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Summary

A new proliferation of optical instruments that can be attached to towers over or within

ecosystems, or ‘proximal’ remote sensing, enables a comprehensive characterization of

terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal

remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes,

and airborne and spaceborne remote sensing by providing continuous data at a

high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing

for improving our mechanistic understanding of plant and ecosystem processes, model

development, andvalidationof current andupcoming satellitemissions.Weprovide current best

practices for data availability and metadata for proximal remote sensing: spectral reflectance,

solar-induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR.Our

paper outlines the steps necessary for making these data streams more widespread, accessible,

interoperable, and information-rich, enabling us to address key ecological questions

unanswerable from space-based observations alone and, ultimately, to demonstrate the

feasibility of these technologies to address critical questions in local and global ecology.

I. Introduction: why proximal remote sensing?

Our ability to anticipate and plan for future changes to the climate
system depends on a mechanistic understanding of water, energy,
and carbonfluxes in terrestrial ecosystems.Global understandingof
these fluxes is made possible by scaling up insights from local or
site-level research to answer the grand challenges in global ecology
(Schimel et al., 2019): what is the primary productivity of the globe
and how is it controlled?; how much carbon does the biosphere
store and how could it change?; how does direct human
exploitation of the biosphere affect productivity and carbon
storage?; what is the biological diversity of the world and how does
it affect the function and stability of ecosystems?

Site-level research, primarily from towers using the
eddy-covariance technique, has enabled considerable insight into
the past, present, and future status of ecosystem fluxes and their
environmental sensitivities (Baldocchi, 2020; Baldocchi
et al., 2024). However, eddy-covariance measurements are limited
in their spatial extent, over-sample some biomes (e.g. temperate
forests and agriculture) and under-sample others (e.g. drylands,
tropical forests, and boreal forests), are often short-lived (with
relatively few sites providing multiple decades of measurements),
provide area-averaged estimates across the tower footprint, are
restricted to flat terrain, and are subject to gaps and uncertainties
associated with data processing (Hollinger & Richardson, 2005;
Mauder et al., 2013; Chu et al., 2021; Villarreal & Vargas, 2021).
Remote sensing offers a means for upscaling and gap-filling

eddy-covariance data, and for quantifying and monitoring
biological processes that drive observed fluxes. To appropriately
scale remote sensing data to the satellite and address major
questions in global ecology, site-level data are needed.

Although space-based observations hold great potential for
understanding ecosystems (Stavros et al., 2017; Schimel
et al., 2019), the ecosystem dynamics controlling global change
biology often occur at spatiotemporal scales that are not well
captured by satellites due to their inherently limited spatiotemporal
resolution (Jantol et al., 2023). Recent work has shown a rapid
decrease in information content from multi-spectral and thermal
imagery going from a1- to 5-d revisit time, with thermal data losing
up to c. 80% of information content at a 6-d revisit
(Cawse-Nicholson et al., 2022). Even with a 1-d revisit time,
many of the aforementioned ecosystem processes happen at a
sub-daily timescale, and information gain is projected to increase
with sub-daily data acquisition (Cawse-Nicholson et al., 2021,
2023). Furthermore, the spatial averaging that occurs with
space-based observations obscures heterogeneous ecosystem com-
ponents of observed fluxes and processes. Aircraft- andUAV-based
assessment of ecosystem dynamics allows a more detailed spatial
view than traditional satellites (Maguire et al., 2021; Berger
et al., 2022) and has shown utility for algorithmic development
particularly when paired with coordinated field campaigns
(Chadwick et al., 2020). However, aircraft remote sensing can be
costly, and infrequent overpasses can undermine its ability to
resolve temporal uncertainties in space-based remote sensing.
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Temporal uncertainties may be partially overcome with repeat
UAV-based assessment, which has undergone significant advance-
ments in the past several years, although this type of assessment is
highly time-intensive. Thus, in order for remote sensing to resolve
these grand challenges in ecology (Schimel et al., 2019) we must
resolve spatiotemporal gaps, quantify errors and uncertainties, and
develop new algorithms which draw mechanistic ties between
observed remote sensing signals and biologic processes (Pierrat
et al., 2024a).

Tower-mounted remote sensing (hereby referred to as proximal
remote sensing) provides relatively low-cost, high spatial, temporal,
and spectral resolution measurements that enhance the capabilities
of space- and airborne sensors at the site level, enabling a more
direct link to co-located eddy-covariance measurements
(Gamon, 2015). Proximal remote sensing can be used to develop
new remote sensing methods, validate satellite measurements and
products (Parazoo et al., 2019), drive and test the representation of
ecosystem processes in models (Raczka et al., 2019), reveal spatial
heterogeneity in fluxes within individual eddy-covariance tower
footprints (Chu et al., 2021) and scale site-level measurements to
the landscape seen by spaceborne instruments (Farella et al., 2022)
– providing unprecedented insights into the physical, biological,
and species-specific processes that drive ecosystem fluxes.

Here, we review five different types of proximal remote sensing
that cover ecosystem structure, composition, and function: visible-
to-shortwave infrared (VSWIR) spectral reflectance, solar-induced
chlorophyll (Chl) fluorescence (SIF), longwave thermal infrared
radiation (TIR), microwave backscatter, and light detection and
ranging (LiDAR) (Fig. 1; Section II). Alone or synergistically
(Section III), these data have the potential to resolve three key
questions necessary to advance global ecology:
(1) What is the scale dependence (spectral, spatial, and temporal)
of ecological processes and fluxes?
(2) What are the underlying physical and biological drivers of
observed remote sensing signals?
(3) How can new technologies, synergies, algorithms, and models
developed at the site advance our understanding of global ecology at
scale?

