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Abstract
I review some recent progresses in counting the number of microstates of AdS

supersymmetric black holes in dimension equal or greater than four using holog-

raphy. The counting is obtained by applying localization and matrix model tech-

niques to the dual field theory. I cover in details the case of dyonic AdS4 black

holes, corresponding to a twisted compactification of the dual field theory, and I

discuss the state of the art for rotating AdS5 black holes.
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1 Introduction

We know since the seventies that black holes in general relativity are thermodynamic

objects, in particular they have a temperature and an entropy (Bekenstein 1972; Bardeen

et al. 1973; Hawking 1975). One of the most intriguing and celebrated relation in

theoretical physics is the Bekenstein–Hawking formula expressing the entropy of a black

hole in terms of the area A of the event horizon and the natural constants c; �h; kB;GN

SBH ¼ kB
c3A

4�hGN

; ð1:1Þ

merging in a single expression gravity, relativity, statistical mechanics and quantum

theory. Using a standard statistical mechanics interpretation, we are led to write the

entropy as

SBH ¼ kB log n; ð1:2Þ

in terms of the number n of microscopic degrees of freedom of the system, the

microstates of the black hole. It is a main challenge for all theories of quantum

gravity to give an explanation of the Bekenstein–Hawking formula and to identify

the corresponding microstates.
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The Bekenstein–Hawking formula suggests that the microstates are localized on

the event horizon. This is an instance of the holographic principle (’t Hooft 1993;

Susskind 1995), which states that a volume of space in quantum gravity can be

described just in terms of boundary degrees of freedom. A concrete incarnation of

this general principle is the AdS/CFT correspondence (Maldacena 1999), a

cornerstone of modern theoretical physics. The correspondence explicitly identifies

a theory of quantum gravity in Anti-de-Sitter space-time (AdS) with a dual

conformal quantum field theory (CFT), which we may naively think of as living on

the boundary of AdS. String theory provides many explicit examples of AdS

backgrounds and dual CFTs. The most famous is the original example of dual pairs,

type IIB string theory on AdS5 � S5 and the maximally supersymmetric gauge

theory in four dimensions, N ¼ 4 super-Yang–Mills (SYM). Impressive checks of

the correctness of this duality have been made over the last twenty years.

In this context, one of the great successes of string theory is the microscopic

explanation of the entropy of certain asymptotically flat black holes. The first result

was obtained in Strominger and Vafa (1996), more than twenty years ago, and has

been followed by an immense literature, which would be too long to refer to.

However, quite curiously, no similar results exist for asymptotically AdS black

holes in dimension four or greater until very recently. Since holography suggests

that the microstates of the black hole correspond to states in a dual conformal field

theory, the AdS/CFT correspondence is the natural setting where to explain the

black hole entropy in terms of a microscopical theory. In the past, various attempts

have been made to derive the entropy of a class of rotating black holes in AdS5 � S5

in terms of states of the dual N ¼ 4 SYM theory in the large N limit, but none was

completely successful. The more recent advent of localization techniques for

supersymmetric quantum field theories, in the spirit of Nekrasov (2003b) and Pestun

(2012), opens a new perspective on this problem. In this review we discuss how to

use localization to derive the entropy for a class of supersymmetric black holes in

AdS4 and AdS5 and discuss the current status for other black holes appearing in

holography. We will work in dimension equal or greater than four. AdS3 is

somehow special, and well-studied in the literature, and it will not be discussed in

these notes.

1.1 Content of the review

The first microscopic counting for AdS black holes in dimension equal or greater

than four was performed in Benini et al. (2016b), considering asymptotically AdS4
static supersymmetric black holes. One of the main characteristics of this class of

black holes is the presence of magnetic charges that correspond to a topological

twist in the dual field theory. The black holes considered in Benini et al. (2016b)

can be embedded in M theory and are asymptotic to AdS4 � S7. They are dual to a

topologically twisted compactification of the ABJM theory in three dimensions

(Aharony et al. 2008), and their entropy scales as N3=2 at large N, as familiar from

three-dimensional holography. In this review, we will focus on this example as a

prototype for many similar computations. The entropy can be extracted from the
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(regularized) Witten index of the quantum mechanics obtained by compactifying

ABJM on a Riemann surface Rg. Holographically, the quantum mechanics describes

the physics of the near horizon geometry AdS2 � Rg of the black holes. The index

can be computed, using localization, as the three-dimensional supersymmetric

partition function of ABJM on Rg � S1, topologically twisted along the Riemann

surface Rg. From this perspective, this computation can be generalized to more

general domain wall solutions interpolating between AdSdþn and AdSd �Mn, with

a topological twist along the n-dimensional compact manifold Mn, thus providing

general tests of holography.

In the second part of this review, we also discuss the analogous problem for

supersymmetric rotating electrically charged black holes in AdSd. The main

difference with the previous case is the absence of a topological twist. The entropy

for such black holes should be obtained by counting states with given electric charge

and spin in the dual field theory and the natural observable to consider is the

superconformal index, which receives contributions precisely from the BPS states of

the theory. Recent results in this direction have been obtained starting with the work

(Cabo-Bizet et al. 2019a; Choi et al. 2018b; Benini and Milan 2020b) and we will

discuss these recent progresses obtained in various overlapping limits but all

pointing towards a unified picture.

Many of the relevant field theory computations are performed using localization.

This allows to reduce exact path integrals in quantum field theory to matrix models,

which can be solved in the large N limit combining standard and more recent

techniques. One successful approach for the physics of black holes, that works both

in four (Benini et al. 2016b; Hosseini et al. 2017c) and five dimensions (Benini and

Milan 2020b), involves writing the matrix model partition function as a sum of

Bethe vacua (Nekrasov and Shatashvili 2009b) of an auxiliary theory. Some

technical aspects of this approach are discussed in Sect. 3.

Let us stress that many derivations of the entropy for asymptotically flat black

holes involve the use of the Cardy formula for the asymptotic growing of states of a

two-dimensional CFT. In the localization approach for AdS black holes, we directly

count the number of microstates using an index.1 We will briefly make contact with

the original Cardy approach based on a two-dimensional CFT in Sect. 5 where we

discuss black strings.

This review assume some familiarity with supersymmetry and the main examples

of holographic dualities in various dimensions. We assume that the reader knows

that N ¼ 4 SYM in four dimensions is dual to AdS5 � S5, the ABJM theory to

AdS4 � S7 and the so-called (2, 0) theory in six dimensions to AdS7 � S4. Some

preliminary exposure to localization computation2 would be also useful although

not necessary. We discuss instead in Sect. 4.1 the elements of gauged supergravity

that are needed for this review.

1 Although some results about rotating electrically charged black holes have been obtained in a Cardy

limit, which provides a generalization of the Cardy formula to higher dimensions.
2 We refer to Marino (2011) for a nice introduction and Pestun and Zabzine (2017) for a more

comprehensive review.
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The review is organized as follows. In Sect. 2 we give a general overview of the

various classes of supersymmetric black holes that are relevant for holography,

stressing that they fall into two main classes, distinguished by the presence or

absence of magnetic charges (or more precisely of a twist). We also discuss how we

should compute their entropy using field theory methods and we introduce the

concepts of entropy functional and attractor mechanism that prove useful in the

comparison between gravity and field theory. In Sects. 3 and 4 we discuss in details

the example of dyonic black holes asymptotic to AdS4 � S7 and dual to a twisted

compactification of ABJM. In Sect. 3 we discuss the field theory aspects of the

story, introducing the topologically twisted index and showing how to evaluate it

using localization. In Sect. 4 we perform the large N limit of the resulting matrix

model and we compare with gravity. In Sect. 5 we discuss black string solutions

interpolating between AdS5 and AdS3 � Rg, as a prototype of more general domain

walls interpolating between AdS spaces that can be studied with these techniques. In

Sects. 6 and 7 we discuss the case of rotating electrically charged black holes in

AdSd. In Sect. 6 we discuss the field theory aspects of the story, introducing the

superconformal index. Finally, in Sect. 7 we discuss the state of the art of the

comparison between field theory and gravity for such black holes.

2 AdS black holes in d ‡ 4

In this review we are interested in supersymmetric black holes that can be

embedded in string theory or M-theory and are asymptotic to AdSd vacua with a

known field theory dual. There are many such black holes that can be embedded in

maximally supersymmetric backgrounds. For example, we can find supersymmetric

black holes in AdS5 � S5, AdS4 � S7 and AdS7 � S4, whose dual field theories are

well known. Supersymmetric black holes are extremal and have zero temperature.

They also satisfy a BPS condition that relates their mass to the other conserved

charges. In the limit where gravity is weakly coupled, the entropy of a black hole

can be computed with the Bekenstein–Hawking formula

S ¼ A

4GN

; ð2:1Þ

where A is the area of the horizon and GN is the Newton constant. We set

c ¼ �h ¼ kB ¼ 1.

We now discuss some general features of these black holes and their holographic

interpretation.

2.1 AdS black holes and holography

For the purposes of holography, we can divide the known supersymmetric black

holes in dimension d � 4 into two main classes, distinguished by how supersym-

metry is realized and the holographic interpretation. In particular, they are

distinguished by existence (or absence) of certain magnetic charges corresponding

to a topological twist.
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2.1.1 Kerr–Newman black holes and generalizations

The first class of black holes consists of supersymmetric electrically charged

rotating black holes (Kerr–Newman). The most famous examples are the type IIB

supergravity black holes asymptotic to AdS5 � S5 found in Gutowski and Reall

(2004a), Gutowski and Reall (2004b), Chong et al. (2005a, b) and Kunduri et al.

(2006). They depend on two angular momenta corresponding to two Cartan

isometries of AdS5

ðj1; j2Þ Uð1Þ2 � SOð4Þ � SOð2; 4Þ; ð2:2Þ

and three electric charges under the Cartan isometries of S5

ðq1; q2; q3Þ Uð1Þ3 � SOð6Þ; ð2:3Þ

parameterizing rotations in the internal space S5. Supersymmetry actually imposes a

relation among the conserved charges, f ðj1; j2; q1; q2; q3Þ ¼ 0, so that there are only

four independent parameters.3 These black holes preserve two real supercharges out

of the original thirty-two of type IIB supergravity on AdS5 � S5. The five-dimen-

sional part of the metric is asymptotic to AdS5 with R� S3 as conformal boundary.

As well known, type IIB string theory on AdS5 � S5 is dual to N ¼ 4 SYM in four

dimensions. It is then a natural expectation that the black holes correspond holo-

graphically to an ensemble of states of N ¼ 4 SYM on R� S3 that preserve the

same supersymmetries and have the same electric charges and the same angular

momenta. It is also natural to expect that, by counting all the 1/16 BPS states of

N ¼ 4 SYM on R� S3 with electric charges ðq1; q2; q3Þ and spin ðj1; j2Þ, we should
be able to reproduce the entropy of these black holes. We will work under these

assumptions. We are interested in macroscopic black holes whose entropy, when

expressed in terms of field theory data, scales as OðN2Þ, where N is the number of

colors of the dual field theory.

The situation is analogous in other dimensions (Chong et al. 2005c; Cvetič et al.

2005; Chow 2008, 2010; Hristov et al. 2019a). Consider the maximally supersym-

metric backgrounds AdS4 � S7 and AdS7 � S4 in M-theory. The isometry of

AdS4 � S7 is SOð2; 3Þ � SOð8Þ and we can find electrically charged rotating black

holes depending on one angular momentum j and four electric charges

ðq1; q2; q3; q4Þ with a constraint. They preserve two real supercharges. We expect

to reproduce the entropy of such black holes by counting all 1/16 BPS states of the

dual field theory on R� S2 with the same quantum numbers. As well known, the

dual of M-theory on AdS4 � S7 is the three-dimensional ABJM theory at Chern–

Simons level k ¼ 1 (Aharony et al. 2008). The entropy of these black holes scales as

OðN3=2Þ. Similarly, since the isometry of AdS7 � S4 is SOð2; 6Þ � SOð5Þ, there are

black holes depending on three angular momenta ðj1; j2; j3Þ and two electric charges

3 For many different families of BPS black holes, supersymmetry imposes constraints among the

charges. The reason why this happens is still unclear. In the case of AdS5 � S5, BPS hairy black holes

depending on all the charges have been found in Markeviciute and Santos (2019) and Markeviciute

(2019).
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ðq1; q2Þ with a constraint, again preserving two real supercharges.4 In this case, the

entropy, which scales as OðN3Þ, should be reproduced by counting states in the

N ¼ ð2; 0Þ theory in six dimensions (Witten 1995) on R� S5.

Notice that all these supersymmetric black holes rotate. If we turn off the angular

momenta ji, we find singularities.

In principle, although there are not so many examples in the literature, we expect

the existence of similar supersymmetric black holes in more general type II or M-

theory backgrounds with an AdSd vacuum, rotating in AdSd and charged under the

isometries of the compactification manifold. The holographic interpretation is

similar. For example, for type IIB black holes in AdS5 � SE5 (Klebanov and Witten

1998), where SE5 is a five-dimensional Sasaki–Einstein manifold, we should try to

match the entropy by counting 1/4 BPS states of the dual N ¼ 1 superconformal

field theory on R� S3.

2.1.2 Magnetically charged black holes with a twist

The second class of black holes are characterized by the existence of certain

magnetic charges. We should more properly refer to such black holes as solutions

where supersymmetry is realized with a topological twist, as we will see. Although

there are examples in higher dimensions,5 we will focus on four dimensions, where

these black holes arise naturally. Indeed we can have both magnetic and electric

charges in d ¼ 4 and it is natural to consider dyonic black holes. There exists a

family of BPS black holes in AdS4 � S7 depending on one angular momentum j1 in
AdS4 and on electric and magnetic charges

ðq1; q2; q3; q4Þ ðp1; p2; p3; p4Þ; ð2:4Þ

under the abelian Uð1Þ4 � SOð8Þ isometries of S7 (Cacciatori and Klemm 2010;

Dall’Agata and Gnecchi 2011; Hristov and Vandoren 2011; Katmadas 2014; Hal-

magyi 2015; Hristov et al. 2019b). Supersymmetry requires a linear constraint

among the magnetic charges pa and non-linear ones among the conserved charges,

so that we have a six-dimensional family of rotating, dyonic black holes. For this

class of solutions, we can also turn off rotation and have static supersymmetric

black holes.6

In general, AdS4 black holes with magnetic charges are qualitatively different

from those with zero magnetic charge, as first noticed in Romans (1992) and

4 Actually, only black holes with equal charges or equal momenta have been studied. However, we

expect a family with at least four independent parameters to exist.
5 There are exotic d-dimensional solutions with horizon AdS2 �Md�2, where Md�2 is a compact

manifold, with non-zero fluxes of the gauge fields on Md�2.
6 These BPS black holes have been found in N ¼ 2 gauged supergravity in d ¼ 4 with vector multiplets

and later uplifted to M-theory. The first static example, with a hyperbolic horizon, was found in Sabra

(1999) in minimal gauged supergravity. The first static spherically symmetric example was found in

Cacciatori and Klemm (2010), further discussed in Dall’Agata and Gnecchi (2011), Hristov and

Vandoren (2011) and generalized to the dyonic case in Katmadas (2014) and Halmagyi (2015). The

rotating case has been discussed in Hristov et al. (2019b) [for other examples, see also Daniele et al.

(2019)].
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elaborated in Hristov et al. (2011) and Hristov (2012b). The difference is well

explained using holography. Consider the black holes as solutions of an effective

four-dimensional theory with a AdS4 vacuum dual to a boundary conformal field

theory. For most of this review, the CFT will be ABJM, but the following arguments

apply to black holes in general compactifications and more general CFTs with at

least N ¼ 2 supersymmetry. For our purposes, we need the terms of the effective

theory describing the dynamics of the metric and of the vector fields Aa
l

corresponding to the abelian isometries of the internal manifold. Their dynamics

is described by an Einstein-Maxwell theory

L ¼ ffiffiffi

g
p

R þ gabð/iÞFa
lmF

lmb þ . . .
� �

ð2:5Þ

where, in general, the matrix of coupling constants depends on the scalar fields /i of

the theory. According to the rules of holography, gauge fields in the bulk correspond

to global symmetries in the boundary CFT. For example, in the case of AdS4 � S7

we are interested in the four fields Aa
l corresponding to the abelian isometries

Uð1Þ4 � SOð8Þ and they couple to the field theory conserved currents Jla

Z

d4xAa
lJla ð2:6Þ

associated to the Cartan generators of the SO(8) R-symmetry of ABJM at Chern–

Simons level k ¼ 1. Focusing for simplicity on the static case, one finds that, near

the boundary, the black hole solutions behave as

ds2 ¼ dr2

r2
þ r2ds2M3

þ . . .;

Aa
lðx; rÞ ¼ Â

a

lðxÞ þ . . .;

ð2:7Þ

where r is some large radial coordinate, the ellipsis refers to terms suppressed by

inverse powers of r, and x are coordinates on the boundary manifold. For spherically

symmetric black holes the boundary manifold is M3 ¼ R� S2. However we can

have more exotic solutions with horizon AdS2 � Rg, where Rg is a Riemann surface

of genus g, and, in this case, M3 ¼ R� Rg. Holography tells us that we should

interpret (2.7) as the dual of our CFT defined on the curved manifold M3. What can

we say about Aa
l? Recall again the basic rules of the AdS/CFT correspondence

(Klebanov and Witten 1999). Any field /ðx; rÞ in AdS is associated with an operator

O(x) in the dual CFT. If we have an expansion

/ðx; rÞ ¼ ra1/0ðxÞ þ ra2/1ðxÞ; ð2:8Þ

of the solution of the second order equations of motion for /,7 we interpret the non-
normalizable piece, /0ðxÞ, as a deformation of the original CFT with the corre-

sponding operator O,

7 The values of ai are related to the conformal dimension of O.
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LCFTðxÞ ! LCFTðxÞ þ /0ðxÞOðxÞ; ð2:9Þ

while we interpret the normalizable one, /1ðxÞ, as a vacuum expectation value (vev)

for O, hOi 6¼ 0. More precisely, if /0ðxÞ 6¼ 0, we are deforming the CFT with O; if

/0ðxÞ ¼ 0 and /1ðxÞ 6¼ 0 we have a state of the CFT with non zero vev for O. There

are situations where both modes /0ðxÞ and /1ðxÞ are normalizable (or better have

finite energy). In this case there are different possible quantizations of the same

theory and we have to choose who plays the role of /0. Massless vector fields in

AdS4 allow for different types of quantizations, related to electric/magnetic duality

in the bulk, and this leads to interesting applications, but this is not strictly the most

important point. What is important is that, in the expansion (2.7) for Aa
l both leading

and sub-leading terms are turned on. The field Aa
l has a leading contribution for

r � 1 that approaches a constant value on the boundary M3 ¼ R� Rg, corre-

sponding to the magnetic charge of the black hole

1

2p

Z

Rg

Fa ¼ pa; ð2:10Þ

and sub-leading terms [the ellipsis in (2.7)] that encode information about the

electric charges. This means that a dyonic black hole is holographically dual to a

deformation of the dual CFT. In the natural quantization of the theory, the non-zero

value of Aa
l at the boundary corresponds to the deformation

LCFTðxÞ ! LCFTðxÞ þ Â
a

lðxÞJlaðxÞ : ð2:11Þ

This deformation in field theory is equivalent to turning on a background gauge field

for a global symmetry. For example, on S2 we would turn on a background which is

just the familiar Dirac monopole Â
a

l ¼ � 1
2

pa cos hd/. On a torus T2 we would just

turn on a background constant magnetic field. Fields satisfying (2.10) can be also

written explicitly for all Rg but their expression is not particular illuminating. We

will see in Sect. 3 that the deformation (2.11) is compatible with supersymmetry.

To understand better what is going on, it is useful to have a look at how

supersymmetry is preserved in the presence of a generic assignment of magnetic

charges. We will be very schematic here just to convey the general idea. Consider

the case where our effective theory is a certain N ¼ 2 gauged supergravity in four

dimensions, corresponding to a N ¼ 2 three-dimensional CFT. The effective theory

contains the graviphoton field, AR
l , holographically dual to the U(1) R-symmetry of

the theory. In general, AR
l is a linear combination of the vector fields Aa

l

corresponding to the isometries of the internal manifold. For the solution to be

supersymmetric, all fermion variations in the black hole background must be zero.

The gravitino variation in N ¼ 2 gauged supergravity is schematically given by

dwl ¼ ol�þ
1

4
xab

l Cab�� iAR
l�þ . . . : ð2:12Þ
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The magnetically charged static black holes of interest in this section satisfy the

BPS condition dwl ¼ 0 by cancelling the spin connection with a background field

for the R-symmetry. More precisely, we can regard the spin connection xl along Rg

as a U(1) gauge field. An explicit computation shows that xl is just a monopole of

charge 2� 2g, as the familiar relation 1
2p

R

Rg
R ¼ 2� 2g, with R ¼ dx, clearly

shows. Since AR
l is a linear combination of the Aa

l, it is also a monopole, with charge

given by a linear combination of the pa. By appropriately choosing this linear

combination8 and the spinor �, we can cancel the second and the third term on the

right hand side in (2.12). We will come back to more precise expressions in Sect. 3.

For the dyonic static black holes, restricting the index l to lie along Rg, one

discovers that the ellipsis cancels independently and we are left with the equation

dwl ¼ ol� ¼ 0: ð2:13Þ

This equation is solved by taking � constant along Rg. One also finds that the other

components of the supersymmetry variations imply that � is time-independent but,

in general, has a non-trivial profile in r.
This discussion can be also applied to the dual CFT. By restricting the variations

to the boundary, we see that the field theory on R� Rg is invariant under

supersymmetry transformations with a constant spinor. The very same mechanism is

at work on the boundary: we are turning on a magnetic background for the R-

symmetry that compensates the spin connection. In quantum field theory, this

construction is well-known (Witten 1988). It is called topological twist, as we will

discuss in details in Sect. 3. The conclusion is that the dual CFT is deformed by the

presence of magnetic fluxes for all the global and R-symmetries, and, in particular,

it is topologically twisted by the magnetic flux for the R-symmetry. Notice that our

argument was based on N ¼ 2 supersymmetry with a U(1) R-symmetry. Theories

can have a larger R-symmetry group, like ABJM, or many flavor symmetries. In

these cases, the choice of a U(1) R-symmetry is not unique. Each choice

corresponds to a different twist. We can indeed think of the magnetic charges pa as

parameterizing a family of inequivalent twists. It is important to remember,

however, that a linear combination of the pa is fixed by the condition that the

background for the selected U(1) R-symmetry cancels the spin connection. There

are only nV � 1 independent magnetic charges, where nV is the number of massless

vectors. This number is nV ¼ 4 for ABJM.

