JID: ECOSTA [m3Gsc;May 1, 2022;12:42]

Econometrics and Statistics XXx (XXXX) XXX

Contents lists available at ScienceDirect

Econorﬁletrics
Statistics

Econometrics and Statistics

journal homepage: www.elsevier.com/locate/ecosta

Multi-objective optimisation of split-plot designs

Matteo Borrotti?, Francesco Sambo®, Kalliopi Mylona ©*

2 Department of Economics, Management and Statistics, University of Milan-Bicocca, Italy
b Verizon Connect Research, Italy
¢ Department of Mathematics, King's College London, United Kingdom

ARTICLE INFO ABSTRACT
ATH'C!? history: Modern experiments allow scientists to tackle scientific problems of increasing complex-
Received 20 July 2021 ity. Often experiments are characterised by factors that have levels which are harder to

Revised 1 April 2022
Accepted 3 April 2022
Available online xxx

set than others. A possible solution is the use of a split-plot design. Many solutions are
available in the literature to find optimal designs that focus solely on optimising a sin-
gle criterion. Multi-criteria approaches have been developed to overcome the limitations
of the one-objective optimisation, however they mainly focus on estimating the precision

{:(?r/:t/gr?:c;m of the fixed factor effects, ignoring the variance component estimation. The Multi-Stratum
pure-error estimation Two-Phase Local Search (MS-TPLS) algorithm for multi-objective optimisation of designs of
restricted randomised experiments experiments is extended, in order to ensure pure-error estimation of the variance compo-
variance components nents. The proposed solution is applied to two motivating problems and the final optimal

Pareto front and related designs are compared with other designs from the relevant litera-
ture. Experimental results show that the designs from the obtained Pareto front represent
good candidate solutions based on the different objectives.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and
Statistics.

This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

In many areas, improvements in the way experiments are designed have the potential to produce significant increases
in knowledge as well as time and money savings. Better experiments, for example, result in fewer humans being involved
in clinical studies (see Yi and Wang (2021)), fewer expensive components being required for others, fewer prototypes being
required in engineering experiments, and faster product and process development timeframes. Many industrial experiments
involve one or more restrictions on the randomisation (e.g., Trinca and Gilmour (2001), Goos and Vandebroek (2001), Jones
and Goos (2009), Vining et al. (2005), GroBmann and Gilmour (2021)). In such instances, a split-plot design layout, in which
the experimental runs are conducted in groups, is a standard cost-effective method for reducing the number of independent
settings of the hard-to-change factors.

Split-plot designs were originated in agricultural experiments, where large plots of land were subdivided into relatively
large sections, known as whole plots. These plots were then randomly allocated to each of the possible levels of the whole-
plot factors. Whole plots were further divided into smaller portions known as subplots, to which subplot factors were ap-
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plied. As a result, whole-plot factor levels differ from plot to plot, while subplot factor levels differ from subplot to subplot.
Hard-to-change factors serve as whole-plot factors in industrial experimentation, while easy-to-change factors act as subplot
factors.

Computerised design search algorithms have gained popularity for constructing split-plot designs for response surface
models. A sequential method for constructing multi-stratum designs, from stratum to stratum and beginning from the high-
est stratum, is presented in Trinca and Gilmour (2001), and an improved version is presented in Trinca and Gilmour (2015).
Goos and Vandebroek (2001) and Goos and Vandebroek (2003) proposed point-exchange algorithms for constructing D-
optimal designs for split-plot response surface experiments, and Jones and Goos (2007) and Jones and Goos (2009) defined
a coordinate-exchange algorithm for split-plot and split-split-plot experiments.

The aforementioned algorithms have the weakness of focusing solely on optimising a single criterion. The Pareto front
method is used to construct split-plot designs in Sambo et al. (2014): the newly developed coordinate exchange-two step
local search (CE-TPLS) algorithm extends the Jones and Goos (2007) and Jones and Goos (2012) coordinate-exchange (CE)
algorithm with a two-phase local search approach (Paquete and Stiitzle (2007)). In Borrotti et al. (2017), the Multi-Stratum
Two-Phase Local Search (MS-TPLS) algorithm was proposed, an extention of the CE-TPLS algorithm for multi-stratum designs
and with more optimality criteria. In Cao and Robinson (2017), a multi-criteria approach is being considered as well, where
the degrees of freedom for the whole plots and subplots are combined with the overall D-criterion. A weakness of the
majority of the existing approaches is that they focus entirely on estimating the precision of the fixed factor effects, and
ignore the variance component estimation required to compute these effects’ generalised least squares (GLS) estimates and
to make statistical inference. In Mylona et al. (2014) and Mylona et al. (2020) a family of alternative D-optimality criteria
that focuses on the estimation of fixed effects, as well as the estimation of variance components are proposed. In this paper,
we construct the Pareto front of optimal split-plot designs that ensure pure-error estimation of the variance components, by
incorporating in our multi-objective optimisation, the determinant of the information matrix of the variance components, as
presented in Mylona et al. (2020). Moreover, as it is being stated in Cao and Robinson (2017), there are advantages of having
designs with degrees of freedom for both pure error and for lack-of-fit, hence our multi-objective optimisation will consider
these degrees of freedom for the whole plots and subplots combined with the determinants of the information matrices for
the fixed effects and the variance components.

