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1 Introduction

The study of soft emission in the threshold regime z = Q2/ŝ → 1 of the Drell-Yan (DY)

process A + B → γ∗(Q) + X has a long history. The all-order summation of the leading-

power (LP) logarithms in (1 − z) was pioneered in [1, 2] and was later studied using

soft-collinear effective theory (SCET) methods [3–5]. Currently LP threshold logarithms

can be resummed up to next-to-next-to-next-to-leading logarithmic accuracy [5, 6]. In

comparison, the structure of factorization and resummation at the next-to-leading power

(NLP), that is, the next order in the expansion in (1 − z), is not very well understood.

The DY process, given it is the simplest hadron-hadron collision process, has also

been the target of several new calculations at subleading power. In this direction explicit

computations of partonic cross sections at NLP up to next-to-next-to-leading order (NNLO)

and partly beyond were performed in the coupling expansion by employing the expansion-

by-regions method [7, 8] and diagrammatic factorization techniques [9–13]. The leading

logarithmic (LL) resummation of the Drell-Yan processes qq̄ → γ∗ + X and gg → H +

X was first achieved using SCET methods [14, 15] and soon after in the diagrammatic

framework [16]. Besides the threshold regime, the analysis of subleading power corrections

for DY and single Higgs production has been investigated at fixed-order for resolution

variables such as N-jettiness [17–22] and the qT of the lepton pair or the Higgs boson [23, 24].

The resummation of NLP LLs for an event shape can be found in [25].

The resummation of NLP leading logarithms [14, 15] relies on a factorization formula

that was anticipated in these papers, and is also a prerequisite for taking the non-trivial

step beyond LLs. In the present work we fill the theoretical gaps and provide the de-

tails of the derivation of the factorization formula beyond LP for qq̄ → γ∗ + X. The

factorization formula, which achieves the separation of scales through operator definitions

of the relevant functions, and its check against the existing NNLO NLP results from the

expansion-by-regions approach, is the first main result of this paper. Nevertheless, it must

be regarded as a formal result, because it applies to bare regularized quantities. As will be

explained, when one attempts to renormalize these quantities by subtracting the divergent

parts, the convolution of the various factors becomes itself divergent. This complicates

the resummation of NLP logarithms beyond the LL accuracy with SCET renormalization

group methods.
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The second main result of this paper, already extensively used in [14, 15], is the

identification of collinear functions or radiative jet functions at the amplitude level in the

factorization formula at NLP. We discuss their origin, why they do not appear in the well-

known LP factorization formula, and provide their precise operator definition in SCET.

We also calculate the collinear functions at O(αs), which illustrates the concept at the

practical level and is required for the above mentioned NNLO comparison.

The concept of a jet function radiating a soft gluon was originally introduced in [26] by

way of extending the Low-Burnett-Kroll formula in QED. It has been extensively discussed

in the diagrammatic factorization approach [12, 13, 27] for the production of a colourless

final state in hadronic collisions. While these functions are closely related to the collinear

functions above, since they describe the same physics, they are yet different. The collinear

functions in SCET are defined at the operator level as the matrix elements of collinear

fields. They are single scale objects, excluding soft contributions, and therefore appear

suitable for the formulation of the NLP factorization formula.

The paper is structured as follows. In section 2 we discuss the emergence of the

collinear functions and provide their definition through an operator matching equation.

The factorization formula valid at general subleading powers is derived in section 3. We

then specialize this formula to NLP and identify the relevant soft and collinear functions

which appear at this order in the power expansion. We present one of the main results of

our paper in section 4 where we extract the collinear functions at O(αs) through a matching

calculation. We compare the result that we obtain for the factorized cross section, where

we employ the newly computed collinear functions, to the expansion-by-regions results up

to NNLO in fixed-order perturbation theory [12, 13] in section 5. In particular, we find

agreement with the collinear-soft NNLO contribution, if the convolution of collinear and

soft function is performed in d dimensions. In section 6 we demonstrate the appearance

of a divergent convolution when we expand the collinear and soft function in d− 4 before

performing the convolution between the two. We conclude in section 7. The NLP SCET

Lagrangian and supplementary results for the NLP one-loop soft emission amplitude are

provided in appendices A and B, respectively.

2 Threshold dynamics and collinear functions

The object of our investigation is the partonic DY process qq̄ → γ∗[→ `¯̀] + X in the

kinematic region z = Q2/ŝ → 1, where ŝ = xaxb s is the partonic centre-of-mass energy

squared, xa, xb are the momentum fractions of the partons inside the incoming hadrons and

Q2 is the invariant mass squared of the lepton pair. The factorization of the Drell-Yan pro-

cess near threshold at NLP will be conducted within the position-space formulation [28, 29]

of SCET [30, 31]. Four-momenta will often be decomposed using light-like vectors nµ+ and

nµ− satisfying n+ · n− = 2 and n2
− = n2

+ = 0, according to

pµ = (n+p)
nµ−
2

+ (n−p)
nµ+
2

+ pµ⊥ . (2.1)

At the partonic level, the threshold configuration constitutes a SCETI problem, hence to

capture the dynamics, collinear, anticollinear, and soft fields are required. The scaling of
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Figure 1. Example of a threshold-collinear loop attached to the external PDF-collinear line

together with a LP (A0) current. This diagram, and the ones with more loops attaching to the

(anti)collinear leg, yield scaleless integrals and therefore vanish in dimensional regularization.

the corresponding momenta, written in component notation (n+p, n−p, p⊥), is Q(1, λ2, λ),

Q(λ2, 1, λ), and Q(λ2, λ2, λ2), respectively, where Q is the hard scale of the process and

λ is the small power-counting parameter given by λ =
√

1− z . We note that threshold-

collinear modes cannot be radiated into the final state X, since there is not enough energy

available in threshold kinematics.

At the hadronic level, (anti)collinear-PDF modes with transverse momentum scaling

p⊥ ∼ Λ, where Λ denotes the strong interaction scale, exist in addition to the above

threshold-collinear modes. These can be radiated into the hadronic final state. The or-

dinary parton distribution functions are defined in terms of these modes. Concretely, the

c-PDF modes have momentum scaling (Q,Λ2/Q,Λ), whereas it is (Λ2/Q,Q,Λ) for the c̄-

PDF modes. We assume that the scale Λ of the strong interaction is parametrically much

smaller than the threshold-collinear scale, Λ � Qλ = Q(1 − z)1/2. We consider power

corrections in λ, but we always work at leading power in Λ/Q.

In the derivation of the LP factorization theorem the threshold-collinear fields are

usually ignored, since they can be trivially integrated out. This can be traced to the

soft-collinear decoupling transformation [31], which removes completely the soft-collinear

interactions from the LP Lagrangian. As is well known, the LP partonic cross section is

then factorized at threshold into the convolution of a hard function, which is the square

of a hard matching coefficient, and a soft function, which is a vacuum matrix element of

soft Wilson lines [32]. At subleading power, soft-collinear interactions remain after the

decoupling transformation, resulting in time-ordered product operators [33]. Threshold-

collinear loops no longer vanish, and the threshold-collinear fields must now be matched to

c-PDF collinear fields. The non-trivial matching coefficients constitute the amplitude-level

collinear functions. In the following we will make these qualitative statements more precise.

2.1 Leading power and decoupling

We begin the discussion by considering the purely threshold-collinear1 loop corrections to

the DY process, as depicted in figure 1. The LP current, denoted JA0,A0 following the

notation of [34], consists of a collinear quark field in the nµ− direction and an anticollinear

antiquark field in the nµ+ direction. The first important observation is that on-shell such

loops yield scaleless integrals, which vanish in dimensional regularization.

1In the following, we will often refer to these as simply “collinear”. “Purely collinear” means loops

without soft attachments.
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Figure 2. Example of a LP diagram with a collinear loop and a LP soft emission. This diagram

is non-vanishing.

In order to obtain non-vanishing corrections, the introduction of an additional scale

is necessary, for example, through the injection of a soft momentum. This is possible in

threshold kinematics since the final state is composed of soft radiation. To this end, we

consider the LP SCET Lagrangian written in terms of standard SCET fields,

L(0)(z) = ξ̄c

(
in−D + i /Dc⊥

1

in+Dc
i /Dc⊥

)
/n+

2
ξc + L(0)

s (z) + L(0)
YM(z) , (2.2)

where the quark part is written explicitly as it will serve as an example. In this form,

soft-collinear interactions are present at LP since

in−D = in−∂ + gs n−Ac(z) + gs n−As(z−). (2.3)

The n− component of the soft gluon field is unsuppressed with respect to the corresponding

component of the collinear field, resulting in the well-known eikonal form of the soft-

collinear interaction. This means diagrams of type shown in figure 2 exist.

The external soft line provides a scale to the collinear loop, and indeed, individ-

ually, such diagrams are non-vanishing. Following the labeling in figure 2, k, p, and

l are soft, collinear, and anticollinear momenta, respectively. One can then form the

collinear invariant (n−k)(n+p) ∼ λ2, resulting in dimensionally regulated results propor-

tional to [µ2/((n−k)(n+p))]
ε. It therefore appears that there should be collinear functions

already at LP.

However, at LP, the decoupling transformation [31] ξc(z) → Y+(z−) ξ
(0)
c (z), Aµc (z) →

Y+(z−)A
(0)µ
c (z)Y †+(z−) can be applied, where the soft Wilson line is defined as

Y± (x) = P exp

[
igs

∫ 0

−∞
ds n∓As (x+ sn∓)

]
. (2.4)

Since

ξ̄c in−D
/n+

2
ξc = ξ̄(0)

c in−D(0)
c

/n+

2
ξ(0)
c , (2.5)

this removes all soft-collinear interactions from the LP Lagrangian (2.2). It is often con-

venient to define the collinear gauge-invariant field χc = W †c ξc involving the collinear

Wilson line2

Wc (x) = P exp

[
igs

∫ 0

−∞
ds n+Ac (x+ sn+)

]
, (2.6)

2Similar definitions apply to the collinear gluon field, and to anticollinear fields with n+ ↔ n−.
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in which case

ξ̄c in−D
/n+

2
ξc = χ̄(0)

c

(
in−∂ + n−A(0)

c

) /n+

2
χ(0)
c (2.7)

with Aµc = W †c [iDµ
c Wc], and the same conclusion applies. It is customary to drop the

superscript (0) on the fields after the decoupling transformation and we follow this con-

vention below.

Returning to the example diagram above, the decoupling transformation implies that

after summing together all collinear loop diagrams, they must cancel exactly. This is the

reason why there are no collinear functions at LP. The fact that the collinear scale shows

up in intermediate steps of the calculation is a consequence of using Feynman rules derived

from the SCET Lagrangian before the decoupling transformation. Indeed, if one employed

the decoupled Lagrangian, diagrams like the one in figure 2 would not be present from the

beginning.

It follows from the absence of soft-collinear interactions at LP after the decoupling

transformation that the matrix element relevant to DY production factorizes at LP into a

product of (anti)collinear fields and the soft Wilson lines such that it can be written as

〈X|ψ̄ γρψ(0)|A(pA)B(pB)〉=
∫
dt dt̄ C̃A0,A0(t, t̄ ) 〈XPDF

c̄ |χ̄c̄ (t̄n−)|B(pB)〉 γρ⊥

×〈XPDF
c |χc (tn+) |A(pA)〉 〈Xs|T

([
Y †−(0)Y+(0)

])
|0〉 . (2.8)

Here C̃A0,A0(t, t̄ ) is the short-distance matching coefficient of the electromagnetic cur-

rent to its leading-power SCET representation JA0,A0
ρ (t, t̄ ) = χ̄c̄(t̄n−)γ⊥ρχc(tn+). Due to

threshold kinematics the final state can only be composed of soft and (c̄)c-PDF collinear

modes, which are decoupled. Hence, in the above equation the final state is factorized,

〈X| = 〈Xs|〈XPDF
c |〈XPDF

c̄ |.
Since soft-collinear interactions are absent and purely threshold-collinear loops are

scaleless, the matching between the collinear field χc and the corresponding c-PDF field

χPDF
c is trivial: the threshold-collinear fields are simply identified with the c-PDF fields.

Technically, the matching coefficient (collinear function) is a delta function to all orders in

perturbation theory converting threshold-collinear fields to c-PDF fields, that is,

χc(tn+) =

∫
du J̃(t, u)χPDF

c (un+) (2.9)

with J̃(t, u) = δ(t − u). Because of this trivial relation, LP collinear functions are not

discussed in the context of LP factorization.

After this step, the computation proceeds in the usual manner. Squaring the amplitude

and summing over the final state gives the usual PDFs fa/A(xa) and fb/B(xb) from the

(anti)collinear matrix elements, and one arrives at

dσDY

dQ2
=

4πα2
em

3NcQ4

∑
a,b

∫ 1

0
dxadxb fa/A(xa)fb/B(xb) σ̂ab(z) . (2.10)

– 5 –
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The partonic cross section σ̂ab(z) factorizes into a hard function, originating from squaring

the hard matching coefficient C̃A0,A0(t, t̄ ) in (2.8), and a soft function:

σ̂(z) = H(Q2)QSDY(Q(1− z)) . (2.11)

The leading power DY soft function is given by [32]

SDY(Ω) =

∫
dx0

4π
eiΩx0/2 1

Nc
Tr 〈0|T̄(Y †+(x0)Y−(x0)) T(Y †−(0)Y+(0))|0〉 . (2.12)

2.2 Emergence of collinear functions

The analysis becomes more involved when subleading-power effects are studied. The frame-

work employed here for the power-suppressed corrections in SCET was developed in [33–36].

