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1 Introduction

By an £-oriented profinite group for a prime number ¢ we understand a profinite group
G together with a continuous homomorphism of profinite groups 6: G — Z;, where Z;
denotes the group of units of the ring of £-adic integers Z,. An {-oriented pro-£ group
(G, 0) will be simply called an oriented pro-£ group. For a field K, we denote by G =
Gal(KKP /KK) its absolute Galois group, where K*P denotes a separable closure of K. For
any prime number ¢, G carries naturally the cyclotomic £-orientation Ok ¢: Gk — Z
(cf. Example 2.1 and [26, (1.3)]). The following conjecture formulated by L. Positselski in
[20, Conjecture 2] was motivated by an earlier conjecture of F. Bogomolov (cf. [2] and [20,
Conjecture 1], see also Remark 3.3).

Conjecture 1.1 Let K be a field containing a primitive £th-root of unity, and also /—1 if
£ =2, and set

eof/K:K(‘m aaeckK,n> 1),
Then the maximal pro- Galois group of VKisa free pro-£ group.
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A profinite group G admits a maximal pro-£ quotient G(¢) = G/ 0Y(G), where OY(G)
is the closed normal subgroup of G being generated by all pro-g Sylow subgroups for all
prime numbers g # £. Apart from ker(9), an oriented pro-£ group (G, 0) contains the
distinguished closed subgroups

Ky(G) =cl (< h_g(g)ghg_1 | g € G h e ker(9) >> (1.1)
and
1(G) = c (( heker(d) | Tk e Ny : b e Ky(G) >) (1.2)

—the former introduced in [10]—i.e., Iy(G) is the closure of the isolator (cf. §66 [12]) of
Ky(G) in ker(9). An oriented pro-£ group (G, ) is said to be §-abelian, if the subgroup
Ky (G) is trivial and if ker(0) is a free abelian pro-£ group (in this case G is a free abelian-
by-cyclic pro-€ group for £ # 2, cf. Remark 2.2). By definition Ky(G) is a closed normal
subgroup of G contained in the Frattini subgroup ®(G) = cl(G* - [G, G]) of G. Note that

[ker(0), ker(0)] € Ky(G) C ker(9), (1.3)

so that the quotient ker(0)/Ky(G) is an abelian pro-¢ group, and Iy(G)/Ky(G) is its torsion
subgroup. In particular, if  : G — Z is trivial (i.e., 0 is identically equal to 1), then K3(G)
coincides with the closure of the commutator subgroup of G.

Every oriented pro-£ group (G, #) admits a maximal §-abelian quotient (G(6), §), where
G(0) = G/Ip(G)and6: G(9) — Z isthehomomorphism induced by 6. Namely, (G(6), 6)

is f-abelian and one has a canonical surjective homomorphism
& (G,0) — (G(6),0)

of oriented pro-£ groups satisfying the following: for every morphism v : (G, 0) — (4, 0°)
of oriented pro-f groups onto a 6°-abelian pro-£ group (A4, 6°) there exists a unique
morphism of oriented pro-¢ groups 1//5‘": (G(8),0) — (A, 6°) such that ¢ = I/f;‘b o J'rgf’g
(cf. Proposition 2.3).

The hypothesis of Conjecture 1.1 on the primitive £th-roots lying in K implies that
the maximal pro-¢ quotient Gk (€) of the absolute Galois group Gk carries naturally an
£-orientation

é]K,g: Gg(l) — ZZ‘ (1.4)

So, Conjecture 1.1 predicts that [@K,z (Gk(£)) is a free pro-£ group contained in the Frattini
subgroup ®(Gk(¢)) of Gk (€) (cf. Proposition 2.6 and § 3.1). At this point it should be
mentioned that in fact one has to deal with two properties of oriented pro-£ groups. The
oriented pro-£ group (G, 0) is said to be Kummerian, if Iy(G) = ker(ng{’g) is contained in
the Frattini subgroup ®(G) of G. This property can be reformulated in several different
ways (cf. Proposition 2.6). Bearing this fact in mind we say that the Kummerian (cf. §2.3)
oriented pro-¢ group (G, 0) has the Bogomolov—Positselski property, if Ip(G) = ker(nél)’e)
is a free pro-£ group. For example, the oriented pro-¢ group (G, 1), where 1 is the trivial
{-orientation on G, is Kummerian if, and only if, the maximal abelian pro-£ quotient
G = G/G' is a free abelian pro-£ group, and has the Bogomolov—Positselski property if,
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and only if, it is Kummerian and the closure of the commutator subgroup of G is a free
pro-£ group.

The class of oriented pro-£ groups ET; of elementary type is the smallest class of oriented
pro-¢£ groups containing Z, with all its £-orientations, all Demushkin pro-£ groups with
their natural £-orientation (cf. [26, Proposition 5.2]) and which is closed with respect to
free products in the category of oriented pro-£ groups and fibre products (cf. Sect. 5.3).
The Elementary Type Conjecture formulated by Efrat [8] predicts that for every field K
containing an £th-root of unity (and also /—1 if £ = 2) satisfying |[K* /(K*)¢| < oo the
oriented pro-£ group (G (£), fx ¢) must be of elementary type. The first main purpose of
this paper is to establish the following theorem relating the Elementary Type Conjecture
with Conjecture 1.1.

Theorem 1.2 Every oriented pro-{ group of elementary type has the Bogomolov—
Positselski property.

From Theorem 1.2 one concludes the following (cf. Proposition 5.13):

Corollary 1.3 Let K be a field containing a primitive Lth-root of I (and also /—1 if ¢ = 2),
such that the quotient K* /(K> )¢ is finite. Then Conjecture 1.1 holds true in the following

cases:

(a) Kis finite;

(b) Kisapseudo algebraically closed (PAC) field, or an extension of relative transcendence
degree 1 of a PAC field;

(c) Kis an extension of transcendence degree 1 of a local field,

(d) Kis £-rigid (for the definition of £-rigid field see [32, p. 722]);

(e) Kisan algebraic extension of a global field of characteristic not ¢.

By the Norm Residue Theorem (cf. [11,31,33,34]), the mod £-Milnor K -ring KM (K)/¢
of a field K is isomorphic to the cohomology algebra H* (G (¢), F¢) provided £ # char(K)
and K contains a primitive £th-root of unity. Moreover, L. Positselski showed in [20,
Theorem 1.4] that Conjecture 1.1 is a consequence of a strong Koszulity property of the
cohomology algebra H*(Gk (£), Fy).

Our second objective is to establish the following criterion ensuring the Bogomolov-
Positselski property of an abstract oriented pro-£ group (G, 6). Surprisingly, it only depends
on low-dimensional group cohomology, but in a sophisticated way (cf. Theorem 4.5).

Theorem 1.4 Let (G,0) be a Kummerian oriented pro-£ group with a quadratic -
cohomology algebra H®*(G, Fy), and let

s: {1} Ih(G) G G(9) {1} (1.5)

be the canonical extension of pro-£ groups. Then G has the Bogomolov—Positselski property
if, and only if, the transgression map

dy': H*(G(0), H' (Io(G), Fe)) — H*(G(6), Fr) (1.6)

is injective.
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Remark 1.5 Ass is a Frattini pro-£ cover (i.e., [y(G) is contained in the Frattini subgroup
of G, cf. Sect. 3.2), inflation yields an isomorphism j!: HY(G(9), F;) — H(G, F;). Since
H*(G, Fy) is quadratic, inflation may also be considered as a surjective homomorphism of
graded F,-algebras

Jj*: H*(G(0), Fe) — H*(G, Fy), (1.7)

where the left-side term of (1.7) is the exterior algebra generated by H(G(6), Fy) (cf.
Sect. 4.1). By [20, Theorem 1.4], (G, 0) has the Bogomolov—Positselski property provided
H*(G, ) is a Koszul [F;-algebra and ker(j®) is a Koszul H*(G, F;)-module (cf. [20, §3.3]).
Hence the natural question arising in this context is, whether one can express ker(d%’l) in
terms of Eth'(G,F@)(FZ’ ker(j®)), s # t.