Answering these questions hinges on the community’s ability to
develop proximal remote sensing networks that will support
ecosystem and flux science, existing and upcoming satellite
missions, and model development and validation (Section IV).
Despite the importance and utility of proximal remote sensing
data, there remains a significant barrier to entry for researchers to
collect and exploit these data and thus an urgent need for
democratization and standardization of proximal remote sensing
products (Section V). While attempts have been made to
coordinate proximal remote sensing data streams (Gamon
et al., 2006, 2010; Balzarolo et al., 2011; Rasaiah et al., 2013;
Gamon, 2015), these efforts have been encumbered by a lack of
consistent funding, an absence of suitable data standardization and
archiving protocols, insufficient incentive for individual participa-
tion, and have remained limited in their locational extent
(primarily individual sites in the United States, Europe, and
Australia). With new and upcoming satellite missions enabling
multi-sensor studies and further insight into plant function

(Stavros et al., 2017; Schimel et al., 2019), the time is right to
enable community-led initiatives toward these goals and to align
these initiatives with intergovernmental and commercial aircraft
and satellite programs. The eddy covariance and remote sensing
communities can leverage momentum from the AmeriFlux Year of
Remote Sensing initiative, including lessons learned from
the international FLUXNET network coordination (Pastorello
et al., 2020), and the broader push toward open and equitable
science to develop such a network (Ramachandran et al., 2021). To
this end, we provide interested readers with practical recommenda-
tions for data collection, including best practices, technical
considerations, and sample metadata (Supporting Information
Notes S1, S2) for different instrument types (Tables S1–S3) and to
facilitate data access, we have compiled resources where readers can
access existing data streams (Notes S3; Tables S4, S5).

II. Ecological applications of proximal remote sensing

1. Ecosystem structure and function with
visible-to-shortwave infrared spectral reflectance

Spectral reflectance remote sensing is the passive detection of
reflected solar radiation in the VSWIR (c. 400–2500 nm) range
(common instruments in Table S1). Spectral reflectance is most
commonly linked with eddy-covariance-based gross primary
productivity (GPP) using the light use efficiency (LUE) model
(Monteith, 1972; Gamon, 2015). Under this model, GPP is
defined as:

GPP= PAR � f PARchl � LUEP Eqn 1

where PAR is the photosynthetically active radiation, f PARchl is the
fraction of that light absorbed by Chl, and LUEP is the LUE of
photosynthesis (i.e. the fraction of the absorbed light which is used
for photosynthesis). Based on this model, remote sensing metrics
that are sensitive to f PARchl (which is a function of canopy
structure and Chl content) or LUEP (which is a function of the
regulation of light energy by plants, typically modulated by
pigment concentrations) are particularly useful. Metrics to
approximate f PARchl and LUEP have been developed based on
the dynamic shape of plant spectral reflectance (Fig. 1) and its
sensitivity to changes in plant pigment concentrations. Tradition-
ally, wavelength regions have been combined using two or more
spectral channels to produce a vegetation index (reviewed in Inoue
et al., 2008; Zeng et al., 2022) although more complex techniques
are emerging. Importantly, all these parameters (PAR, f PARchl,
and LUEP) are highly temporally dynamic. Thus, spectral
responses to changes in pigment, water, or other biochemical
concentrations are often developed at a proximal level to draw a
more mechanistic connection between changes in plant traits,
states, and functions and their spectral response. This type of
proximal sensing has the additional benefit of helping us under-
stand the spatiotemporal scale dependence of these processes.

Reflectance in the near-infrared (NIR) region is primarily
sensitive to plant biophysical properties, including leaf thickness,
density, leaf angle distribution, and mesophyll structure (Fig. 1) –
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enabling remote sensing inferences into canopy structure, leaf area
index (LAI), and biomass, all of which modulate fPARchl

(Tucker, 1979; Slaton et al., 2001; Myneni et al., 2002; Yang
et al., 2023). The red-edge transition region between VIS and NIR
(c. 700–750 nm) is also sensitive to subtle changes in Chl
concentrations (Gitelson et al., 2002, 2003, 2005), which
additionally modulates f PARchl and can be linked to canopy
nitrogen (Magney et al., 2017). NIR-based metrics tend to track

GPP well over the seasonal cycle at sites where LAI, biomass, and
Chl content tend to co-vary with GPP, such as annual well-watered
crops, deciduous forests, and grasslands (Baldocchi et al., 2020;
Dechant et al., 2020; Lin et al., 2022). These observations are
consistent fromproximal to spaceborne scales (Badgley et al., 2019;
Baldocchi et al., 2020), as these structural traits are expected to vary
more slowly through time, but can be heavily influenced by viewing
and solar geometries throughout the day –which can be thoroughly
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investigated at the site scale with proximal remote sensing (Hilker
et al., 2008).

In ecosystems where changes in physiology are decoupled from
changes in structure, such as evergreen forests (Magney et al., 2019;
Z. Pierrat et al., 2022) and dry mixed grasslands and shrublands
(Wang et al., 2022), NIR-based reflectance is typically insufficient
for capturing rapid changes in plant function. Monitoring changes
in the VIS region with proximal remote sensing therefore enables
estimation of plant pigments and biochemical changes related to
plant regulation of light energy (LUEP), which can change
dramatically from sub-daily to seasonal time scales (Garbulsky
et al., 2011; Cheng et al., 2020; Seyednasrollah et al., 2020). A
prime example is the Photochemical Reflectance Index (PRI),
which is sensitive to xanthophyll pigment conversion states, which
regulate plant photoprotection and thus modulate LUEP (Gamon
et al., 1992, 1997). While PRI has been shown to be effective for
tracking short-term (diurnal) changes in LUEP, it is confounded by
longer-term (constitutive) changes in pigments (Garbulsky
et al., 2011; Wong & Gamon, 2015). To account for
longer-term changes in carotenoid pigments, the Chl: Carotenoid
Index (CCI) has shown promise at proximal (Wong et al., 2020;
Z. A. Pierrat et al., 2022, 2024b) and satellite (Gamon et al., 2016)
scales.

