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Summary

Originated in the context of two-dimensional topological field theories, Frobenius
manifolds lie at the intersection of several areas of mathematics, embracing in-
tegrable systems, algebraic geometry, singularity theory and many more. While
most of the theory has been developed under some semisimplicity assumption,
we pay our attention to the broader case governed by a milder assumption of reg-
ularity. We study regular non-semisimple Frobenius manifolds and other geomet-
ric structures progressively generalizing them: F-manifolds, flat F-manifolds and
bi-flat F-manifolds.

This thesis presents the results of my research. It unfolds in four chapters, the
first of which sets the context and paves the way for the discussion of my own
work. The second chapter illustrates a project in its final stage that I tackled to-
gether with Prof. Ian Strachan during my visit to the University of Glasgow. The
third and the fourth chapters describe the outcome of two problems that I faced
in collaboration with Prof. Paolo Lorenzoni, published in [65, 66]. In particular,
the main result is the construction of a class of regular non-semisimple bi-flat F-
manifolds related to integrable systems of hydrodynamic type, Nijenhuis geome-
try and the theory of Lauricella functions.
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Introduction

Ever since the scientific revolution, mathematics and physics have been deeply
connected and have mutually influenced each other along the centuries in propos-
ing new problems and offering perspectives to handle them.

A notable example of this found place in the twentieth century when Rieman-
nian geometry laid the foundation for the development of general relativity and
quantum mechanics stimulated progressions in functional analysis. A second sig-
nificant example is provided by another physical theory conceived in the past cen-
tury: quantum field theory. Especially in the last thirty years, quantum field theory
has been remarkably building on the interplay between mathematics and physics,
leading to the uncovering of very interesting geometrical structures.

Two-dimensional field theories, WDVYV equations and Frobenius manifolds

Among quantum field theories, sits the notable class of topological field theories,
or topological quantum field theories, characterized by the property of admit-
ting topological invariance. Within this context, in the early 1990’s two works
by E. Witten [84], in the setting of topological sigma models, and R. Dijkgraaf,
H. Verlinde, E. Verlinde [25], in the more general frame of topological field the-
ories obtained by a so-called twisting from supersymmetric quantum field theo-
ries, proved themselves as exceptionally relevant in the outlook of detecting new
mathematical structures. Here, a remarkable system of nonlinear partial differen-
tial equations made its first appearance. B. Dubrovin [28] called such equations
WDVV equations, after the authors of the two mentioned papers.

Properties of two-dimensional topological field theories turned out to be en-
coded in specific algebraic structures called Frobenius algebras. Such an algebra
structure is defined by a commutative, associative and unital product with respect
to which a symmetric, non-degenerate bilinear form is invariant. WDVV equa-
tions are also known as associativity equations, as they express the associativity of
the product on the associated Frobenius algebra.
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In the physical setting the solutions of WDVV equations describe the moduli
space of topological conformal field theories. This is what lead Dubrovin to for-
mally introduce the structure of a Frobenius manifold [27, 28], lately appearing in
literature also by the name of Dubrovin-Frobenius manifold.

The geometric structure of a Frobenius manifold consists of a commutative and
associative product o on the tangent bundle, a flat metric » which must be invariant
with respect to the product and two distinguished vector fields, denoted by e and
E. The first one, ¢, is known as the unit vector field as it is required to be unit of the
product, as well as covariantly constant with respect to the Levi-Civita connection
associated with the metric. Additional conditions, as well as axioms expressing
compatibility between the metric and the product, are required.

The structure defined on the manifold induces a specific structure on each tan-
gent space. In particular, o induces a commutative, associative and unital product
with respect to which the symmetric, non-degenerate bilinear form induced by 7,
is invariant. The tangent space to a Frobenius manifold carries then at each point
the structure of a Frobenius algebra. Thanks to Dubrovin’s axioms, the structure
constants of the product, in flat coordinates of the metric, are given in terms of the
third order partial derivatives of a function satisfying WDVV equations. In this
sense, Frobenius manifolds give a coordinate-free reformulation of WDVV equa-
tions. Such a function is known as Frobenius potential. The vector field E takes the
name of Euler vector field, since it encodes the homogeneity property of the Frobe-
nius potential. A second product can be defined in terms of the first one and of the
Euler vector field, as well as a second metric. This lead Dubrovin to introduce the
notion of almost duality for Frobenius manifolds [32].

An additional requirement that can be taken into account is the demand for
the Frobenius manifolds to be semisimple, meaning that there exists a holonomic
frame of idempotent vector fields. Semisimple Frobenius manifolds are also known
as massive, as from a physical point of view they correspond to massive perturba-
tions of two-dimensional topological field theories. Given a semisimple Frobenius
manifold, Dubrovin introduced a privileged set of local coordinates [27], called
(Dubrovin’s) canonical coordinates, which reduce the product induced on the mani-
fold by the Frobenius algebras to a constant canonical form.

Under such a semisimplicity assumption, Dubrovin gave a complete classifi-
cation of three-dimensional Frobenius manifolds in terms of transcendental func-
tions of the Painlevé-VI type [30]. This was possible by means of studying a system
of partial differential equations known as Darboux-Egorov system [17, 36].



Extent of Frobenius manifold theory

The theory of Frobenius manifolds appears in several areas of mathematics, in-
cluding singularity theory, invariant theory of Coxeter groups, integrable systems
and algebraic geometry.

The Frobenius manifold structure on the orbit space of a Coxeter group was
found by Dubrovin in [31] and relies on previous work of K. Saito and his collab-
orators [78, 79]. In particular, driven by the study of the structure of parameter
spaces of isolated hypersurface singularities, Saito constructed flat coordinates on
the orbit spaces of finite real reflection groups. Dubrovin interpreted these results
in terms of flat pencils of metrics, which allowed him to define a Frobenius man-
ifold structure on the orbit space of the group. This class of Frobenius manifolds
is particularly important, since it provides polynomial solutions of WDVV equa-
tions.

In algebraic geometry, Frobenius manifolds naturally appear in the study of
intersection theory on moduli spaces of curves and they find applications in enu-
merative problems concerning, for instance, quantum cohomology and Gromov-
Witten theory. In this setting, one of the most celebrated results is the Witten con-
jecture [85], proved by M. Kontsevich [54]. It establishes a relationship between a
tau-function for the Korteweg-de Vries (KdV) integrable hierarchy and the generat-
ing function for the intersection numbers of Mumford-Morita—Miller stable classes
on the Deligne-Mumford compactification of moduli space of pointed curves [86].
In this context, the Witten conjecture turned out to be just the first and the sim-
plest of several results connecting mathematical and theoretical physics with alge-
braic geometry. In order to formalize properties on this latter side, in 1994 Kontse-
vich and Manin introduced cohomological field theories [55], the trivial instance of
which underlies the generating function starring in the Witten-Kontsevich result.
The geometric structure of a Frobenius manifold turns out to encode the genus
zero information of a cohomological field theory. In the semisimple case, a power-
ful result known as Givental-Teleman classification [82] allows to reconstruct the
information at all genera.

Frobenius manifolds also sprout in the ground of integrable hierarchies, as re-
lated to relevant classes of integrable partial differential equations, such as inte-
grable PDEs of hydrodynamic type, and they come to light in the theory of partial
diffential equations and special functions as closely linked to Painlevé equations,
as mentioned above. Moreover, an integrable hierarchy known as the principal
hierarchy can be associated with each Frobenius manifold. In the semisimple case,
it can be regarded as the dispersionless limit of a more involved bi-Hamiltonian
hierarchy which was constructed by Dubrovin and Zhang. After them, the class of
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integrable hierarchies to which it belongs takes the name of Dubrovin-Zhang hier-
archies, or hierarchies of topological type [35]. The KdV hierarchy is the simplest
example of this class. Such integrable hierarchies can be equivalently constructed
from a cohomological field theory, under an analogous assumption of semisim-
plicity. In this frame and in the semisimple case, the dispersive perturbation of the
principal hierarchy into the full hierarchy of topological type reflects the Givental-
Teleman reconstruction of the all-genera information of a cohomological field the-
ory from the genus-zero part encoded in the Frobenius manifold.

The emerging picture is that of Frobenius manifolds as building bridges be-
tween different branches of mathematics and physics, providing multiple and con-
venient connections. Some of the a-priori unrelated constructions where they arise,
such as for quantum cohomology and singularity theory, turn out to communicate
with each other according to a phenomenon known in literature as mirror symme-
try. A first example of this was observed by P. Candelas, X. de la Ossa, P. Green
and L. Parkes in studying quantum cohomologies of Calabi-Yau varieties [13].

Generalizing Frobenius manifolds

Given the wide usefulness of Frobenius manifolds throughout mathemathics, it is
natural to look for extensions of its rich structure to a more general version which
may be applicable to even more situations, hopefully retaining equal convenience.
To this extent, a first step was taken by C. Hertling and Y. Manin in [48]. Here,
they introduced the notions of weak Frobenius manifold and of F-manifold. The
former is a Frobenius manifold structure without a pre-fixed flat metric, while the
latter only consists of a commutative, associative and unital product on the man-
ifold satisfying an additional axiom, known as the Hertling-Manin condition, en-
coding part of the original potentiality property for Frobenius manifolds, at least
in the semisimple case. Further properties of F-manifolds were discussed in [47].
In [77] Sabbah introduced the notion of Saito structures without metric and in
[69] Manin defined the closely related structure of a flat F-manifold, or F-manifold
with compatible flat structure. As the name suggests, it is an F-manifold enriched
with a flat and torsionless connection satisfying some compatibility conditions
with respect to the product and its unit. In flat coordinates for the connection, the
structure constants of the product can be expressed as the second partial deriva-
tives of a vector potential, which satisfies a system of partial differential equations
known as oriented associativity equations [67]. This potentiality feature is not the
only one echoing the properties of Frobenius manifolds. For instance, a notion of
principal hierarchy and an analog of cohomological field theory can be associated
with a flat F-manifold as well, as carried out in [64] and [12] respectively. As for
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weak Frobenius manifolds, in the semisimple case Dubrovin’s almost duality can
be also extended.

In the case of flat F-manifolds, the dual structure is an additional flat F-manifold
structure satisfying suitable compatibility conditions leading to the notion of bi-flat
F-manifold, introduced by A. Arsie and P. Lorenzoni in [4]. In particular, the two
connections must satisfy a condition known as almost hydrodynamical equiva-
lence, expressed in terms of their exterior covariant derivatives. It follows from
this definition that Frobenius manifolds are bi-flat F-manifolds without an invari-
ant metric, where the Euler vector field is unit of the second flat structure.

It turned out that many constructions in the theory of Frobenius manifolds
can be extended to flat and bi-flat F-manifolds, including the relation with reflec-
tion groups [49, 5] and with Painlevé transcendents that emerge from a Darboux-
Egoroff system, once suitably augmented by dropping a symmetry requirement
for some quantities, known as Ricci’s rotation coefficients [17, 75]. In particular,
three-dimensional semisimple bi-flat F-manifolds are parametrized by solutions
of Painlevé-VI equation [4, 61, 6].

Regularity

The above overview reflects the fact that most of the theory of Frobenius manifolds
and of their generalizations has been developed under the semisimplicity assump-
tion. For instance, it appears as essential for Dubrovin’s canonical coordinates and
classification of solutions to the WDVV equations, for the Givental-Teleman re-
construction result and in the theory of bi-Hamiltonian deformations of integrable
hierarchies.

The easier setting provided by this case is certainly an understandable reason
to assume semisimplicity from the beginning when facing a new problem or con-
structing new objects. However, in some situations it may be pointlessly restric-
tive.

Results obtained in the non-semisimple case suggest that some of those con-
structions may actually not rely on semisimplicity. For instance, an integrable hi-
erarchy known by the name of double ramification hierarchy [10] was defined even
for non-semisimple cohomological field theories and it is conjectured to be equiv-
alent to the integrable hierarchy of topological type. This DR-DZ conjecture was
proved for selected cohomological field theories, including the trivial one realizing
Witten’s conjecture.

Another empowering result was achieved by L. David and Hertling in [18].
Under a milder assumption of regularity, they provided a generalization of
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Dubrovin’s canonical coordinates in the setting of F-manifolds with an Euler vec-
tor field. An Euler vector field is intended to be a distinguished vector field on the
manifold satisfying a suitable compatibility condition with the product. The reg-
ularity assumption is the requirement for the operator of multiplication by such
an Euler vector field to be regular, in the sense that any two distinct Jordan blocks
from its Jordan normal form must have distinct eigenvalues.

With such a precious set of canonical coordinates, working in the regular
non-semisimple setting looks more conceivable, despite still being indisputably
more involved than the semisimple one. A recent result obtained in the regular
non-semisimple setting was the classification of three-dimensional regular non-
semisimple bi-flat F-manifolds as parametrized by solutions of the full Painlevé-IV
and full Painlevé-V equations [6], as well as the construction of flat structures out
of regular generalized Okubo systems [51].

Results

In the wake of David-Hertling’s extension of canonical coordinates, I studied some
of the above geometric structures in the regular non-semisimple setting. The first
two projects which I introduce below were conducted in collaboration with my
advisor Prof. Paolo Lorenzoni.

In the first instance, we studied regular non-semisimple Frobenius manifolds
and the associated bi-Hamiltonian structures of hydrodynamic type. This work ap-
peared in [65]. We recovered formulas for generic dimension and then we focused
on low dimensions, up to 4. In the case corresponding to a single Jordan block
in the Jordan canonical form of the operator of multiplication by the Euler vec-
tor field, we gave a complete classification. In the cases associated with multiple
Jordan blocks, we reduced the classification problem to systems of partial differ-
ential equations: a third-order ODE in the three dimensoinal case and to a system
of third-order PDEs in the four-dimensional cases. In all of them, we provided
explicit examples of Frobenius potentials. An example from our work appeared
in [38] in the context of integrable systems of hydrodynamic type which cannot be
reduced to a diagonal form.

A second problem we addressed concerned the development of a class of reg-
ular bi-flat F-manifolds, called Lauricella bi-flat F-manifolds due to their association
to the theory of Lauricella functions [56]. The key idea was to combine the con-
struction of integrable hierarchies of hydrodynamic type starting from differen-
tial bicomplexes associated with certain Nijenhuis torsionless tensors, known as
Frolicher-Nijenhuis bicomplexes, with the construction of flat F-manifolds starting
from integrable systems of hydrodynamic type. The torsionless tensor is the oper-
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ator of multiplication by the Euler vector field and the Jordan blocks of its Jordan
canonical form are as many as the parameters associated with the family of regular
Lauricella bi-flat F-manifolds which is the result of our construction. These results
appeared in [66].

A third piece of work concerning regular F-manifolds is in preparation, in col-
laboration with Prof. Ian A. B. Strachan. Given a regular F-manifold, we studied a
dual multiplication defined by means of an eventual identity, the notion of which
generalizes an Euler vector field and guarantees that the dual structure is an F-
manifold as well. After solving the equations for an eventual identity, we provided
a system of local coordinates preserving the dual multiplication.

Structure of the thesis

The structure of the thesis is outlined below.

After setting the scene for our dissertation in this introductive section, in Chap-
ter 1 we give the definitions of Frobenius manifolds and of their generalizations.
We discuss the motivation behind their introduction and we illustrate relevant
properties of them, including some of the connections with other areas of math-
ematics that we mentioned above.

Chapter 2 deals with regular F-manifolds with eventual identities, describing
my joint work in preparation with Prof. Ian A. B. Strachan.

Chapter 3 is devoted to regular Frobenius manifolds, presenting the work ap-
pearing in [65]. For the sake of readability, some of the formulas for the four-
dimensional regular non-semisimple cases, corresponding to a Jordan canonical
form of the operator of multiplication by the Euler vector field having at least one
Jordan block of size 2, have been moved to Appendix A.

Chapter 4 explains the construction of the regular Lauricella bi-flat F-manifolds
relized in [66]. Proofs of some crucial technical lemmas were removed from this
chapter in order to provide a neater exposition. They appear in Appendix B.

Finally, we conclude this dissertation by presenting open problems giving way
to future work.






Chapter 1

Frobenius manifolds and their
generalizations

In the wake of the results by Witten [84], Dijkgraaf and the Verlinde brothers [25]
in the context of two-dimensional gravity and by Saito [78, 79] in singularity the-
ory, Dubrovin introduced the notion of Frobenius manifolds [27, 28] in order to
provide an intrinsic geometric reformulation of the system of WDVV associativity
equations appearing in [84, 25].

In this chapter we unfold this motivation, drawing the relation between two-
dimensional topological field theories and Frobenius algebras. We define Frobe-
nius manifolds and describe some of their properties, including the relation with
the WDVYV equations via the Frobenius potential, the construction of a principal
hierarchy which can be recovered as the dispersionless limit of a bi-Hamiltonian
hierarchy of topological type [35] and the relations with Painlevé equations [30]
and with cohomological field theories [85, 54, 55, 82]. We focus in particular on
semisimple Frobenius manifolds, introducing Dubrovin’s canonical coordinates
[27].

We then define F-manifolds [48, 47] as a generalization of Frobenius manifolds
retaining part of their potentiality. We introduce the notions of Euler vector fields
and eventual identities on F-manifolds and we state the result from [18] extend-
ing Dubrovin’s canonical coordinates to F-manifolds with Euler vector field under
some regularity assumption, of which semisimplicity is a particular instance. This
result is crucial for the present dissertation, as the three main results appearing in
the following chapters rely on such generalized canonical coordinates.

Subsequently, we define flat F-manifolds [69] and we show some of the Frobe-
nius properties that are still valid for this more general class. In particular, we treat
a potentiality relation involving a system of partial differential equations known as
oriented associativity equations [67] and we discuss analogs of the principal hier-
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archy [64] and of cohomological field theories [12, 2]. Finally, we introduce bi-flat
F-manifolds [4], describing Frobenius manifolds without an invariant metric.

1.1 Frobenius manifolds

Let M be a real or complex manifold of finite dimension n € N. In the first case we
will assume that all geometric data are smooth, while in the second case we will
assume that all geometric data are holomorphic. 7'M will denote the smooth or
holomorphic tangent bundle, respectively. Let us introduce the notion of a Frobe-
nius structure on M, following [28].

Definition 1.1 A Frobenius manifold structure (n,o, e, E) on M is defined by a non-
degenerate metric ', a commutative and associative product o on the tangent bundle T M
and two distinguished vector fields e and E, satisfying the following conditions:

1. the metric is invariant with respect to the product, namely
n(XoVY,Z)=n(X,Y oZ)
for XY, Z being vector fields on M,
2. the metric is flat,
3. the tensor Vo is symmetric,
4. e is unit of the product,
5. e is a flat vector field,

6. E is subject to the following homogeneity conditions:

ﬁEo = 0, £E6 = —¢ ‘CET} = (2 - d)n

for some constant d, known as the charge of the Frobenius manifold. Here NV denotes the
Levi-Civita connection associated with n and Lz denotes the Lie derivative along a vector
field Z. The vector field e takes the name of unit vector field, while E takes the name of
Euler vector field.

,,,,,

of the product
8i06j:cfjak, i,j,kG{l,...,n},

1Such a metric is not required to be positive-definite.
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and we set
Nij :n(ﬁi,aj), Z,j € {1,...,%},

22 for each i € {1,...,n}. The axioms defining a Frobenius mani-

ot
fold are locally described by the formulas listed below. According to Einstein’s

where 0; =

convention, a summation symbol is to be intended when repeated indices appear.
Commutativity and associativity of the product read

C%:C?i, i>jvk7€ {17"'an}a (1.1)
and
cflcé-m = flcém, i, g, k,me{l,...,n}, (1.2)

respectively. Invariance of the metric reads
Nl cék = N1 Coy i,j,ke{l,...,n}. (1.3)
Flatness of the metric reads
e = Ol — O + TR T — T3, 18 = 0, i,j, k,m e {1,...,n}. (1.4)
Symmetry of the tensor Vo reads
Vi = V;ci, i, 5, k1€ {1,...,n}. (1.5)
The property of e being unit of the product reads
et =0t i,j€{1,...,n}. (1.6)

Flatness of e reads
Vb =0, i ke{l,...,n}. (1.7)

The homogeneity conditions read
Licy, = cy,  Lpe' = =€, Lpni; = (2= d)n; (1.8)

foreach i, j, k € {1,...,n}. In particular, by the homogeneity conditions, the Euler
vector field E acts as a conformal Killing vector field on n and its flow preserves
the structure constants of the product.

Let (M, n, 0, e, F) be a Frobenius manifold of dimension n.

Remark 1 As a consequence of the above axioms, the Euler vector field is an affine vector
field, namely VV E = 0 holds. Moreover

ﬁenij :O, ’L,j € {1,,71,} (19)
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The flatness of the metric endows a Frobenius manifold with a privileged set of
local coordinates. More precisely, it implies the existence of local coordinates
t*,...,t" in which the metric 7 is constant and the Christoffel symbols of its Levi-
Civita connection vanish:

k .
Flj:O7 Z,j,]{?E{l,...,n}.

Such coordinates are called flat and are defined up to an affine transformation.
Using this freedom, one can always reduce the unit vector field to the form

e—i
-~ ot!

which reads ¢!, = ¢} foreach i,k € {1,...,n}.

Remark 2 Since VVE = 0, the components of the Euler vector field are linear functions
of the flat coordinates.

Remark 3 By the axiom (1.3), the tensor whose components are defined by
Cijk 1= mlcé-k, i,j,ke{l,...,n},
is completely symmetric. Moreover, in flat coordinates the tensor with components
OiCijk, i,j. k.l e{l,...,n},

is completely symmetric as well. By successive use of the Poincaré lemma, there must then
locally exist a function F of the flat coordinates t', ... t" such that

mlcé»k = aﬁjﬁkF (110)
foreachi,j k€ {1,...,n}.
Definition 1.2 The function F(t', ..., t") realizing (1.10) is called Frobenius potential.
Let {n”}, jeq1,..n) denote the components of the contravariant metric being the in-

verse of 7. The Frobenius manifold comes endowed with a second contravariant
metric, known as intersection form.

Definition 1.3 The contravariant metric of components
g7 =n"d B, i,j€{L...,n},
takes the name of intersection form of the Frobenius manifold (M,n, o, e, E).
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Remark 4 The contravariant metrics of components n®, g* satisfy the following relations:
1. Lofd =0, i,je{l,...,n},
2. Log¥ =nY,  d,j€{l,...,n}
Theorem 1.1 The contravariant pencil of metrics defined by
g7 = g7 — i,je{l,...,n}, (1.11)
is flat.

Theorem 1.1 suggests a first relation between Frobenius manifolds and flat pen-
cils of metrics, for which we refer to [29]. It is not always possible to produce a
Frobenius manifold starting from a flat pencil of metrics. However, such a costruc-
tion was carried out by Dubrovin [31], using flat coordinates on the orbit spaces
of finite real reflection groups (see [78, 79]). Frobenius manifolds defined this way
provide polynomial solutions of WDVV equations, which we introduce below.

1.1.1 WDVYV associativity equations

Dubrovin’s original motivation for the definition of a Frobenius manifold structure
was to give a geometric interpretation to solutions of a remarkable set of equations,
introduced in the late "80s in the works of Witten, Dijkgraaf and the Verlinde broth-
ers [84, 25]. After their names, such equations are known as WDVV equations.

Definition 1.4 The overdetermined system of nonlinear PDEs

0" (0:0,0; F) n" (0,000, F) = n**(050,0,F ) n™ (0,00, F), i,j,l,h e {1,...,n},
0,0,0; F = n,j, i,j €{L,...,n},
LpF=03-d)F+Q
(1.12)
for the function F(t',...,t") takes the name of Witten-Dijkgraaf-Verlinde-Verlinde
(WDVV) equations. ) denotes a quadratic polynomial in t*, ... t":

Q= A, t't! + Bit' + C

..........

The last condition can be interpreted as the requirement for the Euler vector field
to rescale the Frobenius potential in flat coordinates up to quadratic terms.

Proposition 1.5 The Frobenius potential is a solution to the WDV'V equations.

13



Proof: The associativity of the product gives

nks(ﬁsﬁiﬁjF) nht(ﬁtﬁkalF)nksnsac% nhtnsbczl = ij CZI
= sz CZ]' = nks(asaialF> nht(atakajF)

for each i, j,l,h € {1,...,n}. The property of e being unit of the product implies
010;0;F = 0;0010;F = njsci; = mis0; = 1ij
foreachi,j € {1,...,n}. Moreover, for each i, j € {1,...,n} one has

(%&ﬁj ([,EF) - 81(9@ (E‘S@SF) - 8181((6339)8817 -+ EsajasF)
= 01 ((0;E°)0;0,F + (0;E°)0;0,F + E°9;0;0F)
— (8, E°)018,0,F + (8,E°)0,0;0,F + (0, E°)0:0,0,F + E*0,0,0;0,F

as F is a linear functions of the flat coordinates. Since e = 0, in flat coordinates
and [e, E] = e by the second homogeneity condition (1.8), one gets 0, E* = ¢} for
each s € {1,...,n}. It follows that

010;0; (EEF) = (0;E®)0,0,0sF + (0;E°)0,0;0sF + 0;,0;0, F + E°0,0;0;0sF
= (0, E°)nis + (0:E°)ns; + mij + E°0smi; = Leni; + nij

where Lgn;; = (2 — d)n;; by the third homogeneity condition (1.8). This yields
010,0;(LEF) = (3= d)nij = 210,0;((3 — d)F)
implying that, up to additive quadratic terms,
LpF = (3—-d)F.

|
In the above construction of a Frobenius potential, we explained how it is possible
to get a solution to the WDVV equations starting from a Frobenius manifold.

Frobenius manifolds -+ WDVYV equations

Conversely, a solution to the WDVV equations can be interpreted as a Frobenius
potential, in turn defining, at least locally, a Frobenius manifold.

Frobenius manifolds = WDVYV equations

14



Remark 5 Let F(t',...,t") be solution to the WDV'V equations. By setting
nij zﬁlaﬁjF, Z,j € {1,...,’/1},

che = 1°0,0;0,F, i,5,k € {1,...,n},

and e = 0y, one gets the components of the metric, the structure constants of the product
and the unit and Euler vector fields.

WDVV equations are sometimes referred to as associativity equations, as they ex-
press the associativity property of the product of the corresponding Frobenius
manifold.

1.1.2 Frobenius algebras and two-dimensional topological quan-
tum field theories

Let K denote a field of characteristic zero.

Definition 1.6 A Frobenius algebra (A, 7, o, e) over K is a finite-dimensional commu-
tative and associative algebra A over K with product o, endowed with a distinguished
element e € A being unit of the product and with a non-degenerate symmetric bilinear
form n which is invariant with respect to the product, realizing n(a o b, c) = n(a,bo c) for
each a,b,c € A. The bilinear form n is called Frobenius form or Frobenius pairing.

A Frobenius manifold can be interpreted as the space of parameters of a family of
Frobenius algebras, as at a point m of a Frobenius manifold )M the tangent space
T,,M inherits a Frobenius algebra structure. More precisely, the product on the
tangent spaces is inherited from the product o of the Frobenius manifold and the
non-degenerate symmetric bilinear form is induced by the metric . It immediately
follows that such bilinear form is invariant with respect to the product. The unit of
the algebra is given by the evaluation of the unit vector field e at the point m. We
cite [52] for the following examples.

Example 1.7 The trivial Frobenius algebra is provided by the field K itself with multipli-
cation - and multiplicative unit 1, with the bilinear form defined by

n(a,b) =a-b, a,b e A.

Example 1.8 Let G = {qo, ..., gn} be a finite abelian group with gy = 1. On the group
algebra V = RG (with elements Y., «; g;, o; € R) the product is defined by

(350 (352) = (35 (Z o))
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Let ¥ : V — Rsatisfy (>, «; gi) = «g. A pairing n can be defined as
n(u,v) = J(u-v)
for each u, v € RG.

Following [28], we now introduce the notion of a two-dimensional topological field
theory (2D TFT), appearing in literature also by the name of two-dimensional topo-
logical quantum field theory (2D TQFT). M. Atiyah gave this axiomatic definition
of two-dimensional topological field theory in [7], inspired by the work of G. Segal
on conformal field theories [80].

Definition 1.9 A two-dimensional topological field theory is the assignment to a pair
(X,0%), consisting of a compact oriented surface and its boundary, of a vector v(s sy in
the finite-dimensional complex vector space A s defined as

C if 95 =0

A pr—
(%,0%) A Q- ® A zf oY = ‘Qloi

with C4, . .., Cy, being oriented cycles and

A A if the orientation on C; is coherent with the one induced by ¥
' A* otherwise
foreachi € {1,...,k}, where Ais a fixed finite-dimensional complex vector space and A*

denotes its dual. Such assignment is assumed to only depend on the topology of ¥ and of
its boundary. Moreover, the three following axioms are required.

is associated with id € A* ® A, where in the figure the outward orientation on the

(i) Normalization: the pair

surface is assumed.

(1) Multiplicativity: the disjoint union of two pairs (X, L o, 021 U 03) is associated
with the tensor product of the vectors associated with each pair

V(£1,051) @ U(5,,05,) € A(Ehazl) ® A(E2,3E2)'
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(13) Factorization: if two pairs (X,0%) and (X', 0%') coincide outside a ball and inside
the ball (E’ 0Y) can be recovered by cutting (X, 0X) along a cycle, splitting in two
cycles C 1 and 02 that are to be accounted as additional connected components of 0%,
then v(s, o) can be obtained by contracting v(sy g5y with respect to the vector spaces

Ay and A, corresponding to Cy and C'y respectively, by means of the contraction
map that from a tensor product A; ® - - - ® Ay, removes two vector spaces being dual
to each other.

Remark 6 A two-dimensional topological field theory can be interpreted as a functor from
the category of 1-dimensional cobordisms to the one of complex vector spaces. The objects
in the category of 1-dimensional cobordisms are closed 1-dimensional manifolds and a mor-
phism between two such objects, a and b, is a closed surface interpolating them, having as
a boundary the disjoint union of the boundary of a, with the same orientation, and the
boundary of b, with reversed orientation. The composition of morphisms corresponds to
gluing surfaces.

The distinguished space A carries the structure of a Frobenius algebra, as specified
in the following result (for instance, see [24]).

Theorem 1.2 The space A presents a Frobenius algebra structure with respect to the sym-

/
)
[}
\

metric bilinear form given by

and the multiplication given by

with

being its unit.
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Proof: The bilinear form

can be inverted to
1
1
\

therefore it is non-degenerate. Commutativity of the product is trivial. Associativ-

ity is motivated by the relation

while

’
1
1
\

is unit of the product. The relation

proves the invariance of

being equivalent to

proves that
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with respect to the product. |

1.1.3 Semisimple Frobenius manifolds

Let (A, o0,e) denote a commutative and associative algebra of finite dimension n
over a field K of characteristic zero, with e € A being unit of the product.

Definition 1.10 An element x € A\{0} is said to be nilpotent if there exists some m € N
realizing ™ = 0.

Definition 1.11 Elements my, ..., m, of a basis for A are called idempotents if
T O Tj = 0457
foreachi,j € {1,...,n}.
Definition 1.12 An operator of A has a simple spectrum if it has n distinct eigenvalues.

For details about the following result, see for instance [16].
Proposition 1.13 The following conditions are equivalent for (A, o, e):
a. A does not contain nilpotent elements,
b. A admits a basis of idemponents m, . .., m, realizing
n(ms, m5) = n(m, ) 0y, i.je{l,...,n}

for some non-degenerate symmetric bilinear form n which is invariant with respect
to o,

c. Ais isomorphic to K®",

d. there exists an element £ € A such that the operator Eo : A — A has a simple
spectrum.

Definition 1.14 The algebra (A, o, e) is semisimple if any of the equivalent conditions
listed in Proposition 1.13 holds.

Let (A, o,e,n) be a semisimple Frobenius algebra.
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Remark 7 The basis of idempotents is orthogonal with respect to the Frobenius form,
namely n(m;, 7;) = 0 whenever i # j. In fact, for every i,j € {1,...,n},

77(7Ti77rj) = 77(792,7%') = n(ms, m; 0 Wj) =0

as mi,...,m, are idempotents and n is invariant with respect to o. Moreover, for any
element X = Xir; € A one has

im oX = im OXjﬂ_j: inm- owj:iXim-:X.
i=1 =1

ij=1 ij=1
It follows that the sum of the idempotents is unit of the product: e = ) m;.
i=1

Let (M, n, o, e, E) denote an n-dimensional Frobenius manifold.

Definition 1.15 A point m of the Frobenius manifold (M, n, o, e, E) is semisimple if the
Frobenius algebra T,, M is semisimple. Equivalently, (M,n, o, e, E') is said to be semisim-
ple at the point m € M. The Frobenius manifold is semisimple, or massive, if it is
semisimple at a generic point.

Remark 8 Semisimplicity is an open property. This means that if a Frobenius manifold
(M,n,o0,e, E) is semisimple at a point m € M then there exists a neighbourhood U C M
of m such that (U,n, o, e, E) is semisimple at each point.

Proposition 1.16 In a neighbourhood of a semisimple point there exists a distinguished
set of local coordinates u',. .. u™ such that

Definition 1.17 Coordinates realizing (1.13) are called canonical coordinates.

The proof of Proposition 1.16 relies on the flatness of a connection %, known as
the deformed connection, which can be defined starting from V by considering an
additive contribution involving o. Details about this, as well as about the following
result, can be found in [28, 30].

Theorem 1.3 Let (M,n, 0, e, E) be a semisimple n-dimensional Frobenius manifold at a
point m € M. Let u',... u™ be canonical coordinates in a neighbourhood of m. Up to
shifts, the product and the vector fields e, E are described by the following formulas:

8; 00; = 6;; 0y, e=Y 0 E=>Y w0, (1.14)
s=1 s=1

foreachi,j e {1,...,n}, where 0; = %foreachi e{l,...,n}.
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Canonical coordinates are defined up to permutations and shifts. A canonical ex-
pression for them, which we will adopt here, can be fixed by choosing canonical
coordinates to be the eigenvalues of the operator L := Fo of multiplication by the
Euler vector field. In canonical coordinates, such an operator will then be repre-
sented by the diagonal matrix

L = diag(u', ... ,u").
The formulas from Theorem 1.3 can be rewritten as

k _ sksk i _ i i i
iy = 0,07, e' =0y, E'=u

foreachi, j k€ {1,... ,n}.

Semisimple Frobenius manifolds and Painlevé equations

By spelling out condition (1.3) in canonical coordinates, one sees that the metric
becomes diagonal. We denote its components by

iy = H} 65, i,je{l,...,n}.

0;H;
H;

Definition 1.18 The functions f3;; := , 1 # j, are called Ricci rotation coefficients.

Given a semisimple Frobenius manifold, the rotation coefficients are symmetric:
Bij = Bji» 1 F#J,

and as a consequence the metric is potential in canonical coordinates, meaning that
(locally) there exists a function ¢ such that H? = 9;¢ for each i € {1,...,n}. The
rotation coefficients satisfy the following overdetermined system of PDEs:

Ok Bij =BikBrj, i #j#Fk#i, (1.15)
e(Bi;) =0, i # 7, (1.16)
E(Bij) = — By, i # j, (1.17)

where .
' i=1

In particular, condition (1.16) follows from (1.9). In fact, by spelling out L.7;; = 0
we get e(n;;) = 0. In particular, for i = j we have e¢(H?) = 0, implying e(H;) = 0.
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By differentiating this last condition with respect to v’ for j # i we get e(9; H;) = 0.
Therefore

8JHZ> _ e(asz) . 8JHZ e(Hj) —0

) = e( H; ; (H;)?

Analogously, condition (1.17) follows from the homogeneity condition of the met-
ric with respect to the Euler vector field (1.8). In fact, by spelling out the condi-

tion Lgn;; = (2 — d)n;; we get E(n;;) = —dn;;. In particular, for ¢ = j we have
d

E(H}) = —d H?, implying E(H;) = —%H,. By differentiating with respect to v’ for

j #iwe get E(0;H;) = — (£ + 1)0;H;. Therefore

_(0;H;\ E(0;H;) 09;H, e

J J

Definition 1.19 The system (1.15, 1.16) is called Darboux-Egorov system.

The Darboux-Egorov system (see [17, 36]) implies the flatness of the metric 7.
Given a solution of the above system, the Lamé coefficients Hy, ..., H,, are obtained
by solving the overdetermined system of PDEs

0, H; =By, H;, i+, (1.18)
e(H;) =0, (1.19)
E(H;) =DH,, (1.20)
where D = —£ is an eigenvalue of the skew-symmetric matrix whose entries are
defined as Vj; := (u/ — u")p;; for i # j [28]. In dimension n = 3, on the open set

ul # u? # u® # u'}, the general solution of the system (1.16, 1.17) is
g y

5 1 P ud —ul
12 = 12
P — 2 —u )

1 u? —ut
Bas = - Fys ( ) ; (1.21)

w2 — yl

1 u? —ul
Biz = 3 _u1F13 <u2 — ul) :
The remaining conditions (1.15) are equivalent to the following non-autonomous
system of ODEs:

dF12 1
= Fi3F.
dF’ 1
L FioFys, (1.22)
dz z—1
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dF: 1
d”’ — —FyyFys,
VA ya

u3—u1

where z := === It is well-known that three-dimensional Frobenius manifolds are

parameterized by solutions of a family of Painlevé VI equation (see [28]). This can
be also proved by studying the system (1.22), as illustrated below.

Theorem 1.20 System (1.22) is equivalent to the following sigma form of Painlevé VI
equation (see [70]):

22— 120" +4 |0 (20 —0) = (6/)%(20' —0)| = —2R*(¢')> + R*0’, (1.23)
where the parameter R? is the value of the first integral I = F?, + F7 + Fa,.

Proof: Let us first notice that the quantity I = F} + F% + Fi, is a first integral,
as

dl 1 1 1
Y 9o PR - ) =o.
dz 12Tt (z(z—l) z—1+z>

We set I = R?. Following [4], let us denote by o a primitive function of F7,. We
have

I 12
o =FY,

dFiy 2 F1aF13Fs

7 :2F —
7 P dz 2(z—1)

(1.24)

By combining (1.24) with the second and third equations in (1.22), we get

:2 F — _ Z
dz Bz ad
=2 F =(z—1)o"
dz 2z (2 Jo
that is
F122 =0’

F% =0 — 20’ + ¢
Fy=—0+(z—1)0 +c
for some constants ¢, c,. Since we set I = R2, such constants must satisfy the

condition
c1+co = RQ.

By choosing ¢; = ¢y = %2, we are able to write the squares of the functions Fi,, Fi3,
Fy3 in terms of the single function o(z) as

F% = ¢, (1.25)
12
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R2
F123 = U—ZUI—.—?, (126)
R2
F223 = —0'—|—(Z—1)0'/+7. (127)

By taking the square of (1.24),
Z(Z — ].) O'” =2 F12F13F23
and combining it with (1.25), (1.26), (1.27), we obtain (1.23). [ |

In dimension 4, a special class of Frobenius manifolds that are also related to the
Painlevé VI equation was studied in [76].

By dropping the assumption of symmetry of the rotation coefficients and allowing
different degrees of homogeneity for the Lamé coefficients, one ends up with the
Darboux-Egorov system (1.15, 1.16) with the additional constraint

E(Bi) = (d; — dj — 1)y, i # . (1.28)

In dimension 3 the system (1.15, 1.16, 1.28) reduces to a system of six ODEs which
turns out to be equivalent to the full family of Painlevé VI [61]. The corresponding
geometric structure is a generalization of the Frobenius manifold structure and it
is called bi-flat structure [4]. A similar result (see [6]) can be obtained by studying

the system
8k:F§j = _Féjrék + Fﬁjfﬁk + Fﬁkfij, i#k#jF#1, (1.29)
e(Ty;) =0, i # J, (1.30)
E(Ty) =T, i # J. (1.31)

Definition 1.21 System (1.29) is called Darboux-Tsarev system.

1.1.4 The principal hierarchy of a Frobenius manifold

In [27], Dubrovin showed how to associate to a Frobenius manifold a dispersion-
less integrable hierarchy that he called the principal hierarchy. Following [35], we
present the key steps in his construction.

Let (M,n, o, e, E) be a Frobenius manifold of dimension n and let v', ... v" be flat
coordinates of 7. Coherently with the previous sections, we denote by V the Levi-

.....

consider the functions

H(Q,O) = Vq, o€ {1,...,n},
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where we set v, = 7n,5v° for each o € {1,...,n}. Higher—order functions

Giﬁjﬁ(a,pﬂ) = Cij 8;60(%1)), o€ {1, RN ,n}, pE {0, 1,2,3,... }, (1.32)

where additional constraints may be taken into account (we refer to [35] for further
details). On the formal loop space L(M) = {S* — M} of M, one can then consider
the following infinite family of systems of first-order quasilinear PDEs:

Vi(ap) = VOap) © Vs, aec{l,....,n},pe{0,1,2,3,...}. (1.33)
These equations admit a Hamiltonian structure with respect to the Hamiltonians
Hpy = /G(M,H) dx, aec{l,....,n},pe{0,1,2,3,...}, (1.34)
and to the Poisson bracket defined by
{vi(x)wj(y)}l =07 (x —y), i,7€{1,...,n}, (1.35)

where n = (n~!);; for each 7,5 € {1,...,n}. More precisely, the system (1.33) can
be rewritten as

Vi(ap) = {v s Hap }1, ac{l,...,n},pe{0,1,2,3,... }. (1.36)

It can be shown (see [27 35] for details) that the flows associated to Hamiltonians

-----

foreach o € {1,... ,n} and p € {0, 1, 2, 3, ... } there exists a smooth funct1on 0 (a,p)

on M making the equation for vy(, ;) Hamiltonian with respect to a second Poisson
bracket defined by

{v"(at),vj(y)}2 = g% (v(x)) §(x—y) + sz (v(x)) u]; iz —vy), i,7€{1,...,n},

(1.37)

where I'} = ¢! (1 — u)‘l] for each i, j, k € {1,...,n}, with

2—d
=2 C _VE
b= \%
and ¢ = ni'c), for each i, j, k € {1,...,n}. More precisely, for each a € {1,...,n}
and p € {0,1,2,3,...} there exists a smooth function é(aﬁp) on M such that

{U(Jj), H(a7p)}1 = {U(SL’), I:I(Oévp)}y

with the second Hamiltonian being defined as

Hop) = /9(a7p+1) dz.

The two Poisson brackets {, }; and {, }» are compatible, in the sense that they
define a pencil of Poisson brackets. We conclude that the equations (1.33) constitute
commuting bi-Hamiltonian flows.
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Definition 1.22 The dispersionless integrable hierarchy of first-order quasilinear PDEs
of the form (1.33) takes the name of principal hierarchy of the Frobenius manifold M.

Example 1.23 (Dispersionless KAV hierarchy) In the one-dimensional case with
Frobenius potential

v
Fv) = —
() ="
the structure constant of the product is c¢{; = 1. Starting from 0,0 = v, by means of
(1.32), we get
Pl
01, = , €1{0,1,2,3,...}.
(19 = ped }

The equations (1.33) read

Up
— %, pe{0,1,2,3,...}.

Ve(1,p) = VO(1,p) 0 Vg ol

Thus, we have obtained the dispersionless KAV hierarchy. In particular, the choice of p = 1
recovers the dispersionless KAV equation

Ut(l,l) = UV Uyg.

In [35], Dubrovin and Zhang introduced a way to perturb, by introducing a small
parameter ¢, the principal hierachy of a semisimple Frobenius manifold into a dis-
persive bi-Hamiltonian hierarchy, whose dispersionless limit (¢ — 0) retrieves the
original principal hiearchy. The dispersive integrable hierarchies constructed this
way are known as hierarchies of topological type or Dubrovin-Zhang hierarchies. The
(full) KdV hierarchy can be recovered via this dispersive deformation procedure
as well.

1.1.5 Frobenius manifolds and cohomological field theories

In order to define cohomological field theories, we introduce moduli spaces of
stable curves. We follow [86, 71, 11] in presenting this.

Moduli spaces of stable curves

In this section, by a smooth curve we will mean a smooth compact complex curve.
The objects we are interested in presenting concern curves which are not necessar-
ily smooth but can present nodal singularities.
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Definition 1.24 Given two non-negative integers g,n with n > 1, a pointed nodal
curve of type (g, n)
(C;xq,. .. xy)

is a complex compact curve C of genus g whose only singularities are simple nodes with n
distinct marked points xq, ..., z, € C\ Sing(C), where Sing(C) denotes the set of singu-
larities.

An example is the following curve

of type (1,6).
Definition 1.25 A pointed nodal curve of type (g,n)
(C;xy, ... xy)

is said to be a stable curve if its automorphism group, namely the group of automorphisims
fixing the marked points, is finite.

Stable curves can be characterized in terms of the genus and the number of marked
points, in light of the following result. Given a pointed nodal curve (C; z1, ..., z,),

let C denote its normalization, that is the smooth-component curve obtained from C

by ungluing all the nodes. Let 7 : C — C denote the corresponding projection.

Proposition 1.26 The following conditions for a pointed nodal curve (C;x1, ..., x,) are
equivalent:

(a) (C;xy,...,x,) is stable,
(b) 2g —2+n >0,

(c) each connected component of C with genus 0 has at least 3 special points and each
connected component with genus 1 has at least 1 special point.

By special points we mean either marked points or elements of =~ (Sing(C)).
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Example 1.27 The curve

is stable. The curve

is not stable.

Remark 9 An unstable curve (C; x4, ..., x,) can be stabilized by contracting its unstable
components. We will denote the stabilized curve by (C; x4, ..., x,)*. The figure

shows an example of such a stabilization process.

Definition 1.28 We call the moduli space of stable curves M,,, the set of isompor-
phism classes of stable curves of genus g with n marked points.

Remark 10 Some relevant properties of M, ,, are listed below.

1. M,,, # 0onlyif2g — 2+ n > 0. This follows from the characterization of a stable
curve.

2. M,,, carries the structure of a smooth complex compact orbifold of dimension

dim@(./\/lg,n) = 3g —3+n.

3. M,,, contains the moduli space of smooth curves M, as a smooth open dense
suborbifold. Actually, the moduli space of stable curves M,,, is the result of the
Deligne-Mumford compactification (see [22]) of the moduli space of smooth curves
M., by adding nodal curves.
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Definition 1.29 The boundary of M,,, is defined as
8Mg,n = mg,n \ Mg,n-

Example 1.30 The moduli space of stable curves of genus 0 and 3 marked points only
consists of a point: Moz = Moz = {*}.

The stability requirement does not allow to arrange the three marked points into more
components, so the smooth curve drawn above is the only representative element for
Moz = My s. In particular, Mo 3 has no boundary.

Example 1.31 The elements of the moduli space of stable curves of genus 0 and 4 marked
points

MOA = M0,4 L (M073 X MO,3)u3

Definition 1.32 Three natural maps are defined between moduli spaces of stable curves.
Together, they take the name of tautological maps and are listed in the following.

are represented below.

o The forgettul map is defined as

p:Mgpi = Mgn

(Ciz1,. . pyr) — (Cimy, ..y xp)™

The need to stabilize the resulting curve comes from the fact that dropping one
marked point may lead to an unstable curve, as 2g — 2 + n decreases by 1.
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e The gluing map of non-separating kind
q: mgfl,n+2 — Mg,n

is defined by identifying the last two marked points of a single stable curve.

(D=9

e The gluing map of separating kind
" M!Jl:”l‘l’l Xm927n2+1 — m91+g2,n1+n2

is defined by identifying the last two marked points of two stable curves.

SSROe

Definition 1.33 Foreachi € {1,...,n}, aline bundle L; is associated to the i-th marked
point by defining its fiber over a point which is represented by a stable curve (C; x4, . . ., xy)
as the cotangent space T;.C of C at ;.

Definition 1.34 The first Chern classes of these lines bundles
Y = a1(L;) € H* (Mg, Q), ie{l,...,n},
are called 1)-classes.

Definition 1.35 Given some non-negative integers ki, ..., k,, we define intersection
numbers as the quantities

[ k1 kn
<Tk1---Tkn>g-—/ 1 wn
Mg.n
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Intersection numbers can be arranged in a power series from which they can be
generated. Such a generating function is

€29

FY 8 (to, ;) = Z n! Z (/ W“"%”)tkl'“tkn-
Mg,n

g>0n>1, " Ky, kn>0
2g—2+n>0

Witten’s conjecture [85], later proved by Kontsevich [54], relates the above generat-
ing function of intersection numbers with integrable hierachies. It states that such
a generating function is the logarithm of a tau-function of the KdV hierarchy.

A way to compute intersection numbers is provided by a machinery known as
topological recursion (TR), first developed by B. Eynard and N. Orantin in [37] in the
context of random matrix theory. In more general settings, topological recursion
allows to compute enumerative invariants by means of recursive formulas, start-
ing from the datum of a so-called spectral curve. Such formulas are based on the
structure of moduli spaces of curves and the recursion runs over 2g — 2 + n.

Cohomological field theories

Let V' be a complex vector space of finite dimension. Let <, > be a non-degenerate
symmetric bilinear form on V' and let 1 € V' be a distinguished element. Given a
basis (€q)ac1,..dimv} Of V, set n = (1a3) where 1,5 =< eq,e5 >and ! = (n°).

Definition 1.36 A cohomological field theory (CohFT) on V' is a collection of linear
maps

Qg,n . V®n —y Jgeven (mgma (C)

indexed by two non-negative integers g, n such that 2g—2+n > 0 satisfying the following
axioms:

(1) S,-symmetry: the maps <, ,, are equivariant with respect to the action of the symmet-
ric group S, which acts on V" by permuting copies of V and on H*" (M, ,, C)
by permuting marked points;

(2) 11is the unit:
<v,w>=Nos(v@wel)eC

foreach v,w e V;
(3) p-compatibility: p*Q,,, = 11,41 namely
p*Qng(vl Q- vn) = Qg,n—i—l(vl K- Ru, ® ].)

foreach vy, ... v, €V;
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(4) gluing-compatibility: (writing vi_, = 11 ® -+ - @ vy)

* o
1<a,f<dim V'

and

*

r QQ1+927n1+n2 (Ul...nl-‘rng) =

J— Oéﬁ

— Z leﬂll-ﬁ-l(vl...nl (9 @a) n Qgg,n2+1 (U’fl1+1...n1+n2 X eﬂ)

1<a,f<dim V'

foreach vy, ..., Vp 40, € V.

V' is called phase space and its dimension is known as the rank of the cohomological field
theory.

Sometimes in literature CohFTs are defined without requiring conditions (2) and
(3) and they are called CohFTs with unit when such conditions hold. Here, we will
not make such a distinction, as we will only consider CohFTs with unit.

Definition 1.37 A CohFT defines a quantum product x on its phase space V' as follows.
The product of vy, vo € V is the unique vy x v € V such that

< vy K U, v3 >= Qo 3(v1 ® V2 ® v3)
foreachvs € V.

As a consequence of the S,-symmetry axiom (1) and of the gluing-compatibility
axiom (4), the quantum product « is commutative and associative. Moreover, ax-
iom (2) also implies that 1 is a unit and that the non-degenerate symmetric bilinear
form <, > is invariant with respect to the product *. It follows that the phase space
(V, <, >, *,1) carries the structure of a Frobenius algebra. In local coordinates, the
quantum product is written as

x5, =07 Qoz(es @ eg @ ey), a, B,y e{l,...,dimV}.

