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Abstract
The key contribution of this paper is a theoretical framework to analyse humans’ decision-
making strategies under uncertainty, and more specifically how human subjects manage 
the trade-off between information gathering (exploration) and reward seeking (exploi-
tation) in particular active learning in a black-box optimization task. Humans’ decisions 
making according to these two objectives can be modelled in terms of Pareto rationality. 
If a decision set contains a Pareto efficient (dominant) strategy, a rational decision maker 
should always select the dominant strategy over its dominated alternatives. A distance from 
the Pareto frontier determines whether a choice is (Pareto) rational. The key element in 
the proposed analytical framework is the representation of behavioural patterns of human 
learners as a discrete probability distribution, specifically a histogram considered as a non-
parametric estimate of discrete probability density function on the real line. Thus, the simi-
larity between users can be captured by a distance between their associated histograms. 
This maps the problem of the characterization of humans’ behaviour into a space, whose 
elements are probability distributions, structured by a distance between histograms, namely 
the optimal transport-based Wasserstein distance. The distributional analysis gives new 
insights into human behaviour in search tasks and their deviations from Pareto rationality. 
Since the uncertainty is one of the two objectives defining the Pareto frontier, the analy-
sis has been performed for three different uncertainty quantification measures to identify 
which better explains the Pareto compliant behavioural patterns. Beside the analysis of 
individual patterns Wasserstein has also enabled a global analysis computing the WST bar-
ycenters and performing k-means Wasserstein clustering.
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1  Introduction

1.1 � Motivation

Human decision-making under uncertainty requires balancing exploitation – meaning the 
use of the knowledge collected so far to maximize immediate reward – and exploration 
– meaning investing resources to acquire more knowledge to update one’s beliefs. This bal-
ance is usually referred to as the exploration-exploitation dilemma: decisions allowing for 
increasing knowledge do not necessarily lead to the greatest immediate reward [1, 2].

A number of researchers have been analysing how humans deal with uncertainty in their 
decision making. [3–5]: beside the relevance for cognitive sciences the issue is impor-
tant also for machine learning: indeed, human learners are amazingly fast and effective at 
adapting to unfamiliar environments and incorporating upcoming knowledge and the anal-
ysis of their behaviour might be relevant in the design of algorithms of active learning. The 
reference task considered in this paper is the optimization problem:

with f(x) black box, meaning that its analytical form is not given, no derivatives are avail-
able, and the value of f(x) can be only known pointwise through expensive and noisy evalu-
ations. Finally, Ω denotes the search space, usually box bounded.

Recently, the Bayesian Optimization framework (BO) [6, 7] has become one of the most 
efficient method for solving (1).BO is a sequential model based optimizer in which at a 
generic iteration n, the player/agent/algorithm chooses a location x(n) to query and observe/
collect the associated function value, possibly perturbed by noise, that is y(n) = f(x(n)) + ε. 
The goal is to get close to the optimizer x* within a limited number, N, of trials. The choice 
of x(n) is performed according to a so-called acquisition (or infill) function which, at each 
iteration, manages the balance between exploration and exploitation.

The key questions addressed in this paper are:

•	 How do humans solve problem (Eq. 1) which translates into how close the human gen-
erated sequence compares to the sequence generated by the optimization algorithm?

•	 How do humans solve the exploration-exploitation dilemma which underpins the ques-
tion of how humans perceive uncertainty? Are humans’ strategies sample efficient?

•	 Which analytical tools can give valuable insights about the analysis of human gener-
ated search sequences?

•	 Which quantification of uncertainty does better characterize human behaviour?
•	 Does the analysis of human behaviour offer valuable clues to the design of machine 

learning algorithms?

Have been arguing, based on empirical evidence, that strategies adopted by humans in 
solving global optimization problems have a much stronger association with BO than to 
other optimization algorithms [8, 9]. This conclusion matches with the fact that Gauss-
ian Process (GPs) and Bayesian learning, first proposed in ([10, 11], have emerged in the 
cognitive sciences as central paradigms in modelling human learning. The GP model offers 
an evaluation of predictive uncertainty of the outcome of the next decision conditioned 
on previous decisions and observed outcomes. Fitting a GP requires to choose, a priori, a 
kernel as covariance function. Different kernels are available, each one implying a different 

(1)x∗ = argmax
x∈Ω⊂ℜd

f (x)
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characterization for the approximation of f(x). An important consideration reported in [12], 
is that “GPs with standard kernels struggle on function extrapolation problems that are 
trivial for human learners”. Moreover, [13] remarked that different quantifications of the 
uncertainty – as discussed later in the paper – are a key concept also in theories of cogni-
tion and emotion.

The key element in this paper is the representation of behavioural patterns of human 
learners, over different tasks, as a discrete probability distribution. To each human sub-
ject it is associated a histogram which is a sort of a signature of his/her behaviour. In this 
sense our approach is related to Symbolic Data Analysis (SDA) [14]. In this representa-
tion the similarity between users’ behaviours can be captured by a distance between their 
associated histograms. This maps the problem of the characterization of humans’ behav-
iour into a space whose elements are histograms: this space is structured by a distance 
between histograms, namely the Wasserstein distance. The simplest way is to compare a 
set of parametric features built from the probability distribution, such as the mean or higher 
moments. This approach would be limited as the effect of such parameters does not con-
sider the whole distribution.

The Wasserstein (WST) distance is a field of mathematics which studies the geometry 
of probability spaces and provides a principled framework to compare and align proba-
bility distributions. The Wasserstein distance can be traced back to the works of Gaspard 
Monge [15] and Lev Kantorovich [16].

WST has evolved into a very rich mathematical structure whose complexity and flexibil-
ity are analysed in a landmark volume [17] and, in the discrete domain, in the tutorial [18].

