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Abstract
Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c2 dark matter interactions 
with nuclei in current direct detection experiments. In such devices, the temperature of the thermometer and the bias cur-
rent in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is 
typically done manually by an expert. In our work, we automated the procedure with reinforcement learning in two settings. 
First, we trained on a simulation of the response of three Cryogenic Rare Event Search with Superconducting Thermometers 
(CRESST) detectors used as a virtual reinforcement learning environment. Second, we trained live on the same detectors 
operated in the CRESST underground setup. In both cases, we were able to optimize a standard detector as fast and with 
comparable results as human experts. Our method enables the tuning of large-scale cryogenic detector setups with minimal 
manual interventions.
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Introduction

The physics goals of several types of particle physics 
experiments require the sensitive measurement of low-
energy particle recoils, e.g., direct detection dark matter 
(DM) searches and coherent elastic neutrino–nucleus scat-
tering. One successful detector concept is that of cryo-
genic phonon detectors with transition-edge sensors (TES) 
[1], used by the CRESST experiment to reach the currently 
best sensitivity to sub-GeV/c2 DM–nucleus interactions 
[2, 3]. These consist of a crystal (e.g., calcium tungstate, 
silicon, sapphire or lithium aluminate) and an attached 
TES, acting as a thermometer, where both are cooled to 
≈ 10 mK. A particle recoil in the crystal produces a tem-
perature increase in the crystal and the TES, leading to a 
measurable signal for recoils with energies as low as 10 eV 
[4]. Reaching the best sensitivity requires a careful setup 
of the detectors, effectively optimizing the bias current 
applied to the TES and the temperature of the system, 
which is controlled by the current applied to a heating 
resistor attached to the crystal (see Fig. 1).

The optimization of these two parameters is typically 
performed by an expert and by hand, and once after the 
cooldown of the setup. After each change to the control 
parameters, the system needs to reach its new equilibrium 
state before the sensitivity can be tested. Therefore, the 

optimization can be lengthy, taking up to several hours. 
Controls of the cryostat temperature and external magnetic 
field can adapt the optimized parameters for small fluctua-
tions throughout the measurement. The objectives of future 
physics experiments, e.g., the planned CRESST upgrade 
[5], require the simultaneous operation of several tens, up 
to hundreds, of detector modules. Automating and parallel-
izing the optimization is necessary to achieve this objective 
and stay within reasonable bounds of the required manual 
workload. The cost of cryostat operation is generally high, 
and faster optimization leads to a higher detector live time.

The optimal parameter settings vary between similarly 
manufactured detectors due to fluctuations in the properties 
of the TES, crystal, and thermal couplings, and the true val-
ues are often unknown or have large uncertainties. Observed 
optimal values from identically produced detectors show 
significant variation. Therefore, a priori predictions are not 
useful. The detector’s sensitivity is not uniquely determined 
by the setting of the control parameters but can, due to the 
Joule heating of the TES by its bias current, also depend on 
an internal state of the TES, namely the fact whether it was 
in a superconducting state before the parameters were set. 
This internal state can cause a hysteresis-like effect. Simple 
approaches to optimizing the control parameters, such as a 
grid search or an educated guess, cannot be optimal in terms 
of an optimization time to performance trade-off.

Fig. 1   Schematic drawing of the detector environment. The circuits 
are schematical visualizations and not complete electrical and thermal 
circuits. (center) The detector can be described as an electrothermal 
system, where the readout and heater electronics and the tempera-
tures in the crystal and sensor interact with each other. Visualiza-
tions of the thermal system are in blue and of the electrical system 
in black. The readout circuit of the TES (central in the figure) and 
the heater circuit (lower center) are electrically separated. (right) The 
recorded observable from particle recoils is a pulse-shaped voltage 
signal (orange) in superposition with sensor noise (black). Features 

to quantify the quality of the detector response can be extracted from 
the pulse shape, using the pulse height (PH) and root-mean-square 
(RMS) values. (left) A policy neural network is trained with rein-
forcement learning (RL) to choose optimal control parameters based 
on the state of the system. Optimal control parameters maximize the 
return, a target function that is closely related to the signal-to-noise 
ratio (SNR). A maximal return realizes a trade-off between low-noise 
amplitude, linear range of the detector, and stable measurement con-
ditions. See text in “Modeling the Detector Response and Noise” and 
“Optimizing the Sensitivity” sections for details
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In practice, a combination is often used: choosing a small 
set of educated guesses for bias currents and recording val-
ues along a one-dimensional grid of the heating resistor, 
starting from warm to cold (we call this a sweep in the fol-
lowing). The choice of control parameter configuration is 
then based on the amplitude of the detector response. While 
this approach can work, it has two weaknesses: (a) it does 
not systematically account for different noise conditions 
(depending on the control parameters), and (b) the sweeps 
spend an unnecessarily large amount of measurement time 
in regions of the control parameter space that are unlikely 
to be optimal, based on the already assembled knowledge 
from previous observations. Reducing the search domain 
of sweeps requires prior knowledge of the detector, which 
is in general not given. A potentially optimal optimization 
algorithm must also keep track of the dependence of the 
observation on the internal state of the superconductor.

The previous arguments make it clear that the solution 
to the optimization problem is not only the set of optimal 
parameters, but also the awareness of an allowed way to 
approach them, i.e., a sequence. We formulate the problem 
in the framework of RL, a general method to find optimal 
policies for the selection of actions in discrete-time control 
problems, extensively described, e.g., in Ref. [6]. The RL 
terms are summarized in Appendix A.

In RL, we model the problem as the time-ordered inter-
action of an agent with an environment. Based on a learned 
policy, the agent takes actions that depend on its latest 
observation of the environment. The environment returns 
a new observation and a reward for each given action 
(see Fig. 2). The agent’s objective is the maximization 
of returns, which are the sum of rewards over time. The 
estimated future returns for a given action–observation 

combination are called values. They are learned jointly 
with the policy. RL agents can adjust their actions to the 
environment’s state, which gives them an advantage com-
pared to state-independent optimizers. We exploit this 
advantage to handle the hysteresis and time-dependent 
effects of the detector. The optimization of control param-
eters with RL does not require manual interactions. There-
fore, we can fully parallelize the procedure for all operated 
detectors.

RL has already been used to optimize control settings in 
physics in Refs. [7–9] for particle beams, in Ref. [10] for 
nuclear fusion reactors, and in Ref. [11] for superconducting 
quantum bits.

The state-of-the-art RL algorithms for finding optimal 
policies in an environment where the actions and observa-
tions are continuous values include Actor–Critic (AC) meth-
ods, where both policy and value function are approximated 
with neural networks. The Soft AC algorithm (SAC) has 
been shown to perform well in real-world applications, e.g., 
in robotics [12]. RL methods are typically associated with 
a low sample efficiency, i.e., they require many interactions 
between the agent and environment to discover an optimal 
policy. The SAC algorithm is an example of RL with reason-
ably high sample efficiency.

Since testing algorithms on a live detector setup comes 
with an overhead of cost, workload, and generally lim-
ited availability, we provide first a proof-of-principle of 
our method in a virtual environment, modeled after three 
CRESST detectors operated between 2020 and 2023 and 
used for a DM search in Ref. [13]. The operation in a virtual 
environment also contributed to our understanding of the 
workings of the algorithm. Following the proof-of-principle, 
we demonstrate our method by optimizing these three detec-
tors live and directly in the CRESST setup, interfacing the 
experiment control software with our RL agent.

This manuscript is structured as follows:

•	 The general setup of cryogenic detectors with TES is 
introduced in “Cryogenic Detectors with Transition-Edge 
Sensors” section.

•	 We define a reward function that encodes the goal of 
maximizing the sensitivity of the detector based on 
observable detector response parameters and explain the 
approach of optimizing it with SAC agents in “Optimiz-
ing the Sensitivity” section.

•	 We train a SAC agent to optimize a cryogenic detec-
tor in our virtual environment in “Operation in a Virtual 
Environment” section. The virtual environment is based 
on our model for the cryogenic detector response and 
noise contributions, described in “Modeling the Detector 
Response and Noise” section.

•	 We train and operate on the CRESST setup live in “Live 
Operation on the CRESST Setup” section.

Fig. 2   The mechanics of RL: an agent follows a policy function to 
interact with an environment. The environment, defined by its dynam-
ics and reward function, responds to the agent’s actions with a reward 
and observable state (Figure adapted from Ref. [6])



	 Computing and Software for Big Science (2024) 8:1010  Page 4 of 25

Cryogenic Detectors with Transition‑Edge 
Sensors

The sensitivity of cryogenic detectors with TES depends 
on a delicate optimization of their heating and bias cur-
rent, which determine the signal and noise conditions. The 
observed data from particle recoils are pulse-shaped volt-
age traces, and heater pulses can be used to monitor the 
detector response.

A cryogenic detector consists of a monocrystalline 
target onto which a superconducting film, the TES, is 
evaporated or sputtered. The system is cooled in a dilu-
tion refrigerator below the transition temperature of the 
superconducting film. A heating resistor RH , close to but 
electronically isolated from the film on the crystal, is then 
used to fine-tune the temperature of the film, such that it 
is operated in the transition between its normal and super-
conducting state. In this configuration, a small tempera-
ture increase causes a large increase in the resistance of 
the film, which can be measured when read out with a 
low-noise circuit. The situation is schematically depicted 
in Fig. 1 (center). The temperature increase caused by a 
particle recoil in the target is observed to have a pulse-like 
shape (see Fig. 1, right). A model to describe the pulse 
shape is introduced in “Modeling the Detector Response 
and Noise” section. When the TES is operated in an 
approximately linear region of its transition curve, pulses 
are observed with a height directly proportional to the 
temperature increase in the film. When the temperature 
approaches the normal conducting region, the transition 
curve flattens. Therefore, the pulse from a particle-induced 
energy deposition that exceeds the dynamic range of the 
detector will be observed with a significantly flattened 
peak and possibly further distortions.

The operation point (OP) within the superconducting 
transition is the stable temperature–current–resistance 
combination to which the TES is heated while no pulses 
are observed. We use the term OP synonymously for a 
combination of the control parameters digital-analog con-
verted (DAC) and bias current (IB). The heating is mostly 
governed by the constant part of the current applied to 
the heating resistor. In our setup, a DAC value ranging 
between 0 and 10 V is the controlling quantity for this con-
stant current component. The heating resistor is also used 
to inject heater pulses to monitor the detector response. 
Two types of such pulses are injected: test pulses with 
test pulse amplitude (TPA), which is also a value between 
0 and 10, are used to monitor the linearity of the detector 
response and the SNR, while control pulses with maximal 
amplitude are used to drive the detector into the saturated 
region of its response, and ideally out of the superconduct-
ing transition, such that the OP can be inferred from their 

pulse height. The test pulses are designed to have a similar 
shape as particle pulses. The electrical power input of test 
and control pulses are exponentially decaying pulses on a 
short time scale, imitating the heat produced by thermaliz-
ing phonons by a fast component of the heater current. The 
controlling values for the heating current are summed and 
square rooted, such that they linearly control the power 
inputs. The total current is

where P(t) is the template of the injected heater pulse, result-
ing in two independent and linear controls for the electrical 
power input. More details can be found in the mathemati-
cal model in “Modeling the Detector Response and Noise” 
section.

