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A B S T R A C T

Artificial Intelligence (AI) use in automated Electrocardiogram (ECG) classification has continuously attracted
the research community’s interest, motivated by their promising results. Despite their great promise, limited
attention has been paid to the robustness of their results, which is a key element for their implementation in
clinical practice. Uncertainty Quantification (UQ) is a critical for trustworthy and reliable AI, particularly in
safety-critical domains such as medicine. Estimating uncertainty in Machine Learning (ML) model predictions
has been extensively used for Out-of-Distribution (OOD) detection under single-label tasks. However, the use
of UQ methods in multi-label classification remains underexplored.

This study goes beyond developing highly accurate models comparing five uncertainty quantification
methods using the same Deep Neural Network (DNN) architecture across various validation scenarios, including
internal and external validation as well as OOD detection, taking multi-label ECG classification as the example
domain. We show the importance of external validation and its impact on classification performance, uncer-
tainty estimates quality, and calibration. Ensemble-based methods yield more robust uncertainty estimations
than single network or stochastic methods. Although current methods still have limitations in accurately
quantifying uncertainty, particularly in the case of dataset shift, incorporating uncertainty estimates with a
classification with a rejection option improves the ability to detect such changes. Moreover, we show that
using uncertainty estimates as a criterion for sample selection in active learning setting results in greater
improvements in classification performance compared to random sampling.
. Introduction

Machine learning has made significant progress in a variety of
ecision-critical domains, including medicine. However, as these ad-
ancements are applied in real-world safety-critical applications, it is
rucial to consider the inherent uncertainty present in the ML process
s a path toward trustworthy AI [1]. While AI research has achieved
romising results across various domains, the adoption of AI in the
edical field remains a challenge [2]. This can be attributed to various

actors, including the lack of trust in AI decisions. In medical AI, it is
ssential to have the ability to abstain from providing a decision when
here is a high level of uncertainty associated with it. This mirrors the
linical practice of seeking a second opinion in unusual or complex
ases. However, the quantification and communication of uncertainty
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are not routinely addressed in the current literature, yet they are crucial
in healthcare applications [3].

Another important topic is multi-label classification, where multiple
nonexclusive labels may be assigned to each instance, as opposed to
multi-class or binary classification where a single label is assigned
to each instance. The applications of multi-label include many real
world problems such as text classification, music information retrieval,
image classification, and time series analysis problems (e.g. ECG clas-
sification). Although the applications are vast, the multi-label studies
that include UQ in their analysis are mainly associated with image
recognition [4] or text classification [5]. Still, even in the mentioned
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Fig. 1. Workflow for a clinical decision support system (CDSS) that includes uncer-
tainty quantification techniques. The CDSS generates a prediction or diagnosis and
estimates the associated uncertainty. The incorporation of UQ allows clinicians to make
more informed decisions. Rejected predictions are used to retrain the model using an
active learning workflow, improving the overall accuracy and reliability of the CDSS.

applications, UQ for multi-label classification remains underexplored
and uses rudimentary techniques [6].

Previous research in the field of UQ has introduced numerous
techniques, each tailored to specific evaluation tasks. However, the
absence of a standardized approach for assessing uncertainty estimates
has created challenges in comparing and selecting the most suitable
techniques for different applications. With this work, we aim to fill
this gap for automatic diagnosis of ECG. In particular, we establish a
comparison of various UQ methods within a multi-label classification
setting, using ECG analysis as our chosen domain. The motivation for
focusing on ECG classification stems from the availability of large pub-
licly accessible multi-label datasets, which enables us to address both
UQ and multi-label challenges. To assess the robustness of uncertainty
quantification measures, we evaluate the UQ methods on internal,
external, and OOD validation sets. Additionally, we consider the cal-
ibration of uncertainty estimates, which is crucial in evaluating the
reliability of uncertainty estimations. The calibration analysis allows
us to define reliable threshold-based approaches to reject samples with
high uncertainty and facilitating the integration of AI based methods
into clinical practice.

In this sense, besides the comparison of UQ methods, we include in
our work a clinical simulation scenario to assess the benefit of integrat-
ing AI uncertainty estimation methods into the practice of cardiology,
as illustrated in Fig. 1. The system is based on an uncertainty aware
AI model, trained to detect cardiac pathologies based on 12-lead ECG
signals. In addition to the classification of cardiac pathologies, the
model provides its overall confidence in predicting a given sample
which is used to abstain from providing a diagnosis when there is
a large amount of uncertainty. In the case of a prediction with low
uncertainty, an independent confidence score is provided for each
predicted diagnosis. With this ability, additional human expertise can
be sought on those rejected samples that later can be used to retrain
the model, improving its performance capabilities. Continuous training
after a model is deployed is highly important since the environment
continuously changes, and concept drifts are likely to occur. In this
scenario, and due to the cost associated with data labeling, uncertainty
estimation plays an important role in selecting the most informative
samples to be labeled.
2

Contributions. We present a comprehensive comparison of UQ
methods in a multi-label setting, focusing on ECG classification scenar-
ios. Our evaluation of UQ methods across various validation scenarios
highlights the importance of external validation and its influence on
performance, the quality of uncertainty estimates, and calibration.
Furthermore, we provide empirical evidence that incorporating UQ
throughout the machine learning pipeline brings advantages in classifi-
cation with a rejection option, dataset shift detection, and active learn-
ing. These contributions resulted from a research path that covered the
following research questions:

• RQ1: Is the performance of internal validation consistently repro-
duced on external validation?

• RQ2: How does external validation affect the calibration of mod-
els’ predictions?

• RQ3: How reliable are uncertainty methods in a multi-label set-
ting under different validation strategies?

• RQ4: What is the impact of using sample rejection on ECG classi-
fication performance?

• RQ5: Are uncertainty measures suitable as selection criteria for
active learning?

The rest of this paper is organized as follows: Section 2.1 introduces
the background for ECG classification, and Section 2.2 presents the
background of uncertainty estimation methods along with relevant
related work. Section 4 provides a description of the methods used,
while Section 5 presents the experimental results. Sections 6 and 7
discuss our findings and present the final remarks and conclusions.

2. Related work

2.1. ECG classification

Over the past decade, the automatic interpretation of ECG records
has been widely investigated [7]. Automated classification pipelines
have been proposed for classifying individual heartbeats [8–10] and
longer intervals containing multiple heartbeats [11–13]. While tradi-
tional ML models have been successful in classifying some medical
conditions [14], Deep Learning (DL) methods have gained increasing
attention in recent years, motivated by their superior performance
without requiring significant effort in feature engineering [15].

Hannun et al. [15] proposed a DNN model using the MIT-BIH
Arrhythmia Database [16], consisting of single-lead ECG signals, for
diagnosing 12 rhythm classes. Their model demonstrated superior per-
formance compared to cardiologists. Ullah et al. [17] introduced a
different approach that transforms 1D ECG signals into spectral images
through Fourier transformation to classify cardiac pathologies using the
same database (MIT-BIH). Although promising results were obtained
using single-lead ECG, in realistic clinical settings, the standard tech-
nique is 12-lead ECG, which provides more valuable information than
a single lead. In this context, He et al. [18] proposed a DL model based
on a residual Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) layers to classify 9 classes using a 12-lead ECG
and the CPSC dataset [19]. Chen et al. [13] also utilized the CPSC
dataset and proposed an artificial neural network that combined CNN,
Recurrent Neural Network (RNN), and attention mechanism layers,
winning first place in the 2018 China Physiological Signal Challenge.
Similarly, using the CPSC dataset, Zhang et al. [20] proposed a CNN
model for classifying the 9 cardiac arrhythmias and compared their
approach with baseline models employing different architectures such
as LSTM, Time Incremental CNN, and Inception. The authors demon-
strated that their approach achieved better results than the tested
baseline architectures. Strodthoff et al. [21], evaluated multiple algo-
rithms (CNN with feed-forward, ResNet, and Inception architectures, as
well as RNN with LSTM and Gated Recurrent Units (GRUs)) using the
PTB-XL dataset [22] to classify 9 ECG classes. The authors found that
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ResNet and Inception-based architectures achieved the best results. In
a recent study, Duong et al. [23] proposed a practical solution based on
graph neural networks and showed that their approach had advantages
in both performance and timing efficiency over other state-of-the-art
baselines when compared using the MIT-BIH and PTB-XL datasets.

Despite the promising performance achieved by DL models, they are
prone to a generalization gap, which refers to the difference between
a model’s performance on training data and its performance on unseen
data drawn from the same distribution. DL models often fail to perform
adequately on external test sets sampled from different distributions
(cf. the concept of external validation [24] or out-of-distribution valida-
tion [25]). In this context, Zhu et al. [26] conducted a more extensive
study in which they trained a CNN model capable of diagnosing 20
cardiac abnormalities on a private dataset and tested it on a public ex-
ternal dataset. The authors demonstrated the generalization capabilities
of their model and showed that it outperformed trained physicians in
ECG interpretation. In the study of Kent et al. [27], instead of testing
the generalization capabilities using different datasets, the authors
explored the generalization of DL models by testing different sampling
frequencies and durations from the PTB-XL dataset. They concluded
that the models were robust to changes in sampling frequency but not
in duration. In a recent study, Rawi et al. [28] evaluated the effec-
tiveness of different DL architectures using three independent datasets.
Their results showed that MobileNet and AlexNet models outperformed
the other models (Inception, LeNet, VGG16, and ResNet50). However,
they did not perform external validation.

