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Abstract
Wepropose assessing the causal effects of a dynamic treatment in a longitudinal obser-
vational study, given observed confounders under suitable assumptions. The causal
hidden Markov model is based on potential versions of discrete latent variables, and
it accounts for the estimated propensity to be assigned to each treatment level over
time using inverse probability weighting. Estimation of the model parameters is car-
ried out through a weighted maximum log-likelihood approach. Standard errors for
the parameter estimates are provided by nonparametric bootstrap. The proposal is
validated through a simulation study aimed at comparing different model specifica-
tions. As an illustrative example, we consider a marketing campaign conducted by
a large European bank over time on its customers. Findings provide straightforward
managerial implications.

Keywords Causal inference · Direct marketing · Expectation–Maximization
algorithm · Generalized propensity score · Longitudinal observational data

Mathematics Subject Classification 6208 · 62H30 · 90B60

1 Introduction

Hidden Markov (HM) models (Wiggins 1973; Bartolucci et al. 2013; Zucchini et al.
2016) are widely employed to analyze longitudinal data as they represent a logical
extension of the latent class model (Lazarsfeld 1950; Goodman 1974), which is used
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to discover unobserved clusters of individuals with cross-sectional data. For a recent
review of some real-life applications of HMmodels, see Mor et al. (2021), Visser and
Speekenbrink (2022), among others. The basic assumption of HM models without
covariates is that, for every individual, the response variables referred to the same
time occasion depend solely on a discrete latent variable having a finite number of
support points corresponding to latent states. The sequence of these latent variables
is assumed to follow a Markov chain of first order, so that it is possible to perform
model-based dynamic clustering. Individual covariates may be included in the model
in different ways. The formulation in which the covariates affect the distribution of
the latent variables is of particular interest as it allows studying how the probability of
belonging to the different clusters is affected by individual characteristics and other
factors (Bartolucci et al. 2014).

HMmodels have traditionally been applied inmarketing for customer segmentation
and to infer switching dynamics of customers between segments over time (Ehrenberg
1965; Poulsen 1982; Paas et al. 2007; Wedel and Kamakura 2012; Chang and Zhang
2016; Vermunt and Paas 2017). Table 7 provided in “Appendix A.1” lists some of
the main proposals that appeared in the marketing literature without claiming to be
exhaustive since the context is varied. When estimating HM models with covariates
related to firms’ customer-level marketing activities, see Lemmens et al. (2012), Park
et al. (2018) and Kappe et al. (2018) among others, the researcher is confronted with
a possible differential selection into marketing stimuli and intensities. For example,
in the empirical illustration on which this article is focused, different customers may
receive varying numbers of direct mailings promoting financial products of a bank
according to their individual characteristics and portfolio.

Many methods have been developed to make endogeneity adjustments deriving
from a differential selection. In marketing, the use of an instrumental variable (Angrist
et al. 1996) is the most common approach employed for handling selection bias in
estimating a linear or nonlinear model. It requires finding relevant covariates indepen-
dent of unobserved determinants of the outcome (Conley et al. 2012; Park and Gupta
2012). Kumar et al. (2011) proposed a trivariate Tobit HM model that accounts for
endogeneity by incorporating factors influencing marketing activity levels as covari-
ates considering the target equation approach proposed by Manchanda et al. (2004);
see also Moon et al. (2007), Zhang et al. (2014) and Petrin and Train (2010). As
Schweidel et al. (2011) and Papies et al. (2017) suggested, researchers should first
include observed confounding variables as covariates in the model. The approach is
particularly relevant when the variables causing the bias are observed, but information
about the firm implementation of marketing efforts is not available. This situation
can commonly occur if, for example, product managers apply different criteria for
selecting prospects for marketing campaigns. However, it is unclear whether adding
covariates may effectively correct for measured confounding factors, and moreover,
it is required that the model is correctly specified.

We cast our proposal in the class of the methodologies based on inverse probability-
of-treatment weighting (IPTW) proposed by Robins (1997) and widely employed
with the latent class model (Lanza et al. 2013; McCaffrey et al. 2013) as a simple
and effective method able to alleviate the possible bias resulting from endogeneity;
see also Skrondal and Rabe-Hesketh (2014). A first proposal can be found in Bar-
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tolucci et al. (2016) where, differently from the standard potential outcome framework
(Rubin 2005), under specific assumptions, potential versions of latent variables are
conceived. The approach allows estimating average treatment effects (ATEs) on the
general population or on the treated, maximizing the log-likelihood based on lon-
gitudinal observational data through the Expectation–Maximization (EM) algorithm
(Dempster et al. 1977).

Starting from the proposal of Tullio and Bartolucci (2022), we further develop
the causal HM approach proposing a model that corrects for selection effects and
accommodating for time unobserved heterogeneity when the treatment is repeatedly
assigned over timewith varying amounts. The causalHMmodel onwhich the approach
is based is still estimated by an EM algorithm accounting for individual weights
that are preliminary estimated by a suitably formulated multinomial logit model for
the probability of receiving different types of treatment given certain confounders.
Standard errors for the parameter estimates are obtained by a nonparametric bootstrap
method so as to account for the uncertainty on the estimation of the weights.

A simulation study validates the proposal where we consider different scenarios
generating the latent potential outcomes and responses, and we compare the estimated
parameters with those obtained under a randomized experiment. The reported empir-
ical application assesses changes in customers’ financial product portfolios at a bank
due to direct mail campaigns proposing a novel approach for endogeneity correction
when managers made time varying decisions on the marketing stimuli using observed
customer relationship management (CRM) data to select prospects most likely to
respond positively to the campaign.

As for the organization of the paper, in Sect. 2 we provide a detailed description
of the proposed causal HM approach. In Sect. 3, we illustrate the simulation design
and show the simulation results. In Sect. 4, we illustrate the marketing data, and we
apply the proposal presenting the empirical results and we report a comparison with
alternative HM model formulations. Section5 concludes with a summary and brief
discussion. Additional details on the application and simulation results are provided
in “Appendix A”.

2 Methodology

In the following, we introduce the conceptual framework of the proposal, and the
causal HM model. Then, we illustrate the inferential approach for estimating the
model parameters based on the preliminary estimation of the individual weights.

2.1 Conceptual rationale of the causal hiddenMarkovmodel

The proposed approach is consistent with the potential outcomes framework, see Hol-
land (1986) and Rubin (2005) among others, where the causal effect of a certain
treatment is typically of interest. Apart from the case of perfectly randomized exper-
iments (Neyman 1923), the effect of a treatment across the population, such as the
ATE on an outcome, cannot be directly estimated because the individual’s response
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can only be observed for the treatment s/he effectively received. When data are col-
lected from observational studies, the IPTW method (Robins et al. 2000) provides
estimates of the parameters of the marginal model according to the probability of
receiving each possible treatment, which is preliminary estimated on a set of candi-
date confounders. The method can also be employed to correct for endogeneity when
unobserved endogenous variables correlate with observed confounders (Rosenbaum
2020).

The IPTW estimator within the HM framework was proposed in Bartolucci et al.
(2016) to estimate the ATEs of different academic degrees on the type of contract,
skills, and gross income at the beginning of the working careers of graduates with
longitudinal observational data. For a related formulation, applied to assess the role of
remittances for alleviating poverty, see Tullio and Bartolucci (2022). In the empirical
illustration reported in Sect. 4, we aim to estimate the ATEs of a direct marketing
campaign consisting of different intensities of interventions on customers’ financial
product portfolio at a bank. We consider dynamic counterfactuals, and we face the
problem that the marketing stimuli are administered at different times and managers
increase or decrease advertising activities each year. Therefore, time-varying individ-
ual weights are estimated on the basis of the available confounders referred to the
period before each campaign is conducted by means of a multinomial logit model.
The set of confounders may include any covariate collected up to the instant before
the customer receives the advertising.