The second control parameter for the detector system is 
the IB applied to the TES. The applied current changes the 
transition temperature and shape of the transition curve of 
the superconductor. The response is different in each sample. 
The applied current also causes Joule heating (self-heating) 
on the superconductor. The electrical power dissipated in 
the TES depends on its momentary resistance and, there-
fore, interacts with the pulse shape of temperature increases, 
causing electrothermal feedback (ETF). Since both the DAC 
and the IB parameters change the temperature of the TES, a 
certain degree of degeneracy is expected between the effects 
of the control parameters. Both parameters have an effect 
on the readout noise independently. However, this impact 
is more complex and in more detail discussed in “Modeling 
the Detector Response and Noise” section. Generally, an IB 
can emphasize the pulse height and intrinsic sensor noise 
over external noise sources, which in most cases positively 
impacts the overall SNR. An optimal combination of the 
DAC and IB has to be found by solving an optimization 
problem, which will be discussed in more detail in “Opti-
mizing the Sensitivity” section.

Optimizing the Sensitivity

The detector’s energy threshold can be estimated from the 
pulse height and noise conditions of injected heater pulses, 
and its minimization can be framed as a numerical opti-
mization problem. The target function is closely related 
to the signal-to-noise ratio, and minimizing it for a set of 
heater pulses results in a trade-off between low noise, linear 
range, and stable measurement conditions. We propose to 
solve the optimization problem with reinforcement learning. 
The general framework and the specific algorithm, the Soft 
Actor–Critic algorithm, that we used for our experiments are 
introduced in this section.

∝
√
DAC + TPA ⋅ P(t),
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The low energy threshold Eth of TES detectors is the 
crucial parameter, making them the ideal choice for many 
physics cases, such as light DM search. We define a low 
energy threshold as the optimization objective for the con-
trol parameters DAC and IB. The optimization problem can 
be written in terms of easily accessible observables for a 
sequence of N injected test pulses. A detailed derivation, 
contained in Appendix B, leads to the target function:

where TPAi , PHi and RMSi are the TPA, pulse height, and 
root-mean-square (RMS) value of the noise in the pre-trigger 
region of the i’th test pulse, respectively. Intuitively, Eq. (1) 
can be interpreted as the negative, inverse SNR within lin-
ear regions of detector response. However, if heater pulses 
are high enough to reach the saturated region of detector 
response, their pulse height additionally decreases. In this 
regime, the optimization objective is a trade-off between 
best noise conditions and a long linear region of detector 
response. The control values DAC and IB that optimize 
Eq. (1) realize a trade-off between lowest noise conditions, 
avoidance of saturation effects (linear range), and stable 
conditions, where the weighting between these three targets 
is determined by the choice of TPA values and the envi-
ronmental conditions. For most of our experiments, we are 
mostly interested in achieving the best possible SNR for 
small pulses. This could be achieved by requiring a small 
and constant value for TPA. However, we do not want to 
constrain our experiments to this special case. We can, there-
fore, additionally weight the test pulses by the inverse of 
their TPA value to achieve an additional emphasis on small 
injected pulses:

All quantities appearing in the equation above—except for 
TPA—depend on DAC and IB. The adapted target Eq. (2) 
has several convenient properties: 

1.	 The TPA of the injected pulse is not explicitly contained 
anymore, and the derived function would also work as a 
target to optimize a detector with triggered pulses from 
a particle source.

2.	 The function can be evaluated on an event-by-event basis 
by measuring the noise RMS in the pre-trigger region of 
a record window containing a pulse and by taking the 
maximum value in the record window as pulse height PH.

(1)argmax
DAC, IB

(
−

N∑

i=1

TPAi

PHi

RMSi

)
,

(2)argmax
DAC, IB

(
−

N∑

i=1

1

PHi

RMSi

)
.

3.	 The target function is always negative, and its upper 
bound is the value zero, which cannot be attained. Fur-
thermore, we can restrict the function to values larger 
than minus one, as other values can only occur when a 
record is corrupted by artifacts in the pre-trigger region, 
e.g., by negative voltage spikes.

Evaluating Eq. (2) for individual events leads to fluctuat-
ing values due to the natural randomness of the sensor 
noise, but it is suitable to be used as a target function in a 
time-dependent optimization problem. We discuss in the 
following the RL framework, which we use to solve the 
above optimization problem.

Reinforcement Learning

RL is a general framework for optimizing time-dependent 
control problems. We provide here a short summary of 
the necessary vocabulary and definitions. For an extensive 
introduction, we refer to Ref. [6]. The original formulation 
uses the framework of Markov decision processes (MDPs), 
which are defined as a 4-tuple of a state space S , an action 
space A , a dynamics function:

which defines state transitions for action-state pairs, and a 
reward function:

that assigns scalars to state transitions. The dynamics and 
reward function jointly define an environment with an 
observable state that can be interacted with through actions. 
The goal of RL is to find a policy function:

that maximizes the return R, the sum of collected rewards 
over time. The policy function is thought of as an agent that 
interacts with the environment and learns through experi-
ence. This framework is schematically summarized in Fig. 2. 
Dynamics and reward function are not directly observable 
for the agent but must be approximated from experience. 
The definition of an MDP automatically satisfies the Markov 
property, i.e., p and r only depend on the current state and 
action and not on prior history. For many practical applica-
tions, the state of the environment is not fully observable, 

r ∶
(
S,A, S�

)
↦ R ∈ ℝ

� ∶ S ↦ �(A ∣ S) =

{ probabilities for A given state S}
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and the Markov property is not necessarily fulfilled with the 
observable state.

For framing detector operation as a reinforcement learn-
ing problem, we define the state and action spaces:

where PH and RMS are the maximum and RMS of the pre-
trigger region of an injected test pulse, IB and DAC are the 
set control parameters at the time of recording the pulse, and 
TPA is the amplitude of the injected voltage pulse. Addition-
ally, after every test pulse with defined TPA, we choose to 
inject a control pulse and include its pulse height CPH in 
the state. The values of PH and RMS scale with the applied 
bias current. To reduce the complexity of the state space, 
we divide them by IB and only allow for positive bias cur-
rents. We normalize the resulting action and state values 
such that they are continuous values within the range (−1, 1) . 
We use Eq. (2) as our reward function for all experiments 
conducted in “Operation in a Virtual Environment” section. 
In “Live Operation on the CRESST Setup” section, we use 
both Eq. (1) and Eq. (2).

The Soft Actor–Critic Algorithm

The SAC algorithm showed good performance in Ref. [12] 
in a real-world robotics task with continuous state and action 
spaces, and we therefore chose it for our application.

AC algorithms use—additionally to the policy function 
� , in this context also called an actor—a value function, or 
critic:

which maps action state pairs to estimates of the future 
return. For the function approximators of both policy and 
critic we use neural networks �� , q� and train their weights 
� , � with gradient descent (for a detailed description see 
Appendix E). For the policy function, we parameterize with 
the outputs of the neural network a Gaussian function with 
the dimensionality of the action space (2D) to obtain an 
explicit conditional probability distribution for actions in a 
given state. The collected experience is stored in an experi-
ence replay buffer from where state transitions (S,A,R, S�) 
are sampled as training data. The term “soft” in SAC stems 
from the fact that the probability of each action in each 
state is non-zero, and the maximization of action entropy is 
explicitly added to the objective. This usually improves the 
stability of the training and exploration.

The critic is trained to minimize the soft Bellman residual 
(Eq. 5 in Ref. [12]):

S∶={PH, RMS, IB, DAC, TPA, CPH},

A∶={DAC, IB},

q ∶ (S,A) ↦ Q ∈ ℝ,

with a� ∼ ��(⋅|S�) , and where the term with the hyperpa-
rameter � as coefficient is the entropy, designed to encour-
age exploration. � is called the temperature. The discount 
factor � is introduced for the numerical stability of long 
trajectories and is not to be confused with the similarly 
named factor used for the reward derivation in Appendix B. 
The weights � of the target critic are discussed later in this 
section.

The target function minimized by the policy quantifies 
the Pareto-optimum between exploration and exploitation:

with a ∼ ��(⋅|S) . There are several technical details of this 
algorithm that stabilize the training procedure and the explo-
ration versus exploitation trade-off:

•	 Two critics are trained simultaneously, and the minimum 
of their outputs is used for inference. Since the optimiza-
tion processes of their weights (and therefore their out-
puts) are stochastic, this scheme improves the stability of 
the training process.

•	 The loss function for the critics uses predicted values by 
their target critics. These are versions of the neural net-
works with weights � that are obtained by exponentially 
smoothing the critic weights � , i.e., by updating after 
each gradient step ( 0 < 𝜏 < 1 ): 

•	 The value of � is automatically adjusted jointly with the 
gradient steps done for the neural networks. The objec-
tive of � is to realize a pre-defined target entropy of the 
policy function, i.e., a certain width of the Gaussian. 
In contrast to the default algorithm introduced in Ref. 
[12], we adjust the target entropy during the training 
such that the policy can converge towards smaller fea-
tures of the parameter space when training progresses. 
Details and motivation for this feature are described in 
Appendix G.

SAC is an off-policy algorithm, i.e., the policy function that 
is learned during training is not necessarily the policy that 
was used to collect the experience. The fact that data collec-
tion and training are two independent processes is useful for 
practical applications and is exploited in “Live Operation on 
the CRESST Setup”.

Jq(�) ∝
(
q�(S,A) −

(
R + �

(
q
�
(S�, a�) − � ln��(a

�|S�)
)))2

,

J�(�) ∝ � ln��(a|S) − q�(S, a),

� ← �� + (1 − �)�.
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Operation in a Virtual Environment

We simulated the response of three detectors currently oper-
ated in the CRESST setup and wrapped it as an OpenAI Gym 
[14] reinforcement learning environment. Within this virtual 
environment, we tested the capability of Soft–Actor Critic 
agents to perform the optimization of the control parameters. 
In total, we trained 315 agents on variations of the simulated 
detectors and hyperparameters of the algorithm. We showed 
that in the simulation, we can reach the performance of a 
human expert, both in terms of optimality of the found OPs 
and in terms of necessary equivalent measurement time for 
the optimization.

Modeling the Detector Response and Noise

The detector’s response to particle recoils and other energy 
depositions depends on the thermal properties of the absorber 
crystal and TES and the electrical properties of the readout 
circuit. We can calculate a simplified model of the expected 
detector response by independently modeling the thermal and 
electrical circuits involved with ordinary differential equations 
(ODEs) and solving them jointly as a coupled ODE system. 
These response calculations were performed analytically for 
the coupled thermal system of the absorber and TES in Ref. 
[15] in a small-signal approximation. Analytical calculations 
for the coupled system of an isolated TES’s thermal and elec-
trical response were studied in Ref. [1].