The computation of the WST requires the solution of a constrained linear optimiza-
tion problem which can have, a very large number of variables and constraints, and can be 
shown to be equivalent to a min-flow problem. Recently, several specialized computational 
approaches have drastically reduced the computational hurdles [19].

Specifically, we consider one instance of WST, called Earth Mover Distance (EMD), 
which is a natural and intuitive distance between discrete probability distributions and in 
particular histograms. WST requires a notion of distance between points in the underlying 
domain which is called the ground distance (usually Euclidean but can be any norm).

The main advantage of WST is that it is a cross binning distance, and it is not affected 
by different binning schemes. Moreover, WST matches naturally the perceptual notion of 
nearness and similarity. This is not the case of Kullback-Leibler (KL) and χ-square dis-
tances that account only for the correspondence between bins of the same index and do not 
use information across bins or distributions with different binning schemes, that is different 
support. An important element of the WST theory is the barycenter which offers a useful 
synthesis of a set of distributions. The barycenter allows for a standard clustering method 
like k-means to be generalized to WST spaces.

A key question is how humans manage the exploration-exploitation dilemma balanc-
ing, in the choice of the new point to evaluate, the expected improvement and the uncer-
tainty. This is modelled as a bi-objective optimization problem which leads to the Pareto 
analysis. This in turn begets the question whether humans are Pareto-rational agents (i.e., 
take Pareto optimal decisions in the space of expected improvement and uncertainty). The 
analysis of computational results allows to formulate at least a tentative answer to why, or 
rather in which conditions, we observe deviations from (Pareto) “rationality” and switches 
towards “exasperated” exploration.

Since the uncertainty is one of the two objectives defining the Pareto frontier, the anal-
ysis has been performed for three different uncertainty quantification measures with the 
aim to identify the one making the humans’ decisions sequences more compliant with the 
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Pareto-rationality model. The key result is an analytical framework to characterize how 
deviations from “rationality” depend on (i) individuals’ features represented in the histo-
grams and (ii) uncertainty quantification.

1.2 � Contributions of this paper

The key contribution of the paper is the proposal of a distributional analysis of human 
search pattern based on the WST distance. This distributional analysis has been conducted 
at the individual level and an aggregate level computing barycenters and performing clus-
tering in the WST space. It is also interesting to remark that while most of the previous 
works addressed how people assess the information value of possible queries, in this paper 
we rather address the issue of the perception of probabilistic uncertainty itself. Note that 
the BO algorithm is not actually executed: sequences of points are generated by humans 
and compared with optimal Pareto fronts generated analytically.

The computational results and their analysis allow to formulate at least an insight into 
the following points:

•	 Do humans always make “rational” choices (i.e., Pareto optimal decisions between the 
improvement expected and uncertainty) or, in some cases, they “exasperate” explora-
tion?

•	 Do different uncertainty quantification measures lead to different classifications of 
humans’ decisions? And which uncertainty quantification measure make humans 
“more rational”?

•	 Does the distributional representation provide an efficient signature of the subject/task?
•	 Does the Wasserstein distance capture the difference between the behaviour of two sub-

jects on a given task?
•	 What is the average behaviour on a given task as measured by the Wasserstein bar-

ycenter of the searches of all individuals?
•	 What is an index of the Pareto compliance of a human as measured by the Wasserstein 

barycenter of his/her behaviour over all tasks?
•	 How do different kernels and uncertainty quantifications impact on the Pareto compli-

ance of an individual?

1.3 � Related works

In Section 1.1 we have briefly introduced the issue of uncertainty quantification in humans 
and its relationship with learning and optimization and new analytical tools, based on the 
WST distance, to characterize humans’ behaviour. Here we provide a more specific analy-
sis of the prior work and significant recent results. The literature on the WST distance is 
now immense: general references have been already given in the introduction, other will be 
given in Section 4. Here we limit to very specific references mainly focused on computa-
tional issues related to barycenters and clustering. An early contribution is from [20], who 
proposes an EMD-based clustering to analyse mobility usage patterns which is shown to 
cluster meaningfully also sparse signatures. [21] uses a dimensionality reduction by Self-
Organizing Maps (SOM) learning and then cluster data within a WST space. [22] proposes 
an Iterative Swapping Algorithm (ISA) for the computation of the barycenter which is 
shown to have a quadratic complexity. [23] proposes an approach based on the Alternating 
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Direction Method of Multipliers (ADMM) for WST clustering. [24] introduces a hybrid 
WST distance based on Gaussian approximations.

As far as cognitive science is concerned, an early contribution [25] analyses how humans 
manage the trade-off between exploration and exploitation in non-stationary environments. 
Successively, [2] demonstrates that humans use both random and directed exploration. [26] 
show how directed exploration in humans amounts to adding an “uncertainty bonus” to 
estimated reward values and how this brings to the Upper Confidence Bound (UCB) acqui-
sition function in Multi Armed Bandits [27] and BO [28]. [4] distinguish between irreduc-
ible uncertainty, related to the reward stochasticity, and epistemic uncertainty, which can 
be reduced through information gathering. In the former the decision strategy is random 
search while in the latter is directed exploration which attaches an uncertainty bonus to 
each decision value. This distinction mirrors the one in Machine Learning between aleato-
ric uncertainty – due to the stochastic variability inherent in querying f(x) – and epistemic 
uncertainty – due to the lack of knowledge about the actual structure of f(x) – which can be 
reduced by collecting more information.