2 Oriented pro-{ groups
For a pro-¢ group G and a positive integer #, G"” will denote the closed subgroup of G
generated by the n-th powers of all elements of G. Moreover, for two elements g s € G,

we set
h=ghg™!, and [gh]l=%h-h},

and for two subgroups Hi, Hy of G, [H1, H2] will denote the closed subgroup of G generated
by all commutators [g, /] withg € Hj and & € Hs. In particular, G’ will denote the closure
of the commutator subgroup of G.

2.1 {-Orientations of profinite groups
Let Z; denote the ring of £-adic integers, and let Z, denote its group of units. Note that

7, is a virtual pro-£ group, in more detail:

(a) if £ # 2 then the Sylow pro-£ subgroup of Z; is 1 + £Z¢ = {1 + €A | € Z¢}, which
is free pro-£ cyclic;

(b) if ¢ =2thenZy = 1427y >~ 7/2 x (14 4Z3), and the factor 1 + 4Zj is isomorphic
to Zs.

An oriented pro-¢ group (G, 0) is a pro-£ group G together with a continuous group
homomorphism 6: G — ZZ‘. Moreover, (G, 0) is said to be torsion-free if £ # 2, or if
¢ = 2and im(f) C 1 + 4Zy—observe that in a torsion-free oriented pro-£ group (G, 0),
G need not be a torsion free pro-£ group, e.g., (Z/¢, 1) is a torsion-free oriented pro-£ as
im(1) = {1).

Oriented pro-¢ groups where introduced by Efrat [8] under the name “cyclotomic pro-¢
pairs”. For an oriented pro-¢ group (G, 0), Z¢(1) will denote the continuous left Z,[G]-
module which is isomorphic to Z, as an abelian pro-£ group, such that g - v = 6(g) - v for
every g € Gand v € Z;(1) (cf. [26, § 1]). Conversely, if a pro-£ group G comes endowed
with a continuous left Z;[G]-module M which is isomorphic to Z; as an abelian pro-¢
group, then M induces an orientation §: G — Z, by 6(g) - v =g - v for every g € G and
v € M, such that M >~ Z,(1).

The fundamental examples of oriented pro-¢ groups arise in Galois theory (cf. [10, § 4]).

Example 2.1 For a field K, let K*P denote a separable closure of K, and let 1ty denote
the group of roots of 1 of £-power order lying in K. If K contains a primitive £th-root of
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unity, then p is contained in the maximal pro-£ extension K(£) of K. As prgo0 =~ Z[%] /7
and Aut(Z[%] /7Z) is isomorphic to Z/, the action of the maximal pro-¢ Galois group
Gk (£) = Gal(K(£)/K) of K on e fixes the primitive £th-roots of unity, and induces the
£-cyclotomic character

Oxe: Gr(b) — Z;.
In particular,
o(¢) = géKﬂ’»(") forallo € Gg(£), & € pgoe.

Furthermore, one has im(fx ¢) = 1 + & Z,—where f is the positive integer satisfying
e NKX| = & —in case pgo N K> is non-empty and finite, and im(fx¢) = {1} if
peo € K*. The continuous Gk (£)-module Z,(1) induced by the cyclotomic character is
called the 1st Tate twist of Z; (cf. [19, Definition 7.3.6]), and for every n > 1, Z¢(1)/£" is
isomorphic to the Gk (£)-module of the £”th roots of 1.

Note that oriented pro-£ groups form a category Ory, i.e., for (G, 6), (H, 6) € ob(Org) a
morphism of oriented pro-£ groups ¢: (G, 8) — (H, 8’) is a continuous group homomor-
phism ¢: G — H of pro-£ groups satisfying 6’ o ¢ = 6.

For an oriented pro-£ group (G, 0) one has the following constructions.

(a) Let N be a normal subgroup of G such that N C ker(f). Then one has an oriented
pro-£ group

(G 0)/N := (G/N,9),

where 6: G/N — Z; is the orientation induced by 6.
(b) Let A be an abelian pro-£ group. Then one has an oriented pro-¢ group

Ax (G 0):=(AxG,0),

where gag ™! = a’® forallg € Ganda € A,andf =0 o, where7: A x G — G
is the canonical projection.

2.2 The maximal #-abelian quotient of an oriented pro-£ group

Let (G, 0) be a torsion-free oriented pro-£ group. Then G/ker(0) ~ im(6) is torsion-free,
and thus either trivial or isomorphic to Z,. Therefore, the epimorphism G — G/ker(0)
splits, and since ghg~! = h’® mod Ky (G) for every g € G and & € ker(f), one concludes
that

ker ()
Ky(G)

(G, 0)/Ky(G) =~ X (im(0), Idim(g))- (2.1)
Remark 2.2 By (2.1), if (G, ) is a torsion-free -abelian oriented pro-£ group, then it is
isomorphic to the oriented pro-£ group ker(9) x (im(6), Idjn)). Conversely, if A is a free
abelian pro-£ group, and (G, ) is an oriented pro-£ group satisfying ker(9) = {1}, then the
oriented pro-£ group (G, 0) = A x (G, 6) is f-abelian, since ker(9) = A is a free abelian
pro-£ group, and as ghg~! = 1@ for every g € G and & € A and thus K;(G) = {1}.

Let (G, #) be an oriented pro-£ group. Put G = G/Iy(G) and let §: G — Z; denote the
induced orientation. Since the quotient ker(0)/Ip(G) is torsion-free (cf. Sect. 1), the ori-
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ented pro-£ group (G(6), #) is f-abelian. This group together with the canonical projection

& G — G(9) (2.2)
has the following universal property.

Proposition 2.3 Let (G, 0) be an oriented pro-£ group, let (A, 6°) be an oriented 6°-abelian
pro-£ group, and let V: (G,0) — (A,0°) be a continuous homomorphism of oriented
pro-£ groups. Then  factors through ﬂg’b@, i.e., there exists a (unique) continuous group
homomorphism

Y&y (G9),0) — (4,60°)

satisfying = W%bg o nf‘;be.

Proof As v is a homomorphism of oriented pro-£ groups, and as (4, 6°) is 8°-abelian,
one has

Y (ker(9)) C ker(0°) and ¥ (Kg(G)) € Kgo(A) = {1}. (2.3)

As ker(0°) is torsion-free, this implies that ¥ (/y(G)) = {1}. Hence the induced homomor-
phism 1//%1?9 : G(0) — A of oriented pro-¢ groups has the desired properties. O

Remark 2.4 Let (G,0) >~ A x ((G, 0)/ker(0)) be a torsion-free #-abelian oriented pro-£
group. Then for every subgroup H of G one has

H ~ (HNA) x (H/ker(0|y)),

and thus the oriented pro-¢ group (H, 0|y) is split 8|z -abelian (cf. [26, Remark 3.12]).

2.3 Kummerian oriented pro-£ groups

Let (G, 0) be an oriented torsion-free pro-£ group. Since im(0) C 1+ £Z;, the action of G
on the quotient Z;(1)/£ of the continuous G-module Z,(1) is trivial, i.e., Z¢(1)/€ >~ F; as
a trivial left Z¢[[ G]]-module. In the proof of the subsequent proposition we will make use
of the following

Fact 2.5 Let A be an abelian pro-£ group, and let B be a closed subgroup of A which is a
direct summand of A satisfying B C A¢. Then B = {0}.

