
[COR: Number]

Creating Virtual Reality Scenarios for Pedestrian
Experiments Focusing on Social Interactions
Daniela Briola1,*, Francesca Tinti1 and Giuseppe Vizzari1

1University of Milano Bicocca, Italy

Abstract
Designing and running real world pedestrian experiments can be complex, costly, and it can even have
ethical implications. Virtual Reality can represent an alternative enabling the execution of experiments
in a virtual environments, with synthetic humans (i.e. agents) interacting with human subjects. To
achieve a high degree of realism, such virtual humans should behave realistically from many points of
view: in this paper, we focus on how they move inside the environment. We propose the design, and
first prototype, of a new tool based on Unity, simplifying the setup of realistic scenarios for experiments
in VR with humans. In particular, this tool lets the modeler integrate external pathfinding models so as
to achieve realistic and believable scenarios for experiments with human subjects.

Keywords
Virtual Reality, Intelligent Agents, Pathfinding, Pedestrian Simulation, Experiments with human subjects

1. Introduction

The continuous evolution of technology has opened up new frontiers in the scientific research,
enabling the exploration of complex phenomena through innovative approaches. Among these
emerging technologies, one of the most fascinating ones is the Virtual Reality (VR). VR has
garnered significant interest due to its ability to provide substantial benefits across a wide array
of applications, including gaming, training, architectural design, social skills training, surgical
procedures, and more. This technology offers the unique opportunity to replicate experiences
that would otherwise be inaccessible in the real world, offering an unparalleled level of realism.

For example, one particularly promising application area for VR is the study of pedestrian
dynamics in building [1, 2]. Interest in the study of human movement within buildings is
motivated by the need of understanding how people interact with architectural spaces, as this has
a significant impact on crucial aspects such as the design of environments, safety and efficiency
of people flows. This field of research faces substantial challenges when conducted in real-life
environments: the intricate nature of most pedestrian infrastructures, coupled with the inherent
variability of human behavior in such settings, makes it difficult to control experimental scenarios
and external factors. Additionally, conducting controlled field experiments to investigate
pedestrian behavior in hazardous situations is often impeded by ethical considerations related to

WOA 2024: 25th Workshop "From Objects to Agents", July 8-10, 2024, Forte di Bard (AO), Italy
*Corresponding author.

$ daniela.briola@unimib.it (D. Briola); f.tinti@campus.unimib.it (F. Tinti); giuseppe.vizzari@unimib.it (G. Vizzari)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:daniela.briola@unimib.it
mailto:f.tinti@campus.unimib.it
mailto:giuseppe.vizzari@unimib.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the mental and physical well-being of participants. Moreover, these field experiments typically
require significant investments of labor and finances.

Virtual reality emerges as a promising tool in this context, making it possible to realistically
simulate the architectural environment and accurately monitor participants’ behavior during
experiments, reducing costs and problems. In comparison to field experiments, VR provides
the capability to realistically simulate architectural environments and meticulously monitor
participants’ behavior during experiments. This includes having comprehensive control over
the experimental setup and collecting precise behavioral data concerning pedestrian movement
and decision-making processes. Furthermore, VR allows participants to immerse themselves
virtually in hazardous environments without facing actual physical risks.

However, to achieve an experiment in VR offering comparable experience with respect to
a field one, many aspects need to be addressed in order to get high presence and immersion
in the VR experience, as discussed in [3, 4, 5]: one crucial aspect of particular significance
we are going to focus on is related to virtual humans in the VR environment. For VR to be
effective in pedestrian studies, the virtual humans must move in a realistic manner. If they
do not, participants may not perceive them as real humans, potentially invalidating the entire
experiment. Achieving a proper level of realism cannot be obtained, for instance, by manually
specifying the path that the virtual human has to follow without adapting it to the presence
of the real human performing the experiment, or by exploiting standard algorithms such as
A*, which finds the shortest path but does not accurately reflect the paths a real human would
choose. Virtual humans need to be adaptive to the behaviors of each other and to the VR
experiment subject, and they need to have a plausible behavior: this could be achieved by
integrating a pedestrian simulator to guide the virtual humans [6].

The aim of this work is to support modelers and researchers who need to exploit VR to
setup and run experiments with humans participants, focusing on studying the impact of social
influence on wayfinding within a complex building or an open (but restricted) area, both in
normal and emergency situations. More broadly, it aims to facilitate the study of human behavior
in social scenarios. The desired system should support the setting up of the overall experiment,
from the configuration of the environment to the programming of virtual humans. These
virtual humans, which can be seen as partially autonomous agents, are needed to populate the
environment and simulate pedestrians moving within it. It should also offer a way to import and
exploit pedestrian (or more generally behavioural) models obtained with different techniques
such as ML, to ensure that virtual humans move and act in a realistic way. This includes
following trajectories, but also avoiding other agents while navigating the environment, and
performing actions in a lifelike manner.

We are designing a project, based on Unity (a state of the art Game Engine largely adopted
both in industry and in academy), which will include pre-configured virtual humans (avatars)
with possible animations, pathfinding and social interaction behaviours, along with a support to
distribute and orchestrate them within the environment. Additionally, the tool will automatically
collect a wide set of data during the running of the experiment, facilitating the analysis of
participant behavior, movement and other relevant metrics.

