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Abstract

Background

Systemic inflammatory response syndrome (SIRS) and sepsis are the most common

causes of in-hospital death. However, the characteristics associated with the improvement

in the patient conditions during the ICU stay were not fully elucidated for each population as

well as the possible differences between the two.

Goal

The aim of this study is to highlight the differences between the prognostic clinical features

for the survival of patients diagnosed with SIRS and those of patients diagnosed with sepsis

by using a multi-variable predictive modeling approach with a reduced set of easily available

measurements collected at the admission to the intensive care unit (ICU).

Methods

Data were collected from 1,257 patients (816 non-sepsis SIRS and 441 sepsis) admitted to

the ICU. We compared the performance of five machine learning models in predicting

patient survival. Matthews correlation coefficient (MCC) was used to evaluate model perfor-

mances and feature importance, and by applying Monte Carlo stratified Cross-Validation.

Results

Extreme Gradient Boosting (MCC = 0.489) and Logistic Regression (MCC = 0.533)

achieved the highest results for SIRS and sepsis cohorts, respectively. In order of impor-

tance, APACHE II, mean platelet volume (MPV), eosinophil counts (EoC), and C-reactive

protein (CRP) showed higher importance for predicting sepsis patient survival, whereas,

SOFA, APACHE II, platelet counts (PLTC), and CRP obtained higher importance in the

SIRS cohort.
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Conclusion

By using complete blood count parameters as predictors of ICU patient survival, machine

learning models can accurately predict the survival of SIRS and sepsis ICU patients. Inter-

estingly, feature importance highlights the role of CRP and APACHE II in both SIRS and

sepsis populations. In addition, MPV and EoC are shown to be important features for the

sepsis population only, whereas SOFA and PLTC have higher importance for SIRS

patients.

Author summary

Sepsis is defined as the dysregulated host response to infection causing a significant

increase in patients’ mortality, thus resulting in an important global health problem. Sys-

temic inflammatory response syndrome (SIRS), an exaggerated response of the body to a

noxious stressor, and sepsis, an organ dysfunction caused by a dysregulated host response

to infection, are two of the most critical conditions in the intensive care unit showing high

patients’ mortality and resulting in an important global health problem. However, the

major differences leading to an improvement in the patient conditions during SIRS and

sepsis are not fully elucidated.

In this study, we assess the role of simple and easily available routinely collected blood

count parameters as predictors for patients’ prognosis in 1,257 patients with SIRS or sep-

sis. We applied and compared the performance of five distinct machine-learning models

when predicting ICU patient survival. Furthermore, we investigated the feature impor-

tance of the best-performing models for each population to highlight the major differ-

ences between the two populations. Results highlight the role of C-reactive protein and

APACHE II score in both populations, whereas mean platelet volume and eosinophil

counts show higher importance in sepsis patients and SOFA score and platelet count

show higher importance for SIRS patients.

Introduction

Patient’s outcome has long been used as primary endpoint for trials in critical care as well as

for determining the patient’s prognosis after treatments. Patient mortality and survival are

indeed the major clinical outcomes, and they are main targets for assessing prognostic factors

driving the patient conditions and the effectiveness of clinical interventions [1, 2], especially in

the intensive care unit (ICU) where admitted patients are usually in very critical conditions

and require constant monitoring and treatment.

In this context, sepsis represents an important global health problem accounting for about

one-third of ICU deaths and its reported incidence is still increasing [3–6] and a proper and

precise description of sepsis is still not available. Indeed, the definition of sepsis was subjected

to several revisions during the years [7–9], and according to the Third International Consensus

Definitions for Sepsis and Septic Shock [9] it is currently defined as a life-threatening organ

dysfunction caused by a dysregulated host response to infection. This last update of the sepsis

definition abandons the use of Systemic Inflammatory Response Syndrome (SIRS) criteria,

which were recognized as presenting a lack of specificity, whereas it focuses on the life-threat-

ening condition and the presence and progression of organ failure. However, the major
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differences between SIRS and sepsis leading to a positive or negative patient outcome are still

not fully elucidated in the medical literature.