Proof LetA =B@&C.Then A’ = B*@® C% andasB* C B,and BN C = {0} one concludes
that B C B, i.e., B = B" = ®(B). Hence B = {0}. O

A torsion-free oriented pro-£ group (G, 0) is said to be Kummerian if the following
equivalent properties are satisfied.

Proposition 2.6 Let (G, 0) be a torsion-free oriented pro-£ group. Then the following are
equivalent:

(i) the map HY(G, Z¢(1)/£") — HY(G, Fy) induced by the epimorphism of discrete left
G-modules Z¢(1)/€" — Z¢(1)/€ >~ Ty, is surjective for every n > 1 (cf. [10]).
(if) The quotient ker(0)/Ky(G) is a free abelian pro-£ group.
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(iii) The oriented pro-t group (G, 0) /Ky (G) = (G/Ky(G), 0) is O-abelian.
(iv) Ky(G) is isolated in ker(0), i.e., I5(G) = Ky(G).

(v) The group Hgts(G, Zy¢(1)) is a torsion-free Zg-module.

(vi) Ip(G) € (G).

(Here H}, denotes continuous cochain cohomology as defined by Tate [30]).

Proof For G finitely generated the equivalence between (i) and (ii) was shown in [10,
Theorem 5.6], and the equivalence between (ii) and (iii) follows from Remark 2.2. For
general G the equivalences were shown in [24, Theorem 1.2]. The equivalence between (i)
and (v) is shown in [26, Proposition 2.1], and (iii) <> (iv) is a direct consequence of (2.1)
and Remark 2.2. Hence (i)—(v) are equivalent. As Kyp(G) € ®(G) one has (iv) = (vi). Thus
it remains to show that (vi) = (iv). Let 7: G — G/®(G) denote the canonical projection,
and let

7 ker(0)/Ky(G) - ker(8)" —> G/®(G) (2.4)

denote the induced map—note that Ky(G)ker(8)* = ker(9)‘[G, ker(6)], by (1.1). As
im(0)—which is isomorphic to either Z, or {1}—is projective, the 5-term exact sequence

associated to the Hochschild—Serre spectral sequence yields an exact sequence

H(G, ) = H'(ker(6), )6 — (0} (2:5)
Thus, by Pontrjagin duality, 7, is injective. Note that
tor(ker(0)/Ko(G)) = I4(G)/Ky(G) (2.6)

is a direct summand of the abelian pro-£ group ker(0)/Ky(G) (cf. Sect. 1). Since 7 (I (G)) =
{1} by (vi), and since 7, is injective, one concludes that I)(G) € Ky(G) - ker(9)*. Hence
Ip(G)/Ky(G) = {1} by Fact 2.5. O

Example 2.7 (a) If (G,6) is a torsion-free 0-abelian pro-{ group, then, by Proposi-
tion 2.6-(ii), (G, 0) is Kummerian, as Ky(G) = {1} and ker(9) is free abelian by
definition.

(b) If G isa free pro-£ group, then by Proposition 2.6-(v) the oriented pro-£ group (G, 9)
is Kummerian for any orientation 6: G — Z/, as cd(G) = 1 (cf. [19, Proposi-
tion 3.5.17]).

(c) If (G, 0) is an oriented pro-£ group with trivial orientation 6 = 1, then (G, 9) is
Kummerian if, and only if, the abelianization G? is a free abelian pro-¢ group (cf.
[10, Example 3.5-(1)]).

The following result is a consequence of Kummer theory (cf. [10, Theorem 4.2]).

Theorem 2.8 Let K be a field containing a primitive £th-root of 1 (and also /—1 if £ = 2).
Then (Gk(£), OK,¢) is a torsion-free Kummerian oriented pro-£ group.

From Proposition 2.3 and Proposition 2.6-(iv), one concludes the following fact.

Corollary 2.9 Let (G,0) be a Kummerian torsion-free oriented pro-{ group. Then
(G/Ko(G), 0) is the maximal 0-abelian quotient of G.
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3 The Bogomolov-Positselski property

3.1 Bogomolov’s conjecture

Let K be a field containing a primitive £th-root of 1 (and also v/—1 if £ = 2), and let
L = “VK denote the compositum of all radical extensions K( %/a), with 2 € K* and

n=>1,ie,
L= "VK=K(%a|acK,n>1). (3.1)

The maximal pro-£ Galois group G (¢) of the field L is equal to the pro-£ group
I(éK,Z(GK(Z)) associated to the oriented pro-£ group (Gk (£), Ok ¢) (cf. [10, Theorem 4.2]).
Observe that the £-cyclotomic character associated to the maximal pro-¢ Galois group of
LL is the trivial £-orientation 1: K, (Gk(£)) — {1} < Zy .

Motivated by a conjecture formulated by Bogomolov [2]—see Remark 3.3, L. Posit-
selski stated the following conjecture on the pro-¢ group Gp,(¢) = K@K)K(GK(K)) (cf. [20,
Conjecture 1.2]).

Conjecture 3.1 Let K be a field containing a primitive Lth-root of 1, and also /—1 if
£ = 2. Then the maximal pro-£ Galois group G1,(¢£) of L = “VKisa free pro-£ group.

Conjecture 3.1 is the motivation for the following definition.

Definition 3.2 A Kummerian oriented pro-£ group (G, 0) is said to have the Bogomolov—
Positselski property if the subgroup Ky(G) is a free pro-£ group.

Hence, Conjecture 3.1 may be restated as follows: if K is a field containing a primitive
¢th-root of 1 (and also v/—1 if £ = 2), then the oriented pro-£ group (Gk (£), Ok ¢) has the
Bogomolov-Positselski property.

Remark 3.3 The original formulation of Bogomolov’s conjecture states that if K is a field
containing an algebraically closed field then the (closure of the) commutator subgroup
of the Sylow pro-£ subgroup of the absolute Galois group Gk of K is a free pro-£ group.
Furthermore, the (closure of the) commutator subgroup of the maximal pro-¢ Galois
group Gk (£) should be a free pro-£ group as well (see also [3, Conjecture 6.2] and [18,
§ 3.1.2], where the conjecture is stated for function fields).

In [20], Positselski observed that the only essential part of the condition about the
algebraically closed subfield of K is that K should contain all the roots of 1 of £-power
order. Consequently, he formulated the following conjecture (cf. [20, Conjecture 1.1]):
the pro-£ Sylow subgroup of the absolute Galois group Gr,, with L. = YK and K an
arbitrary field, is a free pro-£ group, i.e., cd;(GL) < 1 (or, equivalently, Gy, is £-projective,
cf. [29, §1.3.4, Proposition 16]). Note that this conjecture is stronger than Conjecture 3.1,
and likely hard to approach, while—as stated by Positselski himself, cf. [20, § 1.3]—the
latter is closer to Bogomolov’s original conjecture.

Example 3.4 (a) Let (G, 0) be a torsion-free 8 -abelian oriented pro-£ group. Then (G, 6)
is Kummerian (cf. Example 2.7-(a)), and by Proposition 2.6-(iv) one has

Ih(G) = Ky(G) = {1}.

So, (G, 0) has the Bogomolov—Positselski property.
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(b) Let (G, 0) be an oriented pro-£ group with G being a free pro-£ group. Then (G, 0)
is Kummerian by Example 2.7-(b), and it has the Bogomolov—Positselski property as
every closed subgroup of G is again a free pro-£ group.