In Bayesian Optimization, the exploration-exploitation dilemma has recently modelled 
as a bi-objective optimization problem. [29] minimize the predictive mean (associated to 
exploitation) while maximizing uncertainty, typically the predictive standard deviation as 
in UCB (associated to exploration). [30, 31] show that taking a decision by randomly sam-
pling from the Pareto frontier can outperform other acquisition functions. The main moti-
vation is that the Pareto frontier offers a set of Pareto-efficient decisions wider than that 
allowed by “traditional” acquisition functions.

A recent important contribution is [32] which, given the observed search path generated 
by a human subject in the execution of a black box optimization task, infers the unknown 
acquisition function underlying the sequence. For the solution of this problem, referred to 
as Inverse Bayesian Optimization (IBO), a probabilistic framework for the non-parametric 
Bayesian inference of the acquisition function is proposed.

The issue of deviations from Pareto optimality in decision making has become main-
stream economics under the name of behavioural economics and prospect theory [33], 
from the seminal work in [34] to [35] which identifies the most common causes for viola-
tions of dominance. A central question in economic theory is whether this analysis sits well 
with the Paretian expected utility theory or rather begets an entirely different approach as 
proposed in [36]. A basic conclusion of behavioural economics is that rather than being 
labelled “irrational”, non-Pareto compliant behaviour is just not well described by the 
rational-agent model.

1.4 � Outline of the paper

Section  2 introduces the definitions of Gaussian Process (GP) regression and different 
uncertainty quantifications. Section  3 develops a framework for the application of the 
Pareto analysis to the specific problem considering three different uncertainty quantifica-
tion measures. Section 4 introduces the Wasserstein (WST) distance, both the basic notions 
and the computational issues. Section 5 introduces the experimental framework used for 
data collection, that is the decisions taken by the humans according to their personal search 
strategies, and the proposed analytical framework. Section 6 describes the relevant results 
obtained by the application of the analytical framework. Finally, Section 7 outlines the con-
clusions of this study and the perspective of future works.
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2 � Materials and methods

2.1 � Gaussian process regression

A GP is a random distribution over functions f ∶ 𝛺 ⊂ ℜd
→ℜ denoted with 

f(x)~GP(μ(x), k(x, x′)) where �(x) = E(f (x)) ∶ Ω → ℜ is the mean function of the GP 
and k

(
x, x

�)
∶ Ω × Ω → ℜ is the kernel or covariance function. One way to interpret a 

GP is as a collection of correlated random variables, any finite number of which have a 
joint Gaussian distribution, so f(x) can be considered as a sample drawn from a multi-
variate normal distribution. In Machine Learning, GP modelling is largely used for both 
classification and regression tasks [37, 38], providing probabilistic predictions by condi-
tioning μ(x) and σ2(x) on a set of available data/observations.

Let denote with X1 : n = {x(i)}i = 1, …, n a set of n locations in Ω ⊂ ℜd and with 
y1 : n = {f(x(i)) + ε}i = 1, . . , n the associated function values, possibly noisy with ε a zero-mean 
Gaussian noise � ∼ N

(
0, �2

)
 . Then μ(x) and σ2(x) are the GP’s posterior predictive mean 

and standard deviation, conditioned on X1 : n and y1 : n according to the following equations:

where k(x, X1 : n) = {k(x, x(i))}i = 1, …, n and K ∈ ℜn×n with entries Kij = k(x(i), x(j)).
The choice of the kernel establishes prior assumptions over the structural properties 

of the underlying (aka latent) function f(x), specifically its smoothness. However, almost 
every kernel has its own hyperparameters to tune – usually via Maximum Log-likeli-
hood Estimation (MLE) or Maximum A Posteriori (MAP) – for reducing the potential 
mismatches between prior smoothness assumptions and the observed data. Common 
kernels for GP regression – considered in this paper – are:

•	 Squared Exponential: kSE
�
x, x�

�
= e

−
‖x−x�‖2

2�2

•	 Exponential kEXP
�
x, x�

�
= e

−
‖x−x�‖

�

•	 Power-exponential kPE
�
x, x�

�
= e

−
‖x−x�‖p

�p

•	 Matérn3/2: kM3∕2

�
x, x�

�
=

�
1 +

√
3 ‖x−x�‖

�

�
e
−

√
3 ‖x−x�‖

�

•	 Matérn5/2: kM5∕2

�
x, x�

�
=

�
1 +

√
5 ‖x−x�‖

�
+

5

3

� ‖x−x�‖
�

�2
�
e
−

√
5 ‖x−x�‖

�

2.2 � Uncertainty quantification and active learning

In decision making, uncertainty is usually associated to exploration: when the uncertainty is 
large it could be more profitable to bet on the upside and adopt an explorative behaviour to 
acquire more knowledge about f(x). Global optimization methods differ one from another in 
how they generate the next decision (i.e., location) x(n + 1). To do this, BO fits a GP according 

(2)�(x) = k
(
x,X1∶n

) [
K + �

2I
]−1

y1∶n

(3)�
2(x) = k(x, x) − k

(
x,X1∶n

) [
K + �

2I
]−1

k
(
X1∶n, x

)
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to (2–3) and where X1 : n = {x(i)}i = 1, …, n and y1 : n = {y(i)}i = 1, . . , n are the two sequences of, 
respectively, decisions made and associated observed outcomes. Then, an acquisition func-
tion, combining GP’s μ(x) and σ(x), is optimized to obtain x(n + 1), while dealing with the 
exploration-exploitation trade-off. In this paper we shall consider 2 acquisition functions:

Expected Improvement (EI) [39] and GP Confidence Bound (i.e., Upper Confidence 
Bound, UCB, Lower Confidence Bound LCB for minimization) [28]:

where Φ and ϕ are the standard normal cumulative distribution function (cdf) and the 
standard normal probability density function (pdf).

Let K denotes the set of kernels to choose as GP’s prior. In this study 
K =

{
kSE, kEXP, kPE, kM3∕2, kM5∕2

}
.