In particular, Gucyetmez et al. [10] evaluated the ability of hemogram parameters, a set of

medical laboratory tests providing information about the cells in a person’s blood, and C-reac-

tive protein (CRP) to distinguish non-sepsis SIRS from sepsis patients. The authors found that

the combinations of CRP, lymphocytes count (LymC), and platelet count (PLTC) can be used

to determine the likelihood of sepsis, however without exploring the association of these

parameters with the patient survival for each population. This information can provide signifi-

cant indications about the most important prognostic factors specifically for non-sepsis SIRS

and sepsis patients. Also, the authors did not investigate the predictive power of the observed

variables.

Especially for this last task, machine learning approaches have shown a good ability in the

early identification of sepsis with data collected both from electronic health records [11–13]

and from physiological vital signs monitoring [14], also providing insights about the role of

each feature in a multi-variable setting. Several studies focused on predicting ICU patient out-

comes focusing on mortality or survival prediction task [15–22], but multi-variable prognostic

models estimating and comparing SIRS and sepsis outcomes are still lacking. The stratification

of patients’ risk in particular for patients undergoing infections and with sepsis is important.

In fact, these patients often require prompt management and interventions, like the initiation

of antibiotic therapy and the administration of fluid and vasopressors for maintaining ade-

quate tissue perfusion and hemodynamic stability [23]. These aspects led to an increasing

interest toward the prediction of the patient outcome specifically for sepsis patients, in the last

few years [24–29].

In this context, simple and easily available laboratory measurements of blood cell counts

(for example platelet, eosinophil, neutrophil, and lymphocyte counts) can be useful tools for

patients’ risk stratification.

The goal of this study is to further explore the ability of hemogram parameters in estimating

the survival of ICU patients with non-sepsis SIRS and with sepsis, by applying machine learn-

ing techniques in order to estimate the survival probability of ICU patients and to investigate

the role of the different parameters in a multi-variable prediction setting. Specifically, our

study makes further use of the features proposed by Gucyetmez and colleagues [10] to explore

the predictive power of hemogram parameters in estimating the survival probability of patients

with non-sepsis SIRS and with sepsis, by comparing different machine learning approaches.

Multi-variable feature importance of the best performing models is applied to further assess

the role of each feature and to highlight differences between non-sepsis SIRS and sepsis

cohorts.

Dataset

In this study, we use data retrospectively collected from 1,257 eligible medical and surgical

patients admitted to the ICU’s of Acibadem International Hospital and Atasehir Memorial

Hospital between 1 January 2006 and 31 December 2013, Istanbul, Turkey, and made available

by Gucyetmez et al. [10]. The considered cohort includes 816 (64.9%) non-sepsis SIRS and 441

(35.1%) sepsis patients.

The dataset contains the following features for each patient: Age, sex, APACHE II and

SOFA scores, diagnosis (medical, elective, and emergency surgery), length of ICU stay

(LOS-ICU), mortality, CRP, WBCC, NeuC, LymC, NLCR, EoC, PLTC, MPV. A detailed

description of the data here used is provided in Table 1. The target variable for our analysis

was survival, indicating whether the patient survived (1) or died (0) in the ICU. A quantitative
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description of the distribution of each numeric and categorical feature for the non-sepsis SIRS

(SIRS) and sepsis (SEPSIS) cohorts are reported in Tables 2 and 3. From the analysis of the tar-

get variable (Survival) it is possible to observe that both cohorts are unbalanced, with stronger

unbalance in the SIRS (3.07% not survived) than in the SEPSIS (23.64% not survived) cohort.

Methods

In this retrospective study, we developed predictive models of patient survival using machine

learning algorithms and we evaluated the importance of features associated with patient sur-

vival using machine learning and biostatistics approaches for both the SIRS and SEPSIS popu-

lations separately (Fig 1). All the analyses were performed with the Python 3.8.3 programming

language, and scikit-learn 1.0 and SciPy 1.7.1 software packages. Observations with

missing information (three patients) were removed.

Associations between features and survival

The association between the input features and patient survival was also explored with classical

statistical approaches. Specifically, differences in numeric features between survived and

deceased groups in each cohort were tested with the Mann-Whitney U test, whereas differ-

ences in categorical features were assessed with χ2-test [30]. Statistical significance was defined

for p< 0.005 as advocated by Benjamin et al. [31], which also accounts for multiple testing

adjustments.