Plant water status can also change over the course of a day and be
estimated using reflectance in the longer wavelengths of the NIR
and SWIR regions, which are characterized by water absorption
features (c. 970, 1400 and 1900 nm) (Gao&Goetz, 1994; Sims&
Gamon, 2003). Additionally, empirical estimates of plant lignin,
cellulose, proteins, nutrients, and phenolics have been achieved in
the SWIR region (Curran, 1989; Ceccato et al., 2001; Kokaly &
Skidmore, 2015), but limited research has been done linking
tower-based SWIR to canopy processes.

Recent work has developed new approaches to predict plant
traits, states, and functions, such as photosynthesis (Dechant
et al., 2017; Meacham-Hensold et al., 2020), pigments (Cheng
et al., 2020), stomatal conductance (Wong, 2023), disease
(Zarco-Tejada et al., 2018; Gold et al., 2020), leaf nitrogen,
carbon, calcium, sulfur, phosphorus, sugars, starches, leaf mass per
area, and leaf water content (Ely et al., 2019; Z. Wang et al., 2020;
Burnett et al., 2021; Féret et al., 2021; Verrelst et al., 2021;
Tagliabue et al., 2022). These new approaches use the entire
spectrum and physically based (i.e. inversion of radiative transfer
models (Pacheco-Labrador et al., 2019)), machine learning, and

statistical (e.g. principal component analysis, partial least squares
regression, neural networks, and random forests) or hybrid
approaches. These new methods may be scaled to space-based
applications, but proximal data are needed to help disentangle noise
due to background influence, mixed pixels, and limitations in
temporal resolution.

Beyond plant structure and function, hyperspectral reflectance
data can identify species and biodiversity, which can be helpful for
understanding species composition at sub-satellite pixel scales
(Ballanti et al., 2016; Wang & Gamon, 2019; Cavender-Bares
et al., 2020; Gholizadeh et al., 2022; Kamoske et al., 2022).
Notably, biodiversity is highly scale-dependent (Cavender-Bares
et al., 2020; Gonzalez et al., 2020; Gamon, 2023). Thus, research
focused on scaling remotely sensed biodiversity measures will
considerably advance our ability to track biodiversity in space and
time, and is enabled by high-resolution proximal remote sensing
data (Ustin & Gamon, 2010; Chase et al., 2018). Understanding
biodiversity and species composition within a flux tower footprint
enables both a better understanding of contributions to the flux
signal, as well as the relationship between system functional
diversity and productivity (Gamon, 2023). Due to the high-
spatiotemporal resolution of these processes, these understandings
would not be possible with spaceborne remote sensing alone and
can help interpret spaceborne observations.

2. Carbon fluxes and plant health with Solar-induced
fluorescence

Solar-induced Chl fluorescence is a weak light signal emitted in the
red andNIR (650–850 nmwith two peaks at 687 nm and 740 nm)
during the light reactions of photosynthesis when excited Chl
molecules return to their ground state. Because of the direct link
to leaf physiology, SIF is typically used as a proxy for eddy-
covariance-derived GPP (Frankenberg & Berry, 2017; Porcar-
Castell et al., 2021) and can be expressed similarly to the LUE
model of photosynthesis. Canopy level SIF is commonly expressed
as:

SIF= PAR � f PARchl � φF � f esc Eqn 2

where PAR is the photosynthetically active radiation, f PARchl is the
fraction of light absorbed byChl,φF is the yield of fluorescence (i.e.
the fraction of the absorbed light which is re-emitted as

Fig. 1 Overview of proximal remote sensing instruments at a flux tower site. Shown are three eddy-covariance towers with sonic anemometers collecting
data to derive ecosystem fluxes. Shown for spectral reflectance and solar-induced fluorescence (SIF) is a hyperspectral sensor with a narrow field-of-view
(FOV) and multi-directional scanning capabilities (Sections II.1 and II.2). We also show the direct emission of SIF from the forest canopy (Section II.2). For
thermal infrared radiation, we show a fixed thermal camera and thermal radiation coming from the canopy (Section II.3). For microwave, we show two
potential arrangements with antenna A receiving direct signals from under open-sky conditions as well as signals that are reflected from the underlying
vegetated surface, and antenna B receiving a direct signal that is propagated downward through the vegetation canopy and attenuated by its moisture
content (Section II.4). We also show a light detection and ranging (LiDAR) instrument emitting light to get a 3D representation of canopy structure
(Section II.5). Above the forest are a drone, aircraft, and satellite to emphasize the potential of proximal remote sensing to complement observations across
scales. In the inset plot, we show sample reflectance spectra for vegetation and wet soil and highlight key wavelength ranges for spectral reflectance. We
also show typical SIF retrieval windows and LiDAR emission windows. Next to the reflectance spectra, we show sample radiance in the thermal infrared
region, with example spectra for warm soil and cool vegetation. Finally, we show key measurement wavelength bands for microwave backscatter. Created
in BioRender. Pierrat, Z. (2025) https://BioRender.com/z36d893.
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fluorescence), and fesc is the fraction of emitted SIF photons that
escape the canopy to be detected by a sensor. These drivers all have
spatiotemporal scale dependencies that can go unresolved with
spaceborne remote sensing.

While satellite remote sensing of SIF has revealed strong
correlations between SIF and GPP at eddy-covariance sites across
the globe (Guanter et al., 2014; Sun et al., 2017), proximal SIF data
have illuminated nuance in the SIF–GPP relationship and shed
light on the mechanisms influencing their relationship (current
available data in Table S4). SIF andGPP share the common drivers
of PAR and f PARchl, which can explain part of the strong
covariation between SIF and GPP at spaceborne scales or in
ecosystems where canopy structure and productivity are tightly
coupled, such as crops (Dechant et al., 2020). Depending on the
spatiotemporal scale, φF and the yield of photosynthesis (φP, leaf-
level LUEP) may not always co-vary, leading to divergence in the
SIF-GPP relationship (Magney et al., 2020; Pierrat et al., 2024b).
In particular, tower-scale SIF has identified and mechanistically
explained divergence during periods of heat stress (Wieneke
et al., 2018;Wohlfahrt et al., 2018;Martini et al., 2022), cold stress
(Z. Pierrat et al., 2022), drought or water stress (Buddenbaum
et al., 2015; Butterfield et al., 2023), high VPD (Paul-Limoges
et al., 2018), high light (Miao et al., 2018; Kim et al., 2021), and
induced stomatal closure (Marrs et al., 2020). Recent proximal SIF
data have shown and explained linear and nonlinear relationships
between SIF and GPP dependent on temporal resolution of the
data across a variety of ecosystems (Paul-Limoges et al., 2018; Chen
et al., 2022; Z. Pierrat et al., 2022; Buareal et al., 2024).