Let ζ(x) denotes the improvement expected by querying the objective function at loca-
tion x, depending on the GPs’ posterior (i.e., one GP for each kernel in K ). Formally, 
ζ(x) = μ(x) − y+, where y+ = max

i=1,…,n

{
y(i)

}
 because we are considering max

x∈Ω⊂ℝd
f (x).

Let denote with U the set of possible uncertainty quantification measures.
In this paper we consider the following three alternatives:

•	 GP’s predictive standard deviation, namely σ(x).
•	 GP’s differential entropy. For a GP it is given by H

(
y|X1∶n

)
=

1

2
log det (K) +

d

2
log det (2�e) , 

where K ∈ ℜn×n with entries Kij = k(x(i), x(j)), ∀ x(i), x(j) ∈ X1 : n [37].
•	 Distance from previous decisions, inspired from [40] and denoted by z(x):

with wj(x) =
e
−‖x−x(j)‖2

2

‖x−x(j)‖2

2

.

3 � Pareto analysis and Pareto compliance

Given the GP conditioned on the decisions performed so far, it is possible to map the 
next decision x(n + 1) ∈ Ω as the solution of a bi-objective choice, with objectives ζ(x) and 
u(x) ∈ U (both to be maximized).

Pareto rationality is the theoretical framework to analyse multi-objective optimization 
problems where q objective functions γ1(x), …, γq(x) where γi(x) : Ω → ℝ are to be simul-
taneously optimized in 𝛺 ⊆ ℝ

d . We use the notation γ(x) = (γ1(x), ⋯, γq(x)) to refer to the 
vector of all objectives evaluated at a location � . The goal in multi-objective optimization 
is to identify the Pareto frontier of γ(x).

To do this we need an ordering relation in ℝq ∶ � =
(
y1,… , yq

)
≼ �� =

(
y�
1
,… , y�

q

)
 if 

and only if �i ≤ �
′
i
 . This ordering relation induces an order in Ω : x ≼ x′ if and only if γ(x) ≼ γ(x′).

We also say that γ′ dominates γ (strongly) and γ ≼ γ′ if ∃i = 1, …, q for which 𝛾i < 𝛾
′
i
 . The 

optimal non-dominated solutions define the so-called Pareto frontier.

EI(x) =
�
�(x) − y+

�
�

�
�(x)−y+

�(x)

�
+ �(x)�

�
�(x)−y+

�(x)

�

UCB(x) = �(x) +
√
��(x)

(4)z(x) =

⎧⎪⎨⎪⎩

0 if∃x(i) ∈ �1∶n ∶
��x − x(i)��22 = 0

2

�
tan−1

�
1∑n

j=1
wj(x)

�
otherwise
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The interest in finding locations x having the associated γ(x) on the Pareto frontier is clear: 
they represent an optimal trade-off between conflicting objectives and are the only ones, 
according to the Pareto rationality, to be considered. In this paper q = 2, with γ1(x)=ζ(x) and 
�2(x) = u(x) ∈ U . As both the objectives are not expensive to evaluate the Pareto frontier can 
be approximated by sampling a grid of m points in Ω, denoted by �̂1∶m =

{
x(j)

}
j=1,…,m

 , and 
then computing the associated pairs Ψ1 : m = {(ζ(x(j)), u(x(j)))}j = 1, …, m.

The Pareto frontier can be approximated as:

where ψ = (ζ(x), u(x)) and ψ′ = (ζ(x′), u(x′)), and ψ ≻ ψ′ ⟺ ζ(x) > ζ(x′) ∧ u(x) > u(x′).
The only way to analyse how different uncertainty quantification measures can lead to com-

pletely different decisions – even if anyway Pareto rational – is to localize, within the search 
space Ω ⊂ ℜd , the locations whose associated objectives lay on the Pareto frontier (namely, the 
Pareto set). According to results reported in [41], the Pareto-rational decisions (i.e., Pareto set) 
do not significantly depend on kernel. Instead, an evident difference arises with respect to the 
uncertainty quantification measure: one of the three considered in the study allows for account-
ing, as Pareto rational, choices which are instead explorative for the other two measures.

Summarizing, the trade-off mechanism between exploration and exploitation is associated 
to Pareto-rationality: humans deal with this trade-off by making decisions whose expected 
value and uncertainty lay on the Pareto front. However, our hypothesis is that humans could 
also take non-Pareto-rational decisions, which therefore go beyond all the possible explora-
tion-exploitation trade-offs allowed by this model. Thus, it is important to measure how much 
a decision can be considered “far from a Pareto-rational one”.

Every next decision, x(n + 1), can be analysed according to the distance of its “image” 
(ζ(x(n + 1)), u(x(n + 1))) from the Pareto frontier, computed as follows:

where � =
(
�

(
x(n+1)

)
, u
(
x(n+1)

))
 and P = P

(
Ψ1∶m

)
∪
{
�

}
.

This distance is computed for every choice among the five kernels and the three uncer-
tainty quantification measures previously presented.

The most relevant result [41] is that, in some cases, it is possible to observe a shift from 
Pareto-rationality to not-Pareto-rationality, whichever is the uncertainty quantification meas-
ure adopted, including that maximizing the number of Pareto-rational decisions. This means 
that, in the case where there is not evident chance to exploit, and there is not any exploration-
exploitation trade-off compliant to the Pareto-rational model, humans move towards “exasper-
ated” exploration, where with the term “exasperated” we want to remark the fact that the deci-
sion is even more explorative than the pure exploration offered by the Pareto-rational model.