We present in this paper an high level description of this tool and discuss how (and why) to
import already exiting pathfinding models can be the starting point to create realistic virtual
humans in VR: to make a concrete example, we present a pedestrian model based on a curriculum

learning approach, already developed by our research group, and we briefly discuss how it could
be integrated into the proposed tool.

The paper is organized as follow: Section 2 clarifies why VR can be beneficial for perform-
ing experiments with human subjects and which are the requirements for achieving a good
experience, offering an overview of already existing pedestrian models that could be integrated.
Section 3 describes the overall requirements we have for the tool we are envisioning and devel-
oping in Unity, while Section 4 describes what we have already achieved and Section 5 presents
the pedestrian model we are integrating in the tool. Section 6 describes the open points and
future parts we would like to integrate in our tool, and the conclusions.

2. VR for Experiments with Human subjects

As anticipated in the introduction, running an experiment with human subjects in a Virtual
Reality scenario may represent a valid alternative to perform such experiment in reality, es-
pecially if many people are needed to set up scenarios, like for example in experiments with
crowds or pedestrian studies. In such cases, apart from the involved subjects that will take part
in the study and will be monitored and interviewed, many other humans are needed as actors in
order to build a realistic environment (the scenario) for the experiment. Second, with respect to
what the topic of the experiment is, having both the actors and the subject moving around the
environment may require specific limitations to grant security, making the concrete running of
the experiment often impossible in reality. An example could be studying how pedestrians move
when immersed within a crowd in public places, such as a crosswalks, or during an evacuation
in a metro station. Situations like these occur in real life but they are too challenging to study
through field observations due to their complexity and potential danger. At the same time,
they are also difficult to replicate accurately as it is challenging to elicit genuine and unfiltered
reactions from participants. In such cases, VR can be exploited both to replicate the physical
environment and to replace human actors with virtual humans (often referred to as avatars
or virtual agents) [7, 8]. However, there are several requirements that must be met for the VR
simulation to be effectively adopted.

First of all, an high degree of presence and immersion are needed: obtaining them is still an
open issue in the VR research area, as it involves addressing numerous aspects, ranging from
software to hardware challenges. To cite some of those more important in the over mentioned
experiments for crowd and pedestrian studies, high fidelity models of environments are needed,
with sounds and lights managed in a realistic way, as well as hardware that supports high level
of immersion, such Head Mounted Displays (which isolate participants from the real world).
Additionally, realistic avatars, both in appearance and movement, are crucial. This aspect is
the focus of the proposed tool, as studying how a human subject navigates an environment
populated with other humans requires realistic avatars, but also a "simple enough" way to
orchestrate them during the simulation (they should move in the overall as a realistic crowd).
Failing to achieve this realism in avatar behavior compromises the comparability of the resulting
VR experience with a real-world one and the reliability of collected data.

For example, in recent collaborations we are studying how humans decide the path to follow
in a multilevel building, and if their choices depend, and how, on the presence of other people

in the building. To set up such experiments, a realistic model of a multilevel building is needed,
featuring alternative paths connecting levels and rooms to provide participants with varied
options for navigation, and to study which ones they opt for. Additionally, the setup requires
numerous avatars realistic in their aspects, capable of following different paths (controlled by the
modeler in terms of points to be reached) and performing different animations. These animations
may include moving, stopping to engage in conversation, and changing direction at predefined
timestamps. Organizing and coordinating such avatars is complex, and the modeler cannot
specify, for each avatar, every single step of its path. Instead, the modeler usually specifies only
the "waypoints" (the necessary points that must be reached during the movement), and then
the Game Engine is in charge of concretely computing the path to reach them [9]. However,
if the computed path is not realistic (in the sense that it does not resemble a path a human
would naturally follow), the resulting avatar’s movement can be perceived as fake by the human
subject, thus resulting in a loss of sense of presence in the VR simulation. To address this, we
would like to use more realistic models of avatar movement, exploiting results from AI where
models have been studied from years in order to achieve for example agents able to avoid each
others, perceiving points of interest in the environments and so on.

2.1. Virtual Humans: Unity NavMesh versus Realistic pathfinding

Many VR experiments are conducted using Unity1, a game engine widely used for creating
interactive 3D games and experiences. Its intuitive interface and comprehensive documentation
make it accessible to users with diverse technical backgrounds, which is one of the reasons
why we chose it for our project. Furthermore, Unity’s Asset Store2 provides pre-made assets
and tools, speeding up the development and enabling the creation of detailed, realistic settings
with minimal effort. Among its many features, Unity provides a comprehensive system for
developing characters capable of intelligently navigating the game world using navigation
meshes. This system consists of a NavMesh and a NavMesh Agent. The NavMesh is a data
structure that defines the walkable areas in the game world, facilitating pathfinding between
different walkable locations. The walkable areas are automatically created from the scene’s
geometry by identifying points where the agent can stand and connecting these points to form
a surface overlaying the scene’s geometry. This surface, called the navigation mesh (NavMesh),
is represented as a collection of convex polygons (an example can be seen in Figure 1b). The
NavMesh Agent component is essential for developing characters that can navigate towards
their objectives while avoiding collisions with other agents. These agents use the NavMesh to
understand the game world and to maneuver around both static and dynamic obstacles. The
NavMesh Agent component manages both the pathfinding and movement control of a character,
ensuring smooth and intelligent navigation. To determine a path between two locations in
Unity, the start and destination points are first mapped to their nearest polygons. Unity employs
the A* algorithm to search through these polygons, generating a sequence known as a corridor.
The agent navigates this corridor by steering towards the next visible corner. For individual
agents, this method is straightforward, but for multiple agents, the need to avoid collisions can

1https://unity.com/
2https://assetstore.unity.com/

https://unity.com/
https://assetstore.unity.com/

complicate navigation. Instead of following a static path, agents dynamically adjust their routes
by continuously recalculating their corridor and steering towards the next corner.