2.2. Uncertainty estimation methods

Uncertainty is classified in different ways by different research com-
munities. However, in the ML and statistics literature, one usually dis-
tinguishes between two fundamental sources and types of uncertainty,
namely aleatoric and epistemic uncertainty [1]. Aleatoric uncertainty
refers to the notion of randomness arising from the data’s complexity,
multi-modality, and noise. Aleatoric uncertainty, also known as data
uncertainty, cannot be reduced or entirely eliminated because it is a
property of the underlying distribution that generated the data rather
than a property of the model. On the other hand, epistemic uncertainty
represents the uncertainty caused by a lack of knowledge of the under-
lying process being modeled, either due to the uncertainty associated
with the model or the lack of data. In principle, this uncertainty can
be reduced by providing more knowledge, i.e., extending the training
data, better modeling, or better data analysis.

While different types of uncertainty should be measured differently,
this distinction in ML has only recently gained attention [1]. For
instance, the ability to separately quantify uncertainty has been utilized
in active learning as a selection criterion for uncertainty sampling
[29–31]. In the medical domain, this distinction was emphasized
in the work of Senge et al. [32], where the authors demonstrated
the usefulness of their approach in the context of medical decision-
making. Various approaches for uncertainty quantification have been
applied in different medical applications, such as skin cancer detection
[33,34], COVID-19 detection [35,36], cancer image detection [37,38],
and others.

In recent years, numerous approaches have been developed to
equip DNN with the ability to incorporate uncertainty, due to neural
networks’ limited awareness of their own confidence [39–42]. Bayesian
Neural Network (BNN) have been extensively used and depending on
how the posterior is inferred, they can be classified as Variational
Inference (VI), sampling approaches or Laplace approximation [43]. The
Bayes-by-Backprop [44] is an example of a widely used algorithm in the
variational inference literature. Another important example is Monte
Carlo (MC) Dropout, introduced by Gal et al. [45], which approximates
the posterior with a product of Bernoulli distributions. This method
has been applied in various studies in literature [46–48], and different
3

extensions have been built on top of it, such as the drop connect
method [49], which has been found to be more robust in uncertainty
representation [43,50]. On the other hand, sampling approaches has the
advantage of not being restricted by the type of distribution and have
been studied in the literature, including popular algorithms such as
particle filtering, rejection sampling, importance sampling, and Markov
Chain Monte Carlo sampling (MCMC) [51,52]. Laplace approximation
was first proposed by Denker, and LeCun [53] and can be applied as a
post-hoc method to already trained neural networks. In the literature,
recent studies include the work from Kristiadi et al. [54] or Deng
et al. [55].

Instead of stochastic approximations, another common approach
to approximate Bayesian methods is through ensembles [56,57]. In
particular, one popular approach was introduced by Lakshminarayanan
et al. [56] where the same network is trained 𝑀 independently times
using different parameter initialization on the whole dataset. Osband
et al. [58] and He et al. [59] proposed to train an ensemble by
perturbing the loss function of each model with a random but fixed
additive prior function. Dwaracherla et al. [60]took advantage of both
prior functions and bootstrapping to improve uncertainty estimations.

Single deterministic methods are also quite common in the literature
of deep learning [61–64], where a single forward pass generates uncer-
tainty estimation either derived by using additional (external) meth-
ods or directly predicted by the network. In the works from Malinin
et al. [61] or Sensoy et al. [65], the proposed neural networks were
explicitly modeled and trained to quantify both aleatoric and epistemic
uncertainties. In these approaches, along with the uncertainty quantifi-
cation, the training procedure and network’s predictions are affected.
On the other hand, some studies argue that uncertainty quantification
and prediction tasks should be two separate tasks for uncertainty
quantification to be unbiased [66]. In this context, Raghu et al. [66]
and Ramalho et al. [67], trained one neural network for the prediction
task and another for the uncertainty estimation. Other approaches
include the use of gradient metrics for uncertainty quantification for
OOD detection [68]. Additionally, some more popular approaches in
this area include isolation forests [69], auto-encoders [70], and local
outlier factor [71]. More in the realm of anomaly or outlier detection,
we highlight a few representatives works, such as the Maximum Logit
score [72], Mahalanobis distance-based confidence score [73] and
energy [74] or joint energy for multi-label setting [6]. Although these
approaches are not developed to quantify uncertainty explicitly, they
can be seen as a measure of knowledge uncertainty.

Recent works have provided comprehensive reviews on the topic of
uncertainty quantification in the context of deep learning, such as the
review of Abdar et al. [75] and the Gawlikowski et al. [43].

2.3. ECG classification under uncertainty quantification

Prior studies in ECG classification have often overlooked the evalua-
tion and management of uncertainty associated with their estimations,
focusing primarily on classification performance without considering
practical implementation in real-world applications. Hong et al. con-
ducted a systematic review of the PhysioNet/CinC Challenge 2020 [76],
highlighting the importance of handling unknown classes and inter-
pretability for real-world implementation. Surprisingly, none of the top
10 methods in the Challenge 2020 addressed these critical topics.

While research on UQ for ECG classification remains limited, some
recent works have addressed this area, and are summarized in Table 1.
Belen et al. [77] employed a variational encoder network to classify
atrial fibrillation using the MITBIH Atrial Fibrillation database. Their
method used KL Divergence as a loss function and estimated uncer-
tainty by running the input through the network multiple times and
computing the standard deviation of softmax probabilities. Vranken
et al. [78] explored various uncertainty estimation methods, including
Monte Carlo dropout, variational inference, ensemble, and snapshot
ensemble. They evaluated the quality of uncertainty estimations using

rank-based metrics, calibration evaluation, and OOD detection. Their
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Table 1
A summary of related studies on ECG classification using uncertainty quantification measures.

Study Data Labels External
Validation

OOD Calibration

Belen et al. [77] (2020) MITBIH AF Single No No No

Vranken et al. [78] (2021) UMCU-Triage
UMCU-Diagnose
CPSC2018

Single No Yes Yes

Asseri et al. [79] (2021) MITBIH ARR
INCART
BIDMC

Single No No Yes

Elul et al. [80] (2021) MITBIH NSR
Long-Term AF
MITBIH ARR
MITBIH AF
THEW
CinC 2017

Multi Yes Yes No

Zhang et al. [81] (2022) CPSC2018 Single No No No

Jahmunah et al. [82] (2023) PTB-XL Single No No No

Park et al. [83] (2023) MITBIH ARR
CinC 2017
INCART

Single No No No
results showed that variational inference with Bayesian decomposi-
tion and ensemble with auxiliary output outperformed other methods
in terms of ranking and calibration across datasets and in both in-
distribution and OOD settings. Aseeri et al. [79] developed a gated
recurrent neural network trained using three types of datasets and
estimated uncertainty using Monte Carlo dropout and deep ensem-
ble methods. They also evaluated the uncertainty calibration of these
methods and demonstrated that their proposed network achieved com-
parable results with state-of-the-art methods while having a strong
capability of rejecting low-confidence examples. Elul et al. [80] pre-
sented a comprehensive study on integrating AI into clinical practice,
emphasizing the importance of uncertainty estimation for handling
OOD examples or multilabel diagnosis. They developed a DL model
consisting of 10 binary classifiers for each trained ECG pathology,
enabling the model to output any combination of known rhythms and
handle unknown classes when the model outputs a negative prediction
for every binary class. They employed the Monte Carlo dropout method
to assess the confidence in predictions. Zhang et al. [81] employed
a Bayesian neural network with Monte Carlo dropout for arrhythmia
classification with a rejection option. They computed total uncertainty
using an entropy-based decomposition of data and model uncertainty
and explored different uncertainty thresholds to improve classifica-
tion performance by rejecting high uncertainty samples. Jahmunah
et al. [82] trained a Dirichlet DenseNet with reverse KL divergence
to compute predictive entropy for model uncertainty in a multi-class
classification task. The authors argue that their approach is faster
and computationally lightweight compared to previous uncertainty
quantification methods. Additionally, they included noisy ECG in their
analysis. Recently, Park et al. [83] proposed a self-attention-based
LSTM-FCN deep learning architecture using a deep ensemble approach
to quantify uncertainty. Their results achieved state-of-the-art perfor-
mance, showing that epistemic uncertainty is reliable for classifying the
six arrhythmia types.

Even though some multi-label datasets were used in the previously
presented studies, all of them employed a single-label classification
approach, except for Elul et al. [80]. To the best of our knowledge,
Elul et al.’s work [80] is the only one that applied an UQ method
under the multi-label approach in ECG classification. While this study
offers a comprehensive interpretation of the importance of handling
a mixture of classes and demonstrates that their model is prepared
to deal with the multi-label setting, no performance evaluation was
4

conducted on multi-label datasets, making it difficult to thoroughly
assess the performance of their model in such settings. Additionally,
in this study, only the Monte Carlo Dropout method was used as the
uncertainty quantification method.