The interpretation of the general rotating dyonic black hole is more complicated

but similar in spirit. We can have rotation only in the spherically symmetric case,

where j is the spin along S2. Rotations in the bulk correspond to turning on an

Omega-background (Nekrasov and Okounkov 2006) in the boundary theory on S2.

The theory is still topologically twisted.

All this should be contrasted with the black holes discussed in Sect. 2.1.1 where

there is no cancellation between the spin connection and the R-symmetry. It can be

expressed more formally in a difference between the supersymmetry algebra, as

discussed in Hristov et al. (2011) and Hristov (2012b). The real discriminant among

8 This is the linear constraint on the magnetic charges of the black hole that we mentioned before.
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the two class of black holes is the topological twist, or equivalently a magnetic

charge associated with the R-symmetry. There exist black holes with non-zero

magnetic charges for the flavor symmetries only.9 They correspond to a CFT in a

magnetic background but with no topological twist. From the point of view of

micro-state counting using holography, they are more similar in spirit to the black

holes discussed in Sect. 2.1.1.

Now it is clear what we should do in order to compute the entropy of

magnetically charged black holes (with a twist) using field theory: enumerate all the

states with electric charges qi and angular momentum j and the right amount of

supersymmetry in the twisted CFT on R� Rg. The theory is topologically twisted10

by the magnetic background for a U(1) R-symmetry and possibly deformed by

magnetic fluxes for all other global symmetries.

2.2 Computing the entropy

It is reasonable to expect that we can recover the entropy of the two classes of AdSd

black holes by enumerating supersymmetric states in the dual field theory on

R�Md�2. For all our examples, the preserved supersymmetry Q satisfies an

algebra of the form

fQy;Qg ¼ H � laQa � miJi; ð2:14Þ

where H is the Hamiltonian and Qa and Ji are the charge operators associated with

the global symmetries and the angular momenta, respectively, with certain constants

la and mi that depend on the model. The explicit form of the algebra is different for

different types of black holes and it will be discussed in details in the rest of this

review. For the moment, we notice that the R-symmetry charge enters in the

supersymmetry algebra for Kerr–Newmann black holes but not for topologically

twisted ones. Supersymmetric states are annihilated by Q and their energy is

determined by the BPS condition11

E ¼ laqa þ miji : ð2:15Þ

2.2.1 The grand canonical partition function

Enumerating BPS states is equivalent to knowing the grand canonical partition

function

ZðDa;xiÞ ¼ Tr
�

�

�

Q¼0
eiðDaQaþxiJiÞ ¼

X

qa;ji

cðqa; jiÞeiðDaqaþxijiÞ; ð2:16Þ

where the trace is taken over the Hilbert space of states on Md�2 that preserves the

same amount of supersymmetry of the black hole, and Da and xi chemical poten-

tials conjugated to Qa and Ji, respectively. In practical applications, Z is a function

9 See Hristov et al. (2019a) for example of rotating dyonic black holes with flavor magnetic charges.
10 And also Omega-deformed if there is rotation.
11 It follows from the algebra that all states in the theory satisfy the BPS bound E �laqa þ miji.
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of complex chemical potentials and converges in an appropriate domain of the

complex plane for the fugacities ya ¼ eiDa , fi ¼ eixi . In the previous formula,

cðqa; jiÞ is the number of supersymmetric states of electric charge qa and angular

momentum ji. Electric and magnetic charges enter in an asymmetric way in this

construction. The magnetic charges pa enter explicitly as a set of couplings in the

Lagrangian of the deformed CFT, while the electric charges qa are introduced

through chemical potentials. In particular, for magnetically charged black holes with

a twist, the trace must be taken in the topologically twisted theory.

The grand canonical partition function (2.16) should also enumerate the BPS

states in the dual gravity theory. Our working assumption is that, for large charges

(scaling with appropriate powers of N) the supersymmetric density of states is

dominated by the macroscopic black holes discussed before. Under this assumption,

by the very definition of entropy, the entropy of the black hole is given by

Sðqa; jiÞ ¼ log cðqa; jiÞ; ð2:17Þ

where the dependence on the magnetic charges pa, if present, is hidden in the form

of the function c. If ZðDa;xiÞ is known, the entropy can be extracted as a Fourier

coefficient

eSðqa;jiÞ ¼ cðqa; jiÞ ¼
Z

dDa

2p
dxi

2p
ZðDa;xiÞe�iðDaqaþxi jiÞ; ð2:18Þ

with an appropriate integration contour. In the limit of large charges, this can be

evaluated by a saddle point approximation

Sðqa; jiÞ ¼ logZðDa;xiÞ � iðDaqa þ xijiÞ
�

�

�

�Da; �xi

; ð2:19Þ

where �Da and �xi are obtained by extremizing the functional

IðDa;xiÞ ¼ logZðDa;xiÞ � iðDaqa þ xijiÞ; ð2:20Þ

with respect to Da and xi,

oDa
IðDa;xiÞ ¼ oxi

IðDa;xiÞ ¼ 0
�

�

�

�Da; �xi

: ð2:21Þ

We see that the entropy is just the Legendre transform of the logarithm of the

partition function.

To understand better this point, recall that we are interested in extremal

supersymmetric black holes. In particular, they have zero temperature. The standard

thermodynamics relation for the grand canonical partition function of a system with

temperature T,

logZ ¼ �ðE � TS � i ~Daqa � i ~xijiÞ=T ; ð2:22Þ

looks singular in the zero-temperature limit. However, supersymmetric states satisfy

the BPS condition (2.15), namely E ¼ laqa þ miji. When we take the zero

123

2 Page 12 of 79 A. Zaffaroni



temperature limit, we need also to scale ~DaðTÞ ¼ �ila þ DaT and

xiðTÞ ¼ �imi þ xiT . In this way we obtain the Legendre transform

S ¼ logZ � iDaqa � ixiji.
12

The entropy is also obtained via a Legendre transform in many other approaches,

as the OSV conjecture (Ooguri et al. 2004) and the Sen’s quantum entropy

functional (Sen 2005, 2009b, a) for asymptotically flat black holes.

2.2.2 The supersymmetric index

So far everything was simple. The problem is that ZðDa;xiÞ is too hard to compute,

in general. For electrically charged rotating black holes in AdS5 � S5, computing

ZðDa;xiÞ would correspond to enumerate all the 1/16 BPS states of N ¼ 4 SYM.

For comparison, in a four-dimensional theory with N ¼ 1 supersymmetry, this

would correspond to count all the 1/4 BPS states. While almost everything is known

about the counting of 1/2 BPS states in an N ¼ 1 theory (Kinney et al. 2007;

Benvenuti et al. 2007), the analogous problem for 1/4 BPS states is still open.

What we can instead compute is a supersymmetric index

ZindexðDa;xiÞ ¼ Tr
�

�

�

Q¼0
ð�1ÞFeiðDaQaþxiJiÞ; ð2:23Þ

with the insertion of the fermionic number ð�1ÞF
. Standard arguments tell us that

we can also write

ZindexðDa;xiÞ ¼ Tr ð�1ÞFe�bfQy;QgeiðDaQaþxiJiÞ ¼ Zsusy

S1�Md�1
ðDa;xiÞ; ð2:24Þ

if Qa and Ji commute with Q. In the first step of the previous identification we used

the fact that states with Q 6¼ 0 do not contribute to the trace, since bosonic and

fermionic states are paired and contribute with opposite sign.13 In particular, the

index is independent of b. In the second step, we identified the trace at temperature

1=b with the Euclidean path integral Zsusy

S1�Md�1
of the theory compactified on a circle

of radius b.14 The latter partition function can be computed using localization

techniques in quantum field theory as we discuss in Sect. 3.

In general, ZindexðDa;xiÞ 6¼ ZðDa;xiÞ. First of all, the index can accommodate

fugacities only for the conserved charges that commute with Q and, in general,

12 For explicit examples of this zero-temperature limit from the gravitational point of view see Silva

(2006), and, in particular, for AdS5 black holes, see Cabo-Bizet et al. (2019a) and Choi et al. (2018b).
13 This is the logic of the Witten index (Witten 1982a). For every state jXi not annihilated byQ there is a

state QjXi of opposite statistics and the same value of fQy;Qg. Since these states have opposite value of
ð�1ÞF

, their contribution cancels in the trace in (2.24). Therefore, only supersymmetric states, annihilated

by Q, contribute to the Witten index. See also the discussion in Sect. 3.3.1.

14 It is a standard textbook result that the finite temperature partition function Tr e�bH can be expressed

as an Euclidean partition function with time compactified on a circle of radius b and periodic boundary

conditions for bosons and anti-periodic boundary conditions for fermions. In a supersymmetric partition

functions, bosons and fermions should have the same boundary conditions and this is enforced by the

fermionic number ð�1ÞF
. The extra insertion of ebðlaRa�miJ iÞ just introduces twisted boundary conditions

along S1 for the symmetries associated with Ra and J i.
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contains less parameters than the BPS partition function. We will see that this is not

a major problem for the black holes considered in this paper since they also have a

constraint among charges. More importantly, the entropy should count all the BPS

ground states of the theory, while the index counts bosonic ground states with a plus

and fermionic ground states with a minus. However, it may happen for particular

theories that the majority of ground states are of definite statistic. In this case there

is no cancellation between bosonic and fermionic ground states and the index

correctly reproduces the entropy in a suitable limit. This typically happens for

asymptotically flat black holes in the limit of large charges, and we may hope that

the same is true for asymptotically AdS black holes in the large N limit. In the case

of certain asymptotically flat spherically symmetric black holes, there is an extra

symmetry that implies ð�1ÞF ¼ 1 on the relevant set of states (Sen 2009a) and one

can prove that ZindexðDa;xiÞ ¼ ZðDa;xiÞ. A similar argument for asymptotically

AdS black holes is more subtle and it is discussed in Sect. 2.4. More generally, we

can always rely on an explicit computation, and, as we will see in the rest of this

review:

– for magnetically charged black holes in AdS4, the dual field theory is

topologically twisted. ZindexðDa;xiÞ is the so-called topologically twisted index

that we define and study in Sect. 3. There is no cancellation between bosonic

and fermionic ground states and the index correctly reproduces the entropy at

large N, as we will see in Sect. 4;

– for electrically charged rotating black holes, we are just counting states of the

CFT on R� Sd�1. ZindexðDa;xiÞ is the superconformal index, whose properties

we discuss in Sect. 6. The superconformal index is known to have large

cancellations between bosons and fermions for real values of the fugacities

(Kinney et al. 2007), and this would suggest that we really need to compute the

original BPS partition function ZðDa;xiÞ. However, it has been recently realized
that introducing phases for the fugacities can obstruct the cancellation between

bosonic and fermionic states and that the entropy of KN black holes is indeed

correctly captured by the index for complex values of the chemical potentials.

We will discuss these results in Sect. 7.

Notice also that the entropy and the index of asymptotically flat black holes coincide

at leading order in the charges but are in general different when corrections are

included (Dabholkar et al. 2011b). We might expect the same for asymptotically

AdS black holes.

2.3 Entropy functionals and the attractor mechanism

In the limit where gravity is weakly coupled, we can compute the entropy of a black

hole from the area of the horizon using the Bekenstein–Hawking formula (2.1). The

area can be extracted from the explicit solution of the relevant gauged supergravity,

which typically contains many scalars XIðrÞ varying with the radial distance. In

principle, the area may depend on many parameters including asymptotic moduli.

However, the microscopic entropy of our black holes is just a function of the
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conserved charges qa and ji. This is explicitly realized through an attractor
mechanism: independently of the asymptotic moduli, the scalar fields approach a

value at the horizon, XI
�ðqa; jiÞ, that is a function of the conserved charges only.

Moreover, this mechanism often allows to express the area, and therefore the

entropy, in terms of the values of the scalar fields at the horizon with simple

algebraic equations. This is the case of the attractor mechanism for N ¼ 2

supergravity discovered in Ferrara and Kallosh (1996) and Ferrara et al. (1995). It is

also the idea behind Sen’s quantum entropy function (Sen 2005) that allows to find

the entropy of black holes with AdS2 horizon including higher derivative

corrections. In all these cases, one can define some sort of entropy functional

SðXa;Xi; qa; jiÞ, which is a function of the conserved charges and the horizon value
Xa; Xa of the scalar fields and possibly other modes, and whose extremization with

respect to Xa and Xi reproduces the entropy. This extremization is expected to be

the gravity analog of (2.19).

In order to make the comparison between gravity and field theory more manifest

it is convenient to write the entropy functional as a Legendre transform

SðXa;Xi; qa; jiÞ ¼ EðXa;XiÞ � iðXaqa þ XijiÞ; ð2:25Þ

where Xa and Xi are now interpreted as the black hole chemical potentials and

EðXa;XiÞ as the black hole gran-canonical partition function. According to standard

arguments (Gibbons and Hawking 1977), EðXa;XiÞ can be identified with the on-

shell action of the Euclidean continuation of the black hole.

This description fully agrees with the field theory picture if we identify Xa and Xi

with Da and xi and EðXa;XiÞ with logZðDa;xiÞ. The latter is indeed the field

theory gran-canonical partition function and, according to the rule of holography,

should be also identified with the on-shell action of the gravity solution

corresponding to the chemical potentials Da and xi.

The attractor mechanism has played an important role in the interpretation of the

field theory result leading to the black hole entropy. For example, the attractor

mechanism in N = 2 gauged supergravity (Cacciatori and Klemm 2010; Dall’Agata

and Gnecchi 2011) for static dyonic black holes in AdS4 � S7 predicts

SðXaÞ ¼ � 2
ffiffiffi

2
p

N
3
2

3

X

4

a¼1

pa

o

oXa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X1X2X3X4
p

� i
X

a¼1

Xaqa ; ð2:26Þ

with the constraint
Pa

a¼1 Xa ¼ 2p and this result perfectly matches with the field

theory computation based on the topologically twisted index (Benini et al. 2016b)

as we will discuss in Sect. 4 [see formula (4.48)]. For other black holes the attractor

mechanism is not known in supergravity, and the entropy functional has been

written using combined field theory and gravity intuition. This approach was suc-

cessfully used in Hosseini et al. (2017b) to write an entropy functional for KN black

holes in AdS5 � S5,
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SðXa;XiÞ ¼ �i
N2

2

X1X2X3

X1X2
� i

X

3

a¼1

Xaqa þ
X

2

i¼1

Xiji

 !

; ð2:27Þ

with the constraint
P3

a¼1 Xa �
P2

i¼1 X
i ¼ 2p. This result has been instrumental in

the later developments and has been matched with field theory computations based

on the superconformal index (Cabo-Bizet et al. 2019a; Choi et al. 2018b; Benini

and Milan 2020b), as we will discuss in Sect. 7. Entropy functional for other

electrically charged and rotating black holes in diverse dimensions has been later

found in Hosseini et al. (2018b), Choi et al. (2020) and, in some cases, successfully

compared to quantum field theory expectations. These entropy functionals can be

also obtained by computing the zero-temperature limit of the on-shell action of a

class of supersymmetric but non-extremal Euclidean black holes (Cabo-Bizet et al.

2019a; Cassani and Papini 2019).

A general field theory inspired formula for an entropy functional that generalizes

(2.26) and (2.27) and covers all existing black hole solutions in four and five

dimensions has been discussed in Hosseini et al. (2019a).

2.4 I -extremization

We can provide a perhaps more speculative but intriguing explanation of the

extremization principle (2.19) based on the renormalization group flow. All the

black holes we will consider have a (possibly warped) AdS2 factor in the near-

horizon region. This suggests the existence of a superconformal quantum mechanics

describing the near-horizon degrees of freedom and whose ground states correspond

to the black holes microstates. The superconformal algebra associated with AdS2 is

su(1, 1|1) and contains the bosonic factor SLð2;RÞ � Uð1ÞR, where Uð1ÞR is the R-

symmetry. From the field theory point of view, the quantum mechanics arises from

the reduction of the dual CFT on Md�2. We can see the black hole as a solution

interpolating between AdSd and AdS2 with the dual interpretation of a renormal-

ization group flow across dimensions where a d � 1-dimensional CFT compatified

on Md�2 flows to a infrared superconformal quantum mechanics. The index

ZindexðDa;xiÞ is invariant under renormalization group flow and can be interpreted

as the Witten index of the infrared quantum mechanics.

We can write the index as

ZindexðDa;xiÞ ¼ Tr
�

�

�

Q¼0
ð�1ÞFeiðDaQaþxiJiÞ ¼ Tr

�

�

�

Q¼0
epiRðD;xÞe�ImðDaQaþxiJiÞ;

ð2:28Þ

where

RðD;xÞ ¼ F þ ReDa

p
Qa þ

Rexi

p
Ji : ð2:29Þ

In the examples that we will discuss the fermion number F acts precisely as a

particular R-symmetry, F 	 R0. In a general supersymmetric theory with global

symmetries, the R-symmetry is not unique. If R0 is a R-symmetry and Q is a global
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symmetry, also R0 þ Q is a R-symmetry. We see that RðD;xÞ is a R-symmetry of

our quantum mechanics, and given the symmetries of the problem, we expect it to

be the most general R-symmetry we can write. However, when a supersymmetric

theory is also conformal there exists the notion of the exact R-symmetry, which is

the one singled out by the superconformal algebra. The problem of finding the exact

R-symmetry is central in supersymmetric quantum field theory and it is usually

associated with an extremization problem. We have indeed c-extremization in two

dimensions (Benini and Bobev 2013a), F-maximization in three dimensions (Jaf-

feris 2012) and a-maximization in four dimensions (Intriligator and Wecht 2003). It

is tempting to propose that the extremization (2.19) selects among all RðD;xÞ
precisely the exact R-symmetry of our quantum mechanics. This principle has been

called I -extremization in Benini et al. (2016b, 2017). It is suggested by the fact that,

in odd dimensions, the exact R-symmetry is obtained by extremizing the super-

symmetric sphere partition function, which, in the case of one dimension, is just the

Witten index. It would be interesting to prove or disprove this principle for generic

holographic theories.

This interpretation would explain why there is no cancellation in the index

between vacua of different statistic for large charges. Adapting an argument in Sen

(2009a), we might expect that the microstates are invariant under the supercon-

formal algebra su(1, 1|1) and this implies that they have zero exact R-charge. This is

certainly true if the quantum mechanics consists of a set of degenerate ground states

with an energy gap to the first excited state. Under this assumption and using also

large N factorization of the correlation functions, the trace (2.28) becomes

ZindexðDa;xiÞ ¼ e�ImðDahQaiþxihJiiÞ Tr
�

�

�

Q¼0
1 ¼ e�ImðDaqaþxi jiÞeSðqa;jiÞ; ð2:30Þ

where we used that, for the values of Da and xi that select the exact R-charge, all

states have RðD;xÞ ¼ 0. We then see that the cancelation due to ð�1ÞF
is balanced

by the non-zero phases of the fugacities at the saddle point and all the ground states

contribute with the same sign. The previous equation is consistent with (2.19).

Indeed, by taking the logarithm of (2.30), we find

Sðqa; jiÞ ¼ Re logZindexðDa;xiÞ � iðDaqa þ xijiÞð Þ : ð2:31Þ

In all our example, the extremum of (2.19) is actually real and the real part in the

previous formula is superfluous.15

Let us also notice that c-extremization and F- and a-maximization have a well-

known gravitational dual (Martelli et al. 2006; Couzens et al. 2019; Gauntlett et al.

2019a) which allows to determine the exact R-symmetry in terms of geometrical

data of the supergravity background. A gravitational dual for I-extremization has

been also proposed in Couzens et al. (2019) and further discussed in Gauntlett et al.

(2019b), Hosseini and Zaffaroni (2019a) and Kim and Kim (2019).

15 That the extremum of (2.19) is real is usually part of the attractor mechanism. As we will see, the fact

that the extremization of (2.19) leads to a real number is equivalent to the non-linear constraint among

charges imposed by supersymmetry.

123

AdS black holes, holography and localization Page 17 of 79 2



3 The topologically twisted index

As we discussed in Sect. 2, magnetically charged black holes in AdS4 are dual to

topologically twisted CFT3. In this section, we discuss the topologically twisted
index in three dimensions, ZindexðDa;xiÞ, defined as the supersymmetric partition

function Zsusy

Rg�S1
ðDa;xiÞ with a topological A-twist along Rg. We will discuss the

case of a generic N ¼ 2 Yang–Mills–Chern–Simons theory in three dimensions

with an R-symmetry and we will specialize to the ABJM theory in Sect. 4.

The index can be computed in many different ways. We will discuss the

localization approach here, following Benini and Zaffaroni (2015, 2017). The index

has been first derived by topological field theory arguments in various examples in

Okuda and Yoshida (2012, 2014) and discussed in general in Nekrasov and

Shatashvili (2015). In this second approach, further discussed and generalized in

Gukov and Pei (2017), Okuda and Yoshida (2015), Closset and Kim (2016), Gukov

et al. (2017), Closset et al. (2017a, b, 2018), the index is written as a sum of

contributions coming from the Bethe vacua, the critical points of the twisted

superpotential of the two-dimensional theory obtained by compactifying on S1

(Nekrasov and Shatashvili 2009b, a). We will discuss the connections between the

two approaches in Sect. 3.3.2. The reader that is not interested in quantum field

theory properties of the index can just have a quick look at Sect. 3.1, the first part of

Sects. 3.2 and 3.3.2.

3.1 The topological twist

Consider an N ¼ 2 quantum field theory in three dimensions. The N ¼ 2

supersymmetry multiplets are:

– the vector multiplet, ðAl; k; r;DÞ, where k is a Dirac spinor and r and D are real

scalars. D is an auxiliary field;

– the chiral multiplet, ð/;w;FÞ, where w is a Dirac spinor and / and F are

complex scalars. F is an auxiliary field.

These multiplets can be obtained by dimensional reduction from the corresponding

N ¼ 1 multiplets in four dimensions. We assume that the theory has an

R-symmetry16

k ! e�iak; ð/;w;FÞ ! ðeir/a/; eiðr/�1Þaw; eiðr/�2ÞaFÞ; ð3:1Þ

with charges r/ for the chiral fields. The charges should be integrally quantized, as

we will discuss in the following. We want to define a supersymmetric theory on

Rg � S1 using a non-trivial background for the R-symmetry. Let us start, for sim-

plicity, with the case of S2 � S1 with metric

16 The sign of the charges is somehow unconventional (for example, k and � have charge �1) but we

keep it for consistency with Benini and Zaffaroni (2015, 2017).
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ds2 ¼ R2ðdh2 þ sin h2d/2Þ þ b2dt2; ð3:2Þ

and a non-trivial R-symmetry background field AR
l .