Survival prediction models

We trained five machine learning models with the goal of predicting patient’s survival consid-

ering the following features: Age, Sex, SOFA, APACHE II, CRP, WBCC, NeuC, LymC, EOC,

NLCR, PLTC, and MPV, for both SIRS and SEPSIS cohorts. The approach consisted of 100

runs of Monte Carlo stratified Cross-Validation with 80%-20% train-test split as already pro-

posed by Chicco et al. [32]. At each iteration, 80% of the data were used as a training set and

Table 1. Description, unit of measure and range of values of each available feature in the dataset. EC: Elective, AC: Emergency, and M: Medical. E: Male and K:

Female.

feature description unit of measure values

Age Patient’s age at ICU admission years integer>0

APACHE II Illness severity score ordinal integer [0–71]

CRP Acute phase reactant produced in liver mg/dL continuous

Diagnosis Reason for ICU admission categorical [EC, AC, M]

EoC Eosinophils (cells) count 103/μL continuous

cohort Indication of sepsis (1) or non-sepsis SIRS (0) - binary

Sex Patient’s sex categorical [E,K]

LOS-ICU Patient’s length of stay in ICU days continuous

LymC Lymphocytes (cells) count 103/μL continuous

MPV Mean platelet volume fL continuous

NeuC Neutrofil (cells) count 103/μL continuous

NLCR Neutrophil-lymphocyte count ratio ratio continuous

SOFA Illness severity score ordinal integer [0–24]

PLTC Platelets count 103/μL continuous

WBCC White blood cells count 103/μL continuous

Mortality Patient’s outcome: dead or survived - binary

https://doi.org/10.1371/journal.pdig.0000459.t001
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20% as a test set keeping constant the ratio between survived and dead patients. In order to

limit the effect of class imbalance, we applied Synthetic Minority Oversampling Technique

(SMOTE) [33] to the training set. Features were rescaled before feeding them to the classifier

by removing the median and dividing by the interquartile range, as estimated on the training

set [37], and five machine learning classifiers were used to develop patient survival prediction

models. We considered the following classifiers: Logistic Regression (LR), Support Vector
Machine (SVM) [34], Decision Tree (Tree), Random Forest (RF) [35] and XGBoost (XGB) [36]

(evalution metric: logloss and objective function: binary/logistic). To evaluate the performance

of the classifiers, Matthews correlation coefficients (MCC) [38] on the cross-validated test sets

Table 2. Median and interquartile range (IQR) for each numeric variable of the dataset, stratified by Survival (S:

Survived, NS: Not survived, T: Total cohort), and for the SIRS and SEPSIS cohorts.

feature SIRS median (IQR) SEPSIS median (IQR)

APACHE II—S 9 (5–12) 16 (11–20)

APACHE II—NS 25 (20–31) 27 (23–31.25)

APACHE II—T 9 (6–13) 18 (14–25)

Age—S 55 (36–69) 62 (51–75)

Age—NS 61 (51–74) 65.5 (55–78.25)

Age—T 55 (37–69) 63 (51.75–76)

CRP—S 2 (0.5–6.08) 5.42 (1.38–12.66)

CRP—NS 2.1 (0.5–5.66) 6.65 (2.3–16.21)

CRP—T 2 (0.5–6.07) 5.6 (1.6–13.97)

EOC—S 10 (0–40) 10 (0–30)

EOC—NS 50 (20–70) 15 (0–40)

EOC—T 10 (0–40) 10 (0–30)

LOS-ICU—S 1 (1–2) 4 (1–9)

LOS-ICU—NS 1 (1–5) 6 (3–17.25)

LOS-ICU—T 1 (1–2) 4 (2–10)

LymC—S 0.93 (0.61–1.34) 0.71 (0.45–1.17)

LymC—NS 1.22 (0.77–1.55) 0.72 (0.42–1.12)

LymC—T 0.93 (0.62–1.36) 0.71 (0.44–1.15)