It makes use of collinear gauge-invariant building blocks, which consist of collinear quark

and gluon fields in a particular collinear direction, and non-local operators with insertions of

terms from the power-suppressed SCET Lagrangian to systematically include subleading-

power contributions in perturbative calculations. In what follows, we use this general

framework to derive power corrections to the LP factorization formula for DY production

at threshold. We find that the new physical ingredients, the collinear functions, arise from

soft-collinear interactions present in the power-suppressed Lagrangian. These technically

appear as a consequence of Lagrangian insertions in time-ordered product operators.

As an illustrative example, we consider the insertion of the NLP soft-collinear interac-

tion Lagrangian

L(2)
2ξ (z) =

1

2
χ̄c(z) zµ⊥ z

ν
⊥
[
i∂ν in−∂ B+

µ (z−)
] /n+

2
χc(z) (2.13)

from (A.1). The decoupling transformation has already been performed (and the super-

script (0) on the collinear gauge-invariant quark field χc dropped), and the B± field is a

soft building block formed by a soft covariant derivative and soft Wilson lines (we also

define the soft quark building block for completeness)

Bµ± = Y †± [iDµ
s Y±] , (2.14)

q± = Y †± qs . (2.15)

In contrast to LP, the decoupling transformation does not remove completely the soft-

collinear interactions. In fact, the insertions of Lagrangian terms appear in non-local

operators with an integral over the position of the insertion,

J T2
c (t) = i

∫
d4z T

[
χc(tn+)L(2)

2ξ (z)
]
, (2.16)

where the field χc(tn+) arises from the LP JA0,A0 current. See figure 3 for illustration. The

collinear fields in (2.13) depend on all components of the z coordinate. The soft B±(z−)

field on the other hand has dependence only on zµ− = (n+z)
nµ−
2 due to multipole expansion,

but this dependence links the collinear and soft fields and leads to a collinear invariant for

– 6 –
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2

Figure 3. Insertion of the power-suppressed Lagrangian L(2)
2ξ into a collinear quark line.

collinear loop integrals. Concretely, consider the DY matrix element with an insertion of

the above Lagrangian,

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =

∫
dt dt̄ C̃A0,A0(t, t̄ ) 〈XPDF

c̄ |χ̄c̄,αa(t̄n−)|B(pB)〉γρ⊥,αγ

× i
∫
d4z 〈XPDF

c |1
2
zν⊥z

µ
⊥(in−∂z)2 T

[
χc,γf (tn+) χ̄c (z) TA /n+

2
χc (z)

]
|A(pA)〉

× 〈Xs|T
([
Y †−(0)Y+(0)

]
af

i∂µ⊥
in−∂

B+A
⊥ν (z−)

)
|0〉 . (2.17)

Compared to the LP expression (2.8), there are extra collinear fields in the c-PDF matrix

element and there is a convolution in z− between the soft and collinear matrix elements. It

is precisely the presence of this extra convolution, injecting momentum with a soft scaling

into the collinear matrix element, which induces a scale and leads to the emergence of

collinear functions. The soft matrix element in the last line now contains an explicit gauge

field insertion in addition to the Wilson lines, and will form a part of the generalized soft

function. The anticollinear matrix element is the same as before, and will form part of a

parton distribution function (PDF) upon squaring.

We now focus on the collinear matrix element, which appears in the second line. Due

to threshold kinematics the threshold-collinear modes are forbidden from entering the final

state. At leading power in the Λ/Q expansion, the threshold-collinear fields in the collinear

matrix element must be integrated out and matched to c-PDF mode operators consisting of

a single quark (or gluon) field, which after squaring the amplitude will lead to the standard

PDFs. A prototype for this matching step is the equation (refined later)

i

∫
d4z T

[
{ψc(tn+)}L(2)

c (z)
]

= 2π

∫
du

∫
dz− J̃(t, u; z−)χPDF

c (un+) , (2.18)

where L(2)
c refers to only the collinear pieces of the Lagrangian insertion. The perturbative

matching coefficient J̃(t, u; z−) is the collinear function. It contains the collinear physics

at the amplitude level. We stress once more that it appears first in power-suppressed

corrections to the DY process. The above equation provides an operator definition of the

concept of the “radiative jet amplitude” [12, 13, 26]. The matching should be performed

in the presence of soft structures which, acting as projectors, define independent collinear

functions. We give formal definitions in section 2.3 below.

For the above example, we calculate the tree-level contribution to the collinear terms in

the second line of (2.17). To this purpose it is convenient to introduce the momentum-space

– 7 –
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operator

J µν,Aγ,f (n+p, ω) ≡
∫
dt ei (n+p) t i

∫
d4z eiω(n+z)/2

× 1

2
zν⊥z

µ
⊥(in−∂z)2 T

[
χc,γf (tn+) χ̄c (z) TA /n+

2
χc (z)

]
, (2.19)

which contains only collinear fields. To calculate the perturbative threshold-collinear

matching coefficient, we consider the partonic analogue of the matrix element in (2.17),

which amounts to replacing the incoming hadron by an incoming quark and the PDF-

collinear final state by the vacuum. Hence, we calculate

〈0|J µν,Aγ,f (n+qa, ω) |q(q)e〉=
∫
dtei(n+qa) t i

∫
d4z

[
(in−∂z)2eiω (n+z)/2

]
× 1

2
zν⊥z

µ
⊥ 〈0|T

[
χc,γf (tn+) χ̄c (z) TA /n+

2
χc (z)

]
|q(q)e〉

=− 1

2
iω2 (2π)

∫
d4k

(2π)4
δ (n+qa − n+k)

∫
d4z

[
∂

∂k⊥ν

∂

∂k⊥µ

i(n+k)

k2

]
× eiω (n+z)/2eik·z TA

fe uc,γ(q) e−iz·q , (2.20)

where we have contracted two of the collinear fields to form the collinear quark propagator,

performed the z-derivatives and the integral over t, and used

χc,γd(z)|q(q)e〉 = δde uc,γ(q)e−iz·q |0〉 (2.21)

for the incoming quark with fundamental colour index e. The z-integral can next be per-

formed, yielding delta functions which remove the remaining integral over the momentum

k. Then we find

〈0|J µν,Aγ,f (n+qa, ω) |q(q)e〉 = (2π) δ (n+qa − n+q)
−gνµ⊥
(n+q)

TA
fe δγβ︸ ︷︷ ︸

≡ Jµν,A2ξ,γβ,fe(n+qa,n+q;ω)

uc,β(q) . (2.22)

We have underbraced the matching coefficient which defines the tree-level collinear func-

tion. The appearance of collinear functions beyond LP is generic and constitutes a key

concept in NLP investigations. In section 4 we will calculate the one-loop corrections to

these functions.

2.3 Collinear matching: formal definitions

The general collinear matching equation, suppressing indices, is given by

im
∫
{ddzj}T

[
{ψc(tkn+)} ×

{
L(l)(zj)

}]
= 2π

∑
i

∫
du

∫
{dzj−} J̃i ({tk}, u; {zj−}) χPDF

c (un+) si({zj−}) , (2.23)

where {ddzj} =
∏m
j=0 d

dzj and {dzj−} =
∏m
j=0

dn+zj
2 . {zj−} denotes the set of m po-

sitions at which the soft building block insertions are located.
{
L(l)(zj)

}
is a set of m
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c− PDF

ω1 ωm. . .

c− threshold

n+p1

n+pn

...J

soft

Figure 4. A momentum-space pictorial representation of the matching equation (2.23). The

oval labelled J is a collinear function. The ωi variables are conjugate to the respective positions

of the insertions of subleading-power Lagrangians. Many threshold-collinear fields may join to the

(possibly power-suppressed) SCET currents of the A,B,C . . . type [34], but there is only a single

c-PDF field at leading twist in the Λ/Q expansion.

O(λl)-suppressed Lagrangian insertions. {ψc(tkn+)} denotes a set of n fields chosen from

the elementary collinear-gauge-invariant collinear building blocks each dependent on one

variable from the n-sized set {tk}. Here

ψi(tini+) ∈

χi(tini+) ≡W †i ξi collinear quark

Aµi⊥(tini+) ≡W †i
[
iDµ

i⊥Wi

]
collinear gluon

(2.24)

for the collinear quark and gluon field in i-th direction, respectively. Furthermore, si( {zj−})
is a soft operator and the sum over i runs over a basis of soft structures,

si({zj−}) ∈
{
i∂µ⊥
in−∂

B+
µ⊥

(z1−),
i∂[µ⊥

in−∂
B+
ν⊥](z1−), (2.25)

1

(in−∂)2

[
B+µ⊥(z1−),

[
in−∂B+

µ⊥
(z1−)

]]
,

1

(in−∂)

[
B+
µ⊥

(z1−),B+
ν⊥

(z1−)
]
,

B+
µ⊥

(z1−)B+
ν⊥

(z2−),
1

(in−∂z1)(in−∂z2)
q+σ(z1−)q̄+λ(z2−), . . .

}
.

Here [µ, ν] denotes antisymmetrization µν − νµ, and the ellipses indicate all possible inde-

pendent soft structures3 after utilizing the equation of motion

n+B+(z−) = −2
i∂µ⊥
in−∂

B+
µ⊥

(z−)− 2
1

(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]]
−2

g2
s

(in−∂)2
TA q̄+(z−)TA/n−q+(z−). (2.26)

Eq. (2.23) is a formal all-order and all-power matching equation, and it will be used ex-

tensively in the following sections. A graphical illustration is given in figure 4.

3The list (2.25) is still partially redundant. For later convenience, we have kept the two-gluon soft

structures in the second line, although they can be considered as special cases of the bi-local structure

B+
µ⊥(z1−)B+

ν⊥(z2−).
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3 Factorization near threshold

We now turn to the formal derivation of the factorization formula beyond leading power.

We recall that the SCET derivation of factorization at LP [5] involves matching the coupling

to the virtual photon to the LP SCET current,

ψ̄γρψ(0) =

∫
dt dt̄ C̃A0,A0(t, t̄ ) JA0,A0

ρ (t, t̄ ) (3.1)

where (prior to use of decoupling transformation [31])

JA0,A0
ρ (t, t̄ ) = χ̄c̄(t̄n−)γ⊥ρχc(tn+) . (3.2)

The matching coefficient is related to the corresponding momentum-space coefficient by

CA0,A0(n+p, n−p̄ ) =

∫
dt dt̄ e−i (n+p) t−i (n−p̄) t̄ C̃A0,A0(t, t̄ ) . (3.3)

The fields, denoted by χc (and Aµc⊥ further on), are the collinear-gauge-invariant collinear

quark (and gluon) fields out of which building blocks of general N -jet operators are

formed [34]. To derive the factorization formula valid at subleading powers, the matching

equation (3.1) must be modified to include higher orders in the (1−z) expansion. In general,

this is accomplished through inclusion of all possible combinations of power-suppressed cur-

rents and subleading Lagrangian insertions. We obtain such general factorization formula

in the following, before specializing to the case of NLP in later sections where we provide

explicit results for the objects appearing in the factorization formula.

3.1 Factorization at general subleading powers

Omitting the index structure for clarity, the general, all power, hard matching of the vector

current is given by

ψ̄γρψ(0) =
∑
m1,m2

∫
{dtk} {dt̄k̄} C̃m1,m2 ( {tk}, {t̄k̄}) Js(0) J m1,m2

ρ ( {tk}, {t̄k̄}) . (3.4)

The sizes of the sets {dtk}, {tk} (and the barred sets for the anticollinear direction) for each

term on the right-hand side of the matching equation depend on the type of current present

in that term. Inclusion of all contributions is accounted for by the sum over indices m1

and m2, which label the basis of SCET operators (and their corresponding short-distance

matching coefficients C̃m1m2) depending on the content of its building blocks using the

formalism and notation developed in [34, 35], for example m1,2 = A0 in the LP case (3.1).

Explicitly, the DY process consists of a collinear and an anticollinear direction both of

which can contain sources of power suppression, hence the SCET currents are built as

follows

J m1,m2
ρ ( {tk}, {t̄k̄}) = J m1

c̄ ({t̄k̄}) Γm1,m2
ρ J m2

c ({tk}) . (3.5)

As mentioned above, J m2
c ( {tk}) is constructed using collinear-gauge-invariant collinear

building blocks given in (2.24). In this general construction, the letter A, B, C etc. used
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to label the operator denotes the number of fields in a particular collinear direction, and

the number 0, 1, 2 etc. denotes the overall power of λ of the current with respect to the

LP, which is labelled 0. Hence, the A-type current consists of one field in one direction

and derivatives of that field, the B-type current contains two fields and their derivatives,

and so on. Γm1,m2
ρ in (3.5) stands for the appropriate spinor and Lorentz structure of the

operator. For instance, in (3.2) ΓA0,A0
ρ = γ⊥ρ . At O(λ), ΓA0,A1

ρ = n+ρ etc.

