitudes.
1.6

βχ Standard deviation of the Beta distribution
of the spin magnitudes.

4.12

ζ Mixing fraction of mergers from the trun-
cated Gaussian component for spin orienta-
tions.

0.66

σt Width of the truncated Gaussian component
for spin orientations.

1.5

Table 4.3: Summary of the population model parameters and their fiducial
values.
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Chapter 5

Conclusions and future directions

The theory of GR has profoundly transformed our understanding of the universe,

reshaping our conception of spacetime and gravity, providing the basis for modern

cosmology and explaining the nature of BHs and NSs. GWs, first predicted by Einstein,

are a direct consequence of GR and have opened new observational windows into the

cosmos. Unlike electromagnetic waves, GWs interact only weakly with matter as they

travel through space at the speed of light, allowing us to probe regions of the Universe

that would have been otherwise unaccessible. The observation of GWs coming from the

earliest BH mergers at high redshift will allow us to explore epochs beyond the reach

of electromagnetic observations. Furthermore, for the first time it is possible to test

GR in the strong field regime as we will be able to approach regions characterized by

a strong gravitational field, like in the vicinity of BHs and NSs. This makes GWs an

unparalleled tool for studying high-energy astrophysical phenomena and understanding

fundamental aspects of the evolution of our universe.

With a catalog of ∼ 90 GW events detected by the LVK collaboration, we are at the

forefront of a new era in astronomy. The current generation of detectors has provided

unprecedented insights into the mass, spin, and redshift distributions of binary BHs and
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NSs. These observations confirmed the existence of intermediate-mass BHs, challenging

conventional models of stellar evolution. However, despite these advancements, there

are still significant limitations in the precision with which we can measure certain

parameters, particularly the spin magnitudes and orientations in merging binaries.

The primary reason for this is that spin effects contribute subdominantly to the GW

signal, making it harder to resolve them with the current sensitivity. An accurate

measurement of spin parameters (and hyperparameters at the population-level) is

fundamental to discriminate between possible binary BH formation channels. As

pointed out in Chapter 2 and Chapter 3, great improvements in the detectors sensitivity

is expected already in the upcoming observing runs. This will enable a deeper study of

weak spin effects that were invisible to previous observing runs. But the real revolution

in terms of parameter estimation will arrive with the advent of 3G detectors. With

their significantly improved sensitivity, they will not only enhance the precision with

which individual-event and population-level parameters are measured but, crucially,

will also dramatically increase the number of detected events. This is particularly

relevant for population-level studies that aim at reconstructing the true population of

compact binary systems across cosmic time. In Chapter 4, we highlight that both the

ET and ET+2CE configurations will reach percent-level accuracy for the majority of

the population parameters within a few years of operation. Despite these breakthroughs,

3G detectors still face challenges in measuring spin orientations with high accuracy.

In fact, longer observation times will be needed to achieve the 1% accuracy for the

hyperparameters related to spin directions.

In addition to ground-based detectors, space-based missions like LISA will com-

plement the efforts by probing much lower frequencies. LISA will excel in observing

supermassive BH binaries and systems in the early stages of the inspiral, allowing for

unprecedented accuracy in measuring spin orientations. This is possible due to the

longer inspiral timescales at lower frequencies which enable a detailed characterization

of spin precession. The ability to track the entire evolution of a binary inspiral phase
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will provide invaluable insights into the formation channels of such systems, particularly

in environments like AGN disks or globular clusters.

In conclusion, the future of GW astronomy is incredibly bright. We stand on the

cusp of answering fundamental questions about the formation of compact objects, the

nature of space-time, and the very origins of the universe itself. The unprecedented

sensitivity of future detectors promises to open new frontiers in our quest to understand

the cosmos.
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J. Glanzer, E. Goetz, G. González, A. Helmling-Cornell, et al., arXiv e-prints ,
arXiv:2409.02831 (2024), arXiv:2409.02831 [astro-ph.IM].

[78] R. W. Kiendrebeogo, A. M. Farah, E. M. Foley, A. Gray, N. Kunert, A. Puecher,
A. Toivonen, R. O. VandenBerg, S. Anand, T. Ahumada, et al., ApJ 958, 158
(2023), arXiv:2306.09234 [astro-ph.HE].