Definition 1.38 The degree-zero part of a CohFT {Qy .}
Wgn = degy Qg € H'(Mg,) @ (V)"
is called its topological part.

The topological part {w, ,, }4» of a COhFT {Q,,},, is uniquely determined by wy 3
and <, >. Equivalently, it is uniquely determined by x and <, >.
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Definition 1.39 A CohFT is semisimple if the associated algebra (V, *, 1) is semisimple,
namely there exists a basis (€;);cq1,....aim v} Of idempotents:

€i*€j:5ij€i, l,]E{l,,dlmV}

Definition 1.40 The correlator of a CohFT {Qy,},. of genus g associated to
v, ...,v, € V and the non-negative integers ky, . ..,k is

< Ty (01) T () Sgim / Q07 @ - @ ) 1 pln
qu

It is immediate to notice how correlators generalize intersection numbers. In-
deed, intersection numbers can be recovered as the correlators of the trivial Co-
hET {QfV},., which is defined on a phase space of dimension 1, with some basis

thri,‘;( ® e) =1
"\ i=1

Correlators can be organized in a power series, as in the following.

element e, by setting

Definition 1.41 The potential of a CohFT {2}, is the power series in the variables

ala€e{l,..dimV .
e, {9 }dee~§0,1,2,...} } defined as

F(t: €)= > € Fy(ty)

920
where
F.(tF) = 1 1o o
g( *) T E < Tkl(eal)"'Tkn(ean) >g ki " Yky o
n>0 " 1<aq,...,an<dimV
2g—24n>0 k1,...kn>0

Proposition 1.42 Given a CohFT Q,,,: V" — H®" (Mg,n) and a basis ey, ..., €qimv
of its phase space V, the function

; 1

1 dimVy . __ Q;

F(t', ...t )‘_ZH > | (/M Qo (O €a, )Ht (1.38)
n>3 1<aq,...,an<dimV 0,n

defines a solution to the WDV'V equations.

A Frobenius manifold then encodes the information about the genus-zero part of
a CohFT.

genus

CohFTs gi>0 Frobenius manifolds
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In the semisimple case, the information about all genera of a CohFT can be fully
reconstructed starting from the underlying Frobenius manifold. This was proved
by C. Teleman in [82], extending to CohFTs a construction which A. Givental in-
troduced in the setting of Gromov-Witten theory [43, 44, 45]. In particular, the
uniqueness feature in such a construction is provided in the case where the CohFT
satisfies an additional assumption of homogeneity with respect to the Euler vector
tield (see, for instance, [72]). Such a homogeneity property is implicitly required
by the Frobenius manifold axioms (see, for instance, [82]). We refer to [82, 72] for
an accurate proof of the following theorem.

Theorem 1.4 (Givental-Teleman classification) Any homogeneous semisimple Co-
hFT can be uniquely determined starting from its topological part.

The key ideas in this reconstruction process are illustrated as follows. The genus-
zero information about a CohFT is encoded in a Frobenius manifold structure.
In particular, its topological part is uniquely determined by a Frobenius algebra
structure. In the semisimple case, the Givental-Teleman result provides a recipe
to reconstruct the whole CohFT starting from its topological part, by means of a
so-called R-matrix action. R-matrices are elements of a group acting on semisim-
ple CohFTs in a transitive way. More precisely, the Givental-Teleman result states
that there exists a unique R-matrix that recovers the whole CohFT when applied to
its topological part. As a consequence, higher genus information of a semisimple
CohFT is determined by the genus zero information contained in the underlying
Frobenius manifold. In particular, the R-matrix is uniquely specified in terms of
20,3 and the Euler vector field.

genus
g=0
CohFTs & Frobenius manifolds

GT
(ss)

Building on the relation between Frobenius manifolds and CohFTs, the construc-
tion of integrables hiearchies of topological type [35] can be rephrased as a con-
struction starting from semisimple CohFTs (for instance, see [11]). As generalizing
the Witten-Kontsevich result, the potential of the CohFT is the logarithm of a tau-
function of the resulting hierarchy of topological type. In the particular case of the
trivial CohFT one recovers the KdV hierarchy as the hierarchy and, as the potential
of the CohFT, the Witten-Kontsevich generating function.

Another construction of integrable hierarchies starting from (even non-
semisimple) CohFTs, or from solutions of the WDVV equations, was proposed
by A. Buryak in [10]. Such hierarchies are known as double ramification (DR) hier-
archies. As well as for hierarchies of topological type, the dispersionless limit of
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the DR hierarchy associated with some solution of the WDVV equations is the cor-
responding principal hierarchy. The DR hierarchy is conjectured to be equivalent
to the Dubrovin-Zhang hierarchy, meaning that the two of them are related by a
change of coordinates known as a Miura transformation. Such a conjecture has so
far been proved for selected CohFTs.

Below, referring to [33], we list some Frobenius potentials associated to well-
known integrable hierarchies.

Kdv F(u) = tu®

Boussinesq F(u,v) = suv® + u*

Toda F(u,v) = uv® +e*

NLS F(u,v) = tuv? + Ju*(logu — 3)

1.2 F-manifolds

Introduced by Hertling and Manin in [48], F-manifolds have proved to be an ex-
tremely versatile concept, whose outreach embraces, for instance, the theory of
integrable systems and even information theory [14].

Definition 1.43 An F-manifold is a triple (M, o, e) consisting of a manifold M, a com-
mutative and associative multiplication o on the tangent bundle and a distinguished vector
field e on M being unit of o, namely such that e o X = X for all vector fields X, satisfying
the identity

[(XoY,WoZ]—[XoY,Z]oW —[XoY,W]|oZ -Xo[Y,ZoW]|+ Xo[Y,Z]o W
(1.39)

+Xo[Y,W]oZ—-Yo[X,ZoW]+Yo[X,Z]oW+Yo[X,W]oZ =0,
for all vector fields X,Y, W, Z, where [ X, Y] is the Lie bracket.

Remark 11 Condition (1.39) is known as the Hertling-Manin condition and it is equiv-
alent to
Lxoy (o) =X oLy(o) +Y oLx(o) (1.40)

for all vector fields X,Y € X(M), where Lx denotes the Lie derivative along X.

Frobenius manifolds constitute particular instances of F-manifolds, as satisfying
the Hertling-Manin condition (see, for instance, [47]).
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Definition 1.44 An Euler vector field on an F-manifold (M, o,e) is a vector field E
satisfying the condition
Lp)(X,Y)=dXoY (1.41)

for all vector fields X,Y € X(M), for some constant d which is referred to as the weight
of the Euler vector field. This means that E preserves the multiplication up to a constant.

Many properties of F-manifolds have been derived (see [47]), however their clas-
sification remains an open problem, even in three-dimensions [8]. Motivated by
Dubrovin’s construction of almost-dual Frobenius manifolds [32], Manin intro-
duced a new commutative and associative multiplication:

X+Y=E1oXoY, X, YexX(M), (1.42)

for an arbitrary invertible vector field £, where invertible means that the vector field
&~ satisfies the condition Eo0£~! = e. In general, £ will not be defined everywhere
on the manifold, but only on the complementary set A/\X of some submanifold ¥
where it is not invertible. For simplicity, we will just refer to the manifold as M
rather than separately to the manifolds /M and M\X. It is immediate to see that
£ is a unit for *. Manin then defined an eventual identity as a vector field £ that
preserves the F-manifold structure [69].

Definition 1.45 An eventual identity for an F-manifold (M, o, e) is an invertible vector
field € such that the dual multiplication (1.42) defines an F-manifold structure (M, x, E).

Eventual identities appeared in the definition of multi-flat structures given in [6].
A characterization of eventual identities was given in [20].

Theorem 1.5 Given an F-manifold (M, o, e), an invertible vector field £ is an eventual
identity if and only if

Le(0)(X,Y)=1e,E]o0 X oY, XY € X(M). (1.43)

1.2.1 Regular F-manifolds

Let (M, o, e, E') be a F-manifold of dimension n. The multiplication o is said to be
semisimple if, at a generic point in the manifold, there exists a set of idempotent
vector fields 7; with the property

ﬂ—ioﬂ-j:(;ijﬂ-ia Z.G{]_,‘..,TL},

namely the multiplication decomposes into one-dimensional blocks. It may be
shown that canonical coordinates {u', ..., u"} exist in which the idempotent vector
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fields are m; = 0; for each i € {1,...,n}. In the Frobenius manifold case, they
coincide with Dubrovin’s canonical coordinates.

Without semisimplicity, it is much harder to study F-manifolds, as well as their
generalisations. Indeed, there is no classification of F-manifolds beyond two di-
mensions, with only a partial classification in three dimensions [8]. However, in
[18], David and Hertling gave the definition of a so-called regular F-manifold and
extended the notion of canonical coordinates to such a case.

Definition 1.46 An F-manifold (M, o, e, E) with Euler field is called regular at a point
m € M if the endomorphism E o |,,, - T,, M — T, M is reqular, namely each of its Jordan
blocks is associated to a different eigenvalue. The F-manifold is (generically) regular if it
is regular at any (generic) point.

Theorem 1.6 Let (M, o, e, E) be a regular F-manifold of dimension n and let m € M be a
point around which the operator Eo has r Jordan blocks, of sizes my, ..., m,. Then, locally
around m, there exists a distinguished system of coordinates

{uj(o‘) ‘oz e{l,....,r},j€ {1,...,ma}}
where the structure constants of the product o are given by

i(a) _ sasagt
B iy = 05050744 (1.44)

for all suitable indices and where the unit and the Euler vector fields are given respectively

by

e= i i), E= i % w8 (1.45)
a=1 a=1 s=1

The above formulas appear slightly simpler than the original ones in [18], which
can be recovered from these after a shift in the first two variables of each block. We
will refer to the coordinates provided by Theorem 1.6 by calling them generalized
canonical coordinates, or simply canonical coordinates.

Under the assumptions of Theorem 1.6, the canonical coordinates ', . .., u" for M
can be re-labelled by means of the following notation: for each o € {2,...,r} and
foreach j € {1,...,m,} we write

jla)y=mi+--+ma1+7J

(for a = 1 we set j(a) = j) so that u/(*) denotes the j-th coordinate associated to
the a-th Jordan block. When dealing with regular F-manifolds of this form, we
will write ' when seeing the coordinate as running from 1 to the dimension of
the manifold and we will write u/(®) when in need to highlight the Jordan block to
which the coordinate refers. According to this notation, J; and 0;(,) will denote the
partial derivative with respect to u’ and u*(®) respectively.
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1.3 Flat F-manifolds

Related to the notion of Saito structures without metric introduced by Sabbah in
[77] and conveying a potentiality relating them to a system of PDEs known as
oriented associativity equations [67], flat F-manifolds were introduced by Manin
in [69] as F-manifold endowed with a compatible flat structure. A more general
definition was given in [64] for an F-manifold with compatible connection, which
is not necessarily flat.

Definition 1.47 A flat F-manifold (M, o,V e) is an F-manifold M equipped with a
connection V related to the product o and to the unit vector field e by the following axioms:

(i) the one-parameter family of connections
VY .=V — )Xo (1.46)
is flat and torsionless for any A,
(1) the vector field e is covariantly constant, namely Ve = 0.

The requirement for the family of connections (1.46) to be torsionless amounts to
the request for V to be torsionless and for the product o to be commutative. The
flatness of (1.46) amounts to the flatness of V, the associativity of the product o and
the symmetry of V¢ with respect to the lower indices.

In particular, the last condition and the commutativity of the product imply that

for every m € {1,...,n}, where n = dim M and ¢',...,¢" denote flat coordinates
for V, locally there exists a function F™(t!,..., ") such that
CZL z&ﬁij, i,j,e {1,,7’L} (147)

Definition 1.48 The n-tuple (F*, ..., F") of functions defined by (1.47) takes the name
of vector potential of the flat F-manifold.

In flat coordinates for V, the fact that the vector field e is unit of the product o
implies that

0O F™ =6}, m,j€{l,...,n}, (1.48)
and the associativity of the product o gives

81(9317’” ajasz = ajasFm 81'8sz, i,j,k,m & {1,,n} (149)
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Conversely, any n-tuple (F*,..., F") of functions satisfying (1.48) and (1.49) de-
fines a flat F-manifold, with the product being given by (1.47) and the connection
being given by V,0; = 0 foreach 4,5 € {1,...,n}.

In the particular case where the flat F-manifold is a Frobenius manifold, the
invariant metric implies the existence of a Frobenius potential, as seen above (1.10),
from which the vector potential can be recovered. Equations (1.48) and (1.49) play
the role of WDVYV associativity equations in the flat F-manifold context. Together
with a third condition expressing homogeneity with respect to some Euler vector
field, they take the name of extended WDV'V equations or oriented WDV'V equations
(for instance, see [67, 5, 51]).

1.3.1 The principal hierarchy of a flat F-manifold

Given a flat F-manifold, it was shown in [64] that an integrable hierarchy of hy-
drodynamic type can be constructed. The flatness of the connection gives a basis
of flat vector fields and in turn a set of flows, known as primary flows. Higher
flows can be obtained recursively. The resulting integrable hierarchy generalizes
Dubrovin’s principal hierarchy for Frobenius manifolds to the case where the con-
nection is not associated with a metric.

Let (M, o, V,e) be a flat F-manifold of dimension n. Let
X(1,-1)s -+ X(n,-1)

be a frame of flat vector fields, the first one being e = X(; ;). They are called
primary vector fields. According to [64], higher order vector fields can be constructed
by imposing the condition

VX(Q,ZJ,,I) :X(a,l) o, l e {—1,0,1,2,...}, o€ {1,...,n}. (150)
Then
C;’s Vk?XFa,l) = c;cs V]A‘XY(SCV,Z)

for all suitable indices. In fact, the primary vector fields trivially yield VX, _1) = 0
foreach a € {1,...,n} and for { > 0 we have

7 S ) S m
st vk‘Xv(oz,l) - st Cka(a,l—l)

= C;’CS cij(TZ,lfl) = C%cs va(Sa,l)
for all suitable indices. As a consequence, the flows
ul :cj-kX(’“ml)ui, ie{l,...,n},
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and

Uy = Ci X (3,m) U ied{l,...,n},

T

associated to different solutions of (1.50) commute. The hierarchy of quasilinear
PDE:s of the form

ui(a’l) = cé-k X(kaJ) u?, ied{l,...,n}, (1.51)
is defined as the principal hierarchy of the F-manifold.

Remark 12 In the particular case of a Frobenius manifold, the above integrable hierarchy
coincides with the principal hierarchy. More precisely, by setting

X(a,l) = V@(ml), l e {—1,0, 1,2...}, o€ {1, e ,n},

and letting the second index start at —1, the equations (1.33) coincide with (1.51) and the
recursive relations (1.32) coincide with (1.50).

1.3.2 F-cohomological field theories

The relation between Frobenius manifolds and cohomological field theories per-
sists in the flat F-manifold setting. This was observed in [2], where Givental’s
reconstruction to higher genera was extended to the case of an F-cohomological
tield theory (F-CohFT), introduced in [12] and generalizing cohomological field
theories, under the semisimplicity assumption.

Following [2], we define F-cohomological field theories. Let I be a complex
vector space of finite dimension. Let <, > be a non-degenerate symmetric bilinear

.....

,,,,,

= (n").

Definition 1.49 An F-cohomological field theory (F-CohFT) on V' is a collection of
linear maps

Qyni1 1 VQVE = H™"(Mg,41,C)

indexed by two non-negative integers g, n such that 2g — 1+n > 0 verifying the following
axioms:

(1) S,-symmetry: the maps )1 are equivariant with respect to the action of the
symmetric group S,,, which acts on V* @ V" by permuting copies of V and on
H®" (Mg 41, C) by permuting the last n marked points;
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(2) 1is the unit:
55 = 9073(60[ X €s X 1)
foreach o, € {1,...,dimV},
(3) p-compatibility:
P*Qyni1(€* ®en B ea,) = Qnia(€™ @eg ® - ®eq, @1)
foreach ap, vy, ..., 0q, € {1,...,dim V'}, where
p: mg,n—f—Z — ﬂg,n—&—l
(C7 L1y 7xn+2) = (Ca L1y uxn-i-l)St
is the forgetful map;
(4) gluing-compatibility:
7n*le-i-g27n1+n2+1 (eao ® €ayq K ean1+n2)

= D Qoma(e®® Bea, ®6) ® Qi ® Dea))

1<p<dimV jes

foreach ag, oy, ..., Qnyiny, € {1,...,dimV'}, where IUJ = {2,...,ny +ng + 1}
with |I| = ny, |J| = ny and where

i Mg 2 X Mgy ngi1 = Mgitgomidnat
is the gluing map of separating kind.

,,,,,

.....

prove that for each a € {1,..., N} the function

1
Fo(t, ... tY) ::Zﬁ > (/MO ) Qomﬂ(e‘“@em®...®ean)>t0‘1...t°‘”

n>2  1<ao,...,an<N

(1.52)

is a solution of (1.48) and (1.49). It follows that (F', ..., F'V) is the vector potential
of a flat F-manifold structure defined in a neighbourhood of 0 in V.

We now give the definition of a partial CohFT, as introduced in [58].

Definition 1.50 A partial cohomological field theory (partial CohFT) on V is a col-
lection of linear maps

Qg : VE" = H™" (M, C)

indexed by two non-negative integers g, n such that 2g —2+n > 0 verifying the following
axioms:
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(1) S,-symmetry: the maps €, , are equivariant with respect to the action of the symmet-
ric group S,,, which acts on VE™ by permuting copies of V and on H*"(M,,,,, C)
by permuting marked points;

(2) 1is the unit:
< eqrep >=Qpslen ®eg® 1)

foreach o, € {1,...,dimV};
(3) p-compatibility:
P Qyn(®eq, R eq,) = Qynii(a @ Re,, @1)
foreach ay, ..., o € {1,...,dim V'}, where

p:Mgpi = Mg,

(Cixry ey Tnyr) = (Cry, .oy x)™
is the forgetful map;
(4) gluing-compatibility:

ES
r Qg1+gz,n1+n2 (eal Q- ® ean1+n2>

= Y 1" Uun(Dea ©€) ® Upnara(© oy D)
el jeJ

1<p,v<dimV

foreach o, ... 010, € {1,...,dimV'}, where I U J = {1,...,ny + no} with
|I| = ny, |J| = ng and where

L M917n1+1XM92,n2+1 - Mg1+gz,n1+n2
is the gluing map of separating kind.

Any partial CohFT {€), .}, defines an F-CohFT {(Nzg,nﬂ}g,n, by setting

~

Qg,n+1(€a0 ® €a, R R ean) — Z nao# ng_i_l(e“ ® oy R R® ean)
1<pu<dimV

for each ap,,..., 0, € {1,...,dimV}. Moreover, a partial CohFT can be pro-
moted to a CohFT by requiring compatibility with respect to the gluing map of
non-separating kind

q: Mg_1,n+2 — Mg’n
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namely by imposing that

T Qynlea, @ Req,) = Z Qg1 ni2(a, ® - @ eq, @e, ®@e,)n
1<p,r<dim V'

foreach ay,...,a, € {1,...,dimV}.

.....

-----

prove that the function

F(tl,...,tN)::Z% > </ Qo,n(em®---®ean)>tm...t“n (1.53)

n>3  1<ay,...,0n<N Mo,n

is a solution of the first two sets of equations in (1.12). It follows that F' is the
potential of a Frobenius-manifold structure defined in a neighbourhood of 0 in V,
consistently with the theory presented above as the function (1.53) appeared in
(1.38).

Similarly to the Frobenius setting, a flat F-manifold then encodes the informa-
tion about the genus-zero part of an F-CohFT. In the case of semisimple flat F-
manifolds, Givental’s reconstruction of higer-genus information was extended in
[2]. The double ramification hierarchy construction was extended as well to EF-
CohFTs in [1] and it was there used to deform the principal hierarchy of a semisim-
ple flat F-manifold into a dispersive integrable hierarchy.

1.4 Bi-flat F-manifolds

The notion of bi-flat F-manifold was introduced in [4], motivated by the study of
dual structures on flat F-manifolds and building on the generalizations of Frobe-
nius manifolds. We give it as follows.

Definition 1.51 A bi-flat F-manifold (M, V,V*, o, e, E) is a manifold M equipped
with a pair of connections V and V*, a pair of products o and * on the tangent spaces
T, M and a pair of vector fields e and E satisfying the following conditions:

(i) (V,o,e) defines a flat F-manifold structure on M,
(17) (V*,*, E) defines a flat F-manifold structure on M,
(i17) the two flat F-manifold structures are related by the conditions

o X*Y =(FEo)'XoY, (1.54)
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e [¢e,FE]=ce¢, (1.55)
e Lpo=o, (1.56)
o (dy —dy+)(Xo)=0 (1.57)

where X and Y are arbitrary vector fields and at a generic point the operator Eo
is assumed to be invertible. Here dv denotes the exterior covariant derivative with
respect to V and Ly, denotes the Lie derivative along E.

We recall the definition of exterior covariant derivative dy with respect to V, which
extends the notion of differential to vector-valued differential forms (see, for in-
stance, [57]). The exterior covariant derivative dy of a k-differential form w with
values in T'M is defined by

(dyw)(Xo, ..., Xp) == Z (—1)' Vi, (w(Xo, .., Xy oo, X3)

)

A ~

+ Z (—1)i+jw([Xi,Xj],X0,...,Xi,...,Xj,...,Xk)

0<i<j<k

for Xo,..., X, € X(M), where X denotes the absence of a vector field X in the
arguments of w.

The axiom (1.57) expresses the condition of almost hydrodynamical equivalence be-
tween the two connections. One may notice that not all of the axioms are inde-
pendent. For instance, the compatibility between the dual connection and the dual
product follows from the other axioms (see [6]).

Remark 13 The dual connection is defined only at the points where the operator Eo is
invertible. At these points the condition

(dy — dy+)(X o) = 0, X € X(M), (1.58)
is equivalent to the condition
(dy — dy+)(X *) = 0, X e X(M). (1.59)
This implies
I =T0 — iV EX (1.60)
for all suitable indices. Moreover, the flatness of the dual connection follows from the lin-

earity of the Euler vector field (see Theorem 4.4 in [5] for the semisimple case and Lemmas
4.2 and 4.3 in [50] for the general case).

Frobenius manifolds are particular instances of bi-flat F-manifolds. In this specific
case, the connection of the first flat structure is the Levi-Civita connection associ-
ated with the invariant metric and the unit of the second flat structure is provided
by the Euler vector field.
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Chapter 2

Regular F-manifolds with eventual
identities

This chapter concerns regular F-manifolds with eventual identities and it is based
on the content of a work in preparation with Prof. Ian A. B. Strachan.

Our main aim is to solve the equations (1.43) for an eventual identity on a reg-
ular F-manifold with Euler vector field E. In the semisimple case, in canonical
coordinates eventual identities can be easily proved to be of the form

- N
€= €5
i=1

Thus, if the multiplication is semisimple, eventual identities are defined by n func-
tions of one variable. As one may expect, the regular non-semisimple case turns
out to be more involved.

We first solve the equations for an eventual identity £ in the case corresponding
to a single Jordan block of the operator of multiplication by the Euler vector field,
providing explicit examples. We then examine the dual structure defined via the
multiplication (1.42), constructing a new basis of vector fields with respect to which
the dual product preserves the regular structure of the original product on the F-
manifold. We finally extend these considerations to the general case of multiple
Jordan blocks.

As a consequence, families of Nijenhuis operators are constructed. Other di-
rections which may be pursued starting from the results of the present chapter
involve the construction of classes of examples, possibly fitting the classification
provided in [9], as well as the specialization to the regular case of the construc-
tions from [21] (see also [19]) about the analogues of the first and second structural
connections of a Frobenius manifold in the case of F-manifolds with an eventual
identity. Finally, non-semisimple Frobenius manifolds with an underlying regular
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F-manifold structure may also be constructed, as Chapter 3 will show.

2.1 Eventual identities and dual coordinates

Let (M, o,e, E) be a regular F-manifold of dimension n and let m € M be a point
around which the operator Eo has r Jordan blocks, of sizes my, ..., m,. According
to Theorem 1.6, we denote by

(WO ae{l,....r}, je{l,....,ma}}

the canonical coordinates realizing (1.44) and (1.45).

2.1.1 The case of a single block

We first study the case corresponding to a single Jordan block of the operator Eo,
namely r = 1. In order to ease the notation, we drop the greek indices.

Eventual identities

Proposition 2.1 A vector field £ € X(M) is an eventual identity if and only if

. {(z 1) OETE (1= 2) € forl<m, -
0 forl >m,
foreachm € {1,...,n}.
Proof: By picking X = 0; and Y = 0y, (1.43) becomes
Le(0;00k) —[E,0;] 00k — [E,0k] 00; = [e,E] 0 0; 0 O
that is
Ledjih1—[€,05]0 0k — [€,0] 0 0; = [01, ] 0 Djia
namely
— 0j11k1& +0;E 00, + O E 005 = 1€ 0 Djyp1
or, foreachi € {1,...,n},
— Ojp1 &+ O;ETI 4 &I = 9,7k, (2.2)

Each of these quantities is intended to vanish for negative or zero indices. Con-
dition (2.2) immediately follows from (2.1). We now show that (2.2) implies (2.1).
Let us fix m < n. First, we show that 9,£™ = 0 for each [ > m. We proceed by
induction over m.
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e m=1 By choosing i = j = 1, k = 2 in (2.2), we get &' = 0. Let us suppose
9E' =0 foreveryl € {2,...,1 — 1} (for some fixed | > 3). By choosing i = 1,
j=1—-1,k=2in(22), we get ;&' = 0. Thus 9,£* = 0 for each | > 2.

e m=h-1 Let us suppose 9,£™ = 0 for every m € {1,...,h — 1} (for some fixed
h >2)and [ > m.

e m=h Let us fix [ > h. By choosingi=h, j =1 — 1,k = 2in (2.2), we get
— OE" + O EVT 4 DM = 9y
where 9,11 = 9,EM1H2 = 9,1 by inductive hypothesis, so 9,E" = 0.
We are now left with showing that
OE™ = (1 — 1) 0pE™ 2 — (1 = 2) 9™ 1H!
for each I < m. We proceed by induction over [, starting from [ = m.
e l=m We need to prove
OmE™ = (m — 1)0E* — (m — 2),E". (2.3)
We proceed by induction over m.

e m=2 Condition (2.3) trivially holds for m = 2.

e m=h-1Let us fix some h > 3 and assume that foreachm € {2,...,h—1}
we have 0,,€™ = (m — 1)0:E? — (m — 2)0, &L

e m=h By choosingi=h,j =h -1,k =2in (2.2), we get
— OREM + Oy EMT + 0,67 = 0,E!
which by inductive hypothesis yields
OE" = Op_1EML 4+ 0,62 — 0,E = (h — 1)E? — (h — 2)0,EL.
Condition (2.3) is proved.
e I=t+1 Let us suppose
DE™ = (1 —1)0pE™ 2 — (1 —2) 9 €™

for every [ >t + 1, for some fixed ¢t > 2.
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o 1=t We show
DE™ = (t —1) D&M 2 — (t —2) 0, €™

By choosing i =m +1,j =t, k = 2in (2.2), we get

D1 EMT — GE™ = D™ — 9 €M (2.4)
that yields
QE™ = 01 E™T — REMTE L 9 EMTH = (£ = 1) DEMTE — (£ —2) 9™
by means of the inductive assumption.

u

Remark 14 The m-th component of an eventual identity € must only depend on the first
m coordinates.

Proposition 2.1 leads to the following result.

Theorem 2.2 Given a regular F-manifold with (generalized) canonical coordinates
u', ..., u™ where the structure constants of the product and the components of the unit

vector field respectively read ¢’y = 0%, and e’ = &}, an eventual identity must be of the

form
£ = E E( ’ 8
au’

-----

Remark 15 Condition (2.1) gives a compatible system of PDEs, namely
8i8j8m = 8j8i5m, 1,] € {1, . ,n}, (2.5)

for each m € {1,...,n}. In fact, condition (2.1) becomes trivial when the lower index
[ equals 1 or 2, which means we only have to prove (2.5) for i,j > 3. Let us fix m €
{1,....n}. Without loss of generality, let us assume i, j < m, as for i > m (or equivalently
j > m) both the left and the right-hand side of (2.5) trivially vanish. The quantity

0;0;€™ = 9;((j — 1) BE™IH2 — (j — 2) HE™TIHY)
=0-1 82((i - 1) B €M (1 —2) 815m7i7j+3)
— (= 2) 0 ((i = 1) ™I — (i = 2) BE™TTIT)
= (D=1 FBE™TI = (= 1)(i —2) hdE™T
(= D~ 1) DDE™ T 4 (j = (i - 2) e

is symmetric with respect to exchanging the indices i, j, proving (2.5).
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Remark 16 The first components of an eventual identity are of the form
£ = fi(u)
82 — fg(ul,UQ)
E = (20ofy — f)u® + fa(u', u?)
4= (30afo = 2f{)u’ + 2003 f2)(w")’ + (20fs = D1 fo)u” + falu, )
E% = (40afy — 3f)u” + (30af3 — 201 fo)u* + 6(95 f2)uu?

T §<33f2)(“3)3 + %(482215 — 4010s fo + 1) (u?)?
+ (200 fs — Oy f3)u® + fs(u', u?)

,,,,,

ul.

.....

.....

77777

coordinates u', u?. We want to prove that for each m € {1,...,n} we have
E™ = P™(ut, vt u™) + fn(ut u?) (2.6)

for some function f,, of u!, v* and a function P™(u!, u*;u?,... , u™) € Pi’g"m which
is uniquely determined up to fi,..., fn—1. The above example proves (2.6) for
m < 5. Let us assume (2.6) holds for m < M, for some fixed M < n, and show it
holds for m = M. For each [ > 3 (without loss of generality [ < M) we have

al(c:M (2__1) (l . 1) 825M7l+2 o (l - 2) alngFH
thus, since M — [+ 2 < M — 1, by induction we get

OEM = (1 — 1) 0, PM 2w u?;u®, . ™) 4 (1= 1) Oo frr—iga(ut, u?)

- (—-2) 81PM_H1(U17 uu’, 7UM_I+1) — (1= 2) 01 far—ia (u', 0?).

EM = PM(ut wu® M)+ fa(utu?)

depend on fi,..., fa—1. [ |
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Remark 17 Proposition 2.3 implies that an eventual identity can be fully determined

.....

coordinates u', u?.

Below, we present some examples of eventual identites.

Example 2.4 The Euler vector field

g
E = ;ul B
is an eventual identity. In fact, given E*(u') = u' and E*(u?) = u?, condition (2.1) gives
foreachi e {3,...,n}
E'uty .. u)y =u' + filut, .. uh)
for some function f;(u', ..., u'"t). In particular, for each j € {3,...,i — 1} we have
Oif; = 048" = (j — 1)DEIH — (j — 2)9 8.

Sincei —j+ 2 <i—1(andafortiorii — j+1 < i — 1) for each j > 3, by induction we
get
ajfl = (] - 1)82ui7j+2 - (j - Q)aluiijJrla .] € {37 s e 77; - 1}

Sincei —j+2>3andi—j+1 > 2foreach j < i— 1, we get 0;f; = 0 for each
j € {3,...,i — 1}, proving the function f; only depends on u',u®. As expected, a first
example of eventual identity is then provided by the Euler vector field (more generally, up
to additive functions of u' and u?).

The following examples live in dimension n = 4.

Example 2.5 Let us consider two functions F, G of u' and a function H of u*. An even-
tual identity £ with

E'=F(u)
% = G(ut) + H(u?)
has higher components of the form
& =2H'(v*) — F'(u"))u? u?)
&' =(3H'(u ) 2F" (u' )) 2( ) H”( %)
+ (202 fs(ut, u?) — G'(u'))u® + fa(u',u?)

for some functions f3, fi of u', u?.
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Example 2.6 Let us consider two functions F, G of u* and a function H of u®. An even-
tual identity € with

has higher components of the form

£ =(2G(u") H'(v*) — F'(u))u® + f3(u', u?)
EY=(3G(u") H'(v*) — 2F"(u"))u* + 2(v?)* G(u') H" (u?)
+ (202 f3(u',w?) — G'(u') H(w?))u® + fa(u',u?)

for some functions fs, fy of u', u*. For instance, for F(u') = G(u') = u' and H(u?) = u?
we get

E =(2u' = 1)’ + fy(u',u?)
EY=(3u' = 2)ut + (20uf3(u', u?) — w?)u? + fa(u', u?)

for some functions fs, fy of u', u?. For F(u') = u!, G(u') = (u')? and H(u?) = (u?)? we
get

E =(4(u")? v’ — 1)u’ + fy(u',u?)
Y =(6(u')?u® = 2)ut +4(u®)? (u')® + (202 f3(u', u?) — 2u' (u?)*)u® + fu(u',u?)

for some functions f3, fi of ut, u?.
Example 2.7 An eventual identity £ with

glzul

52 — (u1)2 (’LL2>3 4 u2
has higher components of the form

£ =(6(u)(u)? + 1)u + folul u?)
€4 =(9(uh)’(u’)® + 1)u' +12(u")?u? (u®)?
+ (282f3(u1,u2) —2ul(u 2)?’)u + fa(u', u?)

for some functions f3, fi of ut, u®.
Example 2.8 An eventual identity € with
&' =sin(u')
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E? = u' cos(u?) + u?

has higher components of the form

£ =(2 = 2u' sin(u?) — cos(u"))u® + f3(u',u?)
E* =(3 = 3u' sin(u?) — 2cos(u'))u* — 2u' cos(u?) (u*)?
+ (202 f3(u', u?) — cos(u?))u’ + fa(u',u?)

for some functions f3, fy of u', u?.

Proposition 2.9 Let £ be an eventual identity. Its inverse is of the form

E =) (e, .. ’“i)a(zi

i=1

where )
€ = o
gl
and .
1
(g—l)k—&-l — _EZ(g—l)k—s—i-lgs—‘rl (27)
s=1

foreach k € {1,...,n —1}.

Proof: By spelling out the condition £ o £ = ¢ in canonical coordinates, we

get
o0p =) (et (2.8)
j=1
By choosing i = 1 in (2.8) we get
_ 1
(g 1)1 - E
We prove (2.7) by induction over k.
e k=1 By choosing i = 2 in (2.8) we get
_ | .
(8 1)2 . _§<5 1)182
e k=h-1 Let us suppose
1k
(871)k+1 _ _52(871)k73+1€s+1
s=1

forevery k € {1,...,h — 1} (for a fixed h > 2).
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e k=h By choosing i = h + 1 in (2.8) we get

h+1 h
0= Z(Sfl)jghfjJrQ _ Z(gfl)jgh—jw + (5—1)h+151
j=1 =1
thus
h h
(g—l)h—l-l _ _%Z(g—l)jgh—j—m _ _%Z(E—l>k—s+lgs+l.
j=1 s=1

Remark 18 The inverse of an eventual identity must be an eventual identity as well.

Remark 19 The structure constants of the dual product
X*xY =E1oXoY, XY € X(M)

are given by

~t

Gy = (€7 el = (712,

for all suitable indices. The dual product is expressed on the coordinate vector fields as

~k u -
Oix0;=cyOp= Y (EVTI20,  djefl,... n}
k=i+j—1
In particular, 0; * 0; = 0 fori + 37 > n + 2.
Vector fields preserving the regular F-manifold decomposition for the dual

structure

We look for vector fields vy, . . ., v, such that
Vi ¥ Uj = Vitj-1

fori+j <n+1and

vpxv; =0

fori+j>n+2.
Proposition 2.10 By choosing v, = &€ we get vy *x v; = v; foreach j € {1,... ,n}.
Proof: This directly follows from £ being unit of the product *. |
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Proposition 2.11 By choosing

n

Uy = Z(vm)Z 0;

i=m

for some functions (v,,)™, ..., (vy,)" for each m € {2,...,n} we have v; * v; = 0 for
i+j=>n+2.

Proof: We have

Vi k) = (i(@%) x (i(vj>bab> - infl(ma@j)baa % O,

a=i b=j a=i b=j

where the second sum only survives forn —a +1 > j thatis a < n — j+ 1. The first
sum then only survives for n — j +1 > ¢ thatis i + j < n + 1. Therefore v; x v; = 0
fori+j>n+2. [ |

Proposition 2.12 By choosing

n

Vi1 = Z (Vi1)"* O, i€{l,...,n},

k=i+1

with
k—1 k—a+1

(i) =) Y (@) (w) (€7 (2.9)

a=i b=2
for each i > 2 and k > i, we have
V; k Vj = Vjtj—1

fori4+j<n+1

Proof: We already know that v; * v; = v;4;_; wheni = 1 or j = 1. By imposing
v; % Vg = V41 fori > 2 we get

n n n—a+l
> i) o= > ()" (v2)"0a % Oy
k=i+1 a=i b=2
n n—a+l n
_ Z Z (Ui)a(vg)b Z (5—1)k—a—b+28k
a=i b=2 k=a-+b—1

=S (szkf(vi)a<v2>b<€-1>’f-“-"+2)8k

k=i+1 “a=1 b=2
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thus foreachk € {i +1,...,n}

k—1k—a+1

(vigr)" = (vi)*(va)P(E7T)Fm0*2, (2.10)

1 b=2

a

We now have to show that this ensures v; x v; = v;4;_; fori > 2 and j > 3 such that
i+ j < n+ 1. The condition v; * v; = v,4;_1 amounts to

n n n—a+l1

Z (vigj—1)" ZZUZ 190,00 5 0y
S a=i b=j
n n—a+l n
B Z Z (0:)%(v;)" Z (E-Y)kmambt2g,
o=t b= k=a+b—1
k—j+1k—a+1
Z ( Z Z 'U,L ’U] )kab+2> 8k
k=it+j—-1 a=1
thatis foreachk € {i+j—1,...,n}
k—j+1k—a+1

k—a—b+2
(Vigj—1) E E (vy) v] -1 .
a=1

Let us first observe that v; * v; = v;41 * v;_;. Let us define

Al = (vixvy) (Vi1 * vj—1)
m—j+1 m—a+1 m—j+2m—a+1
_ a, b m a—b+2 —1\m—a—b+2
= § Uivj(g § E z+1]1 )
a=1 b=j a=i+1 b=j—1

for each m > i + j — 1. We need to prove that A;’; =0foreachm > i+ j— 1. We
proceed by induction over m.

e m=i+j-1 We have

as
vl = vg_i - je{2,...,n}. (2.11)

e m=M Let us suppose Aj} = 0 for eachm € {i +j —1,..., M} for a given
M>i+j—1.
e m=M+1 We show A}/*' = 0. We have

M—j+2 M—a+2 M—j+3 M—a+2

M+1 . 1 M—a—b+3 a b —1\M—a—b+3
AT E E v U E , E Ui v (E77)
a=1

a=i+1 b=j—1
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M—j4+2 M —a+2 M—a— b+2

§ : § : U;:Lv M a—b— s+3gs+1
a=i =j

s=1
M—j4+3 M —a+2 M—a—b+2
1\M—a—b—s+3 ¢s+1

+— E E vz+1v] 1 E () E

a=i+1 b=j—1 s=1

1 M—i—j5+2 M—s5—3j4+2 M—a—s+2
- E gs+1 E E M a—b—s+3

gl

s=1

M—s—j+3 M—a—s+2

. )M—a—b—s+3
z+1 ] 1

a=i+1 b=j—1

1 M—i—j+2

o s+1 AM—s+1 __

=~ Z gAY =0
s=1

AY~#t1 = 0 by inductive hypothesis for each s > 1.
We have then proved that v; *v; = v;41 xv;_1. This implies v; * v; = v;xv; whenever
i+ j =i+ j. In particular, for the choice of j =2and i =i + j — 2 we have

k—j+1k—a+1 k—1 k—a+1

Z Z Uz 7)] k a—b+2 _ Z Z Vi 2 U2 b(g—l)k—a—b—l—Z. (2.12)

a=i+j—2 b=2

We have

n

k
Vitj—1 = E (Ui+jfl) Ok,
k=itj—1
k-1 k—a+l

(210) Z Z Z Vit 2 v2 b((c:fl)kfafb+28k

k=i+j—1a=i+j—2 b=2
n k—j+1k—a+1

@12 Z Z Z ;) (v,)P(ETHFT2Y, = vy x v;.

k=i+j—1 a=t =3

u
This result determines vs, . .., v,. We already chose v; = £. There is still arbitrari-
ness in choosing v,. Propositions 2.10, 2.11, 2.12 yield the following result.

Theorem 2.1 By setting

o v =¢&
n .

e vy = Y a;0; for some functions ay # 0,as, ..., a,
i=2
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n

® Vi1 — Z (Ui+1)k akaT’i > 2 with

k=it1
k- —
Uz-‘rl E § Uz U? )k “ b+27 ) +1
a=1 —2
we have
U % U = Uipj1 Liirj<nttys i,j €{1,...,n}.

Coordinates preserving the regular F-manifold decomposition for the dual
structure

We now show that there exists a set of coordinates w!, ..., w" such that

Ui:a(z)l., ZE{L,?’L}

We assume v, to be an eventual identity. This means that we require v, to be solu-
tion to (2.1), that is

[ —1) vl 2 — (1 — 2) §om 1L forl < m,
gy — J DO (1= 2) O ert=m (2.13)
0 forl > m,
or
[l —1)0am—i32 — (I —2) Oram— for i < m,
B, — (I = 1) Otm—i112 — (I = 2) O1am—111 orl <m (2.14)
0 forl > m,
foreachm € {1,...,n}. In particular, for each m € {2,...,n} the function a,, must

only depend on the first m coordinates.

Lemma 2.13 Foreach j > 3 and J > j we have

J—j J-1

1 —S S 1 a a
of = =g D TET D et (2.15)

s=1 s=1

Proof: For each j > 3 and J > j we have

§ ’UJ 1 Ug 5 1)Jfafb+2
=j—
—1

1
J—a J—1

_ Z (Uj—l)a(UZ)b(g_l)J_a_b+2+ Z (Uj_l)a<1)2)J_a+l(5_l)1

a=j—1 b=2 a=j—1
J-1 J-a J—a—b+1

1
(2_;7)_52 (Uj_l)a(vg)b Z (g—l)J—a—b—s-i—Qgs-&-l

a=j—1 b=2 s=1
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a=j—1
0 1 J—j e
— _§ng+1(vj)J—s+§ Z (Uj_l)a(UQ)J_a+1.
s=1 a=j—1
[ |
Lemma 2.14 For each j > 3 and J > j we have
a 14
21;] = 5—?1}37:11 - 52 (213]_555“ - vj_f_lasﬂ). (2.16)
s=1
Proof: For each j > 3 and J > j we have
J (2.15) 1 - s+1 J—s 1 - a J—a+1
vi = —525 (v))" 7% + o1 D (vj1)"(v2)
s=1 a=j—1
1 1
_ _gz (c/’erl(Uj)st + g (Uj,l)J7871<U2)5+2
s=1 s=0
a2 J-1 1 1 J 1 J—s—1
= 2r(-1)7 - gz E (vy) T+ §Z (vj=1)" """ asta.
s=1 s=1
[ |
Remark 20 For each j > 3 we have
Cay o (a9)® o (ag)’? 5 (ag)!
2)5 = _11};—1 = (51)21)5_2 S — (51)],_2112 = €) # 0. (2.17)
The vector fields v, . . ., v, are then linearly independent.

Proposition 2.15 For each j € {1,...,n} and J > j, the function v} only depends on
the first J — j + 2 coordinates.

Proof: We show 8kv§-’ =0fork>J—j+3. Forj =1and j = 2, this trivially
follows from (2.1) and (2.13) respectively. Let us now fix j > 3. We proceed by
induction over J > j.

e J=j For each £ > 3 we have

A Jj—=1
8kvj- (2;7) ak ( (GZ) - ) = 0.
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e J-1Let us suppose dv] = 0 foreach k > J — j + 3, foreach J € {j,...,J — 1}
(for a fixed J > 7).

e JLetusfixk > J—j+ 3. We have
O J (2.16) a2 71 1 & (c/»s+1
ko = g (Onvir) = 5_2

—+ v}’*S(@kSSH) — (ak?]‘;-]:fil)aerQ - Uj 1<8ka5+2))

Jsl

where 8;4} ! and OV~ vanish by induction over j, 8;413-’ ~% vanishes by

induction over J. By the steps j = 1 and j = 2, the quantities 9,£*™ and
Oras 2 vanish as well for each s < J — j. Then 8@3-7 =0.

|
Remark 21 As observed in [20], the product of eventual identities is an eventual identity:

<£510520>(X7 Y) - 51 © (6520)()(7 Y) + 52 © (Eglo)(X, Y)
=& ole,&)oX oY +&o0le,E]o X oY
=le,E10&|oX oY

(as L.o = 0) forany X, Y € X(M), for £, and &, being eventual identities.
Proposition 2.16 The vector fields {v; };>3 are eventual identities.
Proof: Let us fix i > 3. The vector field v; is defined as
V; =Us kv, =E Louvgou_g

Since v, is assumed to be an eventual identity, v; is by induction an eventual iden-

tity, as product of eventual identities. [ |
Let us now assume [vy, v5] = 0, that is foreach m € {2,...,n}
1 m
Oy = _52(51 O — a1 OE™). (2.18)
1=2

Remark 22 We assumed two properites: that vy is an eventual identity and that it
commutes with £. These two requirements impose conditiorls on the partial derivatives

-----

amounts to (2.14)

(l — 1) (‘32am_l+2 — (l — 2) 81am_l+1 fOT’l S m

8lam =
forl>m
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,,,,,

,,,,,

81am = ! Z(gl alam — Qy 815’”)

&t
=2
n 1
S (- 06 - e

=2

— (l — 2) ((C:l 81am,l+1 — qq algmlJrl))

thus for each m € {2,...,n} it fixes the quantity Oia,, in terms of the quantities
In order to assume vy both to be an eventual identity and to commute with v, = &,
then, one must verify that for each m € {2, ..., n} the conditions (2.14) and

m

Ohanm, = —éZ(ﬁt Ortin, — a; DE™) (2.19)
t=2

define a compatible system of PDEs. Since we already checked the compatibility conditions
for the system defining an eventual identity ((2.5) for (2.1), where (2.1) rewrites as (2.14)
for the eventual identity v,), we only need to prove the condition 0,0,a,, = 0,01ay, for each
L €{2,...,m} (for | > m the condition becomes trivial) for easch m € {2,...,n}.

Let us start from considering m = 2. Since (2.14) becomes an empty condition, the
only equation for ay is

1
81a2 = —5(82 82@2 — a9 8252)
that is
5181(12 + 52 620,2 — Q9 0252 = 0. (220)

Since this is the only equation for ay, no compatibility condition is required. In other words,
we automatically write
8182&2 = 8281612.

We will now show how (2.20) is the only non-trivial relation appearing among the com-
patibility conditions for the above system.

Let us now consider m = 3. We need to show that 0,0,a3 = 0,01a; for | € {2,3}. Let
us start from | = 3. We have

2

2
8183&3 = 81(282a2) = 28281&2 = ——82 (82 82&2 — Q9 8282) = a1

81 (52 8226L2 — ay 82252)
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and

3
1 1
8381a3 = —5283 (gt 8ta3 — Q¢ 8t53) = —E (52 8382@3 — Q2 838253)
t=2
2
T
proving 0,0sa3 = 0301as. Let us now consider | = 2. In order to prove the compatibility
condition 010xa3 = 0201a3, let us rewrite (2.14) for m = 3, namely Osaz = 2 Oqay for
ag(ul,u? u?), as ag = 2 (Oqas) u® + g3(u', u?) for some function gs of u', u?. In particular,

let g3 vanish. We have

(€2 02ay — ay D262

81(92a3 = 81(2 (8§a2) u3) =2 (81822a2) u3

and

3

1
Oadraz = — 5232 (£ Qa3 — a; 0,E?)

t=2
1

el (8252 82a3 + 52 a;ag + 8253 83&3 + 83 8283(13
— 02a2 8283 — CL2 8353 — ('32@3 8383 — CL3 828353>

where a3 = 2 (Daag) u® and 3 = (20,E? — " &) u? + f3(u', u?) for some function f5 of
u', u?. In particular, let f3 vanish. We get

2u?
— &
which, by taking into account that applying 0, twice to (2.20) gives

8281@3 = (8252 622@2 + 52 8§a2 — 62282 82a2 — as 8382>

81816226L2 + 6282 8220,2 + 52 823a2 — 820,2 6352 — a2 8352 = O, (221)
becomes
8281613 :211,3 (81822&2) = 8182&3.

We want to prove by induction over m that 0\0,a,, = 0,01a,, for I € {2,...,m},
starting from the above case of m = 3. Let us then fix m € {3,...,n} and assume

010,a;, = éwlak, l e {2, ey k}, (222)

foreach k € {3,...,m — 1}. We are now going to show that 0,0,a,, = 0,0,a,, for each
l € {2,...,m}. In order to prove this, we use an inner induction over the difference m — I,
starting from m — | = 0. Let us then consider | = m. We have

m—1

810mam :81((m — 1)82&2) = (m — 1)8182&2 = =

cl 82 (52 82&2 — Q2 8252)
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=l (02 0y — 0y 26?)

OO = — %Zam (£ Oyt — a, O,E™) = —%Z(st O Osim — ;O OE™)
t=2 t=2

= LZ(? Oy((m — 1)Dsas) — a; (M — 1)9eE? — (m — 2)0,EY))

t=2

__ mg_—ll(y 0205 — a3 O2E?) = D10ty

Let us fix s € {1,...,m — 3} and let us inductively assume 0,0,a,, = 0,01a,, for each
le{m—s+1,...,m}. Weneed to show that 0,0,a,,, = 0,01a, for | = m — s, which in
turn will imply 010,a,, = 0,01a.m, for each | € {3, ..., m}. We have

818[6Lm :(91((1 — 1) 82a3+2 — (l — 2) (91as+1)

where 01005, 0 = 0301049 Since s +2 < m — 1, thus

l_18+2

alalam = — TZ&Q (gt (9tas+2 — Q¢ 3t55+2) — (l — 2) 8%CLS+1
t=2

I 1 s+2

— ;1 > (92E" Dratayr — D20, 0,E°T?)
t=2

s+2

> (E' 02012 — a4, :0,E) — (1 = 2) Dy

t=2

-1
£l

On the other hand

Odham == o Za, (&' O — a; OE™)

t=2
1 . m -1 & t s+2
= ng(alg 5tam Qlat 3t5 ) — £l Z(E 8t62a5+2 — Q¢ 3t(925 )
t=l t=2
[ -2 s5+1
+ gl Z(gt 8t61a5+1 — Q¢ 3t0155+1).
t=2
Then
-1 5+2
— 0101t + D101 =1 D (02E" Dtz — 020, E* ) + (I = 2) Blas
t=2

E giz DE" Dy — Dyay OE™)
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[—9 s+1
+ cl Z(Et 3t81a5+1 — Q¢ (9t8155+1)

t=2

where

1 s+1
a1as+1 al( 512(5 Qg1 — a4 31555“))

8151 st 1 s+1
:_(81)2 (Et atas—i-l — Q¢ atgs-‘rl) ol Z (815 8tas+1
=2 t=2

+ gt 31@ta5+1 — 31at 8t58+1 — Q¢ 818t58+1)

with 010,a511 = 0;01a511 for each t > 2. We get

1 s+2
- 8181am + alﬁlam = lgl Z(@gé’t 8ta5+2 - 82at 8t55+2)
t=2
8181 s+1
+(1-2) ( 51)22(5t Ortis1 — ag OE™)
t=2
[ -9 s+1
=1 2 (0iE Dags — D1, ) — 512 (D" Oy, — Dras OE™)
t=2 t=l
s+2
LIS (008 (1= 100t r4s — (1 — 2100 145)
gl s—t+4 10s—t+3
t=2

— Ohay ((t — 1)DET (¢ — 2)8155—t+3))

8181 s+1
WZ((C:t 5’tas+1 — Q¢ 8t58+1)

t=2

+(1—2)

[ —9 s+1
- gl Z <81€t ((t — 1)826L5_t+3 — (t — 2)81a5_t+2)

t=2

_ 81(% ( t _ 1 58—t+3 . (t _ 2)8lgs—t+2))

3

— gi ((l — 1)ETE — (1 - 2)(918t_l+1) ((t — 1)02am—t12 — (t — 2)81am_t+1)

1

+ E ((l — 1)82@t7l+2 - (l - 2)(91at,l+1) ((t — 1)828m7t+2 _ (t _ 2)815m7t+1>

\IMS T

which, by means of suitable changes of variables (we want to collect terms of the form O,E"
and 0,E"1), becomes

HEL T .