This article is organised as follows. In the next section, we introduce the model assumed when analysing data from split-
plot response surface experiments and the relative statistical inference. In Section 3, we discuss our multiple criterion and
algorithmic approach. In Section 4, we compare designs constructed with our approach to designs from the state-of-the-art
literature. We end the article with a discussion.

2. Models and estimation

In general, the model suggested analysing data from split-plot response surface experiments with n runs and b whole
plots (Letsinger et al. (1996), Gilmour and Trinca (2000)), is

Y=XB+Zy+e, (1)

where Y is the n-dimensional vector of responses, X is the n x p model matrix corresponding to the assumed model,
is the p-dimensional vector of fixed model parameters (often including an intercept, main effects, interaction effects and
quadratic effects), y is a b-dimensional vector of whole-plot effects, Z is the n x b design matrix for these random effects
and e is the n-dimensional vector of random errors. It is further assumed that y ~ N(Ob, a]}lb), €~ N(O,,, aglr,), and that y
and € are independent.

In the assumed response surface model, the generalised least square (GLS) estimator of the parameter vector 8 is given
by

B =XV 'X)IX'Vy,
where
V=02l +0,ZZ.

From the GLS estimator, it is obvious that for obtaining good estimates for the fixed effects ensuring good estimates of the
variance components is essential. Following Letsinger et al. (1996), the two variance components o2 and G)E are generally
estimated using residual maximum likelihood (REML) estimation. However, in Gilmour et al. (2017), starting from the com-
plete treatment model is suggested, to obtain estimates for the variance components that are robust against misspecification
of the response surface model.

Y=XT+Zy +¢€, (2)

where the full treatment design matrix is being denoted as X;, and 7 is the corresponding vector of treatment means. The
(i, t)th element of the full treatment design matrix is equal to 1 if treatment t is used for run i and O otherwise. There
are as many fixed model parameters for the full treatment model as there are distinct treatments in the design. The model
therefore does not indicate any lack of fit, and pure-error estimates are the variance component estimates obtained from it.
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Therefore, using REML estimation in conjunction with the complete treatment model results in pure-error estimates. This
includes maximising the log likelihood function

n-—ng
2

where 1y =y — X¢ (X{V~'X;)~X/V~y and n; is the number of distinct treatments in the design (or, equivalently, the number
of parameters in T).

Moreover, in Cao and Robinson (2017), with the use of the ANOVA table, formulae to calculate the pure error (PE) degrees
of freedom for whole-plot (WP) and for subplot effects (SP), in a split-plot design are provided. Specifically, the partition
demonstrated in Cao and Robinson (2017) using (Harville, 1997, p. 395) is

dfpg (WP) =rank(Z, X¢) —rank(X¢) and dfpg(SP) =n —rank(Z, X¢),

= —% log |V| — %log X/ V1X,| — %r{V”rt - log(2),

where the sum of these equations is the number of replicated observations (r). Hence, dfpg (WP) is the number of whole
plots containing design runs that have been replicated in another whole plot and dfpg(SP) is the total number of replicated
design runs minus the number of whole plots containing design runs that have been replicated in another whole plot.
Additionally, the pure error plus lack-of-fit (PE+LoF) degrees of freedom are provided for whole plots and subplots and they
are respectively:

dfpe+tor (WP) = rank(Z, X) — rank(X) and dfpg+1or(SP) = n — rank(Z, X).

3. Optimal design and algorithm
3.1. Optimality Criterion

The D-optimality criterion, which seeks designs that minimise the generalised variance of the parameter estimators,
is the most widely used optimality criterion for constructing experimental designs. This is achieved by minimising the
variance-covariance matrix determinant of the estimates of the factor impact or, equivalently, by maximising the determi-
nant of the information matrix about §. For a blocked experiment and a split-plot experiment, the information matrix is
given by

M=XV1X (3)
when the GLS estimator is used. A D-optimal design therefore maximises
M| = [X'V-'X]. (4)

D-optimality criterion emphasises on the estimation of the fixed model parameters.