The current proposal differs from the other methods currently employed in the
marketing literature; see Table 7 in “Appendix A.1” for a summary of some selected
studies. To the best of our knowledge, when the HM model is employed, only the
transition probabilities are directly affected by the marketing activities along with
the other covariates without adjusting for observed confounders. In the proposed HM
model, we also assume the initial segment memberships to be influenced by the mar-
keting instruments. Moreover, the fact that the marketing campaign is perpetuating
differently over time, causing an endogeneity with varying effects, is not specifically
accounted for in the previous literature.

2.2 Model assumptions

With specific reference to the application in marketing illustrated in Sect. 4, let Zit be
the variable indicating the marketing stimuli for customer i at each time occasion t ,
with i = 1, . . . , n and t = 1, . . . , T , where n is the number of customers and T denotes
the number of observation times. This is an ordinal variable with l levels ranging from
0, in the absence of direct mails, to l − 1, in the case of the highest number of mails
received from the customer. The financial product portfolio of each customer is defined
according to a set of r binary variables taking value 1 if the customer owns a certain
product and 0 otherwise, and collected in the vector denoted as Y i t for customer i at
time occasion t . Time-varying observed confounders collected in the vector denoted
as X i t refer to characteristics of the customers such as age and number of transactions
conducted with the bank.
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As in Lanza et al. (2013), Bartolucci et al. (2016) and Tullio and Bartolucci (2022),
even within the current proposal potential outcomes are never observed. These are
defined as latent customer- and time-specific variables denoted as H (z1,...,zt )

i t , with
i = 1, . . . , n, t = 1, . . . , T , z1, . . . , zt = 0, . . . , l − 1, having a discrete distribu-
tion with support points h = 1, . . . , k and unspecified distribution. Therefore, on
each time occasion, every customer has many latent potential states associated with
each treatment level. For instance, H (0,2)

i2 and H (0,3)
i2 denote the potential product of

prospect i at the second time occasion when s/he is exposed to marketing stimuli with
intensity 2 or 3, respectively, with the absence of stimuli at the previous occasion. Let
H(z1,...,zT )

i = (H (z1)
i1 , . . . , H (z1,...,zT )

iT )′ be the vector collecting the sequence of latent
potential outcomes. The longitudinal data structure is taken into account assuming
that the distribution of the latent potential outcomes follows a Markov chain of first
order.

Initial and transition probabilities of the latent Markov chain are suitably parame-
terized in order to express the ATEs; see also Bartolucci et al. (2016). In particular,
the initial probabilities are function of the treatment as follows:

log
p(H (z1)

i1 = h)

p(H (z1)
i1 = 1)

= αh + d(z1)
′βh, z1 = 0, . . . , l − 1, h = 2, . . . , k, (1)

where αh is the intercept specific for each latent state, βh = (βh2, . . . , βhl)
′ is a

column vector of l − 1 regression parameters, and d(z1) is a column vector of l − 1
zeros with the (z1 − 1)th element equal to 1 if z1 > 0. Since each element βhz1 of βh
for z1 > 1 is a shift parameter from the first category to the hth it can be interpreted as
the ATE. With reference to the empirical illustration, it represents the average effect
of the z1th direct mail condition with respect to absence of treatment at the first time
occasion.

Transition probabilities are modeled through a multinomial logit parameterization
based on the following expression:

log
p(H (z1,...,zt )

i t = h | H (z1,...,zt−1)

i,t−1 = h̄)

p(H (z1,...,zt )
i t = 1 | H (z1,...,zt−1)

i,t−1 = h̄)
= γh̄h + d(zt )

′δh, (2)

with h̄ = 1, . . . , k, h = 2, . . . , k, t = 2, . . . , T , z1, . . . , zt = 0, . . . , l − 1, where
γh̄h is an intercept specific for each transition and δh = (δh2, . . . , δhl)

′ are vectors
of regression coefficients. Each parameter δhz may be interpreted in terms of average
causal effect of the treatment referred to the transition probability from state 1 to
state h.

According to this parametrization, which is proposed and justified in Bartolucci
et al. (2017), the effect is referred to the destination state. It is more parsimonious than
parametrizations in which the effect depends on the starting and destination states,
with advantages, in particular, when many latent states are estimated.
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Finally, the latent potential outcomes are related to the response variables Yi jt
collected in the vectors Y i t by the conditional probabilities

φ j y|h = p
(
Yi jt = y | H (z1,...,zt )

i t = h
)

, h = 1, . . . , k, j = 1, . . . , r , y = 0, 1,

(3)

for all t . We assume that the latent potential outcomes are the only variables that
influence the observable responses and the effect of the pre-treatment covariates passes
through these latent variables. This amounts to assuming that the response variables
in every vector Y i t are conditionally independent given H (z1,...,zt )

i t , and it implies that

p(Y i t = y | H (z1,...,zt )
i t = h) =

r∏
j=1

φ j y j |h, (4)

where y is a possible realization of Y i t with elements y1, . . . , yr .
The following assumptions are required to identify the ATEs; see also Tullio

and Bartolucci (2022). The first is the Stable Unit Treatment Value Assumption
(SUTVA), according to which the individual treatments are completely represented
without interactions between the members of the population. The second assump-
tion is that of exogeneity, requiring that confounders collected into the vector X i t

are not influenced by the treatment. The third is the positivity assumption, that is,
0 < P(Zit = z | X i t = x) < 1 for i = 1, . . . , n, t = 1, . . . , T , z = 0, . . . , l − 1,
and all x denoting the realized values of the observed covariates. This is also related to
sequential ignorability given confounders that correspond to the longitudinal version
of the assumption of absence of unmeasured confounders (unconfoundness) (Rosen-
baum and Rubin 1983; Rubin 1990). Referred to the empirical application presented
in Sect. 4, it implies that every customer has a positive probability of receiving any
marketing stimulus at each time occasion in which it is administered, and this proba-
bility is mainly related to the observed covariates. Formally, this assumption may be
expressed as

Zi1, . . . , Zit � H (z1,...,zt )
i t | X i t , (5)

for i = 1, . . . , n, t = 1, . . . , T , and z1, . . . , zt = 0, . . . , l − 1. Therefore, the
covariates collected into vector X i t are assumed to be sufficiently informative and
they include all variables directly influencing both the treatment and the responses.

2.3 Parameter estimation

Let xi t be the observed vector of covariates for customer i , i = 1, . . . , n, at time
t , t = 1, . . . , T , yi t be that of the responses, and zit be the received treatment.
Developing the approach proposed in Bartolucci et al. (2016), we adopt an estimation
procedure which relies on two steps aimed at obtaining individual weights, based on
the probability of the received treatment, and inmaximizing aweighted log-likelihood.
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2.3.1 Estimation of individual weights

Under the assumptions formulated above, and considering (5) in particular, the proba-
bility of treatment assignment is estimated dynamically for each time period. We note
that the observed responses prior to treatment can be added among the covariates used
to estimate the propensity score at a certain time period. With respect to the empirical
illustration reported in Sect. 4, we refer to the probability of each customer to receive
her/his own number of mails at repeated time t , t = 1, . . . , T . This probability is
estimated through the following multinomial logit model:

log
p(zit = z | xi t )
p(zit = 0 | xi t ) = ηz + x′

i tλz, z = 1, . . . , l − 1, t = 1, . . . , T , (6)

where ηz and λz are the intercept and regression parameters, respectively. The esti-
mated time-varying weights are determined as the inverse of the estimated probability
for each treatment type as

ŵi t = n
1/ p̂(zit | xi t )∑n
i=1 1/ p̂(zit | xi t ) , i = 1, . . . , n, t = 1, . . . , T .

Then, the overall weight for each customer is given by

ŵi =
T∏
t=1

ŵi t , i = 1, . . . , n. (7)

It is worth noting that, similarly to the logic used in survey sampling and missing
data problems, the above defined weights create pseudo-populations of customers cor-
responding to treatment intensities. These weights have the role to mimic a marketing
campaign conducted under a completely randomized experiment. Huge weights for
a few individuals can lead to instability and less precision of the ATEs. Limiting
the weights to a maximum with a trimming method is suggested in such a situation
(Robins and Rotnitzky 1995; Stuart 2010).

