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Abstract: A significant fraction of the non-exhaust particulate matter emissions from vehicular traffic comprises 

fine particles from the wear debris of brake pads and discs. Recent studies have shown that these emissions can 

be consistently reduced by using wear resistant disc coatings. This study thoroughly analyses the debris 

produced by a low-met brake pad, which is dyno-bench tested against both cast iron and WC-CoCr-coated 

brake discs. To achieve this, particles in the size range of 2.5 m to 30 nm were collected and characterized. The 

results showed a consistent reduction in the particle emission as well as in the concentration of iron oxides, 

which are mainly released from the disc tribo-oxidation in the coated disc. Furthermore, a few tungsten 

carbides, released from the coating, were also observed in the wear fragments. The results of this study can   

be useful for improving the protective coating and consequently help in reducing particulate matter emission 

further. 
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1  Introduction 

The braking action of a road vehicle causes a frictional 

torque between the brake pads and brake discs, which 

slows down the rotational motion of the wheels and 

finally stops the vehicle. However, both pads and discs 

are subjected to wear in the process, producing wear 

fragments of different sizes and mass. A significant 

fraction (approximately 35%–50%) of the wear debris 

becomes airborne particulate matter (PM) [1, 2].  

The contribution of the brake wear debris to PM10 

and PM2.5 (i.e., PM with an average aerodynamic 

diameter smaller than 10 m and 2.5 m, respectively) 

currently represents a consistent part of the total 

emissions from road transportation [1, 2], despite the 

major reductions in the exhaust emissions introduced 

by more efficient engines and retrofitting solutions. 

The emitted wear debris contains several components, 

which are potentially hazardous to human health and 

environmental conditions; and the composition of the 

emissions depends on that of the pad and disc materials. 

Therefore, there are ongoing research efforts dedicated 

to the development of new materials for fabricating 

brake pads and discs that can achieve a combination 

of enhanced performance as well as environmental 

friendliness. However, pad materials are complex 

composite systems and hence, several strategies are 

being adopted, starting from the reduction and 

elimination of critical elements, such as copper [3], to 

processing routes and microstructural improvement 

of the standard ingredients [4]. Cast iron is typically 

used to fabricate vehicular brake discs; and the oxide 

particles produced by their tribo-oxidation, usually 

constitute more than 50 wt% of the total PM emitted 

from the brake system [5–9]. Therefore, several stra-

tegies have been pursued to reduce the wear in the  
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brake discs as well as improve the break performance. 

One such approach involves the tuning of the chemical 

composition of cast iron to increase its wear resistance 

[10]. Furthermore, techniques such as thermochemical 

treatment of the disc surface [11], plane thermal treat-

ments, either confined to a surface layer or extended 

to the entire disc thickness [12], and depositing a hard 

coating on the disc surface [13] have been adopted over 

years as alternative solutions. Among these, coating 

is regarded as a promising technique for lowering 

the total amount of emissions [11]. Stable frictional 

properties were measured at both low and high 

temperatures [13]. However, in view of the environ-

mental and human health implications of the wear 

particle emissions, investigating the phase and chemical 

composition of the PMs is essential; moreover, it is also 

important to analyze the distribution of different 

particle size ranges. Several studies have investigated 

the size distribution, composition, and relative con-

centration of the wear debris produced by cast iron 

discs [1, 5, 14–17], while limited literature is available 

on particle emission from coated brake discs. Therefore, 

the main aim of this study is to characterize wear 

debris produced by commercial low-met brake pads; 

this is bench-tested against both conventional cast 

iron and WC-CoCr coated discs. Furthermore, an 

assessment of the major differences in the chemical 

composition and microstructural features of the 

emitted particles is essential to establish the actual 

improvement affected by the coated discs. 

2  Experimental details 

A commercial brake pad frictional material (codenamed 

FM4) has been selected to test the braking performance 

and wear behavior of the coated and uncoated discs. 