In addition, there exist time-ordered products of currents with subleading terms in the

SCET Lagrangian. These are denoted by Tn, for example

J T2
c (t ) = i

∫
ddz T

[
JA0
c (t)L(2)(z)

]
(3.6)

at O(λ2), where L(2) = L(2)
ξ + L(2)

ξq + L(2)
YM are the power-suppressed terms in the SCET

Lagrangian [29]. As discussed in section 2, the decoupling transformation does not remove

the soft-collinear interactions in the subleading SCET Lagrangian and the injection of soft

momentum into collinear loops is necessary to form non-vanishing collinear functions. For

this reason the time-ordered product terms are crucial ingredients of the factorization of the

DY process at NLP. To yield a non-zero subleading power amplitude at least one leg must

have such time-ordered product. The other leg can then contribute to power suppression

through power-suppressed currents of A, B, C etc. type or another operator containing

a time-ordered product. Starting from O
(
λ3
)
, in addition to collinear fields, the current

operator can contain purely soft building blocks [34], denoted by Js(0) here.

As discussed above, only the (c̄)c-PDF modes can be radiated into the final state.

Eq. (3.5), however, contains threshold (anti)collinear modes, hence a second collinear

matching onto a (c̄)c-PDF field must be performed using (2.23). The first line of (2.23)

corresponds to the time-ordered product of the collinear part J m2
c ({tk}) of a general SCET

operator (3.5) with a subleading-power Lagrangian, hence applying (2.23) to the collinear

and anticollinear sectors, we obtain the DY matrix element of (3.4) in the form

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∑
m1,m2

∑
i,̄i

∫
{dtk} {dt̄k̄} C̃m1,m2 ( {tk}, {t̄k̄})

× 2π

∫
dū

∫
{dz̄ j̄+} ¯̃J m1

ī

(
{t̄k̄}, ū; {z̄ j̄+}

)
〈XPDF

c̄ |χ̄PDF
c̄ (ūn−)|B(pB)〉

× 2π

∫
du

∫
{dzj−} J̃ m2

i ( {tk}, u; {zj−}) 〈XPDF
c |χPDF

c (un+)|A(pA)〉

×Γm1,m2
ρ 〈Xs|T

(
s̄ ī ( {z̄ j̄+})

[
Y †− Js Y+

]
(0) si ({zj−})

)
|0〉 . (3.7)

In this equation, the index k (k̄) counts the number of building block fields in the collinear

(anticollinear) direction within each current, and we sum over all currents. The index j

( j̄ ) refers to the number of Lagrangian insertions in the collinear (anticollinear) sector,

where we also sum over all possibilities. Note that here, and throughout the text, the

barred notation (̄ ) refers to the anticollinear direction, and the tilde (˜) is used to denote

the quantities with dependence on the position arguments such as t, t̄ and so on. This

notation, also used for indices, is meant to facilitate keeping track of the origin of the

various contributions to the factorization theorem. As discussed in section 2 at least one
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Lagrangian insertion is necessary to yield a non-vanishing subleading-power amplitude.

Finally, the J̃i ( ¯̃J ī) are the (anti)collinear functions and si({zj−}) (s̄ ī ( {z̄ j̄+})) are made up

of explicit B+, q+ (B−, q−) field products and their derivatives, as indicated in (2.25).4 The

further derivation of the general factorization formula follows closely the steps presented

in [14] for the derivation of the NLP leading logarithmic resummation. Suppressing the

m1,2 labels, the hard matching coefficients and c-PDF fields are Fourier-transformed using

C̃ ({tk}, {t̄k̄} ) =

∫ {
dn+pk

2π

}{
dn−p̄ k̄

2π

}
ei (n+pk) tkei (n−p̄ k̄) t̄k̄ C({n+pk}, {n−p̄ k̄}) (3.8)

and

χPDF
c (un+) =

∫
d(n+pa)

2π
e−i(n+pa)u χ̂PDF

c (n+pa) , (3.9)

respectively. For the collinear functions we define (zj− = n+zj/2)∫
{dtk}

∫
du J̃ m2

i ( {tk}, u; { zj−}) ei (n+pk) tk e−i(n+pa)u

=

∫ {
dωj
2π

}
e−iωj zj− J m2

i ({n+pk}, n+pa; {ωj}) . (3.10)

The set {ωj} is a set of variables with soft scaling conjugate to { zj−}, and
{
dωj
2π

}
=

dω1
2π × . . .× dωm

2π . Einstein’s summation convention is implied in the exponents. Equations

analogous to (3.9) and (3.10) are used for the anticollinear direction. Implementing these

in (3.7) we arrive at generalized version of eq. (3.16) of [14]:

〈X|ψ̄γρψ(0)|A(pA)B(pB)〉 =
∑
m1,m2

∑
i,̄i

∫ {
dn+pk

2π

} {
dn−p̄ k̄

2π

}

×
∫

d(n+pa) d(n−pb)C
m1,m2({n+pk}, {n−p̄k̄})

×
∫ {

dω̄ j̄
2π

}
J̄ m1

ī

(
{n−p̄k̄},−n−pb; {ω̄ j̄}

)
〈XPDF

c̄ | ˆ̄χPDF
c̄ (n−pb)|B(pB)〉

×
∫ {

dωj
2π

}
J m2
i ( {n+pk}, n+pa; {ωj}) 〈XPDF

c |χ̂PDF
c (n+pa)|A(pA)〉

×Γm1,m2
ρ

∫
{dz̄ j̄+ }

∫
{dzj−} e−iω̄ j̄ z̄ j̄+ e−iωj zj−

×〈Xs|T
(
s̄ ī ({z̄ j̄+})

[
Y †− Js Y+

]
(0) si({zj−})

)
|0〉 . (3.11)

For brevity, we define the coefficient function

Dm1,m2

i ī ρ
(n+pa,−n−pb; {ωj}, {ω̄ j̄}) = (2π)2

∫ {
dn+pk

2π

}{
dn−p̄ k̄

2π

}
×Cm1,m2({n+pk}, {n−p̄ k̄}) J̄ m1

ī
({n−p̄ k̄},−n−pb; {ω̄ j̄})

×Γm1,m2
ρ J m2

i ({n+pk}, n+pa; {ωj}) (3.12)

that contains both, the hard and collinear matching functions at the amplitude level.

4To be precise, at leading power and when only one time-ordered product is present, both or one of the

collinear functions are trivial and the corresponding soft structure is unity.

– 12 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
8

The next step in the derivation of the factorization formula is to square the amplitude,

which gives the hadronic tensor Wµρ defined below. Combined with the transverse lepton

tensor belonging to the final-state lepton pair, for which the phase-space integrals are

computed in d dimensions, we obtain an expression for the cross section

dσ =
4πα2

em

3s q2

ddq

(2π)d
(
− gµρWµρ

)
, (3.13)

where

gµρWµρ =

∫
ddx e−iq·x 〈A(pA)B(pB)|J† ρ(x)Jρ(0)|A(pA)B(pB)〉

=
∑
X

(2π)dδ(d)
(
pA + pB − q − pXs − pXPDF

c
− pXPDF

c̄

)
×〈A(pA)B(pB)|J†ρ(0)|X〉〈X|Jρ(0)|A(pA)B(pB)〉 . (3.14)

At this point we transform the c-PDF fields back to coordinate space and use the standard

definition

〈A(pA)|χ̄PDF
c,ηi (x+ g′n+)χPDF

c,βb (gn+)|A(pA)〉

=
δbi
Nc

(
/n−
4

)
βη

(n+pA)

∫ 1

0
dxa e

i(x+g′n+−gn+)·pAxa fa/A(xa) (3.15)

for the PDF. After performing the integrations over n+pa, n−pb and some further manipu-

lations, we extract the convolution with the PDFs from the hadronic DY spectrum (2.10),

and obtain the expression

σ̂ =
∑
m′1,m

′
2

m1,m2

∑
i′ ,̄i′

i,̄i

∫ {dω̄′
j̄′

2π

}{
dω′j′

2π

} {
dω̄ j̄
2π

}{
dωj
2π

}

× (−Q2)

[(
/n−
4

)
D
∗m′1,m′2 ρ
i′ ī′

(xan+pA, xbn−pB; {ω′j′}, {ω̄′j̄′})

×
(
/n+

4

)
Dm1,m2

i ī ρ
(xan+pA, xbn−pB; {ωj}, {ω̄ j̄})

]
×
∫

dd−1~q

(2π)d−1 2
√
Q2 + ~q 2

1

2π

∫
ddx ei(xapA+xb pB−q)·x

× S̃ i ī i′ ī′(x; {ωj}, {ω̄ j̄}, {ω′j′}, {ω̄′j̄′}) (3.16)

for the qq̄-induced partonic cross section near threshold including power corrections in

(1− z) in the most general form. We recall that barred notation refers to the anticollinear

direction, and the tilde denotes objects which depend on position-space arguments. Con-

tributions to the factorization formula from the complex conjugate amplitude are marked

here and throughout the text with a prime ( ′ ) symbol. This notation persists in the indices

and is used in combination with each other, such that ī′ refers to contribution from the

anticollinear part of the complex conjugate amplitude. In the last line we introduced the
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generalized multi-local soft function, S̃ i ī i′ ī′(x; {ωj}, {ω̄ j̄}, {ω′j′}, {ω̄′j̄′}), defined as

S̃ i ī i′ ī′(x; {ωj}, {ω̄ j̄}, {ω′j′}, {ω̄′j̄′})

=

∫
{dz̄′j̄′+}

∫
{dz′j′−}

∫
{dz̄ j̄+}

∫
{dzj−} e+iω̄′

j̄′ z̄
′
j̄′+ e

+iω′
j′z
′
j′− e−iω̄ j̄ z̄ j̄+ e−iωjzj−

× 1

Nc
Tr 〈0|T̄

(
s̄′i′ ( {x+ z′j′−})

[
Y †+ J

†
s Y−

]
(x) s′ī′ ({x+ z̄′j̄′+})

)
×T

(
s̄ ī ({z̄ j̄+})

[
Y †− Js Y+

]
(0) si ({zj−})

)
|0〉 . (3.17)

This concludes the derivation of the general formula for the DY cross section near threshold

including power corrections. Note that these results were stated in eqs. (2.1) and (2.2)

of [14] without details, which are given here.

3.2 Factorization at NLP

We next focus on the next-to-leading power effects where certain simplifications in the

general formula (3.16) can be made. We first note that since the ω variables are con-

nected to the soft emissions from collinear functions, and therefore come from insertions

of subleading-power Lagrangians in a time-ordered product, at NLP their total number is

highly constrained. On the one hand, there must be at least one ω present due to the fact

that at least one time-ordered product operator must appear in the SCET amplitude in

order to provide a threshold-collinear scale and not lead to a trivial null result, as explained

earlier in the text. On the other hand, the total power suppression at NLP is O(λ2), which

means that there can be at most two separate ω variables which correspond to two L(1) in-

sertions, each contributing O(λ) suppression. The constraint on the number of subleading

power interactions also limits the number of soft structures si from the set (2.25), required

at NLP.

In the position-space SCET framework, soft fields in the current operators appear only

from O(λ3) [34]. Hence, at NLP, the soft part Js(0) is not present, and the soft structures

come only from single insertions of the O(λ2) SCET Lagrangian, L(2)
ξ and L(2)

YM, and double

insertions of the single power-suppressed terms, L(1)
ξ , L(1)

ξq , and L(1)
YM.

The next simplification is due to the fact that the kinematics of the process in the

centre-of-mass frame does not support power suppression created by a single operator with

O(λ) scaling on a given leg. This is because the incoming collinear momentum can be

chosen to carry only its large component, n+p ∼ Q (n−l ∼ Q for the anticollinear leg), and

all components of soft momentum scale as O(λ2). For the (anti)collinear direction to carry

O(λ) suppression, it would necessarily have to be proportional to the transverse component

of the (anti)collinear vector, pµ⊥(lµ⊥) ∼ Qλ, since no other momentum component in the

threshold kinematics carries O(λ) scaling, which, however, vanishes. This means that

the O(λ2) power suppression cannot come from two insertions of L(1)
ξ (or L(1)

YM) on two

separate legs of a diagram. Moreover, a non-vanishing O(λ) amplitude also cannot exist

in the qq̄ channel.5 In consequence, at cross section level at NLP, the O(λ2) suppression

5Soft quark emission does yield a non-vanishing O(λ) amplitude, however this contributes to the

(anti)quark-gluon (qg, q̄g) channel.
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must be generated in the amplitude which then interferes with the LP amplitude according

to (3.14), yielding the O(λ2) suppressed cross section. This still leaves the possibility of

O(λ2) suppression to be generated by the J T2(t) operator formed by a L(1) insertion and

a subleading current of A1 or B1-type. Due to chirality and helicity conservation in QCD,

the possible currents are

JA0,A1
ρ (t, t̄ ) = χ̄c̄(t̄n−)n+ρ i/∂⊥χc(tn+), (3.18)

JA0,B1
ρ (t1, t2, t̄ ) = χ̄c̄(t̄n−)n±ρ /A⊥c(t2n+)χc(t1n+), (3.19)

and corresponding ones with power suppression in the anticollinear direction. The im-

portant detail to note is that both currents are each proportional to n±ρ. However, the

power-suppressed amplitude in which these currents could appear, is interfered with the

LP amplitude, which is proportional to γ⊥ρ, as can be seen in (3.2). Contraction of these

two structures makes such contribution vanish at the cross section level to all orders in

perturbation theory. This means that at NLP the sum over indices in m1,2 in the formula

derived in section 3.1 contains only the A0-type current, along with time-ordered products

of the LP current with Lagrangian insertions. Hence, only the hard matching coefficient

C A0,A0 of the LP current appears in the NLP factorization formula.