2.4 Maximization of the weighted log-likelihood

On the basis of the observed data, the weighted model log-likelihood is

�(θ) =
n∑

i=1

log p( yi1, . . . , yiT | zi1, . . . , ziT ), (8)

where θ is the vector of all model parameters arranged in a suitable way. Themanifest
probability p( yi1, . . . , yiT | zi1, . . . , ziT ) is computed by recursions developed in the
literature (Baum et al. 1970; Welch 2003) and applied to a reduced form of the HM
model for longitudinal data that directly derives from the causal model illustrated in
Sect. 2.2. The reduced form is based on the same conditional response probabilities
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expressed as in (3) and (4) with H (z1,...,zt )
i t substituted by Hit , on the basis of the

consistency rule, and initial and transition probabilities for the latent process that
directly derive from (1) and (2). In more detail, this model is based on individual
sequences of latent variables H i = (Hi1, . . . , HiT )′ that are related to the sequences
of latent potential outcomes H(z1,...,zT )

i and with initial probabilities formulated as

log
p(Hi1 = h | zit )
p(Hi1 = h | zit ) = αh + d(zit )

′βh, h = 2, . . . , k, (9)

and transition probabilities formulated as

log
p(Hit = h | Hi,t−1 = h̄, zit )

p(Hit = 1 | Hi,t−1 = h̄, zit )
= γh̄h + d(zit )

′δh, h̄ = 1, . . . , k, h = 2, . . . , k.

(10)

Since the previous latent configuration is not known for each customer, the EM
algorithm (Baum et al. 1970; Dempster et al. 1977) maximizes the observed data
log-likelihood by alternating the following two steps until convergence:

• E-step: compute the expected value of the complete data log-likelihood �∗(θ),
corresponding to �(θ), given the observed data and the current value of the param-
eters;

• M-step: update θ bymaximizing the expected value of �∗(θ) obtained at the E-step.

Details about the implementation of this algorithm may be found in Bartolucci et al.
(2014) among others.

Standard errors for the estimated parameters, and the ATEs in particular, may be
obtained by applying a nonparametric bootstrap (Davison and Hinkley 1997) based on
resampling units with replacement from the original sample, along with the observed
pre-treatment covariates, treatment, and responses, a suitable number of times.

Finally, selection of the number of latent states, k, corresponding to the customers’s
segments may be based on information criteria such as the Bayesian information
criterion (BIC) (Schwarz 1978). Other indices are also proposed in the literature; for
a comparative study, see Bacci et al. (2014).

Overall, we notice that the causal HM approach is relatively easy to apply since
estimation can be carried out by packages such LMest (Bartolucci et al. 2017) in R.

3 Simulation study

We performed an extensive simulation study, which complements that in Tullio and
Bartolucci (2022), considering two different models to generate the latent potential
outcomes, response variables, and treatment assignment mechanisms. In this way, we
can assess the finite sample properties of the proposed estimator. Other theoretical
asymptotic properties, such as consistency, concerning a similar estimator can be
found in Bartolucci et al. (2016), and they are also valid for the current proposal. We
considered two different sample sizes, n = 5000, 10,000, two different numbers of
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time occasions, T = 4, 8, and r = 5 response variables for all i and t . The treatment
variable Zit may assume l = 3 levels from 0 to 2. The simulation also includes
two covariates: the first is a continuous variable and it is generated from a standard
Gaussian distribution, whereas the second is a discrete variable assuming values −1
or 1 with probability 0.5. The values of the two covariates generated for individual i at
time occasion t are collected in the vectors xi t , where i = 1, . . . , n and t = 1, . . . , T .

The first model to generate the potential latent variables and the response variables,
denoted by M1, is an HM model with k = 3 latent states assuming for all i the
following parametrization for the initial probabilities:

log
p
(
H (z1)
i1 = h | xi1

)

p
(
H (z1)
i1 = 1 | xi1

) = α∗
h + d(z1)

′β∗
h + x′

i1τ
∗
h, h = 2, 3,

where α∗
2 = −0.3, α∗

3 = −2, β∗
1 = (0.6, 2)′, β∗

2 = (2, 4)′, τ ∗
2 = (0.5, 0.5)′, and

τ ∗
3 = (1, 1)′; these values are chosen so that for z1 = 1 the marginal probability (with

respect to the covariates) of each category of latent state h is approximately equal to
1/3, whereas when z1 = 0, the probability of the first state increases and that of the
last decreases, and vice versa when z1 = 2. At the same time, for any z1 and as the
covariate values increase, the conditional probability of the last state increases and
that of the other states decreases. Regarding the transition probabilities, model M1
assumes for all i and for h̄ = 1, 2, 3 and t = 2, . . . , T that

log
p
(
H (z1,...,zt )
i t = h | H (z1,...,zt−1)

i,t−1 = h̄, xi t
)

p
(
H (z1,...,zt )
i t = 1 | H (z1,...,zt−1)

i,t−1 = h̄, xi t
) = γ ∗̄

hh
+ d(zt )

′δ∗
h + x′

i tψ
∗
h, h = 2, 3,

where δ∗
h = β∗

h and ψ∗
h = τ ∗

h for all h with the same arguments as above, with

γ ∗̄
hh

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2.3, h̄ = 1, h = 2,
−4.0, h̄ = 1, h = 3,
1.7, h̄ = 2, h = 2,

−2.0, h̄ = 2, h = 3,
−0.3, h̄ = 3, h = 2,
0.0, h̄ = 3, h = 3,

to ensure a certain level of persistence and that the latent states are visited approx-
imately the same number of times overall. Given a certain sequence of treatments
z1, . . . , zT for individual i and once the potential latent variables are drawn, the
response variables Yi jt are generated for all j = 1, . . . , r and t = 1, . . . , T from
a Bernoulli distribution with success probabilities

φ j y|h =
⎧
⎨
⎩
0.2, h = 1,
0.5, h = 2,
0.8, h = 3.
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The second data generating model used within the simulation, denoted by M2, is a
version of the previous one based on a continuous latent variable denoted byC (z1,...,zt )

i t
and on an autoregressive structure of first order. For the first time occasion, the model
assumes that

C (z1)
i1 = 	 + x′

i1ς + z1υ + εi1,

where 	 = −1, ς = (0.5, 0.5)′, and υ = 1, while the error terms εi1 are independent
with standard Gaussian distribution. For the other time occasions, it assumes that

C (z1,...,zt )
i t = C (z1,...,zt−1)

i,t−1 ρ + x′
i tς + ztυ + ηi t , t = 2, . . . , T ,

where ρ = 0.5 and the error terms ηi t are independent with distribution N (0, 0.5).
Finally, every response variable Yi jt is generated from a Bernoulli variable with prob-
ability of success equal to exp(Cit )/[1 + exp(Cit )], where Cit is the selected value
according to the assigned treatment at each time occasion.

Regarding the treatment assignment mechanism, we considered, first of all, a ran-
domized scheme, denoted by R1, in which each variable Zit assumes values from 0
to l − 1 with the same probability 1/l each. We considered an alternative mechanism
in which the assignment depends on the covariates to generate a form of endogeneity
when the covariates are ignored. Under this scheme, denoted by R2, every Zit depends
on the realizations of two time-varying exogenous covariates (Xi1t , Xi2t ), one from
a standard Gaussian distribution and the other from a Bernoulli distribution. In par-
ticular, the treatment Zit is assigned assuming the multinomial logit model defined in
(6) with η1 = 0.6, η2 = 0, λ1 = (1, 1)′, and λ2 = (2, 2)′, so that the three treatment
levels have probability equal to around 1/3 marginally with respect to the covariates.