(c) Let

G=(xyz|xyl=2xzl=[zl=1)
lac
= 01b | | abceZy
001

be the Heisenberg group over Z;, and set (G, 1), where 1: G — ZZ‘ is the trivial
orientation. Then Kyp(G) = G’ >~ Z; is the cyclic pro-£ subgroup generated by
z, and G*P ~ Z%. Hence (G, ) is Kummerian by Example 2.7-(c), and it has the
Bogomolov—Positselski property. Nevertheless, G does not occur as the maximal
pro-£ Galois group of any field containing ¢ (cf. [23, Example 5.4]).

3.2 Self-isolated pro-£ groups and Frattini pro-£ covers
Let G be a pro-£ group, and let H C G be a subgroup. The isolator of H is the subgroup
Iso(H) =cl((g € G | g" € H for somen > 1))

(cf. [12, § 66]). We say that H is self-isolated if [so(H) = H. In particular, if N is a normal
subgroup of G, then G is self-isolated if, and only if, the quotient G/N is a torsion-free
pro-£ group. The following fact is almost straightforward.

Fact 3.5 Let (G, 0) be a torsion-free 0-abelian oriented pro-£ group. Let N be a normal
subgroup of G contained in both ker(0) and ®(G). If N is self-isolated, then N = {1}.

Proof By Remark 2.2, ®(G) Nker() = ker(9)¢. As N C ker() is an isolated subgroup, it
is a direct summand of ker(6). Thus by Fact 2.5, N is trivial. O

Fact 3.5 has the following consequence.

Proposition 3.6 Let (G, 0) be a torsion-free Kummerian oriented pro-£ group. Let N I G
be a closed normal, self-isolated, subgroup of G contained in ker(0) satisfying

Kyp(G) € N C 9(G).

Then N = Ky(G).

A Frattini pro-£ cover of pro-£ groups is a short exact sequence of pro-£ groups

{1} N G—=G (1} (3.2)

satisfying N € ®(G). One also says that 7: G — G is a Frattini pro-£ cover of G. One
may characterize those pro-¢ groups which may be completed into Kummerian oriented
pro-¢ groups with the Bogomolov—Positselski property as follows.

Theorem 3.7 A pro-£ group G may be completed into a Kummerian oriented pro-£ group
(G, 0) with the Bogomolov—Positselski property if, and only if, G is a Frattini pro-£ cover
(3.2) of G, where (G, 0) is a O-abelian oriented pro-£ group and N is a free pro-€ group.
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Proof If (G, 0) is Kummerian with the Bogomolov—Positselski property, then, by Propo-
sition 2.6, (G/Ky(G), 0) = (G, 8) /Ky (G) is f-abelian and N = Ky (G) is a free pro-£ group
by Definition 3.2. This shows one implication.

Conversely, if (G,0) is f-abelian, then the epimorphism of oriented pro-¢ groups
(G,0) — (G,0) factors through (G, 6)/I(G) by Proposition 2.3. Hence I)(G) € N,
while N € ®(G) by hypothesis, thus (G, 8) is Kummerian by Proposition 2.6:(vi). Thus,
Iy(G) = Ky(G) by Proposition 2.6:(iv), and since

Kp(G) = 1p(G) S N < (G),

Proposition 3.6 yields N = Ky(G), i.e., (G, 0) has the Bogomolov—Positselski property. O

4 The Bogomolov-Positselski property and cohomology

4.1 Quadratic cohomology and the Norm Residue Theorem

Let G be a pro-£ group. The cohomology groups H"(G, F¢), n > 1, where F is the trivial
G-module isomorphic—as abelian group—to Fy = Z/¢Z, come endowed with the bilinear
cup-product

HY(G,Fy) x H (G, Fy) —> HE(G, Fy), st >0,

which is associative and graded-commutative, i.e., B Ua = (—1)%a U B for o € H*(G, Fy)
and B € HY(G, Fy) (cf. [19, Chap. I, § 4]). Thus,
H*(G,Fy) = | [H"(G Fo)
n>0
is a connected Ny-graded, graded-commutative, associative [F,-algebra.
For an Fy-vector space V, let T*V denote the F,-tensor algebra, i.e.,

V=[] TV where TV =V%" (4.1)
VIENO
The Ny-graded associative [F;-algebra A, is said to be generated in degree 1, if the canon-
ical homomorphism ¢,: T*A; — A, of Ny-graded associative Fy-algebras is surjective.
Moreover, A, is said to be quadratic, if it is 1-generated and ker(¢,) = (ker(¢2)), i.e., the
ideal ker(¢,) is generated in degree 2.

Definition 4.1 A pro-{ group G is said to be H*-quadratic if H*(G, F() is a quadratic
algebra.

For an Fy-vector space V, let A°V = T°V/(v® v | v € V) denote the exterior
F,-algebra spanned by V, and S*V = T*V/(v@w —w® v | ,w € V) denote the
symmetric Fy-algebra spanned by V. Then G is H*®-quadratic if the cup-product induces
an isomorphism of graded F,-algebras

E*HYG,Fo)/ (W) —> H*(G, Fy), (4.2)
where E® = A®if £ is odd, and E® = S°® if £ = 2. Moreover,
=2/7rl J 2
W = ker(c: (HY(G, Fy) -5 H2(G, m)). (4.3)

By the Norm Residue Theorem, if the field K contains a primitive £th-root of unity, then
the maximal pro-£¢ Galois group Gk () is H®-quadratic (cf. [21] or [26]).
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Remark 4.2 Let £ = 2 and let G be a pro-2 group. Then one has « U o« = 0 for every
o € HY(G, Fy) if, and only if, the map

HY(G,Z/4) — H'(G,Fy),

induced by the epimorphism of trivial G-modules Z/4 — F, is surjective (cf. [26,
Fact 7.1]). In particular, if (G, ) is a torsion-free Kummerian oriented pro-2 group, one
concludes that « Ua = 0 for all @ € H!(G, IF,). This is the case for (Gk(2), Ok 2), with K
a field containing /—1, i.e., H*(Gx (2), 1) is quadratic and also a quotient of the exterior
algebra A®*H' (G (2), F»).

Example 4.3 Let (G, 0) be torsion-free 6 -abelian oriented pro-£ group. Then G is a torsion
free powerful pro-¢ group (cf. [5, Chap. 4, § 1]), and
G ~limA; x im(9)
<«
iel

for finitely generated free abelian pro-£ groups A;. Thus by M. Lazard’s theorem (cf. [14])
one has A H'(G, Fy) (see, e.g., [26, Theorem 3.13]), and hence G is H*-quadratic.

4.2 Quadratic cohomology and the Bogomolov-Positselski property
Let (G, 0) be a torsion-free Kummerian oriented pro-¢ group. The short exact sequence
of pro-£ groups

{1} Ip(G) G G(9) {1} (4.4)

induces the 5-terms exact sequence in cohomology

.ol 1
mfGMG resg 1 G)

0 HY(G(0), F) HY(G, Fy) H\(I4(G), F) 6@

0,1
d2

H2(G(0), Fy) —2 H2(G, Fy)

e 4.5

(cf. [19, Proposition 1.6.7]). As (G, ) is Kummerian, one has Ip(G) = Ky(G) € &(G)
(cf. Pro_position 2.6(iv)). He_nce inf IG(G),  1s an isomorphism and resg’ 1(G) is the 0-map. As
(G(0),0) = (G, 0)/I(G) is O-abelian, one has

H*(G(6),F;) ~ A*HY (G, Fy) (4.6)

(cf. Example 4.3). If in addition G is H*®-quadratic, then H*(G,F,) is a quotient of
A*HY(G,Fy) (cf. Remark 4.2). In particular, the inflation map ¥* = inf'G(g),G induces
a surjective homomorphism of Ny-graded Fy-algebras