Despite these nuances, SIF and photosynthesis are mechan-
istically linked through both shared drivers (PAR and f PAR) and
photosynthetic links between φF and φP. Proximal remote sensing
data have provided evidence that φF and φP co-vary over coarse
spatiotemporal scales, which strengthens the relationship between
SIF and GPP (Magney et al., 2020; Z. A. Pierrat et al., 2022,
2024b). Thus, by scaling up insights and foundational relation-
ships made at the proximal level to spaceborne data, SIF has a wide
variety of applications.

Proximal SIF can be used to understand ecosystem carbon fluxes,
track GPP across both seasonal and diurnal scales, and draw more
mechanistic linkages between observed SIF and biophysical
properties controlling the observation (Yang et al., 2015, 2017;
Rossini et al., 2016;Magney et al., 2019; Z. A. Pierrat et al., 2022).
Proximal SIF has also been used to tie plant carbon uptake with
heat/energy dissipation dynamics under cold temperature and light
stress by directly comparing proximal SIF to leaf pigment samples
within the field of view of the instrument (Magney et al., 2019;
Raczka et al., 2019), an application that is not possible with the
coarse spatial resolution of spaceborne SIF data. Although
indirectly, SIF can also be used to understand water fluxes and
has been used to detect and model transpiration (Lu et al., 2018;
Shan et al., 2019, 2021; Pierrat et al., 2021; Nehemy et al., 2023).
To this end, proximal SIF data can be paired with sap flux or stem
radius measurements to more directly tie remote sensing signals
with specific water flux or carbon accumulation processes. Early
stress detection from heat or drought is also possible with SIF data
(Middleton et al., 2011; Ač et al., 2015; Berger et al., 2022; Geng

et al., 2022; Martini et al., 2022; Parazoo et al., 2024). Finally,
because the SIF signal is sensitive to the light reactions of
photosynthesis, SIF has the potential to be used in alternative
partitioning approaches to separate net ecosystem exchange (NEE)
into GPP and ecosystem respiration (Reco), which would require
proximal SIF to match the spatiotemporal resolution of flux data
(Kira et al., 2021; Zhan et al., 2022).

3. Temperature dependent processes with thermal infrared
radiation

Thermal infrared radiation sensors measure thermal energy in the
8–14 μm range (common instruments in Table S2). This energy
includes emissions from the target, reflections from the target, and
energy attenuated by the atmosphere along the path between the
sensor and the target (Aubrecht et al., 2016; Johnson et al., 2021).
Once corrections are applied to isolate the emitted radiation from
the object of interest (see Notes S1.3), TIR sensors can be used to
retrieve surface temperature using the Stefan–Boltzmann law:

M = ε� σ � T 4 Eqn 3

where M is emitted TIR, ε is the target’s emissivity (unitless, on
a scale from 0–1), σ is the Stefan–Boltzman constant
(σ= 5:670374419 . . .� 10�8 Wm�2K�4), and T is the target’s
temperature in Kelvin (K, Aubrecht et al., 2016). Target emissivity
varies with species and ontogeny (Ribeiro da Luz&Crowley, 2007;
Richardson et al., 2021) and cannot always be easily resolved at
large pixel sizes – particularly for mixed pixels. To that end,
sampling at a finer spatial scale with proximal (Chen, 2015;
Johnson et al., 2021) or airborne (Meerdink et al., 2019) remote
sensing of individual surfaces having different emissivities is
helpful.

Leaf and plant temperatures both regulate plant function (e.g.
respiration and photosynthetic rates) and are regulated by plant
function (e.g. evaporative cooling of the leaf surface); therefore,
temperature variations within an image or across time generate
insights into eddy-covariance data (Farella et al., 2022). Proximal
TIR data can be used to estimate individual tree transpiration using
the PT-JPL algorithm (Fisher et al., 2008) and show good
agreement between TIR-derived and eddy-covariance latent heat
fluxes (Javadian et al., 2024). This application can reveal
interspecies vulnerability to environmental stressors beyond what
is observable with eddy-covariance data alone and has the potential
to improve and inform energy balance closures and the partitioning
of evaporation and transpiration (Stoy et al., 2019) at a fine
spatiotemporal resolution (Pierrat et al., 2024c). TIR data can
further contextualize ecosystem fluxes and vice versa because
surface energy fluxes regulate an object’s temperature (Still
et al., 2019). Recent studies have used proximal TIR sensors in
conjunction with eddy-covariance measurements to conduct
multi-site syntheses examining how surface temperature responds
to ecosystem fluxes across biomes (Burchard-Levine et al., 2021;
Javadian et al., 2022; Panwar & Kleidon, 2022).

Proximal TIR data can probe the function of individual plant
leaves at a high enough temporal resolution to resolve
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plant processes, such as phenotypic plasticity, photosynthetic
acclimation, leaf water content, stomatal conductance, edge effects,
disease detection, stress responses, and diurnal temperature
responses (Farella et al., 2022). Most photosynthetic reactions are
temperature-dependent and well characterized at the leaf and plant
scale; however, the temperature response functions at the
canopy/landscape scale integrated over multiple species and
functional types are largely unknown or currently in development
(Johnson et al., 2021). Because leaf temperature exerts an
important control on plant carbon fluxes, proximal TIR sensors
can help resolve fine-scale variability in plant carbon and water
cycling (Kibler et al., 2023; Uni et al., 2023). Surface temperatures
also allow us to probe plant resilience and vulnerability to extreme
environmental conditions. A prime example of this application is
discerning whether plants surpass damage-inducing critical
temperature thresholds (Doughty et al., 2023; Still et al., 2023),
but they can also be used to test resilience to drought and water
limitations. Thus, TIR measurements are a key tool for model
refinement and evaluation, which can only be performed at a
proximal scale.

