

RECEIVED: April 18, 2019 ACCEPTED: May 23, 2019 PUBLISHED: June 6, 2019

Erratum: Local analytic sector subtraction at NNLO

L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati

Dipartimento di Fisica and Arnold-Regge Center, Università di Torino, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

INFN, Sezione di Torino,

Via P. Giuria 1, I-10125 Torino, Italy

E-mail: magnea@to.infn.it, maina@to.infn.it, gpellicc@to.infn.it, signoril@to.infn.it, torriell@to.infn.it, uccirati@to.infn.it

ERRATUM TO: JHEP12(2018)107

ARXIV EPRINT: 1806.09570

- 1. In eq. (3.25) \mathcal{N}_1 should be replaced by $-\mathcal{N}_1^2$.
- 2. Eq. (3.55) should be replaced by

$$\overline{\mathbf{S}}_{ij} RR = \frac{\mathcal{N}_{1}^{2}}{2} \sum_{\substack{c \neq i, j \\ d \neq i, j, c}} \left[\sum_{\substack{e \neq i, j, c, d \\ f \neq i, j, c, d}} \mathcal{I}_{cd}^{(i)} \mathcal{I}_{ef}^{(j)} B_{cdef} \left(\{\bar{k}\}^{(icd, jef)} \right) + 4 \sum_{\substack{e \neq i, j, c, d}} \mathcal{I}_{cd}^{(i)} \mathcal{I}_{ed}^{(j)} B_{cded} \left(\{\bar{k}\}^{(icd, jed)} \right) + 2 \mathcal{I}_{cd}^{(i)} \mathcal{I}_{cd}^{(j)} B_{cded} \left(\{\bar{k}\}^{(ijcd)} \right) + \left(\mathcal{I}_{cd}^{(ij)} - \frac{1}{2} \mathcal{I}_{cd}^{(ij)} - \frac{1}{2} \mathcal{I}_{dd}^{(ij)} \right) B_{cd} \left(\{\bar{k}\}^{(ijcd)} \right) \right].$$
(3.55)

3. Eq. (3.57) should be replaced by

$$\overline{\mathbf{S}}_{ij} \, \overline{\mathbf{C}}_{ijk} \, RR = \frac{\mathcal{N}_1^2}{2} C_{f_k} \left[8 \, \mathcal{I}_{rk}^{(i)} \, \mathcal{I}_{rk}^{(j)} \, C_{f_k} + \mathcal{I}_{rr}^{(ij)} - 2 \, \mathcal{I}_{rk}^{(ij)} + \mathcal{I}_{kk}^{(ij)} \right] B \left(\{ \bar{k} \}^{(ijkr)} \right), \quad (3.57)$$

and the text below eq. (3.57) should be replaced by 'where the same $r \neq i, j, k$ should be chosen for all permutations of ijk'.

- 4. In eqs. (3.59), (3.60), (3.78), and (C.12) the index r should be replaced everywhere by l, and the index r' should be replaced everywhere by r. Accordingly, in the text below eqs. (3.60) and (C.12) the sentence 'where the same $r \neq i, j$ and $r' \neq i, k, l'$ should be replaced by 'where the same $r \neq i, k, l'$.
- 5. In the last two lines of eq. (C.1) the terms proportional to $Q_{ij} C_A \delta_{f_k g}$ should change sign.
- 6. The second line of eq. (C.5) should include a multiplicative factor $(\delta_{fig}\delta_{fjg} + \delta_{\{f_if_j\}\{q\bar{q}\}})$.
- 7. Eq. (C.8) should be replaced by

$$\overline{\mathbf{C}}_{ij} \, \overline{\mathbf{S}}_{ij} RR = \mathcal{N}_1 \, \frac{P_{ij}^{\mu\nu} \left(s_{ir}, s_{jr}\right)}{s_{ij}} \, \overline{\mathbf{S}}_j \, R_{\mu\nu} \left(\left\{ \bar{k} \right\}^{(ijr)} \right) \\
= \frac{\mathcal{N}_1^2}{2} \sum_{\substack{c \neq i, j \\ d \neq i, j, c}} \mathcal{J}_{cd}^{(ij)} B_{cd} \left(\left\{ \bar{k} \right\}^{(ijr, jcd)} \right). \tag{C.8}$$