H*(G(0), Fy) ~ A*HY(G, Fy) — = H*(G, Fy) 4.7)
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satisfying
ker(y,) =~ ker(y2) A (A" 2HY(G,Fy)) foralln > 2. (4.8)

Since reslG X(G) is trivial, one concludes from 4.5 that dg’l is injective, im(dg’l) = ker(yr2),
and H2(G, Fy) ~ H2(G(6), Fg)/im(dg’l). Thus, as H*(G, IFy) is quadratic, one has

H*(G,Fy) =~ H*(G(6), F¢)/{im(dy")). (4.9)

4.3 A cohomological criterion

Let (G, 6) be a Kummerian torsion-free oriented pro-¢ group which is H®-quadratic. Let
(E%, d¥') denote the Hochschild—Serre spectral sequence with coefficients in F; associ-
ated to the short exact sequence (4.4), i.e.,

Ey' = HY(G(0), H' (19(G), Fr) = E¥, st20, (410

with differentials d¥*: ES* — E§+r,t_r+1 satisfying d, o d, = 0 (cf. [19, Chap. II, § 4]). In
particular, by (4.7) one has E;O ~ A*HY(G Fy). Fora € E;’O = H*(G(9),F¢), s = 0, and
B € Ey' = H'(Iy(G), F)?), one has

aUB e HGO), Fe ® H'(I4(G), Fy)) = E5,

(4.11)
d3' @u p) = (-1 e udy' () € B30
(cf. [19, Chap. II, Example 4.5]).

Proposition 4.4 Let (G, 0) be a torsion-free Kummerian oriented pro-£ group with G being
H*®-quadratic. Then

(i) E%! is concentrated on the Oth line, i.e., ES! = 0 for everys > O and t > 1;
00 00 Y
(ii) E;’O ~ E59 ~ H5(G, Fy) for every s > 0.

Proof Since (G, 0) is Kummerian, by (4.6) one has Eg’o ~ A*HY(G TFy). For every
t > 0 there exists a descending separating filtration (FKHY(G, F¢))o<k<: satisfying
FOHY(G,Fy) = H(G, Fy) and

FSH*(G, Fy)/FSH HP (G, Fy) ~ E% (4.12)

, where FSHHLHSH (G, Fy) = {0} (cf. [1, p. 99]). By [19, Chap. II, § 4, Example 1], the
composite of the maps

ES° = H%(G(6), Fp) E° . E3% H(G,Fp)
is the s-th left edge morphism (cf. [19, p. 99]) and hence coincides with the inflation map
inst(e)’G, which is surjective by (4.7). Thus FOH!(G,Fy) = H'(G, ) for all ¢t > 0, i.e,,
E(;’OO ~ H*(G, F,), and consequently Elo"ot = 0 for every 1 < k < t. This shows (i).
By (4.11), one has canonical homomorphisms of Ny-graded F,-algebras

o*: HY(G(0), Fo)/(im(dy")) — E3°,

0 (4.13)
% Ey° — H*(G, Fy).
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Moreover, 6® and t° are surjective, ok and ¥ are isomorphisms for k € {0, 1,2}, and
their composition is an isomorphism of quadratic F,-algebras by (4.9). Thus ¢® and t°
are isomorphisms which shows (ii). O

Let (G, 6) be a Kummerian torsion-free oriented pro-¢ group, and put Ky(G)*P =
Ky(G)/Ky(G)'. Recall that if K is a field containing a primitive fth-root of 1 and
(G,0) = (Gg(£), 0k ¢), then Kz(G)? is a free abelian pro-¢ group, as the oriented pro-
£ group (Ky(G), 8|k, (G)) is again Kummerian, and since 6|k, c) is trivial. The short exact
sequence of pro-£ groups

(1} — = Ky (G — = G/Ky(G) — = G(9) — {1}, (4.14)

where G(0) = G/Ky(G), defines a cohomology class u € H&S(G(G), Ky(G)2P) (cf. [19,
p. 143]), where Ky(G)? is considered as a topological left Z,[G(6)]-module and H
denotes continuous cochain cohomology (cf. [19, Chap. II, § 7]). Since [G, Ky (G)] € ®(G),
one has

Hom(Ky(G), F¢) = Hom(Kp(G), F)°® = EJL.
Thus, the pairing

Ko (G)*®® x EYt —> Ty,

(hKy(G)', B) —> B(h), for h € Ky(G),

induces a map
¢u: Ey' = H*(G(0), Hom(Ky(G), Fy) — Ey° = HY(G(0), Fr) (4.15)

given by ¢y, (o) = u U o (cf. [19, p. 114]).

Theorem 4.5 Let (G, 0) be a Kummerian torsion-free oriented pro- group with G an
H*-quadratic pro-£ group. Then the following are equivalent.

(i) (G, 0) has the Bogomolov—Positselski property;
(i) the differential map d%’lz E%’l — Eg’o ~ A*HY(G(8), Fy) is injective;
(iil) the map ¢, is injective, i.e., u U # O for every non-trivial o« € E%’l,

If these conditions hold, then the spectral sequence Eg’t = ES! collapses at the E3-page, i.e.,
E3 = Ex.
Proof By Proposition 4.4(ii), for every s > 0 one has E;,o ~ EZ’O ~ ... =~ E%9. Since, by
definition, Ei’o = E;,O / im(dgfs’z), one concludes that the maps

d53 B — B ~ HY(G, Fy)

must be the 0-maps for every s > 3. In particular, Eg’z = l<er(dg’2) is equal to E%2,
which is l<er(dg’2) by definition. As E¥' is a first-quadrant spectral sequence, one has
Ero’_fl = ker(d®?) and the map d%2: E®? — E"3~" = 0 is the 0-map for every r > 4. This

implies that Eg,z = Eg’z = ... = E%2. Thus, applying Proposition 4.4(i), yields
0= E2? = E9? = ker(dy?), (4.16)

ie., a’g’zz Eg,z — Eg’l is injective.
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Moreover, one has Eg’l = EZ’l = Egg)l, as Efil = l<er(dr2’1)/im(dr2””) and both maps

d*': 2! — EX2T =0 and 4P EXTT =0 — EX?

are the 0-maps for every » > 3. Applying Proposition 4.4(i) again yields
0=EX! = E2' = ker(dy") /im(dy?), (4.17)

ie, ker(dy') = im(d3?).

Thus, if (G, 0) has the Bogomolov—Positselski property, then Ip(G) = Kyp(G) is a free
pro-£ group. Then H!(Ky(G), F¢) = O for every ¢t > 2 (cf. [19, Proposition 3.5.17]), and
thus E** = Oforall r > 2and ¢ > 2. In particular, the map dg’zz H2(Iy(G), Fp)¢) — E22’1
is trivial, and hence by (4.17), one has ker(d%’l) = 0. This proves the implication (i)=>(ii).

Conversely, if d%’l is injective, then, by (4.17), one has im(dg’z) = l<er(d§’1) = 0. Since
d<2),2 is injective by (4.16), this implies that E(Z)’2 = H%(Iy(G), F)¢® = 0. Since G is a pro-¢
group, the equality H2(l4(G), Fe)¢@ = 0 implies that H2(Ig(G), F¢) = 0, and thus I5(G)
is free by [19, Proposition 3.5.17]. This proves the implication (ii)=(i). The equivalence
between (ii) and (iii) follows from [19, Theorem 2.4.4].