In Mylona et al. (2014), a family of alternative D-optimality criteria is proposed that focuses on the estimation of fixed
effects, as well as the estimation of variance components. It assumes that the variance components are estimated using
REML, in combination with the response surface model.

An alternative composite D-optimality criterion was proposed in Mylona et al. (2020), provided that model-robust pure-
error estimates of the variance components can be obtained by applying REML to the complete treatment model in (2),
in which the information on the variance components is quantified in a way that is insensitive to the specification of the
response surface model for the treatment effects and thus requires pure-error estimates of the variance components. In Cao
and Robinson (2017), a multi-criteria approach is being considered, where the pure error degrees of freedom for the whole
plots and subplots are combined with the overall D-criterion: (D, dfpg (WP), dfpg(SP)).

In this work, we construct Pareto optimal designs using as well a multi-criteria approach and taking into consideration
the estimation of fixed effects and variance components at split-plot designs, together with the pure error and lack-of-fit
degrees of freedom for whole plots and subplots. In accordance with the MS-TPLS algorithm, we minimise

< 1 L 1 1 1 1 )
[X'V-1X|" [N|" dfee (WP) " dfpe(SP) " dfior (WP) " dfior (SP) )’

where N; is the information matrix about the variance components assuming that the full treatment model is used for
estimating them, given in (5)

1[er{(PZZ)?)  tr(P?22))
Ne = 2[ o(P2ZZ) (P2 } (5)

with
P =V ! VX, (X,V X)X, V1.
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MS-OpTt(criteria, @, iterations, initDesign)
1 bestScore = +INF

2 for it = 1 to iterations
3 if initDesign == NULL

4 curDesign = SAMPLEDESIGN()
5 else curDesign = initDesign
6 curScore = @ - SCORES( curDesign, criteria)
7 improvement = TRUE
8 while improvement
9 improvement = FALSE
10 for each stratum s
11 for each unit u of s
12 for each factor f in s
13 for each of the other available values of f
14 nextDesign = curDesign
15 Assign the value to all elements of matrix tmpDesign
at column f and at the rows corresponding to u
16 nextScore = & - SCORES(nextDesign, criteria)
17 if nextScore < curScore
18 curDesign = nextDesign
19 curScore = nextScore
20 improvement = TRUE
21 if curScore < bestScore
22 bestDesign = curDesign
23 bestScore = curScore

24  return bestDesign

Fig. 1. Pseudo-code of MS-OPT as presented in Borrotti et al. (2017).

3.2. Algorithm

Multi-objective optimisation problems involve the optimisation of several, typically conflicting objectives. When consider-
ing more than one criterion for identifying optimal design of experiments, the final result is no longer a unique solution but,
more often, a set of optimal designs that simultaneously compete in the optimisation of the concurrent objectives (Paquete
and Stiitzle (2007)).

Considering a multi-criteria design of experiments where the aim is to minimise n optimality criteria, candidate designs
are evaluated according to a criterion vector of objective functions f = (feys feyr -+ - fen), where ¢y ... ¢y are the different crite-
ria. Now, given two designs d and d’, we say that d dominates d’ (d < d') iff f(d) # f(d') and f.(d) < f.(d'), Vc e {c; ...cn},
i.e. if d is equal or better than d’ according to all criteria.

If no d’ exists such that d’ < d, the design d is called Pareto-optimal. The ultimate goal of multi-criteria optimal design is
to determine (or approximate) the set of all Pareto-optimal designs, whose image in the multi-objective space is called the
Pareto front.

In this work we exploit the multi-stratum two-phase local search algorithm (MS-TPLS) proposed in Borrotti et al. (2017).
MS-TPLS extends the coordinate-exchange two-phase local search (CE-TPLS) algorithm (Sambo et al. (2014)) to any type of
multi-stratum designs and it is basically composed by two main components: (i) the coordinate-exchange (CE) algorithm
(Jones and Goos (2007, 2012)) and (ii) the two-phase local search (TPLS) approach (Dubois-Lacoste et al. (2011)). The CE
algorithm is codified in the function MS-OpT, whose pseudo-code is reported in Fig. 1 for completeness. It searches for an
optimal design according to a specific scalarisation of the multi-objective problem, i.e. a weighted sum of all the objectives
according to a weight vector «, by sampling an initial solution at random and iteratively adjusting it with minimal changes
to its factors. The TPLS algorithm uses the CE algorithm as subroutine and, by iteratively generating new scalarisations and
solving them with CE, explores the multi-objective space in search for the optimal set of non-dominating solutions, i.e. the
Pareto front.