These considerations lead to the conclusion that the soft structures relevant at NLP

are in fact the terms already explicitly presented in (2.25) (dropping the ellipsis) after the

use of the equation of motion to eliminate the redundant n+B+ structure.

The simplifications outlined above make it possible to write down a NLP version of

the general subleading-power factorization formula (3.16) in a more compact way. Namely,

up to NLP (3.16) simplifies to

σ̂(z) =

5∑
i,i′=0

∫ {
dωj
2π

}{
dω′j′

2π

}
Tr

[(
/n−
4

)
D∗ ρi′ (xan+pA, xbn−pB; {ω′j′})

×
(
/n+

4

)
D iρ(xan+pA, xbn−pB; {ωj})

]
× (−Q2)

∫
dd−1~q

(2π)d−1 2
√
Q2 + ~q 2

1

2π

∫
ddx ei(xapA+xb pB−q)·xS̃ ii′ (x; {ωj}, {ω′j′})

+ c̄-terms , (3.20)

The set notation, with {ωj} = {ω1, ω2}, is only required for terms i = 4, 5 where the soft

structures consist of insertions of fields at different positions, as can be seen in the explicit

expressions below. All other terms require only a single ω variable, aside from the LP

position-space soft function

S̃0(x) =
1

Nc
Tr 〈0|T̄

[
Y †+(x)Y−(x)

]
T
[
Y †−(0)Y+(0)

]
|0〉 . (3.21)

In (3.20) the terms with power suppression placed on the anticollinear leg, both in the

amplitude and its conjugate, are indicated by “c̄-terms” and not written explicitly, since

eventually they contribute a factor of 2 to the power-suppressed terms in the above formula.
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As explained above, the general structure Γρ defined in (3.5) is simply γ ρ⊥ at NLP,

since only the J A0,A0 current needs to be used in time-ordered products with Lagrangian

insertions in the matching to the DY current. Furthermore, the anticollinear func-

tions J̄ m1

ī
({n−p̄ k̄},−n−pb; {ω̄ j̄}) in the general definition (3.12) are delta functions in

Diρ(xan+pA, xbn−pB; {ωj}), which therefore simplify to6

Diρ(xan+pA, xbn−pB; {ωj} ) =

∫
d(n+p) d(n−p̄) CA0,A0(n+p, n−p̄)

× δ(n−p̄− xb n−pB) γ⊥ρ Ji (n+p, xa n+pA; {ωj}) . (3.22)

The index i, which is summed over in (3.20), stands in place of all indices — Dirac, Lorentz,

and colour — required by each term depending on the specific soft structure appearing in

the collinear matching (2.23). It is understood that one should perform the contraction

of these indices prior to the spin trace in (3.20), because some soft functions, for example

S5 below, can have open spin indices which are connected to the collinear function. An

expression similar to (3.22) with {ω′j′} variables holds for the conjugate amplitude.

Eq. (3.20) still contains the unexpanded final-state phase-space integral over the lepton-

pair momentum ~q. This means that in addition to the dynamical power corrections to the

amplitude, there is a kinematic power correction from the phase-space integration over the

LP amplitude, which will be discussed in more detail below.

Next, we would like to draw attention to the collinear functions themselves. Since, as

noted above, at NLP only the LP current JA0,A0 is needed in time-ordered products with

Lagrangian insertions, the set {ψc(tkn+)} in the general collinear matching equation (2.23)

consists of a single quark (or antiquark) collinear field, and the set {L(l)(zj)} of Lagrangian

insertions is either {L(2)(z)} or {L(1)(z1),L(1)(z2)}. We also use momentum-space collinear

functions as defined in (3.10), hence the collinear matching equation at NLP is either

i

∫
d4zT

[
χc,γf (tn+) L(2)(z)

]
= 2π

∑
i

∫
dω

2π

∫
dn+p

2π
e−i (n+p) t

∫
dn+pa

2π

× Ji;γβ,µ,fbd (n+p, n+pa;ω) χ̂PDF
c,βb (n+pa)

∫
dz− e−i ω z− si;µ,d(z−) , (3.23)

or the one with two L(1) insertions, in which case the collinear function (soft function) has

two arguments {ω1, ω2} ({z1−, z2−}) and the corresponding integrations must be added.

The indices µ and d carried by s represent the collective Lorentz and colour indices appro-

priate for the given soft structure. For each independent soft structure si there exists a

corresponding collinear function Ji as shown on the right-hand side of the above equation.

Thus far we have focused on the derivation of the factorization formula for the bare

partonic cross section σ̂. Indeed, σ̂ still contains collinear singularities, which are usually

subtracted by PDF renormalization. Therefore, care has to be taken when dealing with

this d-dimensional quantity. For instance, the spin trace which appears at leading power

gives a factor Tr
[(

/n−
4

)
γ⊥ρ

(
/n+

4

)
γρ⊥

]
= −(1− ε). In order to compare with with literature

6At LP, collinear and anticollinear functions are delta functions, and Diρ reduces to γ⊥ρ C
A0,A0.
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we find it convenient to consider the quantity ∆(z) defined through

∆(z) =
1

(1− ε)
σ̂(z)

z
, (3.24)

with the factor (1− ε) divided out compared to [37].

We next simplify the factorization formula in (3.20) further by discussing separately

the kinematic and dynamical NLP correction.

3.2.1 NLP kinematic correction ∆kin
NLP(z)

In the partonic centre-of-mass frame of the DY process, where xa ~pA + xb ~pB = 0, the

three-momentum of the DY boson has to be balanced by the soft radiation, ~q = −~pXs .
The soft radiation energy is expanded in powers of λ as follows:

(
xapA + xbpB − q

)0
= p0

Xs =
√
ŝ−

√
Q2 + ~q 2 =

Ω∗
2
− ~q 2

2Q
+O(λ6) , (3.25)

where the first term has a further expansion in (1 − z),

Ω∗ =
2Q(1−√z)√

z
= Q (1− z) +

3

4
Q (1− z)2 +O(λ6) . (3.26)

Starting with the LP soft function term in (3.20), contributions to the NLP cross section

come from expanding the kinematic factors. Focusing on this LP soft function term and

recalling the simplification of the D coefficients for this case noted after (3.22), we start from

∆kin
NLP(z) = H(ŝ)

1

z

Q

4π

∫
dd−1~q

(2π)d−1

∫
ddx ei(Ω∗/2)x0−i(~q 2/(2Q))x0−i~q·~x S̃0 (x) , (3.27)

where H(ŝ) = |CA0,A0(xan+pA, xbn−pB)|2. In the above equation a number of kinematic

corrections can be identified. The first is due to power suppression provided by second

term in the exponent. The second, originates in the expansion of Ω∗ itself. The expansion

of the 1/z factor gives the third kinematic correction, and a fourth kinematic correction

comes from expansion of the argument of the hard function H(ŝ). After expanding out

these terms, the integral over ~q can be performed, yielding a delta function, which sets

~x = 0 in the soft function. We write the four corrections in order as

∆K1
NLP(Ω) = H

(
Q2
) ∂
∂Ω

∂2
~x SDY(Ω, ~x)|~x=0 , (3.28)

∆K2
NLP(Ω) = H

(
Q2
) 3

4
Ω2 ∂

∂Ω
SDY(Ω, ~x)|~x=0 , (3.29)

∆K3
NLP(Ω) = H

(
Q2
)

ΩSDY(Ω, ~x)|~x=0 , (3.30)

∆K4
NLP(Ω) = H ′

(
Q2
)
Q2 ΩSDY(Ω, ~x)|~x=0, (3.31)

where SDY(Ω, ~x ) is the LP soft function defined in (2.12), but with argument x0 generalized

to non-zero ~x. The full NLP kinematic correction, ∆kin
NLP(z), is given by the sum of these

four terms. In section 5 we present the result of evaluating these expressions up to NNLO.
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3.2.2 Dynamical NLP power correction ∆dyn
NLP(z)

Next we consider the contribution to the NLP cross section due to insertions of subleading-

power Lagrangians and LP kinematics. Thus we keep only the first term in the expan-

sions (3.25), (3.26). The dd−1~q integral then gives a delta function for the spatial part of

x, hence in the soft functions we can immediately set ~x = 0.

As opposed to the kinematic correction, the collinear functions appearing here are

non-trivial. Note that the collinear functions will carry the same indices as the corre-

sponding soft function. On top of the indices connecting to the soft function, the collinear

functions carry two Dirac and two colour indices, γβ and fb, from the threshold-collinear

and c-PDF fields in the matching equation (3.23). It is understood that the collinear

functions, Ji, in (3.20) carry indices as prescribed by (3.23). For instance, the first soft

structure in the set (2.25) has one B+ field and therefore carries an adjoint index A con-

necting to the collinear function. This means that J1 carries one additional adjoint index

corresponding to the colour generator. Explicitly, J1 (n+p, xan+pA;ω) in (3.22) stands for

JA1;γβ,fb (n+p, xan+pA;ω).

In order to simplify the ∆dyn
NLP(z) part of the factorization formula (3.20) further, we

decompose the collinear functions into all possible colour and spinor structures. Continuing

with the example from above, this particular collinear function must be proportional to

TA
fb since this is the only structure which carries one adjoint, A, and two fundamental,

fb, colour indices. At this point we can define a scalar collinear function multiplied by

TA
fb and move the colour factor into the soft function where it forms part of the trace over

the colour indices. In a similar way, the colour factors in other collinear functions can be

absorbed into their corresponding soft functions. The dynamical NLP part of (3.20) can

then be simplified to

∆dyn
NLP(z) = − 2

(1− ε) Q
[(

/n−
4

)
γ⊥ρ

(
/n+

4

)
γρ⊥

]
βγ

×
∫
d(n+p)C

A0,A0 (n+p, xbn−pB)C∗A0,A0 (xan+pA, xbn−pB)

×
5∑
i=1

∫
{dωj} Ji,γβ (n+p, xan+pA; {ωj}) Si(Ω; {ωj}) + h.c. , (3.32)

where here Ω = Q(1 − z). As in (3.20), the double-valued set {ωj} = {ω1, ω2}, is only

required for terms i = 4, 5. For i = 5, in addition to the Dirac indices βγ written explicitly,

Ji and Si contain further indices, see the definition of S5 below, which are contracted

among them. As mentioned above, a factor of 2 in this formula comes from the c̄-terms.

Furthermore, one of the D coefficients always reduces to the LP expression, since at NLP

there is no O(λ) amplitude in the qq̄-channel, as discussed above. We point out again the

main difference to the LP factorization formula, namely the presence of the convolution of

a jet function with multi-local, generalized soft functions.7

7This structure bears resemblance to the SCET treatment of 1/mb suppressed power corrections to

semi-leptonic B decay in the so-called shape function region [33, 38, 39].
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We define the multi-local, generalized soft functions in momentum space as the Fourier

transforms

Si(Ω; {ωj}) =

∫
dx0

4π
eiΩx0/2

∫ {
dzj−
2π

}
e−iωjzj−Si(x0; {zj−}) . (3.33)

The position-space soft functions appearing at NLP are given by

S1(x0; z−)=
1

Nc
Tr〈0|T̄

[
Y †+(x0)Y−(x0)

]
T

([
Y †−(0)Y+(0)

] i∂ν⊥
in−∂

B+
ν⊥

(z−)

)
|0〉 ,

(3.34)

S2;µν(x0; z−)=
1

Nc
Tr 〈0|T̄

[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1

(in−∂)

[
B+
µ⊥

(z−),B+
ν⊥

(z−)
])
|0〉 , (3.35)

S3(x0; z−)=
1

Nc
Tr 〈0|T̄

[
Y †+(x0)Y−(x0)

]
×T

([
Y †−(0)Y+(0)

] 1

(in−∂)2

[
B+µ⊥(z−),

[
in−∂B+

µ⊥
(z−)

]])
|0〉 ,

(3.36)

SAB4;µν,bf (x0; z1−, z2−)=
1

Nc
Tr 〈0|T̄

[
Y †+(x0)Y−(x0)

]
ba

×T

([
Y †−(0)Y+(0)

]
af
B+A
µ⊥

(z1−)B+B
ν⊥

(z2−)

)
|0〉 , (3.37)

S5;bfgh,σλ(x0; z1−, z2−)=
1

Nc
〈0|T̄

[
Y †+(x0)Y−(x0)

]
ba

×T

([
Y †−(0)Y+(0)

]
af

g2
s

(in−∂z1)(in−∂z2)
q+σg(z1−)q̄+λh(z2−)

)
|0〉 .