Additionally, some studies focus on calibration metrics, others on
OOD detection, and a few on external validation. However, we argue
that a good uncertainty quantification measure should comply with
all three validation procedures. In this sense, we focus our work on
multi-label datasets, evaluating not only internal validation sets but
also external sets, OOD, and calibration.

3. Background

As standard notation to introduce uncertainty estimation methods
throughout this section, let us consider a standard setting of supervised
learning with a finite training dataset, 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖 ⊂  ×  ,
with 𝑁 samples, composed of pairs of input instances 𝑥 and outcomes
𝑦, where  is an instance space and  the set of outcomes that
can be associated with an instance. Suppose a hypothesis space 
of probabilistic predictors, where a hypothesis ℎ maps instances 𝑥 to
probability distributions on outcomes 𝑦. Note that we use the notation
of hypothesis to make the interpretation more general. Nonetheless, in
the case of neural networks, a hypothesis ℎ can be interpreted by a
weight vector 𝑤.

In a classification task, the most straightforward way of quantifying
uncertainty is by using the output of the classification task that repre-
sents the class probabilities. Therefore, a simple uncertainty measure
given by the confidence in a prediction 𝑥 can be obtained by the
probability of the predicted class, or maximum probability, by Eq. (1),
as used in studies such as [56,84,85].

𝑝(𝑦̂|𝑥) = max
𝑦∈

𝑝(𝑦|𝑥) (1)

Additionally, the entropy of the predictive posterior modeled by the
(Shannon) entropy, is the most well-known measure of uncertainty of
a single probability distribution [1]. For discrete class labels is given
by Eq. (2):

𝐻[𝑝(𝑦|𝑥)] = −
∑

𝑦∈
𝑝(𝑦|𝑥) log2 𝑝(𝑦|𝑥) (2)

Both maximum probability and entropy of the predictive posterior
distribution can be seen as measures of the total uncertainty in predic-

tions [61]. These measures of uncertainty for probability distributions
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Table 2
Overview of multi-label datasets statistics.

Class CPSC G12EC PTB-XL Total

AF 1,220 568 1,514 3,302
I-AVB 722 766 795 2,283
LBBB 235 231 536 1,002
NSR 918 1,735 18,058 20,711
PAC 614 636 398 1,648
RBBB 1,857 554 542 2,953
STD 868 38 1,009 1,915
STE 220 134 28 382
VEB 699 41 1,153 1,893

# Labels 7,353 4,703 24,033 36,089

# Recordings 6,871 4,301 20,214 31,386

primarily capture the shape of the distribution and, hence, are mostly
concerned with the aleatoric part of the overall uncertainty.

For Bayesian approaches, the predictive posterior distribution is
approximated by a finite set of Monte Carlo samples or by the indi-
vidual ensemble members’ predictions. In both methods, the predictive
variance of the 𝑀 predictions is a measure of epistemic uncertainty
used in various studies [77,78,80] and given by Eq. (3).

𝜎[𝑝(𝑦|𝑥)]2 = 1
𝑀

𝑀
∑

𝑖=1

(

𝑝(𝑦|ℎ𝑖, 𝑥) − 𝑝̄
)2 (3)

where 𝑝̄ is defined as 𝑝̄ = 1
𝑀

∑𝑀
𝑖=1 𝑝(𝑦|ℎ𝑖, 𝑥)

Additionally, instead of considering the probability variance, one
can consider the variation ratios that measure the variability of predic-
tions by computing the fraction of samples with the correct output [86,
87]. This heuristic is a measure of the dispersion of the predictions
around its mode. For a given instance 𝑥, with 𝑀 output predictions,
the variation ratios is calculated as follows,

𝑣𝑟(𝑥) = 1 −
∑𝑀

𝑖=1J𝑦̂𝑖 = 𝑦̂K
𝑀

(4)

where 𝑦̂ corresponds to the sampled majority class obtained and J𝑦̂𝑖 =
𝑦̂K is an indicator function that takes the value 1 if the expression is
rue, and to 0 otherwise.

Furthermore, an explicit attempt at measuring and separating alea-
oric and epistemic uncertainty was made by Depeweg et al. [88]
ho proposed an approach to quantify and separate uncertainties with

lassical information-theoretic measures of entropy.
In more detail, the total uncertainty is measured in terms of the

ntropy of the predictive posterior distribution approximated by:

𝑡(𝑥) ∶= −
∑

𝑦∈

(

1
𝑀

𝑀
∑

𝑖=1
𝑝(𝑦|ℎ𝑖, 𝑥)

)

log2

(

1
𝑀

𝑀
∑

𝑖=1
𝑝(𝑦|ℎ𝑖, 𝑥)

)

(5)

The aleatoric uncertainty is measured considering the average en-
ropy of each individual prediction in terms of the expectation over
he entropies of distributions. The idea is that by fixing a hypothesis
, the epistemic uncertainty is essentially removed. Its approximation is
iven by Eq. (6):

𝑎(𝑥) ∶= − 1
𝑀

𝑀
∑

𝑖=1

∑

𝑦∈
𝑝(𝑦|ℎ𝑖, 𝑥) log2 𝑝(𝑦|ℎ𝑖, 𝑥) (6)

Then, epistemic uncertainty is measured in terms of mutual informa-
tion between hypotheses and outcomes and can be expressed as the
difference between the total uncertainty, captured by the entropy of
expected distribution, and the expected data uncertainty, captured by
expected entropy of each individual prediction [61].

𝑢𝑒(𝑥) ∶= 𝑢𝑡(𝑥) − 𝑢𝑎(𝑥) (7)

Thus, epistemic uncertainty is high if the distribution 𝑝(𝑦|ℎ) varies a
lot for different hypotheses ℎ with high probability but leading to quite
different predictions. This approach was used in different studies, such
5

as [81,89,90].
4. Methods

We conducted an analysis of various uncertainty quantification
methods, following the steps illustrated in Fig. 2 and dividing this
section accordingly. We begin by discussing the datasets employed and
the considerations for data preprocessing. Subsequently, we provide
details on the neural network architecture and its variations for un-
certainty estimation. The section concludes with an explanation of the
validation, which involved three distinct sets (internal, external, and
OOD) to assess the methods, the implemented evaluation measures,
and particular applications of uncertainty methods (classification with
rejection option, dataset shift, and active learning).

4.1. Datasets and preprocessing

For dataset selection, our primary criterion was to choose datasets
that included 12-lead ECG data. The PhysioNet/CinC Challenge 2020
provided 12-lead multi-label ECG datasets from four different data
sources. However, due to our validation procedure, which involved
internal and external validation using different data sources, we could
not use the standard 27 classes (out of 111 classes) selected by Phy-
sioNet/CinC Challenge 2020, as not all classes were present in every
dataset.

As a result, we decided to utilize only the classes that were common
among the datasets. This approach yielded nine classes (NSR, AF, I-
AVB, LBBB, RBBB, PAC, VEB, STD, and STE) that were represented
across the entire CPSC dataset, enabling us to conduct consistent val-
idation across the different datasets. Furthermore, these nine classes
are available in three different data sources. The first source is the
China Physiological Signal Challenge 2018 (CPSC) [19], the second
is the Physikalisch Technische Bundesanstalt XL (PTB-XL) [22] from
Brunswick, Germany, and the third is the Georgia 12-lead ECG Chal-
lenge (G12EC) [91] Database, Emory University, Atlanta, Georgia, USA.
The three datasets contain data from the 12-leads ECG signals, de-
mographic information (age and gender), and multi-label annotations.
The annotations between databases were previously standardized by
PhysioNet/CinC Challenge 2020. However, following the evaluation
procedure of PhysioNet/CinC Challenge 2020, we relabeled the class
CRBBB in G12EC and PTB-XL dataset to RBBB.

For the ECG signals preprocessing, due to the different character-
istics of each dataset, the preprocessing included a resampling mech-
anism to 250 Hz and a truncation of 10 s long. For ECG signals with
more than 10 s, the 10 s in the center of the window were selected.
The choice of using the 10 s in the window center was done due to
the poor signal quality at the beginning and end of some ECG signals.
Additionally, each ECG signal was filtered using a 2nd order band-
pass Butterworth filter between 1 and 40 Hz and normalized through
a z-normalization over the complete dataset.

Table 2 presents a summary of ECG data used per class and dataset.
The Table contains information about the number of labels and record-
ings per dataset.