The interacting components are schematically drawn in 
Fig. 1. The crystal is symbolized by the grey block in the 
center, the TES by the white rectangle enclosing a sketched 
graph of the temperature-dependent resistance of the super-
conducting film Rf (T) that drops sharply around the super-
conductors transition temperature Tc . The thermal circuit 
connects the temperature of the heat bath Tb with the phonon 
temperatures of the crystal Ta and the electron temperature 
of the TES Te . The heat flow in the system is determined by 
the thermal connectivity between the components Gae , their 
individual links to the heat bath Geb and Gab , and the heat 
capacities of the absorber Ca and TES Ce . The heat capacity 
of the TES increases below its superconducting transition by 
a factor of 2.43, see e.g., Ref. [16]. The TES is operated in a 
parallel electric circuit with a shunt resistor Rs and a readout 
coil with inductivity L. The circuit is biased with a current Ib 
from a current source. We neglect the temperature depend-
ence of all properties other than the TES resistance and heat 
capacity, which provides us with a tractable model for a small 
temperature range near the critical temperature. The electri-
cal and thermal equations for the state variables are written in 
Eq. (3). They are coupled through the TES temperature. The 
system’s state variables are the absorber and TES temperatures 
and the current through the TES branch of the readout circuit 

If  . They are all time-dependent variables. However, we omit 
writing their time dependence explicitly for better readability:

The system responds to power inputs in the absorber Pa and 
thermometer Pe , which are introduced by deposited energy 
ΔE , e.g., from particle recoils in the crystal, heater pulses, 
or the constantly applied heating.

We model injected heater pulses with a given TPA as an 
exponential decay, we call their decay time �TP . A particle 
recoil produces an initial, distinct population of athermal 
phonons of which a share � thermalizes on a time scale �n 
in the TES and a share (1 − �) in the absorber, mostly by 
surface scattering. Assuming an exponential time scale for 
thermalization is equivalent to assuming a monochromatic 
athermal phonon population, which is a sensible approxima-
tion for our purposes.

Additional heat input in the system is due to the Joule 
heating by the bias current of the TES, with power Rf I

2
f
 . This 

contribution is crucial, as it strongly influences the TES tem-
perature and introduces an internal state in the system. Mul-
tiple stable equilibrium states can exist with high and low 
bias heating. Which state the TES occupies depends on the 
past history of the system. The heat inputs are summarized 
in Eq. (4) and (5), where we introduced factors � and �H to 
distribute the power inputs from the constant heating and 
test pulses between the TES and absorber. These factors 
absorb the spatial dependence of the temperatures, which 
may be non-homogeneous across the system’s geometry for 
the locally induced power from the heating resistor. Further-
more, they absorb the potentially different energy distribu-
tions of produced phonons in the constant heating and the 
fast heater pulses. The factors � , � , and �H are all values 
between zero and one. The power input from athermal pho-
non thermalization is in good approximation uniform across 
the geometry of the components, as they spread ballistically 
across the system on a much shorter time scale than they 
thermalize.

Geometric effects of the temperature distribution in the 
TES were studied in Ref. [15], where it was shown that such 
effects could be absorbed in the thermal parameters of the 
system. The evolution of the power inputs for a pulse onset 
at t = t0 can be written as follows:

(3)

Ce(Te)
dTe

dt
+
(
Te − Ta

)
Gea +

(
Te − Tb

)
Geb =

Pe(t),

Ca

dTa

dt
+
(
Ta − Te

)
Gea +

(
Ta − Tb

)
Gab =

Pa(t),

L
dIf

dt
+ RsIb − (Rf (Te) + Rs)If = 0.
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with

for particle pulses and

for test pulses. The detector response is distorted by elec-
trical and thermal noise produced in the system, leading to 
a finite energy resolution. The contributions to the observed 
noise power spectrum (NPS) can be modeled as stochas-
tic fluctuations of the right-hand side of Eq. (3). The major 
noise contributions that we include in our model are:

•	 The thermal noise, or phonon noise, ΔIth . This noise 
arises from natural thermal fluctuations along the thermal 
coupling of the thermometer and bath, and its contribu-
tion is often sub-dominant.

•	 The Johnson noise of the TES ΔIJf  and the shunt resistor 
ΔIJs . This noise comes from fluctuations in the move-
ment of the electrons through the resistors that typically 
dominate the NPS for high frequencies. Excess electrical 
noise was observed in experiments and described in the 
literature (e.g., Ref. [1]) and can originate from other 
electrical components, setup uncertainties, or in the TES. 
We absorb such excess electrical noise by scaling ΔIJs 
accordingly.

•	 The noise introduced by the superconducting quantum 
interference device (SQUID) amplifier ΔIsq , which meas-
ures the magnetic field introduced by L, i.e., the final 
signal that is digitized and recorded. Its contribution is 
determined by isq , a constant value and property of the 
used SQUID system.

•	 The 1/f noise ΔI1∕f  , also called flicker noise. This noise 
appears across all TES and other devices, and its origin 
is not fully clarified. It, therefore, cannot be predicted 

(4)Pe(t) = Pe,pulse(t) + Rf I
2
f
+ �H

DAC

10
RHI

2
H
,

(5)Pa(t) = Pa,pulse(t) + (1 − �H)
DAC

10
RHI

2
H
.

(6)Pe,pulse(t) = �(t − t0)�
ΔE

�n
exp

(
t − t0

�n

)
,

(7)Pa,pulse(t) = �(t − t0)(1 − �)
ΔE

�n
exp

(
t − t0

�n

)
,

(8)

Pe,pulse(t) =

�(t − t0)�
TPA

10
exp

(
t − t0

�TP

)
�RHI

2
H
,

(9)

Pa,pulse(t) =

�(t − t0)(1 − �)
TPA

10
exp

(
t − t0

�TP

)
�RHI

2
H
,

precisely but depends on an empirical scale factor 
ΔRf ,flicker∕Rf0 . Ref. [17] proposes a connection of this 
noise with resistance fluctuations of the TES. It domi-
nates the NPS for low frequencies and is the most harm-
ful noise contribution.

•	 Several characteristic peaks in the NPS are introduced by 
the power supply voltage at 50 Hz and its harmonics.

Other known noise contributions exist but were omitted 
because they are sub-dominant or difficult to model. This 
includes internal fluctuation noise, burst noise, and any noise 
sources that would arise in the absorber crystal.

To acquire useful descriptions of the detector response 
and noise, we solve Eq. (3) on two temperature scales inde-
pendently: the macroscopic scale of observable, individual 
energy depositions from heating, particle recoils, or test 
pulses, and the microscopic scale of thermal and electrical 
fluctuations. We assume that these scales do not interact 
with each other.

On a macroscopic scale, we solve the ODEs Eq.  (3) 
numerically, such that we can include the non-linear depend-
encies of Ce and Rf  . We use SciPy’s odeint method, a wrap-
per of the FORTRAN LSODA solver that is especially 
suitable for solving stiff ODE systems [18], to calculate the 
observed pulse shape. On the microscopic scale, the small 
signal approximation is very well satisfied, and we use it to 
derive explicit formulas for the observed NPS in a given OP, 
described in Appendix C. We use the method described in 
Ref. [19] to generate colored noise traces (grey noise trace 
superposed with the pulse in Fig. 3, top right) with the cal-
culated NPS. Once pulse shape and noise in a given OP and 
for defined Pe and Pa are calculated, we superpose them and 
translate them with the known SQUID settings to a voltage 
trace that would be observed in a real-world setup.

The detector response can additionally depend on the tra-
jectory through which an OP is approached. To include this 
large-scale time dependency, we start trajectories after reset-
ting the virtual environment from an edge of the parameter 
space and solve the ODE system continuously with large 
mesh grid sizes for intervals without energy depositions and 
small ones for intervals where signals are simulated.

For the tests reported in “Operation in a Virtual Environ-
ment” section, we adjust all parameters of our simulation to 
resemble the detector response and noise of three detectors 
currently operated in the CRESST experiment. Data from 
these detectors were previously used in a spin-dependent 
DM search in Ref. [13]. Two of the detectors, called Li1P 
and Li2P, are optimized to collect athermal phonons pro-
duced by nuclear recoils within their absorber crystals 
made of lithium aluminate. The third detector, Li1L, uses a 
silicon-on-sapphire (SOS) wafer to collect the scintillation 
light produced by particle recoils in the scintillating target 
of Li1P. Li1P and Li1L are operated within a joint housing. 
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However, for this work, we will treat them as independent 
detectors. We show in Fig. 3 exemplary for Li1P the com-
parison between measured and simulated transition curve, 
pulse shape, and NPS, which all agree to a satisfying degree 
for our purposes. Small differences in the slope of the NPS at 
intermediate frequencies remain, which are not sufficiently 
modeled in our analytic noise description. However, the 
magnitude of these deviations is far below the dominating 
frequencies in the NPS (the 1/f noise). In Appendix D, the 
physics parameters extracted from the measurement and 
used for the simulation are summarized, as well as further 
details about the used functions and process.

Training

We tested the optimization of control parameters with RL in 
a virtual environment. For this, we wrapped the simulation 
of the three CRESST detectors introduced in “Modeling the 
Detector Response and Noise” section in an OpenAI1 Gym 

environment [14] and defined actions, state, and reward as 
described in “Optimizing the Sensitivity” section. We sent 
test pulses in increasing order, with TPA values containing 
all integers from 1 to 10 and the values 0.1 and 0.5. After 
each test pulse, the agent could adjust the control settings, 
which jointly represents one environment step. We ran epi-
sodes of 60 environment steps and reset the detector to a 
randomly chosen value on the edge of the control parameter 
space at the start of each episode. The value ranges included 
in the control parameter space are chosen from reasonable 
experience and are not tuned to individual detectors. One 
environment step corresponds to the equivalent of 10 s of 
measurement time on the CRESST setup.

For each of the three detectors, we tried 3 scenarios of 
the training procedure and behavior of the environment. 
For each scenario, we trained with 7 different hyperpa-
rameter settings and generated for each of those combina-
tions 5 detector and agent versions. The detector and agent 
versions differed from each other by an individual choice 
of the random seed for the stochastic training procedure. 
Additionally, we randomized the physics parameters of 
the simulation by 20% of their original value to reduce 

Fig. 3   Simulation and measurement of a 5.95 keV X-ray event 
induced by a calibration source in the Li1P detector. (upper left) The 
OP (black/blue lines) within the simulated transition curve of the 
TES (light red line). A measurement of the transition curve is shown 
for comparison (grey dots). (upper right) The voltage pulse induced 
in the simulated SQUID amplifier without noise (red) and overlayed 

with noise generated from the simulated NPS (black). A meas-
ured voltage pulse is shown for comparison (grey dashed). (lower 
part) The simulated NPS (black) has individual noise contributions 
(colored). The 1/f, excess Johnson, and EM interference noise com-
ponents were adjusted to fit the measured NPS (grey dashed)

1  The main development of this open source project was recently 
transferred to a fork maintained by the Farama foundation [20].
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the impact of stochastic fluctuations in the training and 
detector parameters. The subset of hyperparameters that 
were changed in the 7 different settings are the learning 
rate and batch size for the training of the neural networks, 
the discount factor � for the RL training, and the number 
of gradient steps for which the neural networks are trained 
on the replay buffer after each environment step. The first 
setting corresponds to the default setting chosen in Ref. 
[12] but with a lower batch size and a higher number of 
gradient steps. For each of the detectors, an individual 
SAC agent was trained for 35 versions in three different 
training scenarios, leading to a total of 105 versions for 
each detector. One such training lasts 40 episodes. The 
three scenarios are: 

1.	 In the first scenario, we apply the procedure as outlined 
above without any adaptions.

2.	 In the second scenario, we perform a fast sweep in the 
control parameter space before the training starts and 
add the collected experience to the replay buffer. This 
sweep is done by gradually lowering the DAC value 
from its maximal value to zero while the IB value oscil-
lates for each DAC value, either from its highest value 
to zero or vice versa. In total, 120 environment steps are 
spent in the initial sweep.