Two different rotors have been used as discs: an 

uncoated cast iron disc (codenamed BD1) and the 

same disc material coated with a WC-CoCr layer 

(codenamed BD2). The pad material, FM4, has been 

characterized using X-Ray diffraction (XRD), and a 

full pattern fitting procedure, based on the Rietveld 

method [18, 19], for the identification of the main 

phases and their quantification. The relevant results 

are listed in Table 1. The SEM micrograph in Fig. 1 

shows the microstructure of the pad material, with 

the indication of the main constituents, as identified  

Table 1  Phase composition of the FM4 pad material, as evaluated 
from XRD data (see main text for details on the experimental 
method). The concentrations of phenolic resin and of the other 
organic components are not included. Typical contributions of these 
components sum up to 7 wt%–10 wt%. 

Constituent Phase wt% 

Graphite (C) 28.8 

Corundum (Al2O3) 15.3 

Flogopite (KMg3(Si3Al)O10(F,OH)2) 23.5 

 -Iron (Fe) 4.4 

Copper (Cu) 4.0 

Anatase (TiO2) 6.2 

Zinc (Zn) 2.2 

Kaolinite (Al2Si2O5(OH)4) 7.3 

-Iron (Fe) 2.2 

Chromite (FeCr2O4) 1.8 

Rutile (TiO2) 2.7 

Periclase (MgO) 0.2 

Nickel sulfide (NiS2) 0.2 

Tin sulfide (SnS) 1.3 

 

Fig. 1 SEM micrographs showing the microstructure of the 
FM4 pad material.  

from the energy dispersive X-ray spectroscopy (EDXS) 

data. Metallic (Cu and Fe) fibers and graphite particles 

are observed to be the main, coarser components of the 

pad, while finer particles of corundum and flogopite 

mica grains are homogeneously distributed into the 

organic binder, which is a phenolic resin. 

The main characteristics of the two disc materials 

are listed in Table 2. While BD1 is made of a lamellar 

grey cast iron, BD2 is made of the same material with 

a high velocity oxygen fuel (HVOF)-coated layer of a 

WC-CoCr composite system, of 70 m thickness. The 

deposition parameters of HVOF have been presented  
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Table 2  Main characteristics of BD1 and BD2 discs analyzed in 
the present investigation. 

Disc Material Surface 
hardness 

BD1 Pearlitic lamellar grey cast iron 210 HB 

BD2 (86% WC/14% CoCr)coated BD1 disc 1130 HV0.3

 

and discussed in our previous paper [13]. Figure 2(a) 

shows the lamellar cast iron (substrate) and the 

coating, and Fig. 2(b) shows the higher magnification 

image of the coating. The tungsten carbides are 

clearly visible: they appear as brighter sub-micrometric 

polygonal particles in the figure. Before the wear 

tests, the coated discs were mechanically polished to 

an average surface roughness, Ra, of 1.5 m, which is 

the same as that of the uncoated disc. The XRD analysis 

of the WC-CoCr coating revealed the presence of 

about 40 wt% of W2C, in addition to the majority 

(~ 60 wt%) WC phase (Fig. 3(a)). This additional carbide 

phase, W2C, is formed as a consequence of the decar-

burization of WC, which was initially present in the  

powder (Fig. 3(b)), during the thermal spraying. This is 

a common phenomenon for this deposition technique, 

especially in the case of heterogeneous powder 

melting and localized superheating at the surface of 

the WC particles, owing to the high specific surface 

area featuring the feedstock powder during the HVOF 

spraying process [20]. Furthermore, decarburization 

is also caused by the oxidizing atmosphere and high 

cooling rates [20, 21]. In the XRD pattern of the coated 

disc, there are no visible cobalt diffraction lines, 

notwithstanding the fact that 14 wt% of this metallic 

component was initially present in the alloy (i.e., 10 wt% 

Co + 4 wt% Cr). This can be explained in terms of the 

nanocrystallization of cobalt, following its deposition 

onto the cast iron disc, owing to the rapid solidi-

fication and subsequent cooling to room temperature. 

Therefore, although a Co-Cr solid solution is still 

present in the coating, it is difficult to be detected 

using XRD owing to the diffraction-line broadening.  