4.2. Uncertainty methods

As previously mentioned, the main objective of this work is not to
explore better model architectures or improve the accuracy of already
developed methods. Instead, we aim to understand the potential use
of uncertainty measures as a safety mechanism in a practical ECG
classification domain. Therefore, as baseline architecture, we decided
to use the proposed neural network architecture, which was ranked
first in the China Physiological Signal Challenge [13]. The model is a
combined architecture of five CNN blocks, followed by a bidirectional
gated recurrent unit (GRU), an attention layer, and a finally dense
layer. For more details, please refer to Chen et al. [13]. The training
was done using the Adam optimizer with a learning rate of 0.001. To
counteract class imbalance in the data, the binary focal loss was used
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Fig. 2. Overview of the methodology used for uncertainty methods evaluation. Data is based on 12-lead ECG signals, and uncertainty methods are divided into three main
categories: Single, Stochastic, and Ensemble. Validation is done using three test sets (internal, external, and OOD) evaluated in terms of performance, calibration, and uncertainty
measures, with application on classification with rejection option, dataset shift, and active learning.
as the loss function with the focusing parameter set to 1. The training
was performed for 100 epochs using mini-batches of size 64. The best
model, which was the one with the smallest loss on the validation set,
was selected as the baseline for the uncertainty methods.

For stochastic methods, we implemented both MC Dropout and
Laplace approximation to their easy implementation with slight changes
in training logic. For MC Dropout, the same trained network was used
without retraining since the baseline architecture contains dropout lay-
ers. In the testing, dropout layers were kept active, and 15 MC samples
were used. For the Laplace approximation, the same trained network
was also used since this method can be applied post-hoc to trained
neural networks that use an exponential family loss function and
piece-wise linear activation functions [4]. Therefore, to approximate
the intractable posterior distribution over the parameters of neural
networks, we used the implementation of Rewicki et al. [4] developed
under the multi-label scenario and publicly available.1 Similar to MC
Dropout, 15 samples were used for testing.

For ensemble methods, the popular approach introduced by Lak-
shminarayanan et al. [56] where the same network is trained 𝑀
independently times using different parameter initialization was se-
lected. We will refer to this approach as DeepEnsemble. Additionally,

1 https://github.com/ferewi/tf-laplace
6

an ensemble based on bootstrapping approach was also trained. Both
approaches are composed of 15 individual ensemble members.

Regarding the employed measures to quantify aleatoric and/or epis-
temic uncertainty, we used different measures depending on whether a
single network or a Bayesian approximation was used. For single meth-
ods, aleatoric uncertainty estimation was calculated based on both max-
imum probability and (Shannon) entropy. For epistemic uncertainty,
we selected baseline measures developed to improve OOD uncertainty
estimation, namely Joint Energy [6], Maximum Logit [72], Isolation
Forest [69], Local Outlier Factor [71], and Mahalanobis distance-based
confidence score [73]. For Bayesian approximations, we employed
maximum probability, predictive variance, variation ratios, and the
decomposition of entropy-based measures into aleatoric and epistemic
uncertainty. Fig. 3 presents a summary of the uncertainty estimation
methods and corresponding uncertainty measures applied on top of it.

It is important to note that we considered independence between
labels to calculate uncertainty measures that are directly dependent
on class probabilities. For instance, entropy measures are applied in
a binary setting scenario for each label, which results in an uncertainty
measure per label. To consider the joint uncertainty across labels, we
summed the measure of label uncertainties.

https://github.com/ferewi/tf-laplace
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Fig. 3. Uncertainty methods and corresponding uncertainty measures selected for this
analysis. The acronyms used throughout this work are represented in bold.

4.3. Validation approach

4.3.1. Training, validation, and test sets
To evaluate the generalization capabilities of the trained models,

we conducted assessments on three different test sets, focusing on clas-
sification performance, calibration, and uncertainty measures’ quality.
For model training and internal validation, we used the CPSC dataset,
employing an 80–10%–10% train–validation–test split. To ensure an
equal distribution of class labels, gender, and age information in each
set, we used these criteria as splitting factors. For external validation
sets, we used G12EC and PTB-XL datasets.

Additionally, two OOD datasets were also considered for uncer-
tainty quantification evaluation. Since we are not using all datasets’
available classes for models’ training, we selected a group of unknown
classes as OOD. For this purpose, the hierarchical organization in terms
of coarse superclasses and subclasses for the diagnostic labels provided
by the PTB-XL dataset [22] was used. To reduce the similarity between
the diagnostic labels used, we selected the Myocardial Infraction (MI)
superclass and the Hypertrophy (HYP) superclass as OOD datasets.
As the heterogeneous mixture of known and unknown classes can be
presented in this set of labels, we removed all records that contain
known classes mixed with these sets of unknown classes to ensure that
OOD dataset contained only unknown classes.

Thus, the following test sets were used for evaluation purposes:

• IN (CPSC): Test set used for internal validation, i.e., an indepen-
dent test from the same data source as the training set. This set
contains a total of 687 recordings with the same proportion of
class labels identified in Table 2;

• EXT (G12EC): The entire dataset from the G12EC dataset was
used for external validation, containing a total of 4301 recordings;

• EXT (PTB-XL): The entire dataset from PTB-XL dataset was used
for external validation, containing a total of 20,214 recordings;

• OOD-MI: OOD dataset containing IMI, AMI, LMI, and PMI diag-
nostic labels from PTB-XL dataset, totaling 2214 records.

• OOD-HYP: OOD dataset containing LVH, LAO/LAE, RVH, RAO/
RAE, and SEHYP diagnostic labels from the PTB-XL dataset, total-
ing 1553 records.

The provided abbreviations will refer to each test set during the
7

experimental analysis.
4.3.2. Evaluation measures
The empirical evaluation of methods for quantifying uncertainty

is a non-trivial problem due to the lack of ground truth uncertainty
information. A common approach for indirectly evaluating the pre-
dicted uncertainty measures is by accessing their usefulness to improve
classification performance. In this sense, ranking-based methods can
be used to evaluate the uncertainty measures’ capability of ordering
predictions based on their own uncertainty estimation. The idea is
to evaluate how the classification performance varies as a function
of the percentage of rejections. If a measure is able to quantify its
own uncertainty well, the classification performance should improve
with an increasing percentage of rejections. This approach can only
be directly applied to compare different uncertainty measures using
the same predictive model since the classification performance curves
depend not only on the uncertainty ordering but also on the predictive
model performance. Although the applied uncertainty methods are
based on the same model architecture, due to the specific details of
each approach, the classification performance slightly varies between
methods. Thus, for a fair comparison between uncertainty measures,
we will use the Area Under the Confidence-Oracle (AUCO) error [92]
that computes the area between the theoretically perfect ordering and
the ordering made by each uncertainty measure.

The oracle confidence curve represents the best possible ordering
of predictions by their confidence, with the true error imposing the
ordering. The AUCO value is calculated as the area under the curve
representing the difference between the given uncertainty estimation
and the oracle confidence curve. Smaller values of AUCO indicate that
the given uncertainty estimation is closer to the oracle confidence curve
and therefore is a better predictor of uncertainty. The formula of AUCO
is as follows:

𝐴𝑈𝐶𝑂 = ∫

1

0

(

𝑐𝑜𝑛𝑓 𝑢
𝑟 − 𝑐𝑜𝑛𝑓 𝑜

𝑟
)

𝑑𝑟 (8)

where 𝑐𝑜𝑛𝑓 𝑢 is the confidence curve for a given uncertainty estimation,
𝑐𝑜𝑛𝑓 𝑜 is the oracle confidence curve and 𝑟 is the fraction of rejections.
Thus, the integration is performed over the range of confidence values.

For the special case of OOD datasets, we used the Area Under the
Receiver Operating Characteristic (AUROC) curve metric, which is com-
monly applied in most recent studies and is a threshold-independent
performance method for evaluating OOD detection methods. The AU-
ROC can be interpreted as the probability that a positive example is
assigned a higher detection score than a negative example. Conse-
quently, a random positive example detector corresponds to a 50%
AUROC, and a perfect detector corresponds to an AUROC score of
100% [84].

In our study, we also employed threshold-dependent measures,
adopting the approach used in recent studies for evaluating uncertainty
estimations based on the concept of binary confusion matrix [35,93].
In this context, predictions are classified as correct or incorrect, and,
depending on a threshold, predictions are also classified as certain
or uncertain. As a result, four combinations are identified: (i) True
Certainty (TC): correct and certain; (ii) True Uncertainty (TU): incor-
rect and uncertain; (iii) False Uncertainty (FU): correct and uncertain;
and (iv) False Certainty (FC): incorrect and certain. Based on these
combinations, we calculated Uncertainty Accuracy (UAcc), Uncertainty
Sensitivity (USens), Uncertainty Specificity (USpec), and Uncertainty
Precision (UPrec) using the following formulas:

𝑈𝐴𝑐𝑐 = 𝑇𝑈 + 𝑇𝐶
𝑇𝑈 + 𝑇𝐶 + 𝐹𝑈 + 𝐹𝐶

(9)

𝑈𝑆𝑒𝑛 = 𝑇𝑈
𝑇𝑈 + 𝐹𝐶

(10)

𝑈𝑆𝑝𝑒𝑐 = 𝑇𝐶
𝑇𝐶 + 𝐹𝑈

(11)

𝑈𝑃𝑟𝑒𝑐 = 𝑇𝑈 (12)

𝑇𝑈 + 𝐹𝑈
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Table 3
Global performance of uncertainty methods in internal (IN) and external (EXT) validation sets. The highest scores are represented in bold.