More precisely, the single-objective local search component (i.e. MS-OpT) of the MS-TPLS algorithm minimizes a scalari-
sation of the objective functions in the form

fW:Zacfc:a'T? Zac:‘ly (6)

ceC ceC
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Table 1
Set of free parameters.
Parameter ~ Name Short description
1 CHOOSEINITIALDESIGN Function responsible of selecting the initial design for the n objective functions
2 COMPUTEWEIGHT Function responsible of computing the scalarisation weight « used in Eq. 6
3 Number of iterations Number of single-objective iterations for generating initial solutions for each
criterion involved in the optimisation
4 Number of scalarisations Number of times that the n-objective optimisation problem is transformed in a
single objective problem based on a weighted sum of the n criteria (Eq. 6)
5 Number of restarts Number of times that the algorithm is started from the beginning

where C is the set of criteria to be minimized, f. is the objective function for criterion ¢ and the parameters o control
the relative weight of each objective function. For the scalarisation to be unbiased, all objective functions should lie in the
range [0,1]: before computing each scalarisation, thus, MS-TPLS dynamically normalizes each objective function value, as in
Borrotti et al. (2017):

norm __ fc - fcmm

where fM" and fM% are the minimum and maximum values of the objective function, among all the designs encountered
by the algorithm from the beginning of the run. Given an initial design, the solution is then improved by iteratively replacing
values for each factor in each unit of each stratum, until no further local change can increase the weighted sum f;, of the
objective functions. The procedure is repeated for a given number of iterations and the best design is returned. At each
iteration, all the designs generated during the search are used to identify the set of non-dominated designs forming the
Pareto front. For more details about the algorithm please see Borrotti et al. (2017).

From an algorithmic point of view, in this work we developed and integrated two new functions for computing the Z and
X matrices. These new functions lead to the extension that allows the integration of the new criteria at the function SCORES
that contains the implementation of all the possible criteria. SCORES is the main function used by function MS-OPT, in line
6 of Fig 1 (Borrotti et al. (2017)). More precisely, we added the N; criterion, the pure error degrees of freedom for whole-
plot (dfpe (WP)) and for subplot effects (dfpg (SP)) and the lack-of-fit degrees of freedom for whole-plot (df;,r (WP)) and for
subplot effects (dfi,r(SP)). Given that, the MS-TPLS is now able to optimise any combination of seven design optimality
criteria (D, A, I, I3, As, Ds, N¢) plus any of the following degrees of freedom (dfpg (WP), dfpg (SP), dfior (WP), dfior (SP)).

3.3. Parameter settings

The MS-TPLS algorithm has several free parameters that have been set in accordance with the results obtained in Sambo
et al. (2014). Table 1 summarises the free parameters. For all possible options of the free parameters, please check Sambo
et al. (2014).

The CHOOSEINITIALDESIGN function is set in order to select the initial designs from the Pareto front. The COMPUTEWEIGHT
function is set to sample the o weight at random from [0, 1]. This combination represents the best balance between diver-
sification of the solutions and intensification of the search as empirically demonstrated in Sambo et al. (2014). Furthermore,
the results were obtained with n x 10 restarts, where n is the number of criteria simultaneously optimized by the MS-TPLS
algorithm, each composed of n x 2 initial single-objective iterations (i.e. number of iterations) followed by 100 — (n x 2)
scalarisations (i.e. number of scalarisations), for a total of n x 1000 calls to the single-objective optimisation function. As an
example, if we want to optimise 4 criteria (i.e.D, N¢, dfpg (WP), dfpg (SP)) then we have 40 restarts each composed of 2 + 2 +
2 + 2 initial single-objective iterations followed by 92 scalarisations. The value of 7 (i.e. ratio between variance components)
is 1 for all the reported results.

4. Result and comparisons

In this section, the proposed criteria are used for the construction of designs based on two motivating examples pre-
sented in Vining et al. (2005) and Mylona et al. (2020).

4.1. A 48-run split-plot response surface example

In this example, in Vining et al. (2005) a central composite design was modified to obtain an equivalent estimation
design (EED). We will call this design, VKM design. The number of whole plots is 12 and the number of sub-plot runs for
each whole plot is 4, for a total of 48 runs (n = 48). There are two whole-plot factors (w;, w,) and two subplot factors (sq,
s,). The considered model is the usual response surface model that includes an intercept, main effects, two-factor interaction
effects and quadratic effects.