 

Fig. 2 SEM micrographs showing the cross-section of the BD2 disc at two different magnifications:(a) general view of the WC-CoCr 
coating, (b) microstructure of the coating. The brighter particles are the tungsten carbide grains. 

Fig. 3 (a) XRD of the HVOF coating and (b) initial powder. 
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Finally, it is noteworthy that the initial powder also 

had a small amount of Co6W6C (6 wt%), which is 

formed during the powder production process [21], 

but could not be detected in the coating; this is due to 

its high-temperature decarburization and subsequent 

dissolution into the cobalt matrix. 

Wear tests were conducted using a dyno bench 

apparatus The test chamber was placed under a flux 

of air purified by an EPA filter, carrying the wear 

debris to a combined trapping system with two separate 

instruments operating in parallel to collect the emitted 

particles from the braking couples [22]. The first equip-

ment was a Dekati ELPI+ impactor, which is capable 

of capturing and separating airborne particles, over a 

series of 14 stages; the particles sizes range from an 

average aerodynamic diameter of 10 m (PM10, stage 

15) to 6 nm (stage 2). However, this study investigates 

only a few selected stages, particularly, the debris 

collected in stage 12, which corresponds to particles 

with an average aerodynamic diameter of 2.5 m 

(PM2.5). The reason for this choice is twofold: first, 

PM2.5 is currently attracting increasing interest from 

the scientific community in view of the forthcoming 

standards and regulations concerning environmental 

policies; and second, the crystallo-chemical data of 

the debris collected in stage 12 of the Dekati ELPI+ were 

meant to tune similar data obtained with a companion 

PM sampling system used in this study (described 

herewith). Stages from 3 (= 29 nm particle size) to 7 (= 

255 nm particle size) were the additional Dekati impac-

tor stages considered for particle analysis. Incidentally, 

data from particles on stage 2 (= 6 nm particle size) 

have not been considered in this study, because a 

preliminary survey had confirmed that the amount 

of ultrafine PM that reaches this (final) stage of the 

impactor is too small, and hence not sufficient for any 

reliable test. The second PM-collecting instrument was 

a three-stage impactor, using similar working principles 

as the Dekati ELPI+. Thus, in this study, the sampled 

particle size ranges were: (i) above 10 m; (ii) between 

2.5 m and 10 m; and (iii) between 1.0 m and 2.5 m. 

The second PM-collecting instrument was used to 

provide a larger amount of test samples than the 

ELPI+ impactor, which was necessary for a few 

additional analyses. In both instruments, however, 

the wear debris was stuck onto the aluminum foils, 

as they were sprayed with a vacuum grease. 

To conduct the tests on the brake materials, two 

tribological couples: a pad FM4 vs. disc BD1 (codenamed 

FM4-BD1); and a pad FM4 vs. disc BD2 (codenamed 

FM4-BD2), were wear tested with the Los Angeles 

city traffic (LACT) cycle [23].  

The collected PMs were analyzed with EDX and 

X-ray fluorescence (XRF) spectroscopies and SEM 

observations. The aluminum foils typically used for 

the PM-collector systems, with several spots of collected 

particles are shown in Fig. 4. In particular, the EDXS 

analyses were carried out on each disc in two spots, 

which are indicated as E (external; i.e., belonging to 

the external crown of the fragment spots) and C 

(central) (as shown in Fig. 4(a), only half of a collecting 

foil was cut out from the original one for sample 

preparation purposes). After peeling off the particle 

spots from the aluminum substrate to eliminate the 

X-ray emission from the substrate, XRF and EDXS 

analyses were performed. On each spot of the collected 

particles, five EDXS analyses from the fields of view 

containing an adequate number of debris that is repre-

sentative of their relevant average composition were 

acquired. To compensate for the possible compositional 

fluctuations, the five acquisitions were evenly distri-

buted, moving from the center towards the periphery 

of each spot.  