Model IN (CPSC) EXT (G12EC) EXT (PTB-XL)

AUROC F1-Score AUROC F1-Score AUROC F1-Score

Single Network 0.896 0.826 0.830 0.715 0.734 0.567
BNN-Dropout 0.890 0.833 0.811 0.699 0.700 0.516
BNN-Laplace 0.896 0.830 0.830 0.715 0.735 0.568
DeepEnsemble 0.903 0.856 0.831 0.736 0.724 0.559
Bootstrap 0.903 0.851 0.821 0.718 0.717 0.548
Fig. 4. Binary multi-class multi-label confusion matrices for DeepEnsemble method in internal (IN) and external (EXT) validation sets.
The ranking-based methods are an essential measure to compare
ifferent uncertainty estimations. However, they do not consider the ac-
ual values expressed by uncertainty. In this sense, calibration measures
an be used to assess if observed empirical frequencies are consistent
ith outputting probability distributions. Thus, to measure calibration,
reliability diagram and the Expected Calibration Error (ECE) were

sed as calibration measures. Reliability diagrams depict accuracy on
he 𝑦-axis and average confidence on the 𝑥-axis. A perfectly calibrated

model outputs probabilities that match up with the accuracy, yielding a
diagonal line, where confidence is equal to accuracy. Additionally, the
ECE was computed to measure the difference in expectation between
confidence and accuracy.

4.3.3. Applications
For the classification with rejection option, the uncertainty mea-

sures were used as a measure for rejection. The rejection threshold was
obtained using the training data, where a given uncertainty training
percentile is selected to reject samples on test data. Thus, for each test
sample, the uncertainty is computed and compared with the defined
threshold. If the obtained uncertainty value is greater than the thresh-
old the sample is rejected and no prediction is made. On the other hand,
if the uncertainty is lower than the threshold the model accepts the
prediction, and a confidence level is also returned.

For dataset shift validation, the statistical divergence measure,
Wasserstein distance [94], was applied to measure dataset similarity
between internal and external datasets. The Wasserstein-1 version of
Wasserstein distance [94] was used and is given by:

𝑊1(𝑋, 𝑌 ) = inf
𝜋∈𝛤 (𝑋,𝑌 )∫R×R

|𝑥 − 𝑦|d𝜋(𝑥, 𝑦), (13)

where 𝛤 (𝑋, 𝑌 ) is the set of distributions whose marginals are 𝑋 and
on the first and second factors, respectively. The variables 𝑥 and 𝑦

re samples from each distribution 𝜋(𝑥, 𝑦) from the set. Intuitively, the
istance is given by the optimal cost of moving a distribution until it
verlaps with the other. In our experiments, 𝑥 and 𝑦 are the feature
epresentations of subsets of the train and test data; thus, 𝑊 represents
8

1

the cost of mapping the distribution of 𝑥 into the distribution of 𝑦 (or
vice versa). The similarity measure was computed on the latent feature
space, i.e., the embeddings extracted from the neural network, between
the training set and each of the test sets.

For active learning validation, the samples are sorted based on
their uncertainty values, and the highest 𝑛 uncertain samples are used
for retraining the model. This process is performed using different
uncertainty sources and compared to random sampling. The evaluation
is based on the improvement of classification performance metrics.

5. Experimental results

The experimental results are organized to address the five research
questions previously introduced.

5.1. External validation

RQ1: Is the performance of internal validation consistently repro-
duced on external validation?

Although all the uncertainty methods share the same deep learning
architecture, differences in training or testing procedures between them
might affect not only the uncertainty estimation but also the predictive
performance. To properly assess these uncertainty methods, we first
present the classification performance for each method in internal and
external validation.

Table 3 compares the AUROC and F1-score for each method during
internal and external validation. The comparison indicates that the
DeepEnsemble method performs slightly better than the other meth-
ods. However, the performance achieved within the same test set is
similar across all methods. Table 3 also reveals a significant drop
in performance during external validation, particularly in the PTB-XL
dataset.

To analyze the class level performance between datasets, a binary
multi-class, multi-label confusion matrix for each dataset was computed
using the implementation provided by the PhysioNet/CinC Challenge
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Fig. 5. Class performance drop as a function of Wasserstein distance between training
nd each represented test set. Each point is annotated with the class name abbreviation
nd the color represents the dataset. The linear regression is obtained with all datasets
nd represented in gray. The Pearson correlation coefficient (𝑟) and 𝑝-value (𝑝) for

testing non-correlation are annotated in the graph area.

2020. As all methods demonstrated comparable performance measures,
we only present the confusion matrices for the DeepEnsemble method
in Fig. 4. These confusion matrices reveal that in both external datasets,
STE and STD diagnoses are accurately recognized. In contrast, the Bun-
dle Branch Blocks (LBBB and RBBB) maintain consistent performance
across both internal and external datasets.

The correlation between data similarity and generalization proper-
ties across datasets has been previously identified as a strong indicator
that the datasets originate from different distributions. Consequently,
information about similarity can offer valuable insights into under-
standing why a machine learning model exhibits poor performance on
an external dataset [95].

Fig. 5 illustrates the correlation between the performance drop
and Wasserstein distance using the three datasets. The worst class
performances observed in confusion matrices (Fig. 4) also correspond
to those with higher Wasserstein distances. The calculated Pearson
correlation coefficient (𝑟 = −0.92) suggests that there is a potential shift
(label-dependent) in external datasets, and the Wasserstein distance
proves to be useful in detecting it. In addition to the STE and STD
classes, the NSR (Normal Sinus Rhythm) class from the PTB-XL dataset
also exhibits a higher distance and a significant drop when compared
to the same class in the CPSC and G12EC datasets.

Based on this observation, we carried out a thorough examination
of the NSR class label and discovered a significant difference in NSR
annotations across the three datasets. To align with the annotation of
the training dataset, only a subset of the NSR class from the PTB-XL
dataset will be utilized for the remainder of the analysis. We refer to
this subset as PTB-XL*. A comprehensive explanation and the results
obtained can be found in Appendix A.

Table 4 presents the performance results for various combinations
of internal and external sets and Fig. 6 the correlation between Wasser-
stein distance and global model performance of different combina-
tions. All models followed the same training procedure, as detailed
in Section 4.2. Independent validation sets were utilized for internal
validation, either using the publicly available data partition or an
80–10%–10% train–val–test split, with class labels, gender, and age
serving as splitting criteria. Regardless of the combination, internal
9

validation sets consistently achieved a performance higher than 0.80,
Table 4
Performance comparison of different combinations of in internal (IN) and external (EXT)
validation sets.

CPSC G12EC PTB-XL*

Validation F1-score Validation F1-score Validation F1-score

IN 0.856 EXT 0.736 EXT 0.699
IN 0.807 EXT 0.741 IN 0.891
IN 0.849 IN 0.818 EXT 0.728
EXT 0.722 IN 0.832 IN 0.885
IN 0.826 IN 0.815 IN 0.884

Table 5
Expected Calibration Error (ECE) for internal (IN) and external (EXT) validation sets.
The lowest errors are represented in bold.

Model IN EXT EXT
(CPSC) (G12EC) (PTB-XL*)

Single Network 0.047 0.121 0.115
BNN-Dropout 0.057 0.043 0.040
BNN-Laplace 0.048 0.120 0.115
DeepEnsemble 0.026 0.034 0.045
Bootstrap 0.045 0.048 0.062

*Subset of PTB-XL with only Normal class.

while external validation sets showed a performance below 0.75. Nev-
ertheless, incorporating additional datasets for training led to enhanced
performance on external datasets.

5.2. Calibration

RQ2: How does external validation affect the calibration of mod-
els’ predictions?

Table 5 shows the ECEs for all uncertainty methods and datasets. Re-
liability diagrams are shown in Fig. 7. For both measures, 10 bins were
used. All uncertainty methods achieved equal or lower ECEs compared
to the Single Network, with BNN-Dropout on the internal validation
being the only exception. The DeepEnsemble model obtained the lowest
ECE in CPSC and G12EC datasets, while BNN-Dropout obtained the
lowest ECE in PTB-XL. BNN-Laplace was the least effective uncertainty
method, exhibiting similar results to the Single Network.

From the reliability diagrams, we can observe that the Single Net-
work and BNN-Laplace exhibit similar behavior, with their estimates
being overconfident across all datasets. Both ensemble methods display
similar behavior in all datasets, with the DeepEnsemble appearing to be
more robust across the various datasets.

5.3. Uncertainty evaluation

RQ3: How reliable are uncertainty methods in a multi-label setting
under different validation strategies?

As an initial illustrative visualization, we present the overall uncer-
tainty of internal, external, and OOD datasets using the DeepEnsemble
method in Fig. 8. The uncertainty values were normalized to their
maximum theoretical values, ensuring that all uncertainty measures are
bounded within the range of 0 and 1. Noticeably, all measures con-
sistently increase the overall uncertainty, regardless of the uncertainty
measure employed. Ideally, we would like the increase in uncertainty
values to coincide with the reduction in classification performance ob-
served earlier. In other words, we would expect the uncertainty values
to remain as consistent as possible under different external validations
(as well as on OOD data) to indicate that models are uncertain when
predicting a given input.