For any combination of the data generating model, M1 or M2, and of treatment
assignment mechanism, R1 and R2, we simulated B = 1000 samples, and for each
sample, we estimated three different models: (i) the naivemodel based on parametriza-
tion (9) and (10) without weights (unweighted); (ii) the corresponding model based
on extending the previous equations as follows

log
p(Hi1 = h | zit , xi t )
p(Hi1 = h | zit , xi t ) = αh + d(zit )

′βh + x′
i1τ h, h = 2, . . . , k, (11)

log
p(Hit = h | Hi,t−1 = h̄, zit , xi t )

p(Hit = 1 | Hi,t−1 = h̄, zit , xi t )
= γh̄h + d(zit )

′δh + x′
i tψh, (12)

the second for h̄ = 1, . . . , k, h = 2, . . . , k, without weights (covariate); (iii) the
proposed approach based on weights computed as in (7) and parametrization (9) and
(10) described in Sect. 2.4 (weighted).

Tables 8–9 shown in “Appendix A.2” report the results of the study performed using
B = 1000 bootstrap replications generated as illustrated above under the HM models:
(i) unweighted; (ii) covariate; and (iii) weighted. The results are evaluated in terms of
the average values, bias (in absolute value), and standard deviation.
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From Table 8, reporting the results under model M1, we observe that all the esti-
mated average values of the ATEs on the initial and transition probabilities under the
proposedmodel are improved over the unweightedHMmodels, considering the results
under randomization as a benchmark when computing the bias. Moreover, the HM
model with covariates still outperforms that with the only treatment. The bias taken in
absolute value is smaller under the proposed approach. With the proposed estimator,
the bias slightly increases when T is larger, and it decreases when n increases. We
also notice that with our proposal reasonable standard deviations result, which are
only slightly larger than those of the unweighted estimator and the estimator with
covariates, and they decrease when the sample size increases at a rate close to

√
n.

From Table 9, reporting the results when the data are generated under model M2
with continuous latent variables, we notice that the causal HM estimator outperforms
alternatives. The unweighted HMmodel shows a bias up to two times higher than that
of our proposal for some parameters.When n =10,000, the bias is relatively low (below
0.9 with T = 8) while that of the other estimators is still high (it reaches the value of 3
for some parameters). The proposed estimators show low standard deviations in line
with those of the other estimators, particularly when n = 10,000 and T = 8.

We conclude thatwith an endogenous treatment, the unweighted estimator is biased,
and the estimator which only consider the covariates without weights cannot account
properly for the observed confounding (Rosenbaum 1987; Joffe et al. 2004; Rosen-
baum 2020). Therefore, the proposal is confirmed as superior in terms of bias and
standard deviation with respect to competitive methods also when the potential latent
variables and the response variables are generated assuming the HM model or its
version with continuous variables.

4 Analysis of themarketing campaigns

A large anonymous European bank conducted a marketing campaign over three years
to increase the ownership of the following products among customers: loans, credit
cards, checking accounts, investment products, mortgages, savings accounts, and a
paid phone service enabling customers to gain insights into their account balances.
Data are collected on a representative random sample of 49,967 customers aged 18
years and older from December 31, 2000, to December 31, 2001. Note that direct
mail was the dominant channel for making product offers to customers at the time.
Nowadays, this is still an important communication channel for many firms.

The managers conducted the campaign by using transactional data stored in a
data warehouse for prospect selection purposes. This choice was sometimes based on
simple common sense heuristics, that is, customers between 30 and 50 years of age
with an income of at least 3000 Euro a month were chosen to receive a mail promoting
a savings account. At other times, logistic regression models or regression trees were
used for prospect selection, akin to the modelling approaches described in Knott et al.
(2002).

Some clients left the bank before 31 December 2001 (6.2%), and more left on or
before 31 December 2002 (10.0%) and at or before 31 December 2003 (13.3%). For
these churned clients, the number of mailings is missing in their final year at bank, and
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Table 1 Observed proportions and number of customers according to the direct mail intensity by year

Mail intensity 2001 2002 2003 Number of customers

None 0.318 0.237 0.186 15,885

1–2 0.311 0.323 0.248 15,515

3–5 0.221 0.211 0.245 11,096

≥ 6 0.150 0.229 0.321 7471

it is not clear how many mailings these clients would have received if they had stayed
at the bank the entire year. Therefore, we impute the number of mailings they received
in the year prior to mailing corrected for the differences in the average number of
mailings across the two years of interest.

4.1 Estimation of weights

The following categories are considered to define the treatment intensity: one, one
or two, three to five, and more than five mails. The number of treated customers and
proportions according to the yearly mails received are shown in Table 1. The model
assumes that the treatment is sequentially ignorable given the observed confounders
according to the assumptions listed in Sect. 2.1.

Descriptive statistics for the pre-treatment covariates collected in 2000 are listed in
Table 10 in “Appendix A.3”. These are the observed confounders used to estimate the
propensity to be assigned to a certain treatment with respect to themarketing campaign
conducted in 2001, whereas covariates collected in 2001 and 2002 are used to measure
this propensity for the campaigns conducted in 2002 and 2003, respectively. For the
first campaign, lagged responses, listed at the bottom of Table 10 in “Appendix A.3”,
are considered as well as confounders, whereas for years 2001 and 2002, they are
excluded in the propensity score model illustrated in Sect. 2.3.

As can be seen from Table 10 customers who own a credit card are overrepresented
among customers receiving more intensive treatment, while they are underrepresented
among untreated customers. Therefore, the estimated weights have values deviating
from one to those customers. Table 2 summarizes estimates of themodel as in equation
(6).

4.2 Results

Model selection is performed estimating the causal HMmodels having homogeneous
transition probabilities with the number of latent states h ranging from 1 to 8. BIC
values shown in Table 3 suggest a model with seven latent states. Table 4 reports the
estimated response conditional probabilities defined in Eq. (3). The estimated cus-
tomer’s segments are ordered according to the average number of products owned.
These segments are labeled at the bottom of the table with respect to the estimated
conditional probabilities of product ownership. At the beginning of the period, con-
sidering the estimated averaged (over individuals) initial probabilities, the highest
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Table 2 Estimates of the multinomial logit model parameters λz , z = 1, . . . , l, as in Eq. (6) for the direct
mail intensity in 2001 (none is baseline category) with confounders (the reference category for money
transferred is that not listed)

Effect Mail intensity in 2001

1–2 3–5 ≥ 6

Intercept 1.959 0.125 −3.412

Transactions 0.000 0.001 0.001

Profits 0.000 0.000 0.000

Age −0.060 −0.006 0.079

Age2 −0.061 −0.005 0.078

Loans 0.005 0.567 1.064

Credit cards 0.137 0.449 0.731

Investment products 0.306 1.057 1.962

Mortgages 0.686 1.316 2.030

Savings 0.286 0.494 0.736

Online phone service −0.149 0.060 0.259

Money transferred ≤ 965 0.339 0.405 0.729

966–1188 0.251 0.689 1.205

1189–1883 −0.088 0.350 1.044

≥ 1883 −0.375 −0.398 −0.327

All coefficients are significant at 1%

Table 3 Maximum
log-likelihood, number of
parameters, and BIC index
under the causal HM models
estimated with a number of
latent states ranging from 1 to 8

h �(θ̂) #par BIC

1 −12854308.63 6 25708682.32

2 −12518867.54 23 25038067.95

3 −11416417.95 41 22833429.27

4 −10558207.42 61 21117297.67

5 −10122811.53 83 20246824.30

6 −9930851.72 107 19863252.02

7 −9382009.71 133 18765944.30

8 −9452620.47 161 18907571.05

proportion of customers (40%) is allocated to segment 2 defined as “checking account
only”, while none of the customers (0%) are allocated to the churned segment (seg-
ment 1). The other five segments are characterized by ownership probabilities of one
or close to one for the checking account, and nonzero for one or more other products.
Segment 3 represents 5% of customers, and it is labeled as the “savers’ segment” since
we find that 98.2% of these customers own the savings account next to the check-
ing account and a smaller proportion owns investment products (10.6%). Segment 4
labeled as “investors” includes 23% of the customers, and it is characterized for own-
ing the savings account (24.0%), the investment products (49.8%), and the mortgage
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Table 4 Estimated conditional probabilities φ̂ j y|h , h = 1, . . . , k, of the financial products j = 1, . . . , 7,
under the causal HM model with k = 7 hidden states and labels of each customer segment