While Unity’s Navigation system is useful and already integrated, it has some limitations.
When it comes to local avoidance (the ability of characters to navigate around each other without
collisions), Unity’s built-in system can struggle, particularly in crowded scenes. The method it
uses (RVO), is not always up to the task of managing dense crowds smoothly. This can result in
characters bumping into each other or moving in erratic, unrealistic ways, which can break the
immersion. Additionally, the quality of the paths generated by Unity is not always perfect: paths
might be jagged or inefficient, requiring developers to implement additional path-smoothing
techniques. Without these adjustments, character movement can appear unnatural, as if they’re
taking a series of sharp turns rather than following a smooth, logical route.

Unity’s system limitations generally originate from the use of the A* algorithm. While A*
remains a popular algorithm due to its simplicity and effectiveness, it struggles in complex
environments, prompting ongoing advancements in the field. Over the years, numerous varia-
tions and extensions of A* have been developed to enhance its efficiency [10], but multi-agent
navigation presents new challenges. In these scenarios, agents must avoid not only static
obstacles but also other moving agents. Traditional numerical tools for finding precise solutions
are often expensive and time-consuming. This is where Reinforcement Learning (RL) has
shown significant promise [11]. RL allows agents to make decisions based on a parameterized
policy optimized through training data. RL algorithms can also be combined with traditional
pathfinding methods to improve performance [12]. More recently, a study [13] explored an
RL-based approach, defining a perception model that provides agents with information about
nearby agents, obstacles, and the final goal. The action model regulates the agent’s velocity
vector, considering angle variations and acceleration/deceleration. Our model, briefly described
later on, builds on this approach but employs a single training process based on a curriculum
method.

3. Goals and design of the proposed tool

The tool we are designing and prototyping in Unity should support these functionalities:

1. Providing at least two ready-to-use realistic models, including one for multilevel environ-
ments.

2. Supporting the customization of available avatars (for example in the color of their
clothing or skin), and offering a support in the definition of their path in the environment
(as a sequence of points to be reached). This includes specifying animations at each point
along the path.

3. Supporting a way to associate to each avatar a different model of movement (the one
offered by Unity, the one presented in Section 5, other already existing models coherent
with the Unity Avatar management).

4. Automatically tracking and storing subjects’ movements data (in terms of position, rota-
tion, timestamp), its head rotation (and eye tracking if the HMD supports it), and similar
data.

5. Supporting the modeler in enabling avatars to interact with the environment and the
objects inside it, allowing avatar actions to dynamically change the state of the environ-
ment.

4. Design, and partial implementation, of the Unity tool

Unity Setup for User Locomotion
In order to create realistic simulations and to enable users to navigate the environment, we

implemented a combination of open-world navigation and a modified version of the usual
steering locomotion [14]. The open-world approach allows participants to freely explore the
environment, while steering locomotion lets users initiate continuous simulated self-motion
toward their desired destination using a joystick. This system facilitates effective exploration
and interaction within the virtual environment, enhancing the sense of presence and realism.
However, continuous steering locomotion is known to induce cybersickness [15, 14]. To address
this issue, we modified the continuous steering locomotion to a forward "snap" movement,
which mimics the step-by-step motion of walking. This technique has been shown to minimize
motion sickness while maximizing the sense of presence [16]. So, participants control their
forward movement using the hand controller, while the direction of their movement is guided
by their head rotations. The XR Rig element (the GameObject representing the user in the VR
environment) has been identified as an obstacle, so that autonumous avatars will avoid it while
moving, enhancing the presence in the simulation.
Requirement 1
With respect to the requirements list reported in Section 3, our work focused on exploring

the Asset Store in order to find a prefabricated environment offering realism and customization
options. The “Fast Food Restaurant Kit”3 caught our eye as it replicates a contemporary fast
food (on a single floor): given the widespread familiarity with such environments, we believed
it is the ideal setting, as most people understand the typical dynamics of a fast-food restaurant,
such as ordering and waiting for food. Additionally, this environment allows us to create
scenarios that can be reproduced in real life, which is crucial for setting up experiments with
human subjects to study how they move in crowded environments. The package includes a
sample scene that we modified to add more exits, enhancing navigation for participants and
avatars (see Figure 1a). The scene is fully customizable and already features realistic textures
and lighting. Additionally, the kit contains numerous prefabs, allowing for further adjustments
and improvements. For what concerns the model of a multilevel building, we are still searching
for a free model similar to the one proposed in [17, 18] (Figure 1e, 1f), that we already used in a
tool similar to the one we are developing [19], but based on UnrealEngine4.