[79] J. Creighton and W. Anderson, Gravitational-Wave Physics and Astronomy: An
Introduction to Theory, Experiment and Data Analysis. (2011).

[80] P. Jaranowski and A. Królak, Living Reviews in Relativity 15, 4 (2012),
arXiv:0711.1115 [gr-qc].

[81] B. P. Abbott, R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley,
C. Adams, V. B. Adya, C. Affeldt, M. Agathos, et al., Classical and Quantum
Gravity 37, 055002 (2020), arXiv:1908.11170 [gr-qc].

[82] L. Blanchet, Living Reviews in Relativity 5, 3 (2002), arXiv:gr-qc/0202016 [gr-qc].

[83] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006 (1999), arXiv:gr-
qc/9811091 [gr-qc].

https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1103/PhysRevX.13.041039
https://arxiv.org/abs/2111.03606
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevLett.125.101102
https://arxiv.org/abs/2009.01075
https://doi.org/10.3847/2041-8213/ac5f47
https://arxiv.org/abs/2201.09943
https://doi.org/10.3847/2041-8213/abe7f5
https://arxiv.org/abs/2012.09169
https://doi.org/10.3847/2041-8213/ab960f
https://arxiv.org/abs/2006.12611
https://doi.org/10.1103/PhysRevC.103.025808
https://doi.org/10.1103/PhysRevC.103.025808
https://arxiv.org/abs/2007.08493
https://doi.org/10.1093/mnras/staa3372
https://arxiv.org/abs/2009.10082
https://doi.org/10.48550/arXiv.2409.02831
https://doi.org/10.48550/arXiv.2409.02831
https://arxiv.org/abs/2409.02831
https://doi.org/10.3847/1538-4357/acfcb1
https://doi.org/10.3847/1538-4357/acfcb1
https://arxiv.org/abs/2306.09234
https://doi.org/10.12942/lrr-2012-4
https://arxiv.org/abs/0711.1115
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://arxiv.org/abs/1908.11170
https://doi.org/10.12942/lrr-2002-3
https://arxiv.org/abs/gr-qc/0202016
https://doi.org/10.1103/PhysRevD.59.084006
https://arxiv.org/abs/gr-qc/9811091
https://arxiv.org/abs/gr-qc/9811091


Bibliography 109

[84] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-qc/0507014 [gr-qc].

[85] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Phys. Rev. Lett.
96, 111101 (2006), arXiv:gr-qc/0511048 [gr-qc].

[86] T. Damour, in General Relativity, Cosmology and Astrophysics , Vol. 177, edited
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[126] M. Milosavljević and D. Merritt, in The Astrophysics of Gravitational Wave
Sources , American Institute of Physics Conference Series, Vol. 686, edited by J. M.
Centrella (AIP, 2003) pp. 201–210, arXiv:astro-ph/0212270 [astro-ph].

[127] R. Abbott et al., Phys. Rev. X 13, 011048 (2023), arXiv:2111.03634 [astro-ph.HE].

[128] R. Abbott et al., ApJ 913, L7 (2021), arXiv:2010.14533 [astro-ph.HE].

[129] K. Belczynski, J. Klencki, C. E. Fields, A. Olejak, E. Berti, G. Meynet, C. L.
Fryer, D. E. Holz, R. O’Shaughnessy, D. A. Brown, et al., A&A 636, A104 (2020),
arXiv:1706.07053 [astro-ph.HE].

[130] K. Belczynski, D. E. Holz, T. Bulik, and R. O’Shaughnessy, Nature 534, 512
(2016), arXiv:1602.04531 [astro-ph.HE].