XRF was performed on the particles that were still 

stuck on the aluminum disc for elemental mapping 

on a square area of 12 mm  12 mm (Fig. 4(b)). This test 

was conducted to verify any possible heterogeneity 

in the PM trapping process all over the sampling 

surface and in each landing spot of the particles. For 

a semi-quantitative XRF analysis of the debris, to be 

compared with the EDXS data, particle spots removed  

 

Fig. 4 Impactor Al collection plate (stage 12) with (black) spots 
of the collected particles. (a) Sampling procedure for EDXS analyzed 
spots C (center) and E (external), only half the disc is shown in 
the figure, (b) squared area of the XRF mapping (Fig. 5).  
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from the aluminum substrate were used. The XRF 

measurements were performed with a Rhodium X-ray 

tube, under a vacuum of 20 mbar, using a voltage of 

50 kV, and a current of 600 A for the map and 200 A 

for the spot analysis. 

The finest fraction of the debris, i.e., for stages 3–5 of 

the ELPI+ impactor, were analyzed using a trans mission 

electron microscope (TEM) equipped with an EDXS 

system and operated at 120 keV accelerating voltage. 

The diffraction contrast images, i.e., bright and dark 

fields (BF and DF), were acquired in association with 

the selected area electron diffraction (SAED) patterns 

and EDX spectra of the selected regions. For the 

identification of the crystalline phases presented in 

the TEM specimens, the free Process Diffraction 

software was used [24]. The TEM observations required 

the transfer of the particles from the collecting 

aluminum disc onto a carbon-coated TEM gold grid, 

following a sample preparation procedure described 

elsewhere [25]. 

3  Results and discussion 

3.1  XRF 

The XRF analyses were used to estimate the qualitative 

composition of the wear debris and its spatial distri-

bution on the collecting substrates, i.e., the aluminum 

discs sprayed with vacuum grease (see Section 2). 

Figure 5 shows a series of X-ray maps, obtained 

using the characteristic X-ray lines of some of the 

elements detected in the debris (FM4-BD1 dyno tests), 

as well as in the collecting substrates. The latter maps 

are in the first row in Fig. 5, showing the presence  

of aluminum, calcium, and zinc. The prevailing 

localization of these elements into the substrate is 

convincingly demonstrated by the contrast visible  

in the relevant maps, which display a more intense 

signal outside the areas in which the collected 

debris are localized. While aluminum is present in 

the substrate, calcium and zinc are residuals of the 

process control agents employed during the intense 

rolling procedure to produce the aluminum alloy foil. 

Specific XRF acquisitions carried out on the aluminum 

foils in the pristine pre-test conditions, also revealed 

the presence of iron, manganese, and titanium in 

minor concentrations (see relevant maps in Fig. 5).  

 

Fig. 5 XRF maps of the airborne wear particles collected on the 
aluminum foil of the ELPI+ impactor (stage 12), obtained from 
the FM4-BD1 system. 

Since some of the abovementioned elements are also 

present in the collected debris, as suggested by the 

composition of the pads (Table 1) and cast iron rotor 

discs, any quantitative evaluation of the composition 

of the debris would necessarily be unreliable because 

of the interference between the X-Ray lines of the 

same elements, possibly coming from different sources. 

Therefore, the X-ray maps, in addition to making a 

qualitative estimation of the average chemical com-

position of the debris and substrate, effectively depict 

the distribution of the collected particles on the 

substrate. 

To get rid of the substrate interference, XRF analyses 

on the selected particle spots (the same type of “C” 

and “E” spots used for EDXS analyses, see Fig. 4(a)) 

have been repeated after the spots were removed 

from the aluminum substrate, using an extraction 

replica approach as explained in Section 2, so that the 

selected spots of the collected particles are transferred 

onto an acetate substrate, emitting no detectable X-ray 

lines. Although a precise estimation of the absolute 

composition of the particles cannot be achieved con-

sidering the complexity of the effects of a finite thickness 

of the particle layers and the actual powder density, the 

XRF results (Table 3) provide the following important 

information: the wear debris of the FM4-BD1 system 

contains relatively more iron than those obtained with 

the FM4-BD2 system. It can therefore be concluded 

that the uncoated BD1 contributes significantly to the 

total wear of the FM4-BD1 system. This is caused by the 

well-established tribo-oxidation mechanisms, which 



426 Friction 8(2): 421–432 (2020) 

 | https://mc03.manuscriptcentral.com/friction 

 

have commonly been observed and reported for such 

tribological couples [5, 12].  