4 � The Wasserstein distance – Basic notions and numerical 
approximation

Measuring the distance between distributions can be accomplished by many alternative meth-
ods. A general class of distances, known as f-divergences, is based on the expected value of a 
convex function of the ratio of two distributions. If P and Q are two probability distributions 
over ℝd and f is a convex function such that f(0) = 1 the f-divergence is given by:

(5)P
(
Ψ1∶m

)
=
{
𝜓 ∈ Ψ1∶m ∶ ∀𝜓 � ∈ Ψ1∶m 𝜓 ≻ 𝜓

�
}

(6)d
(
� ,P

)
= min

�∈P

{‖‖� − �‖‖22
}
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According to the choice of f the above formula yields specific distances including Kull-
back-Leibler (and its symmetrized version Jensen-Shannon), Hellinger, total variation and 
χ-square divergence.

In this paper we focus on the WST distance whose basic notions are given in Section 4.1 
while Section  4.2 is devoted to the computation of the barycenter between distributions 
and the extension of k-means clustering to the Wasserstein space. It is important to remark 
that the presentation is quite basic omitting any mathematical characterization of WST for 
which the reader is referred to ([17, 19].

The WST metric is based on the solution of an optimal transport (OT) problem. WST 
enables to synthetizes the comparison between two multi-dimensional distributions 
through a single metric using all information in the distributions. Moreover, WST distance 
is generally well defined and provide an interpretable metric between distributions.

The WST distance can be traced back to the works of Gaspard Monge [15] and Lev 
Kantorovich [16]. Recently, also under the name of Earth Mover Distance (EMD) it has 
been gaining increasing importance in several fields like Imaging [42], Natural Language 
Processing (NLP) [43] and the generation of adversarial networks [44].

4.1 � Basic notions

The WST distance between continuous probability distributions is:

where d(x(1), x(2)) is also called ground distance (usually it is the Euclidean norm), 
Γ(P(1), P(2)) denotes the set of all joint distributions γ(x(1), x(2)) whose marginals are respec-
tively P(1) and P(2), and p is an index. The Wasserstein distance is also called the Earth 
Mover Distance (EMD). The EMD is the minimum energy cost of moving and transform-
ing a pile of sand in the shape of P(1) to the shape of P(2). The cost is quantified by the 
amount of sand moved times the moving distance d(x(1), x(2)). The EMD then is the cost of 
the optimal transport plan.

There are some specific cases, very relevant in applications, where WST can be written 
in an explicit form. Let P̂(1) and P̂(2) be the cumulative distribution for one-dimensional dis-
tributions P(1) and P(2) on the real line and 

(
P̂(1)

)−1 and 
(
P̂(2)

)−1 be their quantile functions.

Let’s now consider the case of a discrete distribution P specified by a set of support 
points xi with i = 1, …, m and their associated probabilities wi such that 

∑m

i=1
wi = 1 with 

wi ≥ 0 and xi ∈ M for i = 1, …, m.
Usually, M = ℝd is the d-dimensional Euclidean space with the lp norm and xi are called the 

support vectors. M can also be a symbolic set provided with a symbol-to-symbol similarity. P 
can also be written using the notation:

(7)Df (P,Q) = EQf

(
P

Q

)

(8)Wp

(
P(1),P(2)

)
=

(
inf

γ∈Γ(P(1),P(2))∫ X×X

d
(
x(1), x(2)

)p
d�

(
x(1), x(2)

))
1

p

(9)Wp

(
P(1),P(2)

)
=

(
∫

1

0

|||
(
P̂(1)

)−1(
x(1)

)
−
(
P̂(2)

)−1(
x(2)

)|||
p

dx

) 1

p
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where δ(·) is the Kronecker delta.
The WST distance between two distributions P(1) =

{
w
(1)

i
, x

(1)

i

}
 with i = 1, …, m1 and 

P(2) =
{
w
(2)

i
, x

(2)

i

}
 with i = 1, …, m2 is obtained by solving the following linear program:

The cost of transport between x(1)
i

 and x(2)
j

 , d
(
x
(1)

i
, x

(2)

j

)
 , is defined by the p-th power of the 

norm ‖‖‖x
(1)

i
, x

(2)

j

‖‖‖ (usually the Euclidean distance).
We define two index sets I1 = {1, …, m1} and I2 likewise, such that

Equations (12) and (13) represent the in-flow and out-flow constraint, respectively. The 
terms γij are called matching weights between support points x(1)

i
 and x(2)

j
 or the optimal cou-

pling for P(1) and P(2).
The discrete version of the WST distance is usually called Earth Mover Distance (EMD). For 

instance, when measuring the distance between grey scale images, the histogram weights are given 
by the pixel values and the coordinates by the pixel positions. In the specific case of histograms, 
the entries γij denote the amount of weight of the bin i (source) that has to be moved to bin j (sink).

The basic computation of OT between 2 discrete distributions involves solving a network 
flow problem whose computation scales typically cubically in the size of the measures.

In the case of one-dimensional histograms, which will be considered in this paper, the 
computation of WST can be performed by a simple sorting and the application of the follow-
ing equation

where x(1)∗
i

 and x(2)∗
i

 are the sorted samples.

4.2 � The barycenter and clustering

Consider a set of N discrete distributions, P = {P(1), …, P(N)}, with 
P(k) =

{(
w
(k)

i
, x

(k)

i

)
∶ i = 1,… ,mk

}
 and k = 1, …, N, then, the associated barycenter, 

denoted with P =
{(

w1, x1
)
,… ,

(
wm, xm

)}
 , is computed as follows:

(10)P(x) =

m∑
i=1

wi�

(
x − xi

)

(11)W
(
P(1),P(2)

)
= min

�ij∈ℝ
+

∑
i∈I1,j∈I2

�ij d
(
x
(1)

i
, x

(2)

j

)

(12)
∑
i∈I1

�ij = w
(2)

j
,∀j ∈ I2

(13)
∑
j∈I2

�ij = w
(1)

i
,∀i ∈ I1

(14)Wp

(
P(1),P(2)

)
=

(
1

n

n∑
i

|||x
(1)∗

i
− x

(2)∗

i

|||
p

) 1

p

(15)P = argmin
P

1

N

N∑
k=1

�kW
(
P,P(k)

)
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where the values λk are used to weight the different contributions of each distribution in the 
computation. Without loss of generality, they can be set to �k =

1
/
N
∀k = 1,… ,N.