To see if supersymmetry is preserved we can use the approach of Festuccia and

Seiberg (2011). We promote the metric glm and the R-symmetry background field

AR
l to dynamical fields by coupling the theory to supergravity, using an appropriate

off-shell formulation. The theory coupled to gravity is invariant under supersym-

metry transformations with a local spinorial parameter �ðxÞ. We can recover the

rigid theory by freezing the supergravity multiplet to a background value. This can

be done, for example, by sending the Planck mass to infinity. In this process we

set all supergravity fermionic fields to zero, while keeping a non-trivial background

for the metric and AR
l , and possibly some auxiliary fields. The rigid theory so

obtained is no more invariant under local supersymmetries. However, it is still

invariant under those transformations that preserve the background fields. The

supersymmetry variation of the bosonic supergravity fields is automatically zero

since it is proportional to the supergravity fermions that vanish in the background.

On the other hand, the vanishing of the fermionic variations gives a differential

equation for �ðxÞ. The solutions to this equation determine the rigid supersymme-

tries that are preserved by the curved background.17

In any supergravity with a R-symmetry gauge field, when all the other

supergravity fields are set to zero, the fermionic variations have the universal form

dwl ¼ Dl� ¼ ol�þ
1

4
xab

l cab�þ iAR
l� ¼ 0 : ð3:3Þ

In three dimensions, we can choose ca ¼ ra, where ra are the Pauli matrices. The

non-trivial components of the spin connection are easily computed18 to be

x12 ¼ � cos hd/. If we take c3� ¼ �, so that c12� ¼ i�, we see that the background

field

AR ¼ 1

2
cos hd/ ð3:4Þ

precisely cancels the spin connection. The equation reduces to

dwl ¼ ol� ¼ 0; ð3:5Þ

which is solved by a constant spinor �. We thus see that the background (3.4) allows

to define a supersymmetric theory on S2 � S1. The generalization of the above

discussion to Rg � S1 is straightforward: we just turn on a background for the R-

symmetry with AR ¼ �x=2 and everything else works in the same way.

This way of preserving supersymmetry corresponds to a topological twist along
Rg in the sense of Witten (1988, 1991). To make contact with the language used in

17 These conditions impose constraints on the manifold and the choice of background fields. For

examples related to our context see Festuccia and Seiberg (2011), Klare et al. (2012), Dumitrescu et al.

(2012), Closset et al. (2013) and Hristov et al. (2013).

18 We use the frame e1 ¼ Rdh; e2 ¼ R sin hd/ and e3 ¼ bdt.
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Witten (1988, 1991), we can interpret the background field for AR as effectively

changing the spin of the fields in the theory, thus transforming � into a scalar.

A supersymmetric Lagrangian for a Yang–Mills–Chern–Simons theory with

gauge group G and chiral matter transforming in a representation R on Rg � S1 can

be written as L ¼ LYM þ LCS þ Lmat þ LW with19

LYM ¼ Tr

�

1

4
FlmF

lm þ 1

2
DlrDlrþ 1

2
D2 � i

2
kyclDlk�

i

2
ky½r; k


�

LCS ¼ � ik

4p
Tr

�

�lmq
�

AlomAq �
2i

3
AlAmAq

�

þ kykþ 2Dr

�

Lmat ¼ Dl/
y
i Dl/i þ /yi

�

r2 þ iD � r/FR
12

	

/i þ F
y
i Fi

þ iwyi ðclDl � rÞwi � iwyi k/i þ i/yi kywi

LW ¼ i
oW

oUi
Fi �

1

2

o2W

oUioUj
wcy

j wi þ
oW

oUyi
F
y
i � 1

2

o2W

oUyi oU
y
j

wyj wc
i

0

@

1

A ;

ð3:6Þ

where the superpotential Wð/iÞ is a holomorphic function of R-charge two and the

fields Al; r;D act on the matter fields in the appropriate representation. Here the

derivative Dl is covariantized with respect to the spin and gauge connection and

also to the R-symmetry background AR. As usual in Euclidean signature, fields and

their conjugate, / and /y for example, should be considered as independent vari-

ables. Notice that a vev for the scalar field r gives mass to the matter fields /i and

wi. This kind of coupling is typical of three dimensions and called real mass to

distinguish it from the mass terms that can be introduced through the superpotential

W. One can check that the Lagrangian is invariant under the following supersym-

metry transformations

QAl ¼ i
2
kycl� Qk ¼ þ 1

2
clm�Flm � D�þ icl�Dlr

eQAl ¼ i
2
~�yclk eQky ¼ � 1

2
~�yclmFlm þ ~�yD þ i~�yclDlr

QD ¼ � i
2

Dlk
ycl�þ i

2
½ky�; r
 Qky ¼ 0 Qr ¼ � 1

2
ky�

eQD ¼ i
2
~�yclDlkþ i

2
½r; ~�yk
 eQk ¼ 0 eQr ¼ � 1

2
~�yk :

for the vector multiplet fields and

19 This can be obtained for example by taking the rigid limit of supergravity in the background (3.2), as

suggested in Festuccia and Seiberg (2011).
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Q/ ¼ 0 Qw ¼
�

iclDl/þ ir/
	

� eQw ¼ ~�cF

eQ/ ¼ �~�yw eQwy ¼ ~�y
�

� iclDl/
y þ i/yr

	

Qwy ¼ ��cyFy

Q/y ¼ wy� QF ¼ �cy�iclDlw� irw� ik/
	

eQF ¼ 0

eQ/y ¼ 0 eQFy ¼
�

� iDlw
ycl � iwyrþ i/yky

	

~�c QFy ¼ 0 :

for the chiral multiplets. To future purposes, we also define Q ¼ Q þ eQ.

Notice that the Lagrangian (3.6) and the transformations of supersymmetry are

almost identical to the flat space ones with the further covariantization with respect

to the metric and the background R-symmetry. This is not always the case in curved

space, where extra terms should be included to maintain supersymmetry. In general,

a Lagrangian is not invariant under flat space supersymmetry transformations when

defined on a curved space because covariant derivatives do not commute anymore.

With a topological twist, the spinor � is covariantly constant and the problem is

milder.

3.2 The localization formula

The topologically twisted index is just the Rg � S1 path integral of the theory

discussed in the previous section. We can evaluate it using localization. The basic

idea of localization is simple. Let us review it briefly, referring to Pestun and

Zabzine (2017) and Marino (2011) for more details.20 In a theory with a fermionic

symmetry squaring to zero (or to a bosonic symmetry of the theory)21 we can

deform the action with a Q-exact term, QV , where V is a fermionic functional

invariant under all the symmetries. The new action is still Q invariant and the path

integral independent of the deformation

ZsusyðtÞ ¼
Z

e�SþtQV ;
d

dt
Zsusy ¼

Z

e�SþtQVQV ¼ 0 ; ð3:7Þ

since Q acts as a total derivative. The path integral can be then computed for t ! 1
and, if we choose V cleverly and we are lucky, it reduces to a sum over saddle points

of a classical contribution and a one-loop determinant,

Zsusyðt ¼ 1Þ ¼
X

saddle points

e�Sclassical
det fermions

det bosons
: ð3:8Þ

In many supersymmetric gauge theories on Euclidean manifolds, this approach

successfully reduces the path integral to the evaluation of a matrix model.

In our theory, LYM;Lmat and LW are not only Q-closed but also Q-exact. For

example, up to total derivatives,

20 These references cover the developments after Pestun (2012). The idea of localization in physics is

much older and it has been applied to many systems since Witten (1982b).

21 In our case Q2 is a linear combination of a gauge transformation and a rotation along S1.
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~�y�LYM ¼ Q eQ Tr
�

1

2
kykþ 2Dr

�

: ð3:9Þ

Therefore we can put arbitrary coefficients in front of the various Q-exact terms in

the Lagrangian

L ¼ 1

g2
LYM þ LCS þ

1

k2
Lmat þ

1

g2
LW ; ð3:10Þ

and the path integral is independent of g; k; g. We can then take the limit g; k; g ! 0

and evaluate the path integral in the saddle point approximation. Notice in particular

that LW is Q-exact. This means that the partition function is independent of the

precise form of the interactions in the Lagrangian. The superpotential is important

nevertheless for determining the global symmetries of the theory, which enter in the

partition function through chemical potentials.

We now give the localization formula for the topologically twisted index. Since

the computation is complicated and subtle, we just provide the final formula,

referring to Pestun and Zabzine (2017) and Marino (2011) for a general introduction

to localization and to Benini and Zaffaroni (2015, 2017) for the details of this

particular computation.

The path integral of the topologically twisted theory on Rg � S1 for a N ¼ 2

supersymmetric gauge theory with gauge group G can be written as a contour

integral

ZRg�S1 ¼
1

jW j
X

m2C

I

C

Zintðu;mÞ; ð3:11Þ

of a meromorphic form of Cartan-valued variables u, summed over a lattice C of

magnetic fluxes. W is just the order of the Weyl group of G. We will explain all the

ingredients in the following, referring to Benini and Zaffaroni (2015, 2017) for

proofs. Notice that from now on we drop the superscript susy from the partition

functions.

3.2.1 The BPS locus

We have a family of saddle points labeled by the vev of the scalar field r, the value
of the Wilson line At along S1 and a quantized magnetic flux m along Rg. As

standard in localization computation, these saddle points can be found as the locus

where the fermionic variations vanish. The gaugino BPS equations read

Qk ¼ 1

2
clmFlm � D


 �

�þ icl�Dlr ¼ 0; ð3:12Þ

and are solved by setting the two terms on the right-hand side to zero. The second

term in (3.12), Dlr, vanishes for constant commuting adjoint fields r and At. With a

gauge transformation, we can transform them in the Cartan subalgebra. We can

combine these fields in a complex Cartan-valued quantity
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u ¼ At þ ibr : ð3:13Þ

The Wilson line At is periodic, invariant under a shift of any element v of the co-root
lattice C, At �At þ 2pv,22 the physical object being the holonomy eiAt . So u natu-

rally lives on a cylinder and it is convenient to define the quantity x ¼ eiu. For a

U(1) theory, u lives on the cylinder S1 � R and x on the punctured plane C�. The
first term in (3.12), using c12� ¼ i�, implies that the auxiliary field D is proportional

to the gauge field strength along Rg, D ¼ iF12, and both live in the Cartan subal-

gebra. The curvature along Rg is quantized

1

2p

Z

Rg

F ¼ m 2 C ð3:14Þ

where C is again the co-root lattice. For a U(1) theory m is just an integer.

The path integral involves a sum over saddle points and is therefore given as an

integral over u and a sum over the magnetic fluxes m. Both variables live in the

Cartan subalgebra and are only defined up to an action of the Weyl group, the

surviving gauge symmetry. This explains the factor 1/|W| in (3.11). For a U(N)

theory the co-root lattice is just C ¼ ZN and the Weyl group is the permutation

group of N elements with jW j ¼ N!

3.2.2 The integrand

The contribution to the saddle point of the classical action comes only from the

Chern–Simons term23

ZCS
classðuÞ ¼ xkm 	

Y

r

i¼1

xkmi
i ð3:15Þ

where x ¼ eiu.

The one-loop determinant receives contributions from the vector multiplets and

the chiral multiplets. The vector multiplet contribution is

Zgauge
1�loopðuÞ ¼

Y

a2G

ð1� xaÞ1�g ði duÞr
ð3:16Þ

where a are the roots of G and, for convenience, we included the integration

measure ðduÞr
in this expression. The chiral multiplet contribution is

Zchiral
1�loopðu;mÞ ¼

Y

q2R

� xq=2

1� xq

�qðmÞþðg�1Þðr/�1Þ
ð3:17Þ

22 The co-root lattice is defined by the requirement that e2piv acts as the identity on any representation of

the group G, and defines the weight lattice of the Langland (or S-dual) group �G.
23 This expression follows from a holomorphic recombination of the terms At ^ F12 and rD in the

Chern–Simons action, using D ¼ iF12 and u ¼ At þ ibr.
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where R is the representation under the gauge group G, q are the corresponding

weights and r/ is the R-charge of the field. These expressions arise by taking ratios

of determinants for fermionic and bosonic fields, computed by expanding in modes

on Rg � S1. Due to supersymmetry, most of the modes cancel between bosons and

fermions and we are left with the contribution of a set of zero-modes (indeed a

convenient way to perform this computation is via an index theorem). For a chiral

multiplet these zero modes contribute

Y

q2R

Y

1

n¼�1

2pi

b
n þ iqðAt

b
þ irÞ


 ��ðqðmÞþðg�1Þðr/�1ÞÞ
: ð3:18Þ

The term in bracket represents the mass of a chiral multiplet mode due to the

coupling to r, which acts as a real mass, to the Wilson line At and to the KK

momentum n along the circle S1. The exponent is the multiplicity of the zero-mode

that can be easily obtained using the Riemann–Roch theorem. Notice that this

multiplicity must be an integer and therefore the R-charges r/ must be quantized.24

This infinite product needs to be regularized. In (3.17) we chose a parity invariant

regularization. There are other possible ones.25

The full integrand is

Zintðu;mÞ ¼ Zpertðu;mÞ det
ab

o2 log Zpertðu;mÞ
oiuaomb


 �g

; ð3:19Þ

where

Zpertðu;mÞ ¼ ZCS
classðu;mÞZgauge

1�loopðuÞZchiral
1�loopðu;mÞ : ð3:20Þ

The determinant term exists only on a Riemann surface of genus g[ 0 and arise

from the integration of the extra g fermionic zero-modes existing on these surfaces.

3.2.3 The contour

The integrand (3.19) is a meromorphic form in the Cartan variables u with poles at

xq ¼ 1, the points in the BPS locus where chiral multiplets become massless, and at

the boundaries x ¼ 0 and x ¼ 1 of the moduli space. The partition function is

obtained by using the residue theorem. Supersymmetry will choose the correct

integration contour and tell us which poles to include. One might hope that we need

to integrate over some simple contour, like the unit circle in the plane x, but one
actually discovers that the contour is highly non-trivial and depends on the charges

24 On S2 � S1 the R-charges r/ must be integer. In the case of a higher genus Riemann surface it is

enough to require that the quantity ð1� gÞðr/ � 1Þ is an integer.
25 Parity acts as u ! �u and (3.17) is obviously invariant. A gauge invariant regularization breaking

parity is used in Closset and Kim (2016) and Closset et al. (2017a, b, 2018). The latter has the advantage

of clarifying subtle sign issues and simplifying the mapping of parameters between dual theories.

However, even for theories with zero CS, in the gauge invariant regularization one has to introduce extra

effective CS contact terms, which makes the physical interpretation less transparent.
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of the matter fields. For example, for a U(1) theory with chiral fields of charge Qi

and Chern–Simons level k, defining the effective Chern–Simons level26

keffðrÞ ¼ k þ 1

2

X

i

Q2
i sign ðQirÞ ; ð3:21Þ

the rule is to take the residues of the poles created by fields with positive charge

Qi [ 0, the residue at the origin x ¼ 0 if keffð1Þ\0 and the residue at infinity

x ¼ 1 if keffð�1Þ[ 0. The rule for a generic gauge group can be written in terms

of the so-called Jeffrey–Kirwan (JK) residue (Jeffrey and Kirwan 1995), a pre-

scription for dealing with poles arising from multiple intersecting hyperplane sin-

gularities. To explain it properly will lead us too far and we refer to Benini and

Zaffaroni (2015, 2017) for details. The JK residue also appears in localization

computations for elliptic genera in two dimensions, quantum mechanics, and var-

ious other partition functions (Benini et al. 2014; Hori et al. 2015; Closset et al.

2015).

The reader may object that we are supposed to integrate over the BPS locus,

which is the whole complex plane, and not to perform a contour integral in u.

Luckily again supersymmetry comes to a rescue. On Rg � S1 there are gaugino

zero-modes that contribute an extra term in the integrand in addition to the one-loop

determinant. It turns out that the full integrand is a total derivative in �u and we can

reduce the integral over the u plane to a contour integral around the singularities, as

discussed in details in Benini and Zaffaroni (2015).

3.2.4 Adding flavor fugacities

If the theory has a flavor symmetry group F acting on the chiral fields, we can

introduce extra parameters in a supersymmetric way. We can just gauge the flavor

symmetry and then freeze all the bosonic fields to background values that are

preserved by supersymmetry. The background bosonic fields give rise to

supersymmetric couplings in the Lagrangian. The analysis of fermionic variations

is identical to the one performed in Sect. 3.2.1 for gauge symmetries. We need to

solve (3.12) for a background multiplet, ðAF
l ; k

F; rF ;DFÞ. The result is that we can

turn on in a supersymmetric way a constant value for rF and AF
t which we combine

into a complex quantity uF ¼ AF
t þ ibrF , and a background magnetic flux mF with

DF ¼ imF . rF appears in the Lagrangian as a real mass for the chiral fields. In three

dimensions, any gauge theory with a U(1) factor with field strength F has also a

topological symmetry associated with the current J ¼ �F, which is automatically

conserved. We can similarly introduce parameters uT and mT for the topological

symmetry.

The path integral is then a function of xF ; xT and mF ;mT . In the localization

formula we just need to replace the one-loop determinant of a chiral field with

26 This is actually the Chern–Simons level that one sees at one-loop after integrating out the matter fields

(they have mass r at a generic point of the BPS locus).
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Zchiral
1�loopðu;m; uF ;mFÞ ¼

Y

q2R

� xq=2x
m=2
F

1� xqxmF

�qðmÞþmðmFÞþðg�1Þðr/�1Þ
ð3:22Þ

where xF ¼ eiuF and m is the weight of the chiral field under the flavor symmetry F.
There is no modification to the vector multiplet determinant. A U(1) topological

symmetry just contributes a classical term

xmT xmT ð3:23Þ

to the classical action.

3.2.5 The trace interpretation

As any path integral that involves an S1 factor, the topologically twisted index can

be written as a trace27

ZRg�S1ðxG;mGÞ ¼ Tr ð�1ÞFeiAG
t JG

e�bHg ð3:24Þ

where Hg is the Hamiltonian of the topologically twisted theory on Rg, in the

presence of magnetic fluxes mG ¼ ðmF;mTÞ and a supersymmetric background

xG ¼ ðxF ; xTÞ for the global symmetries, whose conserved charges have been

denoted as JG. The Hamiltonian Hg explicitly depends on the magnetic fluxes mG

and the real masses rG. If sufficiently real masses are turned on, the spectrum of Hg

is discrete and the trace is well-defined.

3.2.6 An example: SQED

To explain all the ingredients, we can give a simple example of the final formula,

using supersymmetric QED. This is a U(1) theory with two chiral multiplets Q and
~Q of charges �1 (electron and positron), and no Chern–Simons couplings. Since

there is no superpotential, we have many possible choices of integer R-charges for

the fields. We choose to assign R-charge þ1 to both Q and ~Q. There is an axial

flavor symmetry Uð1ÞA acting on Q and ~Q with equal charges and a topological

symmetry Uð1ÞT . The charges of the chiral fields are

Uð1Þg Uð1ÞT Uð1ÞA Uð1ÞR

Q 1 0 1 1

~Q � 1 0 1 1

ð3:25Þ

The topological symmetry acts only on non-perturbative states constructed with

monopole operators. We introduce a gauge variable x, with associated magnetic flux

m, and flavor and topological variables y ¼ xF and n ¼ xT , with associated back-

ground fluxes n ¼ mF and t ¼ mT . According to our rules, the partition function on

S2 � S1 is

27 See footnote 14. The factor eiAG
t JG

represents the insertion of a Wilson line AG
t .
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Zðy; n; n; tÞ ¼
X

m2Z

Z

dx

2pi x
xtð�nÞm

� x
1
2y

1
2

1� xy

�mþn� x�
1
2y

1
2

1� x�1y

��mþn

ð3:26Þ

where we included an extra ð�1Þm, which can be reabsorbed in the definition of n,
for later convenience.28 Notice that gauge and flavor variables enter in a similar way

in this formula. The main difference is that x and m are integrated and summed

over, while y; n and n; t are background parameters.

Our prescription instructs us to take the residues from the field Q with positive

gauge charge, whose pole is at x ¼ 1
y. By computing residues and resumming the

result, one finds

Zðy; n; n; tÞ ¼
� y

1� y2

�2n�1� n
1
2y�

1
2

1� ny�1

�t�nþ1� n�
1
2y�

1
2

1� n�1y�1

��t�nþ1

: ð3:27Þ

One recognizes here the product of three factors of the form (3.22) that we can

associate with chiral multiplets. Indeed it is well known that the mirror theory to

SQED is a Wess–Zumino model with fields M; T ; ~T and a cubic superpotential

W ¼ MT ~T (Aharony et al. 1997).

3.3 Interpretation of the localization formula

We can give an interpretation of the localization formula for the theory on Rg � S1

in two different ways that correspond to two different dimensional reductions of the

three-dimensional theory. Compactification on Rg gives rise to a quantum

mechanics and compactification on S1 to a two-dimensional (2, 2) supersymmetric

theory.

3.3.1 Reduction to quantum mechanics

Compactifying on Rg, we obtain a supersymmetric quantum mechanics describing

an infinite number of KK modes on Rg. These are particles living on the Riemann

surface in the presence of a magnetic field for the R-symmetry and magnetic fluxes

mG for the global symmetries. These magnetic fields create Landau levels. The trace

(3.24) can be interpreted as the Witten index (Witten 1982a) of this particular

quantum mechanics. Let us understand this concept better.

The quantum mechanics in question has N ¼ 2 supersymmetry. With no

background for the global symmetries, the algebra of supersymmetry is simply

f �Q;Qg ¼ Hg, where Q is a complex supercharge. The index is just

Tr ð�1ÞFe�bHg ; ð3:28Þ

and, according to standard arguments, is independent of b. Indeed, any state w with

Hg 6¼ 0 has a non-zero partner Qw with the same energy and opposite statistic and

28 For a more careful discussion of sign ambiguities see Closset et al. (2017b). They will not play any

important role in this review.
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their contributions cancel in the trace. Therefore the only contribution comes from

ground states.29 The index is then clearly independent of b and it is an integer

counting the number of ground states with signs (plus for bosonic ones, minus for

fermionic ones). When we turn on backgrounds for the global symmetries, the

supersymmetry algebra is modified to f �Q;Qg ¼ Hg � rGJG, where JG is the con-

served charge associated to the global symmetry.30 Using (3.24), we can now write

the index as follows

Tr ð�1ÞFeiAG
t JG

e�bHg ¼ Tr ð�1ÞFeiðAG
t þibrGÞJG

e�bf �Q;Qg ¼
X

n

gðnÞxn
G; ð3:29Þ

where g(n) is the number of supersymmetric states, Qw ¼ 0, with charge n under the

global symmetry and, as usual, xG ¼ eiðAG
t þibrGÞ. In deriving this expression, we used

again the fact that states with Qw 6¼ 0 are paired by supersymmetry and have the

same energy and charge. This time, the states that contribute to the trace are chiral

states with Hg ¼ rGJG. In this way, we have obtained an equivariant index, where

the supersymmetric states are graded according to their charge by powers of the

fugacity xG. Notice also that this argument shows that the topologically twisted

index is an holomorphic function of the fugacities, as we already found using

localization.