In addition to assessing the uncertainty between datasets, it is also
possible to statistically evaluate the relationship between the distribu-
tions of uncertainty values for correctly and incorrectly classified sam-

ples. In a multi-label setting, we can consider two scenarios: (1) a label
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Fig. 6. Correlation between Wasserstein distance and F1-score using different datasets combinations for internal and external datasets. The Pearson correlation coefficient (𝑟) and
𝑝-value (𝑝) for testing non-correlation are annotated in the graph area.
Fig. 7. Reliability diagrams for internal (IN) and external (EXT) validation sets. The diagonal dashed line represents the perfect calibration.
ependence scenario, in which the entire label combination is treated
s either correct or incorrect, and (2) a label independence scenario,
n which each class is addressed as a separate binary classification
roblem. Fig. 9 illustrates the distributions of these two scenarios,
sing DeepEnsemble as an example. The uncertainty distributions for
he label independence scenario display a more pronounced distinction
etween correctly and incorrectly classified samples compared to the
abel dependence scenario. When applying the non-parametric Mann–

hitney U statistical test [96] for unpaired groups, both approaches
ere found to be statistically significant at a .05 significance level (even
ith Benjamini–Hochberg p-values correction [97]). In addition to
valuating the practical significance using Cohen’s d effect size [98], we
lso computed the effect sizes for each method. The label independence
pproach was found to yield larger effect sizes. The complete results
an be found in the Appendix B.

To enable a fair comparison among all uncertainty methods and
heir corresponding measures, the AUCO metric was calculated for
oth internal and external test sets. Smaller AUCO values indicate
etter performance. Fig. 10 presents the results, with the same color
epresenting the same uncertainty measure across different methods.
n addition to the differences in performance between internal and
xternal validation, Fig. 10 also clearly illustrates that uncertainty
stimation measures are affected in external validation. In general,
nsemble-based uncertainty measures appear more robust in preserving
he correct uncertainty ordering compared to other methods, and epis-
emic uncertainty measures outperform aleatoric uncertainty measures
n external validation. In internal validation, maximum probability
𝑝𝑚𝑎𝑥) achieved the lowest AUCO across all methods. This is somewhat
xpected, as the internal dataset exhibits low epistemic uncertainty,
10
unlike the external validation datasets. It is also worth noting that OOD
detection measures (𝐽𝐸, 𝑀𝐿𝑜𝑔𝑖𝑡, 𝐼𝐹 , 𝐿𝑂𝐹 , 𝑀𝑎ℎ𝑎) do not perform as
well as other methods in this rank-based analysis. Although there is
a close relationship between uncertainty estimation and OOD detec-
tion, ordering uncertainty values and detecting OOD are not the same
problem, which might explain the lower performance of these methods.

In regard to OOD detection, the two superclass sets (MI and HYP)
from the PTB-XL dataset, consisting solely of unknown classes, were
employed as OOD samples. The AUROC was calculated with the OOD
samples as positive instances and the internal CPSC test samples as
negative instances. The obtained results are presented in Table 6. In
line with the previous analysis, ensemble methods surpassed other
approaches in terms of AUROC. For the MI set, total uncertainty 𝑢𝑡 (or
entropy 𝐻 for Single methods) achieved the highest AUROC across all
methods. In contrast, for the HYP set, epistemic uncertainty 𝑢𝑒 yielded
higher AUROC values for ensemble methods and BNN-Laplace. As for
the methods specifically designed for OOD detection (JE, IF, LOF), their
performance in distinguishing OOD samples was surprisingly poor.

While the OOD problem typically refers to anomaly and/or outlier
detection, where OOD samples come from entirely different distribu-
tions, in our setting, the OOD samples consist of classes from the same
datasets and are thus more related to novelty detection associated with
the Open Set Recognition (OSR) scenario. Although OSR is similar to
OOD detection, it is likely more challenging to address, as the statistics
of the new classes often resemble those of existing classes within the

dataset [99].
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Fig. 8. DeepEnsemble uncertainty measures distributions for internal (CPSC), external (G12EC and PTB-XL), and Out-of-Distribution (OOD) datasets. Uncertainty measures are
normalized with their maximum theoretical value, where 1 represents the maximum possible uncertainty. The OOD label contains data from both OOD-MI and OOD-HYP sets.
Fig. 9. Comparison of uncertainty value distributions for correctly and incorrectly classified samples using DeepEnsemble model. (a) label dependence approach, where the entire
label combination is considered as either correct or incorrect, and (b) label independence approach, where each class is treated as a separate binary classification problem.
Table 6
OOD detection performance comparison using all uncertainty methods and measures.
OOD datasets are composed of two superclasses sets (MI and HYP) with only unknown
classes from the PTB-XL dataset.

Model Uncertainty AUROC

OOD-MI OOD-HYP

Single Network 𝑝𝑚𝑎𝑥 0.758 0.702
𝐻 0.767 0.703
JE 0.749 0.715
𝑀𝐿𝑜𝑔𝑖𝑡 0.761 0.716
IF 0.524 0.617
LOF 0.502 0.633
𝑀𝑎ℎ𝑎 0.614 0.569

BNN-Dropout 𝑝𝑚𝑎𝑥 0.763 0.717
𝑣𝑟 0.671 0.647
𝜎2 0.645 0.648
𝑢𝑎 0.773 0.719
𝑢𝑒 0.450 0.529
𝑢𝑡 0.767 0.717

BNN-Laplace 𝑝𝑚𝑎𝑥 0.759 0.704
𝑣𝑟 0.574 0.575
𝜎2 0.742 0.727
𝑢𝑎 0.767 0.704
𝑢𝑒 0.710 0.730
𝑢𝑡 0.767 0.704

DeepEnsemble 𝑝𝑚𝑎𝑥 0.781 0.752
𝑣𝑟 0.721 0.736
𝜎2 0.778 0.790
𝑢𝑎 0.787 0.740
𝑢𝑒 0.751 0.787
𝑢𝑡 0.794 0.764

Bootstrap 𝑝𝑚𝑎𝑥 0.775 0.757
𝑣𝑟 0.735 0.747
𝜎2 0.783 0.793
𝑢𝑎 0.776 0.730
𝑢𝑒 0.764 0.794
𝑢𝑡 0.791 0.767
11
5.4. Classification with rejection option

RQ4: What is the impact of using sample rejection on ECG classi-
fication performance?

In the previous sections, we compared various uncertainty esti-
mation methods using threshold-independent measures. However, to
evaluate the benefits of integrating AI uncertainty estimation methods
in supporting medical decision-making within cardiology, a confidence
threshold must be established. This threshold enables the classifier to
abstain in situations with high uncertainty. The selection of a threshold
restricts the comparison among methods, as each method may have a
varying optimal threshold.

Figs. 11 and 12 depict the predictive uncertainty performance eval-
uation metrics for the three datasets, using the uncertainty estimation
methods while varying the uncertainty threshold. Fig. 11 employs
epistemic uncertainty (𝜎2) as an uncertainty measure, while Fig. 12
uses aleatoric uncertainty (maximum probability 𝑝𝑚𝑎𝑥) as an uncer-
tainty measure. Although these differences are more pronounced when
using epistemic uncertainty, aleatoric uncertainty also presents some
disparities between methods. Regardless of the chosen threshold, we
can observe from the figures that there is a degradation of performance
metrics in the external datasets. For instance, the uncertainty accuracy
in internal validation reaches a maximum of over 0.8, while in external
datasets, the maximum is approximately 0.70.

Since the proper definition of an uncertainty threshold is beyond the
scope of this work, we opted for an analysis based on a given rejection
rate obtained in training. Consequently, we defined a 15% rejection
rate on the training set and used the corresponding uncertainty value
to reject samples on the testing sets. Each threshold is represented by
a data point placed on top of each line plot in Fig. 11, emphasizing
that the threshold value differs for each method and selecting the same
threshold for all methods does not provide a fair comparison between
methods.

To simplify the analysis of experimental results for classification

with a rejection option, Table 7 presents a summary of the complete
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Fig. 10. Ranking performance evaluation using Area Under the Confidence-Oracle (AUCO) for all datasets and uncertainty methods.
Table 7
Performance evaluation metrics for classification with rejection option using Deep-
Ensemble method. F1-score is presented without rejection (baseline) and with rejection
(Non-rejected F1-score). The rejection threshold was set to 15% rejection on the training
set. Predictive uncertainty evaluation measures used the same threshold.

Metric IN EXT EXT
(CPSC) (G12EC) (PTB-XL*)

F1-score (Baseline) 0.856 0.736 0.699

Non-rejected F1-score 0.915 0.844 0.795
Rejection Rate 0.207 0.385 0.317

Uncertainty Accuracy 0.818 0.722 0.716
Uncertainty Sensibility 0.576 0.661 0.554
Uncertainty Specificity 0.880 0.755 0.823
Uncertainty Precision 0.548 0.595 0.675

performance results with rejection for the best uncertainty method,
the DeepEnsemble. The uncertainty rejection measure used was the
variance of ensemble members’ probabilities, 𝜎2, as it achieved better
performance measures in the previous analysis.