(3.38)

We recall from the discussion of the list (2.25) that the soft functions S2 and S3 are

redundant and could be eliminated by relating them to S4. There exists in principle

another soft function,

S̃A6;bf,µν(x;ω) =

∫
dz− e−iω z−

1

Nc
〈0|T̄

[
Y †+(x)Y−(x)

]
ba

×T

([
Y †−(0)Y+(0)

]
af

i∂[µ⊥

in−∂
B+A
ν⊥] (z−)

)
|0〉 , (3.39)

with the soft structure given by the second term in (2.25). This soft function is required to

obtain the NLP one-soft-gluon emission amplitude, see appendix B, but does not contribute

to the DY cross section at any order in perturbation theory. This is because the soft

functions are vacuum matrix elements of Wilson lines and soft field insertions, hence,

the only structure which can carry the Lorentz indices of the anti-symmetric structure
∂[µ⊥
in−∂
B+A
ν⊥] (z−) in S̃A6;bf,µν(x;ω) is the epsilon tensor. However, this is excluded in QCD by
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parity conservation. Therefore, only the five soft functions given in (3.34) to (3.38) and

their corresponding collinear functions appear in the factorization formula.

The above all-order formulation of NLP threshold factorization and the operator defi-

nition of the appearing jet and soft functions is one of the main results of this paper.

3.3 Expansion up to NNLO

In section 5 we will check the NLP factorization formula by comparing to existing fixed-

order O(α2
s) results in the literature and to own expansion-by-region calculations. To

prepare this discussion we consider here the terms that arise in the NNLO expansion

of (3.32).

Each of the objects in the formula, the hard matching coefficient CA0,A0(n+p, n−p̄),
the collinear functions Ji (n+p, xa n+pA; {ωj}), the soft functions S̃i(x; {ωj}), has a per-

turbative expansion in the strong coupling. Since at NLP the generalized soft functions

contain explicit soft field insertions, as opposed to simply being composed of Wilson lines

as at LP, the lowest order at which they can contribute is α1
s. The hard and the collinear

functions can have tree-level contributions. This means that in order to reproduce NLO

results, only one combination is needed, tree-level hard and collinear functions and a NLO

soft function. Then, to reproduce the NNLO fixed order results, there are three contribu-

tions: (1) Tree-level hard function together with one-loop collinear and soft functions, (2)

one-loop hard function, tree-level collinear and one-loop soft function, and finally, (3) the

soft functions at O(α2
s).

Before proceeding, it is important to note that since the kinematic set-up allows only for

soft radiation, the large component of the incoming PDF-collinear momentum must be iden-

tical to the sum of the large components of the outgoing threshold momenta of the collinear

function. Since for the A0 current there is only one outgoing momentum, the collinear func-

tions relevant to NLP will be be proportional to δ(n+p − xan+pA). However, due to the

presence of n−z in the soft-collinear interactions, which translates into a n+p derivative in

momentum space, the momentum-space collinear functions can also contain derivatives of

the momentum-conserving delta function. This occurs for J1(n+p, xa n+pA;ω). Since it is

also diagonal in the Dirac indices we write this collinear function in terms of two scalar

components as follows:

J1;γβ (n+p, xa n+pA;ω) = δγβ

[
J1,1 (xan+pA;ω) δ(n+p− xan+pA)

+ J1,2 (xan+pA;ω)
∂

∂(n+p)
δ(n+p− xan+pA)

]
. (3.40)

In the factorization formula, we can integrate by parts the derivative such that it acts on

the amplitude hard-scattering coefficient. Hence the derivative collinear-function term con-

tributes only when the hard matching coefficient is momentum-dependent, which happens

only from the one-loop order on for CA0,A0. Once the derivative on the coefficient function

is taken, one can perform the remaining d(n+p) integral using the extracted delta function.

The only soft function from the list in (3.34)–(3.38) which begins at lowest, next-to-

leading order is S1. The others contain at least two insertions of subleading soft fields, which
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implies that the leading contribution to the cross section is NNLO. Therefore, expanded

up to NLO, we have

∆
dyn (1)
NLP (z) = 4QH(0)(Q2)

∫
dω J

(0)
1,1 (xan+pA;ω)S

(1)
1 (Ω;ω) , (3.41)

where we have evaluated spin trace, Tr
[(

/n−
4

)
γ⊥ρ

(
/n+

4

)
γρ⊥

]
, which gives a factor of

−(1− ε). Also, here and below in this section, Ω is related to the threshold variable

1− z by Ω = Q(1− z). Eq. (3.41) can be simplified greatly by inserting the tree-level hard

coefficient H(0)(Q2) = 1, and the tree-level collinear function, which can be found in (4.18):

∆
dyn (1)
NLP (z) = −4

∫
dω S

(1)
1 (Ω;ω) . (3.42)

Moving on to NNLO accuracy, the three contributions discussed above take the fol-

lowing expressions:

• Collinear: one-loop collinear and NLO soft functions

∆
dyn (2)
NLP−coll(z) = 4QH(0)

(
Q2
) ∫

dω J
(1)

1,1 (xan+pA;ω) S
(1)
1 (Ω;ω) . (3.43)

• Hard: one-loop hard and NLO soft functions

∆
dyn (2)
NLP−hard(z) = 2Q

∫
dω S

(1)
1 (Ω;ω )

(
H(1)

(
Q2
)
J

(0)
1,1 (xan+pA;ω)

−C∗A0 (0) (xan+pA, xbn−pB) J
(0)
1,2 (xan+pA;ω)

× ∂

∂xa(n+pA)
CA0 (1)(xan+pA, xbn−pB)

)
+ h.c. (3.44)

• Soft: NNLO soft functions

∆
dyn (2)
NLP−soft(z) = − 4

(1− ε) Q
[(

/n−
4

)
γ⊥ρ

(
/n+

4

)
γρ⊥

]
βγ

H(0)
(
Q2
)

×
5∑
i=1

∫
{dωj} J (0)

i,γβ (xa n+pA; {ωj}) S(2)
i (Ω; {ωj}) . (3.45)

In ∆
dyn (2)
NLP−soft(z) the derivative terms in the collinear functions do not contribute,

since the hard function is taken at tree level.

All of the above formulas can be simplified by using tree-level values for the relevant

objects. In particular since H(0)(Q2) = 1, we have

∆
dyn (2)
NLP−coll(z) = 4Q

∫
dω J

(1)
1,1 (xa n+pA;ω)S

(1)
1 (Ω;ω) (3.46)

for the collinear term. Next, the hard contribution in (3.44) can be simplified using tree-

level values for the collinear functions in (4.18) and (4.19). Care has to be taken when
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dealing with this expression, since it refers to d-dimensional regularized objects. The

one-loop d-dimensional hard matching coefficient depends on Q2 = xaxbn+pAn−pB only

through an overall factor (−Q2/µ2)−ε. Performing the derivative therefore gives back the

hard matching coefficient multiplied by a factor of −ε/Q. Together with the hermitian

conjugate term in (3.44), we obtain −ε/Q× (C∗A0(0)CA0(1) +C∗A0(1)CA0(0)) = −εH(1)/Q

from the derivative term. Then we arrive at

∆
dyn (2)
NLP−hard(z) = −4 (1− ε)H(1)(Q2)

∫
dω S

(1)
1 (Ω; ω ) . (3.47)

The tree-level collinear functions can also be utilized to simplify the soft term, but we do

not present it here.

4 Calculation of collinear functions

In this section we present the computation of the collinear functions to one-loop accuracy.

The presence of these functions at NLP is one of the main results of this paper, and we

will need the one-loop calculation in the subsequent section to verify the NLP factorization

formula to NNLO.

The collinear functions are defined through the non-perturbative operator matching

equation (3.23). The left-hand side includes the threshold-collinear fields originating from

time-ordered products of the LP current with subleading-power Lagrangian terms. We

introduce the abbreviation

T̃γf (t) ≡ i
∫
d4zT

[
χc,γf (tn+)L(2)(z)

]
, (4.1)

for the left-hand side of (3.23), and define its Fourier transform by

Tγf (n+q) =

∫
dt ei(n+q) t T̃γf (t) . (4.2)

The momentum-space matching equation reads

Tγf (n+q) = 2π
∑
i

∫
dn+pa

2π

∫
du ei (n+pa)u

∫
dω

2π

× Ji;γβ,µ,fbd (n+q, n+pa;ω) χPDF
c,βb (un+)

∫
dz− e−iωz− si;µ,d(z−) . (4.3)

For soft structures with two soft gluon emissions the generalization explained below (3.23)

applies.

We recall that since the collinear scale Q2(1 − z) � Λ2 by assumption, the collinear

function is a perturbatively calculable short-distance coefficient in the matching of (4.1)

and (4.3). We can therefore extract the collinear functions Ji by taking an appropriate

matrix element between partonic states. For example, in case of collinear functions with a

single external soft gluon, the simplest choice is the matrix element 〈g(k)| . . . |q(p)〉 with a

soft gluon and PDF-collinear quark. We then compute both sides of the matching equation

with the LP collinear Lagrangian with soft fields decoupled, in which case the soft fields

on both sides act only as external fields. Hence, the soft matrix element 〈g(k)|si;µ,d(z−)|0〉
takes its tree-level expression (since only soft loops could contribute). The same is true for

〈0|χPDF
c,βb (un+)|q(p)〉, because loop corrections are scaleless in this case.
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4.1 Collinear functions at O(α0
s)

For the qq̄-induced DY process, only the insertions of the quark-gluon subleading SCET

Lagrangian but not the Yang-Mills terms contribute at tree level to the collinear functions.

Indeed, at least one collinear gluon loop would be needed to which a L(2)
YM insertion could

be attached via a triple-gluon interaction.

We use momentum-space Feynman rules for the soft-collinear interactions vertices

from the power-suppressed SCET Lagrangian given in appendix A of [35] to perform the

computation. The collinear-quark soft-gluon interaction vertex is given by

← k

p

p′

Aµa
s

ξ̄

ξ

igsT
A



/n+

2
n−µ O(λ0)

/n+

2
Xρ
⊥n

ν
−(kρgνµ − kνgρµ ) O(λ)

Sρν(k, p, p′)
/n+

2
(kρgνµ − kνgρµ) O(λ2)

where

Sρν(k, p, p′) ≡ 1

2

[
(n−X)nρ+n

ν
− + (kX⊥)Xρ

⊥n
ν
− +Xρ

⊥

(
/p′⊥
n+p′

γν⊥ + γν⊥
/p⊥
n+p

)]
(4.4)

and

Xσ = − ∂

∂p′σ

(
(2π)dδ(d)(p− p′ + k+)

)
. (4.5)

The momentum k+, which appears in the argument of the delta function above, is defined

as kµ+ = (n−k)
nµ+
2 . The three terms in the O(λ2) vertex (4.4) correspond directly to the

three terms in the power-suppressed SCET Lagrangian given in eq. (28) of [29]. This

has been rewritten in terms of gauge-invariant building blocks in (A.1) such that the first

term in (4.4) corresponds to L(2)
1ξ , the second term to L(2)

2ξ , and the third term to L(2)
4ξ .

In appendix A we also provide the soft-quark and Yang-Mills SCET Lagrangian in this

notation, which are needed for the one-loop calculation and for soft structures with soft

quarks.

An important feature of the NLP Feynman rules is that they contain derivatives of

momentum-conservation delta functions at the subleading-power vertices. This is due to

the appearance of explicit position-space arguments, xµ, in the SCET Lagrangian terms

owing to multipole expansion [28]. These derivatives must first be integrated by parts to

act on the rest of the amplitude before imposing momentum conservation.

4.1.1 Single soft gluon structures

Inspection of the subleading-power SCET Lagrangian (A.1) shows that only the two soft

gluon structures

sA1 (z−) =
i∂µ⊥
in−∂

B+A
µ⊥

(z−) and sA6 (z−) =
i∂[µ⊥

in−∂
B+A
ν⊥](z−) (4.6)
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can have tree-level single-gluon matrix elements at O(λ2). Hence the sum over i in (4.3)

reduces to i = 1, 6. Explicitly, (4.3) turns into

〈g(k)K |T 1g
γf (n+q)|q(p)e〉 = 2π

∫
dn+pa

2π
du ei (n+pa)u

∫
dω

2π

∫
dz− e−i ω z− (4.7)

×
(
JA1;γβ,fb (n+q, n+pa;ω) 〈0|χPDF

c,βb (un+)|q(p)e〉〈g(k)K |sA1 (z−) |0〉

+ Jµν,A6;γβ,fb (n+q, n+pa;ω) 〈0|χPDF
c,βb (un+)|q(p)e〉〈g(k)K |sA6;µν(z−) |0〉

)
,

where K, e refer to the colour of the external state and the superscript 1g reminds us that

we consider the collinear functions for single soft gluon emission.