The synthesis through a barycenter of a set of distributions have several advantages, among 
which: the WST barycenter – also called the Fréchet mean of distributions – appears to be a 
meaningful feature to represent the mean variation of a set of distributions, and offers a useful 
synthesis of the structure of probability distributions, in particular:

•	 it is sensitive to the underlying geometry. Consider 3 distributions P(1) = δ0, P(2) = δε and 
P(3) = δ100. W(P(1), P(2)) ≈ 0, W(P(1), P(3)) ≈ W(P(2), P(3)) ≈ 100. The distances Total variation, 
Hellinger and Kullback-Leibler take the value 1, thus they fail to capture our intuition that 
P(1) and P(2) are close to each other while they are far away from P(3).

•	 it is shape preserving. Denote P(1), …, P(N) and assume that each P(j) can be writ-
ten as a location shift of any other P(i), with i ≠ j. Suppose that each P(j) is defined as 
P(j) = N

(
�j,Σ

)
 , then the barycenter has the closed form:

in contrast to the (Euclidean) average of the 1
N

∑N

j=1
P(j).

Therefore, the concept of barycenter enables clustering among distributions, in a space 
whose metric is the WST distance. More simply, the barycenter in a space of distributions is 
the analogue of the centroid when the clustering takes place in a Euclidean space. The most 
common and well-known algorithm for clustering data in the Euclidean space is k-means. 
Since it is an iterative distance-based (aka representative based) algorithm, it is easy to pro-
pose variants of k-means by simply changing the distance adopted to create clusters, such as 
the Manhattan distance (leading to k-medoids) or any kernel allowing for non-spherical clus-
ters (i.e., kernel k-means). The crucial point is that only the distance is changed, while the 
overall iterative two-step algorithm is maintained. This is also valid in the case of the WST 
k-means, where the Euclidean distance is replaced by WST and centroids are replaced by 
barycenters:

•	 Step 1 – Assign. Given the current k barycenters at iteration t, namely P
(1)

t
,… ,P

(k)

t
 , clus-

ters C(1)
t ,… ,C

(k)
t  are identified by assigning each one of the distributions P(1), …, P(N) to 

the closest barycenter:

•	 Step 2 – Optimize. Given the updated composition of the clusters, update the barycenters:

that comes directly from Eq. (15).
As in k-means, a key point of WST k-means is the initialization of the barycenters. In the 

case that all the distributions in P are defined on the same support, then they can be randomly 
initialized, otherwise, a possibility is to start from k distributions randomly chosen among 

(16)P = N

(
1

N

N∑
j=1

�j,Σ

)

(17)C
(i)
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those in P. Finally, termination of the iterative procedure occurs when the result of the assign-
ment step does not change any longer or a prefixed maximum number of iterations is achieved.

The major computational issue is the polynomial complexity of the linear programming 
solvers commonly used to compute WST. Starting from the consideration that the vari-
ables in w are more important than the matching weights, approximate solvers have been 
proposed, specifically Sinkhorn solvers, which will be detailed later. Here it is just impor-
tant to remark that they allow to manage the trade-off between accuracy and computational 
cost through a regularization hyperparameter. Another approach is taken in [23] based on 
ADMM. Entropic regularization enables scalable computations, but large values of the 
regularization parameter could induce an undesirable smoothing effect while low values 
not only reduce the scalability but might induce several numeric instabilities.

5 � Experimental results and their analysis

This section contains the results of the WST based analysis of the humans’ search data, 
collected through a gaming application based on the implementation used in [9]. Figure 1 
shows the web-based Graphical User Interface of the gaming app, with a game play exam-
ple reporting: (a) the game field with previous selected locations and associated scores, (b) 
the current accumulated score, and (c) the remaining trials. The game target is searching 
for the location having the highest score.

Fourteen volunteers have been enrolled (among colleagues and friends), asking for solv-
ing ten different tasks, each one referring to a global optimization test function (reported in 
the Appendix). For each task, every player has a maximum number of 20 clicks (decisions) 
available.

In Section 5.1 the root variable is the specific task, in Section 5.2 the individual subject. 
The data has been analysed both locally, comparing different behaviours, and locally com-
puting the barycenter and performing a WST k-means clustering.

5.1 � Wasserstein analysis of the test functions

The histogram we use is based on the notion of decile. A decile rank arranges the data in 
order from the lowest to the highest and it is done on a scale of one to ten where each suc-
cessive decile corresponds to an increase of 10% of the points. The basic histogram there-
fore has 10 bins corresponding to deciles in the distributions, with weights representing the 
number of players whose decisions were Paretian for that decile.

A first insight can be performed by visual inspection: clearly “stybtang” and “bukin” 
are difficult in that they generate fewer Paretian decisions than “schwefel”. The ideal 
distribution, that is a fully Pareto compliant distribution, is a useful target which enables 
an intuitive yet quantitative evaluation of the “Pareto value” of each histogram as rep-
resented in Fig. 2 through the WST distance between each histogram and the ideal one. 
A further analysis, using WST, can be conducted according to the distance between a 
function or a subject histogram and its Paretian ideal. This is reported in Table 1.