(€12 2o (€ s — a0

t=2

— 0101a,y, + 0,010,, = (l — 2)
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l_18+2

82€h -1 Ggas h+4 — (h - 2)81a8_h+3))

l_25+2

l _ 1 s+2
(826L5 h+4 3 —h+ 3)825h (S —h+ 2)818h_1>)

815h 1 h 2 826L5 h+4 — (h 3)81&5 h+3))

[—9 s+1
+ Z(@laS_Hg ((S —h + Q)anh - (S —h + 1)815h_1))

51
h=2
1 s+2
— D> (1=1)0," — (1 =200 ") (W +1 = 3)Dsas—pys — (h + 1 — 4)Dras_pys)

h=2
s+2
1

+ EZ((Z — 1)as—ppa — (I — 2)01a5-p13) (M — b+ 1)0E" — (m — h)9,EMY)
h=2
where the fifth sum (originally over h < s + 1) can be extended to h < s + 2 (as the
contribute is null for h = s+ 2) and where the fourth sum (originally starting from h = 3)
can be made into starting from h = 2, up to properly add the corresponding term

[ — I s+1

2 —2
o 0E (Diasi1) = @ HEY (£ dasys — a, 0,E)
t=2

which cancels out with the first sum. This yields

— 81(91am + 8181am
s+2

= l;lz (825h ((h —1)02a5_pya — (h — 2)alas—h+3)>

h=2

1 — 132
ey (azas‘h“ ((s=h+3)0E" — (s —h+ 2)818h_1)>
h=2
| — 232
gt Z <818h—1 ((h —2)02a5 p1a — (h — 3)81as_h+3))

h=2

s+2

[—2
+ Z <(91as_h+3 ((S —h -+ 2)828h — (S —h + 1)818h_1)>

1
& h=2

s+2

! Z((l — 1)825h (l — 2)(915h_1) ((h —+ [ — 3)82as_h+4 — (h + [ — 4)5’1a5_h+3)

gl
+ EZ((Z - 1)826Ls_h+4 - (l - 2)81as_h+3) ((m —h + 1)825h - (m — h)(?lé’h_l).
h=2
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By collecting 9,E" and 0,E"! for h € {2,...,s + 2} we get —0,0,a,, + O;01a,, = 0.
Therefore we proved 0,0,a,, = 0,01am, foreach l € {3,...,m}.

In order to prove that the same relation holds for | = 2 as well, we consider the following
result.

For each k € {3,...,n}, let us denote by Py the set of polynomials in the variables
ud, ..., uf with coefficients being polynomials in the derivatives (up to some positive inte-
ger order) of aq with respect to u', u?.

Lemma 2.17 Foreachm € {3,...,n}and k € {3,...,m} the function a,, can be written
as

am(ut, .. u™) = PE (0t um™) F O () R (2.23)
for some P € P, and some function C"*? of ul, ... umk+2,

Proof: Form = 3, by (2.14) we have az = 2 Dyay u®, immediately proving (2.23) for
P w2, u?) = 28ya0 v

and some function C§2) of u',u?. Let us fix m € {4,...,n} and assume that for each
he{3,....m—1}and k € {3,..., h} there exist some P}Ek) € Py, and some function
C R of ul L w2 such that

ap(ut, ... u") = Pfgk)(ul, coouM) C’,(Lh_k”)(ul, o ul TR (2.24)

We have to show (2.23) for each k € {3, ..., m}. We proceed by induction over k, starting
from k = 3. By (2.14) we have

O = (M — 1) Osay

thus

am = (M — 1) Daagu™ + A (ul, ... u™ )

for some function A, of u',. .., u™ 1. This proves (2.23) for k = 3, with

POl ..., u™) = (m — 1) ay u™
and
Co=U( !t um™ ™y = Ayt ™.
Let us fix k € {4,...,m} and assume that for each h € {3,...,k — 1} there exist some
P € P, and some function C5" " of ul, ... um™ 2 such that
am(ul, .. u™) = PW @t u™) Ot am ), (2.25)
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By choosing h = k — 1 in (2.25) we get

am(ut, .. u™) = PED (™) QRS (L RS (2.26)
for some PV € P, and some function C'*® of ul,... w3, By combining

(2.26) with (2.14), we have

8m,k+3cr(nm_k+3) = amfk+3am - mfk’+3pr(rf_1)

= (m —k+ 2)826%_1 — (m —k+ 1)816Lk_2 — 6m_k+3P,§f_1) € 75m

as ap_1, Qp—o, PYY P by inductive assumption. Then

ng%m—k—l—ii) (UI’ o ,um—k+3) — Q'S;’L—k+3) (ul’ o 7um) + BT(nm—k—l-Q) (ul’ o 7um—k-{-Q)
for some Q4 € P, and some function BS'* of ul, ..., um*+2. Therefore we get
am(ul, .. u™) = PO (o u™) 4 O () m R
for
PO um) = PO u™) + QU (™) € Py,
and
C«(m—k+2) (ul o um—k+2) _ B(m—k+2) (ul o um—k—l—?)
proving (2.23). |

By choosing k = m in (2.23), for each m € {3,...,n} we get
am(ut, .. u™) = PM @t u™) + CP (ul u?). (2.27)
Up to an additive function of u', u?, then a,, € P, and, as a consequence,
01020, = 02010,
foreachm € {3,...,n}.

Below we present some examples of how, given an eventual identity £ whose com-
ponents do not include additive functions of u', u?, a second eventual identity v,
commuting with £ can be found. In canonical coordinates v, will be written as

n

Vg = Zai(ul,...,ui)&-

=2
for some functions as, . . ., a,. The function a5 is determined as a solution to (2.20)
and higher components as, . . ., a,, are uniquely constructed by means of (2.14). In
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particular, being v, an eventual identity, up to additive functions of u!, u?, its first
components read

ag = az(u', u?)

as = 2(82&2 U3

)
as = 3(aaz)u + 2(95az)(u?)? — (Draz)u’
)

a5 = 4(Ohaz)u® — 2(d1az)u + 6(d3as)uPu* + g(@gag)(ug)?’ — 2(0105as) (u?)*.

Example 2.18 When & is the Euler vector field, namely its components are E'(u') = v’
foreachi € {1,...,n}, asolution to (2.20) is

A
2_7“[’90“1

for some function ¢ of the ratio { = Z—f Up to additive functions of u', u?, the first higher
components of v, are given by

asz =2 u® @l(g)
(u3)2 , W

as =3u" ¢/ (€) + 2= () + —— (&) —u’ p(9).

The following examples live in dimension n = 4.

Example 2.19 Let us set

E'=u!

£ =ulu?
so that higher components of the eventual identity £ read

&3 :(2u1 — 1)u3

& :(3 u' — 2)u4 — u?ud.
A solution to (2.20) is
ay =" go(u2 e’“l)

for some function ¢ of € = u®e™*'. Up to additive functions of u',u?, the first higher
components of vy are given by

as =2 u® 90/(5)
ar =(3u’ + u*u?)@'(€) + 2 (u)2e ™ ¢'(&) — u p(€) e
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Example 2.20 Let us set

so that the higher components of the eventual identity £ read

£ =(2 — cos(u"))u’
E* =(3 -2 cos(u"))u’.

A solution to (2.20) is

ay =( esc(u') — cot(u")) %0( - )

csc(ul) — cot(ul)

for some function ¢ of

u? _ u? sin(u')

~ cse(ul) — cot(ul) 1 —cos(ul)’

Up to additive functions of u*, u?, the higher components of vy are given by

az =2 u? Spl(f)

o (2 snat) + 3(sin(u )€

:sin(ul)

+ 2((u3)2 sin(u') (1 + cos(ul)))go”(g) + (cos(ul) — 1)u3 gp(f)).

aq

Proposition 2.21 For each j > 3 we have [v;,v;] = 0.
Proof: Let us fix j > 3. We have

[Ul, 'Uj] = Eng = ,Cg (871 O Vg O Ujfl)
= (Leo)(E  vgov; 1)+ [E,E ovgou 4

+E7o ((550)(027 vj—1) +[€ va] o vj1 + 20 [E, Uj—l])

where [£, v5] = [v1, v2] = 0by assumption and [£, v,_1] = [v1, v;_1] = 0 by induction.
Since £ is an eventual identity, we also have

(Leo)(E  va0v;1) =[e,E]0E oy oy

and
(,Cgo) ('UQ, Ujfl) = [6, (C/’] O VU2 OVj_1.
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We get
[v1,vj] = 2[e,E] 0 E L ovgov; 1 +[E,E ovyon;_y
where
[£,67Y = =287 o e, &] (2.28)
as shown in [20]. This proves [vy, v;] = 0. [ |
Proposition 2.22 Foreachi € {1,...,n} we have
(v, Y = =27 o [e, ). (2.29)

Proof: For i = 1 this amounts to (2.28). Let us fix ¢ > 2. The quantity £,,e can
either be written as
Loe=Ly,(E0E) = (L, 0)(E,E) +[v5,E] 0 E T+ E0 [, E7]
=le,v;]0E0 &+ [v,E] 0 E T+ Eo [0, E7Y

or as
L,e=[v,e] =—[e,v].
We get
Eolv, Y =—2le,v] — [v5,E] 0 &1
where [v;, £] = [v;, v1] = 0, which proves (2.29). |

Proposition 2.23 Foreach j € {2,...,n} we have
[1}2, ’Uj] =0. (230)

Proof: We proceed by induction over j, starting from the trivial case j = 2. Let
us fix j > 3. We have

[v2, 0] = Loyvj = Ly (E 0 v30054)
= (Ly,0)(E " v200j-1) + [v2,E o vy 0wy
+ &7 o ((L4,0)(v2,vj-1) + [v2,v2] 0 V1 + 3 0 [La,Vj_1])

where [vy, v5] = 0 trivially and [v2, v;_1] = 0 by induction. Since v, is assumed to be
an eventual identity, we get

[vg, vj] = [e,v2] 0 ET ovy o vy + [v9,E ovgov;_1 +E ole,va] ovg0u; 4

=2[e,v] 0 E7 0wy 0w + [v,E 0wy 0054 @2 .
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Proposition 2.24 Foreachi,j € {2,...,n} we have
[UZ', ’Uj] =0. (231)

Proof: Let us fix i > 2. We proceed by induction over j, starting from the case
j = 2 which holds true by (2.30). Let us then consider j > 3. We have

[vi,v5] = Lovj = Lo (E7 o vp0vj)
= (Lo,0) (€ vz 0j1) + [0, € o v 05
+ & o ((Ly,0)(v2,0j-1) + [v5,v2] 0 vj 1 + vz © [v5,v;1])
where [v;, v2] = 0 by (2.30), [v;,v;-1] = 0 by induction and [v;, E7'] = —2E ! o [e, ;]
by (2.29). Since v; is an eventual identity, we get
[vi,vj] = [e,vi] 0 E ovgov; 1 —2E 7 o e,v;] ova0v; 4

+ & ole,v]ovgov;q = 0.

|
We have then proved the following.
Theorem 2.2 The vector fields {v;}icqi,.. ») pairwise commute.
Corollary 2.25 There exist coordinates w', ... w" such that
0
Ui:%, ZE{].,,TZ}

2.1.2 The case of multiple Jordan blocks
Let us now consider the more general case where » > 1. Condition (1.43) reads

— 05,0 k1) (@€ + 850 €D 4 550, E1 IV

= 0302 Dy (2.32)

o=1

for each choice of o, 5,7 € {1,...,r} and foreachi € {1,...,m,},j € {1,...,mgz},
ke{l,...,my}. If f =~in (2.32) we get

— Q)@)€ + 0505 E TV 4 65055 €IV

a i—j—k+2)(«
= 353 0y £
o=1

which yields

Ojrr-1)(@E ™ =0
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for a # (3 (implying that £/® only depends on u!(®), ... u™*(®) and
_ 5(j+k_1)(a)gi(a) + aj(a)g(i*kﬂ)(a) + 3k(a)g(i*j+1)(a) — 3l(a)g(i*j*k+2)(a) (2.33)
fora = p. If B # v in (2.32) we get
533],(5)5(2'*“1)(&) + §gak(7)g(i*j+1)(a) -0

which trivially holds. An eventual identity must then be of the form

T Me . 8
— (@) (4, 1) ma (@)
E=D ) O, um) =

a=11i=1

where the functions £/ (y!@ .. yme(®) are solutions to (2.33). Since for ev-
ery a« € {1,...,r} condition (2.33) is analogous to (2.2) and the functions

,,,,,

tual identites from the previous section naturally extend to the general case where
r>1.

Theorem 2.26 Given a regqular F-manifold with (generalized) canonical coordinates
{ut @ ume @Y oy where the structure constants of the product and the compo-

,,,,,

nents of the unit vector field respectively read C;‘((%))k(w) = 05020,y and ') = &%, an

eventual identity must be of the form

T m.
e ) 8
_ (@) (,,1(a) ma(a)
€= €W, . u ) 5@

a=11=1
where for each o € {1,...,r} the functions {Si("‘)}ie{l ,,,,, ma} are solutions to
o J U= 1) oy @ — (1= 2) 0V ot <m,
M) €™ =
0 forl>m,

(2.34)
foreachm € {1,...,m,}.

Remark 23 Condition (2.34) gives a compatible system of PDEs, namely

@(a)@j(g)gm(w = 8j(5)8i(a)5m(7), 1€ {1, e ,ma},j S {1, ce ,mg}, a, e {1, c. ,7“},

(2.35)
foreach v € {1,...,r} and m € {1,...,m,}. In fact, both the sides of such condition
trivially vanish as soon as at least two of the indices «, [3,~ are different (as each of the
funCtions {gl(a)}ié{l ..... ma}, a€{l,...,
responding block). The only non-trivial case is then recovered when all of the greek indices
coincide, a case in which the proof of (2.5) can be adapted to prove (2.35).

" only depends on the coordinates associated to the cor-

71



Proposition 2.27 Let us fix « € {1,...,r}. For each m € {1,...,m,} the m(«)-
th component of an eventual identity £ is a polynomial function in the variables

-----

,,,,,

Proof: The argument for the case of a single Jordan block clearly extends to
the more general case. |

Remark 24 Proposition 2.27 implies that an eventual identity can be fully determined

.....

..........

Example 2.28 The Euler vector field

E:Zuaui

=1

is an eventual identity. In fact, fixed o € {1, ... r} (without loss of generality, we consider
a such that m, > 3), given £ (u1@)) = 1@ gnd £2(2) (y2(@)) = 42, condition (2.34)
gives foreach i € {3,...,my}

£HO (@) @) = @) 4 f (@) i D@)

for some function fi(ut@, ... u=D@)). Analogoulsy to the case of a single Jordan
block, the function fi(,) actually depends only on u*®) u*®). As expected, a first example
of eventual identity is then provided by the Euler vector field.

A less trivial example is provided as follows, which we suggest to compare with
the examples discussed in the case of a single Jordan block.

Example 2.29 Let us consider the case of dimension n = 7 with two Jordan blocks of sizes
4 and 3 respectively. We have r = 2 and

D = b 20 — u2, W30 — u3, LA — u4,

9

1(2) 5 2@ — 6 32 — o7

Let &€ be an eventual identity with
gl — ul

52 — (ul)Q (U2)3 + u2
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and

&> = sin(u’)

E% = v’ cos(u®) + ub.
The remaining components of £ must be of the form

€9 =(6(u'*(u*)* + 1)u’ + fy(u',u)
54:(9(u1)2(u2)2+ )u + 12(ut)? u? (u?)?
(282f3(u u?) — 2u'(u 2)3)u + fa(u', u?)

for some functions fs, fy of u', u? and
ET=(2 - 2u° sin(u®) — cos(u®))u’ + fr(u®, u®)
for some function f of u®, uS.

Theorem 2.3 Let £ be an eventual identity. Its inverse is of the form

— ~ —1\i(x a i 8
:ZZ(g l)( )(ul( )7“.’u( ))an(a)

a=1 =1

where )

-\1(a) __

(8 ) - gl(a)
and
k
1
((c; )(k+1 — Z k s+1) () 5(S+1 a)
5 () s=1

foreacha € {1,....,r}and k € {1,...,my — 1}.
Remark 25 The structure constants of the dual product
XxY=E1oXoY, XY € X(M),

are given by

~i(a) s(o) o t(r o 1N (i N
Citomn = €V un Goney = 9505 (€7

for all suitable indices. The dual product is expressed on the coordinate vector fields as

Sk u (i)
Oute) * Oy) = CatonsyOhi) = B > (E7H)ETIP2 gy

k=i+j—1

for all suitable indices. In particular, O;a) * O0j(g) = 0 for oo # B and ;o) * Oja) = 0 for
1+7>mg+ 2.
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Analogously to the case of the previous section, we introduce vector fields
{Ul(a), <oy Umg (o }ae{1 r} such that

Vi(a) * Vj(8) = 0af V(i+j—1)(a) Liitj<ma+1}
foreacho,f € {1,...,r}andie {1,...,my}, j € {1,...,mg}.

Theorem 2.4 By setting

° Ul Z gz a

® Uy Zl Z ai(a) Oi(a) for some functions asay 7# 0, a3(a); - - - G (a)

® Uiti)(a) = 2 (V(i11)(0)) ") Oy for i > 2 with

a=1 k=i+1
k—1 k—a+1
(V1)) = (vi(@)) " (Vg()) " (ETHFTT DD k> 41
a=i b=2
foreach o € {1,...,r}, we have

Vi(a) * Vj(8) = 0ap V(i+j—1)(a) Liitj<ma+1}
foreacha,p € {1,...,r}andic {1,...,m,},j € {1,...,mg}.

Proof: The proof for the case r = 1 can be adapted to the general case where

r > 1,as for each a € {1,...,r} the functions {£/®}, e1,.ma} and {a;) ticga,..ma}
only depend on the coordinates u'(®), ... y™a(@), |
In particular, we assume vy, to be solution to (2.34) for each a € {1,...,r}. In

other words, we are assuming

T Ma

ZZ%

a=11i=1

to be an eventual identity.

Remark 26 Analogous formulas to (2.15) and (2.16) apply here as well. Precisely, for
each o € {1,...,r} we have

J—1
S _ 1 £lH+1)(@) (a (J a+1)(a)
Yjta) = 51(a)z J(a) + 51 a) z;v (- (2.36)
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foreach j > 3and J > j and

J—j

Je) _ O200) (oD@ L (T-5)(@) o(s+1)(@) _  (T-s—1)()

Vi) = ity V-1 gl(a)Z(vj(a) & Vi) U+ ) (2:37)
s=1

or each j > 3 and J > j. In particular, for each j > 3 we have
P

)(J D(a

j@) _ 92(a)  (j-1)(a) (Cbz(a)—
o) = gi) -1 = (g1 oD@ 7

(2.38)

The vector fields vq, . . ., v, are then linearly independent.

The same considerations about the independence on coordinates which correspont
to different blocks lead to the following.

Proposition 2.30 For each oo € {1,...,r} the vector fields {va)}i>3 are solutions to
(2.34), namely

DD i) gur

a=1I=1i au

is an eventual identity for each i > 3. In particular, for each j € {1,...,my}and J > j

the function v (( only depends on the coordinates u*(®) ... y/=7+2)(@),
Let us assume [vy(q), V2(a)] = 0 for each o € {1,..., 7}, thatisform € {2,...,m,}
1 m
o) = ~ g1y D (€' Do) i) — ) D) €™ (2.39)

=2

Analogously to the case of a single Jordan block, the request for v, to both be an
eventual identity and to commute with v; = £ gives rise to a compatible system of
PDE:s for the components of v,.

..........

Proof: For each a € {1,...,r}, the results about the commutativity of the vec-
tor fields {vi(a) }ic(1,....ma} extend as well, thus the vector fields {v;(a) }ic(1,... m.} Pair-

wise commute. Since [v;(a), v;(s)] trivially vanishes for a # (3, the result is proved.
|

Corollary 2.31 There exist coordinates {w*(®) ... @3 eq1.. ry Such that

.....

0

foreacha € {1,...,r}andic {1,...,mu}.
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2.1.3 Applications to Nijenhuis geometry

Among the directions toward which the results of this chapter may be extended,
one way concerns Nijenhuis operators (we refer to Chapter 4 for further details),
characterized by the property of having vanishing Nijenhuis torsion (see (4.17)).
Other recent studies in Nijenhuis geometry were conducted in [3, 9].

It was proved in [20] that for any F-manifold with eventual identity £ the en-
domorphism £o is an Nijenhuis operator. In the semisimple case this is just a di-
agonal endomorphism, but for the eventual identities constructed in this chapter,
the Nijenhuis operator takes the block-diagonal form where each block assumes

the form
gl 0 0 .0 0 |
E2(@) gl 0 .. 0 0
L, = : : : . : :
gma—1)(a) gima-2() gma-3)@  gl@
gma(@)  glma-1)(a) gma-2)a)  g2a) gl(a)
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Chapter 3

Regular Frobenius manifolds

This chapter is dedicated to regular non-semisimple Frobenius manifolds and it is
based on [65]. We recover formulas for a generic dimension, before focusing on
dimensions 2, 3 and 4. We give a complete classification in the case corresponding
to a single Jordan block in the Jordan canonical form of the operator of multiplica-
tion by the Euler vector field. In the cases associated with multiple Jordan blocks,
we reduce the classification problem to systems of partial differential equations: a
third-order ODE in the three-dimensional case and to a system of third-order PDEs
in the four-dimensional cases. In all of the cases, we provide explicit examples of
Frobenius potentials.

Further details about the four-dimensional regular non-semisimple cases corre-
sponding to a Jordan canonical form of the operator of multiplication by the Euler
vector field having at least one Jordan block of size 2 are contained in Appendix A.

Since given a Frobenius manifold (M, 7,0, e, E) the contravariant metrics
and Ln~!, with L = Eo, define a flat pencil of metrics, a by-product of our results
is a list of non-semisisimple flat pencils of metrics that define the bi-Hamiltonian
structures of the principal hierarchies of the associated Frobenius manifolds. The
study of this class of bi-Hamiltonian structures and of their bi-Hamiltonian de-
formations in the non-semisimple case is at a preliminary stage. One of the few
available results is [23].

3.1 Generic dimension

Let (M,n,o0,e, E) be a regular Frobenius manifold of dimension n. Let r be the
number of Jordan blocks of L and let my, ..., m, be their sizes. According to Theo-
rem 1.6, we denote by

(WO ae{l,...,r}, je{l,...,ma}}
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the canonical coordinates realizing (1.44) and (1.45). Therefore the product has the
following form:

e Oitj—1)(a)s i+ 7 <mg+1,
0, P47 > mg +2,

Jica) © Oj() = (3.1)

foralli € {1,...,ms}, j € {1,...,mg} for each o, 8 € {1,...,7}. The unit vector
tield takes the form

e=Y i (3.2)

E=>Y uo. (3.3)
s=1
The operator L = E o is given by
_ rile) j
L= L% i) ® du? (3.4)
where
| 5o uli=i+D(@), P>
5=, oy ©5)
0, i<

foro, 0 € {1,....,r}and i € {1,...,ma}, j € {1,...,mg}. In fact, for any given
a,B€{l,...,r}andi € {1,...,my}, j € {1,...,mg} we have

L = (B 0 95)" = u*0) (9hy) 0 Dy0s)"

J(B)
0 8, (B i), 1<k<mg—j+1,
0, otherwise,
0, otherwise,
B i@ i> 7,
- 0, 1< 7.

Remark 27 Due to the reqularity condition, we are implicitly assuming that u*®) # 0
foreach o € {1,... 7} and u™® # u*® if o # B foreach a, B € {1,...,7}.

In order for the data (7, o, ¢, E') to define an actual Frobenius manifold, we have to
impose all of the axioms entering Definition 1.1. In particular, we want to study
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conditions (1.3)—(1.9) in canonical coordinates. As stated in [18], condition (1.3)
implies that the metric 7 is represented by a block diagonal matrix, each block of
which is an upper triangular Hankel matrix (for instance, in the case of a single
Jordan block see (3.27)). Precisely,

1= 608 it j—1)(e) A" © du?? (3.6)

for some functions {7,y |1 < a <7, 1 <i < mg}and 7, = 0fori > mq + 1.
In fact, condition (1.3) spells out as

(0) 0395 034 k1 =11(8)s(o) 0ady Oik1 (3.7)

foreach o, 8,7y € {1,...,r}andi € {1,... ,my}, 7 € {1,...,mg}, k € {1,...,m,}.
By picking a # 5 = « in (3.7), we see how the components of the metric vanish
when corresponding to different Jordan blocks of L. By picking o = 3 = vin (3.7),
we get

i) (j+k—1)(e) =Tj(a)(i+k~1)(a)

for suitable 7, j, k € {1,...,m,}, proving (3.6). Moreover, condition (1.7) implies
the existence of a metric potential H such that

ﬁz(a) - @(a)H (38)

foralli e {1,...,m,} foreach o € {1,...,r}. In fact, condition (1.7) spells out as

—~ k()
>_ Ty =0 (3.9)
o=1
that amounts to
> Z 7 ) Ms(01(0) T O1(0)Mi(@)s(r) — Os() M) 1(0))

o=1 s=1

m’y r
=D 0" (B msanit0) = Doty Miten(@)) + Z NN " 01 (o) Miaysi)
s=1 o=1
My
(19) ) _ _
=00 (D) = Do) i) = O (3.10)

foreach a,y € {1,...,r}and i € {1,...,my}, k € {1,...,m,}. By picking k = m,
in (3.10) we get

nmv('?)l(’Y) (01-(&)%(7) _ al(v)m(a)) =0
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implying 0i(a)71(y) = 1(7)Mi(a)- Let us fixt € {2,...,m,} and inductively assume
that i) 7s(,) = Os(7)Ti(a) for each 1 < s <t — 1. By picking k = m,, —t + 1 in (3.10)
we get

t
Z (M =D ()s5(7) (8i(a)ﬁs(’y) — as('y)ﬁi(a)) =0.
s—1

By means of the inductive assumption, only the term for s = ¢ survives, giving
Di(a)e(y) = Or9) iy a0 therefore proving

8i(a>m<7) = 8k(7)ﬁi(a)

for each o,y € {1,...,r}and i € {1,...,m.}, k € {1,...,m,}. There must then
exist a potential / realizing condition (3.8).

Since we consider non-semisimple Frobenius manifolds, there must exist at least
one Jordan block of size greater or equal than 2. Without loss of generality we then
assume that the size of the first Jordan block is greater than 1. By dropping this
assumption, analogous results will hold, where different coordinates will play the
roles here played by u', u?.

If we take into account that the metric must be homogeneous with respect to
the Euler vector field and constant with respect to the unity vector field, a further
expression for the terms 7j;,) can be recovered.

Theorem 3.1 The functions 7, appearing in (3.6) can be written as
7, = (W) F ic{l,...,n}, (3.11)

for some functions Fi, ..., F, of the variables

T .
j+2 1 Jj+2
w u 2251(a)
o=

2= = : je{l,....,n—2}, (3.12)
such that
Fi==) Oaw-f+0Cy, (3.13)
a=2
Fy=—204f—(d—1)f+C,, (3.14)
F}' = 0,—2f, J € {3, . ,TL}, (3.15)
for some function f of 2, ..., 2"~ % and constants Cy, Cy. In particular, the quantity
> Fay=0 (3.16)
a=1

is a constant that vanishes whenever d # 0.
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Proof: By imposing (1.9) we get
Z al(oz)ﬁi = 'Ceﬁi =0
a=1

fori € {1,...,n}. It follows that each 7}, can be written as

M = @i (Uzv w’ —u! Z Oy - - u" —u! Z 5?@)) (3.17)
a=2 a=2

for some function ¢; of n — 1 variables. By the homogeneity condition (1.8), it can
be rewritten as in (3.11) for some function F; of the variables defined in (3.12).
The flatness of e with respect to V implies that d(n(e, -)) = 0 (see [18]), that is

0y(6 ity A7) A dui® = 0

thus
aj(ﬁ)ﬁi(a) - ai(a)ﬁj(/j) =0 (3.18)
foralli € {1,...,ma}, 7 € {1,...,mg} and o, € {1,...,r}. In particular, for

i(),5(B) € {3,...,n} we get
0,i-2Fya) = 0i)—2Fj(g).-

z

There must then exist a function f of the variables 2!, ..., 2"~ ? realizing (3.15). By
fixing j(8) = 2 and i(a) € {3,...,n} in (3.18) we obtain the following relation:

i) (")~ F) = 02 ((u®) ™ Fia)
which amounts to
(u?) 7! Qw2 Fy = —d (u?) ! Fya) + 02 Fya)

and, by the chain rule and (3.12),

n—2
02 Fy = =d Fyay = ¥ 7 0. Fi(a)-
j=1
By taking into account (3.15) we get
n—2

azi(a)—QFQ =—d azua)fzf — Z Zj 8Zj82i<a>72f.
j=1
Then for eachi € {1,...,n — 2}
azin = —dazif — Zj 8Zj82if
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that is
8Z¢{F2—(1—d)f—|—zj8zjf} =0.
Therefore the quantity 5, — (1 — d) f + 27 9., f equals some constant C5, proving
(3.14).
By taking i(a) = 1(a), j(B) € {3,...,n} in (3.18) and summing over all the
indices @ € {1,...,7}, we get

Zl 0i(8) M) = Zl h)Tj()
that is §
(W)™ 9j(s) (2 F 1<a>> = LeTj(s)
thus :
0.ip)—2 (Z Fl(a)) = 0.
a=1

This means that

azj (Z Fl(a)) = O
a=1

forall j € {1,...,n — 2}, proving that ) Fj,) must be equal to some constant C}.
a=1
Condition (3.13) follows.
On the other hand, by taking i(«) = 1(«), j(8) = 2 in (3.18) and summing over
alla e {1,...,r} we get

Oy <Z (UQ)_d Fl(a)) =0

a=1

which, since ) Fi,) = C}, amounts to

&2 ((u?)™Cy) =0.

This implies d C; = 0, meaning that the constant C; must vanish whenever d # 0.
[ |

Proposition 3.1 Up to constants, the function f appearing in (3.13), (3.14), (3.15) is
related to the metric potential H by the following formula:

H=(w))""f+Cyp(u’) + Cyu' (3.19)
where
(uz)l—d . d 1
oty ={ T FIEL (320
Inu?, ifd=1.



Proof: By (3.8) and (3.11) we have
OH = (W) (..., 2" ) (3.21)
foreachi € {1,...,n}. Fori > 3 we get
OH = (u*) ™" O f

that is
0,i—2H = (u2)17d Oyi—2f

or

0,i—2 (H — (u2)1_d f) =0.

It follows that
H= ()" f + K(u',u?) (3.22)

for some function K (u',u?). For i = 2in (3.21) we get
OH = (u?) (= 210,4f —(d—1) f +C)
that is, by the chain rule and (3.12),

W)™ (L =d) f =270, f) + 0K = ()™ (=2 0. f — (d—1) f + Cs)

yielding
(%K(ul,u2) =, (u2)’d
Then
Cy ¢ if d#1
K@) =14 > + k), ifd 71, (3.23)
Cy lnu —I—k(u) ifd=1.

for some function k(u'). By putting together (3.22) and (3.23) one gets
H = ()" f + Cap(u?) + k(u')

for

)~ if d#1
pu?) =4 . (3.24)
In u2, ifd=1.

For ¢ = 1in (3.21) we finally get
81H = (u2)7d F1

that is, by the chain rule and (3.12),
‘dZ@l(() 2f+01 = dZG L(a)— 2f—|- dCl
a=2
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Thus

!

Duk(u") = (1) C, = {0 ifd o}

implying
k(ul) = CI Ul + Cg

for some constant (5. We conclude that
H = (uz)l_d f -+ CQ QD(U2) + Cl Ul + Cg

for p(u?) as in (3.24). u

3.2 The case of a single Jordan block: explicit results
up to dimension 4

In this section we classify regular non-semisimple Frobenius manifold structures
up to dimension 4 in the case where the operator L has a single Jordan block. Due
to the results of the previous section in the specific case where L has a single Jordan
block of size n the unit vector field becomes ¢ = 0; and in canonical coordinates
we have

ai i—1) 1+ ] S n—+ 17
00, =4 - (3.25)
0, i+jzn+2,

foralli,j € {1,...,n} and v' = «'™ for each i € {1,...,n}. The operator L is
described by the following lower triangular Toeplitz matrix:

w00 0 0]
u? ut 0 0 0
ud u? w0 0
L= . . . A (3.26)
e s
i un unfl uan u2 Ul_

The metric is represented by an upper triangular Hankel matrix that only depends

on the coordinate ? and on n functions Fi, ..., F, of the variables
R _
ZZZF, ZG{L...,’I’L—Q}.
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It takes the following form:

F1 FQ F3 Fn—l Fn
F, I3 Fy F, 0
Fy, F, F5 ... 0 0
n=@ | T (327)
F,_. F, 0 ... 0 0
' F, 0 0 ... 0 0]
In particular, F; is equal to a constant C; that vanishes whenever d # 0 and the
other F;s are expressed in terms of a function f(z',...,2"2) by
Fy=—2"0,f —(d—1) f+Cy, (3.28)
Fj = 0,i—=f, j € {3, ce 7n}, (3.29)

for some constant (.

3.2.1 Dimensionn = 2

Let M be a two-dimensional Frobenius manifold with product o, metric 7, unit
vector field e and Euler vector field £. Let us require M to be regular and the
operator L = E o to have a single Jordan block near a point m € M. The unit and
the Euler vector fields read respectively e = 0; and E = u'0; + u?0y. It follows
directly from (3.27) that the metric has the form

Cy Oy

_ 2\—d
n= e (3.30)

for some constant C; which vanishes whenever d # 0 and for some non-zero con-
stant C.

We are able to recover flat coordinates and an explicit expression for the Frobenius
prepotential, as pointed out in the following result.

Theorem 3.2 Flat coordinates coincide with the canonical ones when d = 0. Otherwise,
they are given by

when d # 1 and by



2 (u', u?) = Inu?
when d = 1. In all the cases, the prepotential is given by

F(z', 2%) = % (1) +

% (z')?2? (3.31)
up to second-order polynomial terms. In flat coordinates the unit and the Euler vector

fields are respectively given by e = 51 and

R ER TS ifd =1,
210, + 22(1 — d) s, ifd+1.
Proof: If d = 0 then the metric in (3.30) is constant, thus flat coordinates coin-
cide with the canonical ones. Let us now fix d # 0. In this case the flat coordinates
are

xl(ul,uZ) — ul
2\1—-d

2/ 1 2 _(U)

¥ (u,u®) = T g

when d # 1 and
ot (utu?) = ut
2 (u', u?) = Inu?

when d = 1. In both cases, in flat coordinates the metric becomes

C1 Gy
Cy O

’r]:

and the structure constants equal the ones in canonical coordinates:

&=l i, 5,k € {1,2}.

i i)

It follows that up to second-order polynomial terms the Frobenius prepotential F
is of the form

Pt o) = Tty + L atya?

and that in flat coordinates the unit and the Euler vector fields become of the form
stated above. [ ]
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3.2.2 Dimensionn =3

Let M be a three-dimensional Frobenius manifold with product o, metric 7, unit
vector field e and Euler vector field E. Let us require M to be regular and the
operator L = E o to have a single Jordan block near a point m € M. The unit and
the Euler vector fields read respectively e = 9; and F = u'd; + u?0s + u*d;. We
already know from (3.27) that the metric is of the form

3

Fi(iz) B(s) Fa(i)
n=()"" | B(a) Bk 0 (3:32)
Fy(%) 0

for some functions Fi, F,, F3 and that F} is equal to a constant C that vanishes
whenever d # 0. It turns out from the zero-curvature conditions that the functions
F,, F3 must be solutions to the following system of ODEs

Fy+2F+dF;=0

(3.33)
21, FY —3(F)? =0.

In fact, let us introduce the variable z = Z—z We have already seen that there exists
a function f(z) such that

Fy(z) ==z f'(2) = (d = 1) f(z) + Oy,
F3(2) = f'(2),
for some constant (. It follows that
F)+2F,+dF;=0.

Moreover, by requiring that R};, = 0 one obtains the Liouville-type differential
equation
2R FY —3(F3)? =0.

This suffices to make all of the conditions in (1.3), (1.5), (1.7), (1.8), (1.9), (1.4) hold
without imposing more. So far, what we know about the functions Fi, F5, Fj is
that F; equals some constant C; and that F5, F; are solutions to the system (3.33).
Two expressions for the function f appering in (3.28), (3.29) are then possible, as
shown below.

Theorem 3.3 The function f realizing (3.28), (3.29) is either provided by
f(z)=Cs5z+Cy (3.34)
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for some constants Cs, Cy or by

fz) == 5403 +Cs (3.35)

for some constants Cs, Cy, Cs.

Proof:  The first condition in (3.33) amounts to (3.28) and (3.29), while the
second one can be rewritten as

2f(2) f"(2) = 3(f"(2))* = 0. (3.36)

If we assume f”(z) # 0 then the solutions to equation (3.36) can be written in the
form of (3.35), while (3.34) is recovered by considering solutions corresponding to
f"(z) =0. |

Summarizing, two cases may occur: either

F1(2> = Cl
FQ(Z) = —Cg dz+ CQ (337)
Fg(Z) = 03

for some constant C; that vanishes for d # 0 and some constants C5, C'5 or

F1 (Z) = Cl
Fy(2) = & - 20 1 (3.38)
F3(Z> - (Z+CC4'3)2

for some constant C that vanishes for d # 0 and some constants Cy, Cs, Cj.

Proposition 3.2 In the case of (3.37) flat coordinates are given by

xl(ul, u27 US) — ul

2\1-d
22 (ut, u? u?) = (u?) " ud + —gzéllt z 2
2 2-d
30,1 .2 3y _ 225
x(u,u,u)—Z_d(U)
when d ¢ {0, 1,2}, by
xl(ul,uz,ug) :ul
u3 02




when d = 2, by
xl(ul,u2,u3) — ul
3
2,01 .2 3y _ U Cy 2
$(u,u,u)—$+alnu

2 (ut, vt u?) = 2vVu?

when d = 1 and, trivially, by

when d = 0.

The proof is a straightforward computation.

Proposition 3.3 Let z', 22, 3 denote flat coordinates. Up to second-order polynomial
terms, in the case of (3.37) the prepotential is given by

F(z', 2% 2% = % (1) 2® + % ot (2%)? (3.39)
when d # 0 and by
F(z', 2% 2% = % (z')? + % ()22 + % () 2® + % zt (z%)? (3.40)

when d = 0 (in this latter case flat coordinates coincide with the canonical ones). If d # 0
then in flat coordinates the multiplication is written as

dy0d =0
Oy 00y = 0
dy 0Dy = s
52052:0
52053:0
J3 0 D3 = Dy

and the Euler vector field reads
2—d

E=2'01+(1—d)2* 0, + 2° O
ifd ¢ {0,1,2},
- Oy~ 1 L
E:x161+5§82+§x383

89



ifd=1and
EZCL'lgl —1‘252—{—53
if d = 2. In flat coordinates the unit vector field is e = 0, for each value of d.

The proof is a straightforward computation.

Analogous results can be achieved for the case of (3.38), as presented below.

Proposition 3.4 In the case of (3.38) flat coordinates and the Euler vector field are respec-
tively given by

0203(U2)2 + CQ U2’LL3 — O4(’LL2)2
Cl (03 u? + U3)
JZQ(UI,UQ, u?’) == [( — CgCg\/ 0104 - 04(01 - 04

2C4—/C1C4
+CyC5)) (u?) ™

C4—/T1Cq
—Gudd) G (G

1
cwlcmcw+w
1'3(’& U U [(0203\/ 010 — 04 Cl

2C4+/C1Cy
+ CyC5)) (u?) ©

Ca++/C1Cy
— Cg U,S (Uz) Ca (04
1
—\/c,c
1m@wrcm@w+w

E:x151+bx252+c:p353

xl(ul, u2, u3) — ul

C1C4)]

where

(C2C5 + C1)(Cy)? — CLCyC3y/Cy + (C4)*V/Ch
Cy (C2C3/C + 0203\/F4 + 01\/74 — C/Cy)
—(C1)3Cy — (Cu)3
C4 (C2C3y/Ch + CoC3+/Cy + C1/Cy — Cun/Cy)
VGG -G
VCICy — (Cy)?

when d =0, Cy # 0and Cy # Cy, by

b:

1, (W)?(nw?)?

1,1 3y _
r(u,ut,u’) =u +2(C’3u2+u3)
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+

xz(ul,ug,u?’) =

2 (u', u? u?) =

Cyu? (2 Inu?® — (Inw?)? — 2)

2 04
(u?)? nu? Ch u2(1n u? — 1)
C Cyu? +ud Cy
(u?)? Cyu?
SOy u? + ud C,

E=(z"— 2?0+ (2* +2°) 9y + 2 0y

when d = 0and Cy =0, by

2 (ut, u?, u?)

x?’(ul, u?, u3)

o (u?)? Cy 12
Cyu? + ud C,

- (u?)? Oy (u?)?

__2(03u2+u3) 4Cy

_ u? Cy lnu?

T Csu? +ud Cy

E:xlél—l—széQ—F%ég
o

when d = 0 and Cy = Cy, by

xl(ul,u2,u3) =

1,2

2 (ut,u ,u3) =

2 (ut,u? u?)

E 21‘151—

when d ¢ {0,1,2} and C5 # 0, by

xl(ul,uQ,us) _ ul +

x2(u1,u2,u3) =

2 (ul u? u?) =

d—2

205 uB(u2) 2" — Cy (2 — d)(u2)'2"

2(u?)?(Cy — Oy Cy)
Cy(d)*(Csu? 4 u?)
(C2C5 — Cy (1 —d)) (u?)*?
Cy(1—d)(Cu? + u?)
Oy ud (1)1
Cy(1—4d) (03 u? + u3)
205 ud(u?) 2"
Ci (2= d)(Cs w2 + uP)
—(C4(2 = d) — 205C5) (u?) ="
Cy (2 —d)(Csu? + u?)

u1+

wQég—(d—l)l'gég

2( — 02 U2 U3 + C4(U2)2)
04 (d)2 u3

4—

04 (2 - d) U3
02 u3(u2)17d _ 04 (1 _ d) (u2)27d

04 (1 — d) U3
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d—2

E:.Ilél— x252—(d—1)x353

when d ¢ {0,1,2} and C5 =0, by

2(u2)2 202u2
1,1 2 3\ _ .1
$(U,U,U)—U+03u2+u3_ 04
u? +C’2 In u?
03U2+U3 04

(u2)? 20, Vu?

xQ(ul,uQ,u?’) =

2 (u u? u?) =

_Cgu2+u3 Cy
E:$151—d_2l’252+(@—(d—l)l’g)é?,
Cy
when d =1, by
2\2 2
1,1 ,2 3y _ 1 (u?) _C2U
x(u,u’U)_u +2(03U2+u3) 204
2 2
201 2 3y U Cy Inu
o (u,ut,u’) = 03U2+U3+ o
1 Cy

3.1 .2 3
2°(ut,u? u’) = — —
(', ) Csu? +ud  Cyu?

E:l’lgl—f- (%—d_2$2) 52—(d—1>l‘353

Cy

when d = 2. In each of these cases the unit vector field reads e = 0.
Here are explicit expressions for the Frobenius potential in some selected cases.

Example 3.5 Let us fix d = 0, C; = Cy and Cy = 0. In flat coordinates the metric

becomes
cy, 0 0
ﬁ = 0 0 - C’4 )
0 -C4 0

the multiplication is given by

51051251
51052:52
51053:53

o~ 3V2 [z~ 2 [P N
82 o 82 = —T ﬁ@Q + T (;) 83
. . 9[22 . 2 3
32033:_31_%_ x_332_£ :B_ag
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up to second-order polynomial terms. In flat coordinates the unit and the Euler vector
fields are respectively written as
€ = 81

and
E = .I‘l 51 +2l’252.

Example 3.6 Let us fix d = 2 and Cy = 0. In flat coordinates the metric becomes

0 0 C4
77 - 0 04 0 5
Cy 0 0
the multiplication is given by
51 o 51 = 51
51 o 52 = 52
51 o 53 = 53

~ = 322\~ %~ ~
82082:—5 81—1—3;82—1—83
~ = 2\’ 3/2%\%=
et (55) -3(5) 2
<~ 3/22\"~ 22\
83083:_4_1(;) 01—1—(;) 82

and the prepotential reads

C C Cy (2%)*
F(x', 2? 2%) = 74 (") 2® + 74 ot (2)? + §4 (:;2 (3.41)

up to second-order polynomial terms. In flat coordinates the unit and the Euler vector
fields are respectively written as
e = 81

and
E:l'lél —.1'363.
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Example 3.7 Let us fix d = 2 and Cy = 1. In flat coordinates the metric becomes

0 0 C4
77 - 0 04 0 5
Cy, 0 0
the multiplication is given by
((51 o 51 = 51
51 e} 52 == 52
51 o) 53 = 53
a a3 3 3 _Cix?-1\25
02 @) 82 = —WW(C4.Z’ € 1) 81
3 2 vz =
+ C4£L‘3W(C4 1'3 604:0 _1)82 + 83
~ = 1 W22 1\3 &
32 @) 83 = ( 4)3(3;'3)3W(C4 .1'3 60 l) @1
3 3 Ciz?-1\25
2(04)2(x3)2W(C4x € ) 0
a3 A 3 Cyia?2-1\45
(93083 = —WW(C4£L'3€ 1) 81
1 3 Ciz?-1\35
+WW(C4$ € ) 82

and the prepotential reads

1
TN
+ 22 W(C’4 22 et IQ_I)S + 63 W(C'4 2> et “’2_1)2
Ca Ca
2 2

F(z!', 2%, 23 (3 W (Cya? 60”2_1)4

+T2W (Cy 23 et x2_1)) + — (M2 2® + — 2! (2?)?

up to second-order polynomial terms, where W denotes the principal branch of the Lambert
W function, defined as the multivalued inverse of the function w — we" (see [15] and
references therein). In flat coordinates the unit and the Euler vector fields are respectively
written as

6:6’1

and

~ 1 - ~
szlal—i‘aag—l’gag.
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3.2.3 Dimensionn =4

Let M be a four-dimensional Frobenius manifold with product o, metric 7, unit
vector field e and Euler vector field E. Let us require M to be regular and the
operator L = E o to have a single Jordan block near a point m € M. The unit and
the Euler vector fields read respectively e = 9; and E = u'0; + u?0 + u*03 + u*0,.
We already know from (3.27) that the metric is of the form

A2 R B A
F(“—3 u_4) Fg(“—3 u_4) F4(“—3 u_4) 0

= @)™ | 2w uZ? W) u? 3.42

T R ) ReE) 0 642
F4(Z_zaz_;l> 0 0 0

for some functions I, F», I3, Fy of the variables z = Z—z, w = Z—; In particular, F; is
equal to a constant C'; which vanishes whenever d # 0 and from (3.28) and (3.29)
we know that Fy, F5, F; can be expressed as

Fy(z,w) = —20,f(z,w) —w0y,f(z,w) — (d—1) f(z,w) + Cy (3.43)
F3(z,w) = 0.f(z,w) (3.44)
Fy(z,w) = 0pf(z,w) (3.45)

for some function f(z,w) and some constant C,. By the flatness conditions, two
expressions for f are possible, as shown below. This fully classifies regular four-

dimensional Frobenius manifolds whose operator L = E o has a single Jordan
block.

Theorem 3.4 The function f realizing (3.28), (3.29) is either provided by
f(z,w) = Cywe? + h(z) (3.46)

for some constants C's, Cy and some functiton h(z) which is solution to

B (2) —2C, W' (2) + C2 W (2) +2C3Cy e =0 (3.47)
or by
_ A(z)
flz,w) =C5 — 2B(2) +w (3.48)

for some constant C' and solutions A(z), B(z) to the following system of ODEs:

A"A— (AP +2(Co+(1—-d)C5) A=0 (3.49)
AB" — A" (B"+1) +2(Cy+ (1 —d)C3) (B + 2) + C1 = 0. (3.50)
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Proof: By requiring that R},; = 0 we get
20,f 02 f —3(0%f)* = 0. (3.51)

Let us distinguish two cases: 92 f # 0 and 92 f = 0. In the first case we obtain

_ A(z)
flzw) =C(z) — 3BG) +w (3.52)
for some functions A(z), B(z), C(z) while in the second one we obtain
F(zw) = whi(2) + ha(2) (3.53)

for some functions hy(z), ha(z).
If f is as in (3.52) then condition Rj,; = 0 implies that the function C(z) must
be equal to a constant C5. Conditions Rj,, = 0 and R3,, = 0 yields respectively

A”A—(A/)2+2(02+(1—d)03)A:O
and
AB" — A (B"+1) +2(Co+ (1 —d)Cs) (B'+ z) + C1, = 0.

All the other conditions in (1.3), (1.5), (1.7), (1.8), (1.9), (1.4) hold without imposing
more.
If, on the other hand, f is as in (3.53), condition R3,, = 0 implies that

ha(2) 1 (2) — (Ry(2))* = 0. (3.54)

Solutions to (3.54) are given by h;(z) = Cs e“1* for some constants C5 and C}, so
that
f(z,w) = Caw e + hy(2).