Requirement 2
We provide two types of avatars in the tool, which can be easily added by the modeler

to the scenario: background avatars to create a lifelike atmosphere, and navigating avatars
programmed to follow specific paths (Figure 1c). To investigate social interactions between
pedestrians, we added a NavMesh surface in our environment (Figure 1b), specifying the surfaces

3https://assetstore.unity.com/packages/3d/environments/fast-food-restaurant-kit-239419
4https://www.unrealengine.com/en-US/unreal-engine-5

https://assetstore.unity.com/packages/3d/environments/fast-food-restaurant-kit-239419
https://www.unrealengine.com/en-US/unreal-engine-5

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) A screenshot of the Fast Food model, in the background it is possible to see the added exit
and (b) a (partial) view of the NavMesh surface used by the NavMesh agents, (c) avatar ready to be
assigned a path, (d) waypoints (red diamonds) to be reached by an avatar. From [17, 18], (e) model of a
multilevel building seen from the side (the model is truncated due to its elongated nature), and (f) view
of the staircases of the multilevel building.

where agents can walk on, and added autonomous avatars in it. The avatars serve a dual purpose:
investigating pedestrian dynamics and enhancing the environment’s realism. We exploited two
different free avatars packages: background avatars were sourced from Mixamo5, which offers a
wide variety of free models and animations, although they lack extensive customization options,
while navigating avatars were obtained from the Unity Learn website’s crowd simulation

5https://www.mixamo.com/

https://www.mixamo.com/

project6, which provides customizable avatars along with walk, idle, and run animations, as well
as a pre-made Animator Controller (see Figure 2b). The Unity Animator Controller manages a
set of animation clips and their transitions, so in this case it’s quite useful as it ensures that
the transitions between animations are preconfigured and ready-to-use. This is especially
convenient since integrating navigation with character animations to achieve smooth, natural
movement can be complex. In fact it’s not always easy to achieve a seamless blend between
animated movements and pathfinding. The navigating avatars are ready-to-use and equipped
with Unity’s NavMesh Agent component that enables them to move around the environment
using Unity’s Navigation System. However, as previously mentioned, this system has its
limitations, which is the reason we want to change it.

To enhance control over the avatars’ paths and customize their actions, we developed a
script that allows us to set waypoints directly from the Editor (Figure 2a). The waypoints are
simple GameObjects, marked with a red icon for easy visualization in the Editor but invisible
during runtime. These GameObjects can be placed anywhere within the walkable areas. In
Unity, GameObjects are fundamental entities representing every object in the game, such as
characters, objects, and scenery. While they don’t perform any actions on their own, they serve
as containers for Components that provide actual functionality. Our waypoints are basic empty
GameObject with the sole purpose to designate target locations for the avatars (Figure 1d), and
the script is designed to read the coordinates of these waypoints. This setup allows us to specify
an array of locations from the Editor that the avatars need to reach in sequence (each avatar
has its own waypoints list). This script also enables us to categorize avatars as either store
customers or passersby. Store customers will stop at various locations within the store for a
period of time customizable from the Editor, for example to look at kiosks with the menu or
wait near the drinking machines, while passersby will simply walk within the environment
from one waypoint to another, adding dynamic movement to the scene. This approach allows
us to precisely manage the movement of all avatars, ensuring a realistic and easily controllable
simulation environment. Please note that by now avatars are only able to run animations, but
not to concretely interact with the environment (for example to order something from the
kiosks: this is the next aspect we will face in future research (Requirement 5)).

As shown in Figure 2a, locations can be added or removed from the list of waypoints (called
"nodes") in the Editor. To simplify the process, we created a Prefab7 of the nodes: a Prefab allows
to create, configure, and store a GameObject, complete with all its components, property values,
and child GameObjects, as a reusable asset. Any edit made to a Prefab asset is automatically
applied to all instances of that Prefab, enabling broad changes across the entire project without
needing to edit each instance individually. The "Delay" value property and the "is Customer"
boolean property are interconnected: if the boolean is set to True, the avatar is considered a
customer, as previously mentioned, and will pause at each waypoint for the duration specified
by the "Delay" value. If the boolean is set to False, the avatar will simulate a passerby and will
navigate between waypoints without stopping. A subtype of the waypoint Prefab is the one
used to destroy an avatar, which can be used if we want to make an avatar "disappear" from the
scene (possibly to be positioned not in the sight of view of the human subject).

6https://learn.unity.com/project/crowd-simulation
7https://docs.unity3d.com/Manual/Prefabs.html

https://learn.unity.com/project/crowd-simulation
https://docs.unity3d.com/Manual/Prefabs.html

Requirement 3 We are still working on offering a simple way to import, and then use,
models for pedestrian movement. In the next section we will briefly introduce an already
existing pedestrian model developed by our research group, and we will report on the design for
its integration into our tool, so that to offer an alternative algorithm to move the autonomous
avatars.

Requirement 4 and 5 Requirement 4 is under development, so that to track and store a large
set of data, and to directly produce output files to be analyzed with PedPy [20]. Requirement 5
instead requires a careful and deep research study, since we are studying how to integrate BDI
Agent model [21] and A&A abstraction [22] into Unity, in order to get the autonomous avatar
to really interact with the environment and be more "intelligent" and able to plan their overall
behaviour during the simulation.