https://doi.org/10.1016/j.physrep.2022.01.003
https://arxiv.org/abs/1806.05820
https://arxiv.org/abs/1806.05820
https://doi.org/10.1103/PhysRevD.96.023012
https://arxiv.org/abs/1704.08370
https://arxiv.org/abs/1704.08370
https://doi.org/10.1103/PhysRevD.87.104028
https://doi.org/10.1103/PhysRevD.87.104028
https://arxiv.org/abs/1302.4442
https://doi.org/10.3847/2041-8205/832/1/L2
https://doi.org/10.3847/2041-8205/832/1/L2
https://arxiv.org/abs/1609.05916
https://doi.org/10.1088/1361-6382/aa552e
https://doi.org/10.1088/1361-6382/aa552e
https://arxiv.org/abs/1503.04307
https://doi.org/10.1093/mnras/stx1764
https://arxiv.org/abs/1703.06873
https://doi.org/10.1126/science.1220843
https://arxiv.org/abs/1208.1106
https://doi.org/10.1146/annurev-astro-081811-125521
https://arxiv.org/abs/1204.4114
https://doi.org/10.1146/annurev-astro-082708-101811
https://arxiv.org/abs/1304.7762
https://arxiv.org/abs/1304.7762
https://doi.org/10.3847/1538-4357/abcc5e
https://arxiv.org/abs/2011.12458
https://arxiv.org/abs/2011.12458
https://doi.org/10.1086/306528
https://arxiv.org/abs/astro-ph/9807210
https://doi.org/10.1063/1.1629432
https://doi.org/10.1063/1.1629432
https://arxiv.org/abs/astro-ph/0212270
https://doi.org/10.1103/PhysRevX.13.011048
https://arxiv.org/abs/2111.03634
https://doi.org/10.3847/2041-8213/abe949
https://arxiv.org/abs/2010.14533
https://doi.org/10.1051/0004-6361/201936528
https://arxiv.org/abs/1706.07053
https://doi.org/10.1038/nature18322
https://doi.org/10.1038/nature18322
https://arxiv.org/abs/1602.04531


112 Bibliography

[131] N. Giacobbo and M. Mapelli, Mon. Not. R. Astron. Soc. 480, 2011 (2018),
arXiv:1806.00001 [astro-ph.HE].

[132] S. Banerjee, MNRAS 503, 3371 (2021), arXiv:2011.07000 [astro-ph.HE].

[133] F. Santoliquido, M. Mapelli, N. Giacobbo, Y. Bouffanais, and M. C. Artale,
MNRAS 502, 4877 (2021), arXiv:2009.03911 [astro-ph.HE].

[134] V. De Renzis, D. Gerosa, G. Pratten, P. Schmidt, and M. Mould, Phys. Rev. D
106, 084040 (2022), arXiv:2207.00030 [gr-qc].

[135] V. De Renzis, D. Gerosa, M. Mould, R. Buscicchio, and L. Zanga, Phys. Rev. D
108, 024024 (2023), arXiv:2304.13063 [gr-qc].

[136] V. De Renzis, F. Iacovelli, D. Gerosa, M. Mancarella, and C. Pacilio, (2024),
arXiv:2410.17325 [astro-ph.HE].

[137] D. Gangardt, D. Gerosa, M. Kesden, V. De Renzis, and N. Steinle, Phys. Rev. D
106, 024019 (2022), arXiv:2204.00026 [gr-qc].

[138] D. Gerosa, G. Fumagalli, M. Mould, G. Cavallotto, D. P. Monroy, D. Gangardt,
and V. De Renzis, Phys. Rev. D 108, 024042 (2023), arXiv:2304.04801 [gr-qc].

[139] G. Fumagalli, I. Romero-Shaw, D. Gerosa, V. De Renzis, K. Kritos, and A. Olejak,
Phys. Rev. D 110, 063012 (2024), arXiv:2405.14945 [astro-ph.HE].

[140] D. Gerosa, V. De Renzis, F. Tettoni, M. Mould, A. Vecchio, and C. Pacilio, arXiv
e-prints , arXiv:2409.07519 (2024), arXiv:2409.07519 [gr-qc].

[141] U. von Luxburg, arXiv e-prints , arXiv:0711.0189 (2007), arXiv:0711.0189 [cs.DS].

[142] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne, Phys. Rev. D 49,
6274 (1994).

[143] L. E. Kidder, Phys. Rev. D 52, 821 (1995), arXiv:gr-qc/9506022 [gr-qc].

[144] A. Sesana, E. Barausse, M. Dotti, and E. M. Rossi, ApJ 794, 104 (2014),
arXiv:1402.7088 [astro-ph.CO].

[145] M. Sayeb, L. Blecha, L. Z. Kelley, D. Gerosa, M. Kesden, and J. Thomas, MNRAS
501, 2531 (2021), arXiv:2006.06647 [astro-ph.GA].