By imposing condition R3,, = 0 we get
Ry (2) — 2C, hY(2) + C? hiy(2) +2C5 Cye“* =0

that yields
604 z
hg(Z) = 07 — F{C&,CZ 2 —04 (203 —|—C5)Z— C4CG+203+C5:|
4
when C; # 0 and
hg(Z) = C5 22 + CGZ + 07
when C; = 0 for some constants C5, Cg, C7, so that f becomes respectively

Cyz

f(Z, w) = Cg w 6042—}-07—? |:03 Cz 22—04 (2 03+C5) Z—C4 06+2 03+C5:| (355)
4
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and

flz,w) = Cywe? + Cs5 22 + Cg 2 + Cf. (3.56)
In both cases it turns out that all the other conditions in (1.3), (1.5), (1.7), (1.8), (1.9),
(1.4) hold without imposing more. [

Proposition 3.8 The functions A(z) and B(z) appearing in (3.49) and (3.50) are ex-
pressed via hyperbolic functions and second-order polynomials:

1—d
A(Z) _ CQ + (02 )03 SiIlh2 (04(2 + 05)>
4
B(z) = Cgcosh(2Cy(z + Cs)) + Crsinh(2C4(z + Cs))
z 4 22

_§<02+ 1—d)C; HACLCr) = 5+ G

for some constants Cy, Cs, Cg, Cr, Cs if Cy + (1 — d) C3 # 0 and

A(z) = C5 (cosh(Cy z) + sinh(Cy 2)) (3.57)
1
B(Z) = W ((2 C@ C4 C5 + Cl) COSh(C4 Z)
2
+(2CsCy Cs — Cy) sinh(Cy 2)) — % +Cy 2+ Cy (3.58)

for some constants Cy, Cs, Cg, C7, Cs if Cy + (1 — d) C5 = 0.

Below flat coordinates are computed for selected other cases, together with some
Frobenius prepotentials.

Example 3.9 Let us consider the case (3.46) with C5 = 1, Cy = 0and d # 0. Equation
(3.47) becomes h'" (z) = 0 yielding h(z) = az* + bz + ¢ for some constants a,b,c. In
particular we choose a = ¢ = 0 and b = 1, so that h(z) = z and f(z,w) = z + w. When
d # 1, in the flat coordinates

ot (ut, u? u? ut) = u
$2<u17u2’u3’u4) — (u2>—d(u3 + U4)
1
2 (ut, vt ud ut) = §u2 +u?
1
4,1 .2 3 4\ _ 2\1—d
I(u,u,u,u)—l_d(u)
we have
0 1 0 Cy
|t o0 0
1o 00 1|
Cy, 01 0



62517
E:$151+(1—d)$252+$353+(1—d>l’4g4.

Up to second-order polynomial terms, the prepotential is given by

% 1 (d—1)T1 edx (g4) =1
F(ZL’I,ZL’2,$3,(L‘4) :§($1)21‘4+{L‘1l‘3l‘4—|—5(1‘1)21'2 2<d+1 (d_3)
when d ¢ {—1,0,3}, by
1
F(ZEl,l‘Q,LL'g,ZLA) — —(x4)2ln:p4+f(m1)2x4+xlx3x4+§(xl)2m2
when d = —1, by
o203 o4y _C2 129 193 1\2, 3
F(m,x,x,x)zT(x)x +aatr + — ()%
Lo a boaoap, Lo
+2(x)a: +2x(3:) +6(x)
when d = 0, by
o203 o4y _C2 v 4 134 122 L 4
F(m,x,m,x)zT(m)a: +xxtx —|—§(x)x —1—61nx

when d = 3. The case where d = 1 must be treated separately. In the flat coordinates

2l u?, ud, i) = !

3., .4
u’ +u
2,01 .2 3 4\ _
o (u,ut ut ut) = 5
u
3,1 ,2 3 4 Ly 3
x(u,u,u,u)ziu +u

the unit and the Euler vector fields are given by
6251, E:$151+$353+54.

The metric is as the one for d # 1 and up to second-order polynomial terms the prepotential
is

1 C 1
F(xl, z2, 23, x4) = 562””4 + 72(:101)%4 + 2ttt + 5(:131)%2.

Example 3.10 Let us consider the case (3.46) with C5 = Cy = 1 and d # 0. Equation
(3.47) becomes 1" (z) — 21" (z) + I/ (2) 4 2¢* = 0 yielding h(z) = a — (22 + bz + ¢)e for
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some constants a, b, c. In particular we choose a = b = ¢ = 0, so that h(z) = —z%*¢* and
f(z,w) = (w—2%)e*. When d ¢ {0, 1,2} the flat coordinates are

2

ot (u' v e ut) = ut + ﬁ
B (W) —utut
2 (ut, u? v ut) = Colnu? — 2(1 — d) ew? — ()(T eu?
. w3 C’ 2\1—d
2t 02, ud, ut) = <u2)—d—l(u2u4 _ (us)z) ety 21(u )d
2\2—d
a1 284y (U7)
(ur,ut u’ ut) = 5
In such coordinates the unit and the Euler vector fields are respectively written as e = 0,
and
E=a'04Cy0, — (d—1)2° 93 — (d — 2) z* .
For d = —1 the metric is
0 0 1 0
_ |0 0 0 —1
/]” =
1 0 0 O
0 —3 0 0

1
and up to second-order polynomial terms the prepotential is given by

3

[MIN]

1, . 15 , 1,
F(a', 22, 2%, 2%) = —5\/502(1’4)3 In (32%) + —5\/302(1’4)3 + —V9(z*)

128 32 o
+3\3/§(:E4)%x2+1(x1)2x3—1x1x2x4
32 2 4 ’
For d = —2 the metric is
O 0 1 0
_ (00 0 —3
’]’/:
1 0 0 O
0 -1 0 o0

6
and up to second-order polynomial terms the prepotential is given by

N[

1 4 2
F(z', 2% 23 2% = _4_5\/502(3:4)% In (2Vzt) + %\/502@4)3 + Eﬁ(:vﬂ‘) x
1 1 1
+ =V vt + §(x1)2x3 — 6x1x2x4.

The case d = 2 must be treated separately. In the flat coordinates

u?
xl(ul,uz,ug,u4) — ul _ ?
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,],’2(’11,1,7,62,11/3,71/4) = (u2)2 euZ
2,4 3)2
501 2 3 4y wu —(u) —3_%
x”(u,u u’ ut) = @) 2
ot (ut, u?, u? ut) = Inu?
we have
001 0
~ ~ < = 000 2
:a,E: 18_38+8’~: 2
€ 1 T 01— 03 4, 1 100 0
0 L0 G
Up to second-order polynomial terms the prepotential is
F(z', 2% 2% 2) = —ix?’ e 1+ Oy + x_2 S
o 16 2T
C 1 1
+ 72561(1‘4)2 + 5:611}21'4 + §(x1)2:c3.

In the case where d = 1, which must be handled separately as well, flat coordinates are
given by

2 2
ot (ut, vt vl ut) = ut 4 % — %lnuz
2,4 _ (,3)2 .3
2 (ut, u? ud ut) = %W’ +Cy Inu?
2.4 _ (1312 s C
2 (ut, Pt ut) = (uu(u# Inu? + 2) eu? + 72(1an)2

and
4

62((;1, E = (Z‘l—%> 514—02524—1’2534—]3454,

010 0
_ltooo0
T“ oo o0 2

0010

Up to second-order polynomial terms the prepotential is

Cy

Fal 22 o3 o4 = =22
(x7x7x’x) 24

(@ (')’ = 2 (02 + §x2) (24 (lna*)?

7 6 4
+ 16 (Cg + ?xQ + ?:p?’) (z*)?Ina?
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1 1
+ §x1x3x4 + §(x1)2x2

T2+ 620 ()
16

The last case to be considered separatley is the one for d = 0, as Cy may not vanish. Here
the flat coordinates are

u?
ot (ut,u? vt ut) = ot + —

2
2,4 3\2 3 C _20
22 (ut u? ud ut) = S Q(U Vem G126
U 2
wut — (W2 —2(u?)? B3
2 (u', Pt ut) = ((ug)Q () eu?
C,—40, 9
. |
1 nu
u2)2
x4(u1,u2,u3,u4) — ( 2)

In such coordinates the unit and the Euler vector fields are respectively e = 9, and

E:fﬂlél—i-l'QéQ— (Cg-%) 63—233454

and up to second-order polynomial terms the prepotential reads

_ 4y
F(a!', 22, 2%, 2%) = 3(Ch 4(]2);121(2x ) = 8G, V2(z*)2
3
4 3202 + 24 x \/5(1.4)% _ 1332 $4 ln(x4)
72 8
Cioava  Loqvoas b4 34
+6(a:)+2(m)x 5T T

3.3 The multiple-block cases

As seen above, an expression for the Frobenius metric in terms of a function f
realizing (3.13), (3.14), (3.15) can be achieved in the case where the operator L = E o
has multiple Jordan blocks as well. This section is devoted to show how, in this
case, it is possible to reduce the conditions defining a Frobenius manifold to a
single ODE in dimension 3 and to a system of PDEs in dimension 4. We will then
provide explicit examples of solutions and their respective Frobenius potentials.

3.3.1 The three-dimensional case

In dimension 3, the only regular non-semisimple case with multiple Jordan blocks
is the one of two blocks, of sizes 2 and 1 respectively.
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We already know that there exists a function f of the variable

U3 — Ul
z = "
such that the metric can be written as
FF 0
n=w)" |k 0 0
0 0 F;y

for

Fi(z) = =f'(z) + Gy
Fy(z) = =2 f'(2) = (d = 1) f(2) + C
F3(z) = f'(2)

where (4, C; are constants. In particular, the quantity F; + F5 = C; must vanish
whenever d # 0. The flatness condition amounts to the following equation:

P A= =Co) f =2 B2+ (d=1)f = Cy)
+4((d=1)zf —(@d=1)f+Co) 2 f' f” (3.59)
+d(f)?((Bd=2)zf +(d—2) ((d—1)f — C3)).

By solving (3.59), one can determine explicitly the function f, which turns out to
be expressed in terms of hyperbolic functions.

Example 3.11 When d = 0 a solution to (3.59) is provided by choosing f(z) = a z+b for
some constants a, b. The metric is constant in canonical coordinates and reads

C’l—a Cg+b 0
n = Cg+b 0 0
0 0 a

Up to second-order polynomial terms the Frobenius potential is

= b
F(u', v’ u?) :CI6 - (u')? + —02;_ (u')? u? + G (u?)?.

3.3.2 The four-dimensional case

In dimension 4, three rearrangements in Jordan blocks are possible:

e two blocks, of sizes 3 and 1 respectively;
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e two blocks, both of size 2;

e three blocks, of sizes 2, 1 and 1 respectively.

Two blocks, of sizes 3 and 1 respectively. In this case metric is given by

L F, F5 0
ovaq |2 F3 0 0
=m0 0 o
0 0 0 Iy
where
Fl('z:w) - wf(z7w)+cl
Fy(z,w) = —20.f(z,w) — w0y f(z,w) — (d— 1) f(z,w) + Cy
F3(27w) azf(z ’LU)
F4(Z,’LU) awf(zaw)

for some constants ', C5 and a function f of the variables

In particular, the quantity F; + Fj is a constant that must vanish whenever d #
0. The flatness conditions amount to the following system of PDEs for the third

derivatives of f:

5, 3(02f)?
0.f = 20, f
9 000 f (0.f 000 f +202f 0w f)
%l = 20.1 Ouf
1
D.0of = m (2w 0. f 0w f(8:0uf)* + (= Ouwf O2f (w Oy f

0L PFOf (WS +dDuS))

1
a?uf = w3 0, f(@ f>3(_8zfawfw2 (wawf+ (d_ 1)f

—Cz)(<93 £ = (W (0w f)? =2(=(d = 1) f + Cy) w? Dy f
+(=d-1)f-wCi+C)0.f +(—(d-1) f

+Co)?w) 02 f —3(0.f)* (w04 f — (—4w? d By f)3
—B20.f + (=4 (=(d = 1) f + Cy) w))) Do f D00 f

103

(3.60)

(3.61)

(3.62)

(3.63)



+0.f (w? (wdyf + (d—1) f = Co) O f

+ (W Opf — 0. f +(d— 1w f
—wCy)ddyf) D f O2f + (9.f)* (w* (97 f)?
— w0y f (d+4) 0% f —2(0uf) d)w)).

Two blocks, both of size 2. In this case the metric is given by

Fr F, 0 0
0B oo 00
i
0 0 F, O
where
Fi(z,w) = =0, f(z,w) + C4
Fy(z,w) = —20,f(z,w) —w Oy f(z,w) — (d—1) f(z,w) + Cy
F3(Z?w) = azf(zaw)
F4(va) = awf(sz)

for some constants (', Cy and a function f of the variables

US - Ul U4

y .
2 u?

z =
u

In particular, the quantity F; + F3 is a constant that must vanish whenever d # 0.
The flatness conditions amount to a system of PDEs for the third derivatives of f
which is presented in Appendix A.

Three blocks, of sizes 2, 1 and 1 respectively. In this case the metric is given by

FF 0 0
eyt |22 000
0 0 F 0
0 0 0 F

where

Fi(z,w) = =0.f(z,w) — 0 f(2z,w) + C4
F(z,w) = =20, f(z,w) —w 0y f(z,w) — (d— 1) f(z,w) + Cy
F3(Z, w) = 8zf<zaw)
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Fy(z,w) = 0y f(z,w)

for some constants (', Cy and a function f of the variables

In particular, the quantity F} + F3 + F} is a constant that must vanish whenever
d # 0. The flatness conditions amount to a system of PDEs for the third derivatives
of f which is presented in Appendix A.

In all of the three cases there exist solutions corresponding to a linear expression
for the function f(z,w). More precisely, when d = 0 the function

flz,w)=az+bw+c (3.64)

(where a, b and c are constants) is a solution to the respective system of PDEs for
the third derivatives of f. With this choice of f, the Frobenius metric turns out to
be constant in canonical coordinates. In the following example we provide such a
metric and the Frobenius potential in the case when L = E o has two Jordan blocks
of sizes 3 and 1. We refer to Appendix A for the remaining cases.

Example 3.12 Let the function f(z,w) be of the form (3.64), d = 0. When L = E o has
two Jordan blocks of sizes 3 and 1 the metric is given by

Ci—b Cy+c a O
|Gt a 00
| a 0 00

0 0 0 b

and up to second-order polynomial terms the Frobenius potential is

Cy—=b Cs5 +
F (ul, u?, u3,u4) = 16 (u1)3 + —22 € (ul)2 u? + —; (u1)2u3
b
+ gul (u2)2 + 8 (u4)3.

When L = Eo has two Jordan blocks of sizes 3 and 1, a less trivial example is
presented as follows.

Example 3.13 Let L = E o have two Jordan blocks of sizes 3 and 1. When looking for a
function f of the form
fzw) = az+g(w)

for some function g(w), the system (3.60)—(3.63) comes down to a single ODE for g(w):
2w ¢ (w) g (w) —w? (¢ ()" + (d+ 4) w g (w) " (w) + 24 (¢'(w))" = 0. (3.65)
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This yields

d2 (a2)2
16a3(d—1)w

d

g(w) =a; + Tagw™? + azw'™

when d # 1 and

(a2)* Inw  as  as

glw) =ar - 16 a3 +\/U w

when d = 1, for some constants a,, as, ag. For instance, when d = 2 in the flat coordinates

2l (ul, u?,ud, ul) = u? a—Ch (az)? a + ag
(u?)? au? daag(ut —u)  a(u* —ul)
(v, u?, u? ut) = Inu?

23wt u? ud ut) = In (vt —ut)

the metric becomes

00 0 a
- loa 0 0
"= o 0 —eser

a0 0 0

and up to second-order polynomial terms the Frobenius potential is

(2 as + a2)2
8&3

2 .3 .4

F(z', 2% 2% 2%) = — (2 e + ()2 z*) + = (2! (2% + (27)% ).

In flat coordinates the unit and the Euler vector fields are respectively written as
€ = 84

and
FE = —:1:151 +6~72 +(§3 +f]34(§4.
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Chapter 4

Regular Lauricella bi-flat F-manifolds

This chapter is devoted to the construction of a class of regular bi-flat F-manifolds,
called Lauricella bi-flat F-manifolds, and it is based on [66].

The starting point of such a construction is a (1, 1)-type tensor field L with van-
ishing Nijenhuis torsion (see (4.17) below), to which a bidifferential complex (d, d;,)
on the Grasmann algebra of differential forms, known by the name of Frolicher-
Nijenhuis bicomplex [40], can be associated. Such a complex plays an important
role in the theory of integrable systems, in both finite [68] and infinite-dimensional
case [62]. More in general, in recent years there has been a growing interest in ap-
plications of Nijenhuis geometry to integrable systems of hydrodynamic type (see
[9] and references therein).

Another ingredient in our construction is a function a, which is solution to
equation (4.18). By means of a generalized Lenard-Magri chain, it has been shown
in [62] that an integrable hierachy of quasilinear systems of PDEs can be defined,
starting from L and ay, in terms of tensor fields being polynomials in L.

We choose L to be the operator of multiplication by the Euler vector field on a
flat F-manifold and we impose that the flows of the resulting integrable hierarchy
define symmetries of its principal hierarchy [64], in the sense that the flows of the
two hierarchies must pairwise commute. This leads to the additional condition
(4.25).

Our main Theorem 4.13 states that for any choice of the Jordan canonical form
of the operator of multiplication by the Euler vector field and for any choice of
some weights parametrizing the Jordan blocks, there is a unique associated regular
bi-flat F-manifold structure. We end up with a multi-parameter family of regular
bi-flat F-manifolds, the parameters being as many as the Jordan blocks appearing
in the Jordan canonical form of the operator of multiplication by the Euler vec-
tor field. In conformity with the semisimple case studied in [6], we call bi-flat
structures obtained by this procedure Lauricella bi-flat F-manifolds, as related to the
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theory of Lauricella functions [56] and Lauricella connections [59].

Given ¢y, ...,e, € (0,1), the Lauricella function of weight ¢ := (¢q,...,¢,) ata
pointu := (u',...,u") € C"\ 'H, where H := Y {u € C"|u" = u’}, is defined by
S<gsn

/Vu The = /%(u1 — )7L (" =) dC.

Here 7, is an oriented piecewise differentiable arc whose end-points lie in
{u',...,u"}, but such that v, does not meet this set elsewhere, and a determination
of the multivalued differential 7, is fixed. Let J;, denote the oriented piecewise dif-
ferentiable arc connecting u*~! with u* and let L¢, denote the (n — 1)-dimensional
vector space generated by { | 5, T
conditions (see [59] for details):

1. e(f) =0, wheree = > 2

i=1 dui’/

. Any f € L satisfies the following

2. fishomogeneous of degree 1 — > | ¢;,

3. f satisfies the system of differential equations

0*f of of

i 0 _ Y597
(' —u )8ui8uj i ou’ gzé?uj’

1<i<j<n. (4.1)

The Euler-Poisson-Darboux system (4.1) can be rewritten in the form
ddp f = dag N\ df. 4.2)

By definition, the flat coordinates of the connection V of the associated bi-flat F-
manifold are the solutions of the Euler-Poisson-Darboux system (4.1) satisfying the
condition (1). The homogeneity condition (2) selects n — 1 flat coordinates that are
Lauricella functions, the remaining flat coordinate being the function ay.

Our work strongly relies on some technical lemmas, whose proofs were moved to
Appendix B in order to provide a cleaner presentation.

4.1 Integrable systems of hydrodynamic type

Integrable diagonal systems of hydrodynamic type
ri = v'(r)r ie{l,...,n}, (4.3)

x?

have been studied by Tsarev in [83]. Assuming v # v’ for i # j, Tsarev proved
that the whole information about the integrability of such systems is contained in
the n(n — 1) functions ‘

i _ o

U i — i)

i # 7. (4.4)
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The integrability of this system amounts to the conditions

aj(fk_za):ak(aj“ii), it itk A (4.5)
vt — v — U

vl

Systems satisfying the condition (4.5) are called semi-Hamiltonian systems or rich
systems. They possess infinitely many symmetries, depending on n functions of a
single variable,

rt = w'(r)r ie{l,...,n}, (4.6)

x?

obtained by solving the linear system
O’ =T’ —w'),  i#7], (4.7)

and infinitely many densities of conservation laws obtained by solving the linear
system
0;0;h — T0:h — T7,0;h = 0, i %7 (4.8)

Tsarev’s integrability condition is the compatibility of the systems (4.7) and (4.8).
Let us consider now a general system of hydrodynamic type
uy =V (u)ul, ie{l,...,n}. (4.9)

Assuming that at each point the (1, 1)-tensor field V' has pairwise distict eigen-
values, the diagonalizability of the system is equivalent to the vanishing of the
Haantjes tensor of V' [46]

Hy(X,Y) = Ny(VX,VY) =V Ny(X,VY) = VN, (VX,Y) + V2N (X,Y) =0

for any choice of vector fields X, Y, where Ny is defined as in (4.17), and the semi-
Hamiltonian condition (4.5) is equivalent to the vanishing of a tensor field, called
the semi-Hamiltonian tensor [74]. The diagonalizing coordinates (7, ..., ") are called
Riemann invariants and the diagonal entries of the (1, 1)-tensor field V' in such coor-
dinates are called characteristic velocities of the system. Given a semi-Hamiltonian
system and n functional independent solutions (h', ..., k™) of the system (4.8), one
has

hi=0,K", i€{l,...,n}, (4.10)

for some functions K*(r!,...,r"), i € {1,...,n}. In other words the system can be
written as a system of conservation laws. It turns out that also the converse state-
ment it is true: a system of conservation laws admitting Riemann invariants is
semi-Hamiltonian. In this way, following Sevennec, one can equivalently define
semi-Hamiltonian systems as systems of hydrodynamic type that can be written
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both in the diagonal and in the conservative forms (4.3) and (4.10). We refer to [81]
for further details.

The main equations of Tsarev’s theory can be also formulated in terms of a
family of torsionless connections.

Definition 4.1 Given a (1, 1)-tensor field V, a torsionless connection V satisfying
dyV =0 4.11)
will be called a Tsarev’s connection associated with V.

Here dyV is the the exterior covariant derivative of the (1, 1)-tensor field V:
(de V)i = VVi =V V) = 0,V — 0,V + T0, Ve =T Ve, iy g ke{l,...,n}.

Tsarev’s connections are not uniquely defined: in the Riemann invariants rt.rn,
where V' = diag(v', ..., v"), the above condition is equivalent to I'};, = 0 for pairwise
distinct indices and to (4.4). Moreover, I}, = I, for i # j due to the vanishing of
the torsion. All of the remaining Christoffel symbols {F; i F:Z}l je{l,...n},i+; are free.
In order to prove this fact, we have to spell out the condition

in the Riemann invariants. For pairwise distinct indices 7,7,k € {1,...,n} we
obtain
(d9V )i = Ty (oF = v7) =0

and as a consequence, taking into account that the characteristic velocities are pair-
wise distinct, we get F};j =0fori # j # k # 4. If i = k (or equivalently ¢ = j) we
get

(doV)i = 00" +Ty,(v" —07) =0, i,je{l,...,n}, i#].

Theorem 4.2 A diagonalizable system of hydrodynamic type with pairwise distinct char-
acteristic velocities is semi-Hamiltonian if and only if the Tsarev’s connections associated
with V satisfy the condition dW = 0 for any (1, 1)-type tensor field W commuting with
V.

Proof. By straightforward computation, for any choice of the indices we get

[ Wi = Riga Wi + Ry W' + Ry, W7, i gLk € {1, n},

jik kin
where R is the Riemann tensor of V:

RF

ijl =

I — oLk + Th Ty —TEDS,  dj.1ke{l,...,n}.

gs— il is™ jb»
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In the Riemann invariants the set of matrices I are diagonal and the condition
d%W = 0 reads

for any (w',...,w"). Due to the arbitrariness of W, this is equivalent to .., = 0 for
pairwise distinct indices ¢, j, k. If at least two out of the three indices ¢, j, k are equal
= _Réjk

to each other then the condition is automatically satisfied, since R’ for

jik
all indices. Thus, assuming the indices i, j, k pairwise distinct, we need to consider
the case | = i (the cases [ = j and | = k are equivalent to this one). Due to the

arbitrariness of 1/, we obtain the conditions
;‘ki =0, R;jk =0

for all suitable indices. The second condition, also known as Darboux-Tsarev system,
reads

oLy, + DIy — TpI, —ThTL =0, i Ak A1, (4.12)
while the first condition reads

;T = T i# G+ kA4, (4.13)

? iJ)
are given by (4.4) then both conditions (4.5) and (4.12) are equivalent to (4.13), due
to the identity [83]
- P O;v* 9"
Oy, + Tplk, —Tp I, — TRl = —— {aj (U—> — 0 ( ? )} . (419

vl — ot ik v — ok

for all suitable indices. [ ]

The Sevennec’s result can be formulated as follows.

Theorem 4.3 Let V' be a (1,1)-type tensor field with pairwise distinct eigenvalues and
with vanishing Haantjies tensor. Then V' defines a semi-Hamiltonian system if and only if
among the associated Tsarev’s connections there is a flat connection.

Proof. Let us assume that V is a flat Tsarev’s connection. In flat coordinates, for
suitable indices, the condition dvV = 0 reads 8k\/}i = 0,V}!, which implies that in
flat coordinates (locally) we have V; = 9; X" and thus V}uj, = 9, X". Since existence
of Riemann invariants is assumed by hypothesis, the Sevennec’s result implies that
the system defined by V' is semi-Hamiltonian.

Let us now assume that ' defines a semi-Hamiltonian system. Then, due to
Sevennec’s result, there exist coordinates u', ..., u" where Vu), = 9, X" for suitable
indices, implying 0,V = 0;V}. Let us define V in the coordinates (u',...,u") as
I, = 0. Then the condition 9,V = 0;V}’ can be written as dyV = 0. In other
words, V is a flat Tsarev’s connection. [ |
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The symmetries
ub=Witwud,  ie{l,...,n}, (4.15)

of the system (4.9) are defined by (1, 1)-type tensor fields W (u) commuting with V/
and satisfying the condition
dsW = 0. (4.16)

The full hierarchy is thus defined by the solutions of the system (4.16).

4.2 Frolicher-Nijenhuis bicomplex and integrable sys-
tems

Let L be a tensor field of type (1, 1) with vanishing Nijenhuis torsion. This means
that for any pair of vector fields X and Y we have

NL(X,Y):=[LX,LY] - L[X,LY] = L[LX,Y]+ L*[X,Y] = 0. (4.17)

Following [62], we recall a construction of integrable hierarchies starting from the
Frolicher-Nijenhuis bicomplex (d, dr,, (M )), which we introduce as follows. The dif-
ferential d is the usual de Rham differential, while the differential d; is defined
as

(=) (LX) (w(Xo, ..., X, ... X3))

-

I
o

(de)(Xo, ce ,Xk) :

A~ ~

(—1)i+jW([Xi,Xj]L,XO, e 7Xi7 Ce ,X]’, .. Xk)

i<j<k

+

0

IA

for Xy, ..., X vector fields and a k-differential form w € Q*(M), where X denotes
the absence of a vector field X in the arguments of w and

(X, X;lp o= [LXG, X5] + [X, LXG] = LXG, X

extends the usual commutator of vector fields by involving the presence of L. For
L = I the vector field [X;, X;]; reduces to the commutator [X;, X;| and the differ-
ential d;, reduces to d. The vanishing of the Nijenhuis torsion of L translates to
the fact that d3 = 0. The differentials d and d;, anticommute, thus the pair (d, d;)
defines a bidifferential complex. Starting from a solution of the equation

ddpay =0 (4.18)
a sequence of functions a,, as, as, . .. can be recursively defined by means of a gen-
eralized Lenard-Magri chain:
dakH = dLCLk — deao, k Z 0.
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In turn, a sequence of (1, 1)-type tensor fields Vi, V5, Vs, . .. can be constructed start-
ing from the identity V, = I, by

Vier = Vel — ag 1, k> 0.

This gives

Vo=1

Vi=L—apl

‘/2 :Lz—aoL—CLl[,

Vn =L"— CloLn_l — Clan_2 + = an,1[
that is

n—1
Vo=L"=> al"",  n>0
=0

In [62] (see also [60]) it has been proved that these (1, 1)-type tensor fields define
an integrable hierarchy of hydrodynamic type. Remarkably, this construction does
not require that L is diagonalizable.

4.2.1 Examples
Generalized c-system

The system of hydrodynamic type

1 1 n k 1
Uy, ut = ERu 0 0 U
2 2 n k 2
U 0 ut—> epu® ... 0 U
t k=1 x
= : : S| (419)
n n n k n
uy 0 o 0 u"—> &kt uy

has been obtained in [73] as finite component reduction of an infinite hydrody-
namic chain. It can be written as u;, = (L — aol )u, with ag = >_;_, exu* and

ut 0 0
0 w? ... 0
L=1{. . | (4.20)
0 0 u"
For specific values of the constants ¢4, . . ., ¢,, it provides well-known examples of

integrable systems of hydrodynamic type. The above hierarchy is related to the
principal hierarchy associated with Lauricella bi-flat F-manifolds [63, 61].

113



Kodama-Konopelchenko system

The system of hydrodynamic type [53]

up u' 10 O [ ul ]
ug, 0 ' 1 ... 0 2
=i el el : (4.21)
up ! 0 0 u! unt
up |0 0 0 '] | u}]
can be written as u;, = (L — agl)u, with ¢y = —u' and
0 1 0 0]
0 1 0
L = '..
0O ... 0 0 1
0 ... 0 0 0

Clearly L has vanishing Nijenhuis torsion and dd.ay = 0. By applying the first step
of the recursive procedure, we have

81&1 = —G,Qalao = —Ul
(92@1 = 81a0 — a082a0 =-1
83&1 =0
8na1 = 0.
This implies that, up to an negligible constant, a; = —u? — % Therefore the first

commuting flow u;, = (L? — agL — a11)u, is given by

[ ul ] e+ (u;)Q ut 1 0 ][ ul]
u, 0 u? + (“;)2 u' e u?
= : : : (4.22)
2 I 0 0 w?+ || g

Higher flows can be obtained in a similar way. The system (4.21) is related to the
theory of confluent Lauricella functions. Further details can be found in [53].
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4.3 From integrable hierarchies to Lauricella bi-flat F-
manifolds

Let (M,o,e, E) be an F-manifold with Euler vector field. By using the Hertling-
Manin condition and the properties of the Euler vector field, it is easy to check
that the operator Eo has vanishing Nijenhuis torsion (see for instance [3]). Among
Tsarev’s connections of the associated integrable system we consider those satisfy-
ing the additional conditions
Ve =0, ch;'- = V,ch, i,5,k, 1 €{1,... ,n}.

In [63] such connections are called natural connections. In the next two subsections
we will show that for special choices of the function a, the natural connections

defined in this way are flat. Moreover, it is possible to define a second compatible
flat structure.

4.3.1 Semisimple Lauricella bi-flat structure

Let us recall the following theorem of [61] (see also [60, 63] for the special case
wheree; = e, = ... = ¢,).

Theorem 4.4 For any choice of €1,¢s,...,&, there exists a unique semisimple bi-flat
structure (V,V*, 0, %, e, E) with canonical coordinates {u',...,u"} such that L = Eo
and

dy(L — agl) =0, (4.23)

where ag = Y __, exu”. Moreover, in canonical coordinates this structure is given by

e = Xn:(‘)k, E:zn:ukﬁk,
k=1 k=1

. .y . |
7 _ Y *i Y L

I, =0, I=0, i#j# kA,

. . . .

CR— L — ) ]
Fjj - Fw’ F]] w FZ]’ ¢ 7& Js

% _ J *T J . .
FZ] - ui_uj7 F”_'U/Z_'U,J’ 7’7&]7

l

. ) . u ) 1

7 _ 7 *T *7
I, = —» Iy, TIyj=- ikl T

I#i I£i
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4.3.2 Regular non-semisimple Lauricella bi-flat F-manifolds

We consider a generalization of Lauricella bi-flat structures to the regular non-
semisimple case. Let (), o, e, E') be an n-dimensional regular F-manifold around
a point m € M where the operator Eo has r Jordan blocks, of sizes my4,...,m,.
Recalling Theorem 1.6 from the above Chapter 1, for the proof of which we remind
to [18], let

{Uj(a)|01€ {17...,T},j€{1,---7ma}}

denote canonical coordinates, realizing

C;‘((a%k(v) = 05050} 141, €= Z Outten k= Z Zus(a) Oyste
a=1 a=1 s=1

for all suitable indices. We start from the integrable hierarchy associated with the
tensor field L = Fo and with ay = Y. _, &, Tr(L,). By construction, L contains r
blocks Ly, ..., L, of size my, ..., m, respectively. Each block has the form

ut® 0 - 0
u@ gl 0
L, = . . . . (4.24)
wnel@) o g2(e) g @)
where /() = ymit+Fma-147 for each o € {2,...,7} and for each j € {1,...,m,},
while w/(®=" for each j € {1,...,m,} fora = 1.
The case where m; = --- = m, = 1 corresponds to the usual generalized e-
system. In the next section we will prove that for any choice of ¢q,¢9,...,¢, and

mi, ..., m,, up to dimension n = 5, there exists a unique bi-flat F-manifold structure
such that dy(L — aol) = 0. Thereafter, we will consider the case corresponding
to a single Jordan block (r = 1) of arbitrary size. Finally, we will show that for
any choice of €1, €, . . ., €, there exists a unique regular bi-flat F-manifold structure
such that L = Fo and

dv(L — apl) = 0. (4.25)

Remark 4.5 By straightforward computation, one gets
(dv(L — aol))}y a0 = LiVi(dag)y — Ly Vi(dao);, j.k € {1,...,n}.
Therefore condition (4.25) implies
L;vl<d&0)k —L;Cvl(ddo)j = O, j,k’ € {1,,71,}
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4.4 Bi-flat Lauricella structures in dimension 2, 3, 4, 5

In this section we provide a complete classification of regular non-semisimple bi-
flat F-manifold structures in 2, 3, 4 and 5 dimensions.

44.1 2-dimensional case

2 x 2 Jordan block

ut 0 0
L = [u2 u1] R e = % (426)
The non-vanishing Christoffel symbol of V is '3, = —2%.
44.2 3-dimensional case
3 x 3 Jordan block
ut 0 0
L= |u* u' 0|, e===, ao=23cu" (4.27)
3 .2 1 du'
uw ut ou

The non-vanishing Christoffel symbols I'},, up to exchanging j with %, are

31 3eu’
2 _ 13 _ 1 3 1

[ =15 = T2 Iy = —(uz)g‘
2 x 2+ 1 x 1Jordan blocks
ut 0 0

2 1 0 0 1 3
L=1u* u 0|, e=47+55, a=2u +e3u’. (4.28)
00 o ou ou

The non-vanishing Christoffel symbols I'},, up to exchanging j with %, are

261 €
2 1 1 2 3
M =--——rT.,=1r%=-1t =1k, =-12=—"-_
22 U2 ’ 13 23 11 33 12 U,l o u37
2
B s _ 3 _ %1 pe _pe _ _pa _ st
11 33 13 u1 . ug? 11 33 13 (ul u3>2
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4.4.3 4-dimensional case

4 x 4 Jordan block

vt 0 0 0

w* ul 0 0 0 B 1
L= Ao w0l e—%7 ag = deju.

ut ud u? out

The non-vanishing Christoffel symbols I';,, up to exchanging j with k, are

(4.29)

4e; 4equd 41 (vPut — (u?)?)
ng = F?2)3 = Fg:s = F§4 = PR ng = ng = W7 F§2 - (u?)3
3 x 3+ 1 x 1Jordan blocks
vt 0 0 0
u?> ul 0 0 9, 9,
L= u3 u2 ul 0 s € = % -+ %, ag — 381“1 -+ 84164. (430)
0 0 0 wut
The non-vanishing Christoffel symbols I';,, up to exchanging j with k, are
3e equ’ eq(u?)?
2 _ 13 _ I m8 _p3 _ 3 _ 4 4
F22 - 1-‘23 - _?’ F11 - F44 - _F14 - (Ul — u4)2 - (u1 — u4)3’
381
Félll = Fi4 = _lel4 - ul — ud’
2
44U
F?Q = _F§4 = _P%4 = F%l - Fi4 = ma
€4
F§4 = _F?:% = _F%Q = _Fh = FLL = _F4114 = ul — ud’
FS . 3€1u3 4
2~ (u?)? ol — ot
2 x 2+ 2 x 2 Jordan blocks
u' 0 0 0
2wt 0 0 0 0
L= % % u3 0 s € = % + %, apg = 2€1U1 + 2€3U3. (431)

0 0 u*

The non-vanishing Christoffel symbols I, up to exchanging j with k, are

jk’
281 263 283
2, =—"-—rl=-"T,=-1%=-T} =T, =—"-"_
22 w2 R 12 11 33 W — w3
2e
3 _ 14 _ 13 _ 3 _ 4 1
I-‘11 - F34 - F33 - _F13 - _F14 - U,l . ug?
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2e3u? 2e u’
2 _ 12 _ 2 3 4 4 . )
Iy =I5 =-11; = m, ', =I5, =-I15= m
2x2+4+1x1+1x1Jordan blocks
w0 0 0
w w00 9 0 0 1 3 4
0 0 0 wut

The non-vanishing Christoffel symbols I'},, up to exchanging j with %, are

261 €3 €a
2 %81 1 2 1 1 _p2 . plo_
Iy = u’ T e ul — 3’ Iy =15 =-Ty= ul
€4 £3 —261
3 _ 3 _ 4 _ 3 _ 13 _
tu=Tu=Gmptu=p o ==
—2¢
4 1 1 2 1 1 2 2 2
'y = —u1 A Iy =Ty =153+ Ty, I'y =55+ Ty,
2 2
2 _ 2 €3l 2 2 E4U
I3y =13 = i — )’ Uy =-T = Tal — 2
s, — 2e4 & M — 2e4 4 €3
3B 7wl — 8 w— oyt M T ol —wd B —
4.4.4 5-dimensional case
5 x 5 Jordan block
(w! 0 0 0 0]
wroul 0 0 0
3 .2 1 9 1
L= |u v w 0 0|, e=—=—— a=05u.
4 .3 .2 .1 du'
ut uw ouw w0
u® ut P o ult

The non-vanishing Christoffel symbols I',, up to exchanging j with %, are

551
F§2=F§3:F§3:F§4:F§5:F§4=—uz-,
5equd 5 2,4 ()3\2
3, =T4, =13, =T%, = £1u T, = e1(uut — (u?)?)

5e1((u?)?u® — 2u?udut + (u3)?)
(u2)

(u2)3 ’

5 _
F22_
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4 x4+1 x 1Jordan blocks

! 0 0 0 O]
w?ul 0 0 0 9 5
L=|u v u' 0 0|, e=x7+5% a= dequt + e5u’. (4.34)
4 .3 .92 1 du' — du
u* uw out w0
0 0 0 0 4

The non-vanishing Christoffel symbols I'j,, up to exchanging j with k, are

€1
F§2 = Fg:& = F%4 = F§3 = —4$,
1 _ 12 _ 13 _ 14 65
Py =13 =15=1;= W —
€5
[y =Th, =T =T = Fzﬁ - Fjlll T Ul
4e
5 _ 15 _ 5 _ 1
e e W
2
EsU
F%l - ng = F?Q = Fil:a = _F%EJ = _ng - _F§5 = _ng = _(u1 _ u5)2’
3 22
3 3 4 3 4 EslU 85(u>
Fn - 1j55 = F12 - _F15 - _F25 = (u1 _ u5)2 - (u1 _ u5)3’
dequ® €
3 4 1 5
F22 = 1—‘23 - (u2)2 - ul — b’
Mot es(u?)®  2e5utu’ N esut
11 = L5 = 15 = (W —w?)t  (ul —wp)3 | (ul —up)?’
i 4e1 (vut — (u?)?) esu’
22 = (u?)3 + (ul — u)?’
3 x 3+ 2 x 2 Jordan blocks
(! 0 0 0 0]
w?ul 0 0 0
3 .2 .1 9 9 1 4
L=1v w u 0 0|, e=—-5+4+57 a=3u +2u". (4.35)
. ou ou
0 0 0 «* 0
(0 0 0 u u']

The non-vanishing Christoffel symbols I'};, up to exchanging j with k, are

2e
1 _ 172 _ 13 _ 1 _ 1 _ 2 3 _ 4
1114 - F24 - F34 - _Fn - _F44 - _F12 - _F13 - 1 1
U —u
2uley 3e1
2 =72, =18, = T2 — 38 —__~"=* 712 13 —_""
11 44 12 14 24 (u1 . u4)27 22 23 ug )
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2e4 3e,u? 2e4
5 3 _
Iss = T I = (u?)? ol —
2e4(utud — (u?)? — udu?)
3 3 3 _ “c4
Fll - F44 - _F14 - (Ul . U4)3 y
381
FZ111 = Fi4 = _Fil4 - _F?5 - FZ5 = ul — ud
3ude
5 _ 15 5 1
Fll - 1—‘44 - _F14 - (ul _ u4)2'
3x3+1x1+1x1Jordan blocks
[w! 0 0 0 0]
2wt 0 0 0
L—Z?’ZQulOO 6_8+8+8
N . ’ Cout  out T Oud’
0 0 0 u 0
0 0 0 0 u

ap = 3equt + equt + e5u’.

(4.36)

The non-vanishing Christoffel symbols I'},, up to exchanging j with k, are

3e €
3 _ 12 _ 1 1 _ 12 _ 3 1 _ 4
F23 - F22 - __u2 ) F14 - F24 - 1ﬂ34 - _F44 - —u1 A
5 €

1 _ 2 _p3 _ 1 _ 5 4 4 5

F15 - F25 - F35 - _F55 - —u1 P F45 - _F55 T WA s
E4 381 381
FZ4 = _Fi5 =1 5 Fill = _Féﬁ =1 _ F?1 = _Fi’5 =1 _ .5
u* —u U —u U —u
2 2
11 12 <u1 _ u4)2 (ul _ u5>27
2 2
U"Ey U~Es

M =12 —_13 = M2, = 12 = 13, =

44 14 24 (u1 _ u4)27 55 15 25 (ul . u5)27
Ml =12, =rd=-—_"24

11 12 13 ul — U4 ul u57

2\2 1 4,3 212 1 5Y,,3

o W) + (W —u)e?) | es(=(wh)” + (u” —w)u’)

11 —

(ul _ u4)3 (ul _ u5)3 ’

0 s 54(u1u3 _ (uz)z _ u3u4) 05 _ o 65(u1u3 (Uz)z _ u3u5)

44 — 14 — (u1 . u4)3 ) =55 T 15 — (u1 . u5)3 )
F4 o 381 €5 F5 o 381 4 4

44 ul — ud ud — b’ %o ul — ub ud — b’
FS B 3U381 €4 €5

22 (u2)2 ul —wut  wl — b
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2x2+2x2+1x1Jordan blocks

[w! 0 0 0 0
w w0 0 0
L=|0 0 «* 0 0|, e= + +—,  ag=2c1u! + 2e5u® + 50,
u4 3 out  ou?  Oud 0 ! ’ °
0 0 u w O
(0 0 0 0
(4.37)
The non-vanishing Christoffel symbols I'j,, up to exchanging j with %, are
2¢ € 2¢e €
1 2 _ 3 5 3 _ 14 1 5
Fll_rl2__u1_u3 _ul_u57r33_r34_u1_u3 _ug_u57
2¢e €
1 _ 1 3 1 _n2 _ 1 _ 5
—ly =T = T i =15 =I5 = L
F2 . 2U2€3 U285 FQ . —F2 . 2u253
11— (ul _ us)z (ul _ u5)2’ 33 13 = (ul _ u3)2’
2
2 _ 2 U~Es 2 253 2 253
F55__1—‘15_ mv 1_‘22__u_ ?7 F23_ ul — 3’
281 €s
3 3 4o 3 4 _ 13
Th=-ly=-lTu=G— g ly=l="lTs=—>3—:
ot 2eut i 2utey utes
11 13 (ul _ u3)2’ 33 (ul _ u3)2 (u3 _ u5)2’
4
Dgs = —I'35 = 0 =Py Mh=-Ts=g— s Ta=-Ts=5—7=
281 €3
T35 = +

ul — ud u3_u5'

2x24+1x141x1+1x1Jordan blocks

(v 0 0 0 0
wr w0 0 0
_ 3 _ _ 1 3 4 5
L=|0 0 u 04 0],e= 8u1+8u3+8u4+8u5’ ap = 281U +esu’+equ”+es5u’.
0 0 0 w* O
0 0 0 0 u
(4.38)
The non-vanishing Christoffel symbols I';,, up to exchanging j with k, are
1 2 €3 4 €x
Fll_rlZ__ul_u3 Coul — ot ul — s
1 _ 1 &3 1 &4 1 _ 1 &5 1 _ €4
[ig=—-T3 = pm—E Iy = pER— Iy =—T5 = P Iy = e
2 2 2
g3l EqU ExlU
2 =
11 (u1 _ u3)2 + (ul _ u4)2 + (u1 _ u5)2’
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u’e 2

2
2, —__ %¢e p2___ W& o Wé

13 1_ ,3\2 14— 1 _ ,,4)\27 156 1 _ ,,5)\2°

2e1 €3 €4 €5
F§2:_ 27F§3: 1 37F§4: 1 47F§5: 1 5
U U —u U —u U —u
2 2 2

r2. _ UuU“es r2 U“ey re _ U“es 3 _ s _ 2e

33 (ul_u3)27 44 (ul_u4)27 55 (ul_u5)2’ 11 13 ul — 3’
F?’ 261 €4 €5

33 ul — 3 ud — yt ud — ud’

€ €

3 _ 3 _ 4 3 _ 3 _ 5
F34—_F44 —ug_u4ﬂr35__r55_u3_u57

11 — 14_u1_u47 33 — 34_u3_u47
F4 . 251 4 €3 €5

44 ul — b ud — ub ud — b’
s — 14 __ 5 M — 1% _A

45 — 55_u4_u5’ 11 — 15_u1_u57

€ €

5 _ 5 _ 3 5 _ 5 4
F33__F35_u3_u5’r44__r45_u4_u57

5 261 €3 €4
Igs = — 5T 3 5t 5

U —u u’ —u u* —u

Remark 4.6 Starting from the above formulas, by using the expression of the Euler vector
field in canonical coordinates, the definition of the dual product

X*xY =(Eo)'XoY

and the formula (1.60) for the dual connection, one can reconstruct all the data defining a
bi-flat structure.

4.5 The case of a Jordan block of arbitrary size

This section is devoted to the proof of the following Theorem.

Theorem 4.7 For any choice of a parameter ¢, there exists a unique non-semisimple reg-
ular bi-flat structure (V,V*, o, x, e, E) with canonical coordinates {u', ... u"} such that
dy(E o —agl) = 0, where Eo has a single Jordan block of size n and ag = eu’.

Let us start with some preliminary observations. In the first place, the formulas
for the case of a single Jordan block in the above examples up to dimension 5
suggest a simple rule in order to define the Christoffel symbols of the (n+1) x (n+1)
Jordan block starting from the ones of the n x n Jordan block. More precisely, we
define the new Christoffel symbols for the original range of the indices to have the
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same expression as the old ones, up to rescaling the corresponding weight from
g1 to 2 g, The remaining Christoffel symbols (the ones where n + 1 appears at
least once among the indices) are defined as follows. The Christoffel symbol '35

is given by the formula
1 n—1
ot = - Z sty st (4.39)
s=1

while the Christoffel symbols I'/;"™ with (i, j) # (2,2) are given by I'};"" = 0 when
i = lorj = 1and are determined in terms of the Christoffel symbols associated
with the n x n Jordan block via the relations

n+l _ 1n
L =Ty

"

i,5—1

(4.40)

when both i and j are greater or equal than 2 (provided that i — 1 # 1, if using the
second term of (4.40), or j — 1 # 1, if using the third term of (4.40)).

The new non-vanishing Christoffel symbols are then I'/;"" with i,j # 1 and
n—i—j > —3. The above definition immediately implies that all the non-vanishing
Christoffel symbols can be recursively obtained starting from

€

I3 =——. (4.41)

Indeed, by applying ¢ + j — 4 times (i — 2 times on the i-th side and j — 2 times on
the j-th side) the relation (4.40) we obtain

I Vi (4.42)
Since the above property holds for all n, more in general we have

Ih = I5,"7™  ifk—i—j>-2andi,j#1 (4.43)
Iy =0 if k—i—j<-3. (4.44)

4.5.1 Technical lemmas

By virtue of the above remarks, one can prove the following lemmas.

77777

block, recursively defined as explained above, starting from the 2 x 2 Jordan block, satisfy
the following identity:
ork.  oryt
out — oult’

1> 2, (4.45)

foreachi,j ke {l,...,n}.
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Proof. 1t is sufficient to prove the lemma in the case i = j = 2. In fact, if at least one
index among i and j is equal to 1 then both I'}; and Fk ! vanish, while if i +j > 5
then (4.45) reduces to

k—i—j+4 k—i—j+3

out  outt

[ > 2,

by means of (4.43). Let us then handle the case where ¢ = j = 2. For k = 2 we have
to prove that
ors,  ory,
oul — oul—1’
The left hand side term vanishes since I'3, only depends on u?, while the right hand

[ > 2. (4.46)

side term vanishes since I';, = 0. For & > 2 we have to prove that
ors, ors!
oul — oul-1’
For k = 3 the left hand side term reads

org, 0 I o 3 L o 3 € 3
u ou\ B )= e = e

> 2. (4.47)

and the right hand side term reads

ors, 0 I R S
oul-1 — oul-1 w) (u2)2 -1 (u2)2 L

Let us now fix h € {3,...,n — 1} and let us assume that (4.45) holds for each
k € {3,...,h}. Then, by means of this inductive assumption and of (4.39), we get

h— h—1

1 s —5

O’ _ I~ (O0%" 7 o Lo 1 > Ol "\ w2 L pniss

ol w2 oul u2m B2 g2 oul—1 w2 27
s=1

h—2 s
ors, _ " 1 Z Ol'y; I Sk e
ul-1 22 — Aul—1 u2 22
thus
oriil Tk 5 22 1 / or} 53
22 22 - _ 1 Z Fh—sus+2 o 22 uh—‘rl o _th—l-l—?)
Oul Oul-1 (u2)? - 22 w2 \ Oul-1 u2 2
S=
53 h—2 53 h—2
o 1 h—s_  s+2 l h—s_ s+2 _
= — (u2>22 F22 u + WZ FQQ u = O
s=1 s=1
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.....

block, recurszvely defined as explained above, startzng from the 2 x 2 Jordan block, satisfy
the following identities:

Zf‘ku-zrku =0, 1#7 or 1=1 or j=1, (4.48)

Zrku_Zr e, i=j#1. (4.49)

Proof. For i = 1 or j = 1 the first identity is trivially satisfied since all the summands
vanish. Thus we can assume both indices are different from 1. Let us first consider
the case of i = j # 1. For i = j = 2 we have

Z T2k @2 2,2 44D (4.50)
Letus fix h € {2,...,n — 1} and assume
Y Tpub=—e,  ie{2,...,h}. (4.51)
k=2

Fori=j = h+ 1 wehave

ngiik k(éLéLO)ZF 451)
Therefore
ZFku—ZF =—¢,  i=j#1

Let us now consider the case where i # j. For j = 2, which here implies ¢ > 3, we

have
o K (444) ;
ZFQ Zf‘ku = I'hyu +Zf2ku
k=2
(4~39) i—8 s+2 i— k+2 k
' I
et Z +Z
as an index shift in the sums shows. Let us fix h € {2,...,n — 1} and assume

Zr W =0,  i#j, je{2,...,h}. (4.52)
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For j = h + 1 we have

(440) i (452)
ZFW ‘ ZF t
Therefore .
> T Z Ik =0, i#j
k=1
|

Lemma 4.10 The connection V associated with the n x n Jordan block satisfies the condi-
tion
V,E' = (1—¢)d, +ec'e (4.53)
foreachi,j € {1,...,n}.
Proof. For each i, j € {1,...,n} we have
V;E' =0;E" + T, E* = 6} + I}, u”
which, by means of the previous lemma, becomes

VB =8 — 6 (1-0}) = (1 —¢) 0% + 6,6 = (1 — )} + ee’e’.

|
Lemma 4.11 The components of E~! are defined recursively by
1
—1\1 __
(E ) E?
m 1 - m S
(E-1ym+ = ulz st med{l,...,n—1}
s=1

Proof. By spelling out E~'o E = e in canonical coordinates, we obtain

(BT E =6, de{l,... n}.

k=1
For ¢ = 1 we clearly get

_ 1
(E 1)1 - E
Fori=m + 1 we get
( 1 um + Z z k1 —
that is
Cim LS (petymestt s
(E 1) —H:_JZ(E 1) 1,511
s=1
|
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Lemma 4.12 The dual connection V* is defined by
U =T5+ (e = D(E-H""72 —e (B! 676}6; (4.54)
foreachi,j, k € {1,...,n}, whereit is understood that (E~1)*="=1t2 = 0 if k—i—j < —1.
Proof. For each i, j,k € {1,...,n} we have
Tk (kg gk O Th el (1 - 2)6F 4 eete)
=If—(1—¢)cF —eci & (4.55)
where, by definition, the structure constants of the dual product are of the form
lezc = é'lcgcm(EA)m = 6§+l—15llc+m—1(Eil>m = 6§+171<E71)lik+1 = (Eil)iijikw-
Then
Tk =T — (1= &) (B )07 — e ()3 )
=T} + (e — 1) (B )72 —e(BY)' 610507,  e{l,....n}.  (4.56)
|

Remark 28 The condition Ve = 0 is equivalent to I}, = 0 for each i,j € {1,...,n}.