5. The integrated pathfinding algorithm

In line with recent research results aiming at exploiting Deep Reinforcement Learning (DRL)
techniques [23] for achieving a sufficiently general behavioural model for a pedestrian agent
positioned and moving in an environment, our research group recently proposed a contribution
employing a curriculum [24] based approach that, together with a carefully designed reward
function, allowed us to exploit expertise on the simulated pedestrian phenomenon and to
achieve a behavioural model for a pedestrian agent showing promising results. First results [25]
and a more recent tune (to appear) of this approach showed the practical possibility to achieve
plausible results in terms of ability of avoiding other agents and in finding a suitable path from
a starting point to a destination one, crossing intermediate points too.

The system used to generate this model is based on Unity: the scenarios, agents and their
perceptive capabilities, as well as the monitoring components for acquiring data and to model
all what is needed to train and then test the model, are implemented as Unity Prefabs and
C# scripts. Unity does not directly include components supporting DRL techniques, but the

(a) (b)

Figure 2: (a)The script component used to add waypoints to the path of an agent, specifying if the
agent is a costumer or not and the time he has to wait before moving to the next waypoint and (b) the
animator controller with the walk, idle and run animations

(a) Environment elements (b) Rays of perception

Figure 3: (a) Environment elements: walkable area (1), walls (2), final target (3), agent (4), intermediate
target (5); (b) rays of agent perception.

ML-Agents toolkit8 provides both an extension of the Unity environment as well as a set of
Python components enabling training and using DRL based agents.

So, we decided to use this pedestrian model as a first attempt to import and use it in our new
Unity based tool. In this section, we report some general information regarding the model and
some results to let the user understand the differences between its usage and those achieved
with a standard NavMesh Unity agent: later on we will discuss how we are proceeding regarding
its integration into our tool.

5.1. Reinforcement Learning Pedestrian Model

To generate the model we adopted environments of 20 × 20 metres surrounded by walls, with
different internal structures. Walls and obstacles are represented in gray, while violet rectangles
are intermediate and final targets not preventing the possibility of moving through them, but
they are perceivable by agents such as gateways, mid-sections of bends, exits, and they support
agent’s navigation of the environment. The modeler must therefore perform an annotation of
the environment before using it, as showed for example in Figure 3(a).

Agents perceive the environments by means of a set of projectors generating rays extending
up to 14 m (in the current setup) that provide indications on what is hit and its distance from the
agent (Figure 3(b)). The agent is also provided with cones in which it can detect the presence
of walls and other agents, for supporting close range avoidance behaviours. The regulation of
the velocity vector related to agent’s movement (magnitude and direction of walking speed)
is the only action managed by the action model. In line with the literature [26], agents take

8https://github.com/Unity-Technologies/ml-agents

https://github.com/Unity-Technologies/ml-agents

three decisions per second. Each agent is provided with an individual desired velocity 𝑠𝑝𝑑𝑒𝑠
that is drawn from a normal distribution with average of 1.5 m/s and a standard deviation of 0.2
m/s. Agent’s action space has been therefore defined as the choice of two continuous values
in the [-1,1] interval that are used to determine a change in velocity vector, respectively for
magnitude and direction. The first element causes a change in the walking speed, while the
second element of the decision determines a change in the agent’s direction.

The cumulative reward we handcrafted increases only upon reaching the final target or a
valid intermediate target (one that leads towards the final target, but reached only once). Other
actions (associated to an implausible choice or simply to the fact that another decision turn has
passed without reaching the final target) will instead yield a negative reward. Reaching the end
of a training phase without reaching the final and intermediate targets will lead to a substantial
negative reward.

We exploited the Proximal Policy Optimization (PPO) [27], a state–of–the–art RL policy–based
algorithm, as implemented by ML-Agents.

Finally, we adopted a Curriculum Learning approach to generate our model, which is a
particular form of supervised ML where examples increasing in difficulty are presented during
the training, illustrating gradually more complicated situations to the learning algorithm.
This approach is foreseen to speed up the learning phase and to get a model usually more
prone to generalize to unknown environments. The used curriculum starts with very simple
environments where the agent learns how to steer to look for the final target and walks towards
it with just perimetral walls, then it has to face situations in which the environment is narrow
(a basic corridor) and in which bends are present. Then social interaction is introduced, first of
all with agents with compatible directions, then with conflicting ones, in geometries presenting
bends and even bottlenecks. A selection of training environments is shown in Figure 4.

To let the reader understand the difference in the achieved pedestrian behaviours obtained
with our model with respect to the standard algorithm offered by Unity with its NavMesh agents,
we show in Figure 5 the resulting paths and velocity of an agent with NavMesh (Figure 5(a)
and 5(c)) and one equipped with our model (Figure 5(b) and 5(d), in two different environments,
one for each row): the agent exploiting A* clearly follows the shortest path, resulting in going
really near to corners, turning as narrow as possible and walking straight forward between
the intermediate targets, while the other agent follows the same overall paths but in a more
"human" way, that is, adjusting sometimes its direction and not going so tangent to walls
and corners. Also, please note that NavMesh agents have the complete view and knowledge
of the environment (including the intermediate targets), so their path is computed with this
information, and changes are made only if dynamic obstacles (for example other walking agents)
appear at runtime: instead, agents exploiting ML-Agent library and our model are limited in
their sight (as said before, they see only up to 14 meters and in a limited field of view), so
they recalculate their path with respect to what they can see at runtime. This is evident for
example comparing Figures 5(a) and 5(b), where the NavMesh agent already knows that the
intermediate target is around the corner and directly orientates in that direction, while the
other agent, as a normal human, will start exploring the environment (going forward) until
it can see the intermediate target: only at that point it will turn towards it. This behaviour is
more realistic, and is more similar to something we would like to exploit in a VR simulation,
where the user should "confuse" an autonomous avatar with a human person.