Let us also notice that the integrand of the localization formula has a simple

Hamiltonian interpretation. There are two type of multiplets in the N ¼ 2 quantum

mechanics we are discussing: the chiral multiplet containing a complex scalar / and

a spinor as dynamical fields, and the Fermi multiplet containing only a spinor (Hori

et al. 2015). The Landau levels on Rg give rise to zero-modes with multiplicities

dictated by the Riemann–Roch theorem. One can see that the zero-modes organize

themselves into qðmÞ þ ðg� 1Þðr/ � 1Þ chiral multiplets if

qðmÞ þ ðg� 1Þðr/ � 1Þ[ 0, and jqðmÞ þ ðg� 1Þðr/ � 1Þj Fermi multiplets if

qðmÞ þ ðg� 1Þðr/ � 1Þ\0, where for simplicity we set the flavor fugacities to

zero. We can now compute the index for Fermi and chiral multiplets. For the Fermi

multiplet the Hilbert space is a fermionic Fock space, and assigning charge � q
2
and

fermion number 0 to the vacuum, the index is

1� xq

x
q
2

: ð3:30Þ

For the chiral multiplet the Hilbert space is the product of a bosonic Fock space

generated by /;/y and a fermionic Fock space; assigning fermion number 1 to the

vacuum, the index is

29 By the algebra of supersymmetry Hgw ¼ 0 is equivalent to Qw ¼ 0 and, therefore, ground states not

necessarily have a partner.
30 See, for example, Hori et al. (2015) or Appendix C of Benini et al. (2016b).
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ð�x�
q
2 þ x

q
2Þ
X

n� 0

xnq
X

m� 0

x�mq ¼ x
q
2

1� xq
: ð3:31Þ

Raising these quantities to a power corresponding to the multiplicity, and taking into

account the different signs for the two types of multiplets, we recover exactly the

contribution (3.17) of a three-dimensional chiral multiplet to the partition function.

In particular, the localization formula for the topologically twisted index is just

the sum over many topological sectors labelled by m of the localization formula for

the Witten index of N ¼ 2 quantum mechanics found in Hori et al. (2015).

3.3.2 Reduction to two dimensions

We can alternatively reduce our three-dimensional theory on S1 and obtain a (2, 2)

supersymmetric theory containing all the KK modes on S1. At a generic point of the

Coulomb branch where r 6¼ 0, all the non-Cartan gauge bosons and the chiral

multiplets are massive.31 We can integrate them out and write a Lagrangian for the

Cartan modes of the vector multiplets. In two dimensions, a vector multiplet can be

described using a twisted chiral multiplet R and its interactions is described by a

twisted superpotential
R

dhþd�h�W.32

It is interesting to observe that such twisted superpotential W enters explicitly in

the integrand of the localization formula (Closset and Kim 2016; Closset et al.

2017b). Indeed, the dependence on the gauge flux m can be explicitly written as

X

m2C

Z

dxi

2pixi
QðxÞ e

imi
oW
oui ; ð3:32Þ

where Q(x) is a meromorphic function independent of m. The function W, up to an

overall normalization and sign ambiguities that we fix for convenience, is given by33

WðuÞ ¼ k

2

X

i

u2
i þ

X

R

1

2
g2ðqðuÞÞ � Li2ðeiqðuÞÞ


 �

; ð3:33Þ

with g2ðuÞ ¼ u2

2
� pu þ p2

3
. As argued in Nekrasov and Shatashvili (2009b, 2015),

this can be interpreted as the effective twisted superpotential of the two-dimensional

theory obtained by compactifying on S1. The first term in (3.33) is the classical

contribution coming from the CS term, and the second is the sum of all the

31 Due to the KK mass or their coupling to r.
32 R has a scalar as its lowest component and it satisfies �DþR ¼ D�R ¼ 0. See Witten (1993).

33 Polylogarithms Li sðzÞ are defined by LisðzÞ ¼
P1

n¼1
zn

ns for jzj\1 and by analytic continuation outside

the disk. Notice, in particular, that Li1ðzÞ ¼ � logð1� zÞ. For s� 1, there exists a the branch cut that we

take along ½1;þ1Þ. They satisfy ouLisðeiuÞ ¼ iLis�1ðeiuÞ and, for 0\Reu\2p,

LisðeiuÞ þ ð�1Þs
Lisðe�iuÞ ¼ � ð2ipÞs

s! Bs
u
2p

� 	

	 is�2gsðuÞ, where BsðuÞ are the Bernoulli polynomials. In

this paper we need, in particular, g2ðuÞ ¼ u2

2
� pu þ p2

3
and g3ðuÞ ¼ u3

6
� p

2
u2 þ p2

3
u. One then sees that, for

0\Reu\2p and Imu 
 0, LisðeiuÞ� is�2gsðuÞ. Notice also that W is a multi-valued function but, since

the action is defined up to integer multiples of 2pi, the path integral and all physical observables are single
valued.
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perturbative contributions of massive fields, including the infinite tower of KK

modes. Indeed, a one-loop diagram for a mode of mass m contributes a term pro-

portional to iðRþ mÞðlogðRþ mÞ=2p� 1Þ to W and there are no higher order

corrections (Witten 1993). The contribution of the KK modes of a chiral multiplet,

whose mass depends on r, the Wilson line At and the KK momentum n, can be

resummed to

i
X

n2Z
ðu þ 2pnÞ log

u þ 2pn

2p
� 1


 �

¼ �Li2ðeiqðuÞÞ : ð3:34Þ

The other term in the round bracket in (3.33) is local and it is due to our choice of a

parity invariant regularization.34 Using the asymptotic expansion of the polyloga-

rithms, we find that the content of the bracket in (3.33) behaves, for large r, as

qðuÞ2

4
sign ðqðrÞÞ : ð3:35Þ

This can be interpreted as a one-loop effective Chern–Simons term obtained by

integrating out a field of mass qðrÞ.35
The Jeffrey–Kirwan prescription typically selects poles in the integrand of the

localization formula that are contained in a half-latticemi �M (ormi �M) for some

cut-off M. We can then use the geometric series to resum the integrand in (3.32)

Z

dxi

2pixi

QðxÞeiMoW
oui

Q

i

�

1� e
ioW
oui

� ; ð3:36Þ

and evaluate the index by taking the residues at the poles

exp i
oW
oui


 �

¼ 1: ð3:37Þ

The cut-off M disappears in the process. The solutions to (3.37) are the so-called

Bethe vacua of the two-dimensional theory. They play an important role in the

Bethe/gauge correspondence (Nekrasov and Shatashvili 2009a, b).

We then find the following general characterization of the topologically twisted

index as a sum over Bethe vacua

ZRg�S1 ¼
X

x�

Qðx�Þ
detijð�o2uiuj

Wðx�ÞÞ
; ð3:38Þ

where x� are the solutions of (3.37). The expression for the topologically twisted

index as a sum over Bethe vacua was first derived by topological field theory

arguments in Okuda and Yoshida (2012, 2014), Nekrasov and Shatashvili (2015)

34 For a choice of a gauge invariant regularization and an extensive discussion of other issues related to

definition of W see Closset et al. (2017b).
35 For a field of mass m and charge Qi the one-loop effective Chern–Simons term is

keff ¼ k þ 1
2

Q2
i sign ðmÞ.
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and Okuda and Yoshida (2015). In the context of localization, this expression for the

index has been derived and generalized in Closset and Kim (2016) and Closset et al.

(2017a, b, 2018). The expression in (3.38) can be also written as

ZRg�S1 ¼
X

x�
Hðx�Þg�1; ð3:39Þ

in terms of a handle-gluing operator HðxÞ ¼ eXðxÞ detij o
2
uiuj

WðxÞ and an effective

dilaton XðxÞ whose complete characterization in terms of field theory data can be

found in the above mentioned papers. Here we just notice that, for genus g[ 0, the

Hessian of W enters at the power g� 1. Indeed, the determinant in (3.19) con-

tributes g extra powers of the Hessian that combine with the denominator in (3.38).

A very interesting result of Closset et al. (2017a, b, 2018) is the generalization of

formula (3.39) to three-dimensional manifolds that are not a direct product. For

example, the supersymmetric partition function on a three-manifold M3 that is an

S1 fibration of Chern class p over a Riemann surface Rg can be written as a sum over

the very same set of Bethe vacua,

ZM3
¼
X

x�
Fðx�ÞpHðx�Þg�1; ð3:40Þ

with a fibering operator FðxÞ that can be expressed in terms of field theory data.

There exists a similar result for the partition function on more general three-di-

mensional manifolds and also for some selected four-dimensional ones (Closset

et al. 2017a, b, 2018). The particular case of the formula for the four-dimensional

superconformal index plays a role in the physics of AdS5 black holes (Benini and

Milan 2020a, b), as discussed in Sect. 7.2.

Let us give a couple of examples of Bethe vacua. For a pure N ¼ 2 Chern–

Simons theory with gauge group SU(2), the expression for the partition function

(3.19) is

Z ¼ ð�1Þg�1

2

X

m2Z

Z

JK

dx

2pix
ð2kÞgx2km

�

ð1� x2Þ2

x2

�1�g

; ð3:41Þ

where we used xi ¼ ðx; 1=xÞ and mi ¼ ðm;�mÞ. The twisted superpotential

receives contribution only from the classical action: W ¼
P

i ku2i =2 ¼ ku2. The

Bethe vacua (3.37) are then x2k ¼ 1 with solutions the 2k-roots of unity. Formula

(3.38) gives, up to an ambiguous sign,

Z ¼
� �k þ 2

2

�g�1X
�kþ1

j¼1

�

sin
pi
�k þ 2

j
�2�2g

; ð3:42Þ

where �k ¼ k � 2. This is the well-known Verlinde formula for the CS partition

function on Rg � S1.36 Notice that the root x ¼ 1 is not included in the sum: as a

36 Since r and k are massive and free, they can be integrated out leading to a shift in the CS coupling. An

N ¼ 2 Chern–Simons theory is thus equivalent to a bosonic CS theory with level �k ¼ k � 2.
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general rule, the Bethe vacua that are also zeros of the Vandermonde determinant

are not physical.

In the presence of matter, the Bethe equations (3.37) are more complicated. In the

SQED example discussed in Sect. 3.2.6, the Bethe equation is

nðy � xÞ
1� xy

¼ 1; ð3:43Þ

with solution x ¼ ð1� nyÞ=ðy � nÞ. It is easy to see that (3.38) correctly reproduces

(3.27). For a general theory with gauge group G, the Bethe equations (3.37) cannot

be analytically solved.

4 The entropy of dyonic AdS4 black holes

In this section we will derive microscopically the entropy of a family of BPS static

dyonic black holes in AdS4 � S7 (Benini et al. 2016b, 2017). These solutions have

been found in N ¼ 2 gauged supergravity in four-dimensions (Cacciatori and

Klemm 2010; Dall’Agata and Gnecchi 2011; Hristov and Vandoren 2011;

Katmadas 2014; Halmagyi 2015) and later uplifted to M-theory. We then start by

briefly discussing the main features of N ¼ 2 gauged supergravity in four

dimensions. This will be also useful to write an entropy functional. We then

consider the large N limit of the topologically twisted index for the ABJM theory in

three dimensions and show that it reproduces the entropy of the dual black holes.

We will only consider the case of static black holes in this section. A field theory

derivation for the entropy of dyonic rotating black holes in AdS4 � S7 (Hristov et al.

2019b) is still missing.

4.1 AdS4 dyonic static black holes

BPS black holes in AdS4 can be found by studying an effective four-dimensional

N ¼ 2 gauged supergravity. We start discussing the main features of the effective

theory.

The N ¼ 2 supergravity multiplets are:

– the graviton multiplet, whose bosonic components are the metric glm and a

vector field A0
l, called graviphoton;

– the vector multiplet, whose bosonic components are a vector Ai
l and a complex

scalar z;
– the hypermultiplet, whose bosonic components are four real scalars qa.

For simplicity, we will restrict to N ¼ 2 gauged supergravities with nV vector

multiplets and no hypermultiplets.37 This will be enough to describe the black holes

in AdS4 � S7. The theory contains nV þ 1 vector multiplets AK
l and nV complex

37 Theory with hypermultiplets have been considered for matching the entropy of black holes in massive

type IIA and other models (Hosseini et al. 2017a; Benini et al. 2018; Bobev et al. 2018).
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scalar fields zi, where K ¼ 0; 1; . . .; nV and i ¼ 1; . . .; nV . The Lagrangian can be

written in terms of a holomorphic prepotential FðXKÞ, which is a homogeneous

function of degree two, and a vector of magnetic and electric Fayet–Iliopoulos (FI)

parameters ðgK; gKÞ. XKðziÞ are a set of nV þ 1 homogeneous coordinates on the

scalar manifold. The theory is invariant under rescaling of the XK and one can

identify the physical scalar fields with zi ¼ Xi=X0.38 It is also convenient to define

FK 	 oKF . The theory is fully covariant under a Spð2nV þ 2Þ group of

electric/magnetic dualities acting on ðXK;FKÞ and ðgK; gKÞ as symplectic vectors.

The action of the bosonic part of the theory reads (Andrianopoli et al. 1997)

Sð4Þ ¼ 1

8pG
ð4Þ
N

Z

R3;1

�

1

2
Rð4Þ

H41þ
1

2
ImN KRFK ^H4FR þ 1

2
ReN KRFK ^ FR

� gi�jDzi ^H4D�z
�j � Vðz; �zÞH41

�

:

The metric on the scalar manifold is given by

gi�j ¼ oio�jKðz; �zÞ : ð4:1Þ

Here, Kðz; �zÞ is the Kähler potential and it reads

e�Kðz;�zÞ ¼ i �XKFK � XK �FK
� 	

: ð4:2Þ

The matrix N KR of the gauge kinetic term is a function of the vector multiplet

scalars and is given by

N KR ¼ �FKR þ 2i
ImFKDImFRHXDXH

ImFDHXDXH
: ð4:3Þ

Finally, the scalar potential reads

Vðz; �zÞ ¼ gi�jDiL �D�j
�L � 3jLj2; ð4:4Þ

where L ¼ eK=2 XKgK �FKgK
� 	

and DiL ¼ oiL þ oiKL=2.
The ansatz for a static dyonic black hole with horizon Rg is of the form39

ds2 ¼ �e2UðrÞdt2 þ e�2UðrÞ�dr2 þ VðrÞ2ds2Rg

	

AK ¼ a0ðrÞdt þ a1ðrÞARg
;

where ARg
is the gauge potential for a magnetic flux on Rg. For example, for

Rg ¼ S2 we can take AS2 ¼ � cos hd/. We assume that the scalar fields zi have only

38 Other choices of gauge fixing for the rescaling symmetry are possible, corresponding to field

redefinitions.

39 We normalize the metric on Rg such that the scalar curvature is 2j, where j ¼ 1 for S2, j ¼ 0 for T2,

and j ¼ �1 for Rg with g[ 1. The volume is then VolðRgÞ ¼ 2pg where g ¼ 2jg� 1j for g 6¼ 1 and

g ¼ 1 for g ¼ 1.
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radial dependence. We are interested in solutions that are asymptotic to AdS4 for

large values of the radial coordinate,

eUðrÞ � r; VðrÞ� r2; r � 1; ð4:5Þ

and approach a regular horizon AdS2 � Rg at some fixed value r ¼ r0,

eUðrÞ � r � r0; VðrÞ� eUðrÞ; r � r0 : ð4:6Þ

Notice that we can also interpret these black holes as domain walls interpolating

between AdS4 and AdS2 � Rg. The AdS2 factor suggests the existence of a

superconformal quantum mechanics describing the horizon microstates. We expect

that this is the IR limit of the quantum mechanics discussed in Sect. 3.3.1.

There are two conserved quantities
Z

Rg

FK ¼ VolðRgÞ pK ;

Z

Rg

GK ¼ VolðRgÞ qK ; ð4:7Þ

where GK ¼ 8pGN dðLdvol4Þ=dFK, corresponding to the magnetic and electric

charges of the black hole. Under Spð2nV þ 2Þ they transform as a symplectic vector

ðpK; qKÞ. In a frame with purely electric gauging gK, the magnetic and electric

charges are quantized as follows

VolðRgÞ pK gK 2 2pZ ;
VolðRgÞ qK

4G
ð4Þ
N gK

2 2pZ; ð4:8Þ

not summed over K.
As discussed in Sect. 2.1.2, supersymmetry is realized with a topological twist. In

particular, the Killing spinors �A, A ¼ 1; 2, only depend on the radial coordinate.

The BPS equations give a set of ordinary differential equations for the functions

U;V ; a0; a1; zi; �A that are explicitly given in Cacciatori and Klemm (2010),

Dall’Agata and Gnecchi (2011), Hristov and Vandoren (2011), Katmadas (2014)

and Halmagyi (2015). For our purposes, the only important point is that the

gravitino variation contains, among other pieces,

dwlA ¼ ol�A þ 1

4
xab

l Cab�A þ i

2
gKAK

l ðr3Þ
B

A �B þ . . . : ð4:9Þ

The vanishing of this variation, when the index l is restricted to Rg, requires that AK
l

cancels the spin connection and one obtains

X

K

gKpK ¼ �j; ð4:10Þ

where, with standard notations, j ¼ 1 for horizon S2, j ¼ 0 for T2 and j ¼ �1 for

g[ 1. We see that a linear combination of the magnetic charges is fixed by the

twist. In a general theory with also magnetic FI the previous condition is replaced by
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X

K

gKpK � gKqK
� 	

¼ �j ð4:11Þ

which is manifestly symplectic invariant. The previous discussion closely parallels

the field theory analysis of the supersymmetries preserved by a topological twist in

Sect. 3.1.40

It has been noticed in Dall’Agata and Gnecchi (2011) that the BPS equations of

gauged supergravity for the near-horizon geometry can be put in the form of

attractor equations.41 The BPS equations are indeed equivalent to the extremization

of the quantity

I sugraðXKÞ ¼ �i
VolðRgÞ
4G

ð4Þ
N

qKXK � pKFK

gKXK � gKFK
; ð4:12Þ

with respect to the horizon-value of the symplectic sections XK, combined with the

requirement that the value of I sugra at the critical point �X
K
is real. In general, in

gauged supergravity, FðXKÞ is a homogeneous function of degree two, so we can

equivalently define Ŷ
K 	 XK=ðgRXR � gRFRÞ and extremize

I sugraðŶ
KÞ ¼ i

VolðRgÞ
4G

ð4Þ
N

pKFKðŶÞ � qKŶ
K

� �

: ð4:13Þ

The extremization of (4.12) gives a set of algebraic equations for the value of the

physical scalars zi at the horizon, and the entropy of the black hole is given by

evaluating the functional (4.12) at its extremum

SBHðpK; qKÞ ¼ I sugrað �XKÞ : ð4:14Þ

4.1.1 Black holes in AdS4 · S7

M-theory on AdS4 � S7 can be consistently truncated to an N ¼ 2 gauged

supergravity containing the four vectors parameterizing the Cartan subgroup of the

SO(8) isometry of S7. In the language of gauged supergravity, one is the graviphoton

and the other three give rise to a model with three vector multiplets, nV ¼ 3. By

explicitly reducing M-theory on AdS4 � S7, one can determine the prepotential42

F ¼ �2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X0X1X2X3
p

; ð4:15Þ

and the FI, gK 	 g; gK ¼ 0, that are purely electric. With these notations the AdS4
vacuum has radius L2 ¼ 1=2g2.

40 This is not a coincidence (Klare et al. 2012): when holography applies, solving the Killing spinor

equations in bulk near the AdS boundary gives a set of constraints on the boundary theory that are

equivalent to those obtained with the approach proposed in Festuccia and Seiberg (2011).
41 The attractor mechanism for AdS4 static black holes in N ¼ 2 gauged supergravity is discussed in

Cacciatori and Klemm (2010), Dall’Agata and Gnecchi (2011), Chimento et al. (2015). For some recent

progress for dyonic rotating black holes see Hristov et al. (2019b).
42 See for example Hristov (2012a).
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We can introduce four magnetic and electric charges ðpK; qKÞ. However, two of

these charges are determined by supersymmetry. Indeed, one is fixed by the twisting

condition (4.10) that gives a linear constraint among the magnetic charges. For

purely magnetic black holes (Cacciatori and Klemm 2010), this is the only

constraint and we find a three-dimensional family of solutions. They are particularly

simple since all the scalars zi are real. We can write, for example, the solution for a

black hole with S2 horizon

ds2 ¼ � 1

2
eKðXÞ

�

r � c

r

�2

dt2 þ 2
e�KðXÞ dr2
�

r � c
r

	2
þ 2e�KðXÞ r2

�

dh2 þ sin2 h d/2
	

;

FK
h/ ¼ pK sin h

ð4:16Þ

where the real sections are given by XK ¼ 1
4
� bK

r and the parameters bK and c are

determined in terms of the magnetic charges by

c ¼ 4
�

b20 þ b21 þ b22 þ b23
	

� 1

2
; �

ffiffiffi

2
p

pK � 1

2
¼ 16b2K � 4

X

R
b2R;

X

K

bK ¼ 0

where we also set L ¼ 1 or, equivalently, g ¼ 1=
ffiffiffi

2
p

. The generic dyonic black holes

found in Katmadas (2014) and Halmagyi (2015) are more complicated and we will

not report here the form of the solution. For dyonic black holes there is an extra

constraint on the charges that follows from the requirement that the entropy com-

puted through the attractor mechanism (4.14) is a real number. This constraint is

highly non linear in the charges and leaves a six-dimensional family of black holes.

The entropy can be written by using (4.14), even without knowing the explicit

form of the metric. The final expression can be written in a symplectic invariant

form

SBHðpK; qKÞ ¼
VolðRgÞ
8
ffiffiffi

2
p

G
ð4Þ
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I4ðC;C;G;GÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I4ðC;C;G;GÞ2 � 64I4ðCÞI4ðGÞ
q

r

I4ðGÞ

where C ¼ ðpK; qKÞ and G ¼ ðgK; gKÞ are symplectic vectors containing the charges

and the FI parameters, and I4 is a quartic polynomial, known as the quartic invariant,

whose explicit expression can be found in Katmadas (2014) and Halmagyi (2015).