By virtue of the above lemmas we can prove Theorem 4.7. The proof can be divided
in the following steps:

1. Flatness of V.

2. Compatibility of V and o.

3. Linearity of the Euler vector field.
4. The condition dy (E o —agl) = 0.

5. Uniqueness.

4.5.2 Flatness of V

We already know that the connection V is flat for n € {2, 3,4,5}. We need to prove
that if the connection V associated with the n x n Jordan block is flat, that is

n

0Ty — OhThy — Y (T3 Tk —Thlh) =0, i hke{l,... ,n}, (4.57)

=1

128



then also the connection associated with the (n + 1) x (n + 1) Jordan block is flat:

n+1

by = Okl —Onh = > (T =Ty Th) =0, i, bk e€{l,...,n+1}. (458)
=1

Let us first consider the case where i < n. For each h,k,j € {1,...,n + 1} we have

n

ij :aszj - ahri;j - Z(F;ﬁﬂcj - F;;:lrﬁlj) - (Fi,nHFZj“ - T?;,nHFZfl)
=1

where both T, and I}, vanish due to (4.44). Then Rj,; is the same as the one
for the connection associated with the n x n Jordan block, which by hypothesis is
flat, yielding Rj,; = 0. Let us now fix i = n 4 1. If h = 1 (or equivalently k = 1)
then Rﬁlkj trivially vanishes, as I'}; = 0 for each m, j € {1,...,n+ 1} and 9,1} = 0
for each m,k,j € {1,...,n + 1}, since there is no dependence of the Christoffel
symbols on u'. If j = 1 or h = k then R}, clearly vanishes as well. We therefore
have 3 interesting subcases:

a. h>2 k>2 5>2
b. h=2,k>2, j>2(thiscoversh > 2, k=2, j > 2 as well)
c. h=7=2,k>2(thiscovers h > 2, k= j = 2 as well)
d. j=2,h>2k>2.
Subcase a: h > 2, k> 2, j > 2. We have

n+1
n 445 n N . .
Rhljjl = 8k_1th o ah—lrkj B Z(Fhflfij - Fkl—'_lrizj)
1=2
where in the sum both the terms for [ = 2 and [ = n + 1 vanish due to (4.44). Then

n

n+1 _ n n n+111 n+111
thj = akflrhj - ahflrkj - E (th Fk:j - sz th)
=3

n

(4.40) n—1 n—1 n—1 -1 n—1 -1

- ak—lrhfl,j - ah—lrkq,j - E (Fhfl,lflrkfl,j - kal,lflrhfl,j)
=3
n—1

= 5’k—1F?Lii,j - ah—lrgjll,j - Z(Fz:izﬂc—lg - szll,lriz—l,j)
1=2
where the sum can be enlarged as to include the terms for [ = 1 and [ = n, as they
vanish. Then

n
n+1 n—1 n—1 n—1 l n—1 l
thj - 8;@,1Fh_17j - 8h,11“k_17j - E :(Fh—l,lrkfl,j - Pk—1,th71,j)

=1
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Ry
The quantity R~} , | ; vanishes by hypothesis if j < n. For j = n + 1, all of the
terms appearing in RZ,J{; vanish.
Subcaseb: h =2, k > 2, j > 2. We have

n+1
1 (445 1 171 1l
Ryt "= Ol — 0T = Y (DT, — TR 'TYy)
=2

where in the sum the term for [ = 2 vanishes due to (4.44). Then

nt1
Ryt = Opaly — 0ol = Y (DT, — TRH'TY)
e
S Ol - BTy = Y (D5 Tk, — Tioy D)
1=3 »
= Oply; — Ol ZFSII‘Z 1]+Zrk ey
=2 1=3

where the ranges of the summation indices can be modified by adding vanishing
terms in order to obtain

n

n+1l n n n l _ pn
R%J‘ - ak—lr?j — k-1, — E :( Fk 1,5 k—l,lFQj) — 9 k-1;
=1

which trivially vanishes for j = n + 1 and which vanishes by the induction as-
sumption on the connection associated with the n x n Jordan block for j < n.
Subcase ¢: h = j = 2, k > 2. Since I'},, vanishes for | = 2, we have

n+1 n+1
Ry = O = ot = TR+ ) T T,
=3 =2
(4.45) n+1 n
: -1 l
(470) Op-11"3, — k-1 2 Z F2l 1Fk71,2 + Z F2—1,11122
’ =2
= Opal'y — k12 ZF 12+ZF211F22— k12_0
Subcased: j =2, h > 2, k > 2. We have
(4.45) n+1
RZ;; = ak—lr% - 8h—1FZQ - Z(FZZHI%& - FZ#FZQ)
=1
n+1
(4.40)

- n n n+1 n+1 n
- ak’—lrh—l,?) - ah—lrk—l,?; - E :(Fhl Fk 1,3 Fkl 1—‘h 1 3) h—1,k—1,3
=1

which vanishes by the inductive assumption on the connection associated with the
n x n Jordan block.
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4.5.3 Compatibility of V and o

The compatibility between the connection V and the product o is expressed as
the symmetry of the tensor Ve with respect to the exchange of lower indices. In
canonical coordinates this means that

Fk

k—i+1 _ 1k
iti—1,0 Flj =T

k—l+1
I+j—1,4 — Fz’j

for each i, j, k,l € {1,...,n}, where it is understood that a Christoffel symbol van-
ishes whenever at least one of its indices exceed the range {1,...,n}. Let us prove
this condition by induction. We already know that it is satisfied up to n = 5. Let
us fix m > 5 and assume

Fk

k—i+1
iti—10 Flj

=T}, 1, — 5 (4.59)
for each 4, j,k,l € {1,...,m}. We prove that (4.59) holds whenever at least one
index among ¢, j, k, [ is equal to m + 1.

If i = m + 1 (by the symmetry of (4.59) with respect to the exchange of i and [,
this covers the case where [ = m + 1 as well) then (4.59) becomes

k k—m _ 7Tk _ 1k-l+1
Fm+j,l - Flj - Fl+j—1,m+1 Fm-i-l,j
which, by means of (4.40), becomes
k—1 k—m _ pk—1 k-l
Fmﬂel,l - Flj - Flﬂel,m ij

that is true by the induction assumption for the indices being chosen as m, j, k—1, L.
If 7 = m + 1 then (4.59) becomes

k k—it1l _ 1k k—I+1
Fi—i—m,l - 1—‘m+1,j - Fl+m,i - Fi,m+1

which, by means of (4.40), becomes
k-1 k—i _ pk—1 k-1
Fz’—i—m—l,l - ij - Fl—&—m—l,i - Fzm

that is true by the induction assumption for the indices being chosen as i, m, k—1, (.
If K = m + 1 then (4.59) becomes

m—+1 m—i+2 _ pm+1 _ m—=Il4+2
i — Ly =10, — 15

which trivially holds when at least one index among i, j,! is equal to 1. When all
of the indices i, j, [ are greater or equal than 2, by means of (4.43), it becomes

m—i—j—1+6 m—i—j—I4+6 _ +m—i—j—I+6 m—i—j—Il+6
L'y — Ty =Ty — Ty

that is clearly true.

131



4.5.4 Linearity of the Euler vector field

Asking for the Euler vector field to be linear in flat coordinates amounts to the
condition
VVE = 0.

In canonical coordinates such condition is expressed as
ViVE* = 0,(V,E¥) + T} (V,E%) = T3 (V,.E)
“20,((1 = 2)0k + ecked) + TE (1 — £)38 + ce’e?) — T4, (1 — €)% + eeke?)
which vanishes trivially when either i or j is equal to 1 and by means of (4.43)
when both i and j are greater or equal than 2.
The flatness of V* and the additional properties follows from the linearity of £

(here we are using the already mentioned result of [50] which holds true also in
the non-semisimple setting) and from the definition of V* and *.

4.5.5 The condition dy(FE o —apl) =0

We prove by induction that the Christoffel symbols obtained by virtue of (4.39)
and (4.40) satisfy the condition dy (L — agl) = 0 with L = Fo. Let us denote by V(,,
the tensor field V' = E o —ay/ in the n-dimensional case and by V,,) the connection
associated with the n x n block. For n = 2 the tensor field V{y) is represented by the

[(1 —e)ut 0 ]
u? (1—¢)u

(dv o, Vie))ix = 0V, — Vi) + T Ve, — T Vi)

matrix

thus the quantity

vanishes for each 4, j,k € {1,2} as a simple computation shows. Let us assume
that the Christoffel symbols {I"’, | 1 <1, j,k < n} of the connection V. associated
with the n x n block obtained applying the formulas (4.39) and (4.40) satisfy the
condition (dy,,, Vin)}; = 0. We show that the Christoffel symbols for the (n + 1) x
(n + 1) Jordan block obtained applying the formulas (4.39) and (4.40) satisfy the

k:

condition (dV(n 1) V(n+1))¢j 0. The components of V/,, ) are

Vinrn, = (1 —e)u! forie {1,...,n+1},
Vinsyy = u' =7+ forie{l,....n+1},j€{l,...,i—1}.

Four cases are possible:
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S|

L 1<a3<n, k=n+1

S

1<i,jk<n
c. 1<i,k<n,j=n+1
d.1<i<nk=j=n+1.

Subcase a: 1 <1i,j <n, k =n+ 1. We have

8\/”“ avn+1 n n
(A9 ) Vint) )nH = ﬁ + FZHV]-I — W - I‘?ZHVZZ Z FZHV}l _ Z Fajzlﬂviz
=3 =i
as I
J _ i
ou’ oud
If i =1 (or equivalently j = 1) we have

—i49 i
= g g =,

n

(dv(n+1)v(n+1 Z F”“Vl Z F"H | (449) 0.

1=2
If both 7 and j are greater or equal than 2 we have

n n n n

n+l __ n+1y/1 n+ly,l n+1y/1 n+1y/1
(dv(n+1)‘/(n+1))ij - § :Fil Vg - E Fjl VL - E Fu Vg - E sz Vz
1= =i I=j+1 I=i+1
n n
_ n+1, l—j+1 n+1, l—i+1
= E I E Fjl U
I=j+1 l=i+1
( ) n n
443 Z n—i—l+5, l—j+1 2 : n—j—l4+5_ [1—i+1
I=j+1 I=i+1

which vanishes after replacing | with & = [ — j + 1 in the first sum and [ with
k =1—1i+ 1in the second sum.
Subcase b: 1 < i, j, k < n. The quantity

oV} V)
(dv(nH)V(”*l))fj - 0ujz + F?lvjl - Oul - F?lvil = (dV(n) V(n))i‘cj

vanishes by means of the inductive assumption for each 7, j, k < n.
Subcasec: 1 < i,k <n,j=n+ 1. We have

GVH’“ 1 8‘/;k
<dv(n+1>v(n+1))f,n+1 = Dl + + 1y Vl oy

where the terms of the form V|, ; with » < n vanish. Then

k !
- FnJrl,l‘/i

+1
avk X
k 1k n+1
(dV(n+1)‘/(n+1))i,n+l - Fi,nJernJrl L § :PnJrll
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which vanishes term by term.
Subcased: 1 <i<n,k=j=n+1Wehave

n+1 n+1
(d \V/ )n+1,k _ aVn-i—l + eyt 8‘/; — et oyl
Vintn) V(n4+1))in+1 — oui il n+1 Junt1 n+1,1"i

which becomes

n+1 n+1
(d Vi >n+1,k _ a‘/nJrl + Fn+lvl . 8‘/1 . Fn+1 Vl
Vit V(nt+1))1,n+1 = —8u1 1 Yo+l —8u"+1 n+1,171

_ n+1 n+1l 1 (4£9)
=l—-e— 5n+1 - Fn—i—l,lu =0

wheni =1,

n+1 n+1
(d V )ﬂ—i—l,k o aVn+1 + Fn+1vl o 8‘/2 - 1“77»'1'1 Vl
Vint1) (n+1))2n+1 — 8U2 2l n+1 aun+1 n+1,072

_ 1n+l n+1 n+1 2
- FQ,n—i—an—‘,—l - Fn+1,2‘/2 =0
when ¢ = 2 and

avn—i-l aVn-i—l
+1,k +1 17/ 1 1,1 (444)
(dV(nH)V(nH))ZnH = ni +Pz’nl+ Vag1 — ln—&-l _sz:u‘/; =0
ou ou

when i > 2.

4.5.6 Uniqueness

The connection V is uniquely determined by the conditions

Ve' = 0" + F;lel =0
vy}

E Ex/l
(dvv)ij T ou +Filvj—

ovkE
o’

- F?l‘/;l =0

where V' = L — aol. Indeed, in the case of a single Jordan block in David-Hertling
coordinates the (1, 1)-tensor field V' has the form

(1—¢)u 0 0
u? 1—e)u' ... 0
V = . ) . ) . (4.60)
u" u? (1—g)ut

The vanishing of (dvV);,,,_, uniquely defines I';,,. Together with this condition,
the vanishing of (dyV);,_,, uniquely defines I';_, ,. More in general, by using the

previous conditions, for each k € {1,...,n — 1} the vanishing of (dvV'); ,, uniquely
defines T}, ..
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Similarly, the vanishing of (dvV');,_,,,_, uniquely defines I}, ., and the van-
ishing of (dvV);,,,_, uniquely defines I}, ,, .

In general, the vanishing of (dvV), ; ,, ; uniquely defines I', ,,  , and the
vanishing of (dyV);,,,_; uniquely defines I'; ,, ,, ;, once all of the the previous con-
ditions have been taken into account, starting from j =n — 1,k = n.

We are then able to recursively determine all of the Christoffel symbols apart
from {T'{; = I"}; | j € {1,...,n}}, which vanish due to the condition Ve = 0. This
means that the connection constructed above is unique and thus it coincides with
the connection obtained by using conditions (4.39) and (4.40).

Remark 29 Alternatively, one may prove uniqueness also by observing that conditions
(4.39) and (4.40) can be recovered by the properties of V and by means of the condition
dv(E o —CLOI) = 0.

4.6 The case of an arbitrary number of Jordan blocks

Theorem 4.7 can be extended to the general case where the operator L = Eo has a
block diagonal form.

Theorem 4.13 For any choice of <, . . ., €, there exists a unique regular bi-flat structure
(V,V*, 0, %, e, E) with canonical coordinates {u', ... u™} such that dy(E o —agl) = 0,
where r is the number of the Jordan blocks (of sizes my, ..., m,) of Eo and, set my = 0,

r

r
ao — E magoéul(a) — E magaumo"rml"r""i_mafl"‘l‘
a=1

a=1

In order to prove this theorem, the crucial Lemmas 4.8-4.12 must also be suitably
extended and some new preliminary results must be taken into account.

Let (M, 0, e, E) be a regular F-manifold of dimension n > 2 with an Euler vector
tield E. Around a point m € M, let the canonical form of the operator L = Eo
have r Jordan blocks L, ..., L, of sizes m4, ..., m, with distinct eigenvalues. Let
us consider the function

ag = Zsa Tr(L,).
a=1

Our final goal is to prove that for any choice of ¢4, ..., ¢, there exists a unique
regular bi-flat F-structure with canonical coordinates such that the operator L =
FE o satisfies the condition dy (L —ay I) = 0. We recall that, in canonical coordinates,
the structure constants of the product o are given by

i(a) _ casasi
Ci@h(y) = 9805 Oj+k—1
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for all suitable indices. The unit and the Euler vector fields are given respectively

by

€ = Z al(a), E = Z Za us("‘) 8S(a).
a=1 a=1 s=1

Remark 4.14 Due to the regularity condition, we are implicitly assuming that u*® # 0
foreach o € {1,... 7} and u*® # u'P®) if o # B for each o, B € {1,...,7}.

4.6.1 The Christoffel symbols

The following proposition plays the role of conditions (4.39) and (4.40) in the case
of a single block of arbitrary size.

Proposition 4.15 Let «, 3, v be pairwise distinct. Then there exists a unique torsionless
connection V satisfying the conditions listed in the following.

1. For each value of i, j, k

k(v)
Liayis) = 0- 4.61)
2. Forevery j, k when i > 2
k() _
i@ =0 (4.62)
and when i = 1
0 ifk < J.
ko)  _ plh—jtl)(e) _ ) M8 ifk =7,
@i =hene = @ fh=i
(k=j—s+2)() | s(a . .
_m ; Pl(ﬂ)]l(a) (@) (@) ifk > j.
(4.63)
3. Foreach k wheni+j >3
k() _
Lirie =0, (4.64)
and wheni=j =1
k(a) _ _1k(a)
Ligne = i (4.65)

4. The Christoffel symbols F?((c?))j(a) are defined by the following formulas

2(c) o _magoz
FQ(a)Z(a) - u2(@)”’ (466)
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and

)
0 i<
— ) Tetaw if k= j,
l(a)J _ZF 1(0)j(a oFa —
oFa < k—j—s+2)(a) s(a . .
) m 22 Fg(cr)]l(a) e (@) ifk > j,
\0’ o S=
(4.67)
and (for k > 3)
Fa) T R VR S ) ple) e
Parzte) = Diate) — Datopzio) pow — a2 (Tatenzie) — Lioyae))¥ )
=1
(4.68)
and (fori,j > 2)
0 ifk—i—j<-—3
Fi'f(((jé))j(oz) - [ (k=i=5+4)(@) fk . ] ; 5 (4.69)
2()2(ax) ifk—i—j>-2

Proof: The above formulas uniquely determine the expressions for all of the
Christoffel symbols. By (4.61) all of those Christoffel symbols whose indices corre-
spond to pairwise distinct Jordan blocks vanish. One therefore only needs expres-
sions for the ones whose indices correspond to at most two different Jordan blocks.
Let us first explain how to construct Christoffel symbols whose indices correspond
to two distinct Jordan blocks, which we label by a and 3. By (4.63) we determine
Fkg)] for k < j and starting from these functions we determine the Christoffel
symbols

k(a .
(T i € {l . oma}, ke {1, ma}}.

By (4.62) we determine

k(o)
Uiy =

fori > 2 foreach j, k € {1,...,m,}. By (4.64) we determine

=0

Fk(a)

i3 =0

when i+ j > 3foreach k € {1,...,m,}. By (4.65) we determine

k(a) k(a)
Pines = ~Tisne)
for each k € {1,...,m,}. Let us now explain how to construct Christoffel sym-

bols whose indices correspond to a single Jordan block, which we label by a. By
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(4.66) we determine F 2((1) By (4.67), for each j, k € {1,. ma} we determine

F’f§§§ . By (4.68), for each k > 3 we can determine recurswely 2( )2
k()

formula for I'y ,)o(a) involves the Christoffel symbols {Ft(a) ) [te{l,...,k—2}}
that we already know from above and {F;((C; y1tef2,. —1}}). By (4.69), for
each i,7 > 2 and for each k€ {1,...,ms} we determine Fi((s))j(a) in terms of the

Christoffel symbols {F2 (o)2(a) | T € {2 ., My} } that we know from above. |

(smce the

Example 4.16 Let us reconstruct the Christoffel symbols in the 5-dimensional case of 3 x
3 4+ 2 x 2 Jordan blocks by means of the above formulas. In this case we have

ut — ul(l), u? = u2(1), W = u3(1), ut = u1(2), ub = 2@
By (4.63) we get
284
Fh = wl — ud = F§4 = F§4
381
I“ﬁ: ul — ud :F?E)
1 2¢e
2 _ 1,2 4 2 _ 13
Iy = T U4F14U (! u4)2U I
264
s, = R (Ml + Tu’) = [l — iy ((w*)* = u'u® + uPu?)
1 3e
5 4,5 1 5
Iy ul 4F14U - (u! u4)2u
I, =0
F%4 =0= le%4 = F§4
Igf) =0= F:1))5 = ng
By (4.62) we get
s =0 forik € {1,2,3}
Ih,=T5 =0 forj ke {45}
By (4.64) we get
F32:O:F§3:F§3:F2—F3—F33
Falas =0= P§5 - ng
By (4.65) and (4.67) we get
F%z = _F54 =0
2¢e
2 2 4
[y =-I%= E—
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2e
3 _ 3 _ 4 2
Iy = —T%, (ul — u4)2u
[y =T =0
[Py =-T3,=0
[y =-T3,=0
F%3 = _F§4 =0
264
F:f?, = F§4 = ul — ol
I‘4113 = _F§4 =0
F?z’, - —F§4 =0
F}m = _F%5 =0
F4215 = _Fi% =0
Fi5 = _F% =0
Fi5 = _Fil5 =0
3e
5 _ 5 _ 1
Iy =—17 = ul — ud
284
1 _ 1 _
P11 - 1—‘14 - Ul . u4
284
2 _ 2 _ 2
Fll - _F14 (u1 _ u4>2u
Fi = _F§4 = o ((U2221 4)3 = UBU4)
Ut — U
361
I‘1111 - I-‘1114 = ul . u4
361
5 5 _ 5
'y =-I7, = (u1 _ u4)2u
284
1 _ 1 _
F44 - F14 - ul — ul
284
2 2 _ 2
Iy =-T1 (u _ u4)2u
I3 s 2e4 ((U?)? — u'u® + wu?)
4 — 14—
(ul = ul)?
381
Fj114 = FZ114 = ul — ul
361
5 5 _ 5
F44 - F14 - (ul _ u4>2u
By (4.66) we get
361
="



284

Fg5 = —E
By (4.68) we get
3
3 il 9 U o 284 361 3
o =17 — Fzzﬁ T T A + (u2)2u
By (4.69) we get
F%z =0= 1%3 = leaz = ng = F§3 = ng
381
ng = F§2 = _?
I‘és) — O.

Thus, we have obtained the same expressions as the ones in the examples above.

Example 4.17 Let us reconstruct the Christoffel symbols in the 5-dimensional case of 3 x
341 x 141 x 1 Jordan blocks by means of the above formulas. In this case we have

ul = ul(l), ul = u2(1), ud = u3(1), ut = u1(2)7 Wb = ul®
By (4.61) we get
[y = F?s = Ff?4 =0, ie{1,2,3}.
By (4.63) we get
Py =T =T035=0, iec{45},
€4
Ty = A I3, = T3,
€5
Fi% = ul — b = F%S = F§5
4 &5
F45 - U4 . u5
3e
4 1
F14 - Ul . u4
3¢
5 1
F15 - 'LLl o U5
5 €4
1—‘45 - u4 . u5
(4.70)
and
1 4
2 1.2 _ 2 _ 13
F14 - _u1 _ U4F14U (Ul — u4)2u I‘24
1 €4
s, = —=— (Thw® + Tu’) = i aiE ((v*)* — u'u® 4+ u’u?)



1 €y

2 _ 1,2 _ 2 _ 13
I = Tl — u5F15u = _(ul — u5)2U =I5
1 €
. = S a— (Tiu® + Iizu’) = [ —5u5)3 ((w®)? — u'u® + u?u®).
By (4.62) we get

Iy, =T% =0, i€ {4,5}.
By (4.64) we get
F§2:F§3:F32:F;3:Fé3:07 i €{4,5}.

By (4.65) and (4.67) we get

1 _ 1 1 _
Fll__F14_F15__

€4 2 €5 2
r?, =-12,-12 = u” + U
11 14 15 1 ,,4\2 1 _ ,,5)\2
2\2 1,,3 3,4 212 1,,3 3,5
% — _[3 _3 __64((u) —ulu +uu)_55((u) —ulu +uu)
11 14 15 (u1 . U4)3 (Ul N U5)3
3e
4 4 4 1
F11—_F14_F15—u1_u4
381
F5 :_FS _FE) —
11 14 15 u—l—u5
1 _ 1 1 _
Plp=-T5 —Ty%=0
€4 €5
I, =-12, -—1% =— —
12 24 25 ul — ul ul — ub
€4 2 €5 2
e, =-13 —13 = u” + U
12 24 25 (ul . u4)2 (ul _ u5)2
4 _ 4 a4 _
=I5 —Ty=0
5 _ 5 5 _
Iy=—-I5—T3=0
1 _ 1 1 _
Pg=-T3 T3 =0
F%3:_F§4_F§5:0
€4 Es
[, =-I3, — T = — —
13 34 35 ul — b ul — ub
F§3:—F§4—F§5:0
F?3:—Fg4—Fg5:0
€4
1 _ 1 1 _
F44__F14_F45__—u1_u4
€4
2 _ 12 2 2
Iy =17, — s —(ul—u4)2u
&4
3 _ 3 3 _ 212 1,3 3.4
F44——F14—F45——m((lt) —UuUu +UU)



381 €5

I‘i4:_F‘114_1"35: ul_u4 _u4_u5
€4
Ty =T — T} = P —
€5
Fés = _Fi5 - F4115 = Tl
€5
o = T~ = G
€
3 =-Ti5 —Tis = __(ul——5u5)3 ((w*)* — u'u® 4+ u’u’)
€5
[g5=—T15 —Tys = S —
3e €
5 _ 15 5 1 4
gy =I5 — L5 = o + WRRIE
By (4.66) we get
361
Tn=—22
By (4.68) we get
3
3 _ il 2 W €4 €5 3e1 5
F22 - I_\11 - F22? - _Ul Ul - ul — b + (u2>2u :
By (4.69) we get
F%z - 1%3 = 1%3 = Fg:ﬂ = F§3 = F§3 =0
381
Fgg = Fg2 = _ﬁ~

Thus, we have obtained the same expressions as the ones in the examples above.

Remark 4.18 All of the Christoffel symbols can be obtained starting from the functions

2(c) _ Maka
FQ(O‘)2(0‘) - u2(e) ’ Q€ {17 s ’7,.}’ Mg 2> 2,
and
1(a) . megeg
I )i(e) = 2@ — ) a,Bed{l,....r}, a#p.

The last functions appear only in the case of multiple Jordan blocks and they are at the
origin of the additional difficulties that one meets in the proof of the general case. Howeuver,
exactly as in the case of a single block, increasing the size of a block m, = N — m, = N+1
and rescaling the corresponding weight e, — 3 e, does not affect the definition of the
Christoffels symbols Ff((f))j () Jor the original range of the indices.
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Remark 4.19 It is easy to observe that a is a flat coordinate for ¥V, namely V(da,y) = 0.
In fact, the i-th component of day is

(dag); = 0i(ap) (Z Moy ' ) = Zmaeg 63(0)
o=1

thus

Vi(dao)j = 8¢(da0)j da[) = —Fk nggg

Given «, 8 € {1,...,r} this reads

T

1(o)
Vi (dao) ZF Zm050 k) = 2 Liciio) Moo (4.71)

o=1

Let us first consider the case where o = 3. We get

_ ST
Vit (dao) —ZF Titey Mo = ~Ti)s @y Maga = D Tife)i Moto
oc#a

where (by (4.62), (4.63), (4.64), (4.69)) the terms Fil((a))‘ and Fl(” (for each o # «)
only survive for i = j = 1. Therefore V;(,)(dag) ) = O trzvmlly whenever at least one

among i and j is greater or equal than 2. When i = j = 1 we get

Vi) (dao) i) = —T1{0) (o) Maa — D 1)1 (a) Mo

oFa
(479)
ZF j )1(a) Maa + ZF 11() Moo
g ale oFa
(4 63) MeEs Ma€a .
Z (ul — o) MaCa — ul(@) — q1(0) mgag) =0.

ocFa

Let us now consider the case of o # 3, where (4.71) becomes
8D pl@ 1(8)
Vitoy (dao) Z L ~Litajie) Mafa = Vi) Mees
which trivially vanishes whenever at least one among i and j is greater or equal than 2, as

(by (4.62), (4.63)) both F and TP
we get

g) only survive for i = j = 1. In this latter case

] i(8) Z(a)J

_ () (g
Vi (dao)i(s) = —(ay1(8) Mafa = Dy (5 MsEs



Remark 4.20 It is likewise easy to check that ddpay = 0. In fact, given o, B € {1,...,r}
the i(«)-th component of dray is

(dLao)i(a) = Lf:(oz) 8k(a0) = Lf(a) 8]4; (Z MyEs ul(a)) = L,I:(a) Z MmeyEs 5’1(0)
o=1 o=1
= ZLg((Z)) MeEy = Zég ut @ 5t mye, = ut 6! mae,.
o=1 o=1
Thus given o, f € {1,...,r} and i, j such that i(a)) # j(3) we have

(ddLao)(syite) = Dj(3)(dLa0)i(a) = O;(s) (Ul(“) o; maﬁa)

1 a el 1 a sl
= 0; MaEal50; = 0; Magadgd; 0i; = 0.

4.6.2 Technical lemmas

The results of this subsection follow from the above expressions for the Christoffel
symbols and play a crucial role in the proof of the main theorem. We refer to
Appendix B for their demonstrations.

Lemma 4.21 For every choice of o, 3,7y, 0 € {1,...,r} we have

k(v) (k=1)(7)

Tiwie _ itaiis) 472
Dul®) EEG) :

forall k € {2,...,m,}and | € {3,...,ms}. Moreover, if 5 # o = v = ¢ then (4.72)

holds for | = 2 as well.

Lemma 4.22 Foreach o, 5 € {1,...,r}, i € {1,...,my}, j € {1,...,mg} we have

0 ifi 7,
S b= {0 Dmese (1= B)mazy  ffi=i=1
k=1 "

—0g ZlmTaT ifi=j#1.

Lemma 4.23 Foreach o, f € {1,...,r}, i € {1,...,my}, j € {1,...,mg} we have

;

0 it
i(a g 1— vEo 1 — 0§ fi=7=1,
Vj(B)E( ) = B( Ué:am = ) + §) maes ifi=j (4.74)
52‘(1—721771757) ifi=j#1.
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Lemma 4.24 Foreacha € {1,...,r}andl € {3,...,mq — 1}, we have

3(c) -1
o) . p2@) (U e) @) ) (s+2)(@) _ psla) Y\ (-st1)(@) _
A '_-FQQQ%Q)(Iﬂﬁﬂ ut —u > > (Moot — Do) =0
s=2

(4.75)
Lemma 4.25 For each a,0 € {1,...,r} with a # o we have
P+ pi@) B
Ai(o) ( (@)2(a) ~ Fl(a)l(a)) =0 (4.76)
foreveryl e {1,...,mq, — 2}.
Lemma 4.26 Given o, ,e € {1,...,r} with a # 8 # € # « we have
s+1
s—t+2)( (a) (s+1)(a) pL(B) (s+1)(a) 11(e) _
E:Fal Y 3e + Tiigiee Dione) T Dione Digne =0 477)
forevery s € {1,...,m, — 1}.
Lemma 4.27 Given o, € {1,...,r} with a # [ we have
s+1
s(a) . (s—l+4)(a) (s—1+2)(a) Ua)
Qs-—E:G%mw _n@mw)rwmw
=2
2(a) (5+2)() (s+1)(e) 11(B) _
+ Dozt T 1180 Titne =9 (4.78)

for every s € {0,...,mq, — 2}

We now have all the ingredients to prove Theorem 4.13. The proof is divided in
the following steps:

1. The condition Ve = 0.

2. The condition dy (E o —agl) = 0.

W

. Compatibility between V and o.

i

Linearity of the Euler vector field.
5. Flatness of V.

6. Uniqueness.

IThe summation is intended to be non-zero when s > 1.
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4.6.3 The condition Ve =0

The condition Ve = 0 is equivalent to the request that for every o, 5 € {1,...,r}
andi € {1,...,m.},j €{1,...,mg}

> T =0 (4.79)
o=1
This condition is verified by the Christoffel symbols defined above.

4.6.4 The condition dy(FE o —apl) =0

Let us now consider the condition

for L = Eo. Foreach a,8,v € {1,...,r}and i € {1,...,ma}, 7 € {1,...,mz},
ke{l,...,m,} wehave

@) i(0) i(a)
(dv(L — ag I))j(lﬂ)k(fy) = 0(8)(L — a0 1)) — Ok (L — a0 1))
i(a) 15) i(a) 1(5)
+ Uitanea) (L = @0 Dy = Tigyea) (L — a0 1);
= 5%5@ B 506 mge 0] 5[35“51 ALNE 555’m7€751

(o) :
+ Z NN TS Z Cpousy St 7Ol gy

6=1 I=1 0=1 I=1

= 890%m. e, 0}, — 0201 mepd) +ZF u=FHD0) Zrl & 5y u IO
=k

as

(L—ao D)y = Ly™) — ag 631) = 0] Z wt gt — 5150y " mgequt®

a=1

foreach n,pp € {1,...,r} and a € {1,...,m,}, b € {1,...,mg}. Therefore (4.80)
amounts to

55617717575 60‘62mﬁ555 +ZF u—FDO) _ ZF ks w00 —
1=k
(4.81)

foreach o, 8,y € {1,...,r}and i € {1,....,myo},j € {1,....,mg}, k € {1,...,m,}.
We split the proof in the following cases:

l.a=pg=7v
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2. a = 3 # v (this also covers a = v # 3)

3. a# =y
4. a, 3, are pairwise distinct.

Case 1: a = = 7. Condition (4.81) becomes

Mo

Maca(010% — 0401) + Y T ull=kH0(@ Zr DT =0 (4.82)

jla l(a (a)
=k

which is trivially satisfied if j = k = 1 due to the symmetry between the indices j,
k. If both j and k are greater or equal than 2, the left hand side term of (4.82) reads

= i) (I—k+1)( — i+1)(a)
> it Z Lt ™
1=k
i—j+2 i—k+2
469) Z Fz( Jj— l+4 (a (I—k+1)( Z F ( l)c(l—l)—4)(a) (I—j+1) ()
2(x)2(e) 2(a)2(a

which vanishes by changing the variables in the two summations. Let us then
consider the case where j = 1 and k£ > 2 (this covers the case where j > 2 and
k = 1 as well). The left hand side term of (4.82) reads

i S i) ke = i)
= Bimaga + 3 TG = 3T
=k =1

(427) _5k ofa + Z F (zé wRD(@) Fz(a) k(a e Z r (((2;)
(4.69) 2
(4 67) i—k+2
7 i—14+1)( l k+1)( ke l+4 o
gy OkMafe F Z R A Z TSy V) (4.83)

I=k+1

which trivially vanishes if i < k and which vanishes by means of (4.66) if i = k. Let
us then fix i > k. (4.83) becomes

7 i—k+2

(i=l+1)(), (I—k+1)(a) _ (i—k=l+4)(@)  1(a)

> Dl > Doayagey
I=k+1 1=2

i—k+1 i—k+2

_ (i—k—s+2)(c) W@ _ —k—l+4)() U@

= > Doy Z L aya(e)
s=2
ikl
_ (i—k—l+4)(a) _ pli—k=142)(a)\ l(a) _ 72(c) (i—k+2) ()
= Z (F2(a)2(a) Fl(a)l(oc) )“ F2(a)2(a)u
2
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_ _Z(F(S+2)(a) _ 1) ) uik=s+2)(@) _ p2(e)  (i—k+2)(a)

o 2(x)2(e) 1(a)1(e) 2(a)2(e)
s=1
3(a
@75) (3 pl(e) (i—k+1)(a) _ 2) U (i—k+1)(a) (4:68)
= (FQ(a)Z(a) Fl(a)l(a))u FQ(a)2(a) ug(a)“ = 0.

Case 2: a = 3 # ~. Condition (4.81) becomes

My

o 34 = S ) o
=k

that, by means of (4.62) and (4.63), is

i i—j+1)(a i) () (1—j+1)(a
O <5jm757 - Fg(a;m))( ) - ng(’}’)l(o?)( ! )> =0 (4.84)

1=j
which is trivially satisfied for £ > 2. Let us then fix £ = 1. If i < j then (4.84) is
satisfied by means of (4.63). If i = j then the left hand side of (4.84) reads

() 1 1(a) 1(a) (463)
MyEy + Fl(a)l('y)u ™ — Fl(’y)l(a)u (@) B2 0.

If i > j then the left hand side of (4.84) reads

(=), 16 (-1+1)( i
Dt ZF ey

_ _p=i+)(e) () 1(a) (i-l+1)(e)  (1=j+1)(e)
= =1 (u Z Do U
l=j+1
i—j+1
=+ (), 1(a) i—j—s+2)(a) s(a) (4.63)
= T (v Z LYoo =0

Case 3: a # = 7. Condition (4.81) becomes

mg
(I—k+1)(8) _ i(a) (I—j+1)(B) _
Z FJ(B)I(IB Z Lraav =0 (4.85)
I=j

where, by means of (4.64), the two sums survive only if j = k£ = 1 (and with the
only I = 1 term), in which case they mutually cancel out.
Case 4: o # [ # v # a. Condition (4.81) is trivially satisfied by means of (4.61).

4.6.5 Compatibility between V and o

We are now going to prove that



which is equivalent to

0 s(0) W@ W) e sle) @) I
Lie)s@)Ci(8)ktn ~ Vitak(n Ci®)s(o) = L (8)s(0)Citatkty) — L i(8)k(1) Cila)s(o)
and to
1o (=41 (8) s 1i(9) i )(@) e
Lit)i+e-@%7 ~ Ditadrtn) 98 = Ljgyire—1)@% ~ Ljiort) O (4.86)

forall o, §, v, € € {1,...,r} and any suitable choice of the indices i, j, k, [. The
possible cases are the following ones:

l.a=p=~v=c¢

2. a=F=7+#¢
3.a=f=c#y
La=y=c#p
5. f=7=€#a
6. a=F#Ay=¢
T.a=y#B=c¢
8. a=€e#[=x

9. otherwise.

Case1: a = = 7 = e. (4.86) becomes

I(e) (1-3+1)(0) _ pl(e) | A(it)(e)
i) (k-1 ~ Li(alk(@) = Lj@)itk-1)(@) ~ L j(a)k(e) (4.87)

If i = 1 (or equivalently j = 1) then this is

(o) 0D ple) ()
D@ Ger-1@ ~ Tk = D@k ~ Lk

where both the left and the right-hand sides vanish, as

() (1-341)(a) (479) () (1-3+1)(a)
LG b-0@ ~ Diape . =~ (F1<a><j+k—1><a>_Fmr)k(a) )
oFa
(463) (-j+1)(@) -3+ ) _
= Z(Fua)k(a) T @)k )—Q
oFa

If £ = 1 then (4.87) reads

ple@) =@

l(a) (I—i+1) (@)
i@ ~ Liti(@ = Ljait@) ~ T

j(@)i(a) j(@)1(a)
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that holds true, as

F(é—)j—&gl))(a) (4.79) _Z 1ﬂ(( ]le) a) (463) Zr(l i- ]+2)
i(a)l(a 1(o) (o)

oFa oF#a

(4.63) (1— z+1)(a ) 479) ~(1—i+1)(a)
> T = i@ -
oFa

If all of 7, j and k are greater or equal then 2 then, by (4.69), (4.87) reads

(I—i—j—k+5)(c) (l—i—j—k+5)(a) _ p(—i—j—k+5)(a)  pl—i—j—k+5)(a)
Lo (a)2(0) ~ Toa)2(a) = Dy(a2(a) Lo (@)2(0)

which is trivially verified.
Case 2: a = = 7 # €. (4.86) becomes

I(e)
Loy r-1)(a) =

which is true by means of (4.64) and (4.65).
Case 3: a = 3 = € # 7. (4.86) becomes

e
L @) k-1

(I—j+1)(a) _ _ p(-i+1)()
Lk = "Lk

which is true by means of (4.62) and (4.63).
Case 4: a = v = € # . (4.86) becomes

(e (I—i+1) ()
0=Tj@ire-1 ~ Vi

which is true by means of (4.62) and (4.63).
Case 5: f = v = € # a. (4.86) becomes

Fl(ﬁ) R U _
(o) (j+k—1)(8) i(a)k(B)

which is true by means of (4.62) and (4.63).
Case 6: o = 3 # 7 = €. (4.86) becomes 0 = 0.
Case 7: a = v # 8 = €. (4.86) becomes

(1=+1)(8) _ l(8)
itk = Li@)ire-1

which is true by means of (4.62), (4.63), (4.64) and (4.65).
Case 8: a = ¢ # [ = 7. (4.86) becomes

I(c) _ (I=i+1)(a)
Liygea-1 = ~Lire)

which is true by means of (4.62), (4.63), (4.64) and (4.65).

Case 9: at least three among «, [3, 7, € are pairwise distinct. (4.86) becomes trivially
0=0.

This proves the compatibility between V and o.
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4.6.6 Linearity of the Euler vector field

We are now going to show that V, V* are flat connections. We know that if we take
the flatness of V as already verified and assume VVE = 0, then we deduce that
(V,V*, 0,% e, E) define a bi-flat structure on M. It is then enough for us to only
prove the flatness of V and to verify the condition VVE = 0.

Let us start by proving VVE = 0. We have

k(y) _ k k() ! (o) k
Vit Vi) E"Y = 8oy Vi) EM + T30 Vs B — Fz(a)j(ﬁ)vl(wE @)

where, by means of (4.74), V5 E*" is constant and V(4 E"?), V) E¥?) vanish
respectively whenever [ # j, [ # k. Thus

Vi) Vi EXD =K 7 0 pit) _ k)

k()
i(a)j(o) z(a)j(ﬁ)vk(a)E v (488)

The possible cases are:

l.a=pB=xv

2. a=0#y

3oa=y#p

4 f=n#a

S.af fFy#a
Casel:a=f=7

k _ 1k(a) k(a) k(o
ViV E ) = Fl(a)j(g)v( )Ej( U N Vk VB (@)

_ Fk(a)( )(v (a)E vk( Ek: ))

i(a)j
j(o) k(o) k(o)
- Z( Z(a)a oy Vi) B = Ty Vi) B ) (4.89)
oFa
If j =k =1then

k 1(«@) «a a
Vi Vi B* =T, o) (V1<a>E1( ) = Vi E')

1 « 1(o o
+ Z < z((cx El Fz((a))l(a)vl(U)El( )>
oFa
which trivially vanishes if ¢ > 2 (by (4.62) and (4.64)) and becomes

Vi(a)Vj(g)Ek(’Y) = F () (ViE o) _ Vl(a)El(a))

(@)1()

1(o) 1(«
+Z<F Yi(o) V() E'®) — Loy Vi E ( ))
oFa
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(4.61) =

(4.63) MsEqx Maa
= —masa——g)mgeg =0

(4.74) ulla) — 1)
OFQ

(4.79) () o (o) o
— <F1(a)1(a)vl(a)El( )+ F1(oz)1(<f)vl(cf)E1( )>

if ¢ = 1. If both j and k are greater or equal then 2 then (4.89) becomes

k k(o i (a k(a
Vi Vi@ E ™ = Fi((a))j(a) (Vj(a)E]( ) — Vi E ( ))

+ Z( Citayito) Vi@ B = T Vi B ))
o#a

(4.74) k(a)
M( -t Yo
k(o
+Z( Vit B = T oy Vi) B )>_0-

ocFa
If j = 1 and k > 2 then (4.89) becomes

ViV EF) = TH) 1 (Vi) BN = V() E¥)

i(a)1(«

1(o) _ k(o) k()
+ Z( z(a)l(a vl(o‘ E Fz(a) (a)vk(U)E >
oFa

079 ki) ( — ) mee,— 1+ Z mTeT)

oc#a

k’(O’) k; 6%
+ Z( z(a)l yMaga = Ly y1(0) Vi) B ( ))
oFa

(4.74) k(o) k()
Lt (a) Mafa + Z Lia)1(0) Mafa
oFa

47 Z F 0‘)1(0 Moo + Z Ff(aa)l Moo = 0.
oFa oc#a

If 7 > 2 and k = 1 then (4.89) becomes

k(y) _ pla)
Vi) Vi B* 0 =T,

(a) i 1
+ Z( () (o) vj(a)Ej( z(a)] vl E ( ))

(V@ B = Vi) B")

oFa
@) o) @) o i) i)
= Tt Mafa+ D (Pz‘(amc)vm)E Liai(a) Moo
oFa
(4.74) 1(a) 1(o)
~Tieyita) Maka = D Tiha) Mako
oc#a
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which is

Vi Vi B = -T}! Z i) Maa — ZP (o) Moo
oFa
479 o (0)
S Ty Mt + YTy Moo =0
oFa oFa
ifi =1and
ila . Ek('Y) — 1" o F (4. 64)
Vi Vi) ) Moo — ; " o

(asl—i—j<1—-2-2=-3)ifi>2.
Case2: a= [ # .

Vit Vit B" = T30 ) Vit EZ — z(an Vi) B
= i) Vit /) — z(a it Vi@ B
+ Ff(gj(v)vj@ﬂ(v) ooy Vi B
+ > ( Vi B — T30 Vi) B ”) (4.90)
oty

where T*)  vanishes due to (4.61). If both j and k are greater or equal than 2

i(a)j(o)
then it becomes

(o k Ot
Vi) Vi E* ) =T} Vi B/ = T3 Vi) BFD)

i(a)j(a

E(v) i(v) (“/) k(7)
+ iy Vito >E] ! Fl(a)a( ) Vi) BT

_ Z F’“(U Ek( 7)

oFa,y
(4.74) k(v) 1C k (4.74)
- Fi(t;zy)j(a) (Vj(a)Ej( ) — Vi E (V)) 0.

If 7 = k = 1 then (4.90) becomes

1
Vit Vi B =T,

1(a) 1(a) 1(y)
Y1(e) Vl 2 Fi(a)l(a)v F
) 1(7)
+F " () V1) Fi(g)l(a)vl(’Y)El( )
1
- Z Fi(a)l(a)vl(")E @)
oFa,y
@79 1) @)
(4}1) i(a 1("/)v1(a)E
1(a) 1(y 1(y)
+ Dl Vi B+ 37 T Viw 'O
oFa,y
+ F;((oj))l(w)vl(a)El( D4 T Vi B
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(o) 1(v)
+ Z L Vi B

oFa,y
am e (]
= ~liene (1 Zm050>
oFa
+F11((§ ) MaEa + Z le((S)l Maa
oFoa,y

FTIO) ingea + T, ( B m)

o7
+ Z F o) Moo

oFa,y

_ i) (@) o
—F<>()mva+rz<a>1<)ma5a+ZFa o) Mafa

oFa,y
+ Z F o) Moo
oFa,y

which trivially vanishes if i > 2 (by (4.62) and (4.63)) and becomes

k(y) _ i) 1(e)
Vi) Vi B = Fl(l)l( )mvgv + L)1) Mafa

1(o)
+ Z 1(U Maga + T (1) MoEo)
oFa,y
463)  Mafa My Ey
@ — i) M i) i) Ml

MoEs Ma€a o
+ ; (ul @ — gl Mefa T i) i) moga) =0
oFa,y

ifi =1.If j =1 and k& > 2 then (4.90) becomes

Vi Vi B = T30

a k(o) k
z( )1(a)v1( )El( )T Vi E @)

Z(04)1(04)

k
k
N Z Fl(a)l )E @)
oFa,y
(4.74)
479),(461) 1('7 ( ; ma5a)

k() k(v } :
If j > 2 and k = 1 then (4.90) becomes

k 1(7) (e o)
Vi) Vi £ ™ = Fi(;)j(a)vj(a)Ej( ) Fi(a)j

1(7) , i(v) _ pl(y)
F it Vi@ B = Ty

(a)vl(a)El(v)
o Vi B
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_ Z F (o) El(” (4.63),(4.64) 0
()g (4.69),(4.67)
oFa,y

Case3:a =~ # .

k(@) k(o) k(o
Vi) Vi B =T VB - F( o) Vi) EM

i(a)j(o)
_ Fk(a) \vs (B)E jla) FZ ) vk a)E

i(a)j(a)
@) . 3(B) _
+ Fz‘(a)j(ﬁ)Vﬂﬁ)E Fz(a)](ﬁ)vk(ﬂ)E

s ( 5 = T Vi) B )) (491)

o#a,f

@)

where I, (( )) () vanishes due to (4.61). If both j and £ are greater or equal than 2
then it becomes

Vi(a)vj(ﬁ)Ek( v) Fz( a) vj(B)Ej(a)

(@)
(@)j(a) Z(a)J 5 Vi@ E
k()

@) k@) k()
+ i Vi B =Tl Ve B

+ 2 Tiidio Vi B
o#a,l
(@74)

k(a) j k(o
- Fi(a)j(ﬂ) (VJ(B)E](B) - vk(a)E ( ))

474
(4.74) 0.

If j = k = 1 then (4.91) becomes

o 6] 1(a o
Vit Vit B = Ty Vi BN T z-<(a>)1 Vi@ B!