(a) Bends with Obstacles (b) Corridor

(c) Intersection (d) Bidirectional Door

Figure 4: A selection of training environments.

5.2. Integration

The integration of the pedestrian model is still under work: the ML-Agent library saves the
achieved models in a format that can be directly used within Unity without the need to have
the ML-Agent trainer running (or even installed locally in the machine running the specific
Unity instance). Nevertheless, when running, avatars exploiting these policies need to perceive
the environment as those used for the training, so that to provide input for the model in the
correct way. So, we are studying if it is simpler to import ML-Agents (in the sense of their
body structure, rays, components and so on) in our tool, and modifying them in order to add

(a) (b)

(c) (d)

Figure 5: Comparison between the paths of a Navmesh agents (a) and (c) and those followed by agents
moved with the model described in Section 5 (b) and (d)

the animator controller and the scripts to manage the list of waypoints to be reached, or vice
versa, that is, enhancing the already exploited avatars to make them able to interface with the
pedestrian model.

Furthermore, we will surely have to modify the elements in the environment to tag them as
final or intermediate targets, or as walls and obstacles (as described in Section 5.1 and depicted
in Figure 3(a)): this can be long and tedious, since we are now in a realistic and complex
environment, with a lot of entities all along the scenario (tables, chairs, kiosks and so on), so we
will help the modeler with an automatic script to tag all these elements as "obstacles", leaving
to him only the burden to manually tag the intermediate and final targets.

6. Conclusion

We presented an high level description of the requirements for a new VR tool we are im-
plementing, based on Unity, foreseen to support modelers in the creation of scenarios with

virtual humans moving in a realistic way, discussing how (and why it would be of paramount
importance) to import already exiting pathfinding models.

Currently we are working on the integration of avatars exploiting the model described in
Section 5, which should be concluded in the next month, as on the implementation of functions
to collect real time data (subject movements, head rotation, avatars trajectories and so on).

A more complex study is going on regarding how to make the autonomous avatars more
intelligent, in the sense of making them guided by internal goals (in a BDI fashion) and not
simply by a list of waypoints to be followed, and more interactive with the environment, so that
when the modeler is creating a new autonomous avatar specifying its goals, these can be then
translated into concrete actions over the environment: we are studying how to exploit something
related to the Agent and Artifact paradigm, since the Unity environment and interacting objects
should be made available, and known, to the avatars to make them able to act over them. The
general and long term idea is to create a VR tool able to support the management of the avatars
(in their movements, but not necessarily only in this aspect) thanks to the integration of both
Machine Learning approaches and more symbolic and logic ones, to let the modeler exploit
approaches, techniques and tools coming from both the research areas, which can provide
different, but we think complementary, benefits.

Second, since we are also researching on more psychological aspects of human interaction,
in particular how proxemics impacts the way humans move in an environment and approach
other humans (that can be autonomous avatars too) [28, 29, 30], we would like to offer in our
tool another type of autonomous avatar (like we are doing for avatars guided by the pedestrian
model discussed in this paper) that should in this case be guided by proxemics factors: this
would open to further studies with humans, maybe focusing more on social interactions rather
than on pathfinding and pedestrian movements, but still under the same overall goal of studying
how humans interact and move in an environment populated with other people, exploiting VR.

References

[1] M. Fu, R. Liu, Y. Zhang, Do people follow neighbors? An immersive virtual reality
experimental study of social influence on individual risky decisions during evacuations,
Automation in Construction 126 (2021) 103644. URL: https://www.sciencedirect.com/
science/article/pii/S0926580521000959. doi:10.1016/j.autcon.2021.103644.

[2] J. Lin, L. Cao, N. Li, Assessing the influence of repeated exposures and mental stress on
human wayfinding performance in indoor environments using virtual reality technology,
Advanced Engineering Informatics, Volume 39 (2019). URL: https://www.sciencedirect.
com/science/article/pii/S1474034618304014.

[3] M. I. Berkman, E. Akan, Presence and immersion in virtual reality, Lee, N. (eds)
Encyclopedia of Computer Graphics and Games. Springer, Cham (2024). URL: https:
//link.springer.com/referenceworkentry/10.1007/978-3-031-23161-2_162.

[4] J. Mütterlein, The three pillars of virtual reality? investigating the roles of immersion,
presence, and interactivity (2018).

[5] J. Jerald, The VR book: Human-centered design for virtual reality, Morgan & Claypool,
2015.

https://www.sciencedirect.com/science/article/pii/S0926580521000959
https://www.sciencedirect.com/science/article/pii/S0926580521000959
http://dx.doi.org/10.1016/j.autcon.2021.103644
https://www.sciencedirect.com/science/article/pii/S1474034618304014
https://www.sciencedirect.com/science/article/pii/S1474034618304014
https://link.springer.com/referenceworkentry/10.1007/978-3-031-23161-2_162
https://link.springer.com/referenceworkentry/10.1007/978-3-031-23161-2_162

[6] S. Deb, D. W. Carruth, R. Sween, L. Strawderman, T. M. Garrison, Efficacy of virtual reality
in pedestrian safety research, Applied ergonomics 65 (2017) 449–460.