3.	 In the third scenario, we study an effect that is expected 
in real-world environments: temperature changes in cry-
ogenics generally take place slowly, as additional com-
ponents of the structures surrounding the detector might 
be impacted by the heating on much larger time scales 
than the observed pulse shapes. The potential impact 
of this handicap is simulated by delaying the effect of 
the constant heating controlled by the DAC value on 
an exponential time scale of 20 s, the equivalent of two 
environment steps. This delay is also implemented for 

the other scenarios, mostly to stabilize the behavior 
of the numerical ODE solver, but set to a value of 1 s, 
which has no observable impact on the time scale of 
environment steps.

The resulting average reward within the training is shown 
in Fig. 4 for all versions and detectors. For the large major-
ity of trained detector versions, the return settles on a high 
value after 15 to 20 episodes, which indicates that an opti-
mal OP is found. This exploitation period is preceded by an 
exploration period until the agent finds the superconducting 
transition and a good OP within it. More technical details 
for implementing and training the SAC agents can be found 
in Appendix E. The different choices of hyperparameters are 
studied in more detail in Appendix E. The overall conclusion 
is that a higher number of gradient steps, a higher learning 
rate, a lower � value, and a higher batch size seem to have a 
positive impact on the speed of convergence, but also lead 
to a higher risk of failure, i.e., that no good OP is found 
after training. This is expected since all these interventions 
shorten the exploratory period of the training.

Results

We call trajectories “inference trajectories” when we take 
the expectation of the Gaussian policy function instead of 
sampling from it to test the performance of the trained agent. 
In such trajectories, the agent moves directly to the learned 
optimal OP, which is usually close to the steepest point of 
the superconductor’s transition curve. In our simplified mod-
els of the curves, this is at half of its normal conducting 
resistance.

We have observed that the SAC agent changes the control 
parameters after each pulse. This behavior can result from 
one of two situations: first, it is possible that multiple OPs 

Fig. 4   The average rewards per episode during training for all 105 
versions of the three detectors Li1P (red, left), Li1L (blue, center), 
and Li2P (green, right). The thick lines are the mean values of all 
curves corresponding to the first/second/third scenario (violet/tur-
quoise/yellow). The mean values rise close to the apex of the curves 
after 15 to 20 episodes. The second and third scenarios reach con-

vergence significantly faster than the first. During the first 5 to 10 
episodes, only little return is collected. The distribution of curves is 
clearly not normally distributed around the mean value, which is due 
to the different hyperparameter settings in the training of the individ-
ual detector versions
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in the parameter space are equally optimal, in which case 
the random initialization of the neural networks determines 
which action the agent prefers to take. A trick to prevent 
this random choice of actions is to penalize the agent for 
switching the OP. We experimented with adding an addi-
tional regularization term to the reward function, which 
penalizes large steps in the parameter space, by subtracting 
the Euclidean distance between current and new OP, multi-
plied by a hyperparameter � . The response of the agent to 
this regularization is delicate. It did not change the behavior 
visibly for small values of � , and had a negative impact on 
the exploratory behavior of the agent for large values of � . 
We found a suitable trade-off by using the value � = 0.1 . 
This behavior and the regularization strategy are discussed 
in more detail in Appendix F.

A second explanation for the changing choice of OPs 
is that different OPs are optimal for different magnitudes 
of injected test pulses. This behavior is expected since we 
know that our formulation of rewards is a trade-off between 
low noise and linear detector response, and larger injected 
pulses are more likely to exceed the region of linear detector 
response. This switching between OPs is studied in more 
detail with the experiments conducted on the live CRESST 
setup in “Live Operation on the CRESST Setup” section, 
to prevent effects that only emerge in the virtual environ-
ment. We found that both effects explained above likely 
impact the choice of action and jointly cause the switching 
between OPs during inference trajectories. However, this is 
not a limitation of our method since one can always fix the 
OP corresponding to a specific magnitude of injected test 
signal for the final operation of the experiment, the phys-
ics data taking. On the contrary, it allows one to choose an 
OP that provides the desired trade-off between linearity and 
low-noise conditions for a certain recoil energy of interest. 
A possibility to generally prevent this behavior would be 
to redefine the environment step not as the injection of one 
test pulse but as the injection of the whole sequence of test 
pulses, calculate the reward, and choose a new action only 
after all test pulses are injected. While this would certainly 
prevent the switching of the agent between OPs due to differ-
ent optimality for different injected TPAs, acquiring a suit-
able amount of experience in the environment would take 
much longer. Another possibility is to randomize the order 
of the test pulses, which would leave only jumps due to the 
random initialization of the neural networks.

We tested the optimality of the OPs that the SAC agents 
found by comparing them with a benchmark value that 
a human expert for the physics data taking of a previous 
measurement period found. The detectors simulated in the 
virtual environment were tuned such that their expected 
performance in their optimal operation point is the same 
as the performance reached by the human operators in that 
data taking period (subject to Gaussian randomization of 

the parameters, see “Modeling the Detector Response and 
Noise” section). We calculated the average reward of 60 test 
pulses from the previously recorded data with the bench-
mark OP. Furthermore, we ran inference trajectories with the 
trained SAC agents on their individual detector versions and 
recorded the average reward during those inference trajec-
tories. The results are visualized in Fig. 5. The comparison 
between different detector versions and the benchmark value 
is subject to uncertainties. First, randomizing the physics 
parameters in the detector versions also leads to a randomi-
zation of the overall achievable energy threshold and aver-
age reward. Second, the results shown in Fig. 5 include all 
training and environment scenarios and choices of hyperpa-
rameters, while some of them lead to systematically better or 
worse results than others. Third, the benchmark values were 
obtained by the effort of a team of several human experts and 
recorded during physics data taking. In this period, control 
settings were not adjusted over a long time period, leading 
to stable equilibrium conditions. On the contrary, the RL 
agent frequently adjusts the control settings, which can cause 
long-term thermal relaxation processes and, therefore, less 
stable noise baselines and a higher RMS value. However, we 
can state the overall observation that the SAC agent reaches, 
given suitable choices of training hyperparameters, similar 
average rewards as the human experts could.

Overall, it was shown in this section that SAC agents 
can be trained to find optimal OPs for TES-based cryo-
genic calorimeters within our virtual environment. The 
required equivalent measurement time varies with the cho-
sen hyperparameters and detector but can be estimated to 
be several hours. While an expert can likely perform this 
task equally fast by hand, our procedure can be parallelized 
for all operated detectors and executed during time periods 

Fig. 5   Histogram of the average reward achieved during inference 
trajectories with the trained agents for the 105 versions of Li1P (red, 
top), Li1L (blue, center), and Li2P (green, bottom) each. Rewards 
from versions with opportune choices of hyperparameters cluster 
around a benchmark value (black line), achieved by a human expert. 
The suboptimal versions appear at lower reward values in the histo-
gram. The results of Li1L surpass the benchmark value, since higher 
pulses saturate stronger in this detector, which can be accounted for 
with the machine learning method
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when manual interactions are cumbersome, e.g., at night. In 
the following section, we validate our method by operating 
on the real-world environment of the CRESST experimen-
tal setup. While all experiments in this section were con-
ducted with standard detector designs, our method can also 
be applied to more complex designs with more interacting 
control parameters. This is shown in Appendix H, where we 
train on virtual detectors with two TES.

Live Operation on the CRESST Setup

We interfaced our reinforcement learning framework with 
the setup control software of the CRESST experiment and 
performed the first proof-of-principle measurements in the 
real world. We tuned the algorithms for fast and reliable 
convergence and reached convergence within approximately 
1.5 h of measurement time in all six optimization runs, which 
is faster than the typical human expert. The optimality of 
the found OPs is well within the expectation compared to 
our results in the virtual environment. We discuss how the 
algorithms can be tuned in follow-up measurements to reach 
the optimality achieved by human experts.

A measurement interval of 12 days in February 2023 
was dedicated to testing the method of optimizing detec-
tor operation live on the CRESST underground setup in the 
Laboratori Nationali del Gran Sasso (LNGS). Experiments 
were performed with Li1P, Li1L, and Li2P, the three detec-
tors of which virtual twins were described in “Modeling 
the Detector Response and Noise” section and used for RL 

experiments in virtual environments in “Operation in a Vir-
tual Environment” section.

The communication between our Python-based RL 
infrastructure and the control and data acquisition (DAQ) 
software of the CRESST setup was realized via messages 
sent through an MQTT broker, which is a widely used inter-
net-of-things communication protocol. The DAQ system, 
which acted as the RL environment, induced test and con-
trol pulses through the heater electronics and recorded the 
detector response. Pulse shape parameters were calculated, 
and a message was broadcast via the broker and received by 
the machine on which we ran the RL infrastructure. On this 
machine, we ran two parallel processes: 

1.	 The first process received messages, calculated rewards, 
and wrote data to the replay buffer. A policy model was 
queried with the state of each received message. The 
outputs were compiled into a reply containing new con-
trol settings.

2.	 The second process continuously trained the agent with 
a SAC algorithm on the experience replay buffer. The 
process was paused if the desired number of gradient 
steps was reached before new data were added to the 
replay buffer. The accessibility of the replay buffer from 
both processes was realized through memory-mapped 
arrays.

This setup is schematically visualized in Fig. 6. We ran 
experiments consecutively as our current implementation 
of device communication does not support work on multiple 
channels in parallel. A total of 48 experiments were run with 

Fig. 6   Schematic visualization of the implemented setup to optimize 
CRESST detector control. (right side) The detectors are operated in a 
cryostat and read out by a DAQ system. The parameters of recorded 
test pulses are sent via a Message Queues Telemetry Transport 
(MQTT) [21] broker to a client, as state. (left side) The client calcu-

lates the reward from the state, stores the data in an experience replay 
buffer, and responds to the DAQ system with new control parameters. 
An independent process trains the AC agent on the buffer. This is a 
symbolic visualization, the algorithm we are using is the SAC algo-
rithm
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measurement times between 1 and 3 h, where the majority 
was used for implementation and debugging of the setup, 
and the final 6 runs were used as performance benchmarks 
of the method.

One performance run was performed with Li1P, two with 
Li1L, and three with Li2P. Each run was started with a rough 
sweep of the action space, as done in scenarios 2 and 3 of 
the detector versions in “Operation in a Virtual Environ-
ment” section. Furthermore, we observed delays until strong 
changes in the heating took place, as modeled in scenario 3 
of the virtual versions. We made individual adaptions to the 
hyperparameters, the configuration of the state space, and 
the number and length of training episodes in all runs. These 
and further details of the training process are summarized in 
Appendix E. The objective of the choice of hyperparameters 
was to obtain a proof-of-principle by achieving fast and reli-
able convergence of the algorithms, with less emphasis on 
the optimality of the found OPs. This is mainly represented 
by the smaller choice of the regularization parameters � , 
and the constant (instead of decreasing) target entropy. This 
choice was made because our goal for this initial testing 
period on the main setup was to demonstrate that the system 
generally worked. Furthermore, not all experiments in the 
virtual environment were concluded at the time of the meas-
urements on the CRESST setup, and some insights were 
only reached afterwards (e.g., the importance of the entropy 
schedule, see Appendix G).