The first observation from Table 7 is that rejecting highly uncertain
samples improves classification performance across all datasets. For the
same threshold, the rejection rate varies considerably between datasets.
As expected, the internal dataset CPSC exhibits a lower rejection rate
(similar to the 15% applied in training), but for the external datasets,
the rejection rate more than doubles, reaching 0.385 and 0.317 for
12

G12EC and PTB-XL datasets, respectively. This observation aligns with
the results obtained so far, in which the external test sets contain more
uncertain samples. Applying the same threshold for the OOD datasets
results in rejection rates of 0.634 and 0.666 for OOD-MI and OOD-
HYP, respectively. While the performance of non-rejected samples can
be considered acceptable (at least comparable to the internal valida-
tion), more than 30% of OOD samples were not rejected, which might
be a substantial proportion of OOD samples. Naturally, lowering the
uncertainty threshold would reject more OOD samples. However, this
comes at the cost of rejecting more samples from known classes.

Table 7 also highlights acceptable uncertainty accuracy. However,
with the selected threshold, all models exhibit higher specificity than
sensitivity. This means that if we want to increase sensitivity (while
decreasing specificity), the rejection rate will also increase.

5.5. Active learning

RQ5: Are uncertainty measures suitable as selection criteria for
active learning?

Apart from classification with a rejection option, an essential proce-
dure after deploying a model in clinical practice is continuous training
to respond to changes in the data and prevent models from becoming
unreliable and inaccurate. For model retraining, it is necessary to
label data that requires expert knowledge. Obtaining large amounts of
labeled data can be unfeasible during clinical practice. One possible
approach to reduce this effort is to rely on active learning to select
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Fig. 11. Uncertainty performance measures for varying threshold values across different datasets using four uncertainty estimation methods with epistemic uncertainty. The chosen
threshold for each method is denoted by a data point superimposed on each line plot.
what unlabeled data would be most informative to the model and ask
an expert annotator for a label on only these selected samples.

Following this reasoning, we retrained the DeepEnsemble method
using data from PTB-XL and G12EC datasets. The retraining procedure
consisted of selecting the rejected samples with higher uncertainty
from one of the datasets and retraining the model with these new
samples. For comparison purposes, we repeated this process 5 times
using different uncertainty measures and random sampling. The process
consisted of retraining the model using 400 new samples and repeating
the process eight more times with a step of 400 new samples, totaling
the usage of 3200 new samples at the end of the process. For this
analysis, we split the external datasets into train and test sets and
present the results always using the test set for a fair comparison. Since
PTB-XL has an available 10-fold split provided by PhysioNet, we used
the last fold, as proposed by PhysioNet, for the test set and the other
folds for training. For the G12EC dataset, since there is no proposed
split, we used a 90%–10% train-test split using classes, gender, and sex
as group criteria for balanced data splitting. The obtained performance
in these test sets was similar to the performance using the entire dataset
and represented the first point (0 samples) in the plots of Fig. 13.

Fig. 13 shows the evolution of classification performance with the
increased number of samples used to retrain the models. In the first
13

row, data from the G12EC dataset was used to retrain the model,
and the in the second row, PTB-XL data was used. The gray back-
ground represents the dataset used to retrain the models. Besides the
performance evolution within the dataset used for retraining, we also
show the classification performance in the other datasets to ensure
that the increase in performance in one dataset does not represent
a performance degradation in the other datasets. Observing Fig. 13
we note that adding new samples from external datasets does not
affect the performance in the internal CPSC dataset. Contrary, adding
new samples from one of the external datasets increased not only the
performance on that dataset but also the performance in the other
external dataset. Comparing the random sampling with the different
uncertainty measures, we conclude that every uncertainty measure
performs better than using random samples to retrain the model. Even
though random sampling also increases the classification performance
but at a slower rate. As for the uncertainty measure used to retrain the
model, aleatoric, epistemic, and total uncertainty obtained similar re-
sults on the G12EC dataset. Otherwise, on the PTB-XL dataset, epistemic
uncertainty obtained an higher improvement compared to aleatoric and
total uncertainty, with the only exception on the first 400 samples of
the PTB-XL dataset.

6. Discussion

This study addresses the importance of uncertainty quantification in

multi-label ECG classification to develop a practical approach suitable



Information Fusion 101 (2024) 101978M. Barandas et al.
Fig. 12. Uncertainty performance measures for varying threshold values across different datasets using four uncertainty estimation methods with aleatoric uncertainty. The chosen
threshold for each method is denoted by a data point superimposed on each line plot.
for implementation in clinical practice. The discussion is organized into
four subsections for clarity. We begin by discussing the main conclu-
sions concerning external validation and its connection to dataset shift.
Next, we explore uncertainty estimation and calibration results, en-
compassing internal, external, and OOD validation sets. The subsection
on the clinical scenario covers classification with rejection option and
active learning experiments, focusing on their practical implementation
after deployment.

Finally, we conclude the discussion with a reflection on the limita-
tions of our work and outline potential directions for future research.

6.1. External validation and dataset shift

External validation of machine learning models is becoming increas-
ingly important, particularly in the medical domain. Although it offers
more reliable validation compared to internal validation, the results
do not necessarily guarantee reliability on their own [95]. Our results
revealed that a trained model, which performs well on internal vali-
dation (with comparable classification performance to similar studies
in the literature [13]), may be significantly affected when validated
on an external dataset. Specifically, our findings demonstrated a drop
in F1-Score from 0.86 to a range between 0.74 and 0.70 on external
validation, depending on the dataset used. Besides being from a com-
pletely different source, the external datasets included not only the
14
known classes for the model but also a mixture with unknown classes,
i.e., since a multi-label setting is being used, a sample can be labeled
with a known and an unknown class. In fact, in the external datasets,
50% of samples include unknown classes, and out of the remaining
50%, only 20% of samples do not belong to the Normal class. As
a result, the majority of cardiac pathologies in the external datasets
represent a heterogeneous mixture of medical conditions, which can be
a major contributing factor to the performance drop. In line with this,
we demonstrated a strong correlation (𝑟 = −0.92) between the drop in
class performance and the distance between the train and test sets using
the Wasserstein distance.

These findings on external validation align with studies in the litera-
ture [95,100], where models trained in one setting (data from the same
source) do not generalize well to other external data sources. Addition-
ally, incorporating more data sources into the training scheme improves
overall performance on both internal and external data sources. How-
ever, it still does not guarantee the same level of performance as with
internal datasets.

6.2. Uncertainty and calibration

Although uncertainty quantification does not solve the problem on
its own, it plays a crucial role in identifying and mitigating unreliable
or inaccurate predictions when dealing with external factors [101].



Information Fusion 101 (2024) 101978M. Barandas et al.
Fig. 13. Classification performance as a function of the number of samples used to retrain the DeepEnsemble. In the upper plots data from the G12EC dataset was used to retrain
the model, and the in the lower plots, PTB-XL data was used. The gray background represents the dataset used to retrain the models.
Consequently, we investigate the feasibility of various UQ methods
applied to multi-label ECG classification. Our results demonstrated that
ensemble-based methods yielded more robust uncertainty estimations
compared to single or Bayesian methods. In terms of calibration anal-
ysis, MC-Dropout and ensemble methods achieved lower ECE values
than the baseline network. Therefore, the uncertainty measures not
only provide an assessment of uncertainty but also offer an improved
and better-calibrated probability measure.

To the best of our knowledge, no studies in the literature com-
pare uncertainty methods using a multi-label setting in ECG analysis.
However, in single-label ECG analysis scenarios, Vranken et al. [78]
obtained similar conclusions. In different application modalities such
as images, text, and categorical data, Ovadia et al. [101] conducted a
comprehensive comparison of uncertainty methods under dataset shift
and also reported better results for ensemble-based methods.

Regarding the quality of uncertainty sources, aleatoric uncertainty
estimations achieved better results in internal validation, while epis-
temic uncertainty estimations yielded superior results in external val-
idation in terms of rank-based measures. Concerning OOD detection,
ensemble-based methods using epistemic or total uncertainty outper-
formed other methods, achieving an approximately 0.80 AUROC. Sur-
prisingly, the methods designed for OOD detection, which have shown
good results in other studies in the literature [6,72,73], obtained poor
results in our ECG classification problem. Although OOD and OSR are
similar concepts and OOD is often used in the literature to represent a
broad view of anomaly, outlier, or novelty detection, in our setting,
OOD datasets are more related to the OSR problem since the sam-
ples are composed of classes from the same datasets. For this reason,
OSR problems are typically associated with more challenging scenarios
where the statistics of unseen classes can be similar to the statistics of
known classes in the dataset.