The data can be evaluated globally using the barycenter calculated according to for-
mulas (15) and shown in Fig. 3 (the distance from the barycenter to the ideal histogram 
is in the last row of Table 1).

Also clustering can be performed in the WST space. Specifically, we have used WST 
k-means. Since our main objective is to partition the behavioural patterns into Pareto 
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and not-Pareto decisions, k = 2 is a reasonable choice. The results depend on the uncer-
tainty measure and are:

•	 For the entropy-based uncertainty quantification:

Ch
1
= (griewank, levy, rastr, schwef , ackley),

Ch
2
= (stybtang, goldpr, beale, bukin6, branin)

Fig. 1   Gamification app: locations selected so far and associated score

Fig. 2   Number of players with respect to percentage of decisions classified as Pareto rational, separately for 
the three uncertainty quantification measures. One chart for each test problem
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•	 For the σ-based uncertainty quantification:

•	 For the inverse distance-based uncertainty quantification:

The functions which were visually singled out as hard and easy are correctly assigned 
to two different clusters under the uncertainty measure h and z. The cluster quality metric 
is Dunn’s. We have computed also k = 3 and k = 4, the interpretation is less natural, and the 
metric value accordingly worsens.

The values in Table 1 of the “distance from the ideal”, are summarized in Fig. 4. Two 
relevant results have to be remarked: (i) the two identified clusters always capture also the 
difference in terms of “distance from ideal” independently of the uncertainty quantification 
measures, and (ii) the distinction between the two clusters is maximized for the uncertainty 
quantification measure z.

A way of visualizing the clustering results is through the box-plot representation, which 
shows that cluster 1, associated to Pareto decisions, has a significantly smaller WST dis-
tance than cluster 2, even more significant in the case that z is used as uncertainty quantifi-
cation measure.

Csd
1
= (griewank, rastr, schwef , ackley, goldpr)

Csd
2
= (stybtang, levy, beale, bukin6, branin)

Cz

1
= (griewank, rastr, schwef , ackley, levy)

Cz

2
= (stybtang, goldpr, beale, bukin6, branin)

Table 1   Wasserstein distances 
from the ideal distribution

Test function H SD Z

Ackley 3.57 4.79 1.29
Beale 6.77 7.23 7.15
Branin 6.43 7.73 6.92
bukin6 7.23 7.54 7.25
Goldpr 6.21 4.36 5.50
griewank 4.00 0.57 3.86
Levy 4.79 6.43 2.86
Rastr 3.64 4.21 3.79
schwef 4.71 5.23 0.00
stybtang 6.92 7.00 7.08
Barycenter 5.33 5.52 4.58

Fig. 3   Wasserstein barycenters of the histograms related to the test functions



231On the use of Wasserstein distance in the distributional analysis…

1 3

5.2 � Wasserstein analysis of the users

Figure  5 shows the same histogram as in Section  5.1 but referred to each subject: the 
weights are the distribution of the number of test problems with respect to the percentage 
of Pareto rational decisions. A histogram is provided for each subject, comparing the dis-
tributions obtained considering each one of the three uncertainty quantification measures. 
A stacked histogram is provided for each subject, comparing the distributions obtained for 
each one of the three uncertainty quantification measures. The full set of charts is reported 
in the supplementary material. Again, we can notice, by visual inspection, two relatively 
Paretian players (U01 and U13) and two not-Paretian (U05 and U14). Fig. 6 shows that the 
highest percentages of Pareto rational decisions (90% or 100%) are associated to z(x). The 
ideal distribution, that is a fully Pareto compliant distribution, is useful target which ena-
bles an intuitive yet quantitative evaluation of the “Pareto value” of each histogram as rep-
resented in Table 2 through the WST distance between each histogram and the ideal one.

This effect can be evaluated globally using the barycenter (Fig.  6) computed accord-
ing to the formula and the distance from the barycenter to the ideal situation (last row of 
Table 2).

Since our main objective is to partition the behavioural patterns into Paretian and non-
Paretian, K = 2 seems a reasonable choice Clustering in WST space show that the two clus-
ters can capture most of the difference in terms of distance from ideal, independently of the 
adopted uncertainty quantification measure, but now the difference is more relevant in the 
case of the entropy-based uncertainty quantification measure, instead of the inverse dis-
tance based one. The subjects which were visually singled out as Paretian and non-Paretian 
are correctly assigned to two different clusters under the uncertainty measure h and z. The 
cluster quality metric is Dunn’s. We have also computed k = 3 and k = 4, the interpretation 
is less natural, and the metric value accordingly worsens.

A way of visualizing the clustering results is through the box-plot representation which 
shows that cluster 1 (Fig. 7) has a significantly smaller WST distance from the ideal than 
cluster 2, more significant for z.

Fig. 4   Functions’ clustering represented using PCA (left). Box plot of the distance between functions’ his-
tograms and the ideal one (right)
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Fig. 5   Number of test problems with respect to percentage of decisions classified as Pareto rational, sepa-
rately for the three uncertainty quantification measures. One chart for each player

Fig. 6   Wasserstein barycenters of the histograms related to the users

Table 2   Wasserstein distances 
from the ideal distribution

User H SD Z

U01 3.89 4.11 2.67
U02 5.50 5.22 4.89
U03 6.10 5.00 5.10
U04 5.80 5.90 4.56
U05 6.44 5.89 5.00
U06 5.30 5.20 3.00
U07 5.30 5.78 5.00
U08 5.50 5.40 3.80
U09 5.33 4.14 4.50
U10 5.80 5.60 4.78
U11 5.60 6.10 4.30
U12 5.80 6.80 5.80
U13 3.11 4.20 3.50
U14 5.60 5.70 4.78
Barycenter 5.47 5.34 4.40
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6 � Learning with distances

Beside the specific issue of analysing human behaviour, distributional inputs can occur 
in a number of practical situations as physical simulations or computer experiments. The 
simplest method is to compare a set of parametric features such as the mean or higher 
moments, but these parameters do not take the whole distribution into account. Commonly 
used kernels depend on the Euclidean distance between points. In the case of distributional 
inputs, we want to construct positive definite kernels on sets of probability measures. The 
research on this topic research has branched in two directions.