Products Latent state (h)

1 2 3 4 5 6 7

Loans ( j = 1) 0.000 0.003 0.006 0.017 0.022 0.951 0.046

Credit cards ( j = 2) 0.001 0.006 0.004 0.010 0.014 0.273 0.995

Check accounts ( j = 3) 0.000 1.000 1.000 0.999 1.000 1.000 1.000

Investment products ( j = 4) 0.000 0.000 0.106 0.498 0.144 0.001 0.159

Mortgages ( j = 5) 0.003 0.000 0.001 0.453 0.027 0.016 0.043

Savings accounts ( j = 6) 0.000 0.012 0.982 0.240 0.469 0.255 0.538

Online phone service ( j = 7) 0.000 0.002 0.003 0.019 0.993 0.263 0.434

Segments none check savers investors phone loan actives

Table 5 Estimated average initial probabilities under the causalHMmodelwith k = 7 latent states according
increasing intensities of the marketing stimuli

Mail intensity Latent state (h)

1 2 3 4 5 6 7

None 0.000 0.478 0.205 0.028 0.102 0.038 0.149

1–2 0.000 0.440 0.224 0.044 0.101 0.042 0.145

3–5 0.000 0.384 0.251 0.054 0.110 0.055 0.149

≥ 6 0.000 0.180 0.298 0.106 0.131 0.072 0.213

(45.3%). Segment 5 represents 11% of the customers, and it has been labelled as that
of “phone service customers” since 99.3% of the customers own the phone service
next to the checking account, and they also have relatively high probabilities for own-
ing investment products (14.4%) and savings account (46.9%). We find that 95.1% of
the customers in segment 6 own the loan next to the checking account, and they also
have relatively high probabilities of owing all other products, except the investment
products or the mortgage; hence, segment 6 is labelled “loan customers” and includes
16% of the customers. The percentage of customers allocated in segment 7 is 5%,
and they have labelled “actives”, as in this cluster customers have the highest average
probably to own each of the products.

Table 11 in “Appendix A.3” displays the ATEs on the initial segment membership
probabilities as in Eq. (9), where segment 2 (“checking account only”) is considered as
a reference category. These estimated parameters may be clearly interpreted through
the estimated average initial probabilities reported in Table 5. We notice that, in 2001,
receiving at least one direct mail reduces the probability of being allocated to the churn
segment (segment 1). Receiving more direct mailings enhances the probabilities in
segments labelled as “investors” and “loan customers”, respectively.

Table 12 in “Appendix A.3” lists the estimated ATEs on the transition probabilities
as in Eq. (10). These parameters may be interpreted through the estimated average
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Table 6 Estimated average transition probabilities under the causal HM model with k = 7 latent states
according to increasing marketing stimuli

Mail intensity Latent state (h̄) Latent state (h)

1 2 3 4 5 6 7

None 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.133 0.823 0.024 0.000 0.012 0.003 0.004

3 0.040 0.040 0.903 0.000 0.012 0.001 0.005

4 0.099 0.000 0.000 0.895 0.003 0.000 0.002

5 0.079 0.019 0.002 0.000 0.890 0.000 0.010

6 0.039 0.080 0.019 0.000 0.005 0.854 0.003

7 0.052 0.020 0.012 0.001 0.004 0.000 0.911

1–2 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.041 0.906 0.022 0.000 0.021 0.004 0.005

3 0.013 0.046 0.912 0.000 0.022 0.001 0.006

4 0.010 0.000 0.000 0.987 0.002 0.000 0.001

5 0.015 0.013 0.001 0.000 0.964 0.000 0.007

6 0.010 0.072 0.015 0.000 0.007 0.895 0.002

7 0.016 0.021 0.011 0.003 0.007 0.000 0.942

3–5 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.061 0.863 0.025 0.000 0.036 0.007 0.009

3 0.017 0.040 0.899 0.000 0.033 0.001 0.010

4 0.016 0.000 0.000 0.979 0.003 0.000 0.002

5 0.014 0.007 0.001 0.000 0.970 0.000 0.008

6 0.009 0.044 0.010 0.000 0.007 0.926 0.003

7 0.012 0.010 0.006 0.001 0.006 0.000 0.964

≥ 6 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.072 0.808 0.030 0.000 0.056 0.020 0.015

3 0.017 0.031 0.894 0.000 0.042 0.003 0.014

4 0.023 0.000 0.000 0.967 0.006 0.000 0.004

5 0.011 0.005 0.001 0.000 0.976 0.000 0.009

6 0.004 0.014 0.004 0.000 0.004 0.972 0.002

7 0.009 0.006 0.005 0.001 0.006 0.000 0.974

transition matrices for 2002 and 2003 reported in Table 6. According to the results, it
is worth emphasizing that at least one mail to every customer should be sent yearly. In
fact, looking at the first column in the top section of Table 6, customers in the direct
mail intensity category “none” have high probabilities of switching into the churned
segment; for untreated customers, the estimated probability of switching from seg-
ment 6 to 2 is 0.05. Since 19 of the 28 diagonal elements of the matrices shown in
Table 6 are at least equal to 0.9, customers remain in the same segment over con-
secutive years. Many values in the off-diagonal elements of these matrices are below
0.01, indicating that households tend to develop their financial product portfolios and
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the corresponding assets over their entire lifecycle, implying that changes in financial
product portfolios occur only over longer time-periods (Paas et al. 2007) in agreement
with the theory proposed in Browning and Lusardi (1996) andWärneryd (1999).Mails
with high intensity sent to customers in segment 2 (“checking account only”) result
in relatively high switching probabilities towards segments in which customers have
higher probabilities for owning multiple products: 5.6% for switching into state 5
(“phone customers”), 2% for switching into segment 6 (“loan customers”), and 1.5%
for switching into segment 7 (“actives”), and these percentages are higher than those
corresponding to customers treated less intensively. High direct mail intensity does
not enhance switching probabilities from segment 2 (“checking account only”) into
segment 4 (“investors”), which includes mortgages. Perhaps other marketing commu-
nication channels are more effective when approaching savings accounts, mortgages,
or investment trust prospects, considering, for example, that a mortgage is required
when buying a house, which is the most important financial decision households will
make during their lifecycle and based on an essential need.

The other transition probabilities displayed in Table 6 show that an intensive treat-
ment reduces the probability that customers in segments 6 and 7 (“loan” and “active”
customers) switch into segments 1 (“churned segment”) and 2 (“checking account
only”). Furthermore, we notice that customers in segment 2 (“checking account only”)
are more likely to switch to segments 5 (“phone customers”), 6 (“loan customers”),
and 7 (“active customers”) when they receive at least one mail a year.

Results of the analyses suggest that managers may assess, through experiments,
whether other marketing instruments than direct mailings (such as outbound call cen-
ters and personal sales channels) can be employed to enhance switches into segments
characterized by a high number of products owned by the customers. Other salient
managerial implications are: (i) ensure each customer receives at least one direct mail-
ing every year to reduce churn; (ii) mail customers in segment defined as that of “loan
customers” at least six times yearly to reduce their probability of terminating the usage
of the loan at the bank; (iii) send at least six direct mailings each year to customers
in segment defined as that of “checking account only” to enhance their probability to
switch into more active segments, emphasizing loans, online phone service as well as
credit cards since the acquisition of these financial products is mainly influenced by
the direct mail channel.

4.2.1 Comparison with other hidden Markov model formulations

In the following,we compare the proposal by showing some additional results obtained
with alternative model formulations. First, an HM model is estimated with static
weights as in Eq. (6); second, a HMmodel is estimated without weighting individuals
by inverse of estimated probability of treatment assignment including only the time-
varying treatment as covariate as in Eqs. (9) and (10) described in Sect. 2.4; and third,
the HMmodel is estimated without weights including both the time-varying treatment
and covariates on the initial and transition probabilities with parameterizations in (11)
and (12), as described in Sect. 3.