MPV—S 10.1 (9.4–10.7) 10 (9.4–10.7)

MPV—NS 10 (9.1–10.4) 10 (9.1–11)

MPV—T 10.1 (9.4–10.7) 10 (9.3–10.8)

NLCR—S 10.02 (6.75–14.5) 11.41 (7.33–17.98)

NLCR—NS 8.94 (4.25–14.34) 11.57 (6.65–21.51)

NLCR—T 10.02 (6.7–14.5) 11.48 (7.19–18.57)

NeuC—S 9.22 (6.53–12.7) 8.2 (5.5–12.7)

NeuC—NS 10.17 (7.2–14.73) 8.76 (5.7–13.24)

NeuC—T 9.28 (6.56–12.73) 8.25 (5.57–12.72)

PLTC—S 191 (133–241) 174 (105.75–256.25)

PLTC—NS 172 (115–255) 150 (82–241.5)

PLTC—T 190 (132.25–241.75) 170.5 (101–255.25)

SOFA—S 1 (0–2) 2 (0–6)

SOFA—NS 9 (4–11) 8 (7–10)

SOFA—T 1 (0–2) 4 (1–7)

WBCC—S 11.23 (8.11–14.95) 9.91 (6.87–14.38)

WBCC—NS 12.14 (9.12–19.56) 10.56 (7.38–15.5)

WBCC—T 11.26 (8.17–15.05) 10.02 (7.08–14.6)

https://doi.org/10.1371/journal.pdig.0000459.t002
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were considered because its proven ability to summarize results from contingency tables and

its invariance to class swapping [39–41, 60]. Specifically, the MCC can take values ranging

from –1 to +1, where –1 represents the misclassification of all observations, 0 represents the

random association, and 1 perfect classification. Average Receiver Operating Characteristic

(ROC) curves and Precision-Recall curves (PRC) are also used to quantitatively assess the aver-

age model performances. Further details are reported in the supplementary material in Text A

of S1 Appendix where additional sensitivity analyses summarizing model calibration on the

test set (Text D of S1 Appendix) and the model performance with hyperparameters optimiza-

tion (Text F of S1 Appendix) are also reported.

Feature importance

The best-performing model for each cohort was selected and feature importance was estimated

through single feature elimination (SFE) approach, that is by evaluating the MCC obtained

Table 3. Values, counts and percentages for each categorical variable of the dataset, stratified by Survival and for the full non-sepsis SIRS cohort. DIAG.: Diagnosis,

S: Survived, NS: Not Survived, EC: Elective, AC: Emergency, and M: Medical. E: Male, and K: Female.

SIRS SEPSIS
feature value counts % counts %

DIAG. S-AC 32 3.92 10 2.26

DIAG. NS-AC 2 0.25 1 0.23

DIAG. S-EC 537 65.81 75 16.97

DIAG. NS-EC 3 0.37 0 0

DIAG. S-M 220 26.96 251 56.79

DIAG. NS-M 20 2.45 103 23.30

SEX S-E 464 56.86 209 47.29

SEX NS-E 17 2.08 53 11.99

SEX S-K 325 39.83 127 28.73

SEX NS-K 8 0.98 51 11.54

TOTAL - 814/816 99.75 440/440 100

Survived - 789 96.93 336 76.36

Not Survived - 25 3.07 104 23.64

https://doi.org/10.1371/journal.pdig.0000459.t003

Fig 1. Schematized representation of the proposed data processing flow. MCCV: Monte Carlo Cross-Validation; SMOTE: Synthetic

Minority Oversampling Technique.

https://doi.org/10.1371/journal.pdig.0000459.g001
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after removing one variable at a time. In this case, the smaller the resulting MCC, the higher

the importance of the variable which generated that observed drop in performances. Feature

importance analysis was executed for 100 runs of Monte Carlo stratified cross-validation parti-

tions with 80%/20% train-test split [42]. The resulting MCCs for each run are obtained from

the test set observations. Finally, we used the Spearman correlation coefficient and the Kendall

coefficient [43] to quantify the correlation between the obtained ranks. Both coefficients range

from –1 to 1 (from anticorrelation to perfect matching) whereas the absence of correlation is

given by a 0 coefficient.