Finally, if I(G) is a free pro-£ group, one has Eﬁ’t =O0foralls >0,¢t >2,andr > 2.
Hence, all maps d;’t are trivial, for all s, £ > 0, so that E;’t =E3L. ]

Question 4.6 Let (G, 0) be a Kummerian torsion-free pro-£ group with G being an H*-
quadratic pro-£ group, and let (E¥%, d5%) be the Hochschild—Serre spectral sequence asso-
ciated to (4.4). By Proposition 4.4, for everys > 0 one has ES° ~ E%9,and ES! = Ofors > 0
and ¢t > 1. Moreover, by Theorem 4.5, if (G, ) has the Bogomolov—Positselski property,
then

E}f ~ES! foreverys t >0, (4.18)

ie., E¥* collapses at the E3-page. It would be interesting to understand whether (4.18)
implies the Bogomolov—Positselski property for (G, ). We suspect that the answer should
be affirmative. However, we could not find any evidence for this speculation.

Remark 4.7 Let K be a field containing a primitive ¢th-root of unity (and also v/—1 if
£ =2),putl = “VK and consider the torsion-free Kummerian oriented pro-£ group
(Gk(£), Ok ¢). The oriented pro-£ group (IéK,((G]K(E)), 1) is again Kummerian and torsion
free, and thus one has

I, ,(Gk(0) = Ki(GL() = G, (4.19)

()
K, (Gx)™ = GL(0™ = Gal( "VL/L) (4.20)

where the latter is a free abelian pro-£ group [cf. Example 2.7-(c)]. Hence, the short exact
sequence (4.14) translates into

{1} — Gal("VL/L) —= Gal(‘VL/K) —*= Gal(L/K) —= {1} .  (4.21)

Recall that by Kummer theory one has an isomorphism of (discrete) ¢-elementary
abelian groups H'(Gal( loz/i/L), Fe) ~ L*/(L*)¢, where L* = L ~ {0} denotes the
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multiplicative group of the field . Then by Theorem 4.5 the cohomology element
u € H2 (Gal(L/K), Gal( ”O«O/E/IL)) associated to the extension of pro-£ groups (4.21)

cts
induces a homomorphism
bur: H? (Gal(]L/K), ¥ /(LXV) — . H*(Gal(L/K), Fy)

which is injective if, and only if, L satisfies Conjecture 3.1. In view of Theorem 4.5, the
knowledge of the structure of .* /(I.¥)* as continuous Gal(IL/K)-module, or an arithmetic
interpretation of the map ¢, 1., may contribute to the solution of Conjecture 3.1.

5 Oriented pro-{ groups of elementary type

5.1 Demushkin groups and one-relator pro-£ groups

A Demushkin group is a Poincaré duality pro-£ group of dimension 2, namely, a pro-£
group G whose F;-cohomology satisfies the following conditions:

(i) dim(H(G,Fy)) < oo;
(i) H*(G,F) ~Fy;
(iii) cup-product induces a perfect pairing H'(G, F) x H(G, Fy) — H%(G, Fy);

(cf. [19, Definition 3.9.9]). Note that by condition (ii) such a pro-£ group G has a single
defining relation, namely, G may be defined as the quotient F/N of a free pro-£ group F
over a normal subgroup N C F generated as a normal subgroup of F by a single element
contained in ®(F) (cf,, e.g., [19, pp. 231-232]).

A Demushkin group comes equipped with a distinguished orientation 9g: G — Z;,
induced by the action of G on its dualizing module, described in [13, Theorem 4]. The
orientation dg: G — Z; is the only orientation which completes G into a Kummerian
oriented pro-£ group (G, 9¢g) (cf. [26, Proposition 5.2]). The oriented pro-£ group (G, 0¢)
enjoys also the Bogomolov—Positselski property.

Theorem 5.1 Let G be a Demushkin group, endowed with the canonical orientation
0g: G — ZZ, and suppose that im(0g) € 1+ 4Zy if £ = 2. Then the oriented pro-£
group (G, 0g) has the Bogomolov—Positselski property.

Proof Since (G, 0g) is Kummerian, by [26, Proposition 5.2], Proposition 2.6(iii) and
Remark 2.2, one has G/Is,(G) =~ ZI~! x Z, with d = dim(H'(G, Fy)). Therefore,
I5.(G) = Ko (G) is a subgroup of G of infinite index, and thus it is a free pro-£ group by
[29, § 1.4.5, Exercise 5(b)]. |

As mentioned above, Demushkin groups have a single defining relation. One may prove
the Bogomolov—Positselski property also for 1-relator pro-¢ groups G with quadratic ;-
cohomology which can be completed into a Kummerian oriented pro-¢ group (G, 1) with
a trivial orientation.

Proposition 5.2 Let G be a finitely generated pro-£ group with a single defining relation
such that

(i) H*(G,Fy) is a quadratic algebra;
(i) (G, 1) is Kummerian.

Then (G, 1) has the Bogomolov—Positselski property.
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Proof Since (G, 1) is Kummerian, the quotient G*® is a free abelian pro-£ group (cf.
Example 2.7(c)). We need to show that G’ = K1(G) = 1(G) is a free pro-¢ group.

Since G has a single defining relation, H>(G, Fy) ~ Fy (cf. [19, Corollary 3.9.5]). More-
over, since H*(G, Fy) is quadratic, H%(G,TFy) is generated by cup products x U ¢ with
X, ¥ € HY(G,Fy), so that the cup product from H(G, Fy) to H*(G, F) is not trivial (see
also [22, Proposition 4.2]). Consequently, [35, Corollary 2] yields a short exact sequence
of pro-¢ groups

{1} N G G {1}

which satisfies the following three properties: N is a free pro-£ group; G is a Demushkin
group; and for every subgroup S of G containing N, the inflation map

inf3 \ : H*(S/N, F¢) — H*(S,Fy) (5.1)

is an isomorphism (this last property is shown to hold in the proof of [35, Corollary 2]).

Since G is finitely generated, also G is finitely generated. Moreover, by (5.1) the inflation
map H%(G, Fy) — H?(G, ;) is an isomorphism, and thus by the five-terms exact sequence
(cf. [19, Proposition 1.6.7]) the restriction map

resg y: H' (G, Fe) — H'(N, F)®

is surjective. Since (G, 1) is Kummerian, and since reslG,N is surjective, [24, Theorem 1.2]
implies that also the oriented pro-£ group (G, 1) = (G, 1)/N is Kummerian. Hence, the
canonical orientation dg: G — Z,; must coincide with the trivial orientation 1 (cf. [26,
Proposition 5.2]). By Theorem 5.1, the oriented pro-£ group (G, 1) has the Bogomolov—
Positselski property, and thus K7(G)—which coincides with G’ —is a free pro-£ group.
Let S be the normal subgroup of G containing N such that S/N ~ G'. Thus, G/S ~ G/G’
is abelian, and therefore S © G’. By (5.1), one has H?(S/N, Fy) ~ H?(S, IFy), and the term
on the left-hand side is trivial as S /N is a free pro-£ group. Hence, also H2(S, F¢) = 0,and S
is a free pro-€ group (cf. [19, Proposition 3.5.17]). Since G’ € S, and cd¢(G’) < cd(S) =1,
G’ must be free (cf. [29, § 3.3, Proposition 14]). O

Remark 5.3 Let F be a finitely generated free pro-£ group, let r be an element of ®(F)
and let R denote the normal subgroup of F generated by r. Suppose that ¢ # 2. By [22,
Proposition 4.2] and Example 2.7(c), the pro-£ group G = F/R satisfies the conditions
(i)—(ii) in Proposition 5.2 if, and only if, » € F' and r ¢ FP - [F/, F].