In Cao and Robinson (2017) a multi-objective split-plot design problem was considered where they simultaneously opti-
mised the criterion vector (D, dfpg (WP), dfpe(SP)) for a design with the same features. From the Pareto front that they have
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Fig. 2. Pareto front for example in Vining et al. (2005).

constructed (Table 10 in Cao and Robinson (2017)), we will use for comparisons the Pareto optimal designs based upon just
the D-criterion and pure error degrees of freedom for whole plots, denote them as CWR26, CWR36 and CWR38. Further-
more, we considered the extra EED design, EX, proposed for comparison purposes in Table 10 in Cao and Robinson (2017),
denoted here by EX-EED.

The same motivating example was also used in Mylona et al. (2020). The optimality criterion used in that work, as
mentioned in Section 3.1, guarantees model-robust pure-error estimates of the variance components. For this reason our
results are also compared with the design proposed in Table 1 in Mylona et al. (2020), denoted here as MGG.

For the sake of clarity, in what follows all the final numbers are appropriately transformed in order to show the results
as in a maximisation problem. Furthermore in both examples, the values for D-criterion are reported as log]0(|X/V‘1X|).
From now on, we refer to log;q(]X V-1X|) simply as D.

For demonstrative reasons, we initially construct designs that optimise the two-objective criterion (D, N;). Nevertheless,
as in multi-objective optimisation, it is expected that there would be trade-offs among these criteria. The criterion vector
allows one to evaluate and compare these trade-offs. The criterion vector also depends on the variance ratio 5. In this work
7 is set to 1, a commonly used search value for a D-optimal designs (Macharia and Goos (2010), Goos (2002)). We have
constructed designs for other values of 1, with similar conclusions.

Figure 2 shows the Pareto front obtained by taking the set of non-dominated designs from the results of 20 random
restarts of the MS-TPLS algorithm for the instance considered (Vining et al. (2005)). The CWR26, CWR36, CWR38, EX-EED,
MGG and VKM designs are also reported. As in Sambo et al. (2014), the best compromise between the D, N;-criteria is
identified as the closest design to the utopia point, which is the ideal point in the two-objective space with the maximum
value of the D, N;-criteria (Lu et al. (2011)). This design is named the D, N;-symmetrical design.

In what follows, the symmetrical design together with the optimal designs according to each separate criterion are se-
lected from the analysed Pareto fronts for further investigation and comparisons. More precisely, we found the Pareto opti-
mal designs for the following vectors of criteria:

1. (D, N, dfpg (WP), dfpg(SP));
2. (D, Nt, dfpg(WP), dfpg(SP), dfior(WP), dfior(SP)).

For each vector, we compare the CWR26, CWR36, CWR38, EX-EED, MGG and VKM designs with the symmetrical-design
and the optimal designs according to D and N; respectively, obtained by the modified MS-TPLS algorithm and from the
Coordinate-Exchange (CE) algorithm in Jones and Goos (2007) (run for 1000 restarts for each criterion). In Table 2, the 6-
symmetrical (6-sym) design and the optimal D- and N;- designs from Pareto Front are reported. By looking at the values in
Table 3, one can see that our symmetrical designs outperform all other designs with respect to estimation of the variance
components while they maintain a high value for the D-optimality criterion.

Similarly to Borrotti et al. (2017), we compute the percentage efficiency gains by the 6-symmetrical, with respect to
CWR26, CWR36, CWR38, EX-EED, MGG and VKM designs. Furthermore, we also compute the efficiency with respect to the
D- and N;- optimal designs obtained by the CE algorithm in Jones and Goos (2007). The efficiency gain is calculated as

. design
%EFF;SESIgn —100x [1— ffw , (7)

Cc

where c identifies the criterion (D or N;) for which efficiency is computed, deESlgn is the value of this criterion for the