Results

Associations between features and survival

Results of the statistical analysis are reported in Table 4. It can be observed that APACHE II
and SOFA scores showed significant (p<0.0001) association with survival in both SIRS and

SEPSIS cohorts. EoC resulted significantly associated (p<0.0001) with survival in SIRS cohort

only.

Survival prediction

Survival prediction performances for SEPSIS and SIRS cohorts are graphically summarized in

Fig 2. Median MCCs, accuracy, sensitivity, specificity, F1-scores, positive predictive value, neg-

ative predictive value, areas under precision-recall and receiver operating characteristic curves,

and the respective interquartile ranges are reported in the supplementary material (Text C of

S1 Appendix). SVM and LR obtained the highest MCCs in predicting sepsis patient survival,

that is 0.533 and 0.533, respectively. Random Forest performed as second best model in this

cohort with MCC equal to 0.516 whereas XGBoost and Tree obtained the lowest results 0.459

and 0.368, respectively. LR was chosen as the best performing because of the highest third

quartile.

The best score when predicting survival on the SIRS cohort was achieved with the XGB
method that reached 0.489. The second and third best-performing models in the SIRS cohort

were RF with MCC equal to 0.39 and LR showing MCC equal to 0.379. SVM and Tree showed

scores equal to 0.378 and 0.289, respectively.

Table 4. p-values obtained from the statistical analysis when testing associations with patient survival in the SEP-
SIS and SIRS cohorts. Differences in numeric features between survived and deceased groups in the two cohorts were

tested with the Mann-Whitney U test [44], whereas differences in categorical features were assessed with the χ2-test.

SIRS SEPSIS
Age 0.0345 0.1460

APACHE II <0.0001 <0.0001

SOFA <0.0001 <0.0001

CRP 0.8693 0.0651

WBCC 0.1705 0.2607

NeuC 0.3202 0.4994

LymC 0.0255 0.9010

EoC <0.0001 0.5651

NLCR 0.5184 0.8086

PLTC 0.4588 0.0744

MPV 0.2796 0.6240

Sex 0.4754 0.0540

https://doi.org/10.1371/journal.pdig.0000459.t004
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Fig 3 shows the median ROC and PRC curves for SIRS and SEPSIS cohorts as an overall

summary of models’ performances across all Monte Carlo runs.

Feature ranking

This section describes the results obtained after the SFE approach performed on the models

with the highest performance in the prediction task on each of the two cohorts. Median values

and interquartile ranges for the resulting MCCs are reported in the supplementary material

(Text E of S1 Appendix). A graphical representation of feature importance is shown in Fig 4a

for the SEPSIS cohort and in Fig 4b for the SIRS cohort where features were ordered from low-

est to the highest importance.

Specifically, APACHE II showed the highest importance, that is the lowest resulting median

MCC equal to 0.436 (–0.097), in predicting SEPSIS patient survival with a Logistic Regression
model. MPV ranked second in terms of feature importance for this specific cohort with MCC

equal to 0.484. The other features did not induce a notable decrease in the model’s perfor-

mance. Feature ranking for the survival prediction of SIRS patients with XGB algorithm

showed that SOFA has the highest importance with resulting MCCs equal to 0.381 (–0.108)

when the feature is removed.

Results with Spearman coefficient and Kendall distance did not show a significant correla-

tion between the two series, with correlation equal to –0.091 (p = 0.737) and –0.007

(p = 0.983), respectively.

Discussion

Gucyetmez et al. [10] collected the data used in this study for exploring the ability of hemo-

gram and CRP in discriminating between SIRS and SEPSIS cohorts. However, the authors did

not investigate the prognostic role of the selected features within each cohort, therefore, our

study aimed to investigate more in detail the importance of these features and the possible

Fig 2. Matthews correlation coefficients (MCC) of the different families of machine learning models in predicting

Survival for the SIRS and SEPSIS cohorts. Each violin plot shows the distribution of the data, whereas the small

boxplot inside each violin plot shows the median and the first and third quartiles, the whiskers indicate 0.05 and 0.95

quantiles.

https://doi.org/10.1371/journal.pdig.0000459.g002
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differences between the considered cohorts. Specifically, we performed the evaluation of the

ability of hemogram parameters in predicting the survival of ICU patients diagnosed with

SIRS or SEPSIS, using a set of parameters usually available in the patient clinical records. We

used widely available features like patient sex, illness severity scores commonly measured and

recorded at admission in the ICU, C-reactive protein, and blood cell count measurements.