5.2 Free constructions

By [8, § 3], the free product of two oriented pro-¢ groups (Gi, 61) and (Gpy, 62) is the

oriented pro-£ group (G, #) where G is the free pro-£ product of G1, G2, and 0: G — Z

is the orientation induced by 6, 6, via the universal property of G (see also [26, § 3.4]).
One may extend the above definition to free amalgamated pro-¢ products of oriented

pro-£ groups (we refer to [28, § 9.2] for the definition of free amalgamated pro-¢ products).

Definition 5.4 Let (G1, 61) and (G, 62) be two oriented pro-¢ groups such that G; and
G, have a common subgroup H C Gj, G satisfying 61|y = 63|y. The amalgamated pro-¢
product of oriented pro-£ groups of (Gi, 61) and (Go, #) with amalgamation in H is the
oriented pro-¢£ group (G,0) = (Gy,61) LIIZ; (Gy, 63), where G = G; LI;; G, is the free
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amalgamated pro-£ product of G; and G, over H, and 6: G — Z(X is the orientation
which makes the diagram

H—m—G
l °)

G, — 2 .G

()

commute.

Note that the morphisms ¢; and ¢, may not be injective (cf. [28, p. 369]). If they are,
the free amalgamated pro-£ product is said to be proper.

If H = {1}, then (G, 61) Hf;[ (Go, 62) coincides with the free product of oriented pro-¢£
groups. In this case we simply write (Gy, 61) G (Go, 6,), instead of (G1, 61) L[fl} (Go, 07).
Free products of oriented pro-¢ groups preserve Kummerianity (cf. [10, Proposition 7.5]).

Proposition 5.5 Let (G1, 61) and (Gy, 62) be two Kummerian oriented pro-£ groups. Then
the free product (G, 61) LI (Gy, 62) is again Kummerian.

We prove that—under certain conditions—if the free amalgamated pro-¢ product of
two Kummerian oriented pro-£ groups with the Bogomolov—Positselski property is again
Kummerian, then it has also the Bogomolov—Positselski property.

Theorem 5.6 Let (G1, 61) and (Gy, 62) be torsion free Kummerian oriented pro-£ groups
with the Bogomolov—Positselski property, with common finitely generated subgroup U =
G1N Gy suchthat 01|y = 02|y and that (U, 0yy) is O -abelian, where 0y = 6;|y fori =1, 2.
Suppose that

(i) the amalgamated pro-£ product (G, 0) = (G, 01) LI%I (Gy, 83) is Kummerian;
(ii) the restriction maps

res%;,Gi: HY(G,F)) » HY(G;, Fy) and res%;bu: HYG;, Fp) > HY (U, Fy)
are surjective for both i = 1, 2.

Then (G, 0) has the Bogomolov—Positselski property.

Remark 5.7 (a) If U in the statement of Theorem 5.6 is the trivial group, then (G, 0) is
the usual free product of oriented pro-¢ groups, and the two conditions are satisfied
by (G, 0). For condition (i), see Proposition 5.5, and condition (ii) is trivially satisfied.
Hence, the Bogomolov—Positselski property is preserved by free products of oriented
pro-£ groups.

(b) By duality, for i € {1, 2} the map reslG) Gy respectively the map reslGi’ s surjective if,
and only if, the map i;: G;/®(G;) — G/P(G) induced by the inclusion ¢;: U — G;,
respectively the map iy;;: U/P(U) — G;/P(G;) induced by the inclusion t7;: U —
G;, is injective.

Proof By [21, Theorem A], U is a uniformly powerful pro-£ group, and therefore [25,
Proposition 5.22] implies that G = G; Hfl G, is a proper amalgam. Moreover, by hypoth-
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esis one has the monomorphisms of £-elementary abelian groups i; and I;;, withi = 1,2
[cf. Remark 5.7(b)]. Hence, also iy = I; o iyy;: U/P(U) — G/P(G) is injective for both
i=1,2.

Let t;7: U < G be the inclusion of U in G, and for i = 1, 2, set

Yu =1y 0w U — GO) = G/Ky(G),
Yi =& 011 Gi —> G(0) = G/Kp(G).
Then

ker(yyy) = U NKy(G) and ker(y;) = G; N Ky(G). (5.2)
Now consider the commutative diagram

5.3

u/oU)
7

U = ~u1 G G1/9(Gy) -
xlui v il"\L" \‘//1 \Zl\ ' 1
ab\ ~

&= G(0) — G/P(G)

Nl e

Gy — Go/®(Gr)

where the dotted arrow from U to G(6) is ;. By Remark 2.4, the oriented pro-£ groups

(Am (Y1), 0 lim(yy)) and (im(;), Olim(y;)) are 6 lim(y,,)- and 0im(y,)-abelian, respectively. In
particular,

ker(v;) 2 Ip,(G;) = Ky,(G)), (5.4)

where the left-hand side inclusion follows by Proposition 2.3, and the right-side equality
follows by Proposition 2.6(iv), as (G;, 6;) is Kummerian for i € {1, 2} by hypothesis. Conse-
quently, the pro-£ groups im(v;;) and im(v;) are torsion-free, so that ker(y¢) and ker(v;)
are self-isolated subgroups of U and G; respectively. On the other hand, by duality one
has ker(y;) € ®(U) and ker(y;) € ®(G;), as the maps ;7 and i; are injective. Altogether,
by (5.2) and (5.4) one has

Ko, (U) ={1} CUNKH(G) € ®(UU) and Ky (G;) € G; NKy(G) € P(G)),
and thus {1} = U N Ky(G) and Ky,(G;) = G; N Kyp(G) by Proposition 3.6.
Now, let 7 = (¥ (7)), &(T)) be the pro-£ tree whose vertices and edges are given by
V(T)={gG1,¢G> | g€ G) and &(T)={glgl|geG),

respectively. In particular, every edge gl € &(7) defines an origin, the G1-coset gG; and
a terminus, the Gy-coset gG,. For g_L[ € &(7) the roles of the terminus and origin are
interchanged. Then 7 is a second countable pro-¢ tree, with a natural G-action (cf. [27,
Example 6.2.3]). Forv = gG; € ¥ (7)and e = hll € &(7T), withgh € Gand i € {1,2},
let K, and K, denote the stabilizers of v and e in Ky(G), respectively. Hence

K, ={x € Ky(G) | xg € gG;} = Kp(G) NgGig~},
Ke ={x € Ky(G) | xh € hll } = Kg(G) N huh™ ™.
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Since Ky(G) is a normal subgroup of G, for every v = gG; € ¥(7) the subgroup K,
is isomorphic to Kg(G) N G; = Kp,(G;), which is free by hypothesis; while for every
e = hll € &(7) the subgroup K is equal to {1}, and hence no non-trivial element
of Ky(G) stabilizes an edge. Therefore, by [16, Theorem 5.6], Ky(G) has the following
decomposition as free pro-£ product:

Ky(G) = (]_[ Kv> UF, (5.5)

vey’

for some subset ¥ of ¥ (7'), where F is a free pro-£ group. Hence Ky (G) is the free pro-¢
product of free pro-£ groups, and thus it is a free pro-£ group as well. O

Example 5.8 Let (Gy, 01) and (Ga, 62) be the oriented pro-£ groups with
— _ X 1L . ~ 72

G1—<x;y1;y3 | [yl;y3]—1: }’1—}’] B V]€{113}>—ZZ NZ@)

Gy = <x,y2,y3 | Daysl =1 %=y Ve {2,3}): 72 % Zy,

and such that 9;(x) = 1 + £ and 0;(y;) = 0;(y3) = 1 for both i = 1, 2. By Remark 2.2, these
two oriented pro-£ groups are respectively 01 - and 62-abelian. Set I = G; N Go—i.e. U is
the subgroup generated by «, y3. Clearly, 61|y = 62|17, and