First, the causal HM model with static weights is estimated by using only the pre-
treatment covariates observed at the first time occasion for themultinomial logit model
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as in Eq. (6). This model compared to that proposed in the previous section provides a
different customer segmentation with respect to that reported in Table 4. Furthermore,
the estimated ATEs at the beginning of the period for the highest treatment intensity
(at least 6) are smaller for segments 5, 6, and 7 than those shown in Table 11. With
reference to the estimated transition probabilities, they are more persistent for the
treatment level “none” and less persistent for the other treatment levels. Full results
are not reported, and they are available from the authors upon request.

Second, theHMmodel is estimatedwithoutweights including only the time-varying
treatment as covariate influencing both initial and transition probabilities through the
parameterization in (9) and (10) described in Sect. 2.4. The model is fitted with seven
latent states to compare the results with those obtained with the proposed approach
described in Sect. 2. Segments from 4 to 7 are different from those shown in Table 4.
Segment 4 is that of phone service customers, segments 5 and 6 across Table 4 differ
for loans and investment products. Segment 7 of active clients includes mortgages that
are not in segment 7 of Table 4. These differences may be due to the missing adjust-
ment for confounders in treatment assignment as illustrated through the simulation
study in Sect. 3. Table 13 in “Appendix A.3” reports the estimated average transition
probabilities for the unweightedmodel according to the number of receivedmails. The
estimated percentages of customers in each of the seven segments at the beginning of
the period are the following: 0%, 49%, 20%, 6%, 13%, and 4%. The percentage of
“savers” (segment 3) is much higher than that obtained with the proposed model (20%
vs. 5%).

Third, the HMmodel is estimated without weights including the time-varying treat-
ment and covariates on the initial and transition probabilities with parameterizations
in (11) and (12) as described in Sect. 3. In this case, the initial endogenous products
of each customer are considered as exogenous. Table 14 in “Appendix A.3” reports
the estimated average transition probabilities. As shown with the simulation study
presented in Sect. 3, this model may lead to biased estimates.

5 Concluding remarks

We propose a formulation of the hidden Markov (HM) model to assess the causal
effects of a dynamic treatment in a longitudinal observational study given observed
confounders under suitable assumptions. The model conceives potential versions of
discrete latent variables representing the features of interest. Treatment effects are
estimated on these variables first considering the probability of treatment assign-
ment estimated through multinomial logit models at each time occasion. Weights
are combined to obtain an overall weight for each individual using inverse probability
weighting, and estimation of the model parameters is carried out through a weighted
maximum log-likelihood approach.

We showvia simulation experiments that themodel outperforms in terms of bias and
standard deviation other competitive model formulations. We illustrate the proposed
model with data related to a marketing campaign conducted repeatedly over time by a
bank. Concerning the results of this illustrative application, we infer a positive effects
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of the direct mails of the bank on segments of customers’ financial product portfolios
leading to different managerial insights.

Among the main aspects of the proposal, we mention that the causal HM model
may account for multivariate responses, which are binary in the application at hand;
however, the model may be formulated for responses of each kind. It allows us to
account for unobserved heterogeneity, assuming that the population is composed of a
finite number of homogenous subpopulations not directly observable and identified by
the states of the latent variables. Thus, treatment effects are estimated across subgroups
of the population at the beginning of the observed period and on the following time
occasions. In the application, the transition matrix is time homogenous; however, it
can be time heterogeneous according to the observed data variability. This modelling
approach can be easily applied since the required computational tools are available in
statistical packages of the open source software R.

The proposal holds promising potential for addressing causal research questions,
especially in marketing contexts where selection may also result from managerial
decision-making, as in prospect selection for direct mailings or other channels, target-
ing customers for retention campaigns. In this case, the manager will generally rely
on observed variables to realize a selection. Limitations of the approach are related to
the unobserved endogeneity, which may occur frequently. For instance, those clients
acquiring a loyalty card may have been more loyal; medical experts who have asked
for information about a specific brand may prescribe this one more often because of
their pre-existing loyalty toward the brand instead of the information provided. In this
case, the assumption of unmeasured confounders cannot be validated, and there can
be residual confounding by unmeasured variables, which needs to be accounted for.
Another assumption that may be restrictive is that of the common support since when
confounding is high, the estimated time-varying weights may be more variable, and
sensitivity analyses is necessary to assess the tenability of the required assumptions.
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Appendix A

The following tables mainly concern some additional features of the simulation study
presented in Sect. 3, and of the application presented in Sect. 4.

Appendix A.1. Overview of related literature

Table 7 lists some of the main proposals that appeared in the marketing literature for
estimating causal effects.

Appendix A.2. Results of the simulation studies

Tables 8 and 9 report the results of the study performed using B = 1000 samples
generated as illustrated above under the HM models M1 and M2 described in Sect. 3:
(i) unweighted; (ii) unweighted with covariate; and (iii) weighted.
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Table 8 Simulation results in terms of parameter estimates with data generated for B = 1000 samples under
model M1

n T Model β21 β22 β31 β32 δ12 δ13 δ22 δ23

5000 4 Rand: mean 0.431 1.653 1.659 3.306 0.496 1.636 1.635 3.265

Rand: sd 0.146 0.193 0.152 0.188 0.143 0.172 0.108 0.136

Unweighted: mean 0.813 2.420 2.426 4.846 0.872 2.356 2.354 4.708

Unweighted: bias 0.382 0.767 0.768 1.540 0.376 0.721 0.719 1.443

Unweighted: sd 0.143 0.246 0.204 0.267 0.151 0.186 0.115 0.155

Covariate: mean 0.605 2.007 2.020 4.026 0.606 2.010 2.014 4.023

Covariate: bias 0.174 0.354 0.361 0.720 0.110 0.375 0.378 0.758

Covariate: sd 0.141 0.236 0.201 0.259 0.147 0.193 0.126 0.167

Weighted: mean 0.499 1.814 1.817 3.625 0.577 1.764 1.765 3.524

Weighted: bias 0.068 0.162 0.158 0.319 0.082 0.128 0.129 0.259

Weighted: sd 0.216 0.338 0.265 0.347 0.224 0.268 0.160 0.209

5000 8 Rand: mean 0.424 1.646 1.645 3.291 0.487 1.626 1.629 3.260

Rand: sd 0.141 0.184 0.146 0.180 0.091 0.104 0.071 0.090

Unweighted: mean 0.811 2.422 2.426 4.849 0.867 2.354 2.354 4.699

Unweighted: bias 0.388 0.776 0.781 1.558 0.380 0.727 0.725 1.438

Unweighted: sd 0.138 0.247 0.205 0.260 0.092 0.124 0.079 0.104

Covariate: mean 0.602 2.014 2.019 4.035 0.604 2.006 2.008 4.005

Covariate: bias 0.178 0.368 0.374 0.745 0.117 0.380 0.379 0.744

Covariate: sd 0.137 0.236 0.207 0.256 0.089 0.125 0.085 0.111

Weighted: mean 0.525 1.892 1.889 3.785 0.611 1.831 1.827 3.645

Weighted: bias 0.101 0.246 0.244 0.495 0.124 0.205 0.198 0.385

Weighted: sd 0.239 0.374 0.318 0.387 0.158 0.200 0.125 0.157

10,000 4 Rand: mean 0.420 1.643 1.644 3.293 0.491 1.627 1.631 3.258

Rand: sd 0.102 0.135 0.104 0.128 0.105 0.124 0.073 0.094

Unweighted: mean 0.807 2.417 2.411 4.834 0.863 2.353 2.348 4.701

Unweighted: bias 0.387 0.774 0.767 1.541 0.372 0.726 0.718 1.443

Unweighted: sd 0.104 0.173 0.141 0.184 0.105 0.141 0.081 0.111

Covariate: mean 0.596 2.006 2.003 4.017 0.595 2.005 2.004 4.010

Covariate: bias 0.176 0.362 0.359 0.725 0.104 0.378 0.373 0.753

Covariate: sd 0.098 0.163 0.141 0.176 0.102 0.146 0.088 0.118

Weighted: mean 0.495 1.801 1.791 3.595 0.565 1.764 1.756 3.518

Weighted: bias 0.075 0.157 0.147 0.302 0.074 0.136 0.125 0.261

Weighted: sd 0.150 0.227 0.185 0.232 0.147 0.183 0.109 0.148
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Table 8 continued