The XRD pattern in Fig. 6(a) confirms that the main 

phases in the FM4-BD1 debris are iron oxides, i.e., 

magnetite (Fe3O4) and hematite (Fe2O3). In addition to 

copper and graphite, coming from the wearing out of 

the pad, some diffraction lines from metallic iron are 

also visible in the XRD pattern, proving the occurrence 

of not only oxidation, but also abrasive wear and disc 

grinding. An important experimental detail should 

be underlined herewith, which is useful for a reliable 

interpretation of the XRD data in Fig. 6. To have a 

sufficient amount of powder to acquire satisfactory 

data, all the debris collected using the three-stage 

impactor was mixed to form a single specimen. This 

choice certainly had a diluting effect on the minor 

phases and/or those preferentially collected by only 

some of the sampling stages.  

The BD2 coated disc is highly wear-resistant, as 

reported by Wahlström et al. [11], who tested the same 

friction material and disc. The specific wear rate for 

the FM4-BD2 couple was observed to be lower than 

for the FM4-BD1 couple, resulting in a lower emission 

rate. Consequently, the concentration of iron in the 

debris of FM4-BD2 is lower than that for the uncoated 

disc (FM4-BD1) coupling, although a certain quantity 

was still present, which was contributed by the FM4 

pad (Table 3). Iron is mainly present in the form of 

magnetite (Fe3O4) and to a lower extent as metallic  

iron (Fig. 6(b)). In association with the coated BD2 

disc, the brake pad exhibits a comparatively higher 

wear rate [13], as proved by the initial higher concen-

trations in the wear debris of all components of the 

pad, namely copper, silicon, and aluminum (compare 

Tables 1 and 3 ). Moreover, it is important to note that 

although the presence of cobalt and tungsten is limited 

in the wear debris, as measured via XRF, the hard 

coating is subjected to wear during the tests. 

3.2  SEM-EDXS 

Particles from the FM4-BD1 system, collected on the 

ELPI+ stage 12 are shown in Fig. 7(a). Their average 

size confirms the nominal sensitivity of this stage  

of the PM-collecting instrument to particles with an 

average diameter of 2.5 m. From five of these fields 

of view, as described in the Section 2, the EDXS 

spectra have been acquired for a few particle spots 

on the stage n: 12 of the ELPI+ impactor (Fig. 4(a)), 

moving from the center toward the periphery. The 

results obtained for one of the analyzed particle spots 

are presented in a graphical form in Fig. 8. 

The same analysis was performed on the debris 

from the FM4-BD2 system dyno tests (Fig. 7(b)) and all 

data have been summarized in Table 4. A comparative 

evaluation of the data in Tables 3 and 4 indicates that, 

irrespective of the unavoidable differences in the 

absolute concentration values measured with the two 

spectroscopies, i.e., XRF and EDXS, similar comments 

Table 3  XRF semi-quantitative analysis of the collected particles extracted from the aluminum substrate. 

Pad disc   O Fe  Cu  Zn  Al  Ca  Cr K   Mg  Mn S  Si  Ti W Co

FM4+BD1 31.1 46.80 8.21 3.17  2.56  0.18 0.64 0.17 0.87 0.27 1.67 3.32  0.86  — — 
FM4+BD2 32.3 19.60 15.50 5.83 10.28 0.30 1.74 0.67 2.88 0.07 1.90 4.95 2.90 0.73 0.22

 

Fig. 6 XRD of airborne debris of (a) FM4-BD1 and (b) FM4-BD2 systems. 
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can still be proposed on the relative values.  

In particular, it is confirmed that when the pad is 

tested against the uncoated disc (BD1), iron (in the 

form of oxides) is the main constituent of the wear 

debris, owing to the dominant tribo-oxidation of the 

cast iron disc [5–9]. On the other hand, tests against 

the coated disc show that the wear products mainly 

comprise pad components, including iron as iron 

oxides, according to the XRD data (Fig. 6(b)).  