compared design and f2™ is the value of the same criterion for the symmetrical design. Table 4 reports the percentage of
gained efficiency in terms of D and N;.
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Table 2
6-symmetrical (6-sym), D- and N;- optimal designs from Pareto Front identified by the modified version of MS-TPL algorithm.
6-sym D-optimal N;-optimal
wq w3 S1 S2 wi w3 $1 S2 wq wp S1 Sy
-1 1 0 0 1 -1 1 -1 -1 1 1 -1
-1 1 1 1 1 -1 1 1 -1 1 1 -1
-1 1 -1 1 1 -1 -1 -1 -1 1 -1 0
-1 1 -1 -1 1 -1 -1 1 -1 1 -1 0
-1 -1 -1 1 -1 -1 -1 -1 0 1 -1 -1
-1 -1 1 -1 -1 -1 1 1 0 1 1 1
-1 -1 1 1 -1 -1 -1 1 0 1 -1 -1
-1 -1 -1 -1 -1 -1 1 -1 0 1 -1 -1
1 1 1 1 -1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 -1 1 -1 0 -1 -1 -1 -1
1 1 -1 1 -1 1 1 -1 -1 -1 -1 -1
1 1 1 -1 -1 1 0 1 -1 -1 1 1
1 1 -1 1 -1 1 -1 -1 -1 -1 0 1
1 1 1 1 -1 1 1 -1 -1 -1 0 1
1 1 -1 -1 -1 1 1 1 -1 -1 1 0
1 1 1 -1 -1 1 -1 1 -1 -1 0 1
-1 1 1 -1 -1 0 0 -1 1 -1 1 -1
-1 1 -1 1 -1 0 -1 1 1 -1 -1 -1
-1 1 1 1 -1 0 1 0 1 -1 -1 1
-1 1 0 0 -1 0 -1 -1 1 -1 1 1
0 0 -1 -1 1 1 -1 1 1 -1 1 1
0 0 -1 -1 1 1 0 -1 1 -1 1 -1
0 0 0 0 1 1 1 1 1 -1 -1 1
0 0 -1 -1 1 1 1 0 1 -1 -1 -1
1 0 -1 0 1 -1 -1 0 1 -1 -1 1
1 0 1 1 1 -1 1 -1 1 -1 1 1
1 0 -1 0 1 -1 1 1 1 -1 -1 -1
1 0 0 -1 1 -1 0 1 1 -1 1 -1
-1 -1 1 -1 1 1 1 1 1 -1 -1 -1
-1 -1 -1 1 1 1 1 -1 1 -1 1 -1
-1 -1 1 1 1 1 1 1 1 -1 -1 1
-1 -1 -1 -1 1 1 -1 -1 1 -1 1 1
1 -1 1 -1 1 0 0 -1 -1 0 0 0
1 -1 1 1 1 0 -1 1 -1 0 1 1
1 -1 -1 0 1 0 1 0 -1 0 1 1
1 -1 0 1 1 0 -1 -1 -1 0 1 1
1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1
1 -1 -1 0 -1 -1 -1 1 1 -1 -1 1
1 -1 1 1 -1 -1 1 1 1 -1 1 1
1 -1 0 1 -1 -1 0 0 1 -1 -1 -1
0 -1 1 0 0 1 1 -1 1 -1 1 1
0 -1 -1 1 0 1 -1 -1 1 -1 -1 -1
0 -1 1 0 0 1 -1 0 1 -1 1 -1
0 -1 0 -1 0 1 0 1 1 -1 -1 1
-1 1 1 -1 0 -1 -1 -1 1 1 0 1
-1 1 1 1 0 -1 1 -1 1 1 1 0
-1 1 -1 -1 0 -1 -1 1 1 1 1 0
-1 1 -1 1 0 -1 0 0 1 1 0 1
Table 3
Comparison with designs in the literature. Entries in bold correspond to the best values for individual criteria.
D N dfpe (WP) dfpg (SP) dfior (WP) dfior (SP)
MS-TPLS 6-criteria 6-sym 15.85 14.10 5 18 1 9
D-opt 16.13 2.38 4 5 2 22
N;-opt 13.21 21.60 5 27 1 0
MS-TPLS 4-criteria 4-sym 13.55 24.22 6 26 0 1
D-opt 16.13 2.38 4 5 2 22
N;-opt 5.97 25.46 6 27 0 0
CE D-opt 16.13 2.37 4 5 2 22
N¢-opt 9.91 25.77 6 27 0 0
CWR26 15.92 4.28 4 8 2 19
CWR36 15.84 13.57 6 15 0 12
CWR38 16.04 9.92 5 13 1 14
EX-EED 12.68 6.72 2 21 3 7
MGG 15.96 14.08 5 18 2 9
VKM 12.61 6.72 2 21 3 7




JID: ECOSTA [m3Gsc;May 1, 2022;12:42]
M. Borrotti, E. Sambo and K. Mylona Econometrics and Statistics xxx (XXXX) XXx
Table 4

Percentage of gained efficiency by the 6-symmetrical (6-sym) design, with respect to designs in the literature and optimal
designs constucted with CE algorithm.