In the simplest case of a purely magnetic black hole with p1 ¼ p2 ¼ p3 	 �p=ð2gÞ,
p0 ¼ ð3p � 2Þ=ð2gÞ and horizon S2, we find an expression of the form

SBH �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1þ 6p � 6p2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð6p � 1Þð�1þ 2pÞ3
q

r

: ð4:17Þ

Notice that this expression is quite complicated, especially if compared with simple

forms of the entropy as a function of charges that one can find for some asymp-

totically flat black holes.
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The solutions with spherical horizon can be generalized by adding rotation

(Hristov et al. 2019b). For completeness we report the form of the entropy

SBHðpK; qK; jÞ ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I4ðC;C;G;GÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I4ðC;C;G;GÞ2 � 64I4ðGÞðI4ðCÞ þ j2Þ
q

r

ffiffiffi

8
p

G
ð4Þ
N I4ðGÞ

where j is the angular momentum. This time supersymmetry imposes three constraints

on the charges and leaves again a six-dimensional family of rotating black holes.

4.2 The dual field theory

The CFT dual to AdS4 � S7 is the so-called ABJM theory (Aharony et al. 2008).

We briefly discuss its properties and then we write the corresponding topological

twisted index using the rules discussed in Sect. 3.

The ABJM theory describes the low-energy dynamics of N M2-branes on C4=Zk

(Aharony et al. 2008). It is a three-dimensional supersymmetric Chern–Simons-

matter theory with gauge group UðNÞk � UðNÞ�k (the subscripts are the CS levels)

and matter in bifundamental representation. The matter content, in N ¼ 2 notations,

is described by the quiver diagram

N

k

N

−k

Ai

Bj

where i; j ¼ 1; 2 and nodes represent gauge groups and arrows represent bifunda-

mental chiral multiplets. The theory has a quartic superpotential

W ¼ Tr
�

A1B1A2B2 � A1B2A2B1

	

: ð4:18Þ

The ABJM theory has a number of interesting properties:

– the theory has N ¼ 6 superconformal symmetry, non-perturbatively enhanced

to N ¼ 8 for k ¼ 1; 2;
– it has an SU(4) R-symmetry, enhanced to SO(8) for k ¼ 1; 2;

– for N � k5 the theory is well-described by a weakly coupled M-theory

background, AdS4 � S7=Zk;

– the free energy on S3 can be computed using localization and scales as OðN3=2Þ
in the M-theory limit (Drukker et al. 2011)

FS3 ¼ log ZS3 ¼
p
ffiffiffi

2
p

3

ffiffiffi

k
p

N3=2 : ð4:19Þ
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For a review of these properties see Klebanov and Torri (2010) and Marino (2011).

We will consider the case k ¼ 1 where the theory has maximal supersymmetry,

SO(8) R-symmetry and is dual to AdS4 � S7. The four abelian symmetries of the

theory, Uð1Þ4 � SOð8Þ correspond, in N ¼ 2 notation, to an R-symmetry and three

global symmetries. There are many choices of U(1) R-symmetry corresponding to

different decompositions SOð8Þ ! Uð1ÞR � Uð1Þ3. In order to write the index we

need to select one with integer charges. Introducing a natural basis of U(1) R-

symmetries,

R1 R2 R3 R4

A1 2 0 0 0

A2 0 2 0 0

B1 0 0 2 0

B2 0 0 0 2

ð4:20Þ

we can for example choose the R-symmetry
P

a Ra=2 that has integer charges. The

remaining three U(1)s combine to give three flavor symmetries, say ðRa � R4Þ=2 for

a ¼ 1; 2; 3.43

Our general rules for the index allow to introduce a number of independent fluxes

and fugacities equal to the number of global symmetries. We then introduce three

magnetic fluxes p and three fugacities y for the three flavor symmetries of ABJM. It

will be convenient to choose a redundant but democratic parameterization of these

quantities. We assign a flux and a fugacity, pa and ya with a ¼ 1; 2; 3; 4, to each of

the fields A1;A2;B1;B2 in the order indicated. The index is given by

Z ¼ 1

ðN!Þ2
X

m;em2ZN

Z

C

Y

N

i¼1

dxi

2pixi

d~xi

2pi~xi
xkmi

i ~x�kem i
i

Y

N

i6¼j

h�

1� xi

xj

��

1� ~xi

~xj

�i1�g

Y

N

i;j¼1

Y

a¼1;2




ffiffiffiffiffiffiffiffiffi

xi

~xj
ya

q

1� xi

~xj
ya

�mi�em j�paþ1�g
Y

a¼3;4




ffiffiffiffiffiffiffiffiffi

~xj

xi
ya

q

1� ~xj

xi
ya

�

em j�mi�paþ1�g

� det
AB

o2W
ouAouB


 �g

;

ð4:21Þ

where we used the rules of Sect. 3.2.2. Notice that the Hessian of W should be

computed using the 2N variables uA ¼ ðui; ~uiÞ. We have also included the CS term k
in order to make clear where the terms come from but soon we will set k ¼ 1. As

43 We are cheating a little bit here. The ABJM theory has also two topological symmetries, T1 and T2,

associated with the two U(1) gauge groups. This apparently makes a total of five U(1) global symmetries.

However T1 þ T2 is decoupled, and the baryonic symmetry that rotates Ai and Bi with opposite charges is

actually gauged. More precisely, due the CS term, a linear combination of T1 � T2 and the baryonic

symmetry differ by a gauge transformation and are therefore equivalent. In the index we could introduce

extra fluxes and fugacities for T1 and T2 but these can be re-absorbed by a shift of the fluxes and a

rescaling of the integration variables. See Benini et al. (2016b) for more details.
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already said, the fugacities are not independent. Since the superpotential (4.18) must

have charge zero under a global symmetry we must set

Y

4

a¼1

ya ¼ 1 : ð4:22Þ

This translates into a constraint for the corresponding (complexified) chemical

potentials Da, ya ¼ eiDa ,

X

a

Da 2 2pZ; ð4:23Þ

since the Da are only defined modulo 2p.44 Similarly, the four fluxes pa are not

independent. To understand our parameterization, let us compare the chiral fields

contributions in (4.21) with (3.22). Identifying exponents we have

�pa þ 1� g ¼ mF
a þ ðg� 1Þðra � 1Þ; ð4:24Þ

where mF
a is an assignment of background fluxes for the global symmetry and ra the

R-charge of the a-th field. Since W has charge zero under global symmetries and

charge two under R-symmetries, we have
P4

a¼1 m
F
a ¼ 0 and

P4
a¼1 ra ¼ 2, so that

X

4

a¼1

pa ¼ 2ð1� gÞ : ð4:25Þ

The dependence of our index on three magnetic fluxes and three fugacities fits well

with the family of black holes discussed in Sect. 4.1.1 that have three magnetic and

three electric charges. (4.25) is clearly the analog of (4.10) and already suggests the

following identification between parameters pK ! �jpa=ð2gð1� gÞÞ.
The index can be written as a sum over Bethe vacua (3.38). The twisted

superpotential (3.33) reads45

W ¼
X

N

i¼1

k

2

�

~u2
i � u2

i

	

þ
X

N

i;j¼1

�

X

a¼3;4

Li 2
�

eið ~uj�uiþDaÞ
	

�
X

a¼1;2

Li 2
�

eið ~uj�ui�DaÞ
	

�

ð4:26Þ

and the Bethe vacua equations are

44 In the notation of Sect. 3.2.4, Da ¼ AF
t a þ ibrF

a , where AF
t a and rF

a are the backgrounds for the a-th

symmetry. The periodicity of Da is due to the periodicity of the Wilson line AF
t a.

45 We used the of polylogarithm identities given in footnote 33 in order to recombine the terms in (3.33),

and discarded terms that do not contribute to the Bethe equations (3.37). We also introduced an extra

minus sign in the definition of W in order to match the original conventions in Benini et al. (2016b) and

Hosseini and Zaffaroni (2016). It is easy to check directly that the equations (4.27) give the position of the

poles of the integrand after we sum the geometric series in mi and ~mi and that, with the given definition of

W, (4.27) are equivalent to (3.37).
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xk
i

Y

N

j¼1

�

1� y3
~xj

xi

	�

1� y4
~xj

xi

	

�

1� y�1
1

~xj

xi

	�

1� y�1
2

~xj

xi

	

¼ ~xk
j

Y

N

i¼1

�

1� y3
~xj

xi

	�

1� y4
~xj

xi

	

�

1� y�1
1

~xj

xi

	�

1� y�1
2

~xj

xi

	

¼ 1: ð4:27Þ

In the large N limit we expect that just one Bethe vacuum dominates the partition

function.

4.3 The ABJM Bethe vacua in the large N limit

We want to study the solutions of (4.27) in the large N limit (Benini et al. 2016b).

By running numerics, one discovers that the imaginary parts of the solutions ui and

~ui grow with N,

ui ¼ iNati þ vi ~ui ¼ iNati þ ~vi ð4:28Þ

and are equal for the two sets, while the real parts remain bounded. As usual, in the

large N limit, the distributions of ui and ~ui become almost continuous and we

introduce a parameter tði=NÞ ¼ ti, defined in an interval ½t�; tþ
. We also introduce

two functions of t, v(t) and ~vðtÞ, defined implicitly by vði=NÞ ¼ vi; ~vði=NÞ ¼ ~vi, and

a normalized density

qðtÞ ¼ 1

N

di

dt
;

Z tþ

t�

qðtÞdt ¼ 1 : ð4:29Þ

The interesting feature of this model is that W becomes a local functional,46

W½qðtÞ; dvðtÞ
 ¼ iN1þa
Z

dt tqðtÞdvðtÞ þ iN2�a
Z

dtqðtÞ2
X

4

a¼1

g3ð��advðtÞ þ DaÞ;

ð4:30Þ

where dvðtÞ ¼ ~vðtÞ � vðtÞ, g3ðuÞ ¼ 1
6

u3 � 1
2
pu2 þ p2

3
u and �a ¼ 1 for a ¼ 1; 2 and

�a ¼ �1 for a ¼ 3; 4. We also assumed that Da are real and

0\� �advðtÞ þ Da\2p ð4:31Þ

for all a. The first term in W comes from the Chern–Simons interaction and the

second is the contribution of matter fields. The derivation of (4.30) is given in

Benini et al. (2016b). Here we just mention few facts.

– W is local because of the exponential terms eið ~uj�ui�DaÞ in the arguments of

polylogs in (4.26). Due to (4.28), for j[ i the polylogs are exponentially

suppressed in the large N limit. For i[ j the exponential is large but we can use

the identity Li 2ðeiuÞ þ Li 2ðe�iuÞ ¼ 1
2

u2 � pu þ p2
3
, valid for Reu 2 ½0; 2p
, (see

footnote 33) to transform it into a polynomial plus exponentially suppressed

terms. As a consequence, up to polynomial terms, the main contribution comes

for values of the indices i� j and makes the functional local.

46 This is similar to other matrix models solved using localization in three and five dimensions (Herzog

et al. 2011; Jafferis et al. 2011; Jafferis and Pufu 2014; Minahan et al. 2013).

123

2 Page 40 of 79 A. Zaffaroni



– Terms with higher powers of N cancel. For more general N ¼ 2 theories this is

not automatic and imposes conditions on the matter content of the theories for

which this method works (Hosseini and Zaffaroni 2016).

– Polynomial terms coming from this manipulation or Chern–Simons terms that

are not in (4.30) happily combine into a contribution
PN

i¼1 2pniui þ 2p~ni ~ui to

W, where ni and ~ni are integers. These angular ambiguities disappear in the

Bethe equations (3.37).

In general, the two contributions in (4.30) have different powers of N. They compete

and give a sensible functional with a minimum only for a ¼ 1=2. We then see that

W scales as N3=2 as predicted by holography for AdS4 black holes. We will then set

a ¼ 1=2 from now on.

In order to extremize (4.30) we add to W a Lagrange multiplier term

�iN3=2l
Z

qðtÞdt � 1


 �

ð4:32Þ

that enforces the normalization condition (4.29). Differentiating W with respect to

dvðtÞ and qðtÞ, we obtain a pair of algebraic equations

t � qðtÞ
X

4

a¼1

�ag0
3ð��advðtÞ þ DaÞ ¼ 0; ð4:33Þ

tdvðtÞ þ 2qðtÞ
X

4

a¼1

g3ð��advðtÞ þ DaÞ ¼ l; ð4:34Þ

which can be easily solved in terms of rational functions of t. The solution is

depicted in Fig. 1 together with the numerical solution for large N.
From the figure we see that qðtÞ and dvðtÞ are piece-wise continuous functions of

t. The solution in (4.33) and (4.34) only covers the central part of these functions.

Numerics suggest that there are two external intervals, which we dub tails, where
dvðtÞ is actually constant in the large N limit. It turns out that such constant value

corresponds to the saturation of the inequality (4.31) for some value of a,
dvðtÞ ¼ �aDa. The inequalities (4.31) are necessary to restrict to a particular

determination of the multi-valued polylog functions and the saturation corresponds

to the position of the cuts. The numerics suggest that, once vi and ~vi hit the cut, their

value is frozen. The value for qðtÞ in the tails can be obtained by solving its equation

of motion, (4.34), setting dvðtÞ to the constant value �aDa and ignoring the equation

of motion for dvðtÞ, (4.33), which would be inconsistent. The end-points of the

interval, t� and tþ, are finally determined by qðt�Þ ¼ 0.

Obviously, the equation of motion for dvðtÞ, (4.33), must be satisfied at finite N.
The main correction to dvðtÞ and to its equation comes from the terms with i ¼ j in
(4.26). Such terms contribute
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dW ¼ N

Z

dtqðtÞ
�

X

a¼3;4

Li 2
�

eiðdvðtÞþDaÞ	�
X

a¼1;2

Li 2
�

eiðdvðtÞ�DaÞ	
�

: ð4:35Þ

Notice that these terms are suppressed compared to W.47 They contribute a term

� 1
ffiffiffiffi

N
p

�

X

4

a¼1

�a log
�

1� eiðdvðtÞ��aDaÞ
	

�

; ð4:36Þ

to the right-hand side of the Eq. (4.33) for dvðtÞ. Such a correction is generically of

order 1=
ffiffiffiffi

N
p

. However, on the tails, since dvðtÞ ¼ �bDb for some b, one of the

logarithms blows up and the correction can be effectively of order one. Indeed, the

equation of motion for dvðtÞ can be satisfied if

dvðtÞ ¼ �b Db � e�
ffiffiffi

N
p

YbðtÞ
� �

; ð4:37Þ

where YbðtÞ is a quantity of order one. In this case, on the tail, the equation becomes

–1 1 2

0.1

0.2

0.3

0.4

–1 1 2

–0.4

–0.2

0.2

Fig. 1 Plots of the density of
eigenvalues qðtÞ and the
function dvðtÞ for N ¼ 75,
D1 ¼ 0:3, D2 ¼ 0:4, D3 ¼ 0:5
with

P

a Da ¼ 2p and k ¼ 1.

The blue dots represent the
numerical simulation, while the
solid grey line is the analytical
result

47 This is a standard argument in the context of matrix models:
PN

i 6¼j ¼ OðN2Þ while
PN

i¼1 ¼ OðNÞ.
Notice that the contribution toW comes from terms with i almost equal to j and contributions to dW from

terms with i ¼ j.
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t � qðtÞ
X

4

a¼1

�ag0
3ð��advðtÞ þ DaÞ ¼ �bYbðtÞ; ð4:38Þ

not summed over b, which determines the value of YbðtÞ. Notice that, quite

remarkably, the correction to dvðtÞ is not power-like but exponentially small. The

equations for qðtÞ and the value of W on the solution are not affected by these

corrections in the large N limit since Li 2ðzÞ is finite for z ! 1. However, these

corrections are important for evaluating the index.

The explicit solution is as follows (Benini et al. 2016b). Let us first take Da real.

Using the periodicity of Da, we can always restrict to the case where 0�Da � 2p.
We will also assume that D1 �D2, D3 �D4. The constraint (4.23) can be satisfied

only for
P

a Da ¼ 0; 2p; 4p; 6p; 8p and we need to consider all possible cases. We

find a solution for
P

a Da ¼ 2p. We have a central region where

q ¼ 2plþ tðD3D4 � D1D2Þ
ðD1 þ D3ÞðD2 þ D3ÞðD1 þ D4ÞðD2 þ D4Þ

dv ¼ lðD1D2 � D3D4Þ þ t
P

a\b\c DaDbDc

2plþ tðD3D4 � D1D2Þ

� l
D4

\t\
l
D2

: ð4:39Þ

When dv hits �D3 on the left the solution becomes

q ¼ lþ tD3

ðD1 þ D3ÞðD2 þ D3ÞðD4 � D3Þ
; dv ¼ �D3 ; � l

D3

\t\� l
D4

; ð4:40Þ

with the exponentially small correction Y3 ¼ ð�tD4 � lÞ=ðD4 � D3Þ, while when dv
hits D1 on the right the solution becomes

q ¼ l� tD1

ðD1 þ D3ÞðD1 þ D4ÞðD2 � D1Þ
; dv ¼ D1 ;

l
D2

\t\
l
D1

; ð4:41Þ

with Y1 ¼ ðtD2 � lÞ=ðD2 � D1Þ. It turns out that, for
P4

a¼1 Da ¼ 0; 4p; 8p, equa-
tions (4.33) and (4.34) have no regular solutions. There is also a solution for
P

a Da ¼ 6p which, however, is obtained by the previous one by a discrete sym-

metry of the index: Da ! 2p� Da ya ! y�1
a

� 	

.

We can also evaluate the twisted superpotential on the solution and find

fWðDÞ ¼ 2iN3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D1D2D3D4

p

; Da 2 ½0; 2p
 ;
X

4

a¼1

Da ¼ 2p : ð4:42Þ

The result for a different determination of the Da is obtained by periodicity: just

replace Da with ½Da
 ¼ ðDa mod 2pÞ. We can also extend by holomorphicity the

result to complex Da.

It is interesting to observe that fWðDÞ has the same functional dependence of two

important physical quantities appearing in the study of ABJM and its dual

AdS4 � S7. One is of purely field theory origin. It is known that, for any N ¼ 2

theory, there exists a family of supersymmetric Lagrangians on S3 parameterized by
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arbitrary R-charges of the chiral fields (Hama et al. 2011; Jafferis 2012). When the

theory is superconformal, the resulting partition function has an extremum precisely

at the exact R-symmetry of the theory (Jafferis 2012). For ABJM at k ¼ 1, the S3

free energy reads (Jafferis et al. 2011)

FS3ðrÞ ¼
4pN3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r1r2r3r4
p

; ð4:43Þ

where ra are a general assignment of R-charges for the fields A1;A2;B1;B2 satis-

fying
P4

a¼1 ra ¼ 2. We see that (Hosseini and Zaffaroni 2016)

fWðDaÞ ¼
pi

2
FS3

Da

p


 �

: ð4:44Þ

The second quantity, of supergravity origin, is the prepotential of the N ¼ 2 gauged

supergravity describing the low energy theory of the holographic dual. Restricted to

the Uð1Þ4 gauge sector, the prepotential is given by (4.15) and we see that

fWðDaÞ ¼ �
ffiffiffi

2
p

N3=2

3
FðDaÞ : ð4:45Þ

This will be important for comparison with the attractor mechanism.

4.4 The large N limit of the ABJM index

Using (3.38), up to an irrelevant overall factor, the index is given by

det
AB

o2W
ouAouB


 �g�1
Y

N

i 6¼j

�

1� x�i =x�j

�1�g �

1� ~x�i =~x
�
j

�1�g

�
Y

N

i;j¼1

Y

a¼1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�i ya=~x
�
j

q

1� x�i ya=~x
�
j

0

@

1

A

�paþ1�g

Y

b¼3;4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~x�j yb=x�i

q

1� ~x�j yb=x�i

0

@

1

A

�pbþ1�g

;

ð4:46Þ

where x�i and ~x�i is the large N Bethe vacuum found in the previous section. By

taking the large N limit of (4.46), after some manipulations, one finds

log Z ¼� N
3
2

Z

dt qðtÞ2
�

ð1� gÞ 2p
2

3
þ
X

4

a¼1

�

pa � 1þ g
	

g0
3

�

� �advðtÞ þ Da

	

�

� N
3
2

X

4

a¼1

pa

Z

dv� eaDa

dt qðtÞ YaðtÞ;

ð4:47Þ

up to corrections of order N logN. The first contribution in the first line of (4.47)

comes from the Vandermonde determinant and the second from the matter contri-

bution. The second line in (4.47) comes from the tails. Since the logarithm of the

one-loop determinant of the chiral fields is singular on such regions, we need to take
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into account the exponentially small corrections Ya to the tails. The exponent �pa þ
1� g of the one-loop determinant is corrected to �pa by an analogous and subtle

contribution from the determinant of the Hessian of W.48

By plugging in the explicit solution for qðtÞ; dvðtÞ and YaðtÞ we find

log Z ¼ � 2
ffiffiffi

2
p

3
N

3
2

X

4

a¼1

pa

o

oDa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1D2D3D4

p

: ð4:48Þ

Notice that

logZ ¼ i
X

4

a¼1

pa

o

oDa

fWðDÞ : ð4:49Þ

One can show that this remarkable identity can be extended to other N ¼ 2 quiver

theories. Indeed it can be proved using only the equations of motion for q and dv,
and taking into account the extra terms on the tails (Hosseini and Zaffaroni 2016).