Furthermore, electron microscopy observations have 

also been used to analyze the PM from the wear of 

the coated disc. As already observed in the XRF and 

confirmed by EDXS results, the presence of tungsten 

and cobalt in the wear debris indicates that, even if 

the total amount of PM produced in this case is much 

lower than that produced with the uncoated cast 

iron disc, there still exists disc wear to some extent. 

Considering that the original carbide average grain 

size falls in the range of a few micrometers (Fig. 2(b)), 

it was decided to conduct a systematic survey on the 

debris collected by the stage operating on the 1.0 m– 

2.5 m size range of particles using the three-stage 

impactor. In this way, a wider statistics of the sizes of 

the released carbides can potentially be sampled. The 

particles thus collected are shown in Fig. 9(a). The 

debris appear clustered in agglomerates of several 

tens of micrometers. As already reported in former 

studies [5, 6, 14, 26], this is uncommon situation is 

caused by the combined effect of magnetic attraction, 

which is due to the presence of magnetite in the debris, 

and surface energy reduction, which also involves 

possible electrostatic interactions [27]. 

A high-magnification X-Ray map collected on the 

same field of view as that in Fig. 9(a) reveals that 

tungsten is concentrated in small brighter particles 

(marked by arrows in Fig. 9(b)). These particles exhibit 

 

Fig. 7 SEM micrographs of fragments collected by the ELPI+ impactor (stage 12) from (a) FM4-BD1 and (b) FM4-BD2 systems. 

 
Fig. 8 Results of the five EDXS analyses carried out on spot C of the filter ELPI+ stage 12 from (a) FM4-BD1 and (b) FM4-BD2 
systems. 

Table 4  EDXS results of fragments collected, average value between spots C and E (Fig. 4(a)) of each pad+disc couple. 

Pad disc O Fe Cu Zn Al Ca Cr K Mg Mn S Si Sn Ti W Co

FM4+BD1  27.94 53.03 6.16 2.29 2.45 0.20 0.76 0.18 0.86 0.33 0.97 1.98 1.82 0.97 — —

FM4+BD2  22.97 25.17 21.07 7.75 4.32 0.25 1.91 0.52 1.43 0.22 2.49 1.79 4.37 2.58 3.24 0.26
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an average size and morphology comparable to those 

of the carbides that are still present in the coating 

(Fig. 2(b)). These observations indicate that a detach-

ment of unfragmented carbide particles from the 

metallic matrix of the coating occurs during the wear 

tests. In agreement with these observations, no carbide 

particles were detected in the collected wear particles 

of average grain size below 1 m. This detachment 

dynamics of carbide particles from the metallic matrix 

would be coherent with the low or nil cobalt in 

association with these particles, as confirmed by 

pin-pointed EDXS analyses. Therefore, an obvious 

amelioration to the coating durability might be attained 

through the enhancement of the carbide adhesion 

strength to the cobalt matrix [28]. 

To complete the characterization of the airborne 

wear particles of the FM4-BD2 system, TEM analyses 

were performed on the finer fractions of the collected 

PM, referring to stages 3–5 (particle size: 29 nm–94 nm) 

of the ELPI+ impactor. The PM having an average 

aerodynamic diameter below 1 m, known as the 

ultrafine particulate (UFP) and is currently attracting 

growing research interest [29], which might probably 

lead to the implementation of relevant public policies 

and regulations shortly. In this context, higher resolu-

tion observations and analyses would be very effective 

in completing and confirming the wear mechanism 

picture, as apparent from the results presented in the 

previous sections, particularly with regard to the 

coated disc system. 

The TEM micrograph and relevant EDXS analyses 

in Fig. 10 show iron-based debris, exhibiting two 

 

Fig. 9  (a) Cluster of wear debris collected by the 1.0 µm–2.5 µm stage of the three-stage impactor, (b) EDXS X-ray map for tungsten, 
collected on the same field of view as in Fig. 9(a), showing the higher concentration of this element in correspondence of the brighter
fragment marked by arrows in the SEM image in Fig. 9(a). 