6.3. Rejection and active learning

While uncertainty evaluation measures are important to compare
different uncertainty estimates, they do not take into consideration the
real impact of using said measures when implementing new technolo-
gies into clinical practice. The notion of uncertainty and the ability to
abstain from predicting a sample should be considered key features of
any ML model to be used in clinical practice. Although, in the ECG
classification field, none or few works address this important concept.
15
In our analysis, we showed that by using such techniques, the ML-
based models were able to abstain from predicting samples with high
uncertainty, reducing the wrongly classified samples and consequently
increasing the overall classification performance. Applying a 15% rejec-
tion threshold in the training set leads to more than double the rejection
rate in external datasets, along with a 10% increase in classification
performance.

This high rejection rate indicates potential dataset shift effects and
the need to retrain models. When deploying a ML model, it is crucial
to consider the dynamic environment it operates in, where concept
drifts and unknown medical conditions may arise during testing. To
cope with the cost of data labeling, selecting informative samples for
labeling is essential. We found that uncertainty estimation is a viable
method for selecting such samples within the active learning concept.
By retraining the DeepEnsemble model using the rejected samples
with higher uncertainty, the model learned the new data, achieving
performance similar to internal validation with approximately 2000
new samples added.

6.4. Limitations and future work

Although this study provides valuable insights and advancements
in uncertainty quantification for multi-label ECG classification, it has
some limitations that should be acknowledged. The research relies
on a single DNN architecture, which may limit the generalization of
results to other models or architectures. Moreover, to properly evaluate
performance on external validation sets, the training and test sets
should ideally contain the same classes between datasets to ensure
fairness in comparing different combinations of training and test sets.
However, this restriction led us to reduce the number of classes to
only the common ones, resulting in conclusions limited to the selected
9 classes. Considering the potential impact of foundation models in
the field of uncertainty quantification [102] and medical AI [103],
future research could explore the use of foundation models, tailored
to the automatic diagnosis of ECG pathologies supported by UQ. This
exploration may enhance the generalization capabilities of current DL
models that address this task.

Moving forward, there are more research opportunities to explore.
We intend to investigate the combination of both aleatoric and epis-
temic uncertainty for rejection, a topic that remains underexplored in
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the literature. Additionally, selecting an appropriate uncertainty thresh-
old is non-trivial, and existing studies often use arbitrary thresholds
without solid reasoning. Hence, proper threshold selection is another
important direction for future research.

7. Conclusions

Our study emphasizes the crucial role of uncertainty quantification
in clinical decision-making, with a specific focus on multi-label clas-
sification, a largely overlooked topic in the literature. We use ECG
classification as a case study. As a key contribution, we present the
evaluation of state-of-the-art uncertainty estimation methods for multi-
label classification, which has broad practical applications. Our results
demonstrate that uncertainty estimation methods can aid in the ma-
chine learning process. However, current methods still have limitations
in accurately quantifying uncertainty, particularly in the case of dataset
shift. On external validation, a significant decrease in performance
was noticed, accompanied by a decline in the quality of uncertainty
estimates. Nevertheless, incorporating uncertainty estimates with a
classification with rejection option improves the ability to detect such
changes. After deploying a ML model, the data may change rapidly due
to various reasons, such as a shift in the population, use of different
medical equipment, or limited or unrepresentative training data. These
changes often occur when new technologies are introduced in clinical
practice, and retraining the ML models may become necessary. In such
situations, where labeling a large amount of data may be impractical,
we demonstrated that using uncertainty estimates as a criterion for
sample selection can significantly reduce the number of samples that
need to be labeled, and therefore, the frequency of model retraining
compared to random sampling.

Despite the fact that uncertainty estimation is a fundamental feature
for every ML model to be applied to clinical practice and there is a
wealth of research on multi-label ECG analysis, very few studies address
uncertainty estimations in their methodology. Our main motivation
with this work is to spark future research on how to consider uncer-
tainty quantification as a tool to improve the ML model development
and their application to clinical decision-making, ultimately promoting
the safe deployment of ML in various applications.
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Fig. A.14. F1-Score for three subsets of the PTB-XL dataset. 𝑁𝑂𝑅𝑀 ∪ 𝑆𝑅 represents
he full dataset, 𝑁𝑂𝑅𝑀 is the subset with Normal Class and 𝑁𝑂𝑅𝑀∩𝑆𝑅 is the subset

with only 𝑆𝑅 annotations.

Appendix A. Datasets annotations

The similarity distance analysis between labels from internal and
external datasets led us to a more detailed examination of annotations
between datasets, with a special focus on the NSR class from PTB-XL.
We found that CPSC and G12EC datasets do not contain multi-label
annotations with NSR class, unlike the PTB-XL dataset that contains
2704 multi-label annotations associated with NSR class. To avoid the
differences related to different annotation protocols, the annotations
provided by PhysioNet/CinC Challenge 2020 were used. However, orig-
inally PTB-XL had both NORM (normal ECG) and SR (Sinus Rhythm)
label annotations that were merged and relabeled to NSR (Normal Sinus
Rhythm). Contrarily, the CPSC dataset had originally only the Normal
label that was relabeled to NSR. For the G12EC dataset, since it was first
used on PhysioNet/CinC Challenge 2020, no additional information
was found.

Following this finding, we proceed with an evaluation of a subset
of the PTB-XL dataset that contains only Normal labels to understand
whether the mentioned differences in annotation affected the classifi-
cation performance. Fig. A.14 compares the F1-Score using the entire
dataset (𝑁𝑂𝑅𝑀∪𝑆𝑅), a subset with Normal class (𝑁𝑂𝑅𝑀) containing
3,932 recordings and the subset without Normal class (𝑁𝑂𝑅𝑀 ∩

𝑆𝑅) that contains 8544 recordings. The sum of recordings exceeds
the number of PTB-XL records because of multi-label annotations per
record. As expected, the subset with only Normal classes resulted in a
significant improvement in performance across all methods. With this
subset, both external validation sets obtained comparable performance.

Appendix B. Statistical analysis

Table B.8 presents a statistical analysis comparing the distribution
of uncertainty values for correctly and incorrectly classified samples
using DeepEnsemble model. The analysis employs the Mann–Whitney
U test to assess the differences in the distributions. Before applying the
Mann–Whitney U test we performed the analysis to validate the as-
sumptions for the two samples’ t-test. Firstly, the Kolmogorov–Smirnov
test was performed for normality assumptions (in both scenarios the
normality is met). Secondly, we computed the Levene test to evalu-
ate if there was an equal variance between the analyzed groups. In
this case, the equal variance assumption is not met. For this reason,
we performed the non-parametric Mann–Whitney U test. Ultimately,
Benjamini–Hochberg correction was applied to the p-values within
each dataset. In a multi-label setting, we consider two scenarios: a
label dependence scenario, where the entire label combination is either
correct or incorrect, and a label independence scenario, where each
class is treated as a binary classification problem. Both approaches are
included in the table.
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Table B.8
Statistical comparison of average uncertainty values for correctly classified and wrongly classified samples using the non-parametric Mann–
Whitney U test. P-values, P-values adjusted with Benjamini–Hochberg procedure, and the absolute value of Cohen’s d effect sizes (𝛥) are shown
for each comparison.

Dataset Metric Label Independence Label Dependence

𝑝𝑣𝑎𝑙𝑢𝑒 𝑝𝑣𝑎𝑙𝑢𝑒𝑎𝑑𝑗 𝛥 𝑝𝑣𝑎𝑙𝑢𝑒 𝑝𝑣𝑎𝑙𝑢𝑒𝑎𝑑𝑗 𝛥

CPSC

𝑝𝑚𝑎𝑥 <.001 <.001 1.700 <.001 < .001 1.485
𝑢𝑡 <.001 <.001 1.893 <.001 <.001 1.344
𝑢𝑎 <.001 <.001 1.835 <.001 <.001 1.283
𝑢𝑒 <.001 <.001 1.060 <.001 <.001 1.022
𝜎2 <.001 <.001 1.490 <.001 <.001 1.246
𝑣𝑟 <.001 <.001 1.147 <.001 <.001 1.292

G12EC

𝑝𝑚𝑎𝑥 <.001 <.001 1.566 <.001 <.001 1.100
𝑢𝑡 <.001 <.001 1.689 <.001 <.001 0.977
𝑢𝑎 <.001 <.001 1.584 <.001 <.001 0.849
𝑢𝑒 <.001 <.001 1.050 <.001 <.001 0.906
𝜎2 <.001 <.001 1.442 <.001 <.001 1.062
𝑣𝑟 <.001 <.001 1.184 <.001 <.001 1.117

PTB-XL

𝑝𝑚𝑎𝑥 <.001 <.001 1.409 <.001 <.001 0.877
𝑢𝑡 <.001 <.001 1.503 <.001 <.001 0.762
𝑢𝑎 <.001 <.001 1.439 <.001 <.001 0.672
𝑢𝑒 <.001 <.001 0.965 <.001 <.001 0.736
𝜎2 <.001 <.001 1.310 <.001 <.001 0.875
𝑣𝑟 <.001 <.001 1.050 <.001 <.001 0.936
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