6-sym
D Ne
CE D-opt -1.76 83.14
N 37.46 -82.98
CWR26 -0.46 69.58
CWR36 0.08 3.67
CWR38 -1.15 29.57
EX-EED 20.00 52.29
MGG -0.68 0.004
VKM 20.46 52.29
Table 5
Three designs from the Pareto front of the 6-objectives optimality criterion.
D Ne dfpe (WP) dfpe (SP) dfior (WP) dfior (SP)
6-sym 15.85 14.10 5 18 1 9
Design (a) 15.38 10.08 3 21 3 6
Design (b) 14.88 11.04 3 23 3 4

For example, considering CWR36 design, we compute the efficiency gain of the 6-symmetrical design, according to the
D- and N;-criteria. From Table 3, we have that ;)™ = 15.85 and ,f}t’m = 14.10 and the corresponding values for the CWR36

design are fgWst =15.92 and f&WRZG = 4.28. From Table 4, we can see that even though the 6-symmetrical design has
a loss of 0.46% in terms of D-efficiency, this is compensated by a gain of 69.58% in N;-efficiency. By looking at the table, the
percentage of efficiency lost by the 6-symmetrical design on the D-criterion is always compensated by an higher percentage
gain on N;-criterion, and vice versa. The MGG and the 6-sym designs are very competitive. The small amount of efficiency
lost on the D-criterion is compensated by a slight increase of percentage gain on N;-criterion. The 6-sym design has a
positive percentage of gained efficiency for both criteria for the CWR36, EX-EED and VKM designs.

Analysing the Pareto front, the N;-criterion seems to be responsible for the low values of df;,r (WP). In fact, if we consider
a design with higher values for df;,- (WP) then the N;-criterion value decreases. The Pareto front for criterion vector (ii) is
composed by 3610 designs. Given that, practitioners can select the most suitable design for their applications and/or needs.
For example, Table 5 shows two other designs from the Pareto front where the dfj,s(WP) is higher than 1, however some
efficiency in terms of D- and N;-criteria is being sacrificed.

4.2. A 24-run split-plot screening example

In this example, the new version of the MS-TPLS algorithm will be used for the construction of optimal designs for
screening experiments. As in Mylona et al. (2020), we consider a 24-run split-plot designs with eight whole plots of three
runs for a five-factor main-effects-plus-two-factor-interactions model. For comparison purposes, we consider three differ-
ent designs. The first design is constructed with the traditional D-optimality criterion for fixed effects only (Mylona et al.
(2020)). As pointed out in Mylona et al. (2020), this design is equivalent with the design constructed by using a Bayesian
optimal design criterion which focuses on both the variance components and the fixed effects proposed by Mylona et al.
(2014). From now on, this design is called OriCC-TradD. The second design is constructed with the alternative Bayesian op-
timality design criterion proposed in (Mylona et al. (2020)), denoted here impCC. To note here that the Bayesian designs at
the original paper were constructed using as prior the log-normal distribution, where its hyperparameters were set under
the assumption that the variance ratio n is around 1, and that it highly likely that n is in the interval [0.1, 10]. Also, we
consider the more classical design based on a Z'fv‘l fractional factorial design enriched with replicated runs as in (Mylona
et al. (2020)), named Classical.

Table 6 reports the 6-symmetrical design for the 24-run split-plot screening example. The results in Table 7 demonstrate
the main advantage of the 6-symmetrical design from the Pareto Front, which is the way it distributes the eight available
degrees of freedom for the error, between subplot and whole-plot effects and between pure error and lack of fit, with a
small sacrifice with respect to the D and N; efficiencies. The results, in both Tables 3 and 7 are in accordance with the
remark made in Gilmour and Trinca (2012), that the D-criterion tends to incorporate degrees of freedom for lack-of-fit as
opposed to degrees of freedom for pure error. In Table 8, we show that alternative designs can be chosen from the Pareto
Front according to the needs of the experimenter.
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Table 6

6-symmetrical (6-sym) design from the Pareto Front identified by the modified version of MS-TPL algorithm for the 24-run
split-plot screening example.