The c-PDF collinear matrix element on the right-hand side equals

〈0|χPDF
c,βb (un+)|q(p)e〉 = δbe

√
Zq,PDF uc,β(p) e−i(n+p)u , (4.8)

where
√
Zq,PDF is the on-shell wave renormalization factor of the c-PDF field. The soft

matrix elements are found to give

〈g(k)K | i∂
ν
⊥

in−∂
B+A
ν⊥

(z−) |0〉 = δAK
gs

(n−k)

[
kη⊥ −

k2
⊥

(n−k)
nη−

]
ε∗η (k) eiz−k , (4.9)

〈g(k)K |
i∂[µ⊥

in−∂
B+A
ν⊥] (z−)|0〉 = δAK

gs
(n−k)

[
kµ⊥ g

νη
⊥ − kν⊥ g

µη
⊥

]
ε∗η(k) eiz−k . (4.10)

Inserting these results into (4.7), we obtain

〈g(k)K |T 1g
γf (n+q)|q(p)e〉 = 2π

gs
(n−k)

(
JK1;γβ,fe (n+q, n+p;n−k)

[
kη⊥ −

k2
⊥

(n−k)
nη−

]
+ Jµν,K6;γβ,fe (n+q, n+p;n−k)

[
kµ⊥ g

νη
⊥ − kν⊥ g

µη
⊥

])√
Zq,PDF uc,β(p)ε∗η (k) . (4.11)

This is the final expression for the right-hand side of the matching equation (4.3) for single

soft gluon structures for the chosen partonic state. We note that this expression is exact to

all orders in perturbation theory, since, as mentioned above, there are no loop corrections

to the above matrix elements.

We next turn our attention to the computation of the left-hand side of the matching

equation (4.3). The relevant terms in L(2) are L(2)
1ξ,2ξ,4ξ, which give rise to the NLP soft-

gluon vertex (4.4). A straightforward tree-level calculation gives

〈g(k)K |T 1g
γf (n+q)|q(p)e〉 = 2π

gs
(n−k)

TK
fe

{

−
[
kη⊥ −

k2
⊥

(n−k)
nη−

]
1

n+p
δ(n+q − n+p)δγβ

−
[
(n−k)nη+ − (n+k)nη−

] ∂

∂n+q
δ(n+q − n+p)δγβ

−
[
kµ⊥g

νη
⊥ − kν⊥g

µη
⊥

] 1

2

1

n+p
δ(n+q − n+p)

[
γµ⊥γ

ν
⊥
]
γβ

}

× ε∗(k)η
√
Zq,c|tree uc,β(p) +O(αs) , (4.12)
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where
√
Zq,c|tree = 1 is the tree-level value of the on-shell wave function renormalization

factor of the quark field in the effective theory including the threshold-collinear mode.

Calculating the contribution directly using the Feynman rule (4.4) gives three contributions

proportional to different soft structures. However, they are not independent, as they are

connected via the equation-of-motion identity (2.26). We can use the transversality and

on-shell conditions k ·ε∗ = 0 and k2 = 0, respectively, for the emitted gluon, which have not

yet been exploited in obtaining (4.12). The relation k · ε∗ = 0 can be written in light-cone

components as

(n+k)(n−ε∗ ) = 2

(
−(n−k)(n+ε

∗ )

2
− k⊥ · ε∗⊥

)
, (4.13)

at which point we see that indeed we can express the second soft structure in the curly

bracket of (4.12) in terms of the first,[
(n−k)nν+ − (n+k)nν−

]
ε∗ν(k) = −2

[
kν⊥ −

k2
⊥

(n−k)
nν−

]
ε∗ν(k) . (4.14)

This is expected as we know that the insertions of L(2)
1ξ and L(2)

2ξ contribute to the same

collinear function J1, since the soft structures are connected via (2.26). Using this relation,

we arrive at

〈g(k)K |T 1g
γf (n+q)|q(p)e〉 = 2π

gs
(n−k)

TK
fe

{
[
kη⊥ −

k2
⊥

(n−k)
nη−

](
− 1

n+p
δ(n+q − n+p) + 2

∂

∂n+q
δ(n+q − n+p)

)
δγβ

−
[
kµ⊥g

νη
⊥ − kν⊥g

µη
⊥

] 1

2

1

n+p
δ(n+q − n+p)

[
γµ⊥γ

ν
⊥
]
γβ

}

× ε∗(k)η
√
Zq,c|tree uc,β(p) +O(αs) . (4.15)

Through comparison of (4.15) to (4.11), we find the tree-level collinear functions

J
K(0)
1;γβ,fe(n+q, n+p;ω) = TK

feδβγ

(
− 1

n+p
δ(n+q − n+p) + 2

∂

∂n+q
δ(n+q − n+p)

)
, (4.16)

J
µν,K(0)
6;γβ,fe (n+q, n+p;ω) = −1

2

1

n+p
TK
fe

[
γµ⊥γ

ν
⊥
]
γβ
δ(n+q − n+p) . (4.17)

We would like to draw attention to the factor of −2 in the second term of (4.16) relative to

the first that was not present in (4.12). Its origin can be traced back to the fact that the

soft fields in the two terms giving rise to this contribution are connected by the equation-

of-motion relation (2.26) precisely with this weight. For the decomposition of the scalar

collinear function J1 introduced in (3.40), eq. (4.16) implies

J
(0)
1,1 (n+p;ω) = − 1

n+p
, (4.18)

J
(0)
1,2 (n+p;ω) = 2 . (4.19)

We recall from section 3.2.2 that the collinear function J6 does not contribute to the DY

cross section to any order in perturbation theory.
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Figure 5. Diagrams contributing to the matching of the two soft parton collinear functions. Soft

lines are labelled with an “s”. The contributions from the one-soft-particle reducible diagrams,

when the internal gluon originates from n+B+ term in L(2), are reproduced by the two parton

terms in the equation of motion relation (2.26) applied to (4.12).

4.1.2 Double soft parton structures

We now consider the collinear functions multiplying soft structures with at least two soft

fields. In the graphical representation of figure 4, these correspond to diagrams with one

external quark to the left and right, and two external soft gluons or a soft quark-antiquark

pair attaching to J . The diagrams relevant to the tree-level matching computation are

shown in figure 5. Specifically, we require the single insertions of the L(2)
3ξ and L(2)

5ξ La-

grangians, and the double insertions of L(1)
ξ and L(1)

ξq , see appendix A for the definition of

these terms. In addition, there exist one-soft-particle-reducible diagrams with an insertion

of L(2)
1ξ , see the last diagram in each row in figure 5, since we eliminated n+B+ from the

list of soft structures by the equation-of-motion relation (2.26).

We start with collinear functions associated with two soft gluon emission at the same

position z−. The collinear functions due to insertions of L(2)
3ξ and L(2)

5ξ are calculated as for

the single gluon emission, with a generalization of (4.7) to the two-parton case and the si
structures given by third and fourth terms in (2.25). Since both terms involve B+

µ⊥
only, we

choose the external soft gluon polarizations to be ⊥ to extract the collinear function. The

left-hand side of the matching equation is obtained by calculation of the third diagram in

figure 5 with the appropriate Lagrangian insertions. The collinear function J3, as defined

by (3.32) with soft function (3.36), is given by

J3;γβ (n+p, xa n+pA;ω) = δγβ

[
J3,1 (xan+pA;ω) δ(n+p− xan+pA)

+ J3,2 (xan+pA;ω)
∂

∂(n+p)
δ(n+p− xan+pA)

]
(4.20)

with J3,1 and J3,2 to be determined. A closer inspection of the subleading-power SCET

Lagrangian (A.1) shows that after the soft fields are stripped off, the remaining collinear

parts of L(2)
3ξ and L(2)

5ξ are identical to those of L(2)
2ξ and L(2)

4ξ , respectively. This means

that the collinear functions are the same, that is J3,1 is equal to J1,1, and J2 to J6. The

one-soft-particle reducible diagram is only partly reproduced by the already determined
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single-gluon emission collinear function, since the n+B+ soft field was eliminated from the

basis of soft structures. The unaccounted piece in this diagram can be determined by

explicit matching, or by making use of the single-gluon matrix element (4.12) before the

on-shell and transversality of the external soft gluon was enforced. Replacing nη+ by the

operator n+B+, and then employing the operator equation-of-motion identity (2.26) results

in a term proportional to the two-soft gluon structure s3. In this way, we deduce that J3,2

in (4.20) is equal to J1,2. Alternatively, we could use (2.26) directly in L(2)
1ξ , which then

contains the same soft-gluon structure as L(2)
3ξ , and derive J3,2 from the newly generated

qq̄gg vertex.

It remains to consider the contribution from the double L(1) insertions. The collinear

matching equation for double Lagrangian insertions is

i 2

∫
d4z1 d

4z2 T
[
χc,γf (tn+) L(1)(z1)L(1)(z2)

]
= 2π

∑
i

∫
dn+pa

2π
du ei (n+pa)u

×
∫
dω1

2π
dz1− e−iω1 z1−

∫
dω2

2π
dz2− e−iω2 z2−

∫
dn+p

2π
e−i (n+p)t

× Ji;γβ,µ,fbd (n+p, n+pa;ω1, ω2)χPDF
c,βb (un+) si;µ,d(z1−, z2−) . (4.21)

The partonic matrix elements to be calculated here is 〈g(k1)g(k2)| . . . |q(p)〉. The right-hand

side of the matching equation is then obtained as

〈g(k1)K1g(k2)K2 |T 2g
γf (n+q)|q(p)e〉 = 2π

∫
dn+pa

2π
du ei (n+pa)u

∫
dω1

2π
dz1− e−iω1z1−

×
∫
dω2

2π
dz2− e−iω2z2−

(
Jµν,AB4;γβ,fb (n+q, n+pa;ω1, ω2)

×〈0|χPDF
c,βb (un+)|q(p)e〉 〈g(k1)K1g(k2)K2 |sAB4;µν(z1−, z2−) |0〉

)
, (4.22)

The left-hand side is calculated as for the single soft gluon case, with L(1)
ξ in (4.21). The

relevant diagrams are the first two in the first line of figure 5. After matching both sides

of the equation we find

J
µν,AB (0)
4;γβ,fb (n+q, n+p;ω1, ω2) =

2gµν⊥
n+p (ω1 + ω2)2

(
ω1 TATB + ω2 TBTA

)
fb

× δγβ δ(n+q − n+p) . (4.23)

The calculation of the tree-level soft quark-anti-quark collinear function proceeds in the

same way. The double L(1)
ξq Lagrangian insertion contribution to the partonic matrix ele-

ment 〈q(k1)k1 q̄(k2)k2 | . . . |q(p)〉 can be written as

〈q(k1)k1 q̄(k2)k2 |T 2q
γf (n+q)|q(p)e〉 = 2π

∫
dn+pa

2π
du ei (n+pa)u

∫
dω1

2π
dz1− e−iω1z1−

×
∫
dω2

2π
dz2− e−iω2z2−

(
Jfghb5;γσλβ (n+q, n+pa;ω1, ω2)

×〈0|χPDF
c,βb (un+)|q(p)e〉 〈q(k1)k1 q̄(k2)k2 |s5;σλ,gh(z1−, z2−) |0〉

)
. (4.24)
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The left-hand side corresponds to the first diagram in the second line of figure 5. Since for

the quark-antiquark case we employed a non-redundant soft basis with the single bi-local

soft structure s5, the one-soft-particle reducible diagram in the same figure also contributes

to J5. The piece not already accounted for by the single-soft emission followed by a purely

soft intercation can be obtained as for the two-gluon case from the quark-antiquark term

in the operator equation-of-motion identity (2.26). Adding both contributions, we obtain

J
fk1k2e (0)
5;γσλβ (n+q, n+p;ω1, ω2) =−TA

fk2
TA
k1e

1

n+p

ω2

(ω1 + ω2)

/n−γη
2

γµ⊥,ησγ⊥µ,λβ δ(n+q − n+p)

+ 2 TK
feT

K
k1k2

ω1ω2

(ω1 + ω2)2 /n−λσδγβ
∂

∂n+q
δ(n+q−n+p) . (4.25)

4.2 Collinear functions at O(αs)

In this section we focus on demonstrating the consistency of the concept of collinear func-

tions by calculating J1 and J6 at the one-loop level. J1 is also the only collinear function

which is needed at the one-loop order to verify the NLP factorization formula at NNLO

accuracy, see (3.46). We do not calculate the loop correction to the collinear functions of

the two soft-parton structures, since it is a next-to-next-to-next-to-leading order (NNNLO)

effect.

The right-hand side of the matching equation has already been obtained in (4.11),

which is valid to all orders in αs. The on-shell wave function renormalization factor should

now be evaluated with one-loop accuracy. However, when dimensional regularization is

used for ultraviolet and infrared divergences,
√
Zq,PDF = 1 to all orders, because the loops

are scaleless.8 The coupling renormalization is also the same on both sides of the matching

equation, and drops out at the one-loop order.

We therefore focus on the calculation of 〈g(k)K |T 1g
γf (n+q)|q(p)e〉 on the left-hand side

of (4.3), which requires the calculation of the Feynman diagrams with one collinear loop

and a single soft emission, generated by insertions of the power-suppressed Lagrangian. The

relevant SCET diagrams are shown in figure 6. The circled vertex denotes the subleading-

power Lagrangian insertion, while all other vertices are LP interactions.

4.2.1 Detailed computation

We illustrate the computation by considering as an example the top-left diagram in figure 6,

which we draw again with momentum labels in figure 7. All necessary Feynman rules

were provided in appendix A of [35] and (4.4). Applying them to the diagram under

consideration leads to

〈g(k)K |T 1g
γf (n+q)|q(p)e〉fig. 7 =−2(2π)ig3

s

(
CF −

1

2
CA

)
TK
fe

∫
ddp1

(2π)d

∫
ddp2

(2π)d
(4.26)

× δ(n+q − n+p1 − n+p2)
1

(n+p2)

n+p1

p2
1

n+(p− p2)

(p− p2)2

1

p2
2

×
[
Sσδ(−k, p− p2, p1)uc(p)

]
γ

(
− kσgδν + kδgσν

)
ε∗ν(k).