6.1 � Wasserstein induced kernel

Bayesian learning has largely focused on Euclidean and categorical domains which are 
suitable for optimizing scalar hyper-parameters of machine learning algorithms. This is 
no longer sufficient for important applications as neural architecture search. To this effect 
[45] proposes to use a distance metric in the space of neural network architectures based 
on optimal transport and a Bayesian Optimization framework whose kernel is induced by 
Wasserstein distance.

Using kernels limits the choice of distribution distances as the resulting kernel has to 
be positive definite: a widely used distance as Kullback-Leibler does not qualify. The key 
difficulty in “kernelizing” WST is that the kernel obtained computing the exponential of 
the square WST distance between distributional inputs does not lead to a positive definite 
kernel. As shown in Bachoc [46] many eigenvalues of the Wasserstein induced covariance 
matrix are negative. Three recent papers [47–49] have analysed the specific conditions in 
which the exponentiation of WST yields a positive definite kernel.

A general solution to the problem in the setting of Hilbert spaces has been provided in 
[50]. and [51]. Specific positive definite kernels are designed in order to map distributions 
into a Reproducing Kernel Hilbert Space (RKHS) and extend kernel methods to probabil-
ity measures. Results are strongly dependent of d and p. In the first paper the problem has 
been solved for d = 1. The positive definite kernel provided for d = 1 is not positive any 
longer when it is extended to d > 1.

Fig. 7   Users’ clustering represented using PCA (left). Box plot of the distance between users’ histograms 
and the ideal one (right)
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The problem is solved for d > 1 in the second paper, in which GPs with multidimen-
sional distribution inputs are embedded using optimal transport. The kernels are of the form 
K(u, v) = F(‖u − v‖)H for all u, v ∈ H. F provides a positive definite kernel on any Hilbert 
space iff it does so in finite Euclidean spaces. Any finite nonnegative Borel measure v on 
[0, ∞)defines a function F(t) = ∫

ℝ
e−ut

2v(u) resulting in a definite positive kernel. It is shown 
in Bachoc [46] that special cases of F(t) result in common kernels as squared exponential, 
Matérn and power exponential. In some special cases, notably for Gaussian distributions the 
optimal transport map, and the related kernel, can be computed explicitly [52].

6.2 � Using directly the distance

A very interesting perspective opened by the results analysed in Section 6 stems from the 
observation that the locations in the space (ψ = (ζ(x), u(x))) associated to Pareto-rational 
decisions and the degree of Pareto compliance do not change so much depending on the 
kernel, but rather on the uncertainty quantification: σ(x), h(x) or z(x). Moreover since z(x) 
is most closely related to Pareto behaviour and it’s also the one non kernel based this result 
could also be regarded as an indication that distance could be embedded directly in the 
learning process. In this way we could design learning algorithms that are built from pair-
wise dissimilarity measures between distributions. This perspective has been first analysed 
in [53] which introduces the concept of “good” dissimilarity functions that map a distri-
bution into a space. It can be also shown that there exists in that space a linear separator 
that produces low errors. These results have been extended in [54] to discrete distribu-
tions including the theoretical guarantees if the number of distributions is large enough and 
enough samples are obtained for each distribution. Based on the Wasserstein distance the 
paper contains a performance analysis of kernel versus distance-based classifiers. It shows 
that Wasserstein distance embedding performs better than kernel mean embeddings and 
computing WST is more tractable than estimating f-divergences of empirical distribution.

A distributional distance-based learning has been shown to be very effective also in 
simulation-optimization problems over discrete structures ([55, 56]: the Multi Objective 
Evolutionary Algorithm based on the Wasserstein distance (MOEA/WST) has been shown 
to be more sample efficient than benchmark evolutionary approaches. This method also 
compares favourably, in terms of wall clock time, with the BoTorch implementation of 
multi-objective BO using Expected Improvement and the SE kernel.

7 � Conclusions and perspectives

The Pareto analysis of human search data offers insights as whether humans are Pareto 
rational in performing search tasks. The Wasserstein space has been shown to offer a mean-
ingful representation of how different uncertainty quantifications are implied by human 
behaviour when solving optimization tasks. The characterization of human behaviour can 
be performed both at the individual level (single user/single task) and an aggregate level 
computing barycenters and performing clustering in the Wasserstein space. The experi-
mental results show that from gamification experiments something can be gleaned about 
how humans take to uncertainty searching for a goal and most humans are Pareto compli-
ant under any uncertainty representation. Still there is a sizable minority whose behav-
iour does not follow Paretian expected utility theory and would beget a different approach. 
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Research in Machine Learning has focused mostly on how to assess the informational 
utility of possible queries, we rather addressed the issue of the perception and quantifica-
tion of probabilistic uncertainty itself. Different uncertainty quantification measures lead 
to different classifications of humans’ decisions. The z uncertainty quantification measure 
makes humans “more rational”. These results agree with very recent results as to embed 
non-Euclidean distance in the learning process and offer new insights into the design of 
algorithms of machine learning and optimization. This problem is still an open question in 
Machine Learning and cognitive sciences and neither our results nor those prevailing in the 
rich literature about this issue provide unequivocal evidence about the algorithms under-
pinned by humans’ decisions.
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https://​www.​sfu.​ca/​~ssurj​ano/​optim​izati​on.​html
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