4. Biomass and plant water content with microwave
backscatter

The microwave region of the electromagnetic spectrum (c.
2–30 cm) is most commonly used to track changes in surface
water dynamics, including freeze–thaw state (Derksen
et al., 2017; Roy et al., 2020), soil moisture (Larson
et al., 2008, 2009), snow depth (Larson & Nievinski, 2013),
vegetation optical depth (VOD) (Frappart et al., 2020; Moe-
singer et al., 2020), vegetation water content (VWC) (Momen
et al., 2017; Feldman et al., 2021), and tipping points in plant
mortality (Krishnamurthy et al., 2022). Surface water attenuates
microwave radiation, and the degree of attenuation can be used
to infer changes in its state. Satellite sensors have been collecting
data in the microwave region since the late 1970s, making the
microwave record one of the longest satellite records available
(Smith et al., 2019; Moesinger et al., 2020).

At the site scale, microwave measurements provide unique
insights into both ecosystem structure andwater dynamics that help
interpret H2O, CO2, and energy flux terms (common instruments
in Table S3). For instance, microwave-based VOD, or the
attenuation of the microwave signal through aboveground
vegetation (Brakke et al., 1981; Frappart et al., 2020), is sensitive
to, and uniquely, links ecosystem structure (e.g. biomass) andwater
dynamics (e.g. VWC) (Baur et al., 2019; Humphrey & Franken-
berg, 2023; Schmidt et al., 2023). VODhas been found to be near-
linearly related to VWC (Jackson & Schmugge, 1991), with the
scale factor between the two depending on observation frequency,
forest type, and structure (height, biomass density, and gap size).
VOD has further emerged as a valuable proxy for plant water
potential, offering new avenues for the large scale monitoring of
rapid changes in physiological function (Matheny et al., 2015;
Nolan et al., 2020; Konings et al., 2021; Dou et al., 2023). As such,
VOD estimates have been used for a wide variety of applications
from quantifying slow changes in aboveground vegetation biomass

pools (Hill et al., 1999; Liu et al., 2015) to rapid rainfall pulse-
driven changes in VWC and leaf water potential (Paloscia
et al., 2004; Momen et al., 2017; Feldman et al., 2021; Forkel
et al., 2023), whichmay go unresolvedwith long temporal revisit of
spaceborne remote sensing. Due to the inherent link between
carbon and water fluxes, VOD has also been utilized as a proxy for
GPP (X. Wang et al., 2020; Dou et al., 2023) and NEE (Feldman
et al., 2021). Yet, limitations quickly arise when using widely
available satellite-based passive microwave measurements, due to
their coarse spatial (9- to 36-km) and temporal (1- to 2-day)
resolution.

Tower-mounted instruments capable of near-continuous prox-
imal microwave observations at the individual plant scale are an
exciting research frontier for: high-spatiotemporal resolution
measurement of soil moisture, VOD, VWC, and plant water
status (Holtzman et al., 2021; Humphrey & Frankenberg, 2023);
and validation for spaceborne soil moisture andVODobservations
(Feldman, 2024). When combined with in situ measurements
of soil moisture, H2O, and energy fluxes, high-frequency, canopy-
scale VOD estimates from near-surface microwave sensors fill a
critical gap in our ability tomonitor the full soil–plant–atmosphere
water continuum. Furthermore, high-spatiotemporal VOD esti-
mates from tower-mounted instruments offer novel insights into
plant physiological dynamics, including drought responsemechan-
isms (Frolking et al., 2011; Saatchi et al., 2013;Rao et al., 2019) and
plant water status regulation strategies (van Emmerik et al., 2015;
Schroeder et al., 2016; Konings & Gentine, 2017). For instance,
proximal microwave sensing has been recently applied to monitor
leaf water content diurnal dynamics in a forest in Pasadena, CA,
USA (Humphrey & Frankenberg, 2023) and leaf water potential
seasonal dynamics in a forest inOzark,MO,USA (Yao et al., 2024).
Yet, examples of proximal microwave sensing remain rare in the
literature, leaving new explorations, especially those co-located
with field-based ecophysiological and/or flux tower measurements,
ripe with novel lines of scientific inquiry and high likelihood for
new discoveries.