Accordingly, eq. (C.9) should be removed, together with the preceding comment $c' \neq i, j, c$ must be the same that was used in the definition of $\overline{\mathbf{S}}_{ij} RR$, and we have defined the quantities'. Eq. (C.10) should be replaced by

$$\mathcal{J}_{cd}^{(ij)} = -\left[\delta_{f_{i}g}\delta_{f_{j}g} 2C_{A}\left(\frac{x_{i}}{x_{j}} + \frac{x_{j}}{x_{i}}\right) + \delta_{\{f_{i}f_{j}\}\{q\bar{q}\}}T_{R}\right] \frac{2\bar{s}_{cd}^{(ijr)}}{s_{ij}\bar{s}_{jc}^{(ijr)}\bar{s}_{jd}^{(ijr)}} \\
- (d-2)\frac{Q_{ij}(s_{ir}, s_{jr})}{2\tilde{k}^{2}s_{ij}}\left[\frac{2\tilde{k}\cdot\bar{k}_{c}^{(ijr)}}{\bar{s}_{jc}^{(ijr)}} - \frac{2\tilde{k}\cdot\bar{k}_{d}^{(ijr)}}{\bar{s}_{jd}^{(ijr)}}\right]^{2}.$$
(C.10)

Below eq. (C.10) the text 'As in eq. (3.57) ... expressions in eqs. (C.9) and (C.10).' should also be removed.

8. Eq. (C.13) should be replaced by

$$\overline{\mathbf{S}}_{i} \overline{\mathbf{S}}_{ik} \overline{\mathbf{C}}_{ijkl} RR
= 4 \mathcal{N}_{1}^{2} \delta_{f_{k}g} C_{f_{j}} C_{f_{l}} \mathcal{I}_{jl}^{(i)} \frac{\overline{s}_{lr}^{(ijl)}}{\overline{s}_{kl}^{(ijl)} \overline{s}_{kr}^{(ijl)}} B(\{\bar{k}\}^{(ijl,klr)})
+ 2 \mathcal{N}_{1}^{2} \delta_{f_{k}g} C_{f_{l}} \mathcal{I}_{jl}^{(i)} \left[\frac{\overline{s}_{lr}^{(ijl)}}{\overline{s}_{kl}^{(ijl)} \overline{s}_{kr}^{(ijl)}} B_{jl}(\{\bar{k}\}^{(ijl,klr)}) - \frac{\overline{s}_{lr}^{(ilj)}}{\overline{s}_{kl}^{(ilj)} \overline{s}_{kr}^{(ilj)}} B_{lj}(\{\bar{k}\}^{(ilj,klr)}) \right],$$
(C.13)

and the subsequent comment should be replaced by 'where the same $r \neq i, k, l$ should be chosen for all permutations in $\pi(\pi(ij)\pi(kl))$ '.