4.5 Matching index and entropy for ABJM

We can now extract the degeneracy of states from the index using (2.19). We

introduce four electric charges qa, adapted to the democratic basis of charges we are

using, and we set ji ¼ 0 since we are interested in static black holes. The degeneracy

of states with given electric charge is then obtain by extremizing the functional

IðDÞ ¼ log ZðDÞ � i
X

4

a¼1

qaDa; ð4:50Þ

which implicitly depends on the magnetic charges pa through Z. This is the I -
extremization principle introduced in Benini et al. (2016b, 2017). For purely

magnetic black holes we just extremize log Z. For a generic dyonic static black hole,
we obtain

Smicroðpa; qaÞ ¼ log Z � i
X

4

a¼1

qaDa ¼ i
X

4

a¼1

pa

o

oDa

fWðDÞ � qaDa


 �

; ð4:51Þ

evaluated at its critical point in Da with the constraints
P4

a¼1 Da ¼ 2p and

ReDa 2 ½0; 2p
.
By an explicit computation one can see that this expression correctly reproduces

the entropy of the black holes in Cacciatori and Klemm (2010), Dall’Agata and

Gnecchi (2011), Hristov and Vandoren (2011), Katmadas (2014) and Halmagyi

(2015). This can be checked more easily by comparing with the attractor equations

(4.14). Using (4.12) we find

48 See Benini et al. (2016b) for details.
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SBHðpK; qKÞ ¼ � iVolðRgÞ
4G

ð4Þ
N

qKXK � pKFK

gKXK � gKFK
¼ i
X

3

K¼0

p̂K
o

oX̂K

fWðX̂Þ � q̂KX̂
K


 �

:

ð4:52Þ

Here we used the data of the relevant gauged supergravity [see (4.15)]

gK 	 g ; gK ¼ 0 ; F ¼ �2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X0X1X2X3
p

; ð4:53Þ

we defined adapted scalar fields

X̂
K ¼ 2pXK

P3
K¼0 XK

; ð4:54Þ

satisfying
P3

K¼0 X̂
K ¼ 2p, and enforced the Dirac quantization condition of fluxes

(4.8) by defining the integers p̂K and q̂K,

VolðRgÞ pK gK ¼ �2pp̂K ;
VolðRgÞ qK

4GNgK
¼ 2pq̂K: ð4:55Þ

Finally, we used the known holographic dictionary (see for example Marino 2011)

1

2g2G
ð4Þ
N

¼ 2
ffiffiffi

2
p

3
N3=2: ð4:56Þ

Using the identification49

a ¼ 1; 2; 3; 4 ! K ¼ 0; 1; 2; 3;

Da ! X̂
K
;

ðpa; qaÞ ! ðp̂K; q̂KÞ;

ð4:57Þ

we see that Smicroðpa; qaÞ ¼ SBHðpK; qKÞ. The extremization of (4.51) is thus com-

pletely equivalent to the attractor mechanism in gauged supergravity. The corre-

spondence, up to constants, is

fWðDÞ ! FðXKÞ;

IðDÞ ! I sugraðXKÞ :
ð4:58Þ

Notice that the functional IðDÞ is only defined up to integer multiples of 2pi, due to
the presence of log Z. So the microscopical entropy should be properly defined as

Smicroðpa; qaÞ ¼ I ðmod 2piÞ.
In field theory, I only depends on three independent chemical potentials, which

we can choose to be Da with a ¼ 1; 2; 3. The extremization of I determines them in

terms of three electric charges, qa � q4,

49 Notice that the identification is consistent with the twisting condition (4.10) and the constraint
P4

a¼1 Da ¼ 2p.
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o logZ

oDa
¼ iðqa � q4Þ ; a ¼ 1; 2; 3 : ð4:59Þ

The entropy can be then expressed in terms of qa � q4 as

log Z � i
X

3

a¼1

ðqa � q4ÞDa ðmod 2piÞ : ð4:60Þ

In these derivations we used that qa are integers and
P4

a¼1 Da ¼ 2p.
Correspondingly, in gravity, the family of black holes depends only on three

independent electric charges, as discussed in Sect. 2.3. Indeed, the requirement that

SBHðpK; qKÞ is real gives a constraints on the charges. For given magnetic charges

pa and flavor electric charges qa � q4, there is at most one value of q4 that leads to

black hole with regular horizon.

We can see the left hand side of (4.59) as determining the average electric charge

qa � q4 in our statistical ensemble at large N. The index only depends on the global

symmetries of the theory and there are three of them. Correspondingly, with our

method, we cannot determine the average electric charge associated with the R-

symmetry. However, this value is fixed by the BPS equations in gravity. It would be

interesting to find a purely field theoretical method for testing this prediction for the

fourth charge. Notice that, with the permutationally invariant definition of I given

in (4.50), the value of q4 predicted by gravity is precisely the one that makes the

critical value of I real.

Let us conclude this section with a comment. We computed the entropy as a

Legendre transform of the grand canonical partition function, according to a natural

microscopic point of view. However, in holography, the partition function of the

boundary field theory can be also identified with the (holographically renormalized)

on-shell action of the bulk theory. By consistency, we should be able to extract the

same information from the gravitational on-shell action. The agreement of these

points of view has been discussed in Azzurli et al. (2018), Halmagyi and Lal (2018)

and Cabo-Bizet et al. (2018). In particular, the authors of Bobev et al. (2020) found

a family of smooth Euclidean solutions with boundary Rg � S1 whose on-shell

action coincides with the topologically twisted index of ABJM for general values of

the fugacities and that contains one element with an AdS2 geometry that can be

wick-rotated to the original Lorentzian black hole.

4.6 Other examples and generalizations

The large N limit of the topologically twisted index can be evaluated for other

N ¼ 2 quiver Chern–Simons theories with an AdS4 dual. There is a large class of

Yang–Mills–Chern–Simons theories with fundamental and bi-fundamental chiral

fields that have been proposed as duals of M-theory and massive type IIA

compactifications. Most of these are obtained by dimensionally reducing a parent
four-dimensional quiver gauge theory with an AdS5 � SE5 dual, where SE5 is a five-

dimensional Sasaki–Einstein manifold, adding Chern–Simons terms and flavoring

with fundamentals. Holography predicts that the twisted index scales as N3=2 for

123

AdS black holes, holography and localization Page 47 of 79 2



theories dual to M-theory on seven-dimensional Sasaki–Einstein manifolds, and as

N5=3 for a class of theories dual to massive type IIA on warped six-manifolds.50 For

a large class of these theories the large N method discussed in Sect. 4.3 applies and

the twisted index has been evaluated in Hosseini and Zaffaroni (2016), Hosseini and

Mekareeya (2016), Jain and Ray (2019) and Jain (2019). Quite remarkably, in all

these theories the on-shell twisted superpotential coincides with the corresponding

S3 free energy (Hosseini and Zaffaroni 2016)

fWðDaÞ ¼
ip
d

FS3
Da

p


 �

; ð4:61Þ

where d ¼ 2 for M-theory examples and d ¼ 3 in massive type IIA ones.51 The

partition function is given by the following index theorem (Hosseini and Zaffaroni

2016)52

log Z ¼ ð1� gÞ di

p
fWðDIÞ þ i

X

I

pI

1� g
� DI

p


 �

ofWðDIÞ
oDI

" # !

: ð4:62Þ

It is often possible, as for ABJM, to choose a convenient redundant parameterization

for the chemical potentials such that fW becomes a homogeneous functions of

degree d. For this choice the twisted index is given again by

logZ ¼ i
X

a

pa

o

oDa

fWðDÞ : ð4:63Þ

The entropy of dyonic static black holes in such theories is obtained by taking the

Legendre transform of (4.63). Comparison with the attractor mechanism in the form

(4.13) then requires that

fWðDÞ�FðXKÞ; ð4:64Þ

under some map Da ! XK. (4.64) is however oversimplified. The effective low

energy theory for M or type IIA compactifications on general manifolds is anN ¼ 2

gauged supergravity containing massless vector multiplets associated with the

global symmetries of the CFT. In general, such gauged supergravity contains also

hypermultiplets and a number of vector multiplet that is larger than the number of

global symmetries. Therefore, in (4.64), the number of Da does not match the

50 See Hanany et al. (2009), Hanany and Zaffaroni (2008), Martelli and Sparks (2008), Gaiotto and

Jafferis (2012), Benini et al. (2010), Jafferis and Tomasiello (2008), Herzog et al. (2011), Gulotta et al.

(2012), Crichigno et al. (2013) and Martelli and Sparks (2009) for examples of theories with M-theory

dual and Guarino et al. (2015) and Fluder and Sparks (2016) for theories with massive type IIA dual.
51 The twisted index depends on chemical potentials for the global symmetries. As for ABJM, we can use

a redundant basis where we assign a chemical potential Da to each field /a. For each term WI in the

superpotential we must require
P

a2WI
Da ¼ 2pp with p 2 Z for all the fields /a appearing in WI . It turns

out that, as for ABJM, a large N solution exists only for p ¼ 1 (up to equivalent solutions). On the other

hand the S3 free energy is a function of the R-charges of the fields, and these are constrained to satisfy
P

a2WI
ra ¼ 2. The identity (4.61) makes sense because p ¼ 1.

52 See Hosseini (2018–02) for more details and applications.
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number of sections XK. In general, the hypermultiplets have a VEV at the horizon

and give a mass to some of the vector fields. If nV is the number of vector multiplets

and nH is the number of hypermultiplets, nV � nH is the number of massless vectors,

corresponding to the number of global symmetries and therefore to the number of

independent Da. The BPS equations for the hyperinos are typically algebraic and

give linear constraints among the sections XK. By solving these constraints we can

obtain an effective prepotential F effðXKÞ for the massless vector multiplets only. If

we believe that this further truncated theory correctly describes the horizon of the

black hole, (4.64) should hold with FðXKÞ replaced by F effðXKÞ.53
Two notable applications where this works perfectly are the following. A well-

known example of massive type IIA background is the warped AdS4 � Y6 flux

vacua of massive type IIA dual to the N ¼ 2 U(N) gauge theory with three adjoint

multiplets and a Chern–Simons coupling k (Guarino et al. 2015). It corresponds to

an internal manifold Y6 with the topology of S6. The theory has two global

symmetries and there exists a family of black holes depending on two magnetic

charges (Guarino 2017). The entropy of such black holes has been matched with the

prediction of the twisted index in Hosseini et al. (2017a) and Benini et al. (2018).

For this example

fWðDaÞ�FS3ðDaÞ�F effðDaÞ� ðD1D2D3Þ2=3;
X

3

a¼1

Da ¼ 2p : ð4:65Þ

The second example involves the so-called universal black hole (Azzurli et al.

2018). This is dual to the universal twist (Benini et al. 2016a; Bobev and Crichigno

2017) defined by a set of magnetic fluxes pa proportional to the exact R-symmetry

of the CFT. This black hole is a solution of minimal gauged supergravity and, as

such, can be embedded in all M-theory and massive type IIA compactifications, thus

explaining the name universal. Hence it provides an infinite family of examples.

Since fW is proportional to the S3 free energy [see (4.61)] and the latter is

extremized at the exact R-symmetry, it follows easily from (4.62) that

SBHðpaÞ ¼ ðg� 1ÞFS3 : ð4:66Þ

This relation agrees with the gravitational prediction based on minimal gauged

supergravity (Azzurli et al. 2018).

There have been progresses in various directions and also open problems:

– For theories with M-theory dual the large N method discussed above works only

when the bi-fundamental fields transform in a real representation of the gauge

group and the total number of fundamentals is equal to the total number of anti-

fundamentals. The same restriction has been found in Jafferis et al. (2011) for

the large N evaluation of the S3 free energy. It is not known yet how to take the

large N limit for the S3 free energy or the twisted index in the case of chiral

quivers. Also in the case of vector-like quivers, where the method works, there is

53 This happens for example for the mass deformed ABJM model (Bobev et al. 2018), where the value of

one Da is fixed by the mass deformation and, in gravity, one XK is fixed by the hyperino conditions.
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an extra complication since baryonic symmetries are invisible in the large

N limit (accidental flat directions of the matrix model). It is still not clear how to

introduce and study baryonic fluxes in the large N limit of the twisted index.

– A gravitational dual of I -extremization was proposed in Couzens et al. (2019),

generalizing similar results for a- and c-extremization (Martelli et al. 2006;

Gauntlett et al. 2019a). In this approach, the entropy of an M theory black hole

with AdS2 horizon is obtained by extremizing a geometric quantity associated

with a supersymmetric background where some of the equations of motion have

been relaxed. As a result, the entropy can be expressed in terms of simple

geometrical data of the internal manifold and can be computed also in the cases

where the explicit solution is not known. In particular, this provides an explicit

formula for the entropy and the exact R-symmetry of the associated supercon-

formal mechanics for an infinite class of models based on toric Sasaki-Einstein

manifolds. The agreement of the gravitational picture with the available field

theory results at large N has been discussed in Gauntlett et al. (2019b), Hosseini

and Zaffaroni (2019a) and Kim and Kim (2019).

– The microstate counting for dyonic rotating black holes (Hristov et al. 2019b) is

still an open problem. The chemical potential dual to rotation in the bulk is

associated with an Omega-background for the boundary theory on S2 � S1. The

topologically twisted index in an Omega-background is known (Benini and

Zaffaroni 2015) but it gives rise to a complicated matrix model. For particular

values of the X-deformation, it has been written as a sum over Bethe vacua

(Closset et al. 2018). This could be useful to solve the matrix model in the large

N limit. The result is expected to match the entropy functional proposed in

Hosseini et al. (2019a) by gluing gravitational blocks.

– For asymptotically flat black holes, there is a huge literature including higher

derivative corrections and highly detailed precision tests. For asymptotically

AdS black holes, the story is just begun. At the moment, 1/N corrections to the

twisted index for ABJM and the above massive type IIA background have been

computed numerically focusing on the universal logarithmic correction (Liu

et al. 2018a, b, c; Jeon and Lal 2017; Pando Zayas and Xin 2019). The ABJM

matrix model provides a quantum corrected entropy functional that would be

interesting to study further. In particular, it would be interesting to find the

analog of standard results and conjectures about the quantum entropy of

asymptotically flat back holes, like the OSV conjecture (Ooguri et al. 2004), the

Sen’s quantum entropy functional (Sen 2009b, a) and localization in supergrav-

ity (Dabholkar et al. 2011a, 2013),54 to cite only few of them. In particular,

some interesting results about localization in AdS2 � S2 have been already found

in Hristov et al. (2018, 2019c).

– The topologically twisted index has been extended to five-dimensions (Hosseini

et al. 2018c; Crichigno et al. 2018) and successfully compared with the entropy

of AdS6 black holes with horizon AdS2 � Rg1
� Rg2

(Suh 2019a; Hosseini et al.

2018a; Suh 2019b, 2018; Fluder et al. 2019). The expression for the entropy is

given by a generalization of the index theorem (4.63) and (4.62).

54 See Iqbal et al. (2008) for an earlier localization computation in gravity.
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Other interesting related results and solutions can be found in Cabo-Bizet et al.

(2017), Toldo and Willett (2018), Gang and Kim (2019), Gang et al. (2020),

Hosseini et al. (2019c) and Bae et al. (2020).

5 Black strings in AdS5

The methods introduced in Sect. 4 can be generalized to other dimensions and can

be used to provide general tests of holography. In particular, they can be applied to

domain wall solutions interpolating between AdSdþn and AdSd �Mn, with a

topological twist along the n-dimensional compact manifold Mn. In this section,

making a brief digression from the main subject of these notes, we discuss the

example of black strings in AdS5.

More precisely, we consider a family of black strings in AdS5 with near horizon

geometry AdS3 � Rg. They correspond holographically to a twisted compactifica-

tion of a four-dimensional theory flowing to a two-dimensional CFT in the IR. The

properties of this CFT, and, in particular, its elliptic genus, can be computed using a

topologically twisted index for four-dimensional theories on Rg � T2. We can make

contact with the physics of black holes by compactifying the black string on a circle,

as in the standard example (Strominger and Vafa 1996). In this way we can also

make contact with a Cardy formula approach to the microstate counting. Other

examples of similar tests of holography related to twisted compactifications can be

found in Toldo and Willett (2018), Crichigno et al. (2018) and Hosseini et al.

(2018c).

5.1 Black string solutions in AdS5 · S5

We consider solutions of a five-dimensional N ¼ 2 effective gauged supergravity

with abelian vector multiplets of the form

ds2 ¼ e2f ðrÞð�dt2 þ dz2Þ þ e�2f ðrÞdr2 þ e2gðrÞds2Rg

AK ¼ pKARg
;

where ARg
is the gauge potential for a magnetic flux on Rg and supersymmetry is

preserved with a twist along Rg. We are interested in solutions that are asymptotic to

AdS5 for large values of the radial coordinate,

ef ðrÞ � r ; egðrÞ � r; r � 1 ð5:1Þ

and approach a regular horizon AdS3 � Rg at some fixed value r ¼ r0,

ef ðrÞ � r � r0 ; egðrÞ � constant ; r � r0 : ð5:2Þ

These solutions can be interpreted as black strings extended in the direction z or,

equivalently, as domain walls interpolating between AdS5 and AdS3 � Rg. They are

holographically dual to a twisted compactification of a SCFT4 on Rg that flows in

the IR to a two-dimensional (0, 2) SCFT2 associated with the horizon factor AdS3.
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Solutions that can be embedded in AdS5 � S5 have been found in Benini and

Bobev (2013b), using a five-dimensional gauged supergravity with three abelian

gauge fields associated with the isometries Uð1Þ3 � SOð6Þ of S5. The solution

depends on three fluxes pa constrained by the twisting condition

p1 þ p2 þ p3 ¼ 2� 2g; ð5:3Þ

and corresponds to a twisted compactification of N ¼ 4 SYM on Rg. Holography

suggests that this theory flows to an IR two-dimensional SCFT. The value of the

central charge of the IR SCFT2 in the large N limit can be extracted from the

solution using standard arguments (Brown and Henneaux 1986; Henningson and

Skenderis 1998) and reads (Benini and Bobev 2013b)

c ¼ 3RAdS3

2G
ð3Þ
N

¼ 12N2 p1p2p3
p21 þ p22 þ p23 � 2p1p2 � 2p2p3 � 2p3p1

: ð5:4Þ

This result can be successfully compared with field theory (Benini and Bobev

2013b), where central charges can be computed using extremization techniques. Let

us briefly explain how this works. Consider first the case ofN ¼ 1 four-dimensional

SCFTs and N ¼ 4 SYM as an example. In N ¼ 1 language, the theory contains

three chiral multiplets /i with the superpotential

W ¼ Tr /3 /1;/2½ 
ð Þ : ð5:5Þ

We introduce a generic R-charge assignment Da for the three chiral fields /i. Since

the superpotential has R-charge 2, we must have D1 þ D2 þ D3 ¼ 2. The exact R-

symmetry of an N ¼ 1 superconformal theory can be obtained by extremizing a

trial a-charge

aðDaÞ ¼
9

32
TrRðDaÞ3 �

3

32
TrRðDaÞ; ð5:6Þ

where RðDaÞ is the matrix of R-charges of the fermionic fields. This construction is

known as a-maximization (Intriligator and Wecht 2003). For N ¼ 4 SYM at large

N we find55

aðDaÞ ¼
9

32
N2 1þ

X

3

a¼1

ðDa � 1Þ3
 !

¼ 27

32
N2D1D2D3; ð5:7Þ

where the first contribution in the bracket comes from the gauginos and the second

from the fermions in the chiral multiplets. This expression is trivially extremized for

D1 ¼ D2 ¼ D3 ¼ 2=3, the exact R-charges of the fields /i. The critical value of

aðDÞ is the central charge a of the SCFT4. Similarly, the exact R-symmetry and the

right-moving central charge of a two-dimensional (0, 2) SCFT are obtained by

extremizing the trial quantity (Benini and Bobev 2013a)

55 For N ¼ 4 SYM TrR is identically zero. For theories with an AdS dual, TrR ¼ 0 in the large N limit.

123

2 Page 52 of 79 A. Zaffaroni



crðDaÞ ¼ 3 Tr c3RðDaÞ2; ð5:8Þ

where c3 is the two-dimensional chirality operator and RðDaÞ the matrix of R-

charges of the massless fermionic fields. This construction is known as c-extrem-

ization (Benini and Bobev 2013a). For the twisted compactification of N ¼ 4 SYM,

the quantity cr can be computed using topological arguments. We just need to know

the difference between the number of fermionic zero modes with positive and

negative chirality. This is easily computed from the Riemann–Roch theorem as in

Sect. 3.3.1. We then find at large N (Benini and Bobev 2013b)

crðDaÞ ¼ �3N2 1� gþ
X

3

a¼1

ðpa � 1þ gÞðDa � 1Þ2
 !

¼ �3N2ðD1D2p3 þ D2D3p1 þ D3D1p2Þ;

ð5:9Þ

where again the first contribution in the first line bracket comes from gauginos and

the second from matter fields. One can easily check that the extremization of (5.9)

with respect to Da reproduces (5.4). The agreement is valid in the large N limit

where c ¼ cl ¼ cr.
56

Notice that, in the large N limit, the cr trial central charge can be written as

(Hosseini et al. 2017c)

crðDaÞ ¼ � 32

9

X

3

a¼1

pa

oaðDaÞ
oDa

: ð5:10Þ

It is interesting to observe that formula (5.10), with a suitable parameterization for

the fluxes and the R-charges, holds for all the twisted compactifications of N ¼ 1

SCFT4 dual to AdS5 � SE5, where SE5 is a toric Sasaki–Einstein manifold (Hosseini

et al. 2017c).57

In the case of black strings the information about states is encoded in the elliptic
genus of the two-dimensional (0, 2) CFT

Zðy; qÞ ¼ Trð�1ÞFqL0

Y

I

yJI
I ; ð5:11Þ

where q ¼ e2pis, with s the modular parameter of T2, yI are fugacities for the global

symmetries and L0 the left-moving Virasoro generator. Since the index is inde-

pendent of the scale, we can evaluate it in the UV, where it becomes the topo-

logically twisted index, defined as the partition function on Rg � T2, with a

topological twist along Rg.

56 cr � cl is equal to the gravitational anomaly k ¼ Trc3 which is of order one in the large N limit (Benini

and Bobev 2013a).
57 We refer to Hosseini et al. (2017c) for a proof, to Amariti et al. (2018) for more detailed expressions,

and to the appendices of Hosseini et al. (2018c) and Hosseini and Zaffaroni (2019b) for an alternative

derivation based on the anomaly polynomial.
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5.2 The topologically twisted index on T2 ·Rg

For an N ¼ 1 four-dimensional gauge theory with a non-anomalous Uð1Þ R-

symmetry, the topologically twisted index is a function of q ¼ e2pis, where s is the
modular parameter of T2, fugacities yI for the global symmetries and flavor

magnetic fluxes mF
I on Rg parameterizing the twist. It can be computed using

localization and it is given by an elliptic generalization of the formulae in Sect. 3.2

(Closset and Shamir 2014; Benini and Zaffaroni 2015). Explicitly, for a theory with

gauge group G and a set of chiral multiplets transforming in representations RI of G
with R-charge rI , the topologically twisted index is given by a contour integral of a

meromorphic form

Zðp; yÞ ¼ 1

jW j
X

m2Ch

I

C

Y

Cartan

dx

2pix
gðqÞ2ð1�gÞ


 �

Y

a2G

h1ðxa; qÞ
igðqÞ

� �1�g

�
Y

I

Y

qI2RI

�

igðqÞ
h1ðxqI yI ; qÞ

�qIðmÞþðg�1ÞðrI�1ÞþmF
I

det
ij

o2 log Zpertðu;mÞ
oiuiomj


 �g

;

ð5:12Þ

where a are the roots of G, qI the weights of the representation RI and |W| denotes

the order of the Weyl group. In this formula, h1ðx; qÞ is a Jacobi theta function and

gðqÞ is the Dedekind eta function. The zero-mode gauge variables x ¼ eiu param-

eterize the Wilson lines on the two directions of the torus

u ¼ 2p
I

A�cycle

A � 2ps
I

B�cycle

A; ð5:13Þ

and are defined modulo

ui � ui þ 2pn þ 2pms ; n ;m 2 Z : ð5:14Þ

As in three dimensions, the result is summed over a lattice of gauge magnetic fluxes

m living in the co-root lattice Ch of the gauge group G and the contour of integration

selects the Jeffrey–Kirwan prescription for taking the residues. In four dimensions

there is a one-loop contribution from the Cartan components of the vector multi-

plets. One can show that the integrand in (5.12) is a well-defined meromorphic

function of x on the torus provided that the gauge and the gauge-flavor anomalies

vanish. The index has a trace interpretation as a sum over a Hilbert space of states

on Rg � S1

Zðn; y; qÞ ¼ TrRg�S1ð�1ÞFqHL

Y

I

yJI
I : ð5:15Þ

This trace reduces to the elliptic genus of the two-dimensional theory obtained by

the twisted compactification on Rg.
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We now consider the index for N ¼ 4 SYM. The superpotential (5.5) imposes

the following constraints on the chemical potentials Da and the flavor magnetic

fluxes �pa þ 1� g ¼ ðg� 1Þðra � 1Þ þmF
a associated with the fields /a,

X

3

a¼1

Da 2 2pZ;
X

3

a¼1

pa ¼ 2� 2g : ð5:16Þ

The topologically twisted index for the SYM theory with gauge group SU(N) is then
given by

Z ¼ 1

N!