+ Fz((s) Vl(ﬁ)El z(a Vl( )El(a)
+ Z Fz 31 Vl(/B E 1)
o#a,l

(c) [} () 1(«
( Vl(ﬁ)El( ) - F1(a)1(5)v1(o<)E @

o#a,B
479 1(a) .
@79y AU msep Z Fl(u’)l(a) mgeg
o#a,l
1(a)
~ Dl (1 - Zmﬁo)
oFa
() 1
Rt (1 - Z m(,sa) I (a)1(8) MBE8
e



+ Z F z mlgég
o#a,f

1(a) ()
=T ( mgeg + Zm050 Zmo%) L) (a)1(5) M55
oA oy

W 1(9)
= ~L1(B)1(@) Mafa = Lifa)(s) Mecs

(4.74) mpéep maEq

1) — 1@ Mefa T Iy 1 Mses =0

ifi =1.If j =1 and k£ > 2 then (4.91) becomes

Vi Vi B = T3 0 Vi BN = Ti8), 5 Vi B

k
+ Pz((a)l Vi B @ — Pz((a)l( WV L @

+ Z Fi(oc)l(a)vl(ﬁ)E 7
o#a,l

@ k(o) k()
—Liay1(8) M8E6 — Z Loy (0) MBE8
oc#a,B

k(a) k(o)
~Cihon (1= e ) + 1l (1 - o)

o#B
+ Z Fi(a)l(a) mgeg
o#a,l

f(a) 1(8) ( mgeg +ZmT€T ngsa> =

o#B

If j > 2and k = 1 then (4.91) becomes
i (o ) 1(«x
vi(a)vj(ﬁ)E Fz(a)j(a)vj(ﬁ)E]( ) — F )j(ﬂ)vl (o) L @
1(a) , i(8) (8) 1(a)
+ i Vi B =Ty Vo B

@) g pil) @7
+ ;ﬁ Vi Vi B e

Cased: f = # a.

Vi Vi B = T8 V6 B0 — T8 Vi) B

i(a)j(o) i()5(8)

= Ty Vi B = Tiis) Vi B

- r’?(w)).( )v-(g)Eﬂ T3 o Vi EFD

+ > (O o Vi BN = T30 o Vi BFD) (4.92)
o#a,
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k(B)

where FZ.( i and i 3) vanish due to (4.61). If both j and % are greater or equal

i( 04)]
than 2 then 1t becomes

k k(B)
Vi(a)vj(B)E e I‘z(oe)j(oz)
KA o milB) _ ®)

+ Fz‘(a)j(mvﬂﬂ)E Ti a(ﬁ)vkw

(474) (474)
20l (1= e =1+ Yo mee) 2

If j = k = 1 then (4.92) becomes

VB - F ](5 ) Vi) B

k 1(B) 1 (o) 1
Vi Vs B = r( \Vis) E\ >—r( ) ' Vit )E (B)

)
B)
+ Fz(a)l vl(ﬁ El M — z(a)l vl(ﬁ

@74) 1) @
(4.79ﬂ4.61) Liaji(s) Ms%8 Fi(oz)l(ﬁ) Mafa

o ) T )

1(a

o#B o#p
(4.68) % mpeR — % MaEq = 0.
If j = 1and k > 2 then (4.92) becomes
Vi(a)vj(,@)Ekm = Ff((f))l(a)vl(ﬁ)El(a) - Ff((c?))uﬁ)v k(o )Ek(ﬁ)
+ Ff(f))uﬂ)vl(ﬁ)El( )T, (&B))1 Vi(s) B
7% Ff((f))u,@) ( —mgeg +1— Z MeEs — 1 + i mTET) =0.
ey =1

If j > 2 and k£ = 1 then (4.92) becomes

@74)
(4.62),(4.63)

Case5: a # 3 # v # a.

K k() (o) _ k(o) k
Vi) Vi B* ) = T30 o Vi B = T ) 5 Vi) EY

@) k() @ i) _ k(@) ™)
o Fi(a)j(a)vJ(B)E] Fi(a)j(ﬂ)vk(a)E v
k() EiB) _ k®) k(7)
+ Litayieo) Vi B = Ty Vi E*
k() j E(v)
+ Fi(g)j(»y)vj(ﬁ)Ej(w - Fi(o'j)j(ﬁ)vk(y)Ek('Y) (4.93)



where FZ(((Z))J( 8 and Ff((;))j 8 vanish due to (4.61). If both j and k are greater or equal
than 2 then it becomes

k(v) _ k()

Vi Vi@ E ™ = FZ(W) ()

k(ﬁ k(7) (7) ) j
i3 VEOE + i Vi B

v](ﬁ)EJ(Ot) Fz vk Ek(v)

") (474) 0.

If j = k = 1 then (4.93) becomes

k() _ pl(y) 1(a 1(a) 1
Vi) Vi B = T o) Vi B"® — T, Vi B

1(a)

(4.74) 1(7)

@79),461) (1)
1(B) 1(7)

— itayns mees + Ty mses

(4.63) . mgeg Ma€a

1) — 1@ Mefa t o 1 M =0

If j = 1and k > 2 then (4.93) becomes
k(v) _ k() 1 k
Vi Viek ™ = Fi((;y)l(a)v s E @) — z(a)l Vk B @
Lo Ve B + T3 ) Vi B

4.74) k
= T mses + Fz‘((oo)l(v) mgeg = 0.

If j > 2 and k = 1 then (4.93) becomes

Vi Vi ' = TQ) o) Vi B

i(e)j(@)

19)
— Li@ita)

Vj(g) E](Oé) - z(a)]

1(7) 1(v) i) A7
vl(ﬁ)E & —|—F( )M)V (5)E 2 (4;2) 0.

This proves that VVE = 0.

4.6.7 Flatness of V

We are now left with proving the flatness of V, thatis R = 0. Due to the symmetries
of

() N i(a)
By ki) = O a@is) — One i)

the cases to be considered are the following ones:
l.a=pF=vy=c¢
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2. a=p=v+#¢

Ba=y=c#f
4. B=y=¢#a
5. a=8#y=c¢
6. a=y#B=c¢

Ta=p0¢{y e, v#e
8. a=y¢{B e}, B#ec
9. f=v¢{acl, a#e
10. y=e¢{a, B}, # 5
11. a, 3, v and € are pairwise distinct.

Case 1: a = = 7 = e. Our goal is to prove that

() 0 ()
Ba)(a)i() = 8k<a>rh<a>a( )~ @) Ua)ia)

z(a i(a) I(o)
) Z ( Thtaita) ~ Fh(a)l(@rk(a)j(a))
o=1 l=1
i)
= O i) — On@ T Koo

z _ pi(e) I(a)
+Z< st T as(e) Fh(a)l(wrk(a)ﬂa))

2 Z ( T FZ(&)Z(U)FZ(&(Q)) (4.95)
o#a =1

vanishes. Let us first note that for each integer V > 2 it is possible to recover part
of the Christoffel symbols for the case where m, = N + 1 starting from the ones for
the case where m, = N. More precisely, let us denote by (I'"*!)¥; the Christoffel
symbols in the case where m, = N + 1 and by (I'V)¥, the Christoffel symbols in
the case where m, = N, where the sizes m,, of the remaining blocks o # « are the
same and where the constant ¢, has been replaced by 4 ¢,,. Then

N+1\k(B) _/NAKEB)
(F )Z(U)](T) o <F )Z(O’)](’T) (496)

for any possible choice of the indices in the right hand side (see Remark 4.18).
In the wake of this property, we will proceed by induction over m,. Let us first
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consider the case? where m,, = 2, so that the indices 4, j, k and h run from 1 to 2. In
particular, since Rz((aa)) k(a)j(o) AUtomatically vanishes when k = h, the only relevant
cases are the one where k£ = 1, h = 2 and the one where k = 2, h = 1. By using
the symmetries of R, we only consider the case where £ = 1 and h = 2, hence

obtaining
i(a) i) ()
Ryaayite) = Ol 2(ayiia) — 0200 iaja)
i@) ()
+ Z( oo 2eite) F2<a)z<a>rl(a)j(a>)
(o) _ pi(e) (o)
+ Z ( i) 25 F2<a>l<a>rl<a)j<a>) (4.97)
o#a l=1
where both Fi((i)) (o) @nd F;((Z)) (o) SUrvive only for I = 1 by (4.62). This yields
i(a) z(a i(a)
Rye)ia)ite) = D1@la@)i) — 2 ia)j)
z(a) (@) i(a) 1(a)
+ F1<a>1<a>F2<a>j<a> ~ Dol (e
i(a) 2(a) i(a) 2(a)
Izl 2@ ~ Ta@2 @)@
'L(a) 1 (o) i(a) 1(o)
+ ( 1(0) ] 2(a)j(e) F2(a)1(U)F1(a)j(a))- (4.98)
oFa
If i = 1 we get
1« . (@) . 1(a
Byea)ite) = D1@laa)ji) =~ 210y

where FQE ;1 (o) Vanishes due to (4.63), that becomes

Ryt = O@lami@ ~ 2@l i)
+ T o) ~ Dol 1@
+F1§3§2(a>F§Ez§1(a> Foee) T ron(a)
+ > Tl o)
ota

2 _ . .. _ o . . . z(a) o
The case where m,, = 1is trivial, as k = h = 1 directly implies Rh(a)k(a)j(a) =0.
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(4.79) 1(«@) 1(a)
= _Z al(a)r2(a)1(cr) - 82(a)rl(a)1(a)

oFa
(a) 1(e) 1(a)
= T Daoe) T 2 Do o
o#« lgale
a) 2(a 1(a) 2(a)
- > T, (@) ~ L@z 1e)1(0)
ocFa
a) 1(0
= T T
ocFa
(4.63),(4.69) l(a) (4 63) mag o _
ocFa oFa
when j = 1 and
1(a) 1(a)
R2(a)1( 31 2(a)2( ) a2(oz)F1(O¢)2(o¢)
l(a) (@) (e (@)
+F 101 (o) 2(092(0) ~ L 2(a)1(e) ] 1(0)2()

1(a) 2(w) (o) 2(w)
T L2l 2260 ~ Loz 102

(@) pllo)  @64)(469)
+ D Tine 22t wen O
oFa

when j = 2. If i = 2 then (4.98) reads

2(@) _ 2(@)
R () al(a)FQ(a) j(c)

2(e)1(@)j (0) )
2) i) p2e) ()

T e 2@)i@ ~ T 1)@
2a) 20 2e)  12()

D@2l 2@)i@) ~ T2 1a)j@)

2(a) 1(0) 2(a) 1(o)
+ > (Tlehio e F2(a>1(a>rl(a)j<a>)

ocFa
that becomes
2(a) o 2(a) 2(«x
R2(a)1(a)1(a) = al(a)r2(a)1(a) a2(a)F 1(a)1(e)
2(a) () 2(a) ()
T a@T 20100 ~ Ta@@ i@)1(a)
2(a) 2(a) 2(e) 2(a)
+ Fl(a)Q(a)F2(a)1(a) - F2(a)2(a)rl(a)1(a)
2(a) 1(o) _ 2(ae) 1(o)
+ (Fuan(a)Fz(a)l(a) Fz(an(o)Fl(a)l(a))
oFa
(4.64),(4.67) 2(a) B 2(a)
479) L) 2(a)1(a) aQ(Q)Fl(a)l(a)
(o) a) 2(a) 1(o)
+ Z( et i@ + F2<a>1(o>rl(a>1<a>)
oFa
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(4.63) 2(a) . 2(a)
(4.66) 6hm)FQ(a)l(a) 82(Q)F1(a)1(a)
MaEa 1 o) 2a)
+ Z( ul@) — 4 1(o) Fl(a)l(a) u
oFa
. Fl(a) MaEq
Ha)1(e) 4, 1(a) — 4/1(0)
_ 2(a) 2(a)
- al(a)FZ(a)l(a) - 82(a)rl(a)l(a)
(479) [2()
- Z( — D@l 2(a)1(o +(92(a)r 0)1( ))
oFa
4 _mas, L e o
B ;1 { ~ i) (ul(a) — u1(0)> + O ( T i@ — @) L 1)@ Y
MyEq 1 i@
a g (ull@) — ¢1(@))2 (@) — (o) T o) (e
(4.63) MeEy 1 MyEqy B
Z:[ ul(@) — 12— yle) — 1(0) ylle) — ul(o)] =0
when j = 1 and
2(@) 2(a) 2(a)
Ryoyieyz@) = 91 aa)20) — P20l ia)2(a)
2(a) () 2(ax) 1(a)
+F1<a>1(a)r2<a>2(a> Dot i@z
2(a) 2(a) 2(ax) 2(ax)
+F1<a>2<a)r2(a>2(a> Dotz iey2)
2((1) 1(o) _ 12(a) 1(o)
+Z( 1(a)1(0)™ 2(a)2(c) I-‘2(04)1(0')Fl(o¢)2(o¢))
oc#a
(4.64),(4.69)  MaEa 2(a)
(4.67),(4.79) Di(a ( u2(a) ) + Z: O 1 (o))
(463)23(92 ( MyEy ) 0
ul(o)
oFa

when j = 2. Therefore we proved that (4.95) vanishes when m, = 2. Given an
integer N > 2, let us now suppose that (4.95) vanishes for m, = N and show it
vanishes for m, = N + 1 as well. In other words, we are supposing that

N (a) @)
(R )h(a Ve(a)j (o ak(oc h(a)j(a) 8h(cv)cm(a)J()

Z(a) a) i(a) ()
+ Z ( (e)j(e) Fh(a)l(mrk(a)j(a))

i(ax) (o) i(Q) i) B
+ Z Z ( k(a)l( Fh( )ile) Fh(a)z(g)rk(a)j(a)) =0 (4.99)

o#a l=1
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foreveryi, j, k, h € {1,...,m,} for each m, < N and we want to prove that

(RN+1)Z(a) 8k(a)r

()
h()k(a)j(a) * O

i(a) _
h(a)j(e) k(a)j(a)

N+1
pi0) @) i@) i)
+ Z ( k(@)L h(@)j(a) Th@l(a)Tk(a)j(a))

’L(a) l (o) i(a) (o) -
t Z Z ( h(a)y( ) Fh(a)l(o)rk(a)j(a)) =0 (4.100)

oc#a l=1

foreveryi, j, k,h € {1,...,N+1} for m, = N + 1. Notice that, due to the property
(4.96) and by replacing ¢, with %ga, we can use in both cases the same notation
for the Christoffel symbols. Let us start by considering the case where i« < N and
observe that

i(a) o .
Fiavene =0 Je{l....,N+1} (4.101)

asi—j—(N+1)<N—-2—N—-1=—-3forj > 2 (werecall (4.69)) and
i) 4.79) i(e) (4:63)
M@ = ~2_ Do = 0
oFa
(t <N <N+1)forj=1.Ifall of j, k, h are less or equal than N then

(RN+1)%(0¢) _ 8}:

i(a)
h(a)k(a)j — Op(T'y

) j(a) k(a)j(a)

N+1
rie) i i) o)
+ Z ( (e)j(e) Fh(a)l(a>Fk<a>a‘<a>>
ki) L ait) — Daienitor  kested
oc#a l=1

where in the tirst summation only the terms for I < N survive, as both F
and I‘ Y(N+1) (@) vanish due to (4.101). This yields

)(N+1)(a)

(RN“)( % = Ou)Lhiohya) — Onte T

@)
h(a)k(a)j(e) h(a)i( k(a)j(a)

i) pi(a) @) pi(a)
+ (Fua)l(a)Ph(a)j(a) - Fh<a)z<a)Fk<a>j(a))
1

[ i(a) I(o) i(a) I(o)
+ (Fua)l(o)Fh(a)j(a) - Fh(a)l<a>Fk<a>a‘<a>>

Ifk,h < Nandj= N +1then

N+1\i(a) i(a) i(a)
(R >h(a)k( Y(N+1) () — = Okl o ah(a)rk(a)(NH)(a)



N
i(a) l(a)
+Z< et A A1) Fh(a)l(a>rk<a><1v+1>(a>)

i(a) (ViD)(@)  pei(a) (V1) (a)
+Fk(a><N+1>( 1 h@) (N 11)@) ~ he)(vr1) () k(e) (V1) (@)
'L(a) l (o) i(a) I(o)
+ ZZ ( (i) L h(@) (N +1)(@) ~ Fh(a)l(o)rua)(zvﬂ)(a))
o#a l=1

where, due to (4.101), only the last summation survives. This yields

N+1yi(@) i i(a) I(o) (4.64)
(B e b(a) (V-41( ZZ ( ety A1) Fh(a)l(cr)Fk(a)(NH)(a)) 0.
o#a l=1

Ifk, j < Nand h = N + 1 (due to the symmetries of R, this covers the case where
h,7 < Nand k = N + 1 as well) then

N+1yi(a) _ a) i(a)
R k@i = @l Wi @s@ — Qv @ i

N
i) @) (o) (o)
+ (Fk(a)l(a)r (Vi) (@)i(@) ~ T (N+1)(a>z<a>rk(a>j(a>)

=1
i(a) (N+1) () _ pile) (N+1) ()
T il (V@i ~ Tiven@asn @ ki)
S (i) pllo) i(a) (o)
DD (ka)l(a)F(NH)(a)j(a) - F<N+1>(a>z(a>rk<a>j<a>) :
o#a l=1

By means of (4.101), this yields

(RNH)(SV)H)( Yh(e)j(e) _aUV“)( >FZ(&)>J'<&>
+ g ; ( et TV e @ie) ~ FES@“L)(Q),(U)FZ{’CB)J-(Q)>
2:22 —ON+1)(a) FZ(<‘2)>j(a)
that becomes
(RN+1)25\0;11)(&)’€(Q)1(Q) = —G(NH)(Q)F’((Q))M&) 0
(FZ((O;)) @ _ Z F (o) only depends on {u'® — 419 | g £ a} and {u*@ |2 <

s <i—k+1} by (4.63), thus it does not depend on uN (@ ag i —k+1 < N—1+1 =
N <N +1)whenj=1,

N+1yi(a) _ i(c) _
(BT (@) = ~9wv+n@aj) =0

(analogously) when £ = 1 and

N+1y%(c) _ i(a) _
(R )(N—H)( Ye(a)j(a) — _8(N+1)(Q)Fk(a)j(a) =0
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when both j and k are greater or equal than 2, as®

wli—i—k+a)(a)

i(a) (469) (i—j—k+4)(a) (468) (i—=j—k+2)(a)  12()
Dii = T2 D@ Dyfa)20) 2@ —
i—j—k+1
(l+2 a) l(a) (i—j—k+4—1)(a)
u2(a Z (a) 1(a)1(a)>u !
=1
does not depend on yNF1(@ (Fll(a] (ZJ)FQ only depends on {u!(® — 4@ | g # a}

and{u ]2 <s<i—j—k+2}by (4.67) wherei—j—k+2 < N—-2-242=N-2<
N+1,T E 32( , only depends on u*®, i —j —k+4 < N—-2-2+4=N < N+1and
foreveryl1 <i<i—j—k+1wehavei—j—k+4—-1l<i—j—k+4<N+1land
Fg(g)((g Fi((‘z)) 1(e Oy depends on quantities that correspond to lower indices so it
does not depend on uN+1(® a fortiori). If k = h = N + 1 then (RN+1)! a)) ka)je) = 0
for every value of j due to the symmetries of R. If k < Nand j = h = N + 1 (due
to the symmetries of R, this covers the case where h < Nand j =k = N + 1 as

well) then

N+1\i(@) _ i(a) i(a)
(R )(N+1)( Ye(@)(N+1) () — ak( )F(NJrl)( YN+1)(a) — a(N+1)(a)Fk(a)(N+1)(a)

0 i) i(a)
+Z( ot (N @) (1)) F<N+1>(a)zm)rk(a)wﬂ)(a))

() (V1) () () (V1) ()
+ e )<N+1><a>F<N+1><a)<zv+1)<a> ~ vl k(v 1)@
i(a) (o)
+ ZZ ( ety OV @) (VA1) @) — F<N+1><a>Z<a)Fk<a)(N+1)(a))‘
o#a l=1

By means of (4.101), this yields

Ni1vi(a) (o) () (o)
(R (Vi 1) (@k(@)(V+1)(@) ZZ (F rei(o) L V) @ 1)(e) F<N+1><a>l<a>Fk(a)(zvm(a))
o#a l=1

4.64
( )0

We have therefore proved (4.100) under the assumption that ¢ < N. Let us now fix
i = N + 1. We have

N+1)( )
h(a)J = Op(1’ k(a)j(c)

N+1
N+1 l(a) (N+1) (o) pl(e)
+ Z ( h(@)i(@) ~ Lh(a)i(a) Fk(a)j(a))

SWithout loss of generality we assume i — j — k > —2, as I‘Z((a))](a) = 0 automatically when
i—j—k< -3

N+1\(N+1)(a)
(BN sestonti@) = Ot Lty
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N+1 1(0) _n(VH)(@) (o)
+ ZZ( h(@)i(e) ~ Lhia)i(o) Pk(a)j(a)>

oFa l=1

where in the last summation only the terms for [ = 1 survive by (4.62), yielding

N+4+1\(N+1) () _ (N+1)()
(RN ko) = On@ T hiarites, = Onte) T tariins
N+1
(N+1) () xl(@) (N+1) () xl(@)
+) (Fua)l(a) Dht@ite) = Phiai(a) Fk(a)j(a))
=1
(V4+1) (@)L (0) (V+1) (@) 2L(0)
+ Z < k(a)1(o) Fh(a)J( - Fh(a)1(a) Fk(a)j(a))‘ (4.102)
oFa

We distinguish between the following subcases:
a. both k and h are greater or equal than 3
b. k=1,h > 3 (thiscovers h = 1, k > 3 as well)
c. k=2,h> 3 (thiscovers h =2, k > 3 as well)
d. k=1, h =2 (this covers h = 1, k = 2 as well)

observing that (RV*!) h](vaﬁz&); (o) = 0 automatically whenever k = h.

Subcase a: both £ and h are greater or equal than 3. We have

N4 (V@) (N+1)(a)
RV tektont@) = Ok@T ity = Onte)ktargie)

N+1
(N+1)( l(e) (N+1) () l(ex)
+ Z ( bt Tiehste — Dhontin Fk(a)j<a>>

(N+1) () 1n1(0) (N+1) () 1n1(0)
) (F 11609 Thieyia) ~ Titart(o) Fk(a)j(a))
oFa

(@72) N(o)

wen D her@r = Q-1 e
N(a) 1(a) V(o) 1(a)

T L) @10 M e)ie) ~ L) @10 k)i

N+1
N(a) () _ pN(e) (@)
+> (F<k—1><a>l<a>rh<a>j<a) F(h—l)(a)l(mrk(a)j(a))
=2

1(0') N(a) 1(o)
* Z < (k— 1 h(a) (@) F(h—l)(a)l(o)rk(a)j(a)> (4.103)
oFa

where I, and Ty

If j <N —-1weget

vanish due to (4.63) if ; = 1 and due to (4.69) if 7 > 2.

— Oh—1)()T )

N1y (N4+1) () N(a)
(M), o) = -1 (k—1)(0)(+1)(@)

h(a)k(@)j( (h=1)(@) (j+1)(«
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N+1
rye e N(a) (o)
) ( L 1)1 F(h1>(a>1(a>r<k1)(a><j+1><a>>

(0') _ N 1(o)
+ Z( L 1)) G110 F(h—1)<a>1<a>r<k—1)(a)<j+1>(a))
o#a
(469)

N
(R0 @)1 G410

(N+1)(a) N(a) (V1) () N
+ L D@min@ Lt eyt ne — Loe Dewmel ke =0

N(a) N(a)
as (RN)(h 1) (@) (k—1)(@) (-1 () vanishes because of (4.99) and F( 1) (@) (N+1)(a)”
Fé\,i(_al))(a)( N41)(@) vanish because of (4.101). If j = N then (4.103) becomes
N+1\(N+1)(e) N(a) N(a)
(R H) h(a)k(a)N(a) — a(k ()l h(a)N(a) 6)(hfl)(cz)Fk(a)z\/(a)
N(a (oc) _ 1N o)
+Z( (k=1)(a)l(cx) ( D(e)(N+1)(a) F(h—l)(w)l(a)r(k—1)(04)(N+1)(04))
+T - ()
(k—1)(a)(N+1)(a)™ h(a)N(a) (h—1)(a)(N+1)(a) ™ k()N ()

N(a) F(NJrl)(a) FN(a) T N+1

)
) k(a)(
) N(w) 1(0)
+Z( Do (a)N(a)_F<h—1>(a>1<o>rk<a>N(a>)
oFa

4.64 al
(:6) (FN(Oc) Fl(a)

N(a) U(a)
(469) = (k=1)(a)l(a)™ (h—1)(a)(N+1)(c) -I r

(h=1)(a)l(a) ™ (k— )(a)(NH)(a))

N(a) (N+1)() N(a) (N+1)(a) (4101)
L)@@ by ~ Tenee @l ke = 0

If j = N + 1 then (4.103) becomes

N+1\ (N+1)(a) N(a) N(a)
(R ) R(e)k(a)(N+1)(a) — 8(k_1)(a)rh(a)(N+1)(o¢) — Il () (N+1)(c)

N(a) () N(a) l(a)
+ <F<k—1><a>l<a>Fh(a)(NH)(a) - F(h—l)(a)l(a)Fk(a)(NH)(a))

=2
N() (N+D)(@) (@) (N-+1)()
D@ @I @@ ~ Fa-n@o1)@l ke (v )
N() 1(0) V@) 1(0)
+ > T @i hm e F(h—l)(a)l(o)rua)(NH)(a))
o#a
(469 N(a) N()
- a(k—l)(a)rh(a)(N—i—l)(a) - 8(h—1)(oc)r k(o) (N+1)(c)

N
N(a) ()  AN(@) (o)
+ (Fw—l)(a)l(a)Fh(a)(NH)(a) F(h—l)(a)l(a)Fk(a)(NH)(a))

=2
N(@) (N+1)(a) N() (N+1)(a)  (4101)
T L)@@l @@ i@ ~ oD@l s@dvine =
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Subcase b: k = 1, h > 3. We have

N+1 (N+1)(a _ N+1)(a) (N+1)( )
(RN ) s ttondior = O1@ D htanstng” = Ontelaysiey
N+1
(N+1) () xl(e) _ pWV+D(a@)pl(a)
+) (Fua)l(a) L@@ ~ Dhiai(a) Fl(a)j(cw)
=1
(N+1)(@)1(0) (N 4+1) (@)L (0)
Y <F1<a iy Thierita) ~ Thiayitoy T1(egs <a>>
oFa
(472)

N(a) N(a)
)1y (@)it) ~ An-1@ 1))
N+1 N+1

(N+1)(oz) () (N+1)(a)
+ZF (@) L h(a)j(a) ZF |y

(V4+1)(e) (o) (NV4+1)(e) (o)
Y (Fuan(a) L@@ = Phee) i >>

oFa
N@) (o) V(o) (o)
+ (Fnan(o)F(h—l)(a)ﬂa) - F(h—l)(a)l(cr)Fl(a)j(a))
oFa
@) N(a) (o)
_Z< o Lo @@ _F(h—n(a)l(o)Fl(a)j(a))
oFa

where the underlined terms cancel out and where the terms

N(a) N(a)
al(a)r(h_l)(a)j(a)/ - a(h—l)(a)rl(a)j(a)’

N+1 N+1

S Vel (4:69) N(a) =D
@) ™ @)i(a) (g L M=) (@) (-D)es(e)
=2

N
N(a) (a)
Z He)l(e h D(e)i(@)’

=2

N
(N+1)( (4£9) . N(a) l(a)
_Zrhm)zm) i) g~ 2o 0 Dt et
=1

and

N@) 1il(0) N(a) 1(o)
> <F1<a>1(a>r<h—1)<a>y‘<a> - P(h—l)(a)l(cf)Fl(a)j(a))
oFa

combine to form (RY ) ))(a) 1(a)j(a)» Which* vanishes by (4.99). Thus

N1y (N41)(a) (N4+1) (@) 1 (@) (ViD)(@) (VD))
(R i@ = L@@ La@yi@ ~ Dhe@ el e

4This only holds for j < N. Still, for j = N + 1 each of these addends vanishes by itself, by
means of (4.101), (4.69) and (4.64).
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(N+1)( 1(o) (N+1)(e) ~1(0)
. ( apttes Taiorita — Dhtartte F1<a>j<a>)

oFa
(o) N(a) 1(0)
—Z( re ) Tty i) F<h—1>(a>1<a>rl<a>j<a>>
oFa

(4.63),(4.64) ( _ @ i

N ) )
069 467 (=@ 1(a)je) T F(h—1><a>1<a>rl<a>j<a>> =0.
oFa

Subcase c: k = 2, h > 3. We have

Ni(NAD@) arb) (V4+1)(a)
(R tente) = P2 Dhtaitey = Onte)Dgarsioy
N+1
(N+1)( l(a) (N+1) () xl(@)
+ Z ( ety Thiahsta) = Diogiioy T 2(a)j(a>)

(N+1) () 1(0) (N+1) (o) n1(o)
+ (F 11(0) L h(o)it@) ~ Lhia)1(e) Fz(a)j(co)

oc#a
(4.69),(4.67) N(a) B N(o)
472) 2(a)t (h—1)(a)j(e) a(h—l)(a)FZ(a)j(a)
N+1
N+1 (N+1)(
+ ZP AR S Zrhm)l(a) 2ehs(e)
i) (V1) (@) +L(0)
) ( @i ~ Uhai(o) Fz(a>j(a>)
oc#a
N(a 1(0’) N(a) 1(o)
+Z< @) (D @)it@) ~ L@ 2(a>j(a))
oc#a
M@ ) N(a) 1(o)
_Z( 2(e)1(0) L (h-1) ()i () F(hl)(an(o)rma)j(a))
oc#a

where the underlined terms cancel out and where the terms

N(a) N(a)
aQ(O‘)F(hfl)(a)j(a)’ - a(hfl)(a)rz(oz)j(a)r

N+1
(N+1)(@)pl()  (469),(4.67) N(o)
Y Toanim Thei@ = > Tamye
=2 =2

=2 T
2(a)l() (h 1 N@)j(a)

=

(N+1)( l(a) (4.69),(4.67) N(«) l(a)
_Z Tt Daons(e) Z Ly @i 2(@)it)
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and

N(a) 1(o) N(a) 1(o)
> (sz)l(o)F(h—l)(a)j(a) - F(h—l)(an(v)Fma)j(a))
oFa

combine to form (RY )gl(_al))(aﬂ(a)j (o)» Which® vanishes by (4.99). Thus

N1y (N1)(@) (V1) (@) 2L (e) (VD@ (V1))
(R ) har2tani@) = L2t La@y@ — Lo e 2@iia)

(¥ (@ pi(o) (N +1)(a) pl(0)
+ <F 129 Thiwysey ~ Thtantor Tt (a))
oFa
1(o) N(a) 1(o) (469),(4:67)
=D Taeno Lo @i@ ~ Lo lemi@ ) =y O
— (464

Subcase d: k = 1, h = 2. We have

N4 (V4D (@) v pvE@
(RNt = 01Dty = D2t T tayitny
N+1
(N+1)( a) (N+1) () xl(e)
+ Z ( PATAT A b A Fl(a)j(oo)
r@ ) (V4+1)(e) pl (o)
) ( Taei@) ~ Tataytio Fl(a)j(a))' (4.104)
oFa

If j > 3 we get

(N+1)(a)
oty = OaaDiiins

N+1
(N+1)(a l(a) (N+1) () xl(@)
+ Z( (@ L2(a)ie) ~ P2(aie) L 1<a>j(a>)

(N+1)( 1(o) (N+1) () 11(0)
+ Z( L(0)1(0) L 2(a)j(a) ~ L'2(a)1(0) Fl(a)j(oo)

N+1\(N+1)(a)
(R Jr1)2(04)1(06) —81(a)F

oc#a

(4.69) N(a) N

(4.67) La)* 2(a) (j-1)(e) 82(a)r1(a)(j_1)(a)
N+1 N+1

(N+1) (@) pl() (N+1)(
+Zrl(a)l(a) 2(e)j(a) ZF 2(e)1( Oz) 1(a)J()

(N+1)( 1(o) (N+1) (o) n1(0)
+Z( L(e)1(o) L 2(a)je) ~ L 2(a)1(0) Fl(a)j(a))

oc#a

o) N@) (o)
+Z( oo a)(j1)(a>_F2<a>1<a>F1<a>u1)(a>)
oFa

°This only holds for j < N. Still, for j = N + 1 each of these addends vanishes by itself, by
means of (4.101), (4.69) and (4.64).
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N@) (o) N@) (o)
> <F1(a>1<a>ra<a><j—1><a> - F2(a>1<a>rl<a>(j—1><a>>
oFa

where the underlined terms cancel out and where the terms

N(a) N()
) o)1)y ~ P20 1(a)(j-1)(0)7
N+1 we) N+1
(N (@) plla) (@6 N() (-1
D Teriny Talite) (1 2 Dt 1(e T2 ZF o) Do 1) e
=2 =
N+1 (469) N+1
(V)@ plla) @69 N pN () (I-1)(0) Ni@) plle
=2 Doy Fimsta) we > Totayi- @l ietnie = ZF2(a)l(a) G—1)(e)
=2
and

N@) (o) N@) (o)
> (Fl(a)1<o>r2<a)<j—1>(a) Lo e )(j—l)(a))

oFa
combine to form (RY )N((C;i(a)(j 1)(a)» Which vanishes by (4.99). Thus
N+1\(N+1D)(a)  _ p(N+1) () pl(a) _ (VD) () pl(a)
(B sy = D@ M) ~ Faania) L)
(N+1)(a 1(o) (N+1) () 11(0)
2 (F 2(a)ie) L 2(e1(o) L <a>j<a>)
oFa
(o) N(a) pl(o) (4.69),(4.67)
- ; < N 21w ~ F2<a>1<a>rl<a><a’—1><a>> woy O

If 7 = 2 then (4.104) becomes

N+1)( )
Ha)2(a)

N+1
N+1 a) (N+1)(e) l(a)
+ Z ( (o) L2(a)2(a) ~ L 2(a)i(a) 11 )

r@ o) W~
+ Z( Tyorate) — Dtapits >

oFa

(RN+1)§](\;J)F11()(§Q _ 81 F(N+1)(a 82

A = 0by

where in the first summation only the terms for [ > 2 survive, as I'y ), )

(4.69) and Figg; @ Z F 0)2 463) 0. This yields

N+1\(N+1)(a) (N+1)(a (N+1)()
(R )2(a)1(a) 2(a) A1(a )F2(a)2 — Oyl 1(@)2(a)
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N+1
(N+1)(0) ol (V4+1)(e) pi(e)
) (Fua)l(a) Lozt ~ Doy T >2<a>)

N+1 1(0) (N+1)(c) - 1(0)
+ Z( 1(@)1(0) L 2(a)2(a) ~ To(a)1(0) Fl(aﬂ(a))

oc#a
(4.64) (N+1)(a) N(a)
(4.79) O laa)ia) — 2@ iayia)
N+1 N+1
(N— l+2)(a) (N—143) () Rl(c)
=D Mo “Tame ZF ot Tiate)
oFa 1=2
where
N+1 (4 ) N
B (N—1+3)(cx) l(a) (N— l+3 (a)
> Tatarete) > Z Ly I
=2 oFa =2
N+1
t:=N—-I+3 t(a) (N—t+2) ()
=" ) Dozttt -
oFa t=2
Thus
N+1\(N+D) () _ (N+1)(e) (a)
(R * )2(a)1(a)2(a) = a1(a)Fz(oé) 62 a)l( )
N+1 N+1
(N=1+2)( l(a) t(a) (N—t+2)(a)
=D Do) Tt + 20 2 Tt oo
oFa 1=2 oc#a 1=2

(N=1)(a) (N+1)(a) (N=1)() N(a)
= Oi(a [F (@)1(a) T (FZ(a)Q(a) 1o )} D)1 ()1(a)

where the underlined terms cancel out and where

N(a) (479 (@) (472) ) (4.79) (V-1)(@)
DTt = — 2 P lion = —2_ %@l e T iai(es
oFa oFa
This implies
N+1\(N+1)(e) (N+1)(a)  p(N=1)(« N(a)
(R ) 2(a)1(a)2(e) — 81(a)F a)l(a) +81 (F 2(2)2(e) F 1(a)1(e) ) a2(a)r 1(a)1(e)
(N+1)() (N=1)(e)\ _
= 01(a)( 2)2(a) Fl(a)l(oc) ) =0
because
N— 2
F(N+1)(a) F(N 1)(a) (4.68) FQ(O‘) uN+1(@) _ l+2 _ l(a) )U(NflJrl)(a)
2(a)2(e) (a)l(a) 2(a)2(e)  4,2() uz Q) 2(a ( )1()
1:1

does not depend on u!(®) (it only depends on {u!(®) | & # a} and {u*®) |2 < s < n}).
If j = 1 then (4.104) becomes

N+1\(N+1)(e) (N+1)(a (N+1)(a)
(R - )2(a)1(a) 1(a) — A1(a )F2(a)1 — 0o a)F (@)1(a)
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N+1
@) (N4+1)(0) pl(e)
+ Z ( Lot = Lo T 1<a>1(a>)

(N+1)(a) (N+1) (@) n1(o)
+ Z( ity Taeie) = Doteapiie; Fl(a)l(a))
o#a

where F;gl(a) vanishes due to (4.64) and where

81( )F(N—H)(a) (4.67) (91(a N(a)

2(a)1(w) ) 1(a)1(a)
and
(N+1)(a) 479) (N+1)(a) 472) N(a) @79 N(o)
aQ(Q)Fl(a)l(a) = _282(a)r1(a)1(a) = _Zal(a)rl(an(a 81(a)F (o) 1(a)
oFa o#a
mutually cancel out. This yields
N+1
N4+I\(N+1)(a) (N+1)(a) pl(a) _ 1 (N+1D)(e) pl(e)
(B ) s (@i@) = Z (P 1(@)l(@) 1 2()1(@) ~ Paa)ia) Fl(a)l(a))
(N+1)(
= > Titonisy Tiieica)
oFa
(4.69) ~(N+1)(a)pl(a) _ W+ () p1(e)
(427) 1(a)1(e) I‘2(04)1(04) I‘2(04)1(@) Fl(a)l(a)
N+1 N+1
(a) (N l+3 l(a)
+ Z I a1y () Z I A
N(a) 1
SR S
oFa

N

(4£7) (N+1) (o) 11(@) N(a) l(a)
=" Loty Tianie) T 2 et D11

=1
N-+1
Z V- l+3 i@ ZFN(a) i
2()2(ev) 1(a)1 1(a)1(0o) 1(a )1()
oFa
(467) N(a) 1(e) N(«a ) N(a la
T i@ T Tl e +ZF 1(a)
(N=143)(a) xl(a) 2(a) (N+1)( N(a) 1(0
ZF2(a)2<a) I ~ o@Dttty = 2 Cip@ T 1eiie)
oFa
N
(4.79) N(a) (N—143)(a)\ 1-l(e)
(4_61) (Fl(a)l(a) - F2(a)2(a) )Fl(a)l(a)
=2
2(a) N+1 (o)
— Tooa@Titnts, T 2 Tty i)

oFa
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(4.79) N(a) 1(o) 2(a) (N+1)(e)
=) Mt Ti@ie) + ottt
U;éoc

N z+3 (N=14+1)(a)y 1) B
+ Z — i )Fl(a)l(a)} =0

because for each o # a we have

o a)l i@

1(a)l(o)” L(a)1l(o

N
2(a) N+1 N 1+3)( (N=I+1)(a)\ l(@)
) + F2(a)2(o¢ 1(0 (a) + Z 2(a)2(c) Fl(a)l(a) )Fl(a)l(a)
=2

N+1
(4.63) N (a) o MaCa 2(a) B (N—s+2)( )
D) { 2@ — 1@ ul(a)} + Do) { @) — i) ul @ Z Doy

N
(N+1)(a)  (N—1)(a) N z+3 (N=14+1)()\ i)
+ (FQ(a)Q(a) - F1((%)1(06 J)l(a) + Z () i )Pl(o)l(a)
2(a) 72(a)
(466) LN () Y Ty )2(a) L2 _ 1 V@ 2
1(@)1(0) | 1@ = 1@ | T 1 2(0)2e) | T i@ — 1@ L 1)@
N
1 (N—s+2)(a)  s(a) 1 1(a) (N+1)(e)
T l@ Z 1) ;Fl(a)l(a) W= @ — i@ I oy1(a) ¥
(N+1)(a)  (N—1)(a)y 12(a) z+3 (N=14+1)()\ i)
+ (FQ(a)Q(a) — i) M i) + Z — i) )F1(0)1(a)
FQ @) N 2(a)
(4.63) (a) FN s+2)(@) | s(@) _ A)2(0)  pll@)  (N+1)(a)
468 ulle —ul(a o)l(a) 1@ — (@) * o)1)
) N-2 e 2(av)
o _p U(N“) S (e ple) e ) [ Di(oy(e
2(a)2(a) w2 u2(a a)2 a) 1(a)1(a) ul(@) — 41(0)
=1
N—-2
£ (A _psle) s
2(@)2(e) 1(e)1(e)/ " (o)1 ()
s=1
Do) = (v—st2) Lo 2
B a)2(a N—s+2)(a s(a) . a)2(a 2(a N(a)
ulla) — 41(0) ZS Fl(o’)l(a) u ul(@) — 4,1(0) Fl(o)l(a) u
S Do
(+2)(a) _ pl(a) (N=i+1)(a) L{o)1(e
+ D (Taaysga) ~ Tifayie) Lua) . ul(a):|
=1
N—2
+ (F(s+2)(a) . Fs(a) )F(N s+1)(a)
2(a)2(a) 1(e)1(e)/ ™ (o)1 ()
s=1
Do (Vo)) [oae) 2@
a)2(a N— s+2 a s(a ) a)2(a 2(«x N(a)
Cule) — 1) Z 8 ul(@) — (o) F1(0)1(04) u
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N-3 @
+_ (oo ~ D) {FU(V;(S)( '+ ul(al)(?lijl)w) “(N_SH)(&)}
. @)
+ (Tateyita) — Fﬁﬁ}fﬁﬁj‘)) {F%?))l(a) + ul(;)(‘ili;)(a) ug(a)]
(4.63) ;Z (V= s+2) @) s(@) _ Fggziﬂrx) 2@ N
@es) ull@® — yll0) u1 a) 1(0 ul(@ — (o) = Ho)l(a)
-3 - Sza;(a»{— e T |
N-3 2(a)
(T Sy — e TS T >) | )
=1
2
TS a_)zu1 J>ZF‘N0>T&? u®
+NZ:3 (s+2)(e) _ ps() ){_ 1 N_ZS:_IF(Nst)(a)uz(a)_ julhme@
- Dozt ~ Tinw) | ~ giw — i@ 2 e 2l@) — 1(@)
N-3 2(e)
i (Z( l+22iz> l((a))l(m)u(Nl)(a)) [ul(ag(a—)lsl)(“)}
=1
_ F; T 2(a)2(0) 1j(N s+2)(a) , s(a)
wl@) — () u1 a) o)l(a)
N—-s—1
ul(a Z F;ZZ)(Q) D) D Thiey @ ul®
s=1 =2
Fzgzizm PV t0) FQ(Z Do) = pv-st2@) o)
= T @ D) T @ @ ;FMU
_ 1 ( 3(a) (@) ZF l+1 (@)
ul(e) — 4 1(0) \" 2(a)2(a) (@) 1(0)1(e)
1 — (s+2)(a) s(a) gl (N—s— l+2 @) (@)
= i i 2 () ~ T Z Lo
D V(@) 3(a) PZ(Z 2<a> S p-HD(@ 1))
T T @ i) Lo ;Fua
3(«
+ m (r;gggz(a) %) {rg(g @) Z Pt <a>1
_ 1 gy (F(s+2)(a) s ster s=1+2)(a) | I(a)
Wi — i) 2 2zt o) 1(o)1
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2(a) N-2 a
_ 112(04)2(04) WV —t+1)(e) (u3( : UCHI. u(l+1)(a))
u2

(]

- ul(@) — q1(0) 1(0)1(e) (o)
1=3
N-3 N s—1
B 1 (F(s+2)( (a) F (N—s— l+2)(a) e
ul(@) — 31(0) 2(a)2(a) " Ya) 1(o)1(a
s=2 =2
FQ(a) N-2 3(a)
_ 2()2(a) (N=l+1)(a) (U Ua) _  (1+1) ()
T ylle) — g l(o) Z Fl(cr)l(oz) (UQ(a) u v
1=3
1 N-3
- - (s+2)(a) (N H1)(a)  (t=s+1)(e)
ul@) — ¢1(0) (F2(a) 2(a) Z F o)1(a)
5=2 t=s+1
2(c) N-2 a
_ FQ(a)Z(a) (N —H1)(a) u )ul(a) (1+1)(a)
ul(@) — q1(0) 1(o)1(a) u2(e)
1=3
1 N-2 t—1
B (s+2)(a) _ ps(e) (N=t+1)(@) | (t—s+1)()
ul(@) — 31(0) Z (F2(a)2(a) F1(oz)1(oé)) 1ﬂl((f)l(a) u
t=3 s=2
N-2 o
_ 1 p(V=1+1)(@) | p2(a) u? Y@ _ D@
ulle) — 41(0) — 1(o) (@) 2()2(e) u2(@)
=1 (4.75)
_ (s+2)() _ ps(@) (I=s+1)(e) | L
(FQ(a)2(a) Fl(a)l(a)) u ] = 0.
=2

s

Case 2: o = f = v # e. Our goal is to prove that

Ry st = O a>ri(a§ o)~ O kenica)
+ ZHZI ( cnte i) Fﬁiil(o—ﬂc@)j(a)) (4.105)
vanishes. Let us first consider the case where h > 2. We have
Ry arsia) = ak(oéwi((cgj( ) = O Tyt
+ O_Zl ; ( cen hiite Fi((i;z(a)Fi(a)j<a))

where Fl((i (o) Vanishes due to (4.62) and where FZ((O;?)j(a) only depends on

{u@ |1 < s < me} and {u'@ | o # a} (thus it does not depend on w9 as h > 2,

that is 0, E)F ))J (@) = 0). This yields

z(a ) l(U _ pi(e) l(o)

i) = D Z ( (@i0)L h(@)it) ~ Thion <a>rk(a>j<a>>
o=1 [=1
where the terms Fil((i ))j(a) and I‘h((oé ;l( trivially vanish for o ¢ {«, ¢} by (4.61). Thus
i(a) S (i) @) i) )
By k(i) = <Pk(a>Z<a>Fh<e>j<a> Fh<e>l<a>rk(a>y‘<a>)
=1
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S (i) ple pile)  ple)
*‘EE: (I‘<a>@>rh&>(a> Fh&ﬂ&)rk&ﬁﬂa))
(4 62) z oz) l(e)

(4 64) Z k’ h(f J(O‘) 0

as Fi((a)) 1o =0 by (4.63) for every [ > h (h > 2 implies [ > 2). Let us now fix h = 1.

We have (the terms I', Ho) o) and I‘ trivially vanish for o ¢ {a, ¢} by (4.61))

1(e)i( (o)

i) o i(a) . i(a)
By(hayi@) = @l 1@t ~ 10T k)i
~ [ i(a) I(o) @) o)
+ (I%«nua>rl&n<a> Fl@ﬂuariuwﬂa>>
o=1 [=1
P S P W )
k(@) 1(e)j(a) — YU k(a)i(e)
~ [ 1i(a) o)  pile) @)
+ (kaﬂkwrlkhﬁﬁ Il@ﬂmoFMaw«ﬂ)
=1
N (i@ Pl pile) Pl
+ (kau&ﬂl&n«w PN@M@FMaMuU)
=1
463 @) i()
ey 105 ~ Ak
= ((ile) i) i) (a)
> (Fk«wu @) — Fl&)«wrkuwﬂa>)
=1
i@ L) (@) i
+ Dol @it — L1010 ke (4.106)

We distinguish between the following subcases:

a. both j and £ are greater or equal than 2

b j=k=1
c. j=1,k>2
d. j>2,k=1.