(L 0;|lu) = (y3) x ({(x),0il(x)) forbothi=1,2,

which is 6;|;/-abelian by Remark 2.4. Moreover, it is straightforward to see that the maps
iyi: U/d(U) — G;/D(G;) are injective for both i = 1, 2. Now let (G, 0) be the oriented
pro-£ group (Gy, 01) LI{I (G, 62). Then

G=(myumys | buysl =baysl =1y =y Vie(1,23))

and 6(x) = 1+ ¢, 6(y;) = 1 forj = 1, 2, 3. Moreover, one has an epimorphism of oriented
pro-£ groups 7: (G, 8) — (G, @), where

G = <5C;5/1;J-/2;513 | [5/])5/]’] = 1; 5651] 2511‘1+[: Vj)j/ S {1: 2} 3} > = Z% X Z(}

and ¥ = t(x), jj = 1(y;) for j = 1,2,3. By Remark 2.2, (G, ) is f-abelian, and thus
ker(z) 2 Iy(G) by Proposition 2.3. On the other hand, it is straightforward to see that
®(G) 2 ker(r), and hence (G, 8) is Kummerian by Proposition 2.6-(vi). Since (G1, 61) and
(Go, 62) have the Bogomolov—Positselski property by Example 3.4-(a), Theorem 5.6 implies
that also (G, 6) has the Bogomolov—Positselski property. Observe that G is H*®-quadratic
(cf. [25, Remark 5.25-(c)]).

5.3 Pro-£ groups of elementary type
Let (G, 0) be an oriented pro-£ group, and let A be a free abelian pro-¢ group. Recall that
the semidirect product A x (G,60) = (A x G, 0 o ) is the oriented pro-£ group where
gag ' =a’@ foralla e Aandg € G,and 7: A x G — G is the canonical projection (cf.
(8, § 3]).

The following is straightforward (cf., e.g., [10, Proposition 3.6]).

Proposition 5.9 Given an oriented pro-£ group (G, 0) and a free abelian pro-£ group A,
one has Kyor (A X G) = Ky(G). In particular, A x (G, 0) is Kummerian if, and only if, (G, 0)
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is Kummerian; and A x (G, 0) has the Bogomolov—Positselski property if, and only if, (G, 0)

has the Bogomolov—Positselski property.

The family ET, of oriented pro-¢ groups of elementary type is the smallest class of

finitely generated oriented pro-£ groups satisfying (cf. [8, § 3])

(a)
(b)
(c)

(d)

the oriented pro-£ group (G, 9g), with G a Demushkin group, is of elementary type;
the oriented pro-¢ group (Zy, 6), with 6: Zy — Z arbitrary, is of elementary type;
if the oriented pro-£ group (G, 6) is of elementary type and A is a finitely generated
free abelian pro-£ group, then also the semidirect product A x (G, 6) is of elementary
type;

if (G, 61) and (Gp, 67) are oriented pro-¢ groups of elementary type then also the free
pro-¢ product (Gy, 61) G (Ga, 62) is of elementary type.

Remark 5.10 (a) In the original definition of oriented pro-2 groups of elementary type

(b)

one has that also the cyclic group C; of order 2, endowed with the non-trivial orienta-
tionfc,: Cy — {£1} C ZJ,isa pro-2 group of elementary type (cf. [8, p. 242]). Since
our results always assume oriented pro-¢ groups to be torsion-free, we may safely
exclude (Cy, ¢,) from the above definition of oriented pro-£ groups of elementary
type.

From the results in [26, § 3.3—3.4], one may deduce that a finitely generated subgroup
H of an oriented pro-¢ groups of elementary type (G, 6) gives rise to a pro-£ groups
of elementary type (H, 0|x).

If (F, 0) is a torsion-free oriented pro-¢ group with F a finitely generated free pro-£
group and 0: F — Z; any orientation, then (F, 0) is of elementary type. Indeed, if
0 = 1, then (F, ) is isomorphic to the free pro-£ product of d copies of the oriented
pro-£ group (Zy, 1), where d is the minimal number of generators of F. Otherwise,
im(#) ~ Z;, and the short exact sequence of pro-£ groups

{1} ker(0) F im(0) —— {1}

splits. In this case, let {x1, ..., x4} be a minimal generating set where 6(x;) # 1 and
O(x;) = 1 for i > 2, and let H be the subgroup of F generated by {xy, . .., x4}, which
is free. Then, (F, 0) ~ (H, 1) g (im(0), idim(g)), where both factors are oriented pro-¢
groups of elementary type.

From Example 2.7-(b), Sect. 5.1, and Propositions 5.5 and 5.9, one concludes that ori-

ented pro-£ groups of elementary type are Kummerian. I. Efrat’s Elementary Type Con-
jecture states that if K is a field containing a primitive £th-root of 1 (and also v/—1if £ = 2)
and if the maximal pro-¢ Galois group G (¢) is finitely generated, then (G (£), fx ¢) is of
elementary type (cf. [6,7], see also [15, § 10] and [26, § 7.5]).

Example 5.11 The oriented pro-£ group (G, 0) as in Example 5.8 is not of elementary type.

Indeed, the subgroup of G generated by {x, y1, y2} contains a finitely generated subgroup

which does not complete into a Kummerian oriented pro-¢ group (cf. [24, Example 5.3])—

in particular, G does not occur as the maximal pro-¢ Galois group of a field containing a
primitive £th-root of unity (and also «/—1 if £ = 2). Therefore, (G, 0) is not of elementary
type by Remark 5.10-(b).
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Theorem 5.12 Let (G, 0) be an oriented pro-£ group of elementary type. Then (G, 0) has
the Bogomolov—Positselski property.

Proof 1f G is a free pro-£ group, then (G, 6) has the Bogomolov—Positselski property by
Example 3.4-(a). If G is a Demushkin group and § = 0g, then (G, 9g) has the Bogomolov—
Positselski property by Theorem 5.1.

By Proposition 5.9, if (G,0) = A x (Go, 0]g,) where A is a free abelian pro-¢ group
and the right side factor is an oriented pro-{ group of elementary type, then (G, 6)
has the Bogomolov—Positselski property—provided that (G, f|g,) has the Bogomolov—
Positselski property.

Finally, by Theorem 5.6, if (G, 6) = (G, 61) wt (Gy, 63) and both (Gy, 61) and (G, 6,)
have the Bogomolov—Positselski property, then also (G, 0) has the Bogomolov—Positselski
property. O

Let K be a field containing a primitive £th-root of unity, and set K* = K ~ {0}. Since
Kummer theory yields an isomorphism of (discrete) ¢-elementary abelian pro-£ groups
HY(Gg(€), )Y ~ K*/(K*)¢, the pro-¢ group G (¢) is finitely generated if, and only if,
the quotient K* /(K*)* is finite. One has the following (see [17, Theorem D], and [9] for
item (f)).

Proposition 5.13 LetK be a field containing a primitive £th-root of 1 (and also /-1 if¢ =
2), such that the quotient K* /(K*)¢ is finite. Then the oriented pro-£ group (Gx (£), Ok ¢)
is of elementary type in the following cases:

(a) Kis finite;

(b) Kisapseudo algebraically closed (PAC) field, or an extension of relative transcendence
degree 1 of a PAC field;

(c) Kis an extension of transcendence degree 1 of a local field,

(d) Kis£-rigid (cf [32, p. 722], see also [4, § 3]);

(e) Kisalgebraic extension of a global field of characteristic not ¢;

(N K =Kk(T), where (Gk(£), Ok ¢) is of elementary type.

Corollary 1.3 follows from Theorem 5.12 and Proposition 5.13.
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