X

m 2 ZN ;
P

i mi ¼ 0

Z

C

Y

N�1

i¼1

dxi

2pixi
gðqÞ2ðN�1Þð1�gÞ Y

N

i;j¼1

h1
xi

xj
; q

� �

igðqÞ

0

@

1

A

1�g

Y

N

i;j¼1

Y

3

a¼1

igðqÞ
h1

xi

xj
ya; q

� �

2

4

3

5

mi�mj�paþ1�g

det
ab

o2 logZpertðu;mÞ
oiuaomb


 �g

;

ð5:17Þ

with ya ¼ eiDa . The Bethe vacua are determined by

e
ioW
oui ¼

Y

N

j¼1

Y

3

a¼1

h1
xj

xi
ya; q

� �

h1
xi

xj
ya; q

� � ¼ 1 : ð5:18Þ

The Bethe equations (5.18) have a remarkably simple solution (Hosseini et al.

2017c; Hong and Liu 2018)58

uk ¼ � 2ps
N

k � N þ 1

2


 �

: ð5:19Þ

These Bethe vacua will play a role also in the physics of AdS5 black holes (Benini

and Milan 2020a, b), as discussed in Sect. 7.2.

This time the index is too hard to solve in the large N limit. We can study instead

the high temperature limit corresponding to a shrinking of the torus given by s ¼
ib=ð2pÞ with b ! 0þ (Hosseini et al. 2017c).59 This limit is also particularly

interesting from the field theory point of view because it controls the asymptotic

growing of the number of states with the dimension (Cardy 1986). Using (5.19) it is

easy to compute, at leading order in b, (Hosseini et al. 2017c)

58 This solution was found in the high temperature limit in Hosseini et al. (2017c) and proved to be exact

for all s in Hong and Liu (2018). Using SLð2;ZÞ, the authors of Hong and Liu (2018) have found many

other solutions of the Bethe equations for N ¼ 4 SYM at finite s. Non-standard solutions corresponding

to continua of Bethe vacua have been found in Arabi Ardehali et al. (2019). The solution (5.19) extends

to more general quivers (Hosseini et al. 2017c; González Lezcano and Pando Zayas 2020; Lanir et al.

2020).
59 Notice that b is not really a temperature, but rather a parameterization of the modular parameter of the

torus.
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fWðDÞ ¼ iðN2 � 1Þ
2b

D1D2D3;

log Zðp;DÞ ¼ i
X

3

a¼1

pa

ofW
oDa

;

ð5:20Þ

where fWðDÞ is the on-shell value of the twisted superpotential. As in the three-

dimensional case, the result is valid for
P

a D ¼ 2p. We see a striking similarity

with the black hole case, in particular equation (4.63). Moreover, the twisted

superpotential is proportional to the trial a-central charge (5.7) of the four-dimen-

sional SCFT. This statement is the four-dimensional analog of (4.61).

Comparing with (5.10) we find the Cardy formula

log Zðp;DÞ ¼ p2

6b
crðDÞ ¼

pi

12s
crðDÞ; ð5:21Þ

valid at leading order in b and at large N.
This result can be extended to all N ¼ 1 SCFT4 dual to AdS5 � SE5 vacua

(Hosseini et al. 2017c). It can be also generalized to the case of the refined

topologically twisted index on S2 � T2

Zðn; y; qÞ ¼ TrS2�S1ð�1ÞFqHLf2J
Y

I

yJI
I ; ð5:22Þ

where f ¼ eix=2 is a fugacity for the angular momentum. The result is (Hosseini

et al. 2019b)

log Zðp;DÞ ¼ p2

6b
crðDÞ �

8x2

9p2
aðpÞ


 �

; ð5:23Þ

valid at leading order in b and at large N.
The example discussed in this section can be actually generalized to many other

flows interpolating between AdS3þn and AdS3 �Mn where supersymmetry is

preserved along the compact manifold Mn with a topological twist. Examples of

compactifications of the (2, 0) theory in six dimensions on the product of two

Riemann surfaces Rg1
� Rg2

are discussed for example in Hosseini et al. (2018c).

5.3 Back to Cardy

Similarly to what is done for generic CFT2 (Cardy 1986), we can extract

information on the growing of the number of supersymmetric states with the energy

from the asymptotic behavior (5.21) of the elliptic genus.

From the definition of the index as a trace (5.22), we see that the number of

supersymmetric states with momentum n, electric charge qa under the Cartan

subgroup of SO(6) and angular momentum j can be extracted as a Fourier coefficient
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dðp; n; j; qÞ ¼ �i

Z

iR

db
2p

Z 2p

0

dDa

2p
Zðp;DÞ ebn�i

P3

a¼1
Daqa�ixjd

X

3

a¼1

D ¼ 2p

 !

;

ð5:24Þ

where b ¼ �2pis and the corresponding integration is over the imaginary axis.

In the limit of large charges, we can use the saddle point approximation. Consider

first q ¼ 0 and j ¼ 0. The number of supersymmetric states with charges ðp; nÞ can
be obtained by extremizing

Iðb;DÞ 	 log Zðp;DÞ þ bn ð5:25Þ

with respect to D and b. Given (5.21), we see that the extremization with respect to

D is the c-extremization principle (Benini and Bobev 2013a, b) and sets the trial

right-moving central charge crðDÞ to its exact value cCFTðpÞ given in (5.4).

Extremizing Iðb;DÞ with respect to b yields

bðp; nÞ ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cCFTðpÞ
6n

r

: ð5:26Þ

Plugging back (5.26) into Iðb;DÞ, we find for the entropy of states

Sðp; nÞ 	 log dðp; n; 0; 0Þ ¼ I
�

�

crit
ðb;DÞ ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n cCFTðpÞ
6

r

: ð5:27Þ

This is obviously nothing else than Cardy formula (Cardy 1986).60

One can generalize the previous computation to the case qa 6¼ 0 and j 6¼ 0 by

extremizing

Iðb;DÞ 	 log Zðp;DÞ þ bn � i
X

a

qaDa � ixj : ð5:28Þ

After some manipulations, the result can be expressed in the form Hosseini et al.

(2019b, 2020)

Sðp; q; nÞ ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cCFT
6

n þ 1

2

X

I;K

qIA
�1
IK ðpÞqK � 27

16aðpÞ j2

 !

v

u

u

t ; ð5:29Þ

where the index I runs over a set of independent global symmetries JK and AIK ¼
Tr c3JIJK is the ’t Hooft anomaly matrix of the two-dimensional theory. This result

holds for a generic N ¼ 1 quiver with a Sasaki-Einstein dual. The particular

combination of n, electric charges and angular momentum appearing in (5.29) is

related to the properties of the elliptic genus and is familiar from the physics of

asymptotically flat black holes (Dijkgraaf et al. 2000; Kraus and Larsen 2007;

Manschot and Moore 2010).61

60 For a further discussion about the asymptotic behavior see Hosseini (2018–02).
61 Our elliptic genus is actually a meromorphic function of Da and this leads to a more complicated

structure of the corresponding modular forms, related to wall-crossing phenomena. For asymptotically flat
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5.4 Cardy formula and black holes

There is standard argument to obtain a black holes from a black string: compactify

along the circle inside AdS3 and add a momentum n along it. More precisely, one

replaces the near-horizon geometry of the five-dimensional black string with

BTZ� Rg1
, where the metric for the extremal BTZ reads (Bañados et al. 1992)

ds23 ¼
1

4

�dt2 þ dr2

r2


 �

þ q dz þ � 1

4
þ 1

2qr


 �

dt

� �2

: ð5:30Þ

Here, the parameter q is related to the electric charge n. This solution is locally
equivalent to AdS3, since there exists locally only one constant curvature metric in

three dimensions, and solves the same BPS equations; however, BTZ and AdS3 are

inequivalent globally. Compactifying the full five-dimensional black string of

Benini and Bobev (2013b) on the circle with the extra momentum we obtain a static

BPS black hole in four dimensions, with magnetic charges pa and electric charge n.
This can be thought as a domain wall that interpolates between an AdS2 � Rg1

near-

horizon region and a complicated asymptotic non-AdS 4 vacuum (Hristov 2014). By

another standard argument, the entropy of such a black hole is given by the number

of states of the CFT with momentum n, and is therefore given by the Cardy formula

(5.27)

SBHðp; nÞ ¼ I
�

�

crit
ðb;DÞ ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n cCFTðpÞ
6

r

: ð5:31Þ

One can see that this prediction matches the black holes entropy computed from

supergravity (Hristov 2014). Moreover, a family of rotating dyonic black strings in

AdS5 � S5 was found in Hosseini et al. (2019b) and the entropy of the compactified

black hole successfully compared with (5.29). An analogous matching for black

strings in AdS7 � S4 was discussed in Hosseini et al. (2020).

It is also interesting to observe that, for static black holes, the field theory

extremization of I becomes again equivalent to the attractor mechanism in the

reduced four-dimensional gauged supergravity. The dimensional reduced super-

gravity has one more vector coming from the reduction on the circle, prepotential

F � X1X2X3

X0 , and purely electric FI parameters g0 ¼ 0 and gi ¼ g (Hristov 2014).

Under the identifications X̂
0 ! b ; X̂

i ! iDa; ðqK; pKÞ !
ð�n; q1; q2; q3; 0; p1; p2; p3Þ and FðX̂Þ ! fWðDÞ, the attractor functional (4.13)

can be identified with the I -functional (5.25).

Footnote 61 continued

black holes this leads to interesting behaviours (see for example Dabholkar et al. 2012). It would be

interesting to see if the same happens for the black holes discussed in Sect. 5.4 obtained by compactifying

the black string.
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6 The superconformal index

As we discussed in Sect. 2, we should be able to obtain the entropy of

supersymmetric Kerr–Newman black holes in AdSdþ1 by counting states in the

dual CFT on Sd � R. The relevant supersymmetric quantity to consider is the

superconformal index, which enumerates BPS states on Sd � R (Romelsberger

2006; Kinney et al. 2007).

We start by considering N ¼ 1 supersymmetric field theories on S3 � R. We

refer to Festuccia and Seiberg (2011) for an explicit description of the supersym-

metric Lagrangian on S3 � R and the corresponding supersymmetry transforma-

tions. The superconformal index is defined as the trace

Iðp; q; uÞ ¼ TrS3ð�1ÞFe�bfQ;QygpJ1þR
2qJ2þR

2uJ ð6:1Þ

on the Hilbert space of states on S3. Here J1 and J2 generate rotations on S3, R is the

R-symmetry generator, and J denotes collectively the global symmetries. Q is a

supercharge with J1 ¼ J2 ¼ �1=2 and R ¼ 1 and satisfies the algebra

fQ;Qyg ¼ D� J1 � J2 �
3

2
R; ð6:2Þ

where D generates translation along R. We introduced fugacities, p, q, and u, for all
the generators that commute with Q, which are J1 þ R=2, J2 þ R=2 and the global

symmetries J. The quantity (6.1) is a Witten index in the sense discussed in

Sect. 2.2.2 and it is therefore independent of b and invariant under continuous small

deformations of the Lagrangian. Despite the name, the supersymmetric index (6.1)

makes sense also for non-conformal theories. Since we are interested in holography,

we will just consider the case of conformal theories where D can be identified with

the dilatation operator.

The index (6.1) can be also written as the Euclidean supersymmetric partition

function on S3 � S1, as discussed in Sect. 2.2.2, and computed using localization.

The precise relation among the two quantities involves a prefactor

Zsusy

S3�S1
ðp; q; uÞ ¼ e�bEc:e:Iðp; q; uÞ ; ð6:3Þ

where the quantity Ec:e; called supersymmetric Casimir energy (Assel et al.

2014, 2015; Lorenzen and Martelli 2015; Benetti Genolini et al. 2017; Martelli and

Sparks 2016; Closset et al. 2019), is due to the regularization of the one-loop

determinants and it can be interpreted as the vacuum expectation value of the

Hamiltonian.

The superconformal index can be computed explicitly through localization or,

being invariant under continuous deformations, just by enumerating the gauge

invariant states annihilated by Q and Qy in the weakly coupled UV theory. The

result for an N ¼ 1 theory with gauge group G and chiral matter in the

representation Ra and R-charge ra is (Romelsberger 2006; Kinney et al. 2007;

Dolan and Osborn 2009)
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Iðp; q; uÞ ¼ ðp; pÞr
1ðq; qÞr

1
jW j

Y

r

i¼1

I

dzi

2pizi

Q

a

Q

q2Ra
CððpqÞra=2zqa uma ; p; qÞ

Q

a Cðzqa ; p; qÞ ; ð6:4Þ

where r is the rank of the gauge group, a the roots, qa are the weights of the

representation Ra, ma the flavor weights, and |W| the order of the gauge group. The

integration is over the Cartan subgroup of G and is taken over the unit circle for all

variables zi. The special functions appearing in the previous formula are the elliptic

Gamma function (Felder and Varchenko 2000)

Cðz; p; qÞ ¼
Y

1

n;m¼0

1� pnþ1qmþ1=z

1� pnqnz
; jpj\1 ; jqj\1 ; ð6:5Þ

and the q-Pochhammer symbol

ðz; qÞ1 ¼
Y

1

n

ð1� qnzÞ ; jqj\1 : ð6:6Þ

In the localization approach, numerator and denominator of (6.4) arise as one-loop

determinants for chiral matter multiplets and vector multiplets, respectively. The

reader can compare the formula for the superconformal index (6.4) with the anal-

ogous one for the topologically twisted one (3.11) and look for analogies and

differences.62

The superconformal index can be defined and computed through localization also

in other dimensions (Bhattacharya et al. 2008; Pestun and Zabzine 2017). For three-

dimensional theories the elliptic Gamma functions are replaced by hyperbolic ones

and there is an extra sum over magnetic fluxes, as in (3.11), due to the existence of

local BPS monopole operators in three dimensions (Kim 2009; Imamura and

Yokoyama 2011; Kapustin and Willett 2011; Dimofte et al. 2013).

7 Electrically charged rotating black holes

In this section we discuss the case of Kerr–Newman black holes in various

dimensions. These are electrically charged rotating black holes without a twist. As

argued in Sect. 2, they are qualitatively different from the magnetically charged

black holes discussed in Sect. 4.

In general, we should be able to recover the entropy of the electrically charged

rotating black holes in AdSd from the BPS partition function (2.16) that counts

supersymmetric states of the dual CFT on Sd�2 � R. Since the black holes preserve

just two real supercharges, we need to count 1/16 BPS states and this is a hard

problem. Old attempts to evaluate the BPS partition function of N ¼ 4 SYM (Grant

et al. 2008; Chang and Yin 2013; Yokoyama 2014) reached the somehow

disappointing conclusion that there is a subset of states whose number grows with

N but slower than the entropy of the black holes. Alternatively, one may try to

62 One main difference is the sum over magnetic fluxes in the (3.11). From a more technical point of

view, another big difference is the integration contour.
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replace the BPS partition function with the corresponding index (2.23). The

appropriate index is the superconformal one, defined in the previous section, that

can be expressed and computed as a supersymmetric Euclidean path integral on

Sd�2 � S1. It is known that, for generic real fugacities, the superconformal index is a

quantity of order one in the large N limit (Kinney et al. 2007) and, as such, it does

not reproduce the entropy which grows with powers of N. As a difference with the

twisted index, already in the large N limit, there is a large cancellation between

bosonic and fermionic supersymmetric states and ZindexðDa;xiÞ 6¼ ZðDa;xiÞ. All
these (partial) results have stood for long time as puzzles about supersymmetric

electrically charged rotating black holes.

However, the entropy functionals for many Kerr–Newman black holes in

different dimensions can be expressed in terms of quantities with a clear field theory

interpretation (Hosseini et al. 2017b, 2018b; Choi et al. 2020), thus suggesting that

the entropy can be always reproduced by a field theory computation. These entropy

functionals also suggest complex value for the chemical potentials Da and xi. As

stressed in Choi et al. (2018b) and Benini and Milan (2020b), the computation in

Kinney et al. (2007) is valid only for real fugacities and the introduction of phases

in the fugacities can obstruct the cancellation at large N and lead to an enhancement

of the entropy. This is also in the spirit of the I -extremization principle discussed in

Sect. 2.4. Recent results for AdS5 and other dimensions, started with the work of

Cabo-Bizet et al. (2019a), Choi et al. (2018b) and Benini and Milan (2020b),

confirm this point of view and lead to various derivations of the entropy using the

index, as we discuss in this section.

7.1 The entropy functional for electrically charged rotating black holes

For many Kerr–Newman black holes, the entropy, as a function of electric charges

qa and angular momenta ji, can be written as a Legendre transform

Sðqa; jiÞ ¼ logZðDa;xiÞ � iðDaqa þ xijiÞ ð7:1Þ

of a quantity logZðDa;xiÞ related to anomalies or free energies of the dual CFT.

This was derived in Hosseini et al. (2017b) for five-dimensional black holes and

generalized to other dimensions in Hosseini et al. (2018b) and Choi et al. (2020).63

We consider first the example of AdS5 � S5 and we come back later to the general

case.

7.1.1 The entropy functional for Kerr–Newman black holes in AdS5 · S5

As discussed in Sect. 2.1.1, the Kerr–Newman black holes in AdS5 � S5 depend on

three charges q1; q2; q3 associated with Uð1Þ3 � SOð6Þ, the Cartan subgroup of the

isometry of S5, and two angular momenta j1 and j2 in AdS5. Supersymmetry

requires a non-linear constraint among these conserved charges, whose form we

discuss below, and leaves a four-dimensional family of BPS black holes (Gutowski

63 A proposal for non BPS black holes can be found in Larsen et al. (2020).
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and Reall 2004a, b; Chong et al. 2005a, b; Kunduri et al. 2006). The entropy can be

compactly written as (Kim and Lee 2006)

SBHðqa; jiÞ ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1q2 þ q1q3 þ q2q3 �
p

4G
ð5Þ
N g3

ðj1 þ j2Þ
s

; ð7:2Þ

where G
ð5Þ
N is the five-dimensional Newton constant and g the gauge coupling of the

five-dimensional effective supergravity. Holography relates these quantities to the

number of colors of the dual field theory, N ¼ 4 SYM in four dimensions, through

N2 ¼ p=ð2G
ð5Þ
N g3Þ. We see that black holes with charges and angular momenta of

order OðN2Þ have an entropy of order OðN2Þ.
Quite remarkably, the entropy (7.2) can be written as the Legendre transform of a

very simple quantity (Hosseini et al. 2017b)

SBHðqa; jiÞ ¼ �i
N2

2

D1D2D3

x1x2

� i
X

3

a¼1

Daqa þ
X

2

i¼1

xiji

 !

�

�

�

extremum �Da; �xi

; ð7:3Þ

where the chemical potentials are constrained by

D1 þ D2 þ D3 � x1 � x2 ¼ �2p : ð7:4Þ

This constraint resembles the analogous one, (4.42), for black holes in ABJM. The

quantity in (7.3) is extremized for complex values of the chemical potentials Da and

xi. However, quite remarkably, the on-shell value (7.3) becomes real once we

impose the non-linear constraint among charges imposed by supersymmetry. In fact,

a simple way of characterize the constraint on charges is to identify it with the

imaginary part of entropy functional (7.3) at its extremum. The fact that the critical

value for Da and xi are complex will also play an important for the field theory

interpretation of the result. The two choice of signs in (7.4) lead to the same final

result. Formally, this is due to the fact that (7.3) is a holomorphic homogeneous

function of the chemical potentials of degree one.64

The quantity

logZðDa;xiÞ ¼ �i
N2

2

D1D2D3

x1x2

ð7:5Þ

must be interpreted as a grand canonical partition function, and, as discussed in 2.3,

should be related to the on-shell action of the Euclidean black hole. This has been

proved in Cabo-Bizet et al. (2019a) by taking the zero-temperature limit of the on-

shell action of a family of supersymmetric complexified non-extremal Euclidean

solutions. In this approach, one can also derive the complex value for the chemical

64 Consider the two functionals S� ¼ SBH � iKð
P3

a¼1 Da �
P2

i¼1 xi � 2pÞ, where the constraint is

enforced by the Lagrange multiplier K. Given the homogeneity of SBH, the extremal value is

S� ¼ �2piK. Since qa and ji are real, it is immediate to see that, if ðDa;xi;KÞ is an extremum of Sþ, then

ð� �Da;� �xi; �KÞ is an extremum of S� and the extremal values are related by Sþ ¼ �S�. Therefore the

extremization with different constraints (7.4) give the same results for the real part of the entropy.
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potentials at the saddle point.65 The constraints
P

a Da �
P

i xi ¼ �2p arise due to

regularity conditions to be imposed on the Killing spinors.

7.1.2 The entropy functional for Kerr–Newman black holes in diverse dimensions

The expression for the entropy functionals for Kerr–Newman black holes in diverse

dimensions is schematically given in Table 1.

The content of the table refers to electrically charged rotating black holes in each

dimension that can be embedded in a maximally supersymmetric string theory or M-

theory background. In addition to the AdS5 � S5 black holes in type IIB, there are

analogous AdS4 � S7 and AdS7 � S4 black holes in M-theory (Chow 2008; Cvetič

et al. 2005; Chong et al. 2005c). The dual field theories are well known: the ABJM

theory in three dimensions and the (2, 0) theory in six dimensions. In addition, there

are black holes in the warped AdS6 �W S4 background of massive type IIA

(Brandhuber and Oz 1999; Chow 2010). The dual CFT is the N ¼ 1 five-

dimensional fixed point associated with D4-D8-O8 branes in type IIA found in

Seiberg (1996). Notice that, in six dimensions, the maximal superconformal algebra

has only sixteen supercharges instead of thirty-two and the superconformal theory

with such an algebra is not unique. Among the theories with an AdS dual, the D4-

D8-O8 system is somehow the simplest and most studied.