n T Model β21 β22 β31 β32 δ12 δ13 δ22 δ23

10,000 8 Rand: mean 0.427 1.651 1.645 3.293 0.490 1.630 1.630 3.258

Rand: sd 0.096 0.133 0.103 0.124 0.063 0.071 0.048 0.059

Unweighted: mean 0.811 2.412 2.408 4.820 0.864 2.346 2.347 4.695

Unweighted: bias 0.384 0.761 0.763 1.527 0.375 0.716 0.717 1.437

Unweighted: sd 0.098 0.168 0.140 0.183 0.067 0.083 0.052 0.071

Covariate: mean 0.601 2.007 2.002 4.008 0.600 1.999 2.002 4.003

Covariate: bias 0.175 0.355 0.357 0.715 0.110 0.369 0.372 0.745

Covariate: sd 0.097 0.163 0.140 0.183 0.064 0.086 0.056 0.073

Weighted: mean 0.534 1.865 1.862 3.725 0.598 1.817 1.816 3.635

Weighted: bias 0.108 0.213 0.216 0.431 0.109 0.187 0.186 0.377

Weighted: sd 0.173 0.259 0.214 0.270 0.114 0.137 0.083 0.111

Rand: treatment assigned randomly; unweighted: the unweighted HM model; covariate: the unweighted
HM model with covariates; weighted: the proposed causal HM model. Top panel: n = 5000, bottom panel
n = 10,000. Average values (mean), average of the bias (bias) and standard deviation (sd)

Appendix A.3. Additional results of the application

In A5, we show the descriptive statistics for the covariates collected in 2000; in Table
11, we show the average treatment effects (ATEs) on the initial segment membership
probabilities as in Eq. (9); and in Table 12, we show the estimated ATEs on the
transition probabilities as in Eq. (10).

In the following, we also show some results of two different HM models. The
first is formulated including as covariate only the time-varying treatment without
weighting individuals by the inverse of estimated probability of treatment assignment;
seeTable 13. The second includes, alongwith the time-varying treatment, also the other
available covariates without weighting individuals; see Table 14. The complete results
are available from the authors upon request.
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Table 9 Simulation results in terms of parameter estimates with data generated for B = 1000 samples under
model M2

n T Model β21 β22 β31 β32 δ12 δ13 δ22 δ23

5000 4 Rand: mean 1.268 2.479 2.478 4.963 1.842 3.513 3.515 7.023

Rand: sd 0.123 0.244 0.226 0.294 0.097 0.153 0.154 0.205

Unweighted: mean 1.927 4.019 4.012 8.036 2.860 5.395 5.398 10.795

Unweighted: bias 0.659 1.540 1.533 3.073 1.018 1.882 1.882 3.773

Unweighted: sd 0.122 0.722 0.789 1.032 0.121 0.213 0.219 0.296

Covariate: mean 1.791 3.736 3.722 7.467 2.681 5.269 5.266 10.542

Covariate: bias 0.522 1.257 1.243 2.504 0.839 1.756 1.751 3.519

Covariate: sd 0.133 0.541 0.472 0.705 0.130 0.227 0.227 0.310

Weighted: mean 1.369 2.851 2.820 5.677 2.039 3.877 3.874 7.754

Weighted: bias 0.101 0.372 0.342 0.714 0.197 0.364 0.358 0.731

Weighted: sd 0.180 0.651 0.745 0.944 0.146 0.256 0.253 0.345

5000 8 Rand: mean 1.269 2.493 2.478 4.967 1.836 3.500 3.498 6.998

Rand: sd 0.120 0.230 0.218 0.278 0.062 0.096 0.098 0.126

Unweighted: mean 1.926 4.036 4.041 8.086 2.846 5.372 5.364 10.737

Unweighted: bias 0.657 1.543 1.562 3.119 1.010 1.872 1.866 3.739

Unweighted: sd 0.119 0.792 0.746 1.098 0.074 0.131 0.131 0.179

Covariate: mean 1.793 3.728 3.742 7.479 2.665 5.228 5.223 10.454

Covariate: bias 0.524 1.235 1.264 2.512 0.829 1.729 1.725 3.456

Covariate: sd 0.129 0.474 0.581 0.755 0.076 0.136 0.144 0.194

Weighted: mean 1.427 3.029 3.032 6.070 2.114 4.015 4.003 8.022

Weighted: bias 0.157 0.537 0.553 1.103 0.278 0.516 0.504 1.024

Weighted: sd 0.212 1.090 1.041 1.465 0.117 0.193 0.196 0.268

10,000 4 Rand: mean 1.268 2.460 2.471 4.936 1.837 3.503 3.498 7.002

Rand: sd 0.087 0.166 0.150 0.193 0.068 0.103 0.109 0.134

Unweighted: mean 1.933 3.932 3.935 7.869 2.857 5.383 5.379 10.761

Unweighted: bias 0.666 1.471 1.463 2.933 1.020 1.880 1.882 3.759

Unweighted: sd 0.086 0.337 0.350 0.465 0.082 0.149 0.152 0.205

Covariate: mean 1.795 3.689 3.684 7.379 2.676 5.253 5.248 10.502

Covariate: bias 0.527 1.229 1.213 2.443 0.839 1.749 1.751 3.499

Covariate: sd 0.093 0.268 0.280 0.364 0.085 0.155 0.157 0.220

Weighted: mean 1.378 2.762 2.782 5.543 2.035 3.863 3.860 7.720

Weighted: bias 0.110 0.302 0.311 0.607 0.198 0.359 0.363 0.718

Weighted: sd 0.123 0.336 0.322 0.418 0.105 0.180 0.178 0.246
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Table 9 continued

n T Model β21 β22 β31 β32 δ12 δ13 δ22 δ23

10,000 8 Rand: mean 1.268 2.460 2.462 4.925 1.835 3.495 3.498 6.993

Rand: sd 0.083 0.163 0.148 0.188 0.043 0.069 0.069 0.094

Unweighted: mean 1.932 3.956 3.936 7.891 2.847 5.363 5.366 10.730

Unweighted: bias 0.664 1.496 1.474 2.966 1.012 1.868 1.868 3.737

Unweighted: sd 0.088 0.340 0.309 0.429 0.052 0.097 0.095 0.132

Covariate: mean 1.793 3.699 3.684 7.380 2.664 5.220 5.223 10.444

Covariate: bias 0.525 1.238 1.222 2.455 0.828 1.725 1.725 3.451

Covariate: sd 0.096 0.275 0.260 0.361 0.055 0.098 0.099 0.138

Weighted: mean 1.434 2.913 2.876 5.790 2.114 4.001 4.001 7.999

Weighted: bias 0.165 0.453 0.414 0.865 0.279 0.506 0.503 1.006

Weighted: sd 0.150 0.453 0.360 0.519 0.081 0.140 0.134 0.186

Rand: treatment assigned randomly; unweighted: the standard HM model covariate: the unweighted HM
model with covariates; weighted: the proposed causal HM model. Top panel: n = 5000, bottom panel n =
10,000. Average values (mean), average of the bias (bias) and standard deviation (sd)

Table 10 Descriptive statistics of the covariates referred to year 2000 according to the direct mail inten-
sity in 2001: mean and standard deviation for the continuous variables, frequencies for the categorical
variables

Mail intensity in 2001 0 1–2 3–5 ≥ 6

Transactions mean 150.924 182.393 263.563 349.454

(s.d.) (162.763) (161.053) (189.629) (194.380)

Profits mean 53.634 44.257 91.643 228.740

(s.d.) (354.684) (349.983) (501.505) (679.966)

Age mean 52.793 42.182 41.663 46.400

(s.d.) (20.396) (19.775) (15.965) (13.626)