[7] M. Nelson, A. Koilias, S. Gubbi, C. Mousas, Within a virtual crowd: Exploring human
movement behavior during immersive virtual crowd interaction (2019). URL: https://doi.
org/10.1145/3359997.3365709. doi:10.1145/3359997.3365709.

[8] J. Lin, R. Zhu, N. Li, B. Becerik-Gerber, Do people follow the crowd in building emergency
evacuation? a cross-cultural immersive virtual reality-based study, Advanced Engineering
Informatics, Volume 43 (2020). URL: https://www.sciencedirect.com/science/article/pii/
S1474034620300094.

[9] J. Lin, L. Cao, N. Li, How the completeness of spatial knowledge influences the evacuation
behavior of passengers in metro stations: A vr-based experimental study, Automation in
Construction, Volume 113 (2020). URL: https://www.sciencedirect.com/science/article/pii/
S0926580519312452.

[10] D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, E. Gunawan, A systematic literature
review of a* pathfinding, Procedia Computer Science, Volume 179 (2021). URL: https:
//www.sciencedirect.com/science/article/pii/S1877050921000399.

[11] R. Junges, F. Klügl, Programming agent behavior by learning in simulation models, Applied
Artificial Intelligence, 26(4), 349–375 (2012). URL: https://www.tandfonline.com/doi/full/
10.1080/08839514.2012.652906.

[12] H. Qiu, Multi-agent navigation based on deep reinforcement learning and traditional
pathfinding algorithm (2020). arXiv:2012.09134.

[13] F. Martinez-Gil, M. Lozano, F. Fernández, Emergent behaviors and scalability for multi-
agent reinforcement learning-based pedestrian models, Simulation Modelling Practice
and Theory, Volume 74 (2017). URL: https://www.sciencedirect.com/science/article/pii/
S1569190X17300503.

[14] J. Clifton, S. Palmisano, Effects of steering locomotion and teleporting on cybersickness
and presence in hmd-based virtual reality, Virtual Reality 24, 453–468 (2020). URL: https:
//link.springer.com/article/10.1007/s10055-019-00407-8.

[15] C. G. Christou, P. Aristidou, Steering versus teleport locomotion for head mounted
displays, Augmented Reality, Virtual Reality, and Computer Graphics (2017). URL: https:
//link.springer.com/chapter/10.1007/978-3-319-60928-7_37.

[16] M. P. Jacob Habgood, D. Moore, D. Wilson, S. Alapont, Rapid, continuous move-
ment between nodes as an accessible virtual reality locomotion technique (2018) 371–
378. URL: https://ieeexplore.ieee.org/abstract/document/8446130. doi:10.1109/VR.2018.
8446130.

[17] Y. Feng, D. C. Duives, S. P. Hoogendoorn, Using virtual reality to study pedestrian
exit choice behaviour during evacuations, Safety Science 137 (2021) 105158. URL: https:
//www.sciencedirect.com/science/article/pii/S0925753521000011. doi:https://doi.org/
10.1016/j.ssci.2021.105158.

[18] Y. Feng, D. C. Duives, S. P. Hoogendoorn, Development and evaluation of a vr research tool
to study wayfinding behaviour in a multi-story building, Safety Science 147 (2022) 105573.
URL: https://www.sciencedirect.com/science/article/pii/S092575352100415X. doi:https:
//doi.org/10.1016/j.ssci.2021.105573.

[19] Y. Feng, D. C. Duives, S. P. Hoogendoorn, Development and evaluation of a vr research

https://doi.org/10.1145/3359997.3365709
https://doi.org/10.1145/3359997.3365709
http://dx.doi.org/10.1145/3359997.3365709
https://www.sciencedirect.com/science/article/pii/S1474034620300094
https://www.sciencedirect.com/science/article/pii/S1474034620300094
https://www.sciencedirect.com/science/article/pii/S0926580519312452
https://www.sciencedirect.com/science/article/pii/S0926580519312452
https://www.sciencedirect.com/science/article/pii/S1877050921000399
https://www.sciencedirect.com/science/article/pii/S1877050921000399
https://www.tandfonline.com/doi/full/10.1080/08839514.2012.652906
https://www.tandfonline.com/doi/full/10.1080/08839514.2012.652906
http://arxiv.org/abs/2012.09134
https://www.sciencedirect.com/science/article/pii/S1569190X17300503
https://www.sciencedirect.com/science/article/pii/S1569190X17300503
https://link.springer.com/article/10.1007/s10055-019-00407-8
https://link.springer.com/article/10.1007/s10055-019-00407-8
https://link.springer.com/chapter/10.1007/978-3-319-60928-7_37
https://link.springer.com/chapter/10.1007/978-3-319-60928-7_37
https://ieeexplore.ieee.org/abstract/document/8446130
http://dx.doi.org/10.1109/VR.2018.8446130
http://dx.doi.org/10.1109/VR.2018.8446130
https://www.sciencedirect.com/science/article/pii/S0925753521000011
https://www.sciencedirect.com/science/article/pii/S0925753521000011
http://dx.doi.org/https://doi.org/10.1016/j.ssci.2021.105158
http://dx.doi.org/https://doi.org/10.1016/j.ssci.2021.105158
https://www.sciencedirect.com/science/article/pii/S092575352100415X
http://dx.doi.org/https://doi.org/10.1016/j.ssci.2021.105573
http://dx.doi.org/https://doi.org/10.1016/j.ssci.2021.105573

tool to study wayfinding behaviour in a multi-story building, Safety science 147 (2022)
105573.