The chemical potentials in the table refer to the isometries of the internal

manifold.66 Notice that the chemical potentials are always subject to a constraint.

Indeed, as already discussed in Sect. 2, in all dimensions, we expect the existence of

a family of supersymmetric black holes depending on the possible electric charges

and spins with a constraint among them.67 This explains the constraint among

chemical potentials. The family of black holes with generic charges and spins

allowed by the constraint is known only for AdS5 � S5 (and AdS4 � S7) and (7.1)

has been fully checked only in these cases (Hosseini et al. 2017b). In all other

dimensions the relation (7.1) has been checked for the solutions available in the

literature (Hosseini et al. 2018b; Choi et al. 2020).

In the second column of the table, there is a quantity, FðDaÞ, with a clear field

theory interpretation. The reader can recognize the S3 free energy of ABJM in the

first row and the trial a-charge of N ¼ 4 SYM in the second row, see (4.43) and

(5.7), which are both functions of trial R-charges satisfying

65 The chemical potentials are extracted following the logic discussed at the end of Sect. 2.2.1.
66 In the case of the D4-D8-O8 system, the field theory has SUð2ÞR � SUð2Þ � Enf þ1 symmetry, where

SUð2ÞR � SUð2Þ is realized by the isometry of the warped S4 and Enf þ1 by the theory on the Nf physical

D8 branes. We introduced a symmetric notation for the chemical potentials associated with SUð2ÞR �
SUð2Þ following the notations of Hosseini et al. (2018c). The entropy functional discussed in Choi et al.

(2020) refers to the case D1 ¼ D2.
67 Supersymmetric hairy AdS5 black holes depending on all the charges has been recently found in

Markeviciute and Santos (2019) and Markeviciute (2019). Their entropy seems to be subleading

compared to the Kerr–Newman black hole.
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X

a

Da ¼ 2 : ð7:6Þ

In general, FðDaÞ is the sphere free energy for odd-dimensional CFTs, and a par-

ticular combination of t’Hooft anomaly coefficients in even dimensions.68 In all

cases, the quantity logZðDa;xiÞ can be obtained by taking the quotient of FðDÞ by
the product of all angular momentum chemical potentials and by replacing the R-

charge constraint (7.6) with

X

a

Da �
X

i

xi ¼ 2p : ð7:7Þ

This constraint is strongly reminiscent of the analogous constraint (4.42) for mag-

netically charged black holes. Notice that logZðDa;xiÞ is a sort of equivariant

generalization of FðDÞ with respect to rotations. Indeed, the expression for

logZðDa;xiÞ for AdS5 and AdS7 can be also directly obtained by an equivariant

integration of the six-dimensional and eight-dimensional anomaly polynomial for

N ¼ 4 SYM and the (2, 0) theory in six dimensions, respectively (Bobev et al.

2015).69

Various observations made for AdS5 � S5 generalize to the other dimensions.

First, the quantity in (7.1) is extremized for complex values of the chemical

Table 1 Entropy functionals for electrically charged rotating black holes

AdS4 � S7 FðDaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1D2D3D4

p
logZðDa;xiÞ ¼ � 4

ffiffi

2
p

N3=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1D2D3D4

p

x1

D1 þ D2 þ D3 þ D4 ¼ 2 D1 þ D2 þ D3 þ D4 � x1 ¼ 2p

AdS5 � S5 FðDaÞ ¼ D1D2D3 logZðDa;xiÞ ¼ �i N2

2
D1D2D3

x1x2

D1 þ D2 þ D3 ¼ 2 D1 þ D2 þ D3 � x1 � x2 ¼ 2p

AdS6 �W S4 FðDaÞ ¼ ðD1D2Þ3=2 logZðDa;xiÞ�N5=2 ðD1D2Þ3=2
x1x2

D1 þ D2 ¼ 2 D1 þ D2 � x1 � x2 ¼ 2p

AdS7 � S4 FðDaÞ ¼ ðD1D2Þ3 logZðDa;xiÞ ¼ i N3

24

ðD1D2Þ3
x1x2x3

D1 þ D2 ¼ 2 D1 þ D2 � x1 � x2 � x3 ¼ 2p

For simplicity of notations, we opted for a uniform notation for all dimensions, involving some sign

redefinitions in comparison to Hosseini et al. (2017b, 2018b) and Choi et al. (2020), to which we refer for

more precise statements

68 It is also curious to observe that FðDÞ is the on-shell value of the twisted superpotential of the CFT in

three and four-dimensions, as discussed in Sects. 4 and 5, and the on-shell Seiberg–Witten prepotential in

five- and six-dimensional computations (Hosseini et al. 2018c).
69 The expression for logZðDa;xiÞ for AdS4 and AdS6 can be instead related to a small � limit of the

partition functions on R2
�1
� S1 and R2

�1
� R2

�2
� S1, respectively, where �i / xi are equivariant

parameters for rotations in the R2 planes. The sphere and twisted partitions functions in three and five

dimensions can be obtained by gluing together these basic building blocks in the spirit of Pasquetti

(2012), Beem et al. (2014), Nieri et al. (2015), Gukov et al. (2017), Pasquetti (2017), Nekrasov (2003a),

Bershtein et al. (2017), Kim et al. (2013), Hosseini et al. (2018c), Qiu and Zabzine (2017) and Festuccia

et al. (2020). This point of view has been applied to the physics of black holes in Hosseini et al. (2018c,

(2019a), Choi et al. (2019) and Choi and Hwang (2020).
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potentials Da and xi but the on-shell value (7.1) is real, as an entropy must be.

Secondly, there is a sign ambiguity in the constraint (7.7) that can be replaced by
P

a Da þ
P

i xi ¼ �2p with no differences. Thirdly, the expression of

logZðDa;xiÞ can be explicitly derived in gravity by taking the zero-temperature

limit of the on-shell action of a family of supersymmetric Euclidean solutions

(Cassani and Papini 2019).

Finally, we expect that (7.1) corresponds to the attractor mechanism in the

relevant gauged supergravity. Unfortunately, the attractor mechanism in generic

dimensions and, specifically, for electrically charged rotating black holes is not

known. AdS5 black holes with equal angular momenta can be dimensionally

reduced to static black holes in four dimensions and, in this case, one can show that

(7.1) corresponds to the attractor mechanism in four-dimensional gauged super-

gravity (Hosseini et al. 2017b). This was actually the observation that led to write

the entropy functional (7.1).

7.2 Results on the quantum field theory side

Various field theory derivations of the extremization principles (7.3) have been

recently proposed for AdS5. All these results are valid in overlapping limits and the

connection between different approaches still to be understood, but all seems to

indicate that the entropy is correctly accounted by the large N limit of the

superconformal index. Partial results in other dimensions also confirm the content of

Table 1.

Consider first the case of AdS5 � S5. The dual field theory is N ¼ 4 SYM. In the

language of N ¼ 1 supersymmetry, it contains a vector multiplet Wa and three

chiral multiplets /a subject to the superpotential (5.5). We introduce three R-

symmetries Ra associated with Uð1Þ3 � SOð6Þ. Ra assign charge 2 to /a and zero

to the /b with b 6¼ a. The exact R-symmetry is R ¼ ðR1 þR2 þR3Þ=3 and the

global symmetries are qa ¼ ðRa � RÞ=2, with associated fugacities ua. Only two

global symmetries are independent since
P3

a¼1 qa ¼ 0 and, as a consequence,
Q3

a¼1 ua ¼ 1. Defining ya ¼ ðpqÞ1=3ua we can write the superconformal index (6.1)

as

IðDa;xiÞ ¼ Tr
�

�

�

Q¼0
ð�1ÞFpJ1qJ2yQ1

1 yQ2

2 yQ3

3 ¼ Tr
�

�

�

Q¼0
ð�1ÞFeiðDaQaþxiJiÞ; ð7:8Þ

with ya ¼ eiDa , p ¼ eix1 , q ¼ eix2 and Qa ¼ Ra=2. The fugacities are constrained by
Q3

a¼1 ya ¼ pq, and the index depends only on four independent parameters, as the

family of BPS black holes.

Due to cancellations between bosonic and fermionic supersymmetric states, the

result obtained from the index can only be a lower bound on the number of BPS

states. However, we may expect that, as for magnetically charged black holes, for

large N, the result saturates the entropy. Most of the computations for the

superconformal index in the old literature has been performed for real fugacities and
give results of order O(1) for large N. However, the extremization principle
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discussed above strongly suggests that we should look at the behavior of the index

as a function of complex chemical potentials.

Agreement with the gravity result (7.5)

log IðDa;xiÞ ¼ �i
N2

2

D1D2D3

x1x2

; ð7:9Þ

with D1 þ D2 þ D3 � x1 � x2 ¼ �2p has been obtained analytically, up to now, in

two partially overlapping limits:

– Large N and equal angular momenta (Benini and Milan 2020a, b). In the large N
limit, the index has a Stokes behavior as a functions of the chemical potentials,

and it can give a contribution to the entropy of order OðN2Þ along the right

direction in the complex plane. A crucial technical ingredient in this approach

involves writing the superconformal index as a sum over Bethe vacua. As shown

in Closset et al. (2017a, b, 2018), the supersymmetric partition function of many

three- and four-dimensional manifolds can be expressed as a sum over two-

dimensional Bethe vacua using the formalism that we briefly discussed in

Sect. 3.3.2. A formula for the superconformal index was obtained in Closset

et al. (2017a) and generalized to unequal fugacities for the angular momenta in

Benini and Milan (2020a). Schematically, it allows to write the index as in (3.38)

I ¼
X

x�

Qðx�Þ
detijð�o2uiuj

Wðx�ÞÞ
; ð7:10Þ

where x� are the Bethe vacua of the two-dimensional theory obtained by

reduction on T2, and Q(x) is a suitable function whose expression can be found

in Closset et al. (2017a) and Benini and Milan (2020a).70 The Bethe vacua of

N ¼ 4 SYM on T2 have been already discussed in Sect. 5.2 for a different

purpose and are explicitly given by solutions of (5.18).71 It is argued in Benini

and Milan (2020b) that, in the large N limit, the particular Bethe vacuum (5.19)

dominates for sufficiently large charges and reproduces the entropy of the AdS5
black holes. The same result has been reproduced by directly analysing the

saddle point of the integrand (6.4) in Cabo-Bizet and Murthy (2019). The

extension to the case of unequal angular momenta is discussed in Benini et al.

(2020a). Although it is difficult to evaluate and compare the contribution of all

the Bethe vacua, one can show that there is a natural choice that leads precisely

to the gravity result (7.5).

– The Cardy limit, corresponding to xi 
 1 at fixed complex valued of Da (Choi

et al. 2018a, b). This limit corresponds to large black holes with electric charges

and angular momenta scaling as

70 The four-manifold S1 � S3 can be considered as a torus fibration over a two-dimensional manifold

using S1 and a circle inside S3 for the T2 fiber. For details see Closset et al. (2017a) and Benini and Milan

(2020a).
71 As argued in Arabi Ardehali et al. (2019), there can exist non-standard solutions corresponding to

continua of Bethe vacua and the formula (7.10) must be accordingly generalized.
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qa �
1

x2
; ji �

1

x3
; x1 �x2 �x ! 0 : ð7:11Þ

It is crucial that the chemical potentials are complex. As argued in Choi et al.

(2018a, b), the imaginary parts of the fugacities at the saddle point introduce

phases that optimally obstruct the cancellation between bosonic and fermionic

states. The number of states accounted by the index in the Cardy limit correctly

reproduces the entropy of large AdS5 black holes and the xi 
 1 limit of the

extremization formula (7.3). This approach has been further refined and

generalized in Honda (2019), Arabi Ardehali (2019) and Arabi Ardehali et al.

(2019).

Numerical analysis confirming the OðN2Þ behavior of the index for complex

chemical potential has been performed in Murthy (2020) and Agarwal et al. (2020).

In all these approaches, there seems to exist instabilities when decreasing the

charges, which might suggest the contribution of other types of black holes. Given

also the recently found supersymmetric hairy black holes in AdS5 (Markeviciute

and Santos 2019; Markeviciute 2019), we may expect a rich structure of the

index/partition function still to be uncovered.

It was observed in Hosseini et al. (2017b, 2018b) that the quantity (7.9) and its

analogous for AdS7 given in Table 1 matches the expression for the supersymmetric

Casimir energy Ec:e quoted in the literature with the precise coefficient for both

N ¼ 4 SYM and the (2, 0) theory (see for example Bobev et al. 2015). This

observation was strengthened in Cabo-Bizet et al. (2019a) by considering a

modified supersymmetric partition function on S3 � S1 implementing the constraint

(7.4) and showing that the corresponding supersymmetric Casimir energy Ec:e has

still the expression (7.9).72 It is not completely clear why the supersymmetric

Casimir energy, which corresponds to the energy of the vacuum of the CFT (Assel

et al. 2015), should be related to the entropy of the black hole. It would be intriguing

if this a consequence of some modular properties of the partition function, still to be

understood.

The large N holographic expectation for theories with a Sasaki–Einstein dual is

(Hosseini et al. 2018b)

log IðDa;xiÞ ¼ �i
16

27

aðDÞ
x1x2

¼ �i
N2

12

X

d

a;b;c¼1

fabc
DaDbDc

x1x2

; ð7:12Þ

with the constraint
Pd

a¼1 D� x1 � x2 ¼ �2p, where aðDÞ is the trial central

charge defined in Sect. 5.1 and fabc are the cubic t’Hooft anomaly coefficients for a

basis of d independent R-charges. The coefficients fabc have a natural dual gravi-

tational interpretation. They arise as intersection numbers of cycles in the internal

manifold (Benvenuti et al. 2006), and, from an effective field theory perspective, as

Chern–Simons terms in the corresponding gauged supergravity in five dimensions.

In particular, they determine completely the structure ofN ¼ 1 gauged supergravity

72 The motivation for using this partition function comes from holography, since the constraint (7.4)

explicitly arises in the Euclidean description of the AdS5 black holes (Cabo-Bizet et al. 2019a).
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including the prepotential. The field theory computation of the index has been

extended to other N ¼ 1 superconformal theories and gives results consistent with

(7.12). In particular, the Cardy limit for a generic N ¼ 1 superconformal theory has

been studied in Kim et al. (2019) and Cabo-Bizet et al. (2019b) with the result73

log IðxiÞ ¼
xi!0

4p2i
3x1 þ 3x2 � 2p

27x1x2

ð3c � 5aÞ þ 4p2i
x1 þ x2 � 2p

x1x2

ða � cÞ þ Oð1Þ

when all flavor symmetries are turned off. This formula generalize a previous result

by Di Pietro and Komargodski (2014) for the standard index with real fugacities.

Flavor fugacities have been introduced in Amariti et al. (2019) and consistency with

(7.12) in the large N limit, where c ¼ a, checked for many toric models. The large

N limit of the index for equal angular momenta has been studied in Lanir et al.

(2020) and Cabo-Bizet et al. (2020) with results again consistent with (7.12).74 The

case of unequal angular momenta is discussed in Benini et al. (2020a).

These results have been generalized and extended to other dimensions. In

particular, the entropy of Kerr–Newman black holes in AdS4 has been reproduced in

the Cardy limit in Choi et al. (2019), Nian and Pando Zayas (2020) and Choi and

Hwang (2020), one of the method involving factorization of the partition function.

The case of AdS6 and AdS7 have been analysed in Choi and Kim (2019), Kantor

et al. (2020) and Nahmgoong (2019). Other interesting developments can be found

in Benini et al. (2020b), Bobev and Crichigno (2019) and Goldstein et al. (2020).

8 Conclusions and comments

At the end of our journey, it is time to recapitulate. We have seen that, using

holography, the entropy of supersymmetric AdS black holes and black objects with

large charges can be correctly accounted by the evaluation of the relevant index in

the dual conformal field theory, which just enumerates the corresponding

microstates. This solves a long standing puzzle about supersymmetric black holes

in AdS and their holographic interpretation. Many results have been obtained for

most of the existing black objects in maximally supersymmetric string theory

backgrounds in diverse dimensions. One can reasonably expect that the agreement

will persist for the more technically involved case of black objects with arbitrary

rotations and magnetic charges and of black objects in string backgrounds with

reduced supersymmetry.

It is interesting to observe that, in all dimensions, a single function FðDÞ controls
the entropy of most of the black holes and black objects asymptotic to a maximally

supersymmetric AdS vacuum, with or without magnetic charges or rotation. For

comparison, the partition function for Kerr–Newman black holes and magnetically

73 The authors use a slightly modified index where ð�1ÞF
is replaced by ð�1ÞR

. This replacement has the

same effect as introducing complex fugacities for the flavor symmetries. The prescription is the same

introduced in Cabo-Bizet et al. (2019a) for the modified supersymmetric partition function on S3 � S1.
74 See also González Lezcano and Pando Zayas (2020).
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charged black objects with a twist in various dimensions is reported in Table 1 and

Table 2, respectively.

We see that the function FðDÞ determines the entropy of all such black holes. A

general entropy functional built out of FðDÞ that covers all existing black holes and

generalises the content of Tables 1 and 2 to the case of arbitrary rotations and

magnetic charges has been discussed in Hosseini et al. (2019a) in analogy with the

factorization properties of supersymmetric partition functions.

The function FðDÞ has various interpretations. In gravity, it determines the

effective gauged supergravity action for the massless vectors, being the prepotential

in four dimensions. In field theory, it is related to the anomalies of the dual CFT in

even dimensions, and the round sphere partition function in odd dimensions. On a

more technical side, there is a third interpretation in terms of the twisted

superpotential of the two-dimensional theory obtained by reducing the CFT on

circle or tori, as discussed at length in Sects. 3 and 5.75

In this review we discussed black holes in the supergravity approximation, where

the charges are large in units of the number of colors of the dual CFT. For

asymptotically flat black holes impressive computations and precision tests have

been made beyond the supergravity limit. The story for AdS black hole has just

begun.
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Table 2 Entropy functionals for magnetically charged static spherically symmetric black objects with a

twist

AdS4 � S7 FðDaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1D2D3D4

p
logZ ¼ � 2

ffiffi

2
p

N3=2

3

P4
a¼1 pa

oFðDÞ
oDa

D1 þ D2 þ D3 þ D4 ¼ 2 D1 þ D2 þ D3 þ D4 ¼ 2p

AdS5 � S5 FðDaÞ ¼ D1D2D3 logZ ¼ � N2

2b

P3
a¼1 pa

oFðDÞ
oDa

D1 þ D2 þ D3 ¼ 2 D1 þ D2 þ D3 ¼ 2p

AdS6 �W S4 FðDaÞ ¼ ðD1D2Þ3=2 logZ�N5=2
P2

a;b¼1 pa ~pb
o2FðDÞ
oDaoDb

D1 þ D2 ¼ 2 D1 þ D2 ¼ 2p

AdS7 � S4 FðDaÞ ¼ ðD1D2Þ2 logZ� N3

b

P2
a;b¼1 pa ~pb

o2FðDÞ
oDaoDb

D1 þ D2 ¼ 2 D1 þ D2 ¼ 2p

The cases of AdS5 � S5 and AdS7 � S4 correspond to black strings. The Legendre transform of logZ
reproduces the entropy of the static black hole obtained by reduction on a circle, as discussed in Sect. 5.

Details and normalizations for AdS6 and AdS7 can be found in Hosseini et al. (2018c), Crichigno et al.

(2018), Hosseini et al. (2018a) and Suh (2019b)

75 For five and six-dimensional CFTs, this should be replaced with the Seiberg–Witten prepotential

(Hosseini et al. 2018c; Crichigno et al. 2018).

123

AdS black holes, holography and localization Page 69 of 79 2



Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

References

Agarwal P, Choi S, Kim J, Kim S, Nahmgoong J (2020) AdS black holes and finite N indices. arXiv:2005.

11240

Aharony O, Hanany A, Intriligator KA, Seiberg N, Strassler MJ (1997) Aspects of N ¼ 2 supersymmetric

gauge theories in three-dimensions. Nucl Phys B 499:67–99. https://doi.org/10.1016/S0550-

3213(97)00323-4. arXiv:hep-th/9703110

Aharony O, Bergman O, Jafferis DL, Maldacena J (2008) N ¼ 6 superconformal Chern–Simons-matter

theories, M2-branes and their gravity duals. JHEP 10:091. https://doi.org/10.1088/1126-6708/2008/

10/091. arXiv:0806.1218

Amariti A, Cassia L, Penati S (2018) c-extremization from toric geometry. Nucl Phys B 929:137–170.

https://doi.org/10.1016/j.nuclphysb.2018.01.025. arXiv:1706.07752

Amariti A, Garozzo I, Lo Monaco G (2019) Entropy function from toric geometry. arXiv e-prints arXiv:

1904.10009

Andrianopoli L, Bertolini M, Ceresole A, D’Auria R, Ferrara S, Fre P, Magri T (1997) N ¼ 2

supergravity and N ¼ 2 super Yang–Mills theory on general scalar manifolds: symplectic

covariance, gaugings and the momentum map. J Geom Phys 23:111–189. https://doi.org/10.1016/

S0393-0440(97)00002-8. arXiv:hep-th/9605032

Arabi Ardehali A (2019) Cardy-like asymptotics of the 4d N ¼ 4 index and AdS5 blackholes. JHEP

06:134. https://doi.org/10.1007/JHEP06(2019)134. arXiv:1902.06619

Arabi Ardehali A, Hong J, Liu JT (2019) Asymptotic growth of the 4d N ¼ 4 index and partially

deconfined phases arXiv:1912.04169

Assel B, Cassani D, Martelli D (2014) Localization on Hopf surfaces. JHEP 08:123. https://doi.org/10.

1007/JHEP08(2014)123. arXiv:1405.5144

Assel B, Cassani D, Di Pietro L, Komargodski Z, Lorenzen J, Martelli D (2015) The Casimir energy in

curved space and its supersymmetric counterpart. JHEP 07:043. https://doi.org/10.1007/

JHEP07(2015)043. arXiv:1503.05537

Azzurli F, Bobev N, Crichigno PM, Min VS, Zaffaroni A (2018) A universal counting of black hole

microstates in AdS4. JHEP 02:054. https://doi.org/10.1007/JHEP02(2018)054. arXiv:1707.04257

Bae JB, Gang D, Lee K (2020) Magnetically charged AdS5 black holes from class S theories on

hyperbolic 3-manifolds. JHEP 02:158. https://doi.org/10.1007/JHEP02(2020)158. arXiv:1907.

03430
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