9. Eqs. (C.14) should be replaced by

$$\overline{\mathbf{S}}_{i}\overline{\mathbf{S}}_{ij}RR = -\mathcal{N}_{1}\sum_{c\neq i} \mathcal{I}_{cd}^{(i)}\overline{\mathbf{S}}_{j}R_{cd}\left(\{\bar{k}\}^{(icd)}\right) \\
= \frac{\mathcal{N}_{1}^{2}}{2}\sum_{c\neq i,j} \left[\sum_{\substack{e\neq i,j,c,d\\f\neq i,j,c,d}} \mathcal{I}_{cd}^{(i)}\delta_{f_{j}g}\frac{\overline{s}_{ef}^{(icd)}}{\overline{s}_{ej}^{(icd)}\overline{s}_{fj}^{(icd)}}B_{cdef}\left(\{\bar{k}\}^{(icd,jef)}\right) \\
+ 2\sum_{e\neq i,j,c,d} \mathcal{I}_{cd}^{(i)}\delta_{f_{j}g}\frac{\overline{s}_{ed}^{(icd)}}{\overline{s}_{ej}^{(icd)}\overline{s}_{dj}^{(icd)}}B_{cded}\left(\{\bar{k}\}^{(icd,jed)}\right) \\
+ 2\sum_{e\neq i,j,c,d} \mathcal{I}_{cd}^{(i)}\delta_{f_{j}g}\frac{\overline{s}_{ed}^{(idc)}}{\overline{s}_{ej}^{(idc)}\overline{s}_{dj}^{(idc)}}B_{cded}\left(\{\bar{k}\}^{(idc,jed)}\right) \\
+ 2\mathcal{I}_{cd}^{(i)}\delta_{f_{j}g}\frac{\overline{s}_{cd}^{(icd)}}{\overline{s}_{cj}^{(icd)}\overline{s}_{dj}^{(idc)}}B_{cded}\left(\{\bar{k}\}^{(ijcd)}\right) + \overline{\mathcal{I}}_{cd}^{(ij)}\underline{s}_{od}.B_{cd}\left(\{\bar{k}\}^{(ijcd)}\right)\right]. \tag{C.14}$$

and eq. (C.15) should be replaced by

$$\overline{\mathcal{I}}_{cd}^{(ij) \text{ s.o.}} \equiv -2 C_A \delta_{fjg} \left[\mathcal{I}_{cj}^{(i)} \frac{\overline{s}_{cd}^{(icj)}}{\overline{s}_{jc}^{(icj)} \overline{s}_{jd}^{(icj)}} + \mathcal{I}_{jd}^{(i)} \frac{\overline{s}_{cd}^{(ijd)}}{\overline{s}_{jc}^{(ijd)} \overline{s}_{jd}^{(ijd)}} - \mathcal{I}_{cd}^{(i)} \frac{\overline{s}_{cd}^{(icd)}}{\overline{s}_{jc}^{(icd)} \overline{s}_{jd}^{(icd)}} \right] . \quad (C.15)$$

10. Eq. (C.16) should be replaced by

$$\overline{\mathbf{S}}_{i} \, \overline{\mathbf{C}}_{ijk} \, RR = \mathcal{N}_{1}^{2} \sum_{a,b=j,k,r} C_{ab}^{r} \mathcal{I}_{ab}^{(i)} \, \frac{P_{jk}^{\mu\nu} \left(\overline{s}_{jr}^{(iab)}, \overline{s}_{kr}^{(iab)}\right)}{\overline{s}_{jk}^{(iab)}} \, B_{\mu\nu} \left(\{\overline{k}\}^{(iab,jkr)}\right) \, . \tag{C.16}$$

and eq. (C.17) should be replaced by

$$C_{ab}^{r} \equiv \frac{1}{2} \left[(C_{f_{[jk]}} + C_{f_{j}} - C_{f_{k}}) (\delta_{aj}\delta_{br} + \delta_{ar}\delta_{bj}) + (C_{f_{[jk]}} + C_{f_{k}} - C_{f_{j}}) (\delta_{ak}\delta_{br} + \delta_{ar}\delta_{bk}) - (C_{f_{[jk]}} - C_{f_{j}} - C_{f_{k}}) (\delta_{aj}\delta_{bk} + \delta_{ak}\delta_{bj}) \right].$$
(C.17)

11. Eqs. (C.18) and (C.19) should be replaced by the single equation

$$\overline{\mathbf{S}}_{i} \, \overline{\mathbf{S}}_{ij} \, \overline{\mathbf{C}}_{ijk} \, RR = \mathcal{N}_{1}^{2} \sum_{a,b=j,k,r} C_{ab}^{r} \, \mathcal{I}_{ab}^{(i)} \, 2 \, C_{f_{k}} \, \delta_{f_{j}g} \, \frac{\overline{s}_{kr}^{(iab)}}{\overline{s}_{jr}^{(iab)} \, \overline{s}_{jk}^{(iab)}} \, B\Big(\{\overline{k}\}^{(iab,jkr)}\Big) \, .$$

12. We note that, in all equations where colour-connected Born amplitudes appear, the sums over parton indices are understood to run over the partons that are present at Born level.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.