The average rewards obtained during training, depending 
on the number of test pulses sent since the start, are shown in 
Fig. 7. In all runs, a high plateau of rewards is reached before 
600 test pulses were sent, corresponding to roughly 1.5 h of 
measurement time. In comparing the runs, we have qualita-
tively observed that a state space containing more variables 

leads to a longer required time until an optimal OP is found, 
but also to generally better responsitivity to the environment. 
After training is completed, we run inference trajectories 
with all trained agents, i.e., we choose the expectation of the 
Gaussian policy function instead of sampling from it. They 
all find suitable OPs and feature a similar behavior that is 
exemplary visualized for Li1L run2 in Fig. 8. We observe 
that the agent adjusts the OP to the TPA value of the injected 
test pulse expected next in the cyclic test pulse queue. The 
same observation was made in our virtual environment in  
“Operation in a Virtual Environment” section. By compar-
ing the recorded noise traces, we can see that the agent pre-
fers an OP with high IB and low DAC for small injected 
pulses but one with a higher DAC and lower IB for larger 
injected pulses. We interpret this behavior as the existence 
of two different optimal trade-offs between the linearity of 
the detector response and noise conditions, between which 
the agent cyclically switches, depending on the TPA of the 
pulse. If an approximate energy calibration of the detector 
can be performed, i.e., a relation between the recoil energy 
ΔE and the TPA, the policy can be used to optimize the 
control parameters of the detector for the PA and ΔE-region 
of interest. As a potential limitation, the precision of this 
energy calibration can itself depend on the OP.

The optimality of the OPs found with RL, quantified as 
the average reward during inference trajectories, is shown 
in Fig. 9. The rewards obtained in the virtual environment 
and the human-optimized benchmark value are compared. 
The comparison is subject to similar uncertainties as stated 
in “Operation in a Virtual Environment” section (except the 
uncertainty from randomization of physics parameters in the 
simulation). Additionally, it is possible that the overall noise 
conditions of the detectors changed since the data-taking 
period during which the benchmark values were obtained 
since several warm-up tests were performed on the CRESST 
setup in the meantime (see Ref. [22]). However, we con-
trolled for this uncertainty by monitoring the energy resolu-
tion of detectors over time, and did not notice systematic 
changes. Since the algorithms were not tuned to achieve the 
highest possible rewards but fast convergence, it does not 
come as a surprise that the optimality is behind the human-
optimized benchmark values. However, the obtained rewards 
are within the distribution of rewards obtained in the simula-
tion. Therefore, we expect that tuning the algorithms towards 
optimal rewards will lead to similar results as we observed 
in the virtual environment by reaching the human-optimized 
benchmark values. The technical reason for our expectation 
is discussed in the remainder of this section. More practical 
tests on the main CRESST setup were not possible within 
the same measurement slot due to the tight operation sched-
ule of the experiment for physics data taking.

Fig. 7   Average rewards per test pulse sent during the live training 
on the CRESST setup, smoothed with a moving average of 60 test 
pulses. Results from six runs with different training settings are 
shown for Li1P (red), Li1L (blue, blue dashed), and Li2P (green, 
green dashed, green dotted). For this comparison, we re-calculated 
the rewards after training with Eq. (2), while during training for some 
of the runs, the unweighted reward function Eq. (1) was used
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In Fig. 10, we study the critic and policy function of the 
SAC that was trained on Li1L, run 2. We observe a severe 
mismatch between the chosen actions and the maximum of 
the critic function. This behavior is counter-intuitive since 

we would expect that the policy has learned to choose the 
actions that are identified as most opportune by the critic 
once both neural networks have converged. However, the 
SAC algorithm is intrinsically built on the stochasticity of 
its policy function. The policy does not learn to position 
its expected value on top of the maximum of the critic, 
but it converges to a region of the action space where ran-
domly sampled actions from its probability distribution 
are expected to have maximal values. Since we simultane-
ously force the Gaussian policy function to have a certain 
target entropy, it cannot converge to features of the critic 
function on smaller value scales than its entropy allows. 
Therefore, it is impossible for the policy function to con-
verge towards the maximum of the critic function and the 
best possible OP. This behavior is further discussed on 
a simpler toy model in Appendix G. In our experiments 
in the virtual environment, we avoided this behavior by 
lowering the target entropy during the training, allowing 
the Gaussian policy to shrink to smaller value ranges. The 
testing of entropy scheduling in the virtual environment 
was not fully completed at the time of operation on the 
main CRESST setup. It was a deliberate decision not to use 
this entropy schedule in our experiments on the real-world 

Fig. 8   Visualization of the cyclic adjustment of the control param-
eters during an inference trajectory on Li1L, run 2. The ascending 
trajectory of injected test pulses is visualized in the circle in the anti-
clockwise direction. The voltage traces of the observed pulses (black) 
are normalized to a fixed voltage interval. The pulses are normalized 
to the applied bias current, leading to smaller pulses and noise for 
higher IB. The TPA values (bold) and measurement time since the 
start of the test pulse trajectory are written next to the voltage traces. 

The polar plot includes the IB and DAC values that were set while 
the corresponding pulse was recorded. Their values are normalized to 
the interval − 1 to 1 (see Appendix E for normalization ranges). The 
polar axis starts at − 0.5, and the distance between the grey rings cor-
responds to an increase of 0.5. Three OPs are marked with black, red, 
and white crosses, corresponding to OPs that were chosen for low, 
intermediate, and high TPA values

Fig. 9   Histogram of the average reward obtained during inference tra-
jectories with the trained agents on the real-world versions of Li1P 
(red, top), Li1L (blue, center), and Li2P (green, bottom) each. The 
rewards obtained in the simulation (grey, dotted histogram) and the 
human-optimized benchmark value (black line) are shown for com-
parison. The obtained rewards are worse than the benchmark value 
but correspond to our expectations from the simulation. For a discus-
sion of the achievable optimality, see also Fig. 10
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setup (a) for the reason mentioned above, and (b) because 
it carries an increased risk of non-convergence, effectively 
counteracting the goal of the performance runs, namely a 
proof-of-principle of convergence in the real world. We 
therefore decided to perform the number of performance 
runs (6) that were possible within the limited operating 
time with the safer setting of a constant target entropy. At 
this point, we expect that implementing a similar entropy 
schedule on the live setup will lead to similar optimal-
ity as was obtained in the virtual environment and by the 
human expert.

In summary, we have provided proof-of-principle that 
RL is a practically applicable method for finding optimal 
control parameters for cryogenic TES-based calorimeters 
in the real world. Our studies from the virtual environment 
discussed in “Operation in a Virtual Environment” section 
generalized well to the results obtained on the CRESST 
setup. The time period needed for training is comparable 
to or shorter than the time period that a human expert 
needs to do the optimization via manual interventions. 
The achieved average rewards in inference trajectories are 
within the distribution of average rewards obtained in the 

virtual environment but slightly worse than the bench-
mark values. It is expected that similar optimality as in 
the virtual environment can be achieved by implementing 
a suitable entropy schedule and choosing suitable hyper-
parameters of the algorithm.

Conclusion

In this work, we present studies for automating the optimi-
zation of control parameters of TES-based cryogenic calo-
rimeters with RL. We simulated the response and noise of 
three CRESST detector modules and trained SAC agents 
to find optimal OPs for them. We sampled randomized 
versions of the detectors and systematically studied hyper-
parameters of the training and RL setting on a total of 105 
different versions of each detector. We tested our method 
on the real-world versions of the detectors operated in 
the underground CRESST setup in six representative test 
runs across the three detectors. In all our experiments, the 
required equivalent measurement time to complete training 
was between 1 and 3 h, fast enough for practical usage. On 
the live setup, convergence was reached in all runs within 
1.5 h, which is faster than most human experts can perform 
the task. The training was successful on all representative 
runs on the live setup and most runs in the virtual envi-
ronment. The found OPs reach the optimality of a human-
optimized benchmark value in the virtual environment. 
The tests on the live setup were not dedicated to achiev-
ing the highest possible rewards but emphasized stable 
convergence. We discussed the necessary adjustments to 
the algorithm to achieve similarly optimal OPs on the live 
setup as human experts achieved.

Since our measurements on the main CRESST setup 
were limited in time and dedicated to a general proof-of-
principle of the system, the test of the entropy scheduling, 
which was necessary to reach optimality in our virtual 
environment, is subject for future work. The presented 
method will be implemented in future control software 
of the main CRESST setup, in the scope of the planed 
upgrade of the electronics. At that point it could be com-
bined with more control parameters, e.g., that of an active 
magnetic field compensation, since the magnetic field can 
also influence the shape of the transition curve. Further-
more, richer information extracted from the observed pulse 
shape could improve the agents’ stability and convergence 
speed, e.g., a combination with networks that discriminate 
pulses from artifacts and pile-up as reported in Ref. [23]. 
In stable measurement setups, the rate of test pulses can 
be increased, reducing the required measurement time. 
It is also conceivable to replace the injected test pulses 
with a sinusoidal signal in the relevant frequency range 
of pulses to directly measure the SNR by separating the 

Fig. 10   Visualization of the Gaussian policy probability distribution 
(blue) and the critic function (grey-black) over the two-dimensional 
action space, for a fixed “current” state (red text, lower left) and Li1L 
run 2. The maximum of the critic function is marked with a white 
plus. The current control parameters are marked with a red cross, that 
of OPs that were chosen by the agent for high/low TPA values with a 
white/black cross. These crosses correspond to the OPs marked with 
similar crosses in Fig.  8. The trajectory of actions that are chosen 
by the agent in inference is drawn with a red line, partially covered 
by the blue policy function. We can clearly see a mismatch between 
the actions preferred by the policy function and the maximum of the 
critic function. The reason for this mismatch is discussed in the text 
and in Appendix  G. The expected lines of constant heating caused 
by the DAC through the heating resistor and the IB through Joule 
heating are shown in the background (light, transparent green). As 
expected, the island of actions that the critic prefers stretches along 
the constant heating lines and corresponds to a fixed resistance of 
the TES. The state values are normalized to the interval − 1 to 1. The 
original value ranges are written in Table 2
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injected frequency from other noise with frequency filters. 
On the algorithmic side, we could combine more of our 
prior knowledge about TES detectors with the model-free 
SAC algorithm. Currently, our method’s main risk of fail-
ure is that the agent might not find the island of suitable 
DAC and IB value combinations, which correspond to 
the superconducting transition, in its exploration period. 
This risk could be lowered by forcing the agent to sample 
from unexplored regions of the action space until a cer-
tain reward is obtained (e.g., a value above − 0.15) or by 
extending the period of the initial sweep. Furthermore, we 
did not explicitly use the knowledge that a change in the 
noise conditions should be visible whenever the supercon-
ductor switches from a normal to a superconducting state.