 

Fig. 10  TEM micrograph and relevant EDX spectra on iron containing debris collected by the stage 5 (average diameter of collected
particles: 94 nm) of ELPI+, during dyno testing of the sample FM4-BD2. The Au characteristic lines are due to the gold grids used for 
TEM specimen preparation. 
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different microstructures and compositions. 

The region “a”, as observed from the corresponding 

EDX spectrum, is mainly composed of fine grains of 

magnetite intermixed and held together by nano-

crystalline copper, according to a notorious scheme 

[22, 30]. They come from the abrasion of the iron fibers 

presented in the FM4 pad (Fig. 1) and before being 

ejected from the tribological system, undergo a sort of 

rolling-grinding deformation while remaining trapped 

in between the two mating surfaces of the pads and 

the coated disc. Moreover, it is noteworthy that the 

presence of the BD2 hard coating on the disc surface 

enhances the grinding effect. This composition also 

confirms the XRD data (Fig. 6(b)) with reference to 

the finer fraction of the wear particles. The TEM 

observations further revealed the expected presence 

of other pad components in the ultrafine fraction of 

the wear debris, such as TiO2 (Fig. 11) and kaolinite 

(Fig. 12).  

 

Fig. 11 TEM micrograph of TiO2 particles detected on filter 
stage 3 (average diameter of collected particles: 29 nm) and 
identified from the relevant EDX spectrum (same for particles in 
both (a) and (b)), showing the presence of oxygen and titanium 
characteristic X-ray lines. 

 

Fig. 12 TEM micrograph showing ultra-fine kaolinite grains, a 
component of the FM4 pad material, detected on filter stage 3 
(average diameter of collected particles: 29 nm). A similar spectrum 
was found in the other four analyzed spots (a, b, c, and d). 

4  Conclusions 

The development of novel materials for vehicular brake 

systems is currently driven not only by the need for 

better performance and durability, but also a more 

environmentally friendly behavior, particularly con-

cerning emissions. To validate the new technological 

choices, reliable material characterization protocols are 

required; i.e., to confirm that the presumed improve-

ments are truly genuine, even as concerns aspects not 

yet in the standards or legislation but still important 

for the public health. This study conducted an in- 

depth characterization of the wear debris produced 

by a low-met brake pad (FM4), which was dyno- 

bench tested against an uncoated cast iron (BD1) and 

a WC-CoCr HVOF-coated (BD2) disc. A broad range 

(30 nm to 10 m) of emitted airborne PM size range 

was considered, which required the adoption of a 
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multi-analytical characterization approach using several 

experimental techniques and relevant sample pre-

paration procedures.  

The main results emerging from this investigation 

can be summarized as follows: 

(1) In the tests involving both coated (BD2) and 

uncoated (BD1) discs, the main wear products are 

observed to be iron oxides, mostly magnetite. However, 

since the wear-resistant coating does not contain iron, 

in the FM4-BD2 tribological system, the oxidation 

involves only the iron fibers that are present in the 

friction material. 

(2) The analyses of the finer fractions of the wear 

debris show additional components in the wear pro-

ducts, from which, although beyond the scope of the 

present research, the following main wear mechanisms 

can be inferred: FM4-BD1: mainly tribo-oxidation, 

involving both disc and pad materials; FM4-BD2: 

abrasion and tribo-oxidation, involving the pad material 

only. 

(3) However, some tungsten carbides have been 

detected in the wear debris, proving that a limited 

wearing out of the coating has also occurred. Moreover, 

the microstructural features of the carbides indicate 

that the main detachment mechanism is the tearing off 

of the hard particles, with no significant fragmentation. 

Indeed, the carbides in the collected particles exhibit 

the same size and morphology they have in the 

coating. 

Thus, the results of this investigation provide possible 

strategies that may be pursued to improve the braking 

performances and the emission behavior of the newly 

developed materials; this is one of the main tasks   

of the H2020 EU project: LOWBRASYS, i.e., a LOW 

environmental impact BRAke SYStem, within which 

the present research has been conducted. 
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