8The same statement applies to
√
Zq,c on the left-hand side of the matching equation, which will be

used below.
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Figure 6. One-loop collinear diagrams with one external soft gluon (labelled “s”). The dot at

the right end of the solid quark line denotes the χc field from the LP current. The collinear gluon

in the loop attaches either to the collinear quark or to the collinear Wilson line in the definition of

the χc field.

After substituting the expression for Sσδ(−k, p − p2, p1) from (4.4) and performing an

integration by parts of the derivative with respect to p1 contained in S, the derivative

acts on the integrand including the delta function in the second line. At this point, the

momentum conservation delta function at the subleading-power interaction vertex can be

imposed by performing the integral over p1. This identifies pµ1 = pµ−pµ2 −kµ+ and results in

〈g(k)K |T 1g
γf (n+q)|q(p)e〉fig. 7 =−(2π)ig3

s

(
CF −

1

2
CA

)
TK
fe

∫
ddp2

(2π)d
(4.27)

× 1

(n+p2)

n+(p− p2)

(p− p2)2

1

p2
2

(
− kσgδν + kδgσν

)
ε∗ν(k)

×
{
n− ·

∂

∂p1

(
δ(n+q − n+p1 − n+p2)

n+p1

p2
1

)
nσ+n

δ
− uc,γ(p)

−
(
k⊥ ·

∂

∂p1⊥

)
∂

∂p1⊥σ

(
δ(n+q−n+p1−n+p2)

n+p1

p2
1

)
nδ− uc,γ(p)

+
∂

∂p1⊥σ

[(
δ(n+q − n+p1 − n+p2)

n+p1

p2
1

)
×
(
/p1⊥
n+p1

γδ⊥ − γδ⊥
/p2⊥

n+(p− p2)

)
γβ

]
uc,β(p)

}∣∣∣∣
p1=p−p2−k+

.

In this equation, only the term with the derivative n− · ∂
∂p1

gives a non-vanishing contri-

bution to the derivative component J1,2 of the collinear function defined in (3.40), when it

acts on the delta function.9 The remainder of the computation proceeds in the standard

9In the factorization formula, once the derivative in (3.40) is integrated by parts, it acts on the hard

function, which is, however, constant at tree level. Hence the one-loop correction to J1,2 contributes first

at NNNLO together with the one-loop hard and soft function.
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Figure 7. One of the diagrams contributing to the one-loop collinear functions. Through calcula-

tion of this diagram using Feynman rules from [35] we can obtain the J1 and J6 collinear functions,

corresponding to insertions of L(2)
1ξ and L(2)

2ξ , and L(2)
4ξ , respectively.

way, and we obtain a result valid to all orders in ε. Expanding it here for illustration,

we find

〈g(k)K |T 1g
γf (n+q)|q(p)e〉fig. 7 = 2π

gsαs
4π

(
CF −

1

2
CA

)
TK
fe

(n+p)

[
(n+p)(n−k)

µ2

]−ε
×
{
δ(n+q − n+p)

[
2δγβ

(
(n+k)

(n−k)
nν− − nν+

)
+ δγβ

(
k2
⊥ n

ν
−

(n−k)2
− kν⊥

(n−k)

)(
− 2

ε2
− 2

ε
+ 2 +

π2

6

)
+

[
γν⊥ , /k⊥

]
γβ

(n−k)

(
− 1

ε2
+
π2

12

)
+O(ε)

]
+

∂

∂n+q
δ(n+q − n+p) δγβ

(
(n+k)

(n−k)
nν− − nν+

)
×
(
− 2

ε2
− 2

ε
− 4 +

π2

6
+O(ε)

)}
uc,β(p)ε∗ν (k) . (4.28)

The transversality and on-shell conditions k · ε∗ = 0 and k2 = 0, respectively, for the

emitted gluon, have not yet been used in obtaining (4.28).

4.2.2 Amplitude calculation results

The calculation of all diagrams in figure 6 gives the following result, after using the on-shell

and transversality relations:

〈g(k)K |T 1g
γf (n+q)|q(p)e〉(1)

= 2π
gsαs
4π

TK
fe

[
kη⊥

(n−k)
− k2

⊥n
η
−

(n−k)2

]
ε∗η(k)uc,γ(p)

δ(n+q − n+p)

n+p

(
n−k n+p

µ2

)−ε
×
(
CF

(
−4

ε
+ 3 + 8ε+ ε2

)
− CA

(
−5 + 8ε+ ε2

)) eεγE Γ[1 + ε]Γ[1− ε]2
(−1 + ε)(1 + ε)Γ[2− 2ε]

+ 2π
gsαs
4π

TK
fe

[
kµ⊥ε∗ν⊥ (k)

n−k
− kν⊥ε

∗µ
⊥ (k)

n−k

]
uc,β(p)

δ(n+q − n+p)

n+p

(
n−k n+p

µ2

)−ε
×
[
γµ⊥γ

ν
⊥
]
γβ

(CF − CA)
eεγE Γ[1 + ε]Γ[1− ε]2

2 Γ[2− 2ε]
. (4.29)
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These results constitute the left-hand side of the matching equation, that is, the extension

of (4.15) to one-loop accuracy. Remarkably, we find that the one-loop correction to the

derivative delta-function term cancels exactly when all diagrams are added, which explains

the absence of such term in the above equation.

4.2.3 Collinear functions results at the one-loop order

Comparing (4.29) to (4.11) we obtain the one-loop correction to J1 and J6. We give the

d-dimensional result and its expansion in ε = (4− d)/2 in the following:

J
K (1)
1,1;γβ,fe(n+q, n+p; ω) =

αs
4π
δγβT

K
fe

1

(n+p)

(
n+pω

µ2

)−ε eε γE Γ[1 + ε]Γ[1− ε]2
(−1 + ε)(1 + ε)Γ[2− 2ε]

(4.30)

×
(
CF

(
−4

ε
+ 3 + 8ε+ ε2

)
− CA

(
−5 + 8ε+ ε2

))
δ(n+q − n+p)

=
αs
4π

1

(n+p)
δγβT

K
fe

(
CF

(
4

ε
+5−4 ln

(
n+pω

µ2

))
− 5CA

)
δ(n+q−n+p)

+O(ε) , (4.31)

J
K (1)
1,2;γβ,fe(n+q, n+p; ω) = 0 , (4.32)

J
µν,K (1)
6;γβ,fe (n+q, n+p; ω) =

αs
4π

1

(n+p)

[
γµ⊥γ

ν
⊥
]
γβ

TK
fe

(
n+pω

µ2

)−ε
×e

ε γE Γ[1 + ε]Γ[1− ε]2
2 Γ[2− 2ε]

(CF − CA) δ(n+q − n+p) (4.33)

=
αs
4π

1

2

1

(n+p)

[
γµ⊥γ

ν
⊥
]
γβ

TK
fe (CF − CA) δ(n+q − n+p) +O(ε) . (4.34)

It is noteworthy that there are no 1/ε2 poles in the O(αs) collinear functions. This im-

plies that there are no leading (double) logarithmic (LL) contributions from the collinear

functions and confirms the finding of [14] from the consistency of LL resummation. The ab-

sence of the 1/ε2 pole results from a cancellation and after applying the equation-of-motion

relation, as can be seen from the fact that individual diagrams do contain it, see (4.28).

Moreover, for the CA colour coefficient, even the single pole cancels. The above one-loop

corrections to the collinear functions constitute the second main result of this work. As

noted earlier, neither J
K (1)
1,2;γβ,fe nor J

K (1)
6;γβ,fe contribute to the NNLO DY cross section.

4.2.4 Relation to the LBK ampltiude and the radiative jet function

The study of an amplitude with a next-to-soft emission has a long history starting from

the Low-Burnett-Kroll formula and its extension to soft gluon emission from jets [26]. The

emergence of the next-to-soft LBK amplitude within SCET was discussed in [40, 41]. The

calculation of the collinear functions at the one-loop level presented above forms part of

the generalization of the LBK formula to the one-loop order. The complete next-to-soft,

one-loop amplitude is provided in appendix B, including terms that vanish at the cross-

section level due to the interference with the complex-conjugated tree-level amplitude. The
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result does not display any suggestive structure, and indeed, to our knowledge there is no

simple representation of the one-loop result in terms of the angular momentum operator

that would generalize the well-known expression of the tree-level next-to-soft amplitude.

Next-to-soft emission at the one-loop order in amplitudes with a colourless final state

has been studied before within the diagrammatic approach [12, 13, 27], where the concept of

a “radiative jet function” [26] is used to describe the soft emission from jets. Ultimately, the

formalism presented here aims to capture the same physics, however there are conceptual

differences. The most important one is that the radiative jet function, as can be found in

(2.12) of [13], is not a single scale object unlike the collinear functions defined in (2.23). This

fact can be seen in the result for the one-loop radiative jet function given in (3.3) of [13].

In addition to the collinear contributions, there exist subtraction terms which account for

the overlap of the radiative jet function with the soft function. No such complications arise

here, which makes the effective field theory construction more suitable for resummation

using renormalization group techniques. (Nevertheless, NLP resummation near the Drell-

Yan threshold using diagrammatic techniques has been achieved at LL accuracy [16] owing

to the fact that the radiative jet or collinear functions do not contribute beyond tree level

at this accuracy [14].)

Since the radiative jet function contains both collinear and soft contributions, in order

to compare our collinear functions with results given in [13] it is necessary to multiply

the collinear functions with their corresponding soft structures. At this point, it is most

convenient to compare the radiative jet function in [12, 13] with our results for the soft emis-

sion amplitude at NLP calculated within SCET and written in appendix B. The relevant

contributions are given in (B.4), (B.5), (B.6), and (B.7). We compare these expressions

(appropriately expanded in powers of ε) with J
(1)
µ,F and J

(1)
µ,A given in [13]. We find agree-

ment for all terms,10 except for contributions (B.6) and (B.7) proportional to nρ−/(n−l).
Given that our calculation gives the full amplitude with the emission of a soft gluon, we

conclude that the radiative jet function in [12, 13] fails to reproduce the complete ampli-

tude, although the missing terms do not contribute to the matrix element squared at NLP.

It would be interesting to investigate further what is the underlying reason for this discrep-

ancy, which is beyond the scope of this work. We speculate that contributions similar to

those from the JA0,A1 and JA0,B1 SCET currents are needed in the radiative jet function

formalism.

5 Fixed-order results

There exists a number of NLP results for the DY process at NLO and NNLO in the strong

coupling [7, 11–13, 42], obtained from direct expansions of the QCD diagrams. In this

section we verify the correctness of the NLP factorization formula by comparing to these

results and own results from the expansion-by-regions method [43].

10Noting the typo in (3.3) of [13] where one must replace (−2p · k)−ε → (2p · k)−ε and a overall minus

sign error in one-loop results given in [12].
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5.1 NLO

Expanding the NLP factorization formula to NLO, one finds only one dynamical contri-

bution to the cross section, since the soft function begins at O(αs). The one-loop soft

function is given by11

S
(1)
1 (Ω, ω) =

αsCF
2π

µ2εeεγE

Γ[1− ε]
1

ω1+ε

1

(Ω− ω)ε
θ(ω)θ(Ω− ω) . (5.1)

Using this result in (3.42) and performing the convolution integral over ω gives

∆
dyn (1)
NLP (z) =

αs
4π
CF

(
8

ε
− 16 ln(1− z)− ε

(
2π2 − 16 ln2(1− z)

)
+O(ε2)

)
, (5.2)

where we set µ = Q.

In addition, at NLO we need to take into account the kinematic corrections ∆K1
NLP(Ω),

∆K2
NLP(Ω), and ∆K3

NLP(Ω) in (3.28), (3.29), and (3.30). For the latter two, we can use (5.1)

and H(0)(Q2) = 1, since no derivatives with respect to the coordinate ~x needs to be taken.

To compute ∆K1
NLP(Ω) we use the result for the one-loop soft function with full x dependence

from [14, 44]. Upon summing the three kinematic corrections we obtain

∆
kin (1)
NLP (z) =

αsCF
4π

(
8− ε 16 ln(1− z)

)
. (5.3)

Results for the NLO NLP contribution to DY production have been presented in [11]

within a diagrammatic approach, in which power-suppressed soft radiation is described it

terms of generalized next-to-soft Wilson lines. Our result (5.2) agrees with the correspond-

ing expression eq. (6.17) of [11]. The kinematic correction (5.3) is provided in eq. (6.13)

of [11] as a correction to the LP matrix element. Agreement can be easily checked. After

summing (5.2) and (5.3), and applying the subtractions that arise from PDF renormaliza-

tion, we also find agreement with the NLO NLP result reported in eq. (B.29) of [42].