In summary, the presented method can significantly 
reduce the required time for the initial control parameter 
optimization of large multi-detector setups, thereby increas-
ing the time available for physics data-taking. Together 
with the deep learning method published previously by the 
CRESST collaboration [23], for automated data cleaning for 
cryogenic detectors, we can dramatically reduce the human 
workload required for tuning of a scaled-up number of cryo-
detectors. Furthermore, we expect some of the learnings we 
describe to be transferable to the general problem of auto-
mating experiments with RL. We have demonstrated that 
cryogenic detectors, with their unique characteristics such as 
hysteresis and noise peculiarities, can be efficiently tuned on 
a large scale using RL, achieving the precision and speed of 
human experts. This promising application of RL opens the 
door to its extensive exploration in other fundamental phys-
ics experiments that operate with a high number of channels.

Appendices

Appendix A: Glossary

This glossary contains only the most important terms from 
the paper that may not be familiar to all readers.

•	 Action: A combination of control parameters that the 
agent chooses to set.

•	 Agent: The RL model that interacts with the environ-
ment through actions, states, and rewards. Contains, in 
our case, a policy and a value function.

•	 Bias current, IB: The current applied to the readout cir-
cuit of the TES. One of two control parameters in the RL 
optimization method.

•	 Environment: A system that interacts with the agent by 
receiving actions and returning states and rewards. In the 
context of “Operation in a Virtual Environment” section, 
this is a simulation of a detector. In “Operation in a Vir-

tual Environment section”, this is the physical detector 
and DAQ system.

•	 Episode: The training of an RL agent is split into finite 
episodes. In our work, an episode contained 60 time 
steps.

•	 Heater: A resistor placed on the target crystal of the 
detector to control the temperature and inject test pulses.

•	 Heating, DAC: A quantity that controls the constant 
component of the current applied to the heater. Its main 
purpose is to control the temperature of the TES.

•	 Noise width, RMS: The root-mean-square value of the 
pre-trigger region of a record window. This value is a 
good estimate of the current noise conditions of the 
detector.

•	 Operation point, OP: The combination of temperature, 
resistance and bias current in which the TES resides 
when no pulses are observed. We use this synony-
mously to refer to a combination of control parameters 
DAC and IB.

•	 Policy/Actor: A function that maps a state to an action. 
Learning an optimal policy from the observed data, one 
that maximizes the return, is the agent’s goal.

•	 Pulse height, PH: The maximum of a record window 
with the mean value of the pre-trigger region sub-
tracted.

•	 Regularizer: An additional, additive term in the reward 
function that should prevent or emphasize certain 
behaviors of the trained model. Usually, the value of 
the regularizing term is intentionally kept small com-
pared to the main target function.

•	 Replay buffer: A storage of previously observed action-
state transition.

•	 Reward: A scalar value obtained by the agent from the 
environment in response to an action.

•	 Return: The sum of obtained rewards.
•	 Soft Actor–Critic, SAC: A specific algorithm that 

determines the design and details of the training for an 
agent.

•	 State: A vector-valued quantity obtained by the agent 
from the environment in response to an action.

•	 Test pulse amplitude, TPA: The amplitude of the 
injected test pulses.

•	 Transition curve: The complex dependence of the TES 
resistance Rf  on the temperature. This curve is almost 
flat above the transition temperature Tc , and zero below 
it. It has a non-trivial shape close to the transition tem-
perature.

•	 Transition-edge sensor, TES: A superconducting film 
operated in the transition from superconducting to 
normal conducting state and used as a highly sensitive 
temperature sensor.
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•	 Value function/Critic: A function that maps action-state 
pairs to estimates of the future return.

In our notation, we keep all values that are contained in 
the RL action- or state space capitalized, without sub-
script and italic, e.g., IB for the bias current. Variables 
that appear in formulas are italic but not necessarily capi-
talized and may have subscripts, e.g., IH for the heater 
current.

Appendix B: Derivation of the Reward Function

The reward function stated in “Optimizing the Sensitivity” 
Section can be derived as follows. Our overall objective is to 
minimize the energy threshold Eth . The optimization prob-
lem can be written as:

We need to estimate the energy threshold with easily acces-
sible observables. To do so, we can exploit the fact that the 
noise amplitudes are small compared to the dynamic range 
of the detector and therefore fall in an approximately linear 
detector response regime. Therefore we can define a voltage-
energy calibration constant � (small signal approximation), 
and replace the energy threshold with a voltage threshold 
Uth:

Furthermore, the energy threshold of a physics search is usu-
ally defined as a multiple of the noise resolution, which can 
for our purposes be reasonably well approximated by meas-
uring the observed noise’s root-mean-square (RMS) value:

Finally, � is proportional to the ratio between a set of N 
injected test pulses with amplitudes TPAi , the observed 
pulse height PHi:

The quantity RMSi refers to the noise RMS evaluated on 
the records of the individual test pulses. We omitted writ-
ing the functional dependencies in this derivation for better 
readability. All appearing quantities depend on DAC and 
IB, except TPA. The quantity Uth is the observed voltage 
pulse height corresponding to the energy threshold. The 
assumption of a linear response is not necessarily satisfied 

(10)argmin
DAC, IB

(Eth).

(11)⋯ = argmin
DAC, IB

(�Uth).

(12)⋯ ∝ argmin
DAC, IB

(�RMS).

(13)⋯ ∝ argmin
DAC, IB

(
N∑

i=1

TPAi

PHi

RMSi

)
.

in practice, as the transition curve of the superconductor 
can saturate (flatten) when larger signals are injected. In 
our objective, this flattening of pulses would be equally 
penalized as worse noise conditions. By the choice of 
injected TPAs, and their frequencies, we therefore implic-
itly introduce a trade-off between optimal noise condi-
tions and a linear detector response in the range of applied 
test pulse amplitudes. For the physics goals of light DM 
searches we are primarily interested in good performance 
for small signals, but for practical reasons, e.g., observ-
ability of calibration lines, we want to monitor the detector 
response also for higher energies. Instead of injecting large 
test pulses less frequently we therefore choose to suppress 
their relevance for the optimization objective, by introduc-
ing a weight factor which we choose as the inverse signal 
strength w = 1∕TPA . For usage as a target function in the 
following sections, we rephrase Eq. (1) to a maximization 
objective:

Appendix C: Noise Contributions

The description of noise contributions presented here fol-
lows Ref. [1], the model of flicker noise Ref. [17]. We 
consider only the thermal equation of the TES and the 
electrical equation of its readout circuit, the first and third 
line in Eq. (3), and ignore fluctuations that might arise 
from the interaction of absorber and TES. These equa-
tions can be linearized in a small signal approximation. 
Then, equations for the resulting temperature fluctuations 
in the TES ΔTe and current fluctuation in the TES branch 
ΔIf  for small, linear inhomogeneities, i.e., power fluctua-
tions ΔPe in the TES and voltage fluctuations ΔU in the 
readout circuit, can be derived. These can be summarized 
in a transition matrix:

where the matrix elements read differently for noise that 
has its origin in the TES, labeled int, and in other parts 
of the readout loop, dubbed ext. The relevant matrix ele-
ments are:

(14)

argmin
DAC, IB

(
N∑

i=1

wi

TPAi

PHi

RMSi

)

≡ argmax
DAC, IB

(
−

N∑

i=1

RMSi

PHi

)
.

(
ΔTe
ΔIf

)
=

(
s11(w) s12(w)

s21(w) s22(w)

)int∕ext (
ΔPe

ΔU

)
,
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where we used the same definitions as in Ref. [1]:

The thermal or phonon noise can then be calculated by

the electrical Johnson noise in the TES by

the electrical Johnson noise in the shunt resistor, scaled by a 
factor EJ to account for excess electrical noise, by

and the 1/f or flicker noise by

where 
(

ΔRf ,flicker

Rf0

)
 and � are parameters to be extracted from 

the data.
Additionally, the SQUID produces an amount isq of white 

noise that is directly added to the SQUID output current, 

sint
21
(w) = −

1

If0

[
L

�elLI

+
(
Rf0 − Rs

)

+ 2�iw
L�

LI

(
1

�
+

1

�el

)
−

4�2w2�L

LI

]−1
,

sint
22
(w) = −sint

21
(w)If0

1

LI

(1 + 2�wi�),

sext
21
(w) = −

1
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�el�ILI

+ 2Rf0

+ 2�iw
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(
1

�I
+

1

�el

)
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]−1
,
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22
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21
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LI − 1
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L
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decoupled from feedback in the readout circuit. There are 
also peaks in the spectrum from electromagnetic interference 
added with height p0/p1/p2 at the frequencies 50/150/250 Hz 
and scaled to the observed heights in the data as well.

The noise contributions are assumed to be Gaussian 
and mutually independent and can therefore be summed 
quadratically.

Appendix D: Parameters Used in the Simulation

We report in Table 1 the parameters used for the simulation 
that was introduced in “Modeling the Detector Response 
and Noise” section.

Table 1   Values used in the simulation of the detectors Li1P, Li1L and 
Li2P

See text, “Modeling the Detector Response and Noise” section and 
Appendix C for definitions

Quantity Li1P Li1L Li2P

Vf  (mm3) 4.08 ⋅ 10−4 1.44 ⋅ 10−5 4.08 ⋅ 10−4

Va (mm3) 4 ⋅ 103 2 ⋅ 102 4 ⋅ 103

Ce (pJ/mK) 2.11⋅10−3 3.5⋅10−5 2.5⋅10−3

Ca (pJ/mK) 0.113 1.61⋅10−4 9.7⋅10−2

Geb (pW/mK) 0.123 2.66⋅10−2 0.138
Gab (pW/mK) 1.565 9⋅10−3 1.16
Gea (pW/mK) 0.214 2.27⋅10−3 0.1
�n (s) 3.82⋅10−4 9.4⋅10−5 4⋅10−4

�TP (s) 4.97⋅10−3 2.98⋅10−3 4.97⋅10−3

� 0.115 0.056 0.104
� 0.144 0.26 0.056
�H 0.9 0. 0.8
Rs ( Ω) 4⋅10−2 4⋅10−2 4⋅10−2

RH ( Ω) 6.75 7.25 5.25
Rf0 ( Ω) 0.11 0.115 0.1
L (H) 3.5⋅10−7 3.5⋅10−7 3.5⋅10−7

Tc (mK) 30.7 23.0 29.4
k (1/mK) 4.4 13.5 5.52
� 2.25⋅10−2 6.25⋅10−3 2⋅10−2

IH ( �A) 4.8 0.904 8.27

isq (pA/
√
Hz) 1.2 1.2 1.2

EJ 1 1 1
ΔRf ,flicker

Rf0  (pJ)
8⋅10−5 1⋅10−4 8⋅10−5

� 2 1 2
p0 1.5 ⋅ 10−5 3 ⋅ 10−5 3 ⋅ 10−5

p1 1 ⋅ 10−5 2 ⋅ 10−5 2 ⋅ 10−5

p2 1.5 ⋅ 10−5 2 ⋅ 10−5 2 ⋅ 10−5

IBmin ( �A) 0.5 0.5 0.5
IBmax ( �A) 17.9 17.9 17.9
� (V/�A) 5.77 5.77 5.77
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We calculated the heat capacities for the absorbers fol-
lowing the Debye model, with the Debye temperature of 
lithium aluminate calculated from the elasticity constants 
from Ref. [25], with the value 429 K, and for sapphire taken 
from Ref. [26], with the value 1041 K. We evaluated them at 
the transition temperature Tc and scaled them to the absorber 
volume Va.