5. Canopy structure with LiDAR

Terrestrial LiDAR (TLS) is a form of active remote sensing that
pulses light at specific wavelengths (typically visible and NIR) to
measure the distance between the sensor and a target thereby
providing 3D information on canopy structure down to sub-
centimeter precision. Canopy structure, including the spatial
arrangement and amount of leaves and woody material, influences
absorbed radiation and is thus one of themajor drivers of ecosystem
fluxes (Eqn 1) and optical remote sensing signals (Verrelst
et al., 2015; Verbeeck et al., 2019; Migliavacca et al., 2021).
Moreover, the canopy structure itself is an important ecosystem
trait that sheds light on the survival and growth strategies of plants
(Malhi et al., 2018; Yang et al., 2023) and for estimating
aboveground biomass and carbon storage (Eitel et al., 2016).
LiDAR is regarded as the most efficient and accurate canopy
structure retrieval technique applicable at all scales (ground, air-,
and spaceborne (Asner et al., 2008; Calders et al., 2020; Dubayah
et al., 2020)).
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Vegetation canopies are often heterogeneous, with different
vegetation types, varying vertical profiles (i.e. the number and
arrangement of canopy layers), and changing canopy roughness or
gap size distribution (Chasmer et al., 2011; Zhao et al., 2015; Chu
et al., 2018; Vicari et al., 2019; Béland & Baldocchi, 2021; Stovall
et al., 2021) all of which impact the light absorption in the canopy
and subsequent fluxes (Eqn 1). TLS data can help us characterize
the vertical profile of a flux footprint and can help us understand the
fractional contributions between over- and understory elements,
which can explain the vertical profile of leaf optical properties
related to leaf traits and fluxes. Leaf area index, leaf angle, and
clumping also affect canopy fluxes by impacting the radiation
distribution within the canopy (Monson & Baldocchi, 2014;
Chen, 2018; Yang et al., 2023). Changes in leaf area due to
environmental (e.g. hurricane) or biological (e.g. spongy moth
attacks) factors affect canopy fluxes and can be well captured by
repeat TLS (Frolking et al., 2009; Atkins et al., 2020; Leitold
et al., 2022) and typically occur at resolutions spaceborne remote
sensing cannot capture. Repeat TLS can also provide information
on the temporal variation of aboveground biomass, which, coupled
with flux tower data, can help us understand carbon assimilation
and carbon accumulation and investment in photosynthetic vs
nonphotosynthetic components (Calders et al., 2015; Eitel
et al., 2016; Stovall et al., 2017, 2018). Finally, LiDAR data have
been used to estimate water vapor and latent energy fluxes (Cooper
et al., 2000), although this application is much less common.

The trend of the increasing fidelity of TLS enables highly
detailed 3D representations of canopies (i.e. voxels (Béland
et al., 2014) and Quantitative Structural Models ‘QSMs’, (Calders
et al., 2018)). Autonomous in situ laser scanners, such as the LEAF
(Environmental Sensing Systems, Australia), provide sub-daily
data capturing subtle canopy structure changes not previously
possible by commonly used passive optical techniques (e.g.
hemispherical photography) (Woodgate et al., 2015; Calders
et al., 2023). When coupled with radiative transfer modeling
(RTM), these 3D representations can be used to derivemetrics that
are not physically observable and are highly synergistic with other
forms of remote sensing, such as the SIF escape fraction (fesc, Eqn 2)
(Zeng et al., 2019). Overall, high-resolution LiDAR data reveal
physiological and physical processes previously unobservable at
coarser spatiotemporal scales, offering numerous applications from
local to global ecology (current data available in Table S5).

III. Synergies

Combiningmultiple remote sensing types with ecosystem flux data
can open a suite of newparameters for understanding andmodeling
ecosystems, and their role in the larger Earth system (Fig. 2).
Schimel et al. (2019) and Stavros et al. (2017) have laid out how
synergistic spaceborne data can offer new insights into plant
function; however, for many of the plant and ecosystem processes
spaceborne observations have the potential to observe, there is a
need for further uncertainty quantification to distinguish real
phenomena from other sources of information. This goal requires
the use of proximal sensing to establish mechanistic links between
remote sensing signals andplant processes, which can then feed into

further algorithm development, model improvements, and data
integration.

Combining spectral reflectance with SIF data enhances our
ability to predict plant carbon uptake because reflectance provides
contextual information on plant LUE and structural parameters
impacting the SIF signal (Dechant et al., 2020; Z. A. Pierrat
et al., 2022; Zhang et al., 2022). These multiple signal sources have
only recently been able to be teased out using proximal data and are
ready to be applied to spaceborne observations.

Combining thermal (related to evapotranspiration) and micro-
wave (related to aboveground water content and biomass) can be
used to infer plant water use and water use strategies. This is
especially useful in combination with in situ measurements of soil
moisture and humidity, which would allow tracking of water
transport along the full soil–plant–atmosphere continuum and
must be tested at the site level before scaling across space and time.
Linking metrics of carbon uptake (SIF or spectral reflectance) with
water loss (TIR andmicrowave) can help us understand plant water
use efficiency, which is highly dynamic across diurnal and seasonal
scales. Additionally, we could observe and test relationships
between increasing heat (canopy temperatures from TIR) and
plant health (canopy nutrient contents derived from spectral
reflectance), or between heat and ecosystem function (SIF) or water
use (evapotranspiration, VWC, SIF) (Martini et al., 2022).

In many cases, interpreting other types of optical signals and
connecting to fluxes requires a detailed characterization of canopy
structure, including the spatial arrangement and density of leaf and
wood scattering elements (Myneni et al., 1986;Verrelst et al., 2015;
Chen, 2018; Magney et al., 2020) and the distance between the
target and sensor. Combining LiDAR with spectral reflectance,
SIF, or thermal, can help us determine what parts of the optical
signal are driven by physiological vs structural change (Stovall
et al., 2018). Nonphotosynthetic vegetation (e.g. branches and
stems) and soil background have non-negligible impacts on
measured radiance (Malenovský et al., 2021; Zeng et al., 2022).
Canopy shading can also cause up to a 50% reduction in SIF and
reflectance quantities due to normalization using hemispherical
irradiance measured at the top of the canopy (Damm et al., 2015).
Coupling high-resolution canopy structures derived from TLS
with RTM (Magney et al., 2016) to simulate the impact of
vegetation structure and composition on optical signals can help
disentangle these physical from physiological drivers of fluxes and
remote sensing signals (Verrelst et al., 2010; Regaieg et al., 2021).
To this end, future development of multi- and hyperspectral TLS
offers exciting opportunities to address these research directions
directly and enhance TLS information by distinguishing between
vegetated and nonvegetated signals (Eitel et al., 2016; Calders
et al., 2020). The target-to-sensor range information provided by
LiDAR is particularly important for TIR and SIF atmospheric
corrections. SIF retrieval methods that are sensitive to oxygen
absorption depend on path length and will need to be corrected for
atmospheric effects (van der Tol et al., 2023). This correction is
pertinent for imagery andmulti-angular sensors where path lengths
(sensor to target range) change substantially (Grossmann
et al., 2018; Woodgate et al., 2020). Finally, broadband TIR will
be more impacted than narrowband TIR due to water content in
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the atmospheric column (Guillevic et al., 2018) and can be adjusted
with LiDAR.