[146] N. Loutrel, T. Tanaka, and N. Yunes, Phys. Rev. D 98, 064020 (2018),
arXiv:1806.07431 [gr-qc].

[147] R. Abbott et al., (2021), arXiv:2108.01045 [gr-qc].

https://doi.org/10.1093/mnras/sty1999
https://arxiv.org/abs/1806.00001
https://doi.org/10.1093/mnras/stab591
https://arxiv.org/abs/2011.07000
https://doi.org/10.1093/mnras/stab280
https://arxiv.org/abs/2009.03911
https://doi.org/10.1103/PhysRevD.106.084040
https://doi.org/10.1103/PhysRevD.106.084040
https://arxiv.org/abs/2207.00030
https://doi.org/10.1103/PhysRevD.108.024024
https://doi.org/10.1103/PhysRevD.108.024024
https://arxiv.org/abs/2304.13063
https://arxiv.org/abs/2410.17325
https://doi.org/10.1103/PhysRevD.106.024019
https://doi.org/10.1103/PhysRevD.106.024019
https://arxiv.org/abs/2204.00026
https://doi.org/10.1103/PhysRevD.108.024042
https://arxiv.org/abs/2304.04801
https://doi.org/10.1103/PhysRevD.110.063012
https://arxiv.org/abs/2405.14945
https://doi.org/10.48550/arXiv.2409.07519
https://doi.org/10.48550/arXiv.2409.07519
https://arxiv.org/abs/2409.07519
https://doi.org/10.48550/arXiv.0711.0189
https://arxiv.org/abs/0711.0189
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.52.821
https://arxiv.org/abs/gr-qc/9506022
https://doi.org/10.1088/0004-637X/794/2/104
https://arxiv.org/abs/1402.7088
https://doi.org/10.1093/mnras/staa3826
https://doi.org/10.1093/mnras/staa3826
https://arxiv.org/abs/2006.06647
https://doi.org/10.1103/PhysRevD.98.064020
https://arxiv.org/abs/1806.07431
https://arxiv.org/abs/2108.01045


Bibliography 113

[148] R. Abbott et al., (2021), arXiv:2111.03606 [gr-qc].

[149] M. Hannam, C. Hoy, J. E. Thompson, S. Fairhurst, V. Raymond, m. o. t. LIGO,
and Virgo collaborations, (2021), arXiv:2112.11300 [gr-qc].

[150] V. Varma, S. Biscoveanu, T. Islam, F. H. Shaik, C.-J. Haster, M. Isi, W. M. Farr,
S. E. Field, and S. Vitale, Phys. Rev. Lett. 128, 191102 (2022), arXiv:2201.01302
[astro-ph.HE].

[151] E. Payne, S. Hourihane, J. Golomb, R. Udall, D. Davis, and K. Chatziioannou,
(2022), arXiv:2206.11932 [gr-qc].

[152] I. Romero-Shaw, P. D. Lasky, E. Thrane, and J. Calderón Bustillo, ApJ 903, L5
(2020), arXiv:2009.04771 [astro-ph.HE].

[153] R. Abbott et al., (2021), arXiv:2111.03634 [astro-ph.HE].

[154] T. A. Callister, S. J. Miller, K. Chatziioannou, and W. M. Farr, ApJ 937, L13
(2022), arXiv:2205.08574 [astro-ph.HE].

[155] M. Mould, D. Gerosa, F. S. Broekgaarden, and N. Steinle, (2022),
arXiv:2205.12329 [astro-ph.HE].

[156] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme, Phys. Rev. D 100, 024059
(2019), arXiv:1809.10113 [gr-qc].

[157] S. Biscoveanu, M. Isi, V. Varma, and S. Vitale, Phys. Rev. D 104, 103018 (2021),
arXiv:2106.06492 [gr-qc].

[158] V. Varma, M. Isi, S. Biscoveanu, W. M. Farr, and S. Vitale, Phys. Rev. D 105,
024045 (2022), arXiv:2107.09692 [astro-ph.HE].

[159] D. Gerosa, M. Mould, D. Gangardt, P. Schmidt, G. Pratten, and L. M. Thomas,
Phys. Rev. D 103, 064067 (2021), arXiv:2011.11948 [gr-qc].