Patients’ comorbidities were not available in the patient’s records shared by Gucyetmez et al.

despite they are commonly available in an ICU setting, which represents a significant lack of

information. The developed models would have certainly benefited from more information

about the patient’s history and this could have led to a more precise identification of differ-

ences in the prognostic factors. Therefore, future studies will focus on the extension of these

analyses on more complete data including patients’ comorbidities.

Fig 3. Receiver Operating Characteristic (ROC) curves for SIRS (panel (a)) and SEPSIS (panel (b)) cohorts showing the median performances of each model on the

test sets generated during Monte Carlo cross-validation. Panels (c) and (d) depict Precision-Recall Curves (PRC) for SIRS and SEPSIS cohorts, respectively, showing

the median performances of each model on the test sets generated during Monte Carlo cross-validation.

https://doi.org/10.1371/journal.pdig.0000459.g003
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The survival prediction models were developed and tested on SIRS and SEPSIS cohorts,

with better performances observed in SEPSIS cohort.

Specifically, among all trained ML models, linear-based models like LR and SVM showed

higher performances in the SEPSIS cohort, whereas RF and XGB performed better on the SIRS
cohort.

Although average calibration curves are sub-optimal, which is likely due to the reduced

sample size, the best-performing models show improved calibration with respect to the worst

ones as expected.

Fig 4. Matthews correlation coefficients after single feature elimination for the Survival prediction task

performed with (a) the Logistic Regression model in the SEPSIS cohort and (b) with the XGBoost model in the

SIRS cohort. Features were ranked according to importance from left to right. Each violin plot shows the distribution

of the data, whereas the small boxplot inside each violin plot shows the median and the first and third quartiles, the

whiskers indicate 0.05 and 0.95 quantiles.

https://doi.org/10.1371/journal.pdig.0000459.g004
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This behavior suggests that a bigger population would allow for a proper calibration adjust-

ment and translation of the model’s output score to an even more precise individualized

patient survival probability. Also, this approach might account for a possible covariate shift

due to changes in patient characteristics, without the need for the development of a new

model. Therefore, we do consider that the relationships between the available variables both

intra- and inter-population can be considered a reliable multivariable comparison of the

major factor predicting survival for both SIRS and sepsis patients. As it can be observed in

Text F of S1 Appendix, the sensitivity analysis implementing the hyperparameter optimization

shows results very close to those observed without hyperparameter optimization, thus

highlighting the robustness of the proposed framework.

The feature importance analysis attributed the highest importance to APACHE II and

SOFA scores for SEPSIS and SIRS cohorts, respectively, thus confirming the importance of a

preliminary assessment of patients’ risk at the admission in the ICU [45]. This result is also

confirmed by statistical analysis, as shown in Table 4.

SEPSIS cohort

Results on the SEPSIS cohort showed that MPV was the second most important variable in

predicting survival. This result is in line with the observed association of a higher MPV with an

increased mortality risk as well as its predictive role [46–48]. Our analysis ranked EoC and

CRP as third and fourth most important features. In the literature, a lower EoC has been asso-

ciated with mortality in critically ill medical patients [49], in patients admitted with an exacer-

bation of chronic obstructive pulmonary disease [50] and in patients with pneumonia [51].

Interestingly, although non-significant, our cohort showed an increase in EoC in deceased

SEPSIS patients. An epidemiological study [52] pointed out that eosinophilia is a predictor of

all-cause mortality and that an increased number of peripheral blood eosinophils may reflect

an increased inflammatory response, resulting in tissue injury, a condition that may reflect our

cohort. CRP was the fourth most important variable in our ML model. Of note, CRP had

already shown the potential of being a predictor of survival of ICU patients [53], and more in

general a predictor of mortality in ML frameworks [54].