We calculated the heat capacities for the tungsten TES 
with the Sommerfeld constants taken from Ref. [27]. The 
values are evaluated at Tc and scaled to the TES volume Vf  . 
The stated value does not contain the increase by a factor 
2.43 appearing in the transition curve, which is dynamically 
calculated when the differential equations are numerically 
solved.

A part of the tungsten film is covered with aluminum. 
This bilayer has a higher transition temperature compared 
to the uncovered tungsten, due to the proximity effect, and 
functions solely as an athermal phonon collector. The cal-
culated heat capacity only includes the part of the tungsten 
film that is not covered by aluminum since the heat capacity 
of the superconducting bilayer is exponentially suppressed.

The normal conducting resistance of the TES Rf0 and its 
transition temperature Tc are measured values.

Rs , � , L, isq , IH , � , IBmin and IBmax are known values of the 
setup. � is the conversion factor that translates a current in 
the SQUID branch of the readout circuit to the observable 
voltage, determined by the SQUID gain settings.

The thermal couplings, as well as �n and � were fitted to 
match the pulse shape of observed absorber recoils, using 
Eqs. (10) and (11) from Ref. [15].

� , �H , RH , ΔRf ,flicker

Rf0

 , k, EJ , p0 , p1 , p2 and � are adjusted to 

match the measured data. The adjustment was done by hand 
since we could not obtain a satisfying fit of the system of 
differential equations to data with automated fitting algo-
rithms. The parameter k controls the steepness of the TES 
transition curve, which we simplify as a logistics function. 
The derivative of the transition curve at its steepest point has 
the value 4kRf0 . The parameter � is a scale factor between 
the injected test pulses and the constant heating current. The 
values p0 , p1 , and p2 are coefficients of numerical templates 
of the electrical poles in the frequency spectrum.

All stated values are effective parameters that, within our 
model, reproduce the behavior of the real-world detectors. 
However, they are not necessarily a unique combination of 
parameters that do so. We can therefore not claim that they 
correspond exactly to the true underlying physical quanti-
ties. For this reason, we do not report uncertainties, but only 
the exact values we used. We expect that large systematic 
uncertainties exist for our estimates.

When we randomized the values stated in Table 1 for the 
detector version used for training in “Operation in a Virtual 
Environment” section we multiplied them by a Gaussian 

random number ∼ N(� = 1, � = 0.2) . For every detector 
version we tested if the transition was within reach with 
the available heating and bias currents and resampled the 
parameters with a new random seed otherwise.

When we adjusted the values to two TES versions used in 
Appendix H, we copied the parameters of the TES to a third 
thermal component, with an independent readout circuit, but 
divided the collection efficiency � by two, assuming that the 
athermal phonon population is shared equally among the two 
TES. We also divided the size of the TES and its thermal 
links to the heat bath and the absorber by two.

Appendix E: Details of Models and Training

We use for the training and evaluation of models the Vienna 
CLIP computing cluster. For the training and evaluation of 
neural networks models we used the PyTorch library [28].

Details of Training in Virtual Environment

We ran individual single-CPU jobs for the training of each 
detector version, they took between 1 and 2 h of CPU time 
to be completed. The detector versions with two TES mod-
ules needed between 6 and 8 CPU hours of training time. 
Depending on the number of gradient steps about half of 
the time was spent in the simulation which is CPU-bound 
in our current implementation. We would therefore not gain 
significantly through operation on a GPU.

The policy and value functions of our SAC agents are 
2-layer neural networks with 256 nodes in each layer, and 
ReLU activation functions.

We optimized their weights with the ADAM optimizer 
[29], using a weights decay of 1 ⋅ 10−5 . The learning rates, 
batch sizes, � values of the temporal difference method, and 
the number of gradient steps after each environment step 
were different in each scenario of detector versions and 
stated in Fig. 11. For training the 2 TES detector versions, 
we used the same hyperparameters as in the first scenario. 
We put the � update parameter of the SAC algorithm to a 
value of 0.005 and the initial entropy coefficient � to 0.2. 
The training was started as soon as one full batch of state 
transitions was collected in the replay buffer. Gradients were 
clipped at a maximum norm of 0.5.

We calculated the target entropy for the policy function 
as the entropy of a multivariate normally distribution with 
a given standard deviation. We fixed the number of dimen-
sions of the Gaussian to the size of the action space and the 
standard deviation at the beginning of the training to the 
value 0.088. We reduced the target standard deviation of the 
Gaussian with every gradient step such that it reached 0.05 
times its original value at the end of the training.
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Study of Hyperparameters in the Virtual Environment

The results from different hyperparameter settings and sce-
narios in the virtual environment are visualized in Fig. 11. 
Several systematic effects are visible. From this study, only 
the combined effect of faster training and higher obtained 
final rewards can be accessed.

First, the initial sweep performed in the second and third 
scenarios seems to have a positive systematic impact on 
the obtained rewards. This is expected: without an initial 
sweep, the agent starts sampling actions in a Monte Carlo 
style at the beginning of the training, since it has no knowl-
edge of the island in parameter space that leads to an OP in 
the superconducting transition. This has two disadvantages 
compared to the sweep. First, we can generalize the com-
putational cost of evaluating a function on a grid compared 
to evaluating it by Monte Carlo random sampling from the 
error estimates in the theory of finite elements. From there 
we know that the computational cost for an evaluation on 
the grid is lower for spaces with less than 4 dimensions. 
It is therefore expected, that the sweep will find specific 
regions in the 2-dimensional action space faster than the 
Monte Carlo style sampling. Second, in this initial explora-
tion period, the agent performs large jumps between control 
values. These can lead to thermal relaxations on a longer 
time scale than the environment steps, and can therefore 
make the identification of beneficial parameter space more 
difficult. The situation changes drastically once the agent 
discovers the islands in parameter space that correspond to 
the superconducting transition. In this situation the agent 
learns from every new data point it takes and can converge 
towards the regions that lead to the highest returns, signifi-
cantly outperforming any standard Monte Carlo or sweep 
method. The combination of the initial, fast sweep and the 
finetuning with the temporal difference method seems there-
fore to be a good choice for our size of action space. Starting 

from 4 or more action space dimensions, we expect that the 
initial sweep would lose its advantage.

Another observation is that a higher number of gradient 
steps can lead to a higher risk of overall failure. Also this 
is expected since more gradient steps per data point taken 
effectively lower the exploration period and can cause the 
agent to converge towards fluctuations outside the beneficial 
region of parameter space. A similar effect can be attributed 
to a higher learning rate and a larger batch size. The results 
with a discounting factor � = 0.9 were better compared to 
the default value � = 0.99 . The value � = 0.6 obtained a sig-
nificantly higher risk of failure, however, the effect is hard to 
disentangle from the effect of the higher number of gradient 
steps.

The delayed heating did not have a negative impact on the 
performance during training, on the contrary, it even had a 
slight positive impact. The reason for that is not ultimately 
clear. It is, e.g., possible that the agent spends more time 
during the training period, which is dominated by explora-
tion, in certain regions of the control parameter space and 
can identify them more easily as opportune or unfavorable. 
The effect was reproducible in follow-up experiments with 
different random seeds, we therefore believe that it is not due 
to random fluctuations.

Details of Live Training

For live training on the CRESST setup, we connected a com-
puting node of the Vienna CLIP cluster with an SSH tunnel 
to the MQTT broker that was operated in the LNGS network.

We used for all performance runs the same neural net-
work architectures for policy and value functions as for train-
ing in the virtual environment. The neural networks were 
trained with the ADAM optimizer, with a batch size of 16 
and 20 gradient steps, respectively, after each test pulse, a 
learning rate of 3 ⋅ 10−4 and weight decay of 1 ⋅ 10−5 . Usually 

Fig. 11   Average reward during all training episodes of the different 
versions of the virtual detectors, grouped into violins for each sce-
nario (violet, turquoise, yellow) and setting of the hyperparameters 
learning rate (lr), batch size (bs), � and gradient steps (gs). Each 
violin includes five versions of Li1P, Li1L, and Li2P each, sampled 
and trained with individual random seeds. The red bars indicate the 

mean values of the violins and their thickness the density of the rep-
resented return distribution. The dotted horizontal lines indicate the 
mean values of the collected returns of the first (lowest), second, and 
third (highest) scenarios of detector versions. The dotted vertical lines 
separate the violins with different hyperparameter settings. The val-
ues for the hyperparameters are written in the ticks on the abscissa
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performing the 20 gradient steps took much less time than 
the interval between test pulses, the total time required for 
training was therefore determined by the measurement time 
on the experiment. Gradients were clipped at the norm 0.5.

We set the initial entropy of the SAC algorithm to 0.2, and 
the � update parameter to 5 ⋅ 10−3 . Several hyperparameters 
and settings of the RL problem were varied throughout the 
six performance runs, and an overview of them is contained 
in Table 2. We fixed the target entropy to the entropy of a 
2-dim Gaussian with a standard deviation of 0.088. Contrary 
to our training in the virtual environment, we did not reduce 
this value while training progressed.

In some of the runs the reward function was weighted 
with the inverse TPA values (see “Optimizing the Sensitiv-
ity” section). The time interval between test pulses was set 
to a higher value than the default of 10 s for two runs, to test 
if thermal relaxations on larger time scales have an impact 
on the training. However, no such impact was observed. The 
normalization intervals for the DAC and IB values were 
individually adjusted for the detectors, as well as the value 
range of the analog-digital converter (ADC). The state space 
of the RL problem was adjusted to contain the TPA and CPH 
values for a subset of the runs. Furthermore, the division of 
the values that scale with the ADC and IB (PH and RMS) 
by the IB value is done for a subset of the runs.

From the limited amount of data, it is hard to make gen-
eral statements about the impact of certain adjustments on 
the environment. We can see that the runs that included the 
TPA value in the state took generally longer to converge, by 
comparing Li1L runs 1 and 2, and Li2P runs 2 and 3. How-
ever, we cannot fully disentangle this effect from the impact 
of the weighting of the reward function, and the regulariza-
tion factor � . Furthermore, by comparing Li2P runs 1 and 
2 it seems to us that dividing the ADC-dependent values 
by IB has a positive impact on the speed of convergence. 
These observations match our expectations, namely that a 

simpler state space with fewer redundancies leads to faster 
learning. However, we cannot exclude that our observations 
are dominated by random fluctuations.

It is also important to note, that our systematic study of 
hyperparameters in the virtual environment was not con-
cluded before our time slot for the experiments on the live 
setup. Therefore, not all learnings from the virtual environ-
ment could be used for the live runs.