Subcase a: both j and k are greater or equal than 2. Let us first claim that in this
case

i(a) (o)
Ok 100y — D100 k@yica) = 0 (4.107)

Indeed, if i < j then both F’(a) ) and F ) o trivially vanish by (4.62) and (4.69)

1(€)j(x (a)g
respectively. If i = j then

8k(a)rll((i) 81(6 F (a) _ ak(a)rj(a) . al a)



(4.63) MeEe (4—k)(e)
=" Ok(a) [—(] ALy )2(0)

(4.69) ull@) —
) ) 2
= aﬁﬂY)%mé

(4.66) maga

We are going to prove (4.107) when i > j by induction over i (starting from the
case i = j that we just proved). Given an integer s > 1, let us suppose that (4.107)
holds true when i = j + t for each t < s — 1 that is

— Ol =0 fori=j+t, t<s—1, (4.108)

and show it holds for ¢t = s as well. We are thus considering i = j + s, so that

8k(a)F (G+8)(a) 81 6)1—\ (G+8)(a)

i(a)
Iy

()

ak(a)ri(a)l — 0, (e)F( @)

1(e)j(e) k(a)j(e) — 1(e)j () k(a)j(a)
(4.63) (s+1) () (s—k+4)(c)
(469) T 11(a) — O o(a)2(0)
(4 76) s+1
S— l+2 a)
8’? [ ul(a) Z F 1
(s—k+2)(a)
- a1(~S)F1(O¢)1(a)
(4.79) 1 an 14+2)(c)
L79) s—1+2 I(a)
T T M@ — 1o Z (ak C“)Fl(e) 1(a) > u

=2

1 (s— k+2)(a (s k+2)(a)
o ulla) — 41 F 1(e)1(e) + 81 F 1(e)1(e)

s+1
4108 S— (03 o
((4?9)) ul(a) 1(e) Z < F( " k—;5)( )) u't®

1 (s—k+2)(a) (s—k+2)(e)
@ 1@ Lo T el

s+1

(4.76) 1 (s—1—k+3)() \ . I(a)

Tyl — 1@ Z (81 He)1(a) u
1=2

1 (s Hmm (SHW)
oyl — e T HONe) +oih 1(e)1(a)

where ng(;fl_(];r?))(a) vanishes for each [ > s — k + 3 by (4.67). It follows that
@) 1 s—k+2
i(a) i(a) - s—l—k+3)(a) ) ()
Ok T@st0) ~ DO k@) gy T — o 2 G%@n@<m )“
1=2
_ 1 (s—k+2)()
ul@) — (e~ U9(a)
s—k+2
(s=1l—k+3)(a) a)
00|~ g 3 D™
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1 (s—1—k+3) () \ , I()
= T (81<6>P1(e>1<a) u
l

=2
_ 1 (s—k+2)(a)
ul(@) — 41(e) 1(e)1()
1 s—k+2
_ (s—1—k+3)(a) l(a)
(ul@) — 1(9)2 Z I 1(e)1(a)
=2
s—k+2
(s l—k+3)(a) ()
uua) 1 Z <al<e L(O)1(a) )“
(4.63) s§2 F(s [=k+3)(a) | I(a)
- ( (e)1(a)
s—k+2
_ s—l—k+3)(e) l(a) o
l Z Mot =0

This proves (4.107), thus (4.106) becomes

i() N [(pi) plle) pite) i)
Ry Orarste) = D (F k(@ 1050 ~ P! k(a)j(a))

=1
i@ O pil) Pl
T @l 105 ~ T ke

where in the first summation only the terms for j < [ < i survive by (4.63) and

where I’ E it and Fl( i) vanish due to (4.62) and (4.64). We get

(o) B i@ ) i) ()
LTRSS (Fk(a>1(a>rl<e>j(a> Pl(e)l(a>rk(a>j<a>)
l=j

which trivially vanishes for i < j. For i > j we have

i(a) (4.63) . (i—k=1+4) () 7=+ 1) (@) p(i=l+1)(a) p(I—k—j+4) (@)
Ry @yic) ) 2 (F2<a>2<) Do ~ T Loz )

k—1+4)(c) a+1 i l+1 (l k—j+4)(a)
= ZF2<a>2 M ZF (e)2()

k—1+4) () g+1 J+1 (z k—t+4)(a) _
ZF2(a>2 YRR ZF Ty =0

Subcase b: j = kK = 1. We have

i(a) i(a)
Rl(e) 1(a)1(ex = (o) 1(6 1(a) al(f)rl(a)l(a)
i(a) ()
+ Z( Kol a) Fl(e)l(wruan(a))
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i) (0 @)
T el 101w ~ Do i@

where in the summation only the terms for [ < i survive (by (4.63) and (4.67)) and

4 79) 81 z(a) . 81 z(a)

a1(6 )1(a) 1(e)1(e)

a)l( )

as F1((e)) (o) ONly depends on both u') and u'*) by means of the term u'(®) — (). Tt

follows that

i(e) e (i@ i) i) @)
R o) = 2 (Fl(a>z<a>rl(s>1<a> Fl(e)l(coFl(a)l(a))
=1

i@) (o) i(a)
+ el 191() ~ L)

(4.79) i(a) ()
ZZ (F o 1e(e) Fl(e)l(mruo)l(a))
o;éa =1

z(a l(a) i(a) 1(9)
_Z ( 91a) Fl(e)l(corl(e)l(a))
z(a . i(a) ()
- Z ( e F1<e>z<a>rl<o->1<a>>

1(e)
TSI

o¢{a,e} =1
(463 i— l—|—1 l(a) i—14+1)( (o)
-2 (ZF o)1) 1 1(91() ZF o1 Tiion <a))
og{a,e}
B i—t1)( ()]
- 3 (T, - Sl <o
o¢{a,e}

Subcase c: j = 1, k > 2. We have

()
Rl(e)k(a)l(a O a)F — 0oy ( )
i(a) ()
+ Z ( et 1) F1<e>l<a>rk(a>1(a>)
z(a) 1(e€) i(a) 1(e€)
T ol 1@ue ~ Tigiols (a)l(a)
(479) i(0) ikt 1)(a)

wen e K 1@10) T Ol (o]

i@) i)
+Z< R R O F1<e>l<a>rk(a)1<a>>

i) e i) (o
T Lol 101@ ~ T ko

where FI(G) vanishes due to (4.62). Let us first claim that in this case
k(a)1(e)
O T Sy + O gt = 0. (4.109)
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Indeed, if i = 1 then

1(a)  (463) MeEe B
ak(a)F o) T O E)Fl(e h(e) Oh(a) |:u1(a) _ ul(e):| =0.
We are going to prove (4.109) when ¢ > 1 by induction over i (starting from the
case i = 1 that we just proved). Given an integer s > 1, let us suppose that (4.109)
holds true when i = 1 + ¢ for each t < s — 1 thatis

O Ty + D0l (i) @ =0 fori=1+t, t<s—1, (4.110)

and show it holds for ¢ = s as well. We are thus considering i = 1 + s, so that

z(a o 1+s)(a) (4 72) s(a)
Oy 1O)1(a = Ok(a) 1(e)1(e) Oi— )Fl(e)l(a)' (4.111)

If k£ = 2 then (4.111) becomes

i(a) B “(@) i—k41) ()
O 1w = @ iohw = ~ 010 0w = ~ 10T 1

1(e)

as ' E )) o) only depends on both ') and u!(®) by means of the term u'(®) — !(©), If

k > 3 then (4.111) becomes

i(a) . s(a) (4.110) (s—k+2) () i—k+1)(c)
ak(a)rl(e)l(a) _a(k_l)(a)rl(e)l(a) - —31(6 F1(6)1(&) —0 e)F ()1(a) -

Thus (4.109) holds, yielding

i(a) B i@ @) i) ()
R Ohan() = D (ka)z(a)Fl(en(a) F1<e>z<a>rk(a>1(a>)
=1

i(a) 1(e)
T Lol 1@

+2
(4.69) i(a) l(a) z(a) l (a)
(4;7) Fk:(a €)1(a) Z F k(a (o)

i) 1(e)
Dol 101

which trivially vanishes for i < k by (4.63) and (4.67). For i > k we get

i—k+2
'L(a) i(a) l(a z(a) a)
(k(@)1(a) Z Lo ZF a)1(a)
@ e
+ Diancc >F1<e> ()
@63) i—k+2
63) 2 (i—k+1)( 1(a) . z+4 @)
ey L@@ ot Z Coayter - Tii(a)

i—14+1)( l(a) (z k—l—l( )1~1(e)
ZP 1(e)1( Fk(a )1(a) _'_F (a)1(e) 1_\l(e)l(oz)
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i—k+2
(i—k+1)(e) pl(a) k—144) (@) -l (@)
= Do Tioe + Z e T

i—k+1
(a) (i— t+1)( ) (i—k+1) () 11(e)
- Z I n@ T L1oue
—t

i—k+1
o —k—l+4)(a )_ (i—14+1) ()
Z M ( 2(a)2(0) L)) )

d) ki) L ke
* Do )F 1010 T 1)
1—k+

(467) —k—1+4)(a) (i—k—14+2)(a)
Z e)l(a)( 20)200) L 1(a)i(a) )

AV
T o101 T 101w
where
(4.63) MaE e
2a)  i-k42)(@) | kD@l @63) Mafa (k@) o)
Paare 101 T 1o L1010) (g 2@ g _ul Z B0

(i—k+1) () 11(e)
i Lo

Fl(f)
aed Lo [pere 2
o u2(e) 1(e)1(a)

1—k+2
(z k s+3)(a)
3T

TRV
T Lo
1(5 1—k+2

a)l k— s+3 us@
2 iy

thus

i—k+1
'L l(a i*k*l+4)(a) (i—k—14+2)(a)
l(e k(a (a) Z F €)1l(a) ( 2(a)2(a) - Fl(a)l(a) >

1(e k42
B 1(a)1 Z F1(ek :+3 W@ (4.112)

We are going to prove that (4.112) vanishes for each ¢« > k by induction over ¢
(starting from the case ¢ = k, where (4.112) vanishes trivially). Given an integer
s > 1, let us suppose that (4.112) vanishes when i = k + ¢ for each ¢t < s — 1 thatis

t+1
() (t—1+4)(a) (t—1+2)(a)
> Tl (P2<a>2<a> — e )

=2
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t+2

— i er(e Ty =0, t<s—1, (4.113)

u2(a)

and show that (4.112) vanishes for ¢t = s as well. We are thus considering ¢ = k + s,
so that

s+1
z s—14+4)(a) (s—142)(a)
l(e k(a)l(a Zrl(e (a) < 2(a)2(a) 1—‘l(oz)l(oz) )
1(6 s+2

1ﬂl(cy)l ZF s— l+3 ()
1(e)1(e)

where
s+1
Z Fl(a) (s—1+4)(a) F(sfl+2)(a)
)1(a) (@)2() 1(a)1()
s— t+2 (t+2)(o¢) t(a)
= ZF 1(9)1(a ( 2(a)2(a) Fl(an(a))
4.63) s—t+42
6. (s t—r+3)(w (t+2) () t(a)
- Z |: ul(a —Ul Z F €)1(a) :| (FZ(a (o) 1(a)1( ))
t=1
S s—t+1
_ (s—t—1+3)(
o ul(a) — e Z {Z F 5)1 :| ( (a) 1 (a)1(a)
s—I+1
_ (t+2)(e) _ pt(a) (s—t—1+3)(e)
= ul(a - Zrue (@) Z (P2<a)2<a> Fl(a)l(a)) u
_ _ I(c) 3(a) _ pla) (s—1+2)(cx)
= ul(a) — 10 Zrl(e)l(a) Krzwm ) i )) u
=1
s—1+1
t+2)(a) t(a) (s—t—143)(c)
+ Z < 2)2(a) F1<a>1<a>) u }
@7) XS: @ ) u?(@) L 512 (@)
(4.68) ul(a>_u1(e) o 1(e)1(a) 2()2(a) 3,2(a)
3(a)
2(a) U™ (s=142)(a) _ , (s—1+3)(c)
+ Toe)2(0) (u2(a) u u

FZEag
_ 2()2(c (s 14+3)(a)
T oylle) — ul(e ZF 1(€)1 (e

i

:;

l\?

Q

’1&

52
N—

thus

(@ rg2(a) | = i)

o a)2(a l(« (s—143) ()
Rl(e)k(a)l(a) ul@) — (e Zrl(e)l(a)“



1(e s+2

1(04)1 i F s— l+3 l(a)

I‘Q(O‘ s
— 2()2(e) () (s—1+3)(a)
Tl — (e Z Fl(e)l(a) u

1(e)
B Fl(a)l ZF &) (s 143)(a)

E

2(0{) 1(5)
= Z ple) @ (2@ Diane
— 1(e)1(a) wlle) — 41(e) u2(®)

(469 i) (5 1+3)(@) (_ Maca 1 L MaEa
(466) “— 1(e)1(e) u2(@) ylle@) — (e = g2(@) gl(e)
Subcase d: j > 2, k = 1. We have
RO @it = BT os@ — AT msw
+ Z( BRI ST T in((%)z(a)Fll((?)j(a))
+ T ~ Dol i@

where F1Ee) (@) and F .( ) vanish due to (4.62) and (4.64) and where

i) (4.79) i(a) z(a
el miw = —2_ Oeliyw = —0o - > al
oo o¢{a,e}
_ i(a)
= a1(oc)111(e)j(o¢)
asT’ (( Ji(a) ONly depends on both u 19 and u!(®) by means of the term u!(®) —
follows that
Mo
i(a) _ i(a) la) i) la)
Ry @ity = D (Fua)l(a)Fl(e)j(a) F1<e>l<a>rl(a>j(a>>
=1
(4 63) i— H—l ]+1 i—I4+1)( —j+1)(a)
wen Z i Tina) Z gia - Tieie)
i—14+1)( ]—i—l (t—g+1) () z—t+1)( )
= Z IR AR Z Net@ Liew =0

Case 3: a = v = € # . Out goal is to prove that

i(a) @) i(a)
i, n(@)i(8) ~ One)ko)8)

Mek(es(8) = Ok T
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- i) pllo)
+ ZZ( ety i@ Fh(a)l(a)rk(a)j(ﬁ))

o=1 [=1
(as1) o) (@)
i) Doy ) ah(a)rk(a)j(ﬁ)
i(0) i) ()
+ Z (ka @ hei®) Fh(a)l(a)rua)j(m)
o) ) i) ()
+ Z (ka (@)i(8) ~ Fh(a)l(ﬂ)rk(a)j(ﬂ)> (4.114)
vanishes. If j > 2 we get
(o) rie i(0)
By yr(a)is) = Ok nayics) — One)Lriayscs)

@ Ik i) ()
+ Z( () )(6)_Fh(a)l(a)Fk(a)J‘(6)>

) 1(5 i(a) 1(B)
+ Z( (@18 h(@)j(8) Fh(a)l(mrk(a)m))

where, by means of (4.62), only the last summation survives, in which only the
terms for [ = 1 survive. Thus

i(0) i@)  (8) i@ Pl @)
Ry en@is) = L@ ninie ~ Fa@ie ki@ = 0

for j > 2. Let us then fix j = 1. We have
i(a) _ i(a) i(a)
Rh(a)k(a)l( - 8k(a)rh(a)1(6 - ah(a)rk(a)l(ﬂ)

z(a) l(a i(a) Ua)
+ Z( k()i(0) L h(a)1(8) Fh(a)l(a)rk(a)l(ﬁ))

il pls) _ pi(a) 1(B)
+ Z ( E(a)l( h(a)l( ) Fh(a)l(ﬁ)rk(a)l(ﬁ)) . (4115)
Let us recall that, as we have already seen in (4.109),

AT = — 00T ey ™ (4.116)

for every € # o and t > 2. We distinguish between the following subcases:

a. both h and £ are greater or equal than 2

b. h=1k>2 (this covers h > 2, k = 1 as well)

observing that R k(15 = 0 automatically whenever k = h.
Subcase a: both k and h are greater or equal than 2. We have

(4.63) i(a i(a)

i(a) .6 )
Bh@)k(@)18) (559 P T ntay1s) ~ Il kianno)
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i—k+2 i—h+2
) T i@ i@
+ Z L 18~ 2 ThimiTien®)
1=k

rie) QA pie) pl)
+ Z( Dhns) Fh(a)l(ﬁ)rk(a)l(ﬁ))

where Fil((@)l 8) and Fg(ﬂa))l( 5 vanish due to (4.62) and where

O Thiois) — Oy = O@iaiis) = @l an)
(4. 116) 31 agzl(k;—Q) a) n 81 1(al)€1(h;-2)(04) —0.
This yields
i—k+2 i—h+42
Ry anes = Z L oita) Z Loyt e ) (4.117)

which automatically vanishes for ¢ < k. For i > k (4.117) becomes

i—k+2 i—h+2

i() (4.63) (i—k—l+4)(a) l h+1)(a) —h—=l4+4)(a) ~(—k+1)(a)
Fck@)1(8) (g0 2(@)2(0) Z Do Tian(s)
l=h
i—k+2 i— k+2
ki z+4 ) )l h+1 k—t44)(@) plt-h+1)(@) _
= Z Doeae  Tiayics Z M Tiiane =0

Subcase b: h = 1, k > 2. We have

(o) (4.69) i(a) . i(a)
B9 g7 @ 1) ~ 1@ liayis)
i—k+2 i
i(a) l(a) i(a) o)
+ Z Tt 16 = D Tt ke
I=k
) i(a) 1(B)
+ Z < IR Fl(a)l(ﬁ)rk(a)l(ﬁ)>
where, by means of (4.62), F g Vanishes and in the last summation only the
term for [ = 1 survives and where
(a) i(a) (4. 116) (z k+1)( i(a) -
On@lins) — Al =~ @) + 0T = O
This yields
i—k+2 i “
o i(a) i(a) e
Ry ks = Z Feie 1@ — 2 L Trmie
1=k
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i(a) 1(8)
+ 1] 1a
i—k+2 i

(4.63), (469)F(a) a )+ Z F(z k— l+4 ( ) F(i—l+1)( )F(l k+1)(a)

k() 1( (@)
(4.67) —

@) (8
+ Fk o)l F
1—k+2 i—k+1
_pile) @ rie e
= Dl 1@ + Z IS Z NPT W o B

i(a) 1(8)
+ Fk 1 r )
i—k+2

(4.67) (i—k+1)(a k—i+4)(a) pl(e)
Flen  Tiane Z RPN TR I

i— k+1

(i—k+1) (@) o1 () (i—k—1+2)(0) el(e)
— i Tieue = 2 T Tiene)
=2

i(a) 1(8)
+ Fk(an(g)rl(a)l(ﬁ)

i—k+1
(4.63) (i—k—l+4)(a) _ pli—k=1+2)(e) \ (@) 2(a) (i—k+2) ()
= Z (F2<a)2(a> I (@)1(0) )Fl(a)l(ﬂ)+F2(a)2(a)rl(a)1(ﬂ)
(a

(% k+1) )1(8) 478)
+ e e — O (4.118)

Cased: f =v =€ # a.Our goal is to prove that

i(a) i(a)
Ry @i = O nise) — aMﬂ)Fk(ﬁ)j(ﬁ)
z i(a) (o)
+ Z ( e L) Fh(ﬁ)l(o)rk(ﬁ)j(ﬁ))
o=1 [=1
(461)

) ()
Do) Ti5)55) — Ond Taioico)
i(a) l(a) i(a) ()
+ Z (Fk(ﬁ)l(a)rh(ﬂ)j(ﬁ) - Fh(ﬂ)l(a)rk(ﬁ)j(6)>
i) i@)  l(B)
+ Z ( k@B (B)i(8) Fh(mzw)Fk(ﬁ)jw))

vanishes. Without loss of generality, by the symmetries of i, we can set h > k. In
particular, h > 2. We get

i(a) B @ (o)
Ryan@i = 0o n@ie = e ee;e)
l(a i(a) ()
+ Z ( @i~ T h(ﬁ)l(a)rk(ﬁ)j(ﬁ))
mg
i i) ()
+ ( BB ~ Fh(mumri«:(mjw)) (4.119)
=1
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which vanishes due to (4.64) for k£ > 2. For k = 1 (4.119) becomes

() 3
Rya18)i8) = ~Onis) ot Zrl(ﬁ)l ®)
(4.79&4.61) 2(o¢) . Z(OL) 1(6)
wer  2rN@ie ~ TieneTheie)
which is
i(a) _ i(a) _ pi(a) 1(8) (4.62)
Ryanis) = On@ i) ~ Lol msie) “69)
for j > 2 and
i(a) () i@ B
Ry = ool imue — e D@ =0

forj =1, as F’(( )) (3 does not depend on any of the uMPsfor h > 2and (1 <2 < h)

5 6 5 e
Crgne = — D Thigne = 0
gy

Case 5: a = § # v = €. Our goal is to prove that

i(a) Z(a i(a)
Rykmi = kT nmie = I lrmji
'L(a) l(a i(a) I(o)
) Z ( @ rmi = LoD ee; (a))
o=1 [=1
(461)

(@) ()
ak‘(v h(7)j() —0 (V)Fk(v) ()
i) @) i)
+ Z( k@ h(s@) ~ Lhtoica )kaj(a))
i@ )
+ Z ( AR AL Fh(v)l(v)rk(v)J(a)) (4.120)

vanishes. Without loss of generality, by the symmetries of R, we can set i > k. In
particular, i > 2. We get

i(a) o i(c) (@)
Rh(ﬂ/)k(v)j(a) - a’“(“Y)Ph('v)j - 8h(’7 k(7)j(a)

~ (i) l(a) @) la)
+ (Fk(v)l(a)rh(v)j(a) ~ Dl ki@
=1
= [pil@) i) @ )
i(a vy i(a v
+ (ka)zmrh(wa‘(a) - Fh(w)lw)Fk(w)j(a))
=1
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i(a) o) i(a) i(a) :

where I} h)i()” Fh(m(a), Fh(w(a) and Fh(v)l(v) vanish due to (4.62) and (4.64) and
where

MMy

1((%) l(v) (4.62) i(a) L) (4.64)
ZF N30 gy 2L kI B — O

I=h

It follows that
i(c) _ i(a) _
Bropreite) = =0 lir)ja) = 0

as FZ((Q ) () does not depend on any of the u"™s for h > 2.

Case 6: a = v # [ = €. Our goal is to prove that

() . (a) z(a)
Ry 3yk(e)i) = w3 — e @yie)
i l((f i(a) (o)
Z ( k(o)L h(8)i(8) Fh(ﬂ)l(a)rk(a)j(ﬁ))
=1
P rie)
- h(B)i(B) On(p) (a)j(B)

) () i(a) ()

+ (i) n@i) ~ Uas )(a)Fk‘(a)j(ﬂ))
l

)

@)L @i

us

+ h(B)

(F?f
(FZ@O

(a)l(B

M ms s ﬂmﬁ =

@) ld)
g~ Ph(ﬁ)l(ﬁ)rk(a)j(ﬁ))
i) o)
+ ) <k(a)z(a i) Fh(ﬂ)l(o—)rk(a)j(ﬂ)> (4.121)
=

(where Fﬁf{'g) I(0) vanishes due to (4.61)) vanishes. For j > 2 (4.121) vanishes trivially,
as

i(0) i(a) i(a)
Ryaneis = @i — One) ki)
S pite) @) i) o)
+ 2 Thioicar Crhso) _Fhw)l(a)Fk(a)j(ﬁ))
=1
= (i) pl®) @ )
+ (Fk(a)l(ﬂ)rh(ﬂ)j(ﬂ) -T h(ﬁ)l(ﬁ)rk(a)j(ﬁ))
=1
z(a la'
+ Z ZF h(ﬁ)] 5)
¢ o) =1
(4.62) i) F1(5) Fi(cx) F1(5)

wep  H@1(8) h(B)(B) T L RELA) K)i(®)

(4.62) i(a) 1(B)
e L H T n(B)i)
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i(a) 1(8) 479)  ni(a) 1(8) (4.63) ) B

Do i — ~Tuane 2 Nieue = O ifh=1
) pita) 1(8)  1-h—j<-3 .

Chan@Th@id) e if h > 2.

Let us then fix j = 1. (4.121) becomes
i(a) i(a) )
By ayans) = aﬂj( s~ O kiongs)

i(a) ()
DR S e S meﬁwmw)

o i) i)  (d)
*‘EE: (Fk«x (B)1(8) FhwﬂunIE«mlwn)

o)
+ Z:E:Fw Thimey (4.122)

o¢{a,f} I=1

We distinguish between the following subcases:

a. both h and k are greater or equal than 2

b. h=Fk=1
c. h>2k=1
d h=1k>2.

Subcase a: both k and h are greater or equal than 2. We have

i(a)
h(B)k(a)1(8) — I

i(a)
@D n(@1(8) — O riayis)

i(a) (@)
*‘EE: ( k(e)i()] )Nﬂ)“rhww«nrlon1w>>

i) l(8)
+ Z ( kT rone — Fh(ﬁ)l(ﬁ)rk(a)l(ﬁ))
(a) l(a
+ D ZF Kol ®)
o¢{a,p} =1

(4.62) i(a) i(a) i(a) 1(8)

(4.64) _a’“("‘)rh(oé)l(a) o 3h(g)ka;)1(5) + Fk(cz;n(ﬁ)rh(ﬁn(g)

where I’ (( B)i(a and F /3)1( 5 vanish due to (4.62) and (4.67) and where FZ((’Z ))1( 5 does
not depend on uh(ﬁ for h > 2. Thus R

@18 = -
Subcase b: h = k = 1. (4.122) reads

i(a) . i(c) i(c)
By = el igne = Aol
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S pite)  pl@) pile) @)
+ (Fua)z(a)Flw)uﬁ) Fl(ﬁ)l(a)rl(a)1(6)>

=1

= (it i(8) (@) l(8)
) (Fl(a)l(ﬁ)rl(ﬁ)l(ﬂ) —T 1(5)1(6)F1(a)1(5))

+ Z Zrz(a) l(U )

o¢{a,p} =1
where in the second and in the third summation only the terms for [ = 1 survive
(by (4.62) and (4.64)) and

7, a) i(a) (4.79) i(a) o
Al ~ e e 4o ~O@li@e + e Ciee =0
We get
i(a) - i(a) ()
By (gy1(an(8) = Z( ORI iy B F1<5>l<a>rl<a>1w>)
i(c) 1(B) i(a) 1(8)
T aelise — Disne e
l(a) 10')
+ > Tienelidne
o (a8}
(4.63) ! i(a) () i) ()
e 4 (T1<a>z<a>F1(5)1(m Fl(ﬁ)l(a)rl(a)l(ﬁ))
i@ ol i) 1)
+ Do iene ~ e e
i(a) O’)
+ > Tieneliine
o (o8}
@79 \ () i) (e
oD ( Miwlione — 2. Den@lione + i iehe ))
- o¢ (a8}
i) 1) i@ ()
I )( s+ 2 Tion ) + TG 1)
o (a5}
i(a) 10)
+ Y Tieneline
o (o}
(4.6 (@ i) () i) (o)
=) ( ZF @ Ti@ns) Fl(a)l(ﬁ)rl(v)l(ﬁ)+F1(a)1(0)rl(6)1(5))
T A
(4.79) i—1+1)( () i(a) 1(8) _ 1i(a) (o)
wen Z (ZF @ Tiene ~ DianeTiene Fl(a)l(o)rl(ﬁ)l(a))
od (e
which vanishes by (4.77).

Subcase c: h > 2, k = 1. The argument of subcase a applies here as well.
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Subcased: h =1, k > 2. (4.122) reads
i() @)
R = O a)F 5)1 6)1(6)F k(a)1(B)

1(B)k(e)1(
(@) i) i)

+ Z( w131 _Fuﬁ)l(a)Fk(an(ﬂ))
®) i) i(B)

+ Z( weie T1dns) Fl(ﬁ)l(ﬁ)Fk(a)l(B))

+ > ZF&) e

o¢{a,p} =1
where in the second and in the third summation only the terms for [ = 1 survive
(by (4.62) and (4.64)) and

i(a) (@) (@796 i(a) i~k t1)(a)
O@li@ne ~ 0 kane) 4o k<a>F1<ﬁ = B Tyans)
(4.109) —k+1) i—k+1)(@)
31(6 1(/3)( al(ﬁ)r 1(a)1(8) =0.
We get
4.63) X 2
i(0) 6 o e o T
Fr@k@18) ygpy 2 k(@)i(@) Z Iy 1(8)
i(@)  (8) @ 1
T Diena i@ — Fl(ﬁn(ﬁ)Fk(a)l(ﬁ)
(o)
+ > T
o ()
(479),(461),4.62) el
/9),(4.61),(% (3 k+1)(a)r F —k— l+4)(a ()
(4.63),(4.69),(4.67)  L(@)1(a) Z 20)2(e)  L1(B)1(0)
i l+1)(a) (I—k+1)(a)
ZF T o)
(3 k+1)(a (1 k+1 ( )
—ae T - > I L)
o (o)
k+1)(e) (o)
- > Mo T
o ()
(479) (i—k+1)(c) ( )
Mo TiGnw+ 2 Diee T
o B}
1—k+2
(z k l+4 i—l+1) (@) (l k+1)(a)
Z T ayotay T, Zrl(ﬁ I @)109)
(i—k+1)(0) 11 (8) (i—k1)(0) 11 (8)
~ s Ties — 2 Tiene  Tiene

o¢{a,f}
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D

F(z k+1)(a )Fl(o)

o)1) L 1(8)1(0)
o {onf)
1—k+2
_ pli—k+1)(a (1 k l+4 ( )
=TT Z I L))
 n(i—k+1)(a 1(a) . z+1) l k+1)(a)
e Tiien Z rf (a)1(5)
I=k+1
(i—k+1)(0) (1(5)
— e Tiane
k-i-l)(a a) (i—k+1) () 7 1(B) (i—k+1) () 1(0)
< @ L1gi@ ~ D@ Liene L) L >1<a>)
U¢{aﬁ}
1—k+2 i—k+1
. (i—k— l+4)(a k— t+2 ) () t(a)
= Z R ) 17 W Z Mo Tiohie)
e )
—Tlane  Tiene)
k+1)(a a) (i—k+1) () 7 1(B) (i—k+1)() (o)
<F 1@ L@@ ~ Mie  Liene ~ Lieie) F()l(o)>
oez{a,/s}
i—k+1
2 (i—k+2)(a) (i—k—i+4)(a) | li—k—142)(@) \ i)
= Lol 1)1(@) > <F2(a>2<a) T D)) )F LB)L()

Pk ()

=2

H)1(8) L 1(a)1(8)
(i—k1)(0) 1 () (i—k-+1)(0) 1(5) (i—k+1)(0) (o
+ ) <F @ Tiie ~ D Liene ~ D F()())
)
am i—k+1
2(a) (i—k+2)(c) (i—h—144)(a)  (i—k—1+2)(@) \ l(a)
—LewDioe  — 2 <F2<a>2(a> — D) )Fl(ﬁ)l(a)
=2
i—k+1
(i—k—14+2)(a) 1l (a) (i—k+1)(a) 1 1(B)
+ > D Do T ~ D Tis)
o¢{ap) =2
(i—k1)(0) 1 (@) (kD)@ pl(8)  (i—kt1)(e) l(o
+ > (F @ T ~ D Lo ~ D F()l(o))
ot (o)
where
i—k+1
2(a) (i—k+2)(e) (i—k+1)(a) 11(B8) o (i—k—l+4)(a)_ (i—k—14+2)() ()
~Taezelioie e s = D (FZ(a)2(a) I @)1(0) )F
=2
by means of (4.78). This yields
1—k+1
Z(a) k l+2 l(a)
R = > YTy L))
célaf) 1=2
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k+1)(a) 1 (a) (i—k+1)(a) 1(8) (i—k+1)() 2 1(0)
+ ) (1<a o i ~ D Tione — D F1<ﬁ>1(0>)
o {nf)

where for each o ¢ {«, 3} we have

i—k+1
(i—k+1) () 1 1(B) (% k—i—l)(a —k—t+2) (a t(a)
e “Tione — Tiener - Tine) Z e @ T @
by means of (4.77). Thus
i—kt1
i(a) o (i—k—142)(a) Rl ()
Rirene = 2 2 D T
o¢{a,f} 1=2
i—k+1
(i—k+1)(cx 1(a) ()
+ ) (Fl(o) 1e) Li(an Z e <5>1<a>)
o {onf)
i—k+1
_ (i—h—142) () (o) (i—k+1)(0) (1 (0)
= > (Z Mo T T Hione L@
o (B}
i—k+1
_ plik) (@) pl(e) [t B
Mo i@ Z e (B)l(a)) =0.

Case 7: o« = 3 ¢ {v,€}, 7 # e. Our goal is to prove that

R) = L)) — Ohea iy

@)
(€)j(e)

ROEMi(0) = K ()
- z(a) l(a i(a) (o)
+ ZZ( i) r(@ia) ~ Tagon <a>Fk(v)j(a>)
o=1 [=1
@7 S (i) i) i) ()
et (%)zm)Fh(e)j(a) Ph(e)l<a>rk<w>j<a>) (4.123)
=1

vanishes. This trivially holds when h > 2 or £ > 2, by (4.62). Let us then fix
h =k = 1. We have

i(a) N [(pi@) ple) pi@) i)
R\ i) = D (F 1 1)) Fl(e)z(a>F1(7>j(a>)

=1
(463)ZFZ e Tignieg ZF(? e Tt
l=j
(@ ) (=4 1) (@) ali—t+1)(a)
Zrlw it = 2 Tt T = 0.

t=j

Case 8: o =y ¢ {f3, ¢}, B # €. Our goal is to prove that

i(a) Z(a) i(a)
By aria) = @l noi) — On@Lkw)i(s)
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z(a) l (o) i(a) I(o)
+ ( Ui Fh(e)l(a)Fk(a)j(B))

o=1 [=1

(461) z(a i) ()
Z( R I W PO Fh(f)l(a)rk(a)j(ﬁ)>

z(a) l (B) i(a
+Z<k<a h(€()_rh(el,8

r

)
1)L ki)
- (pie) O pite) (o)
+ (Fk(a)l(drh(e) 8 ~ Dhenols (a)'w))
=1
(4.61),(4.62) (o) i(a) 1(8) i(c) 1(e)
0 Zrme ki) + Tiien@ T nase + TraneThio)

(4.124)

vanishes. If j > 2 or h > 2 then (4.124) trivially vanishes, by (4.62) and (4.63). Let
us then fix j = 1 and h = 1. We have

R Z F (@) l(a ) + 1 i(a) Fl(ﬁ) ) + 1 i(a) Fl(ﬁ)

E)k )1(B) — (¢) k(@)1(8)" 1(e)1 k(a)1(e)™ 1(e)1(8)

(4.63) ZFZ z+1 F(l k4+1) (o )+F(Z k+1)(c )P )

(i—k+1)(@) 121(6)
1(a)1(8) @ Tious 1 I

L(a)1(e) 1(e)1(8)
i— k+1

Z F(l t1(§+2 t(a) —I—F(l k+1)(a )F )

(i—k+1) (@) 21(6)
e T e Lioe + I

L(a)1(e) 1(e)1(8)

which vanishes by means of (4.77).
Case 9: § = ¢ {«, €}, a # €. Our goal is to prove that

() B () i(a)
Ryorie = F@ o5 — M@l k@;e)

- z(a) cr) i(a) l(o)
+ZZ( k(A1) h©)i () Fh(e)l(a)rkww))

o=1 =1
@6) X~ (pit) (i) pite) )
= Z (Fk(ﬁ)l(a)Fh(E)j(ﬂ) Fh(e)l(a)rk(ﬁ)j(ﬁ)>
i) )
+ Z( cone T hod®) Ph(f)l(ﬁ)rk’(ﬁ)y‘(ﬁ)>
l(e i(a) I(e)
+ Z( k@)L h©)i(8) Fh(e)l(E)Fk(ﬂ)j(ﬂ))

(461),(4.6) rie) i@ l®) i)l
o Zrh(e @ k@5 T Trie noie ~ Thoiol w@se)

(4.125)
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vanishes. If j > 2 or h > 2 or k > 2 then (4.125) trivially vanishes, by (4.62), (4.63)
and (4.64). Let us then fix j = h = k = 1. We have

i(a) i—l4+1)( a) i(a) 1(B) i(a) 1(e€)
Ry Zrue @ T Liene Mo ~ New e

(4.79) (z—l—i—l)(a)r(a) _Fi(a) Fl(ﬁ) ot
(451) 1(e)1(a) 1(8)1(ex) L(B) L)~ L(e)1(B) He)1(a)™ 1(B)1(e)
=1

which vanishes by means of (4.77).
Case 10: v = ¢ ¢ {o, f}, a # (. Our goal is to prove that

i(0) B i@ ()
Ryneis) = 9 WF 8 ~ T Lriiis
i@) o)
+ ZZ ( athi — T (v)l(o)rk(v)j(ﬁ))
o=1 [=1
(@s1) (@) @) )
Z ( i TAChs ) Fh(v)l(v)rk(v)j(ﬂ))
469 < 1(7) i@) i)
Iy T —ri@ ol (4.126)

h(7)i(B) R(M)1() " k(1) (B)
vanishes. If j > 2 or h > 2 or k > 2 then (4.126) trivially vanishes, by (4.62), (4.63)
and (4.64). Let us then fix j = h = k = 1. We have

i(0) i@) () i@ i)
B = Do Niame — Limie e = 0

Case 11: o, 3, v and € are pairwise distinct. Our goal is to prove that

i(a) _ i(a) ()
By = Ok i) — ol s
i(a) I(o)
T Z Z < E()I( 6)]( ) Fh(e)l(o)rk(fy)j(ﬁ)> (4.127)
o=1 [=1

vanishes. Since the only Christoffel symbols appearing have each of the three in-
dices belonging to a different block, (4.127) trivially vanishes by (4.61).
This concludes the proof about the flatness of V.

4.6.8 Uniqueness

In order to prove uniqueness we have to prove that (part of the) conditions (1), (2),
(3), (4) and (5) force V to be of the form given in Proposition 4.15. We have seen
that the condition Ve = 0 is equivalent to (4.79). Let «, 3, v be pairwise distinct.
By means of the condition

Vicy = Vjch, i, 5.k, 1e{l,...,n},

after a long but straightforward computation one obtains the following relations:
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. 1(8) _ B
(1) Tite) w1 = Ltk @i

N TRB)  _ pld) -

(%) Ti@)sp) = Titam(s) Whenk —j =1—m

(441) F'(“i(f‘i) (@)i(a) = Ff((o?))(jfl)(a) when the lower indices are both different from 1
and not simultaneously equal to 2,

. k(o k+1
() T = Ty e When j # 1,

ko) (k—i+1)()
@) Vi = Tl -

S al{ G A
(i) Tiayjp) = 0-
The above quantities must be considered non-null when the indices do not exceed
the size of the corresponding block. By virtue of the condition (4.81), a straightfor-
ward computation leads to the following relations:

rk-iitae if k—i—j>—2,
1. The) = {2 T= wheni j > 1,
0 if k—i—j<-3,
2(a) _ MaEa
2. Dy = —ostes
3. F}Ei;j(a) =0 whenorj>2,

4. Ff((j))j(ﬁ) =0 whenk<iorj>2,

i(a) o m
5, Fi(oz)l(ﬁ) - ul(a)ﬁfjl(ﬂ)’

i+h)(a (i+h—s s(a
6. i) — mzf sy @ forh > 1,

n(a) _ 1(n—2)(e) 2(a) un(@) (1+2)(e) () n—)(a
7. FQ(CM)2(O{) - Fl(oz)l(cu) - F2(a)2(a) w2(e) u2(04) Z ( a)2 o) Fl(oz)l(cv))u( R
for n > 3°.

By collecting all of the conditions above, one obtains Christoffel symbols of the
form given in Proposition 4.15.

®The last summation is not to be considered for n € {2, 3}.
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4,7 The dual structure

In this section we study in more detail the dual structure (V*, , E), where

e [ is the Euler vector field,
¢ xis the dual product defined by the formula
X*xY=E'oXoY
for arbitrary vector fields X and Y,
* V*is the connection defined by the Christoffel symbols

F:Jk = Ffj - C;ﬁlek7 i,j,ke{l,...,n}.

Proposition 4.28 For each o € {1,...,r} the components of the inverse of the Euler
vector field E are given by

1

“Nla) — _~
(E ) - ul(a)

(4.128)

1
ul(a)

k
(E )(k+1 (Ot) Z (k s+1) () (3+1)(O‘) for 1 S k S My — 1. (4129)
s=1

Proof: By definition we have

E'oE=¢= 261(7)
T=1

which (by taking the k(a)-th component) yields

n

k(a — o —1\i k(o i
S = (50 B0 = 3 (5
T=1

ij=1

Z ZZ D iy B

~ —1\i(a) K(a j (o - —1\i(a j (o
= Z (B~ )Cz‘((a))j(a) B = Z (E~H)" )554” | B/
ij=1 ij=1
_ Z (B k=)@ i)
j=1

Since

T

k(o) _ <k
> 0 =41
T=1
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we obtain

o = 3 (Bt i) (4.130)

j=1
By taking k£ = 1 we get
1= (Bee g
j=1
where the quantity (E~!)2=9(®) only makes sense for j = 1, thus

1 = (E71>1(a) El(a) — (Efl)l(a) ul(a)

which yields
1
Efl 1(a) _
(E7) ai(a)
By taking £ > 2 in (4.130) we get
0= Z (B1) =+ pite)
j=1

where the quantity (E~!)(k=7+D(@ only makes sense for j < k, thus

k
Z k‘ —j+1)(a) pile)
7j=1
k
_ (E—l)k:(oc) ul(oé) + Z (E_l)(k—j"rl)(a) uj(a)
=2
1

s=1
which yields
1 k—1
(E—l)k(a) i Z (E—l)(k—S)(Ot) L5+ D(@)
U (0%
s=1

In particular, by relabelling k = h + 1 this becomes

h
(E- )(h+1 11( Z h s+1)(e)  (s+1)(a)
U Oé

s=1
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Remark 4.29 By definition, the dual product x must verify the following relation:
XxY=E'oXoY (4.131)
for X, Y arbitrary vector fields. This means that

X, Yr = (B, X, Y, X, Y € X(M),

namely
¢y = (B ey, i,j, k€ {l,...,n}.
Therefore
i) - el Mo = [ oo lya(e) i@)  ba)
b = D Z O G = D B
o,7=1 a=1 b=1 a,b=1
= 3 (B8 388, = a0 S (B,
a,b=1 b=1
= 0302 (E—l)(i—j—k+2)(a) (4.132)

for all suitable indices.

Proposition 4.30 The Christoffel symbols of the dual connection V* are given by

sk(a) k() o (k—i—j+2)( k
@i = Ciggnien — 0805 (B {5 (1—2”""050)

oc#a
d N mgpe
+(1—6M (1 - ;WT” — (1 —05) 05,016} 0¢ Bﬁf (4.133)

for every choice of o, 5, v € {1,...,r} and every k € {1,...,my}, i € {1,...,mg},
jged{l,...,m,}.

Proof: By means of (1.60) we have

xk(a) *l k(a)
iy ZC i ViE
*U(T EF(@)
Z(B J(’Y Z Z ¢ J(’Y
=1 [=1

where Vi E*® = (0 only for 7 = aand for 7 # aand | = k = 1 by (4.74). It
follows that

xk(a) . () k()
L e = Tics ZC ()it ¥ i) P
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_ «1(7) 1(a) sk
> it Vi BN 6
T#Q

iohsta 25650“ =2 vy ) M)
_ Z 0507 (E YE=ImNO vy BH g
T#Q

which immediately implies
xk(a) k()
Figio) = Liwie

whenever 3 # 7. If a = 8 = 7 then we get

k(o) _ k) —1\(I—i—j+2)(a) k(c)
") = Dy = 2 (EHETRO v, B

as 0j = d;, = 0 for every 7 # a, where

Vl(a)Ek(a) = 5lk |:5lf (1 - ngefg) + (1 - 5{6) (1 - Z m757>}
T=1

oFa

by (4.74). It follows that

xk(a) —  _ pk(a) (k—i—j+2)( k
it = Ditate) — (B [5 (1_2””‘050)

oFa
+ (1 — 6% (1 — i'ﬂ%&)] :
=1
If o # § = v then we have
Lo = Diyn — 205 (B0 Vi 51 6f
o
Fz((ﬁ)j(,@) (E—l)(3—i—j)(ﬂ) vl(ﬁ)El(a) (ﬁc

a) —1\(3—i—j k
=Tiioie) — (BT mges o}

by (4.74), where (E~)3=i=)() only makes sense for 3 — i — j >1 that is i+j<2
namely i = j = 1. Thus (B30 = §l57 (E~1)1®) = 414}

U

k(@) _ pka) Kk TBes
i@ = Ti@ie) — 9959 1z
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4.8 Generalized Lenard-Magri chains and the princi-
pal hierarchy

The main idea at the origin of our work was to identify the integrable hierarchy
obtained by applying the construction of [62] starting from a (1, 1)-type tensor field
L with vanishing Nijenhuis torsion with a set of symmetries of the principal hier-
archy associated with a bi-flat F-manifold, for each of the canonical forms found
by David and Hertling in [18] for L = Eo in the case of regular F-manifolds with
Euler vector field. This amounts to requiring that all of the tensor fields

Vo = Xpo=eo=1
Vi = Xpjo=(F—-ape)o=L—apl
va = X(Q)O:(EOE—CLQE—Gle)O:LQ—CLQL—CHI

Vier = Xgpno = LVp —apl = (B — agE" — i E*¥ ' + -+ —qye) o

= LMY qolF —a L 4 —apd

defined recursively by
daxy1 = dpa, — apdayg, k>0,
starting from

.
ag = E MyEq (¥
a=1

satisfy the condition dyV;, = 0. Actually, in order to get the connection V, we
needed to impose only the first non-trivial condition

dy (L — agl) = 0.

In this section we will prove that the same condition is satisfied by all tensor fields
Vi. In other words, as it is natural to expect, the connection V is associated to the
full hierarchy and not only to a single special flow. In order to prove this fact, we
will use the commutativity of the associated flows [62]. According to the results of
[64], the commutativity of the flows associated with V,, and Vj; can be written as

T ' k ’ k i k
Cis |:<£X(a)c>jk X(ﬁ) — <£X(B>C>jk X(a) + C]k[X(Oé)7X(ﬁ)] :| +
Cij {(EX(CY)C)S,C X — <£X(B)C>Sk X+ Cik[X(a%X(,B)]k] =0
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where, as above, Lx denotes the Lie derivative along a vector field X. We have the
following lemma.

Lemma 4.31 The commutativity condition can be written as
for all indices, where V = X(,y0 and W = X gyo.

The proof is a straightforward computation. This lemma leads to the following
proposition.

Proposition 4.32 The tensor fields Vj satisfy the condition
deﬁZO, ﬁ€{2,3,4,...}.

Proof: Due to the previous lemma and taking into account that dyV; = 0, we
can assume the validity of the equation

VE(dy W)y + Vi (deW)., =0, (4.135)
withV = L —agl and W = Vj for some fixed 5 > 2. We recall that

va(a) _ 55 (u(a—b+1)(a)

b(B) ]l{aZb} - 55(10) .

In particular, Vb‘(L(ﬁc)Y) = 0 whenever o # 3. Using these facts, it is immediate to check
that the condition (4.135) in David-Hertling canonical coordinates reads

v (dvW);gg o) +vl (dvW)’%S(U) —0.

Let us study its consequences. We consider the following cases:
1. a=p
2. a#p.

Case 1: a = . We fix the index i. In this case we have
s(o) i(7) i(y)
0= V(a) (dVW) I(a)s(o) + V (d W)j(a)s(o)

= ‘/J(a)) (dVW)EEZu))s (a) + ‘/2 (d W);((Zy))s

() (o)’

We show that (dvW)ml_ (@) (ma—h)(@) = 0 by a double procedure of induction, over
q and h. By taking j = m, we get

0 = Vo (de W) o + Vil (dg W),

(a)s(a)
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which gives

_ i 'Y
0=V (a)(d WD s + VR o (deW)D
_ Umal@) e Z(v
= Vina(o) (de) o 1) (ama(a) +Vm () (W) @) ma-1)(@)

Mo (O i )
+ Vi —1>(a><de)ma(a)m (@ = u" (dyW) 1

thus (dy W);(l)

(a)ma(a)

metry of dyWW in the lower indices),

ma—l

= 0 for | = m, — 1 (we already knew it, due to the antisym-

_ s(a)
0= V (a)<d W) 2)(a)s(a Vv(ma—Q (d )ma(a )s(a@)
me () (ma_2 (o) ()
= Vo (AW, —2)( ymata) T Vima—2)() (@9 W ), a2
(ma—1)( me ()
V(m ol (de) @ T Vi ooy (AW,

(e W),

ma(a)(m -1) (a)ma(a)

May (a (ma—1)(a)

thus (dy W) o) (me—1)(a) = 0 for I =mg, — 2and

S(Oé) 2(7
0=V (d W) Ch—1)(a)s(a)
ma(oz) z(
=V, (d W) ) he1

+ VS(O‘) —h—1)( (dvW) (a)s(e)
(ma—h—1)( oz) i(y)
+V (d W) (@) ma—h—1)(a0)

)(@)ma(a)(a) (ma—h—1)(

+ Z Vim0 (AW e

s=ma—h

- s(a) i(7)
o@D Vomer 1@ @5W s

s=maq—h+1

:Vv((ma h)( (d W)

forl = m, —h —1 (for a given h > 1). This last condition, if we inductively assume
that (dyW), i @) (mar)(@) = 0 for gach r < h —1, yields <de>:7(~2(a)(ma—h)(a) = 0.
We have just proved that (dvW)ifl)(a)j(a) = 0 for every choice of j. We want to
prove now that (dvW)’(”’) ) = 0 for each choice of j for a given ¢ > 1. We
inductively assume that (dvW)l('(nZl_r) (@)j(a) = 0 for each choice of jand r < ¢ — 1.

By taking | = m, — ¢ we get
0=V (de W) e + Vo) o (de W)

(ma—q)(a)s(a) )s(a)

where (dvW)éEZl_ =0and (dvW);'.((ZY))S(a) = 0 for each s > m, — ¢ + 1 thus

7)(@)s(a)

Ma—q Ma—q
— l('y
0= ZV (Ao sy T D Vo oy deW)i
s=ma—q
N ) (%)
. s(a i(y
= D Vi @) pastar + Vit AW )iy
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Mma—q

= VI (deW) Y + > v dew) Y

J(a) (ma—q)(a)j() (ma—q)(a)s()
s=j+1
e ) ~ ()
(Ma— q wy z v
Vet @ o) = 2 Vit W) st
s=j+1

which is trivially verified whenever j > m, — ¢ and gives

_ (ma q (a) ’L(’Y
0=V U5 [ @W) il (@) (ma—a) (@)

thus (de)l(%—q)(a)(ma—q)(a) =0forj=m,—q—1and

Ma—q
s(a)
D Vo i@ @YW _@sta)
s=Mea—1t
s )
ma t s(a i(y
= Vi e W), pamat@ t 2 Vi@ @ W) yste)
s=meq—t+1

for j = my, —t — 1 (given some t > 1). This last condition, together with the
inductive assumption of (dvW) ma 0)(@)(ma—r)(a) = 0 for each choice of r <t —1,
yields (dv W), i) g)(@)(ma—t)(@) = O- This proves that (dv W), 7) _)@)j(a) = 0 for each
choice of j and in turn that (de)j(a)l(a) = 0 for each choice of jand .

Case 2: o # 3. We fix the index i. In this case we have

0=V (dgW)i)

j(a)

s(o) ()
1(B)s(o) + V (dVW (a 5(0 Z V dvW 1(B)s(a)

+Zv de s = (W = ap) (de Z Vj“‘g;) dVW S(a)

s=j+1

mpg
18 _ i) S(8) i)
+ (u a0) (dvW) i + D Vies) (de Wil )

s=l+1
= (' — ' D) (de W) 0 + Z Vo (de W) e + Z Vs (dy WS
s=j+1 s=l+1

which is trivially verified when v # a, v # 3 since

Fi(V) W?(U)

i(v) i(v) () 8
(dyW) = i)Wy + T = AW = Do Wi

J(@UB) 1(B) J(a)S(U)

where Wz?(% = 0 whenever p1 # v (because W = V}, is a polynomial in L and LZ((5 )) =
0 whenever p # v) and FZ((L‘ ))C(T) = 0 whenever (i, v and 7 are pairwise distinct. We
are then left to consider the case where v = a # [ (due to the antisymmetry of
dy W in the lower indices, this covers the case v = 5 # « as well). We have

0 — (ul(a) _ ul(ﬁ)) (dVW)ziEg))j(a)
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s(a) s(ﬁ (a)
Z Vi (e W5 + Z (AW ) jass)

s=j+1 s=l+1

where

i@ i) | i@ prs(8) i) ia)  prs(@)
([deW)ians = Oi@Wig + TiwsmWis — 0aWia) = Digse Wi

e W) Wi pite) s(a)
= LianeWis — 96 Wi — Digse Wit

trivially vanishes whenever i < j (W;(Z‘) = 0 for i < j because W = V} is a polyno-

mial in L and L;((i)) = 0 for i < j). We are then left to consider i > j. Fori = j we
get

_ (1 1 j(c)
0= (u @ —u (ﬁ))(de)g(ﬁ)j(a)
mg
() ()
+ Z Vi (e WIS + 2 Vit (deW)e)

s=j+1 s=Il+1

= (u}@) — 41 )(dvW) ot Z VZ(B) dVW)j(as )

J(a)
s=Il+1

which gives

0= (u!® — Ul(ﬂ))(de)ﬁzg

B)i()

thus (dvW)J(a) i) = 0 forl=mgand

mg
i) «(8) j(a)
0= (u YT i+ 2 Ve e @5 W)

s=mg—h+1

for I = mg — h (for a given h > 1). This last condition, together with the in-

ductive assumption of (dvW)j:EZg(mB#)(ﬁ)

dy W) = 0. This proves (dvW j(a) = 0 for every choice of . We
p (8) y

j(e)(mg=h)(B)

= 0 for each choice of » < h — 1, yields

inductively assume that (dVW)(] ) ((a)) 0 for every land for every t < p — 1 (for a
fixed p > 1). We want to show that (dVW)y(:;)’}( g = 0foreveryl. Fori=j+pwe
get

0— (ul(a) _ ul(ﬁ))(de)(ﬁp)@)é)

S V) (W) Sl Z Vo) (dy W) o)

J(a)
s=j+1 s=l+1

where (dvW);(; (1p )(( = 0 for every s > j + 1 by the inductive hypothesis, so

0= (ul(a) — )(de) J;')I]’)(a + Z 5(5) de) J-HD )

s=l+1
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which gives

0= (ul(a) _ ul(ﬁ)) (de)g;r&))(?()a)

thus (de)g:(pg(?‘) =0 for | = mg and

)i ()

mg
_ (1) _ (J+p)(a) s(B) (G+p)(
0= ('@ =) a0 T D Vimaewe @W)5anE)

s=mg—h+1

for | = mg — h (for a fixed h > 1). This last condition, together with the induc-
tive assumption of (dvW)(jn:; ) (r'(;gﬁ)j(a) = 0 for each choice of r < h — 1, yields
(dgW) fnJ; Y (8)j(e) = 0. This proves (dyW); G ;r)’}( s = 0 for every choice of / and in
turn (dvW);.((Z))l( g = 0 for every choice of 4, j and I.