[160] P. Schmidt, F. Ohme, and M. Hannam, Phys. Rev. D 91, 024043 (2015),
arXiv:1408.1810 [gr-qc].

[161] C. Henshaw, R. O’Shaughnessy, and L. Cadonati, Classical and Quantum Gravity
39, 125003 (2022), arXiv:2201.05220 [gr-qc].

[162] T. Damour, Phys. Rev. D 64, 124013 (2001), arXiv:gr-qc/0103018 [gr-qc].

[163] É. Racine, Phys. Rev. D 78, 044021 (2008), arXiv:0803.1820 [gr-qc].

[164] D. Gerosa, M. Kesden, U. Sperhake, E. Berti, and R. O’Shaughnessy, Phys. Rev. D
92, 064016 (2015), arXiv:1506.03492 [gr-qc].

https://arxiv.org/abs/2111.03606
https://arxiv.org/abs/2112.11300
https://doi.org/10.1103/PhysRevLett.128.191102
https://arxiv.org/abs/2201.01302
https://arxiv.org/abs/2201.01302
https://arxiv.org/abs/2206.11932
https://doi.org/10.3847/2041-8213/abbe26
https://doi.org/10.3847/2041-8213/abbe26
https://arxiv.org/abs/2009.04771
https://arxiv.org/abs/2111.03634
https://doi.org/10.3847/2041-8213/ac847e
https://doi.org/10.3847/2041-8213/ac847e
https://arxiv.org/abs/2205.08574
https://arxiv.org/abs/2205.12329
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.100.024059
https://arxiv.org/abs/1809.10113
https://doi.org/10.1103/PhysRevD.104.103018
https://arxiv.org/abs/2106.06492
https://doi.org/10.1103/PhysRevD.105.024045
https://doi.org/10.1103/PhysRevD.105.024045
https://arxiv.org/abs/2107.09692
https://doi.org/10.1103/PhysRevD.103.064067
https://arxiv.org/abs/2011.11948
https://doi.org/10.1103/PhysRevD.91.024043
https://arxiv.org/abs/1408.1810
https://doi.org/10.1088/1361-6382/ac6cc0
https://doi.org/10.1088/1361-6382/ac6cc0
https://arxiv.org/abs/2201.05220
https://doi.org/10.1103/PhysRevD.64.124013
https://arxiv.org/abs/gr-qc/0103018
https://doi.org/10.1103/PhysRevD.78.044021
https://arxiv.org/abs/0803.1820
https://doi.org/10.1103/PhysRevD.92.064016
https://doi.org/10.1103/PhysRevD.92.064016
https://arxiv.org/abs/1506.03492


114 Bibliography

[165] L. M. Thomas, P. Schmidt, and G. Pratten, Phys. Rev. D 103, 083022 (2021),
arXiv:2012.02209 [gr-qc].

[166] D. Gangardt, N. Steinle, M. Kesden, D. Gerosa, and E. Stoikos, Phys. Rev. D
103, 124026 (2021), arXiv:2103.03894 [gr-qc].

[167] S. Fairhurst, R. Green, M. Hannam, and C. Hoy, Phys. Rev. D 102, 041302
(2020), arXiv:1908.00555 [gr-qc].

[168] M. Kesden, D. Gerosa, R. O’Shaughnessy, E. Berti, and U. Sperhake,
Phys. Rev. Lett. 114, 081103 (2015), arXiv:1411.0674 [gr-qc].

[169] G. Pratten, P. Schmidt, R. Buscicchio, and L. M. Thomas, Physical Review
Research 2, 043096 (2020), arXiv:2006.16153 [gr-qc].

[170] J. Veitch and A. Vecchio, Phys. Rev. D 78, 022001 (2008), arXiv:0801.4313 [gr-qc].

[171] J. S. Speagle, MNRAS 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM].

[172] S. Vitale, D. Gerosa, C.-J. Haster, K. Chatziioannou, and A. Zimmerman,
Phys. Rev. Lett. 119, 251103 (2017), arXiv:1707.04637 [gr-qc].

[173] K. Chatziioannou, G. Lovelace, M. Boyle, M. Giesler, D. A. Hemberger, R. Katebi,
L. E. Kidder, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi, Phys. Rev. D 98,
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