[20] T. Schrödter, T. P. D. Team, Pedpy - pedestrian trajectory analyzer, 2024. URL: https:
//doi.org/10.5281/zenodo.10814490. doi:10.5281/zenodo.10814490.

[21] A. S. Rao, M. P. George, Bdi agents: from theory to practice, 1995. URL: https://api.
semanticscholar.org/CorpusID:269838374.

[22] A. Omicini, A. Ricci, M. Viroli, Artifacts in the a&a meta-model for multi-agent sys-
tems, Auton. Agents Multi Agent Syst. 17 (2008) 432–456. URL: https://doi.org/10.1007/
s10458-008-9053-x. doi:10.1007/S10458-008-9053-X.

[23] R. S. Sutton, A. G. Barto, Reinforcement Learning, an Introduction (Second Edition), MIT
Press, 2018. ISSN: 01406736.

[24] Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning, in: Proceedings of
the 26th Annual International Conference on Machine Learning, ICML ’09, Association
for Computing Machinery, New York, NY, USA, 2009, pp. 41–48. URL: https://doi.org/10.
1145/1553374.1553380. doi:10.1145/1553374.1553380.

[25] G. Vizzari, T. Cecconello, Pedestrian simulation with reinforcement learning: A curriculum-
based approach, Future Internet 15 (2023). URL: https://www.mdpi.com/1999-5903/15/1/12.
doi:10.3390/fi15010012.

[26] S. Paris, S. Donikian, Activity-Driven Populace: A Cognitive Approach to Crowd Simula-
tion, IEEE Computer Graphics and Applications 29 (2009) 34–43.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy opti-
mization algorithms, CoRR abs/1707.06347 (2017). URL: http://arxiv.org/abs/1707.06347.
arXiv:1707.06347.

[28] S. Bandini, D. Briola, A. Dennunzio, F. Gasparini, M. Giltri, G. Vizzari, Distance-based
affective states in cellular automata pedestrian simulation, Nat. Comput. 23 (2024) 71–83.
URL: https://doi.org/10.1007/s11047-023-09957-y. doi:10.1007/S11047-023-09957-Y.

[29] S. Bandini, D. Briola, A. Dennunzio, F. Gasparini, M. Giltri, G. Vizzari, Integrating
the implications of distance-based affective states in cellular automata pedestrian sim-
ulation, in: B. Chopard, S. Bandini, A. Dennunzio, M. A. Haddad (Eds.), Cellular
Automata - 15th International Conference on Cellular Automata for Research and In-
dustry, ACRI 2022, Geneva, Switzerland, September 12-15, 2022, Proceedings, volume
13402 of Lecture Notes in Computer Science, Springer, 2022, pp. 259–270. URL: https:
//doi.org/10.1007/978-3-031-14926-9_23. doi:10.1007/978-3-031-14926-9_23.

[30] M. Giltri, S. Bandini, F. Gasparini, D. Briola, Furthering an agent-based modeling approach
introducing affective states based on real data, in: A. L. C. Bazzan, I. Dusparic, M. Lujak,
G. Vizzari (Eds.), Twelfth International Workshop on Agents in Traffic and Transportation
co-located with the the 31st International Joint Conference on Artificial Intelligence and
the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022), Vienna, Austria,
July 25, 2022, volume 3173 of CEURWorkshop Proceedings, CEUR-WS.org, 2022, pp. 124–136.
URL: https://ceur-ws.org/Vol-3173/9.pdf.

https://doi.org/10.5281/zenodo.10814490
https://doi.org/10.5281/zenodo.10814490
http://dx.doi.org/10.5281/zenodo.10814490
https://api.semanticscholar.org/CorpusID:269838374
https://api.semanticscholar.org/CorpusID:269838374
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
http://dx.doi.org/10.1007/S10458-008-9053-X
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.1145/1553374.1553380
https://www.mdpi.com/1999-5903/15/1/12
http://dx.doi.org/10.3390/fi15010012
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1007/s11047-023-09957-y
http://dx.doi.org/10.1007/S11047-023-09957-Y
https://doi.org/10.1007/978-3-031-14926-9_23
https://doi.org/10.1007/978-3-031-14926-9_23
http://dx.doi.org/10.1007/978-3-031-14926-9_23
https://ceur-ws.org/Vol-3173/9.pdf

	1 Introduction
	2 VR for Experiments with Human subjects
	2.1 Virtual Humans: Unity NavMesh versus Realistic pathfinding

	3 Goals and design of the proposed tool
	4 Design, and partial implementation, of the Unity tool
	5 The integrated pathfinding algorithm
	5.1 Reinforcement Learning Pedestrian Model
	5.2 Integration

	6 Conclusion