SIRS cohort

Interestingly, the third most important variable in predicting survival for the SIRS cohort was

platelet counts, with a smaller median value for the non-survived patients than for the survived

group. Indeed, Vanderschueren et al. [55] found that Thrombocytopenia was associated with a

higher risk of death in a septic cohort, in line with our results considering the definition of sep-

sis (sepsis-1) used in 2000 which only required two SIRS criteria. CRP ranked fourth in pre-

dicting patient survival with non-sepsis SIRS and similar considerations as for the SEPSIS
cohort can be done, moreover, its importance in predicting survival of a non-sepsis SIRS

cohort was already observed in animal studies [56]. The fifth and sixth-ranked features were

lymphocytes and eosinophils. In literature, Lymphocytes counts were found to be associated

with increased mortality risk in general ICU patients [57], heart failure [58], and COVID-19

patients [59]. Eosinophils count significantly differed between survived and deceased groups

with an increase in the deceased one. Similar considerations as for the SEPSIS cohort can be

done also for eosinophil counts, where we already pointed out that this apparently opposite

behavior with respect to literature might be due to the specific cohort of our study with under-

going inflammatory response [52].
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General considerations and applicability

The developed models show the ability to predict patient survival and specifically, this study

can be considered as an important integration of the study performed by Gucyetmez et al. [10]

so that once a patient with inflammatory response has been identified as septic or not the cor-

responding model can give us the possibility to immediately assess the likelihood of survival.

Also, the feature importance analysis proposed in our study gives a clue on the main features

that contributed to the developed cohort-specific score, and it suggests to clinicians which of

the considered variables is more informative for a patient falling in the SIRS or SEPSIS cohort.

It is important to notice that the SFE method presents some limitations when features are

highly interdependent, since the contribution of a feature that is very important may still be

underestimated due to the effect of other covariates that depend on it.

Finally, it is worth mentioning that we are not aware of whether these data were collected

for administrative health reasons or whether they are commonly used for clinical practice,

which might limit the general applicability of the results. However, the employment of data

like these for scientific analyses based on computational intelligence can allow new scientific

discoveries that otherwise would be impossible with traditional hospital technologies.

This study presents an original application of a statistical framework aimed at predicting

patient survival. As the approach is mainly limited by the reduced sample size of the cohort, it

is expected that a larger collection of data would allow for a more effective model calibration

and optimization that would further improve the model generalizability, thus providing a

more precise estimate of patient survival probability.

Conclusions

The proposed study applies an original machine learning paradigm for processing clinical

information at admission in the ICU to predict patient survival. The proposed approach relies

on a multi-variable predictive modeling approach based on information gathered at the ICU

admission, and aimed at predicting the likelihood of patient survival for patients with SIRS
and with SEPSIS. Results provide insights into the differences of the most relevant variables

between the two groups. A Monte Carlo Cross-Validation procedure was further applied to

have robust estimates of the obtained scores. The performed sensitivity analysis showed that

results did not notably vary with hyperparameter tuning thus confirming the need for a larger

cohort to advance to a fully calibrated deployable model.

In this context, Logisitic Regression and XGBoost algorithms are the best-performing models

for SEPSIS and SIRS cohorts, respectively. Moreover, feature importance analysis revealed a

high importance of APACHE II score and a comparable important role of C-reactive protein

in both cohorts. Also, MPV and EoC were revealed to be important predictors of survival

mainly in the SEPSIS cohort, whereas they showed a secondary role in the SIRS cohort.

SIRS cohort showed greater importance of SOFA and platelets count features which instead

ranked last in SEPSIS.

Importantly, beyond Gucyetmez et al. [10] findings, the proposed framework addresses the

question of whether a patient has sepsis or not, and our models give clinicians the possibility

to estimate patient’s survival, as well as to identify the most important features involved in the

stratification of patients’ risk with SIRS or SEPSIS, and that also led to the proposed survival

estimates.

Of note, to our knowledge, this is the first study where the ability of hemogram parameters

in predicting patient survival at the admission in the ICU and the role of the considered fea-

tures are investigated to highlight differences between SIRS and SEPSIS patients.
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