These examples represent just a few of the potential insights that
can be gained by combining multiple types of proximal remote
sensing with flux and site-level data. A single site fully equipped to
measure fluxes as well as spectral reflectance, SIF, TIR, microwave
backscatter, and LiDARwould be able to comprehensively observe
ecosystem structure and function and provide insights into
complex relationships between predicted changes in climate and
ecosystem health.

IV. The case for a network

A coordinated network of proximal remote sensing instruments
offers multiple benefits to advance flux and ecosystem science. A
prime successful example of this coordination is the PhenoCam
Network (https://phenocam.nau.edu/webcam/), which is a

network of RGB cameras with a standardized data processing
framework to estimate the onset and cessation of greenness from
over 700 sites (Richardson et al., 2018; Seyednasrollah et al., 2019).
PhenoCam has led to significant advancements not only in
phenological research but also in understanding the interplays
between phenology, ecosystem fluxes, and environmental feed-
backs (Richardson, 2023). Building on decades of progress in
proximal instrumentation, the spectral techniques outlined in this
review offer significant potential for further advancements and
coordination.

At flux sites, accurately partitioning NEE into Reco and GPP is
important for understanding the terrestrial carbon cycle and future
climate projections. However, the standard partitioning methods,
for example nighttime (Reichstein et al., 2005) and daytime
partitioning (Lasslop et al., 2010), rely on simplified empirical
models, which may lead to either overestimations of daytime total
ecosystem respiration or underestimations of nighttime respiration

Fig. 2 Overview of synergies between proximal remote sensing and eddy-covariance flux data. Inspired by Smith et al. (2019) and Stavros et al. (2017)
and adapted to focus on synergies with proximal remote sensing and flux data. Created in BioRender. Pierrat, Z. (2025) https://BioRender.com/r49o000.
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if leaf-level inhibition occurs (Wehr et al., 2016; Keenan
et al., 2019). Using remote sensing to represent photosynthesis
and photosynthetic properties may present new avenues for the
partitioning of NEE (Zhan et al., 2022; Chen et al., 2024),
although cross-compatibility of remotely sensed data is essential for
this to work at scale.

Next, filling long-term gaps (weeks to months) in eddy-
covariance data is particularly challenging due to the potential
changes in underlying ecosystem properties over time, as well as the
errors and uncertainties associated with gap-filling algorithms
(Richardson & Hollinger, 2007). The most common gap-filling
approach, marginal distribution sampling (MDS), still does a poor
job in filling extra-long gaps and can create systematic bias in
carbon balance estimates (Vekuri et al., 2023). By instrumenting
flux towers with proximal remote sensing, we can develop new
approaches for gap filling and use these synergistic datasets as a fail-
safe when one instrument is not working properly. Combining
proximal remote sensing data with footprint climatology also
results in a comprehensive dataset that offers more detailed insights
into vegetation structure, topography, and potential species-
specific source/sink effects on the observed fluxes. For example,
by combining proximal remote sensing and flux data, we can
improve our understanding of the timing and drivers of
phenological events at an individual species level (Pierrat
et al., 2021; Moon et al., 2022), which is not discernible from
spatially averaged flux or satellite data alone. This integration of
information has been shown to significantly enhance the analysis
and interpretation of flux data (Kljun et al., 2015; Chu et al., 2021;
Holtzman et al., 2021) and can be implemented into model
frameworks to improve representation of key processes.

Beyond advancing site-level flux science, an investment in
proximal remote sensing is increasingly relevant for new and
upcoming satellite missions which provide synergistic observations
of ecosystem processes (Stavros et al., 2017). This is particularly
relevant as proximal remote sensing data can be recorded even
under cloudy sky conditions. These observations will shed light on
the connections between biologic processes and optical observa-
tions under direct vs diffuse illumination conditions that go
unobserved bypassive spaceborne observations. Existing co-located
observations on the International Space Station include (among
others), the Orbiting Carbon Observatory (OCO) 3 measuring
SIF, the ECOsystemSpaceborneThermal Radiometer Experiment
on Space Station (ECOSTRESS) deriving land surface temperature
and emissivity with TIR, the Global Ecosystem Dynamics
Investigation (GEDI) deriving canopy height and internal
structure with LiDAR, and the Earth Surface Mineral Dust Source
Investigation (EMIT) measuring spectral reflectance (Stavros
et al., 2017; Xiao et al., 2021). Future satellite missions as part of
NASA’s Earth System Observatory (Space Studies Board
et al., 2019) will include biomass estimates from the NISAR
mission and spectral reflectance and TIR data from the Surface
Biology and Geology (SBG) mission and will be complimented by
European Space Agency’s FLuorescence EXplorer (FLEX)measur-
ing SIF and spectral reflectance (Drusch et al., 2017). These
represent just a few of the existing and upcoming missions, which

will continue synergistic observations of the Earth system enabling
new insight into plant functioning.

Proximal remote sensing (either co-located on flux towers or
independent) has already proven useful for the calibration,
validation, and evaluation of existing spaceborne measurements
(Parazoo et al., 2019; Hu et al., 2022; Feldman, 2024). The
PRecursore IperSpettrale della Missione Applicativa (PRISMA)
mission from the Italian Space Agency has demonstrated particular
success in this arena with a dedicated field campaign linking
proximal, aircraft, and spaceborne data with remarkably close
agreement despite limited geographic and temporal coverage
(Cogliati et al., 2021). Proximal data harmonization will help
expand these efforts, ultimately improving confidence in space-
borne data. An investment in proximal remote sensing should also
be considered for sites located in the global south due to the high
variety of ecosystem types and their potential for carbon
sequestration; and there remains a lack of in situ measurement
systems available. Proximal remote sensing can be considered as an
option in locations where eddy-covariance flux observations are not
possible due to local topography ormeteorological conditions. The
increased spatiotemporal resolution provided by a network of
proximal sensors can support the harmonization of multiple
instruments, interpretation and downscaling of spatially averaged,
snapshot in time, spaceborne observations, and reveal new
ecological insights on mechanistic drivers of observed signals not
captured by space-based data. Finally, sites equipped with multiple
types of proximal remote sensing instruments could be used as a
low-cost testbed for algorithm development for upcoming air- and
spaceborne missions, enabling us to test design parameters at an
even higher spatiotemporal resolution than currently possible
(Cawse-Nicholson et al., 2022).