This concludes the proof of the fact that (4.135) implies dyWW = 0 for the choice of
V=L-aland W =1V,. [ |
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Open perspectives

As seen above, Frobenius manifolds provide a geometric reformulation of the
WDVYV equations and a way to investigate two-dimensional topological field theo-
ries. The correlators of the fields of these theories can be generated by the so-called
(full) free energy, a part of which, the primary free energy, satisfies the WDVV
equations. The full free energy can be written as a genus expansion

F=Y F,

g9>0

the term F; providing the primary free energy when suitably restricted to the so-
called small phase space. One may wonder how to reconstruct the full free energy
starting from a solution to the WDVV equations.

From an integrable system point of view, this problem can be formulated in
terms of perturbations of an integrable hierarchy, the times of the hierarchy being
the arguments of the free energy.

In the semisimple case, Dubrovin and Zhang [34] showed that, for any solution
to the WDVV equations, the genus one approximation of the integrable hierarchy,
also known as one-loop deformation of the genus zero hierarchy, exists and it is
uniquely determined by properties of the genus one correlators, proved by Dijk-
graaf and Witten [26] and E. Getzler [41]. More precisely, the genus one part of the
free energy is expressed in terms of a function

G = log %
which takes the name of G-function. Here 7; is a function related to a system of
equations, equations of isomonodromy deformations of some linear differential
operator with rational coefficients, to which the WDVV equations can be reduced
in the semisimple case [27], while J denotes the Jacobian of the transformation
from the canonical coordinates to the flat ones. As a byproduct, this result proves
conjectures formulated by A. Givental in [42].

Thus, such a G-function provides a tool for the reconstruction of genus one
information starting from genus zero data. In turn, it influences different areas of
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mathematics. For instance, in enumerative geometry it governs Gromov-Witten
invariants, while in the theory of integrable systems it appears in the first order
corrections of bi-Hamiltonian structures.

When the semisimplicity assumption is dropped, little is understood. The
knowledge about dispersive integrable deformations may be broadened by tack-
ling the problem of reconstructing, starting from a solution to the WDVV equa-
tions, the genus one contribution to the full free energy in the non-semisimple
case.

Just as relevant are integrable deformations of integrable systems. In this area, a
good deal of progress has been recently made. For instance, in the semisimple
bi-Hamiltonian case we know that bi-Hamiltonian deformations are parametrized
by functions of a single variable and in the special case related to Frobenius mani-
folds we know that there exists a special deformation of topological type, uniquely
determined by the dispersionless limit (mirroring the Givental reconstruction pro-
cedure of higher genus information starting from the genus zero information en-
coded in the underlying Frobenius manifold).

Again, few results are available in the non-semisimple case, other than some
preliminary work about deformations of non-semisimple bi-Hamiltonian struc-
tures of hydrodynamic type, carried out in [23]. In the wake of the contents pre-
sented in this thesis, it is natural to wonder whether it is possible to construct in-
tegrable deformations of the integrable systems of hydrodynamic type associated
with Lauricella functions [66], with particular interest in deformations of topolog-
ical type.

More in general, non-semisimple structures are related to integrable systems of
hydrodynamic type without Riemann invariants, thus not reducible to a diagonal
form. In this context, first results have been obtained in [39, 38]. In particular, in
[39], the authors introduced the notion of quasilinear systems of Jordan block type
and studied their connection with the mKP hierarchy. Our works [65, 66] also fit
in this context and may provide the starting point for future developments.
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Appendix A

Four-dimensional regular
non-semisimple Frobenius manifolds

This appendix integrates Chapter 3 by completing the description of the four-
dimensional regular non-semisimple cases corresponding to a Jordan canonical
form of the operator of multiplication by the Euler vector field having at least one
Jordan block of size 2.

In the first place, we give the formulas expressing the flatness conditions. In the
case of two blocks of size 2, the flatness conditions amount to the system of PDEs

1
223(0u )2 (WO f + 20.f + (d— 1) f — C)
—2C) W (O f)* =2(=(d—=1) f+Co) (20.f +(d—1) f — Co)w Dy f
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where (', C; are constants. In the case of three blocks of sizes 2, 1 and 1 respec-
tively, the flatness conditions amount to the following system of PDEs
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+(d—1)f+wC —Co)zw? 2 f —422(d— 1) (w — 2) (0.f)*
—I—5((w(§—d)—(42(2—d))%)w0wf—4(w—z)(2
—d)(=(d=1) f+ o)) 20.f + 4 (w — z(d+ 4)7) w* (Du f)
—8(w—=2)(=(d=1) f+C)wiypf+4(w—2)(=(d—-1) f
+Co)) 0. fEf+ ((2wz—2*) 0. f +w? Oy f — (w—2) (—(d—1) f
+Co))w? O f =3 (w—2)2* (3 —d) (9.f)" =62 ((w(§—d)
—22(1-d)3z)winf —2(w—2)(1—d)(=(d—1) f+ Ca)5) 0.
—2(—z+w(l—d)w (0uf)’ +3(~(d—=1) f+ Ca) (w (5 —
—(22(2-d)3z)wiuf —(w—2)(2—d)(~(d-1) f
+C2)*) (=d) (9:1)*))

1

0:0uf = Nwdf + 20T+ (A1) = Co)lw —2)dufof 20/ (wiw  (A6)
—2) (0l + (22 (w—=2)0.f —Bw—22)(1-4d)f
+(Crz=3C)w+22C)wdyf)3+ (w—2)(20.f
+(d=1)f = C)%)3) (8z8wf)2 + 0w f ((w? (w = 2) (D f)?
+ 4 (w )(z8f+ = —%)w@wf
+22% (w—2)(0.f)* +2(—(dw—32) (1 —d) f+(Cy 2
—4C)w+32Cy)0.f +(w—2)(—(d—1) f+ Co)?) D2 f
+0.f (z=w)0.f +(d=1) f+wCy — Cy)w I f
—w? (d—2) (Opf)? +2(—2(d—2)0.f +2(d—1) f
—2C) Wy f — 22 (d—2) (0.f)* + (—wd + 2z (d—4)) (1
—d) f+Co)0.f +2(—(d—1) [+ C2)?)) 000 f
+ (0 =2)0uf +(d=1) f+Crz=C)w? Do f — (w(w—22) D f
—220.f — (w—2) (=(d=1) f + C2)) (—d) Dy f) D2 f
+ (W (Ouf +0.£) 2 f — QwOuf + (w+2)0.f +(d—1) f
— Cy) (=d) 0w f) 0.f (—=d)) 0. f Ou f)

1
2 _
O%] = S wonf + 20+ ([d—1)f — Col2w —2)0uf 0.f

—2) Ouf)? +2(w—2) (20.f +(d=1) f = C)wd, f
+222(w—2) 0./ —22w—(32)3) (1 —d) f+ (Crw—3C,) 2
+2wCh) 0.f + (w —2) (—(d = 1) f + C2)*) O f (0:0uf )?

)

((w* (w (A7)
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+2((w® (0w —2) (0uf)? = (42 (w—2)0.f + Bw—42) (1L —d) f
+(Crw—4C) z+3wC)wdyf)3 + (w—2)(20.f + (d—1) f
—C2)*)3) Onf = Ouf (w—2)Ouf+(d=1) f+ Crz— Co) 2* O f
+w? (2-d) (0uf)* + 2wz (2-d)0.f — (—(d—1) f + Co) (d2
—w(d—4))duf +2*(2—d) (0.f)* =4 (—(d = 1) f + C2) 20.f
+2(—(d = 1) f+C2)*)3) 0.f 0.0 f — Ouf ((2* (2 — w) 0. f
+(d=1)f+wC —Co)f+(2wz—22)0.f +w?Opf
—(w—2)(=(d=1) f+C2)) (=d) 0. f) o f — (—2° (Duf + 0.f) D2 f
+(w+2)0uf+220.f +(d—1) f = C3) (=d) 0. f) Ouf (=d)) 0:f)

1
Oul = Ywbuf + 20 + A= 1f = CoPlw = oo fur 270l (v
(A8)

—2) O f)? + ((w—2) (20.f +4(d = 1) f
—4C)wdyf)z —2(—(d—1)(w—22) f+ (Crw—2C) 2
+wC) 0. f 5+ (w—2) (—(d—1) f + C2)*) (0.0uf)?
+40ufz((w(w—2)0uf+B2(w—2)0.f);—(w—F2)(1-d)f
+(w G +350) 2 —wC) 8. fw? O f — (w? (w — 2) (D f)?
—2(w—2)(~(d=1) f+Co)wdpf — ((d=1) f +wCi — C2) 2° 0. f
+(w—2)(=(d=1) f+Co)*) 202 f); — (P22
(0uf) + (2 (P2 —wd)0.f — ((d 1)
—wd) (—=(d=1) f+Co))wdy f — ((=2* (d — 2) (0.f)?
F((d=4)z—wd)(=(d=1)f+C2)0:.f+2(—(d—-1) f
+C3)%) 2)1) 0.f) 0:0u f + 3 ((w Oy f—l—z@zf—l—(d—l)f
—Co) (w—2)(20.f 3 +wouf + 5 f—2)w? (0,f)?
— (40uf (=(((w = 2) Ouf + (d —1)f+012—02)22w5’ff)i
—w*(d = 1) (w—2) (0uf)* + (z (*F° 2 —w(d - 2)) 0.f
T (w—=2)(d=2)(—(d=1) f+C2)) wdyf — ((42
w(d—4)2*0.f)*)5 —2(w—2)z(=(d=1) f+ o) 0.f
+(w=2)(=(d=1) f+C)) w0 f)g — (Ouf)’d (2" (w (w
—22)0uf =22 0.f —(w—2)(=(d=1) f+C)) 02 f 3
—(d=3)(w—2)w* (0uf)? +4((PF2 2z —w(d 1) 20.f
+(w—=2)(d=1)(=(d=1) f+Co))wdyf 5+ (22°((d—1) 2
+w) (0:f)%)5 2035 2 —w(d—2) (~(d = 1) f+ C2)20.f 5

—wd)w
(=
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+((w=2) (2=d) (=(d—1) f + C2)*)3)) 0. f).

for the third derivatives of the function f of the variables

ud — ul ut —ut
<= w2 w= u2
realizing
Fl(Z,'LU) = _azf(zaw) - 8wf(Z,UJ) + Cl
FQ(Zaw):_Zazf(z7w)_w8wf(zaw)_(d_l)f(zaw)+02
F3(Z,U)) - azf(’sz)
F4(Z,UJ) = awf(zaw)
for
Fr F» 0 0
F, 0 0 O
(. 2\—d 2
=@ 0 B o
0O 0 0 Fy

where C;, (5 are constants.

As seen in Chapter 3, when d = 0 a solution to the system of PDEs amounting to
the flatness conditions is provided by (3.64)

fz,w)=az+bw+c

for some constants a, b and ¢ and for this choice of f the Frobenius metric turns out
to be constant in canonical coordinates. In the following example we provide such
a metric and the Frobenius potential in the cases when L = FE o has two Jordan
blocks of size 2 and three Jordan blocks of sizes 2, 1 and 1.

Example A.1 Let the function f(z,w) be of the form (3.64), d = 0. When L = E o has
two Jordan blocks of size 2 the metric is given by

Ci—a Cy4+c 0 0
_|Cete 0 00
B 0 0 a b

0 0 b 0

and up to second-order polynomial terms the Frobenius potential is

Cl—CL
6

Cy+c
2

F(u',u?,u? ut) = (u')? + (u)?u? + = (u*)® + = (u*)* ut.
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When L = E o has three Jordan blocks of sizes 2, 1 and 1 the metric is given by

Ci—a—-b Co+c 0 0

| Gt 0 00
= 0 0 a0
0 0 0 b

and up to second-order polynomial terms the Frobenius potential is

Ci—a—19
6

We conclude this appendix by providing one last example of non-trivial solution

for the case where L = FE o has two Jordan blocks of size 2 and for the one where

L = F o has three Jordan blocks of sizes 2, 1 and 1.

02+C

F(u',u? v ut) = (u")? + 5 (u')?u® + % (W) + = (u')®.

Example A.2 Let L = E o have two Jordan blocks of size 2. When looking for a function
f of the form

f(z,w) = g(2) + h(w)
for some functions g(z) and h(w), the system (A.1)—(A.4) yields

h(w) = a; + ayw'™*
&

— d—as 1-d
g(z) =as 2" +asz a1+d_1

when d # 1 and
a2
h(w) = a + 2
(w) = a1 + »
g(z) = a2 4+ (Cy — ay) Inz + a;

when d = 1, for some constants a,, as, as, as, as. For instance, when d = 2 in the flat

coordinates
1 a
1,,1 ,,2 3 4 5
r(uut utut) = —— — 3 -
w2 2ay (u —ul)
1 as

the metric becomes



and up to second-order polynomial terms the Frobenius potential is
F(z', 2% 2% 2% = % (2% — 2*) In (2 — 2*) — % xt (2%)? — % 22 ()2,

In flat coordinates the unit and the Euler vector fields are respectively written as
€ = 33 + 54
and
FE = —xlél —1’252+$353 +.1'4(§4.

Example A.3 Let L = E o have three Jordan blocks of sizes 2, 1 and 1. When looking for
a function f of the form

f(z,w) = g(2) + h(w)
for some functions g(z) and h(w), the system (A.5)—(A.8) yields

g(2) = ay + ag 2 ¢

h(w) =asz+ ay wlid

when d # 1 and

g(z)=a;+1Inz
h(w) = a3 + Inw

when d = 1, for some constants ay, as, as, as. For instance, when d = 2 in the flat

coordinates
1 a4 az ay
(s, vt vt ut) = u? + (Cy —ay — a3) (u? — ub) + (Cy —ay — az) (u* —ut)
22 (ut, u? v ut) = —In (u® — ut)
23wt u? vl ut) = —In (vt —ut)
x4(u1,u2,u3,u4) —
the metric becomes
0 0 0 CQ —a; —as
~ 0 —as 0 0
’]’] g
0 0 —aq 0
02 — ap — as 0 0 0

and up to second-order polynomial terms the Frobenius potential is

Cy—a;—a
Flz',2?, 2% 2 = —ape™ —ase™ + % zt (2h)?
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Appendix B

Technical lemmas about regular
Lauricella bi-flat F-manifolds

This appendix integrates Chapter 4 by proving technical lemmas which are crucial
in the construction of regular Lauricella bi-flat F-manifolds.

Proof of Lemma 4.21
In the wake of the previous result, we consider the following significative cases:

1. o, B, y are pairwise distinct

2.a=7#0
3.a=p#7
4. a = =~.
Case 1: o # 8 # v # «. Since in this case all the quantities I'; (( )) (8) vanish by (4.61),

(4.72) holds trivially for each choice of ¢.
Case 2: a = v # . We are going to prove that

k(a) (k— 1 ) ()
sy st B.1)
EIIG) 8ul G) '

forall k € {2,. ma} le{3,....,ms}and § € {1,...,r}. This holds trivially for
each 6 # a,as I (( i(s) does not depend on u'® and Fl(ka 1)(a) does not depend on

9 for any [ > 3. Moreover, by (4.62) and (4.63), both F and Fgfa 1(5))
Vamsh if 7 > 2 or k < i. Therefore we are left to show that
k() (k—1)()
arz(a)l(ﬁ) or| ) (B2)
Oul@ Gy =1)( '
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for k£ > i. We are going to prove (B.2) by induction over k. If £ = ¢ we get

i(a) 1(e)
oy 1(/3) _ Titanes) wsy M 1
aul Out(e) 8ul

=0

(as Fi(agl( 3 does not depend on /) for any [ > 3) and

(«

(-D@@)  Apli-1(@)
ory 2(9) _ Il

au(l D@ gyl-D@)

(as Fgé;)ll)((ﬂ)) 4.8 0), thus (B.2) is verified for £ = i. Given an integer h > 1, let us
suppose that (B.2) holds whenever £ < i + h — 1. We now want to prove that it

holds for k = 7 + h as well, that is
o' (it+-h) (@) 8F<i+h71)(a)

i a)l B) 1(B)
ol oul-@ (B.3)
The left-hand side term reads
(i+h) (@) ht1
Ol a1 1) s 9 Z s s
Oulle Oul(@) _ ul(,B) i(a)1

ht1
S S g (e )
— U ’LL
h+1 (i+h—s+1)(a)
_ 1 Z (o (/3) 5@
ul(@) — 4 1(8) — Oulla
L )@
ul(@) — 4 1(8) " i(@)1(B)
h (i+h—s+1)(a)
_ 1 Z an(a)l(ﬁ) 5@
ul(@) — 1(8) — oulla
i(a)
1 Titns) (1))
ul(a) — ul(ﬁ) aul(a)

_ 1 (i+h—1+1)(a)
wlle) — 4, 1(8) ~ i(e)1(B)

where
(i+h—s+1)(a) (i+h—s)(a)
ianisy  _ OTans)
Qule) Oul=1(a)
by the inductive hypothesis for each s > 2 and
i(a) 1(e)
arz(a)l ) a0 Miwne _
oull) gyl
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for every [ > 3. Therefore the left-hand side of (B.3) is

argz;"—)hl)((ﬁa)) - aF(H_h ))(a) s(a@)
oull T _ul (8) Z 3u(l 1 u

1 (i4h—1+1)(a)
wlle) — 4 1(8) ~ i(a)1(B)

which amounts the right-hand side term
(i+h—1)(a)
aFz‘(oz)l(ﬂ) (4.63) 0 _ Z F(H—h s)(a) EICY)
Oull=1)(e) Oul=1)(a) — ul(ﬁ) i(a)l

h z+h S)( )
1>2 1 Z 8F ) 5@
- ul(a — 18) @u(l 1)(

1 (i+h—1+1)(a)
ule) — 4 1(8) ~ i(a)1(B) '

This proves (B.2) for k > .
Case3: o= #v.Foreveryk € {2,...,m,},l € {3,...,ms}and 6 € {1,...,7} we
have

k(v k() (k=1)(7)
Iy (a) Prop8.3 (i) ) OT 1)( i@ @m e 1><a>1< ez Ol D

Ould) Oul®) @we)  Oul® - Oull=©)
(k—1)() (k—1)(7)
(4.79) or z+a 1><a) (@ Prop83 ) My _07>
@el)  Qul=10) - OulDe)

Case 4: a = [ = 7. We are going to show that

(h-1)(a)
arz(a)y) _ T

aul 0U (I-1)(9)

foralld € {1,...,r},k€{2,...,my}and l € {3,...,ms}. If i = 1 (or equivalently
j = 1) then (B.4) is verified by means of Case 2 and (4.79), as

(B.4)

k 1) () (k 1 (a)
) @) o'y J)] _Z L @) OL) (a)
8ul(5) » S oul) Qul=1e) 8ul 1
for every choice of § and every k € {2,...,m,}, | € {3,...,ms}. Let us now con-

sider 7, j > 2. Without loss of generality, by (4.69), we can restrict ourselves to the
case where i = j = 2. If § # « then

(k—1)(a)
8F2<a>2<a) _o0- O Yyt
aul aul 1)(9)
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as F];((g))Q(a) only contains the terms {u*® |2 < s < k} and {u!(|1,...,r}, where
[(9) is not included (I > 3). It only remains to prove (B.4) fori = j =2and 6 = a,
that is @) (o1) ()
O g2 _ (a2t (B5)

Oul@) Oull=1)(a) '

forall k € {2,...,m,} and | € {3,...,ms}. We will proceed by induction over k.

For k = 2 both the left and the r1ght—hand sides Vamsh as FQEQ§2( ) = — sty does

not depend on any of the terms {u!® |/ > 3} and F 2(a) = 0. Let us suppose
that (B.5) holds for all £ € {2,...,h} (given an mteger 2 < h < m,—1)and
l € {3,...,m,}. We must prove that

or (h+1)(c) arh(a)
2(a)2 a) 2(a§(a> (B.6)

oul@  Gyul-D(@)
foralll € {3,...,m,}. The left-hand side term reads

(h+1)(a) .
8F2(a)2(a) (4£8) 8 F(hfl)(a) . F2(a) u(h-‘rl)( )
8ul(a) o aul(a) 1(a)1(a) 2(a)2(c) u2(®)
1 h—2
_ (s+2)(a)  s(a) (h—s+1) ()
— 2 Cotayate) — Dhloyie)t )
s=1

(h-1(@) ()
I>2 arl(a)l(a) Doty it

Oulla) u2(e)
h—2 aF (s+2) () 8F

1 2(c)2(a) 1<a>1 @)\, (h=s+1)()
- u2(a)Z( Oul(e) Oul(@) u

L hi43)@)  p(h—t+) ()
u2(a) (FQ(aﬂ(a) _Fl(a)l(a) )

where by what we said above (: = 1) we have

i _ ot

(a) )1(e)
dulle 8u(l Die)
ors C*)l(a) ar e
Gue = gaivw  1S8She2
and by the inductive hypothesis
aF(SJrQ)(a) ar s+1 (a)
2(a)2(c) 2(a) 1<s< h—9

Oul(@ au(l 0)(
It follows that the left-hand side of (B.6) is

(h+1)() (h-2)(0)  p2(a)
Ty ay3(e) arl(a)l(a) Lo@200) hya

Oulla) Oul—1(a) u2(®) l
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1 2()2() 91 1(a)1(a)
o u2<a)2(@ul D)  §yl-D(@

1 ((h—l+3)(a) F(h—l—i—l)(a))

h—2 or (s+1)(e) 8F 5— 1)(“)) (st 1))

2@ 22— T
h-2(@)  p2e)
i) Do) o
o Oul—1(a) u2(e) l
2(a)
1 oLy 2(a)2(a)  h(a)
a) Oy l=1)(e)
h—2 (s+1)(e) s—1)(a)
1 > e Oiwie) s @
W2 2\ Bul-D Gl

L t43)(@) _ p(h—l+1)(e)
o u2(a) (F2(a)2(a) - Fl(a)l(a) )

When [ > 4, since the right-hand side reads

8F2(a)2 (a) (468) 0 [(h-2)@) _ p2() uh@
oult—1) (@) au(l_l)(a) L(a)1(a) 2(04)2(04)”2(04)
=
. (s+2)(a) _ s(a) (h—s)(a)
2 Tatapata) ~ Dilayii)) )
s=1
(h—2)(e) 2(cx) o) AT2()
l—é>2 aF1(04 1(a) FQ(a) 2(c) h h( )8F2(a)2(a)
A=) 2@ Tl u2(@) Gy l=1(a)

h—3 s+2() a)
1 Z Motapete) _ i)\ n-syie
2@ du=D(@ — Jyl=1)(@)

_1 (h=1+3)(e) (h=1+1)(a)
B u2(a)( 2(a)2(a) Fl(a)l(a) )

we get that the difference between the left and the right-hand side terms is

(h+1)(a) h(a) (h=2)(a) 2(e)

o) 2a) _ 10) Do) o
U@ 9ul D@ - gglD@ | 2@ O
2(a)
1 50)0) A

— u2(@) 9y =1)(e)

h—2 (s4+1)() s—1)(a)
or 8F1(a)1 )) (h—s+1)(a)

1 2(2)2(a)
2@ 22(31“ () Aul—D(a)

_1 (h=143)() (h—1+1)(e)
2@ )( 2200~ L)) )
(h—2)(a) 2() 2(a)
8F a)l() 1ﬂ2(04)2(a) h @) oI, a)2(a)

L3 ars+2<)> orse

1 )2(ax l(a)l(a) (h—s)(c)
u2<a>z(au<l @~ gyl )"
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L t43)@)  ph—tt1)@)
+ u2(@) (F 2(e)2() F1(a)1(01) )

h—9 (s4+1)(c) (s—=1)(a)
1 S Mot @it ), sty
120 Oul—D) 9y -1)(a)

s=2

S5 coriie i)
L1 Z Mt Miian@ ), s _
u2(@ £=\ gul-D() — gyul-D@)

by changing the variable in one of the summations. When [ = 3, the left-hand side
term reads

(1)@ Hr(-D@) o)
3F2<a>2 @ _ M@t a2 s
Du@ ute) e 3

(5+2)(a) s
1 Z aP()Z(a) or, @) s ()
u2(@) — oud(e 8u3

L h(e) (h—2)(e)
2@ (F2(a)2(a) o Fl(a)l(a)

(h-D)@)  ar2(e) 3(0)
Miane Mo gryr 1 <3F2<a>2<a> ore 1(a))uh(a)

D) 2 B3 T @\ T D@
oo a(st2)() @
1 Ol gap2(m O ) h-s)
u?(@) —~ Oud(@) 8u3

1 h(a) (h—2)(c)
2@ (PQ(Q)Q(a) - I‘1(04)1(04)

and the right-hand side one reads

() (h-2)(a) 2 2(a)
O g2 _ Wiyt O s W@ Toosta ) i) _ O
8u2(a) auQ(a) 8u2(a) u2(a) ( (a)) u2(a) 2
1 h—3
(s+2)(e) s(a) (h—s)(a)
+ (u2(@)2 (F2(o¢) 2(ex) Fl(a)l(a))u
s=1
W o)
1 o, cple) _ or, GICAWERTE
u2(e — 5’u2 ou2(

where, by means of the inductive hypotesis, we have

o) _ (o
@ufﬂ(a) aUQ a)
(S+ ) @) s(a) (s+1( ) s=1)(e)

or, )2(a) or,y )l(@) _ ory 2(0‘) 8F 1(") foreach s < h —2
8u3 (a) 8u3 (@) 8u2 3’&2 B
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thus (by changing the variable in the last summation of the right-hand side term)
their difference is

18y (@  12(0)20) chy1 1 9 3@ pl h(e)
Ou2@ u2(@) 0 au3(a)< (2)2() Fl(a)l(a))u
h—2 s+1( ) s-1)(a)
1 oL, et arl(a)l @ ), (s+1)(@
u?(e —~ 8u2 Ou2(@
1 h(a) (h—2)(e)
ey <F2(a)2( )~ D)
(h—-2)(a) 2(a) N 2(a) 2(a)
_ M@, o) v Toappe) i Dot
Ou2(@) Ou2(@  g2(a) <u2(a))2 2@ 2
h—3
(s+2)(a) _ ps(a) (h—5)(a)
)QZ( ) Fl(an(a))“
s=1
h2 <t+1><a> (t-1)(a)
Mo _ M@ ), o-rsn@
u2a U2 ) Ou2(®)
t=2
@68 0 2@ u?®) (@)
a) au3(a) 2(a)2(ar) uQ(a)
1 1 h—3
2(a) h() (+2)(e) _ pl(a) (h=0)(a)
+<u2(a)>2r2(o¢)2(a)u +(u2(a))2 (F2(a)2(a) Fl(a)l(a))u
=1
2(a) N 2(a)
+ 8F a)2 a) u® o FQ(Q)2(O{) uh(a)
Ou2@  2(e) (u2(@)2
h—3
(s+2)( _ s(a) (h—s)(«)
E( ) Fl(a)l(a))”
s=1
2(a) 2(ax) 2(a) 2(a)
F2<a>2 ) D202 ey, ata) 20 W T )
(a))2 (u2()2 Ju2(@) 2@ (y2(e))2

2( )
uh®) 2<a>2 o, Mo
Guz(a)
(a.66) u" MaEa | Mafa \
T 2@ ( (UQ(a)) + <u2(a)>2) = 0.

This proves (B.6), thus (B.4) has been proved forall § € {1,....7}, k€ {2,...,m,}
and ! € {3,...,ms}.

Let us now prove that (4.72) holds for [ = 2 as well when 8 # o = 7 = §, that is

(@) ()
ity _ Oty
Ou2(@) 8u1 a)

forall k € {2,...,m,}. Asin the proof of Case 2, this is trivially true when j > 2 or
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k < i. We are going to prove (by induction over k) that

orke arte sy
? 0‘)1(/3) 1(8) (B7)

au2(a) - aul (a)

for k >i. If k =i we get

e

au2 () au2 ) au2 «)

1(a)
(@s I'y (o)1 (9)

does not depend on u*®)) and

(k-1)(@) A1)
oy ) _ O sayn() _
0u1 Oult(@)

(as F - 1)((“) 4.8 0). This proves (B.7) for k = i. Let us suppose that (B.7) holds

whenever k <1+ h—1,for a given integer h > 1. Let us show that it holds when

k =1+ h as well, that is
(i+h) (@) (i+h—1)()
Oia18) _ iay1s) (B)
Ou2(®) Oul(®) ’ ’

The left-hand side of (B.8) reads

(i+h)(@) hit
Olan(s) wey 0 Z s s
8u2(0¢) o @u2(a) ul(a) — ul )

h+1 (i+h s+1)(a)
— 1 Z aFl(a)l(ﬂ) us(a)
ul(a) — ul(ﬁ) 5 8u2(a)

S=

I S A 1)
wlle) — 4 1(8) ~ i(a)1(B)

where in the first summation only the terms for s < h survive, as for s = h + 1 we
get

i(a) 1(e)
Miwne _ Miene _
Ou2(@) Ou2(@) ’

and (by the inductive hypothesis)

8F (i+h— s+1)(a) ar(i—l—h—s)(a)

i(a)1(B (@)1(B)
Oule Oul(@)
for each 2 < s < h. Then
i+ b grlith-s)

i(a)1(B) i(a)1(B8) s(a)
Jul@ ul(a)_ul Z ol ¢
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1 (i+h—1)(a)
ull@) — 4 1(8) ~i@)1(8) -

The right-hand side of (B.8) reads

(i+h—1)(cx)
aF a)1(B) (423) 0 Z F (i+h—s)(a s(a)
au1<a> Oul(a) _ ul(B) a)1(B)

_ (i+h— 5)(0) ()
= @@= ul Z Dian(s
h (i+h— S)(a)
Z arl(a us(cx)
ul(a _ ul aul(a)

thus their difference is

(i+h)(c) (i+h—1)() (i+h—s)(c)
i) Mian(s S Zh: Mian® o)
Ou2(@) oultle = u1 oul(@)
_ 1 (i+h—1)(c)
wl@) — 4 1(8) T i(@)1(B)
_ (i+h— (@)
( ul(ﬁ) Z F'L a)l
h (i+h—s)(a)
L1 O\ ) 5@
ul(a) — ul(ﬁ) s aul
(4.63) 1 zhjrwh (@) , s(a)
T (ut@) — y1(8))2 i(a)1(B)
s=2
h
_ (i+h a) o
(ull@) — ul 8))2 Z F%(a)l = 0.
s=2
Proof of Lemma 4.22

Let us first consider o #  and prove 1;1 F;((%)) pu" = 010] mges. We have

DIV 9 DIV ANRVIEED IS ENITEES DIV A
k=1

v=1 k=1

which vanishes automatically when j > 2, by (4.62). Let us then fix j = 1, thus

n n Mo mg

i(a) k _ i) |k _ i(a) k() i(a) k(B)
DT =D T =D TG @ + D TG u
k=1 k=1 k=1 k=1
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mg

(4.63) : i(a) k(a) i(a) 1. k(B)
(4.64) F1(5)’f(0é) U Z Pl(cv)lc(ff) 0, u
k=1 k=1

N i) k@) pil@) o 1(8)
= Z LBk U L@ 4

i(a) i(a) wl@ _ 18
Zrlw (o) W Y5 (1 u)

1(&) (e . -
(4.63) 1jl(ﬁ)l( )(“l( ) - ul(ﬂ)) ifi=1
- Z e Z i@ s g >0
(4.63) ) MpER ifi=1, .
0 ifi >2

In order to complete the proof we must show that

0 i

~ i@ k)= mae, ifi=j=1,
Fj(a)ku — g le"
k=1 r

~ 3 mye, ifi=j#1.
T=1

Let us first consider the case where i # j. Without loss of generality we assume
i>7j,asT =0 trivially whenever i < j, by (4.63) and (4.69). We have

J(a)k
SN i)k 46 o= i) k(o) = i(a) k(o) 51

D T = D Tk v+ DD T W75

k=1 k=1 oo k=1
_ i@ @) | N\ pil@) k() i) (o)
= T @+ D T W+ DT u

k=2 o#a
479 ie) - 1(a) o) o k(a) i(@) (o)
=" =) T +ng(a @+ T
oFa oc#a
weo) i—j42
) _ i(a) () _ ,1(0) (i—j—k+4)() | k(o)
= =D T (u d) Y T
oFa k=2
where
1—j+2 i—j+2
(i—j—k+4) (@) | k(o) __ 7(E—5+2)( i—j— k+4)(a) k(a)
D Do@laey o uf® =Ty da )™ @ + Z Loayate
k=2
Yy i—i+2)(@)

@69 (i-)) _ p2(a)
= (Fl(a§1<a>_rz<a>2<a) w2
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i—j—1

1 (1+2)(@) _ pi(a) (i—j+2-D)(a) | , 2(c)
2@ Z (Paayze) ~ Tife)i() U
=1
i—j+2

i—j—k+4)( k(a)
+ Z T2t

_ I‘*(l Nea) | 2(a) FQ(OC) u(i—j+2)(a)

1a)1(a) U 2(a)2(a)
i—j—1 i—j—1
_ I+2)(a) | (i—j4+2—-1)( —j+2-0)(a)
Z Fz(a)z(a) 3+ Z P 1(a)
=1
1—j+2

+Zra uF@

_ 1“(1 (a) u2( a) 1’*2(04) )u(i—j+2)(a)

1(a)1(e) 2(a)2(c
i—j+1 i—j+1
(i—j— k+4)(a) (i— J k+2 (@), k()
= 2 Doae) )+ Z I
k=3
i—j+2
—k+4)( k «
+ Z Do “
1—7+1
_ 2(a) i—j+2)( (i— k+2)(a) u
= ~Lotonie ““7 Y+ DT ()
k=2
(@) &
2(a i—j+2)( J=k+2)(a) | k()
+ Doyt ™ Z A :
It follows that
n i—j+1
i) k. i(a) 1(a k(a)
D i == Ui ( )+ ZF ()
k=1 oFa
479) i—j+1 i—j+1
s+2)(a s k+2) () a
(463)2 Z e =20 > Dl Wt =0,
F#a oFa k=2

Let us now consider the case where i = j. We have

i(a) k (4£2) - i(a) k() — i(a) k(o) 51
Z Fz(a - Z Fi(a)k(a) u + Z Z Fi(a)k(a) u 5k
k=1

o#a k=1
i@ 1), N a)
= T 4+ D Ty v + YT,
k=2 oFa
(4.79) (o N N i
==Y T (@ = w9 + Zrigagua) u*
oFa =
S 0 ) 52 o)
oFa
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If i =1 then

& () . 1(a) 1 1(o - 1(a) k
Pl (a)k ut = _Z I (a)1(0) @ —!®)) + Z D (a)k(a) U )
k=1 oFa k=2

where

Fl(a)

(4 79) () (4 63)
1(a)k(a > I 0

(o)
oc#a

for every k > 2. It follows that

iﬁﬁiiﬁk =1 Zl(a (@) _ y1le)y 2 =) mee,.
k=1

oFa oFa
If i # 1 then
i)k 49 @) (@) (4-K)(@) 52 k()
> Tiawu = i (u u'?) + Z Lo Ok
k=1 oFa
D mace + Ty v
oFa
(49 ngsg Moo = —Z MEr.
oFa
Proof of Lemma 4.23
Let us recall that

(o) i(a i(a) ko ci(a) i(a) k
Vi B = 05 B + Y U6, BN = 6,5 + Y T, "
= k=1
If a # [ then
Vi B = 616} maes

by (4.73). Let us now consider the case where oo = 3. Here we have

i) _ gi - i) |k
Vi B =85+ T, u
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which vanishes if i # j by (4.73). Let now consider ¢ = j. By virtue of (4.73), we
get

[0

Vi B =1+ 3 Ti0 ot
k=1

1— )" mee, ifi =1,
_ Jzéa
1= me, ifi # 1.
T=1
|
Proof of Lemma 4.24
We will proceed by induction over I. For | = 3 we get
e e (W e ) (pie) )y )
— P 2(@)2(e) | 2@ 2(a)2(e) 1(a)1(e)
where
pie) p2e) @89 o w1 () _pie) )
2(a)2(a) Ha)l(a) 2(a)2(@) g2(a)  g2(e) \T 2(@)2(q) L)1) ¥
668 o i . 43 2@ R
o 2(a)2(a) y2(a) T 2(e) T 2(@)2(a) 42(e)
It follows that
A3(@) — (@) u?l®) WB@ A ) (e 4
T 2()2(e) | 2(a) 2(a)2(e)
W o) g
—__ 1« (@) —
+ 3@ FQ(Q)Q(Q) U ) = 0.
Given an integer h > 1, h < m, — 2, let us suppose that
Al — 3<1<h, (B.9)

and show A+t = (. We have

A(h+1)(a)

e h
+1) (o h+2)(a (s+2) () s(a@) h—s+2)(a
( D) — (2@ ) Z (FQ(a)2(o¢) - Fl(a)l(a)) ul e)

s=2

3(a) h—1
2 u o a s+2)(« s(a —s a
_ 2 ( (@) _ () >) ST (PG ey s

s=2
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where

pU2)(@) _ ph) @68 12(a) uht2)(@)
2(a)2(e) H(a)l(a) 2(@)2(a) 42
1 h—1
R+ _ pio (h=142)(a)
2@ Z w2(0) ~ Diayi(e) :
=1
It follows that
(h+1)(a) 2(a) u?l®) (ht1)(@) _ , (h+2)( — s+2 s(e) (h—s+2)()
A = F2<a>2<a><W“ > > (T — Tia)
s=2
h—1
2(e) (h+2)(@) (+2)(@) _ plla) (h—142)(c)
+ 15 a)2(a) ¥ + Z (FQ(a)2(a) 111(04)1(00) u
=1
2(ex) u?®) y (@) _ = s+2 rs(e) (h—s+2)(a)
= Lotz o v Z 2(a> LY (et
s=2
3(a) (o) USRI l+2 We) l(a) h—142)(a
+ (Fz(a)z( )~ Fl(a)l( )+ Z 2()2(a) 1(a)1(a)) ul @

(4.68) 2@ u?(©) (h+1)(e) _ p2(e) us(a) ph@ —
2(x)2(c) u2(@) 2(a)2(e) u2(a) ’

Proof of Lemma 4.25

We will proceed by induction over [. For [ = 1 we get

3(a)
3(a) a) (4.68) 2(a) u _
81(0) (F2(a)2(a) - Fl(a)l(a)) - a1(0) ( - F2(a)2(a) u2(a)) =0

(o)

as F;gzgz(a) does not depend on «''? for any choice of 0. Given an integer h > 2,

h < mq — 2, let us suppose

(T2 T Y0, 1< ®10
and show 0, (Fé?;“)?((j - Flf((z))l(a)) = 0. We have
T —Thohe = —Fiﬁgﬁm) %
u21(a> = 21(2?2@ - ll((z)n(a)) w2
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w(h+2)(@)

where neither F (Q)Q(a) a2

(+2)(e) l(a) h—1+2)(a
(F2(a)2(a) a Fl(a)l(a)) =), 1<i<h-1,

(by means of (B.10) and of the requirement o # o) depend on u'().

Proof of Lemma 4.26

We will proceed by induction over s. For s = 1 we get

2
1(a) 2() 1(B) 2(w) 1(e€)
Z o Tiene + T Nione + e D@

Fl(a)

=1

2(a) 2(a) 2)  plB) ) Pl
191e) L1(8)1(0) — D T Hige Tiews T I
“

91() L1(8)1(a f 11(8)
20)  (pl(8) 1(a)
1) T e Ciows ~ Do)
(163) ()

1 1
= F1(5)1(04) mpep (ul(e) —ui® i) = u1(5))

2(ex) 1 B 1
+ F1(5)1(01) Mece (ul(ﬂ) —ule  ylle) — 41

1(a)
T i@ 1@ PR8I — 1) (ul(@) — 1))
1(a) o
N e, ul® — u!®
ul(a) — ul(ﬁ) €€ (ul(ﬁ) — ul(e))(ul(a) — u,l(f))

(4ﬁ3) MeEe 2() mpeg

T W@ — 1@ (1B — 1@) (i) — 1))
_ mgég 2(04) meée _ 0

W@ — 13 (@) — 10 (ul@ — 1)
Given an integer i > 2, h < m, — 1, let us suppose that

B =0, s<h-—1,

and show Bgia) = 0. We have

h+1

_ _Z F(h t+2)(a)r @) o) —f-F(h—H)(Q)F )

(h+1)(e) 1-1()
101 F1an( 18)1(a) L1(on(p T1 I

e)l(a) = 1(B)1(e)

e 1 ) (ht)(e) (1) (@)
—P<>(a> (T~ M) + Tiorey Ci@ne ~ D)

h t+2
ZF o)

h+1
(4.63) 1 (h—s+2)(a) . s(a) (T21(8) (@)
a _mgrlwnm w (Ciie ~ i)
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ht1
1 (h—s+2)(a)  s(a) (11(e) 1(a)
e — i@ > Tt (TG ~ M)

s=2

(h-t2)e) it
ZF © T B

where in the first two summations only the terms corresponding to s < h survive,
as the sum of their two (s = h + 1)-th terms is

1 o)  (h+1)(a) (PLB) L(@)
@ @ L@ ¥ (i ~ Do)
1 @) (h1)(a) (1) 1(a)
~ @) — i L1001 (Ciio ~ Tidn)
agy _ mpegul™D ) pe
- (ul(a) — ul(8))2 1(e)1(B) 1(€)1(e)

. MeEe u(h+1)(a) Fl(e) B Fl(a) )
(ul(a) _ ul(e))Q 1(8)1(e) 1(8)1(e)

w3 mgegultDe) 1 1
T T @ — g 1®)2 M \ Q1) — 1@ T i@ — 1

mee, w1 1 1
T (ul@ — i)z s (ul(e> “Wl® Tyl ul(ﬁ))

_ mﬁgﬁ u(h+1)(a) ul(a) _ ul(ﬁ)
T T W@ — 1 @)y2 " 1B — 10 (ulle) — 1)
MeEe u(h-l—l)(a) _(ul(a) . ul(e))
T {ul@) = 1@y " () — i @) (i) — i)
It follows that
ha) _ (h—t+2)(@)  t(a) (LB plla)
By = - ul(ﬁ ZF () (Cienis ~ Tiouw)
Z F (h— t+2 t (o) (Fl(e) _ Fl(a) )
ul(a) 1(e) 1(8)1(e) 1(8)1(e)
h
(h t+2 t(a)
= Thore Tl
t=2
where
h (463) h h—t+2
(h— t+2) ) t(a) h63) (h—t— l+3 ) (@) l(a) t(a)
=D Tl Tl = —2 ( ~ ul(e Z Mot ) L)
t=2 t=2

h h—t+2

_ (h—t— l+3 4@ t(a)
- PIPIRIET RAEHS
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s=h—I+1 (s t+2)() | (h—s+1)(a) t(@)
= ul(a) ne) Z Z Do) e

t=2 s=t—1
h—1 s+1

s— t+2 S IC) t(a)
_ul ler (O1(a D))

h—1 s+1
. s t+2 t(a)
= —uua ) <Z Lo T

s=1

. F(s—H l(a > (h—s+1)(c)

101(0) 181
h—1
(Bil) (s+1 (a (B) (s+1)() 1(e)
= - ul > (F @18 T 1101t Mg
s=1
_ F(S+1 1(04) h s+1) ()
101(0) 1(8)1(a
h
t:h:erl (h— t+2 I
- ul(e Z( 101 L 191s)
t=2

(h—t+2)(0) 1-1(6) (h—t+2)(a) 121(a) o)
+ o1 Lo ~ D) Fl(ﬁ)l(a)>u :

Thus

h
ha) _ (h—t+2)(e) (1(8) _ pi(e)
Bg, Z( ul(a —i Diont - T ~ Tidiw)
t=2
1 (h—t+2)(a) (a1(e) 1(a)
~ @ Lot Ci@e ~ i)

©) 1 (h—t+2)(a) (0

1 (h—t+2)(a)
I r t i@ e Do i

1
T @ — i@ 1@ 1)

1 (h—t+2)(a) 11 (a) L1
~ @ @ i@ i)

h
<h t+2)(a) [ 1 18)  _ nla)
Z 8)1(a) ( o1 Lio1s ~ Do)

1 Fl(ﬁ) uH@
wlle) — 4 1(e) ~ HOLB)

+
(4.63) " p(h—t+2)() 1 meee (u'® — 1)
= Z 1(8)1(«a) o wl(@) — 4, 1(8) (ul(ﬂ) _ ul(e))(ul(a) _ ul(ﬁ))
t=2
1 MeEe Ha) _
+ W@ — 1@ y18) — ul(e)) u™ = 0.



Proof of Lemma 4.27

For s = 0 we get

0(@) _ p200)  2(e) @) i)
s = Dotz Vg T 11110 Dne)

163 I

(4.68)  12(a) 1(8)1() u2(a)+rl(a) F1(5)

2(0)2(a) yi(a) — 1(B) 1(8)1() * 1()1(8)

_ i@ 1) 1 y20) | 1)
= Flwn(a>( Dy i@ —i@m v i (m)

(4.63) Fl(a) Ma€a . Maq —0
o6y 1AL\ yil@) —18) — yll@) —1(8) ) —

For s = 1 we get

o) (F:s(a) i) 16)

3(a) 2(a)
i T T Do)

2(a)2(a)
(o) 2@

(B)1() 2@ _ F2(a) 1(8)1(a) u2(@
a) g le) — 1(8) 2(2)2(e) ul(e) — ¢, 1(8)

(4.63) -2(a)
(4;8) 2(a)2(a) U2

_ 12(a) 1(a) u3(@ 2(a) 1(8)
Lo 71 i@ & + Do D)

_ 2(e) _ 2@ 1 2a) | pL(B)
Fl(ﬁ)()( Dte2(e) i@ — g1 +F1(a)1(5>)

(4.63) P2(o¢) Ma€a _ Maq —0
woe 1@\ 1@ — 19 T @ _a® ) =V

Let us now consider an integer s € {1,...,m, — 2}. Since

() (4.63) 1 (I—t+1)(e) 2y 1@
Dione = ~g@—gm mZFm (@)

k=lot+l 1 k(a) (I—k+1)(e)
= T a2 Y

foreach! € {2,...,s+ 1}, we have

s+1 -1
s@) _ 1 (s—1+4) (@) _ (s—1+2)( L -k+D(@)
O =~ — g > (FQ(am(a) I @)1(a ) Zruml
=2 k=1

2a)  p(s42)(@) | m(s+(e) pl()
Lo )F 1) T L1100 i)

s+1
_ k(a (s=l+4)(a) _ p(s—1+2)(a) |  (I—k+1)(c)
= Zrl B D (F2<a>2(a> D)1 )“

I=k+1
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2Aa) (@) | 1)) pl()
* Doz D T 1) L@

Where(bytakingg::s—l—|—2and7::s—k‘+2)

s+1 7_1
(s—1+4) () (s—1+2)(cx) Ikt (o (3+2)(a) 3w w
l=k+1

-1
(5+2)(a) _ 15(a) (1-3+1)(e)
+ (Fz(an(a) Fl(a)l(a))“

2(a)
= T2 . L (1HD(@)
= Tl
It follows that
o) _ D ZFk(a) SR
B ul(a — 8
+ Tzt Diors <(a>) + T o) Tian)
where
1 s+2
e = 1 2 N W
t=2
h=s—t+3 _ 1 irk(a) (5= k+3)(@)
wt@) — 1(8) 1(B)1(@)
thus
o _ L oe2(a) iFk(a) (s—k+3)(@)
BT yile) — 1B o 1(A)1(e) ¥



s A ke
. a)2(a k(o (s—k+3)(a)
T 1 2= D1

k=1

(s4+1)(a) 11(B)
+ Fl(,é’)l(a) 111(a)1(6)

2(w)
2(0)2()  (s+1)(@) 2(a) | (@) 21(8)
1@ — 1 L1 ¥ T g D)

P2(a)
:F<s+1><a>( 20)20) _ 2(a) | [1(9) >

1B \ (@) — 4,108) La)1(B)

(4.63) 1+(s+1)() MaEa _ Mala —0
(4;6) 1(8)1(a) ulle) — ¢, 1(8) pl(e) — ¢,1(8) o

248



	Introduction
	Frobenius manifolds and their generalizations
	Frobenius manifolds
	WDVV associativity equations
	Frobenius algebras and two-dimensional topological quantum field theories
	Semisimple Frobenius manifolds
	The principal hierarchy of a Frobenius manifold
	Frobenius manifolds and cohomological field theories

	F-manifolds
	Regular F-manifolds

	Flat F-manifolds
	The principal hierarchy of a flat F-manifold
	F-cohomological field theories

	Bi-flat F-manifolds

	Regular F-manifolds with eventual identities
	Eventual identities and dual coordinates
	The case of a single block
	The case of multiple Jordan blocks
	Applications to Nijenhuis geometry


	Regular Frobenius manifolds
	Generic dimension
	The case of a single Jordan block: explicit results up to dimension 4
	Dimension n=2
	Dimension n=3
	Dimension n=4

	The multiple-block cases
	The three-dimensional case
	The four-dimensional case


	Regular Lauricella bi-flat F-manifolds
	Integrable systems of hydrodynamic type
	Frölicher-Nijenhuis bicomplex and integrable systems
	Examples

	From integrable hierarchies to Lauricella bi-flat F-manifolds
	Semisimple Lauricella bi-flat structure
	Regular non-semisimple Lauricella bi-flat F-manifolds

	Bi-flat Lauricella structures in dimension 2,3,4,5
	2-dimensional case
	3-dimensional case
	4-dimensional case
	5-dimensional case

	The case of a Jordan block of arbitrary size
	Technical lemmas
	Flatness of 
	Compatibility of  and 
	Linearity of the Euler vector field
	The condition d(E-a0I)=0
	Uniqueness

	The case of an arbitrary number of Jordan blocks
	The Christoffel symbols
	Technical lemmas
	The condition e=0
	The condition d(E-a0I)=0
	Compatibility between  and 
	Linearity of the Euler vector field
	Flatness of 
	Uniqueness

	The dual structure
	Generalized Lenard-Magri chains and the principal hierarchy

	Open perspectives
	Bibliography
	Four-dimensional regular non-semisimple Frobenius manifolds
	Technical lemmas about regular Lauricella bi-flat F-manifolds