Appendix F: Regularization of Jumps in Inference

We dedicate this section to studying the impact of the regu-
larization term −�(A1 − A0)

2 , which we added to the reward 
function. Here A1 and A0 are the current and previously taken 
actions, and therefore the set control parameters. Our inten-
tion of this regularization is to mitigate random jumps of 
the control parameters that are caused by the initial, random 
initialization of the neural networks, and are not useful for 
obtaining higher rewards.

To study this effect we use a toy environment. For this, we 
imagine the agent to be contained in a two-dimensional box, 
where certain positions lead to a higher reward than others. 
With its actions the action jumps to different positions in the 
box. We define the action space as the position to which the 
agent wants to jump, therefore a two-dimensional box in the 
value range − 1 to 1. The first two dimensions of the state 
space are the current position of the agent in the box, and 
therefore a record of the previously taken action. The state 
space has a third dimension that cyclically takes the values 
− 1, 0, and 1, with no regard for the actions of the agent. This 
third dimension of the state space signals the position of a 
target line in the state space to the agent, i.e., a line along 
which the agent will obtain the highest rewards. The posi-
tion of the target line changes cyclically, and the reward is 
defined as the Euclidean distance between the position of the 

Table 2   Hyperparameter and 
settings of the RL problem used 
for the six performance runs on 
the CRESST underground setup

See the text for explanations

Detector run Li1P
1

Li1L
1

Li2P
1

Li2P
2

Li2P
3

Li1L
2

� 0.9 0.99 0.99 0.99 0.99 0.99
Reward Eq. (1) Eq. (1) Eq. (1) Eq. (1) Eq. (2) Eq. (2)
TP int. (s) 20 20 10 10 10 10
DACmax 10 10 5 5 5 10
IBmin 0.5 0.1 0.5 0.5 0.5 0.1
IBmax 5 3 5 5 5 3
ADC range ±10 ±0.3 ±1 ±1 ±1 ±0.3

TPA in state Yes No No No No Yes
CPH in state No No No No Yes Yes
ADCs/IB No No Yes No Yes Yes
� 0 0 0 0 0.01 0.01
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agent and the closest point on the target line. This situation 
is depicted in Fig. 12.

The optimal policy to solve this toy problem is simple: 
the agent has to find a point on each of the target lines and 
understand in which order it has to jump between these 
three points. Which point the agent chooses along the target 
line does not have any impact on the obtained rewards. The 
optimal policy is therefore not unique. We trained our SAC 
agent to learn this policy, with the expected outcome. The 
trajectory that the agent follows is shown in Fig. 12 (violet, 
� = 0 ). The position that is chosen by the agent along the 
target lines is only determined by the random initialization 
of the network, which leads to convergence to the closest 
accessible minimum in its loss function that simultaneously 
satisfies the weight regularization applied by the ADAM 
optimizer.

We introduce now our manual regularization term that 
penalizes large jumps of the agent. We train our agent for 
four choices of the regularization parameter � : 0.001, 0.01, 
0.1, and 1.0. The behavior that we want to enforce is, that the 
agent should jump between the target lines along the shortest 
possible path, i.e., along a line orthogonal to the target lines. 
We can observe that for the smallest value of � (Fig. 12, red) 
the regularization has practically no impact. In this regime, 
the effect of the weight regularizer fully dominates over 
the effect of the jump regularizer that we introduced. For 
� = 0.01 (Fig. 12, green) and 0.1 (Fig. 12, orange) we can 
see the desired effect: the agent moves almost orthogonally 
to the target lines. Good choices for � are likely contained 
in this value range for the toy problem at hand. The choice 
itself is a trade-off: we can see that for � = 0.1 the effect of 
the introduced regularization leads to a slight deviation from 
the target lines, which is generally not the desired outcome. 

However, the agent’s movement is less orthogonal to the 
target lines for the setting � = 0.01 . Finally, for a very large 
setting of � , we can see that the agent stays almost at the 
central target line, and stops responding to the environment.

Appendix G: Entropy Mismatch for Action 
Fine‑Tuning

The SAC algorithm enforces a target entropy H to its Gauss-
ian policy function by performing gradient updates on � 
jointly with the training of the actor and critic neural net-
works. The loss function used for the temperature updates is

This keeps the policy from collapsing to small features (fluc-
tuations of the target function w.r.t. the actions) in the action 
space early in the exploratory period of the training, effec-
tively hindering the agent in its exploration. The automated 
entropy-based tuning of the temperature parameter � , which 
governs the exploration versus exploitation trade-off in the 
loss functions of the actor and the critic, is one of the key 
features of the algorithm (see Ref. [12]). For other entropy-
based algorithms, an educated guess for this parameter must 
be made beforehand.

Jt(�) ∝ −�
(
ln��(a|S) +H

)
.Fig. 12   Movement of a SAC agent in a two-dimensional toy box 

environment. The goal of the agent is to jump close to the cyclically 
changing target lines (black dashed). The paths taken by an agent in 
inference trajectories are drawn with colored lines, for different mag-
nitudes of the jump regularization parameter �

Fig. 13   Toy environment of an agent that climbs a mountain. The 
reward function (black) has the shape of a side view of the moun-
tain that ends in a cliff on one side. The critic function (green) learns 
the shape of the reward function sufficiently well. The policy func-
tion (red) learns to overlap with the mountain, instead of placing its 
expected value on top of the mountain (see text for details). To keep 
all actions in the interval between − 1 and 1, the actions sampled 
from the Gaussian are again input to a hyperbolic tangent function 
in the SAC algorithm. This leads to a deviation between the mean, 
the median, and the mode of the resulting probability distribution. 
We show by comparing the expected/mean value of the policy (red 
dashed) with its median (grey) and its modus (peak of the red Gauss-
ian) that this effect does not play a significant role in our experiment
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However, the entropy target leads to a side-effect that can 
be problematic: since the policy function is forced to have a 
certain width, it has problems resolving structures known to 
the critic function on smaller scales than its own width. We 
explain this issue by using a simple toy model, that is also 
visualized in Fig. 13.

We design an environment that corresponds to the side-
view of a mountain, which ends with a cliff on one side 
(Fig. 13, black line). The reward is equal to the height of the 
agent on the mountain. The state and action space are both 
one-dimensional, where the action determines the position 
in the state space to which the agent jumps next. The optimal 
policy for this environment is, to jump directly to the peak 
of the mountain and stay there.

We trained a SAC action on our toy environment. The 
agent learned to immediately jump in inference trajectories 
from its starting position to a high position on the moun-
tain, which is the expected behavior. However, the expected 
value of the policy function, and therefore the action that is 
chosen in inference trajectories, does not correspond to the 
peak of the mountain, but to a position displaced towards 
the flatter mountain slope (Fig. 13, red Gaussian probability 
distribution and red dot). This is counter-intuitive since the 
critic function learned the shape of the reward function very 
well, and its maximum corresponds almost perfectly to the 
peak of the mountain (Fig. 13, green line, and green dot). 
The reason for this mismatch is, that the SAC algorithm is 
trained as a stochastic policy, i.e., it is expected that also 
during inference trajectories actions are sampled from the 
probability distribution. The agent therefore seeks to overlap 
an as large part of the policy distribution with the mountain, 
instead of shifting the peak of the Gaussian to the peak of 
the mountain. The entropy-enforced width of the Gaussian 
leads then to the magnitude of the misplacement between 
the Gaussian and mountain peaks.

However, for our purpose, where we want to tune param-
eters to their optimal values, we want to make deterministic 
instead of stochastic choices, i.e., picking the expected value 
of the policy function in inference trajectories. We resolved 
this issue for our experiments in the virtual environment by 
gradually lowering the entropy target throughout the train-
ing, which enables the SAC agent to converge towards finer 
structures in the control parameter space.

Appendix H: Detector Designs with More 
Components

It is straightforward to generalize the ODE system describ-
ing a cryogenic detector to designs with more thermal 
components or TES. Such devices were operated in previ-
ous CRESST runs, e.g., composite designs with a separate 
carrier crystal [30] and mounting structures instrumented 

with individual TES [2]. Designs with TES separated on 
a remote wafer were proposed for the operation of delicate 
target materials [31]. For such non-standard scenarios, the 
electrothermal system can be jointly written in matrix-vector 
notation:

where underlined (double underlined) quantities are vector 
(matrix) valued, and G describes the symmetric matrix of 
thermal couplings between components. All other quantities 
are equivalently generalized to vectors from Eq. (3). As we 
generally neglect noise contributions that do not originate in 
the TES or the readout circuit directly, our previously intro-
duced description of the detector noise remains unchanged. 
Designs with multiple TES and heaters are typically harder 
to optimize as the problem’s dimensionality grows with the 
number of control parameters and observables to optimize. 
To show the applicability of our method also for this more 
challenging regime we adjust for our studies in Appendix H 
the parameters of Li1P, Li1P, and Li2P such that they resem-
ble a scenario for cryogenic detectors with two TES and 
correlated heatings.

(15)

Ṫ(t) = diag(C)−1
(
P
(
t, T(t), If (t)

)

+ diag
(
Gb

)(
Tb − T(t)

)
+ (G − diag(G1))T(t)

)
,

(16)
İf (t) = diag(L)−1

(
diag

(
Rs

)
Ib

− diag
(
If (t)

)(
Rf (T(t)) + Rs

))
,

Fig. 14   Return per episode for Li1P (red), Li1L (blue) and Li2P 
(green) adjusted to two TES. The thick line represents the mean of 
five trained versions of the detectors, sampled with different ran-
dom seeds. The shaded region shows the upper and lower standard 
deviations. We show benchmarks (dashed lines) for all three detec-
tors. These benchmarks were calculated by taking the average reward 
in the last episode of the training for all versions of the single-TES 
detectors that were trained in “Operation in a Virtual Environment” 
section, and multiplying it by two. The benchmark is reached by Li1P 
and Li2P, but not by Li1L
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Training and Results

We investigated how the measurement time required 
for training scales with the dimensionality of the control 
parameter space, and the complexity of the detector design. 
We apply the equivalent procedure described throughout 
“Operation in a Virtual Environment” section to our adap-
tions of Li1P, Li1L, and Li2P with two TES. We make no 
adaptations to the default training procedure (first scenario) 
and the default (first) set of hyperparameters. The training is 
repeated for five versions and random seeds and the resulting 
average rewards during training are visualized in Fig. 14 for 
the detectors separately. The training is successful for 4/5 
versions of Li1P and Li2P, and 3/5 of Li1L. For the other 
versions, only one TES transition is found, and the agent 
sticks to this local return maximum instead of exploring the 
environment further. In a practical application, this trapping 
in local optima can be prevented by enforcing more explora-
tion and accepting longer training times. Finding optimal 
OPs takes roughly twice as long as for the version with a 
single TES. Since this more complex detector scenario uses 
4 instead of the 2 actions as in the standard detector designs, 
and requires roughly twice the training time, we can hardly 
extrapolate a scaling behavior for even larger state spaces. 
In a worst case scenario, the scaling behavior could be expo-
nential, however, since neural networks do not suffer from 
this curse of dimensionality (exponential scaling behavior) 
in many other tasks, we have reason to believe that the scal-
ing behavior would be better. In our experiments, we used 
with the two-TES detectors a five times higher target entropy 
than in the experiments with the standard design. The target 
entropy is lowered while training progresses.
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