V. A path forward for networking proximal remote
sensing data

As the utility of various proximal sensing methods has been shown,
there are critical shortcomings in data integration. At present, we
have a highly fragmented ecosystem in terms of instrumentation,
data management, and data processing, which limits the easy
integration of various data streams, within and between methods
and external data sources (e.g. fluxmeasurements or satellite remote
sensing data). For example, there are presently no widely accepted
standards of practice for collecting proximal spectral reflectance or
SIF data in the literature. This inconsistency hinders the ability to
consistently apply techniques and insights gleaned at one site more
broadly for understanding global change biology. Recent and rapid
advances in the field have led to frequent changes in available
instrumentation and challenges creating continuity among datasets
(Notes S1). Previous attempts to address this issue have largely
come from organizations, such as EUROSPEC (Porcar-Castell
et al., 2015), and international collaborations, such as SpecNet
(Gamon et al., 2006, 2010). These efforts have been successful in
outlining general guidance for long-term proximal remote sensing
(Notes S1, Porcar-Castell et al., 2015), but have struggled to
develop a coordinated network. This can be attributed to: disparate
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sensors andmethods driving the production of unique datasets that
cannot readily be put into a single database (i.e. a lack of
standardization); and a lack of sufficient sustained funding to help
maintain a database of products and tools and update protocols
based on available instrumentation.

Despite the aforementioned challenges, there have been
successful efforts to coordinate proximal remote sensing datasets
across sites (summarized in Notes S1–S3). Arguably, the most
successful of these efforts has come from the PhenoCam Network.
The PhenoCam’s success can be attributed to: its close integration
with existing flux networks; ease of data access; and coherent
postprocessing. All software, (i.e. the PHENOCAM R package
(Hufkens et al., 2018)) and python and hardware specifications
(Seyednasrollah et al., 2019) are openly available. PHENOCAM can
serve as a prime example of the utility of networked proximal
remote sensing and a resource for how to generate such a network
(Richardson, 2023).

Realizing the full potential of proximal remote sensing hinges on
the community’s ability to develop standardized measurement,
deployment and processing techniques, comprehensive metadata
documentation, and active participation in collaborative networks.
These efforts will enable the consolidation and integration of
different data sources, ultimately allowing us to use these data across
sites for answering grand challenges in global ecology (Schimel
et al., 2019). As a first step in this direction, we provide the status of
sensor based best practices (i.e. configuration and calibration) for
spectral reflectance, SIF, TIR, microwave, and LiDAR (Notes
S1–S3). For proximal remote sensing types with more developed
standards of practice, recent efforts have made progress on
consolidating proximal remote sensing data into publicly available
databases, although much of this work is ongoing and rapidly
evolving. To facilitate data use and promote adoption of existing
databases, we provide the status of data availability, including
existing, growing, and evolving data networks (Notes S3). These
coordinated efforts will help to democratize proximal remote
sensing techniques, making them more accessible to the scientific
community and encouraging the widespread adoption of recom-
mended sensors, best practices, and metadata. With the recent
developments in proximal remote sensing technology, rapid
proliferation of satellite instrumentation, and community initia-
tives, such as the AmeriFlux Year of Remote Sensing, the time is
nowapt to carry thiswork forward (Pierrat et al., 2023).Our report,
as presented here, is a critical and timely step in this direction,
bringing together a comprehensive overview of available data, key
voices, and expertise.

VI. Conclusions

Proximal remote sensing data have demonstrated the potential to
considerably advance Earth system science by linking observations
across scales (from the site to the globe and from minutes to days),
shedding light on key ecological processes that are otherwise
unobserved, and providing mechanistic insight into the physical
and physiological drivers of observed fluxes. We highlighted key
areas where spectral reflectance, SIF, TIR, microwave backscatter,

and LiDAR can be used (on their own and in combination with
each other) in conjunction with flux data to better understand
ecosystem processes and synthesize recent advances in ecosystem
and flux science using these data. Specifically, we discuss how each
measurement can address questions related to the scale dependence
of ecosystem processes, physical and biological drivers of ecosystem
processes and observations, and how synergistic observations
provide a more complete picture of plant and ecosystem science,
and ultimately, global change biology. We also outlined best
practices for those interested in getting started with proximal
remote sensing and provided resources for individuals to find
existing data sources as a first step toward building a more
coordinated network. Our aim was to make proximal remote
sensing data streams more widespread, more accessible, and more
information-rich to facilitate global change biology research. This
review is an essential step toward growing an open dialogue for
consistent acquisition and processing of proximal remote sensing
data for these applications. Expanding the availability and
accessibility of proximal remote sensing will help facilitate the use
of these data for advancing Earth system science now and into the
future.
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P, Didry Y, Szantoi Z, Alonso I et al. 2022.Continental-scale evaluation of three
ECOSTRESS land surface temperature products over Europe and Africa:

Temperature-based validation and cross-satellite comparison. Remote Sensing of
Environment 282: 113296.

Hufkens K, Basler D, Milliman T, Melaas EK, Richardson AD. 2018. An

integrated phenologymodelling framework in r.Methods in Ecology and Evolution
9: 1276–1285.

Humphrey V, Frankenberg C. 2023.Continuous groundmonitoring of vegetation

optical depth and water content with GPS signals. Biogeosciences 20: 1789–1811.
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