6-sym
X1 X2 X3 X4 X5
-1 -1 1 1 -1
-1 -1 -1 1 -1
-1 1 -1 -1 -1
1 -1 1 -1 1
1 1 -1 -1 1
1 1 1 -1 -1
1 -1 1 1 -1
1 1 -1 1 -1
1 1 1 -1 1
-1 1 -1 1 1
-1 -1 1 1 -1
-1 1 -1 -1 -1
-1 1 1 1 -1
-1 -1 1 1 1
-1 -1 -1 -1 -1
1 1 1 1 1
1 -1 -1 -1 -1
1 -1 -1 1 1
-1 -1 -1 1 -1
-1 -1 1 -1 -1
-1 1 1 -1 1
-1 -1 -1 -1 1
-1 -1 1 -1 -1
-1 1 1 -1 1
Table 7
Comparison with designs in the literature. Entries in bold correspond to the best values for individual criteria.
D Ne dfee (WP) dfp (SP) dfior (WP) dfior (SP)
MS-TPLS 6-criteria 6-sym 18.77 0.61 3 2 2 1
D-opt 19.18 0.11 1 1 5 1
N;-opt 15.22 1.13 4 3 1 0
CE D-opt 19.58 0 0 0 6 2
N;-opt -0.45 221 4 5 0 0
impCC 19.02 1 6 2 0 0
OriCC-TradD 19.64 0 0 0 6 2
Classical 18.77 1.78 4 4 0 0
Table 8
Alternative designs from the Pareto front of the 6-objectives optimality criterion
D Ne dfpe (WP) dfee (SP) dfior (WP) dfior (SP)
6-sym 18.77 0.61 3 2 2 1
Design 16.84 0.35 4 1 1

5. Discussion

In this work, we extended the Multi-Stratum Two-Phase Local Search (MS-TPLS) algorithm in Borrotti et al. (2017). The
extended version is now able to simultaneously optimise any of the following design criteria: D, A, I, I, As, Ds, Nt, dfpg (WP),
dfpg (SP), dfior (WP) and dfjor (SP). The new version of the algorithm includes the computation of the information matrix for
the variance components assuming that the full treatment model is used for estimating them (N;). Also it calculates the pure
error degrees of freedom for the whole-plots (dfpg (WP)) and for the subplot effects (dfpg (SP)) and the lack-of-fit degrees of
freedom for the whole-plot (df;,r(WP)) and the subplot effects (dfi,r(SP)). We are now able to construct the Pareto front
for split-plot designs that ensure pure-error estimation of the variance components.

Since the final solution is a Pareto front, i.e. a set of solutions representing different trade-offs between the optimisation
criteria, practitioners can study the proposed solution and select the most suitable design for the problem under study.
When one design can be implemented, we showed that the symmetrical-design is a good trade-off between all the com-
petitive criteria. In fact, the symmetrical-design is the closest design to the ideal point that optimise all the considered
objectives.

The performance of the proposed approach is evaluated considering the two motivating example presented in Vining
et al. (2005) and Mylona et al. (2020), respectively. From the literature, we selected a set of designs for comparison pur-
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poses. Considering the following vector of criteria (D, N, dfpg (WP), dfpg (SP), dfior (WP), dfior(SP)), we pointed out that our
symmetrical-design represents the best compromised option with respect to all six criteria.

It is worth mentioning that the computation of Z and X; matrices has lead to an increase of the computational time
to find the final Pareto front. For instance considering the motivating example presented in Vining et al. (2005) and the
simultaneously optimisation of six criteria, MS-TPLS had run for 1.66 x 10* seconds in order to do 60 restarts of the algo-
rithm, each with 1000 calls to the MS-opT function. The computational time is slightly lower while considering four criteria
(1.25 x 10* seconds). Considering the second motivating example (Mylona et al. (2020)), MS-TPLS is faster to find the six
criteria optimal Pareto front running for a total of 1.98 x 103 seconds. In order to understand the impact of the computation
of Z and X; matrices, we report the computational time required by MS-oprT function to find the best D- and N;-optimal
design (considering only 1000 restarts) for both the motivating examples. For the first motivating example (Vining et al.
(2005)), 131.9 seconds were needed to find the D-optimal design and 1.61 x 10? seconds for finding the N;-optimal design.
In the second motivating example (Mylona et al. (2020)), the D-optimal design was found in only 39.8 seconds and the
N:-optimal design in 153.2 seconds. Since the computation of the Z and X is involved only in the N; criterion, it is clear
the impact of these two functions on the computational performance. All algorithms were implemented in MATLAB™™, and
all experiments were run on a 2.6 GHz Intel Core i5. Future efforts will be devoted to the improvement of the functions
implemented for the computation of the Z and X; in order to reduce the computational time required to find the Pareto
front.

Furthermore, it is important to underline that the proposed algorithm depends on a set of hyper-parameters that should
be tuned. In this work, we set the hyper-parameters following Sambo et al. (2014), however a sensitivity analysis about how
the number of scalarisations affects the shape of the Pareto curve could be done as future research direction.
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