Money transferred: none 0.463 0.381 0.248 0.116

≤ 965 0.151 0.169 0.133 0.067

966–1188 0.187 0.218 0.184 0.143

1189–1883 0.107 0.137 0.223 0.265

≥ 1883 0.092 0.094 0.212 0.409

Loans 0.028 0.037 0.089 0.151

Credit cards 0.081 0.114 0.236 0.395

Checking accounts 1.000 1.000 1.000 1.000

Investment products 0.033 0.043 0.106 0.278

Mortgages 0.009 0.019 0.046 0.116

Savings accounts 0.256 0.309 0.419 0.575

Online phone service 0.084 0.100 0.188 0.300

Profits and money transferred are in Euro
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Table 11 Estimates of the logit regression parameters for the initial probabilities under the causal HM
model with k=7 latent states (∗significant at 5%, ∗∗significant at 1%, the second state is taken as reference)

Mail intensity Latent state (h)

1 3 4 5 6 7

None −16.041∗∗ −0.859∗∗ −2.852∗∗ −1.543∗∗ −2.552∗∗ −1.184∗∗
1–2 versus none −1.322∗∗ 0.160∗∗ 0.548∗∗ 0.058∗∗ 0.202∗∗ 0.055∗∗
3–5 versus none −1.122∗∗ 0.437∗∗ 0.879∗∗ 0.289∗∗ 0.548∗∗ 0.235∗∗
≥ 6 versus none −1.024∗∗ 1.378∗∗ 2.304∗∗ 1.239∗∗ 1.643∗∗ 1.397∗∗
3–5 versus 1–2 0.201∗ 0.277 0.331 0.232 0.346 0.180

≥ 6 versus 1–2 0.302∗ 1.187∗∗ 1.781∗∗ 1.157∗∗ 1.452∗∗ 1.281∗∗
≥ 6 versus 3–5 0.101 0.934∗∗ 1.441∗∗ 0.936∗∗ 1.071∗∗ 1.122∗∗

Table 12 Estimates of the logit regression parameters for the transition probabilities of the latent process
under the causal HM model with k=7 latent states (†significant at 10%, ∗significant at 5%, ∗∗significant at
1%), the second latent state is considered as reference

Mail intensity Latent state (h)

1 3 4 5 6 7

None h̄=1 −18.501** −0.023** −0.954** −0.691** −1.052** −0.581**

None h̄=2 −1.821** −3.554** −21.618** −4.195** −5.552** −5.261**

None h̄=3 0.013** 3.132** −17.991** −1.209** −4.157** −2.082**

None h̄=4 15.433** −0.484** 17.631** 12.052** −1.310** 11.759**

None h̄=5 1.442** −2.421** −15.813** 3.865** −15.477** −0.618**

None h̄=6 −0.718** −1.446** −16.582** −2.831** 2.372** −3.447**

None h̄=7 0.982** −0.491** −3.195** −1.499** −16.286** 3.843**

1–2 versus none −1.262** −0.151** 1.116** 0.447** 0.153 −0.041

3–5 versus none −0.832** −0.011† 1.118** 1.015** 0.681† 0.702

≥ 6 versus none −0.602** 0.251* 1.941** 1.527** 1.845* 1.283

3–5 versus 1–2 0.443** 0.142** 0.000** 0.576** 0.539** 0.741**

≥ 6 versus 1–2 0.682** 0.407** −0.179** 1.073** 1.680** 1.321**

≥ 6 versus 3–5 0.241** 0.263** −0.162** 0.511** 1.160** 0.581**
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Table 13 Estimated averaged transition probabilities according to increasing marketing stimuli under the
HM model with k = 7 latent states without weighting individuals by the inverse of estimated probability
of treatment assignment

Mail intensity Latent state (h̄) Latent state (h)

1 2 3 4 5 6 7

none 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.060 0.894 0.028 0.013 0.004 0.001 0.001

3 0.027 0.054 0.894 0.018 0.006 0.001 0.001

4 0.056 0.031 0.007 0.878 0.020 0.005 0.003

5 0.038 0.046 0.014 0.010 0.880 0.007 0.004

6 0.022 0.024 0.021 0.009 0.008 0.912 0.003

7 0.017 0.047 0.015 0.006 0.007 0.005 0.903

1–2 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.031 0.900 0.035 0.026 0.007 0.001 0.001

3 0.011 0.044 0.906 0.029 0.007 0.001 0.001

4 0.016 0.017 0.005 0.939 0.018 0.003 0.003

5 0.013 0.030 0.011 0.013 0.925 0.005 0.003

6 0.011 0.024 0.026 0.018 0.013 0.903 0.004

7 0.006 0.034 0.013 0.008 0.008 0.004 0.926

3–5 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.038 0.855 0.037 0.049 0.017 0.002 0.002

3 0.012 0.038 0.879 0.049 0.016 0.003 0.003

4 0.010 0.009 0.003 0.948 0.023 0.003 0.003

5 0.007 0.012 0.005 0.011 0.957 0.005 0.004

6 0.006 0.010 0.012 0.015 0.014 0.939 0.005

7 0.003 0.014 0.006 0.007 0.008 0.004 0.958

≥6 1 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.034 0.812 0.048 0.068 0.032 0.003 0.003

3 0.009 0.028 0.880 0.053 0.024 0.004 0.003

4 0.007 0.006 0.003 0.945 0.032 0.005 0.003

5 0.003 0.006 0.004 0.008 0.972 0.005 0.003

6 0.003 0.005 0.008 0.011 0.014 0.957 0.003

7 0.002 0.010 0.006 0.007 0.011 0.006 0.959
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Table 14 Estimated averaged transition probabilities according to increasing marketing stimuli under the
HM model with k = 7 latent states only with time-varying treatment and the other covariates without
weighting individuals by the inverse of estimated probability of treatment assignment

Mail intensity Latent state (h̄) Latent state (h)

1 2 3 4 5 6 7

None 1 0.850 0.067 0.021 0.020 0.016 0.015 0.010

2 0.101 0.803 0.025 0.024 0.018 0.018 0.012

3 0.200 0.161 0.493 0.048 0.038 0.036 0.023

4 0.205 0.162 0.050 0.483 0.039 0.037 0.023

5 0.224 0.173 0.054 0.052 0.431 0.040 0.026

6 0.230 0.179 0.055 0.054 0.045 0.411 0.026

7 0.264 0.209 0.064 0.062 0.051 0.047 0.302

1–2 1 0.448 0.175 0.144 0.049 0.070 0.073 0.040

2 0.021 0.807 0.067 0.023 0.030 0.034 0.019

3 0.023 0.093 0.761 0.026 0.036 0.039 0.021

4 0.043 0.168 0.139 0.473 0.067 0.071 0.039

5 0.037 0.141 0.117 0.040 0.573 0.060 0.033

6 0.036 0.138 0.114 0.039 0.057 0.585 0.032

7 0.047 0.182 0.149 0.051 0.073 0.076 0.421

3–5 1 0.218 0.155 0.160 0.177 0.141 0.088 0.061

2 0.010 0.707 0.074 0.080 0.061 0.040 0.028

3 0.010 0.069 0.714 0.079 0.062 0.039 0.027

4 0.009 0.065 0.067 0.738 0.059 0.037 0.025

5 0.011 0.073 0.076 0.085 0.683 0.043 0.029

6 0.014 0.096 0.099 0.111 0.090 0.552 0.038

7 0.016 0.114 0.118 0.131 0.105 0.065 0.450

≥ 6 1 0.158 0.220 0.181 0.199 0.132 0.067 0.042

2 0.006 0.777 0.065 0.070 0.044 0.024 0.015

3 0.006 0.089 0.729 0.080 0.052 0.027 0.017

4 0.006 0.083 0.069 0.751 0.050 0.025 0.016

5 0.008 0.105 0.088 0.097 0.648 0.033 0.021

6 0.011 0.148 0.123 0.136 0.092 0.461 0.029

7 0.013 0.177 0.146 0.160 0.108 0.054 0.342
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