5.2 NNLO

In section 3.3 the three possible dynamical NLP contributions to the cross section at

NNLO have been discussed. These are collinear, hard, and soft contributions presented

in (3.46), (3.47) and (3.45), respectively. In this section we explicitly compute and check

the first two of these. The soft contribution requires a full NLP NNLO soft function

computation, which is beyond the scope of this work. However, we present the one-virtual,

one-real soft contribution to the cross section here. Also, in appendix B we present complete

results for the one-loop power-suppressed amplitude with one real soft emission, including

the soft loop contribution. The latter forms part of the virtual-real contribution to the

NNLO soft function. The missing contribution comes from double real soft emission, which

we leave for future work.

11The expansion in ε was already presented in [14].
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5.2.1 Collinear contribution

This contribution comes from the one-loop collinear functions combined with the NLO soft

function and tree-level hard function, see (3.46). We recall that the delta-function derivative

term in the collinear function, spelled out in (3.40), vanishes after partial integration, since

the hard function at tree level is a constant. The one-loop collinear function that is required

is then given by (4.30) with colour generator and Dirac-index Kronecker-symbol removed.

For the purpose of deriving the NNLO fixed-order result, we keep must use the d-

dimensional expression of the collinear function and perform the convolution with the

d-dimensional soft function. Then expanding in ε and setting Ω = Q(1− z), µ = Q yields

∆
dyn (2)
NLP−coll(z) =

α2
s

(4π)2

(
C2
F

(
− 16

ε2
+

48 ln(1− z)− 20

ε

+
(
−72 ln2(1− z) + 60 ln(1− z) + 8π2 − 24

)
+O(ε)

)
+CACF

(
20

ε
− (60 ln(1− z)− 8) +O(ε)

))
. (5.4)

Notice that, as expected, there are no leading logarithms O(α2
s ln3(1− z)) in the collinear

contribution, since the highest power of the logarithm in the finite terms in the second line

is NLL accuracy, ln2(1− z).

Results describing virtual collinear radiation at one loop with emission of a soft gluon

have been derived in [7] within the expansion-by-regions approach [43], and in [12, 13]

within a diagrammatic approach, in which the effect of collinear loops is described in terms

of a “radiative jet function”. The C2
F term in (5.4) is in agreement with the corresponding

contribution in eqs. (13), (14) of [7] and eq. (4.22) of [12], where the abelian contribution

only is considered.12 The CACF term in our result (5.4) is not provided separately in

literature, but only in sum with the hard and soft contribution, that we consider in the

following.

5.2.2 Hard contribution

Next we check the contribution composed of the one-loop hard function, the tree-level

collinear functions, and the one-loop soft function. In contrast to the collinear contribu-

tion, here the collinear function with the derivative contributes, since the hard matching

coefficient is momentum-dependent beyond tree level.

The relevant formula is now (3.47), which already made use of the expressions for

the collinear functions at tree level. The one-loop soft function was given in (5.1).

The d-dimensional hard matching coefficient at the one-loop order can be found in

12Notice also that these references drop all contributions proportional to transcendental numbers, such

as π2 and ζ(3).
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eq. (2.23) of [45],

CA0,A0(n+p, n−p̄) = 1 +
αs
4π
CF

(−Q2

µ2

)−ε(
− 2

ε2
− 3

ε
− 8 +

π2

6

+ ε

(
π2

4
+

14ζ(3)

3
− 16

)
+O(ε2)

)
+O(α2) , (5.5)

where Q2 = (n+p)(n−p̄). Taking care of the imaginary part, the one-loop hard function

H = |CA0,A0|2 reads

H(Q2) = 1 +
αsCF

4π

(
− 4

ε2
− 1

ε

(
4 ln

(
µ2

Q2

)
+ 6

)
−
(

2 ln2

(
µ2

Q2

)
+ 6 ln

(
µ2

Q2

)
− 7π2

3
+ 16

)
+ ε

(
− 2

3
ln3

(
µ2

Q2

)
− 3 ln2

(
µ2

Q2

)
+

(
7

3
π2 − 16

)
ln

(
µ2

Q2

)
+

28

3
ζ(3) +

7

2
π2 − 32

)
+O(ε2)

)
+O(α2

s) . (5.6)

Performing the ω-integration in (3.47), setting µ = Q, and expanding in ε leads to

∆
dyn (2)
NLP−hard =

α2
sC

2
F

(4π)2

(
− 32

ε3
+

64 ln(1− z)− 16

ε2

+
−64 ln2(1− z) + 32 ln(1− z) + 80

3

(
π2 − 3

)
ε

− 8

3

(
− 16 ln3(1− z) + 12 ln2(1− z) + 20

(
π2 − 3

)
ln(1− z)

− 56ζ(3)− 5π2 + 48
)

+O(ε)

)
, (5.7)

where ζ(3) is a Riemann zeta value. In contrast to the NLP collinear contribution, LLs

appear in this expression. Resummation of the hard function is therefore necessary in order

to sum LLs to all orders in αs, as was done in [14].

In the literature, the hard one-loop times one real soft gluon result has been consid-

ered before within the expansion-by-regions method. The expression for the abelian C2
F

term has been given in eq. (12) of [7], and agrees with (5.7).13 Within the diagrammatic

approach [12, 13], the hard contribution (5.7) arises from dressing the non-radiative am-

plitude by a one real soft gluon, according to the LBK theorem. For a discussion of the

LBK theorem in the present approach, see [41].

5.2.3 Soft contribution

The soft contribution provided here is the one-real, one-virtual piece of the full NNLO soft

function as mentioned in the introduction of section 5.2. In (3.45) one can see that there

are contributions to the NNLO soft function from different soft structures. However, as

detailed in appendix B.3, only one soft structure, S1, and corresponding tree-level collinear

function actually contribute to this piece. Hence the simplified factorization formula is

∆
dyn (2)1r1v
NLP−soft = 4QH(0)(Q2)

∫
dωJ

(0)
1,1 (xa(n+pA);ω)S

(2)1r1v
1 (Ω, ω). (5.8)

13We note the following typo in [7]: in eq. (12)
[
1 + 4 log(1− z)

]
/ε2 should be

[
− 1 + 4 log(1− z)

]
/ε2.
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The result for one-real, one-virtual contribution to the two-loop soft function reads

S1r1v
1 (Ω, ω) = −4

α2
s

(4π)2
CFCA

(
−ω

2(Ω− ω)2

µ4

)−ε
1

ω

× 1

ε2
e2εγE Γ[1− ε]2

Γ[1− 2ε]
Γ[1 + ε]2 θ(Ω− ω)θ(ω). (5.9)

Using (4.18) for the tree-level collinear function in (5.8), integrating over ω and expanding

in ε yields

∆
dyn (2)1r1v
NLP−soft =

α2
s

(4π)2
CFCA

(
− 8

ε3
+

32 ln(1− z)

ε2
− 64 ln2(1− z)

ε
+

28π2

3ε

+
256

3
ln3(1− z)− 112

3
π2 ln(1− z) +

448ζ(3)

3
+O(ε)

)
. (5.10)

In the literature the non-abelian CFCA term of the one-real, one-virtual contribution has

been provided as a sum of the collinear, soft and kinematic correction (see eq. (4.6) of [13]),

thus (5.10) cannot be compared directly. We performed an independent calculation of the

full one-real, one-virtual correction within the expansion-by-regions method, and (5.10)

agrees with the soft region, as it should be.

5.2.4 Kinematic contribution

The kinematic correction from the sum of terms (3.28)–(3.31) can also be obtained at

NNLO by using the NNLO soft function with full x-dependence presented in [44]. We find

∆
kin (2)
NLP (z) =

α2
s

(4π)2

[
C2
F

(
16

ε2
− 192 ln(1− z) + 96

ε
+ 512 ln2(1− z)

+ 192 ln(1− z)− 40π2 − 256

)
+ CFCA

(
88

3ε
− 352 ln(1− z)

3

− 8π2

3
+

476

9

)
+ CFnf

(
− 16

3ε
+

64 ln(1− z)

3
− 56

9

)]
. (5.11)

We note that there are no LLs due to kinematic corrections.

The kinematic contribution has been calculated previously within the expansion-by-

regions or the diagrammatic approach as the NLP phase-space corrections to the LP matrix

element, but the expression corresponding to (5.11) has not been provided explicitly. (It is

part of eq. (4.6) and (5.2) of [13], but it cannot be separated from the NLP matrix element.)

We thus compare (5.11) with an own independent expansion-by-regions calculation, in

which we take the matrix element at leading power (both one-real, one-virtual and two-

real diagrams), and integrate it against the NLP phase space, finding agreement.

6 Ill-defined convolution

One of the primary uses of factorization formulas in SCET is to perform resummation

using renormalization group equations. Soft-collinear factorization often involves convolu-

tions C⊗F of hard functions with collinear factors, for example, in deep-inelastic scattering
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or in convolutions with PDFs for any hadronic scattering cross section, or J⊗S of jet with

soft functions, for example in the description of radiation from final-state jets. Resum-

mation relies on defining renormalized factors by subtracting their poles in dimensional

regularization and deriving a renormalization group equation for the renormalized func-

tion, which usually also has a convolution form. Large logarithms are then summed by

evolving one function to the characteristic scale of the other. Finally, the convolution of

the two factors is done.

This procedure evidently requires that the final convolution integral of the renormalized

factors is well defined. As we discuss now, this important requirement is not satisfied by

the NLP factorization formula for the DY process.

The issue is most clearly exposed when we focus on the functional form of the objects

appearing in the one-loop collinear times one-loop soft NNLO term in factorization formula

given in (3.46). The one-loop collinear function J
(1)
1,1 is taken from (4.30) and the soft

function from (5.1). The convolution integral reads∫ Ω

0
dω

(
n+pω

)−ε︸ ︷︷ ︸
collinear piece

1

ω1+ε

1

(Ω− ω)ε︸ ︷︷ ︸
soft piece

. (6.1)

It is evident that the integral is well defined when keeping the exact ε dependence in the

integrand, as was done in the previous section in order to obtain and reproduce the fixed-

order NNLO NLP results. However, as explained above, for resummation we would like

to treat the parts originating in the collinear function, (n+pω)−ε, and the soft function

pieces, ω−1−ε (Ω− ω)−ε, independently. That is, we wish to expand each in ε and define

renormalized functions. However, it is clear that there is a problem when this procedure is

attempted in (6.1). Concretely, one encounters a divergent integral, or
∫
dω δ(ω) ln(ω) and

other ill-defined integrals after introducing the standard plus distribution for the 1/ω1+ε

factor.14

In order to make the issue even more explicit, we take the ε-expanded collinear function

given in (4.31) and also expand the one-loop soft function (5.1) in ε,

S
(1)
1 (Ω, ω) =

αsCF
4π

(
2 δ(ω) θ(Ω)

(
−1

ε
+ ln

(
Ω2/µ2

))
+ 2

[
1

ω

]
+

θ(ω)θ(Ω− ω)

)
. (6.2)

The convolution of this expression with (4.31) according to (3.46) (at µ = Q as in the

section above) gives

∆
dyn (2)
NLP−coll(z) =

α2
s

(4π)2

(
C2
F

(
− 32

ε2
− 8

ε

[
5− 8 ln(1− z)− 4

∫
dω δ(ω) ln

(
ω

Q

)])

+CACF
40

ε
+O(ε0)

)
(6.3)

14In principle, one can move integer powers of ω from the collinear to the soft function by adjusting

powers of 1/in−∂. However, this does not solve the problem, since there will always be a factor of ω−nε

associated with the collinear function.
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where only the pole terms in ε are shown. There are two issues with this result. First,

one of the terms with 1/ε pole is ill-defined as we encounter the integral
∫
dω δ(ω) ln(ω).

Second, the coefficient of the C2
F /ε

2, CFCA/ε pole terms which are not divergent have

changed with respect to the correct result from (5.4) obtained from expanding in ε after

performing the convolution in d dimensions.

It is clear from the above that it is not possible to obtain the NLP logarithms of (1−z)

correctly from the standard renormalization procedure and four-dimensional convolutions.

The leading logarithms in the qq̄ (gg) channels in DY (Higgs) production summed in [14, 15]

form an exception, since they require only tree-level collinear functions and since the loop

corrections to the collinear functions do not contribute leading logarithms. The ill-defined

convolution, however, hampers the extension of resummation to NLL. The convolution

itself requires subtraction, and contributes to the logarithms, which can therefore not be

obtained from the separate renormalization group equations for the renormalized collinear

and soft functions. Nevertheless, the NLP formula derived in this paper factorizes the

different momentum scales of the DY process consistently at the level of regularized matrix

elements of the soft and collinear operators, and therefore can be justifiably called a fac-

torization formula. It may be hoped that it provides the starting point for understanding

how to renormalize d-dimensional convolutions, which appear to be a generic feature of

NLP factorization.15

7 Summary

In this work, we derived for the first time a factorization formula for DY production near

threshold in the qq̄-channel at general powers in the (1 − z) expansion. We then focused

on the next-to-leading power, which entails several simplifications. The main result is the

NLP factorization formula (3.32), which generalizes the LL-accurate formula in [14].

As one of the new key ingredients of the subleading-power factorization formula, we

identify and discuss the emergence of collinear functions at the amplitude level. While

the related concept of a “radiative jet function” [26] has been known to be relevant to

power corrections at the DY threshold from diagrammatic studies [12, 13, 27], the ben-

efit of the present SCET treatment is an operator definition, which renders the function

gauge-invariant by construction. More precisely, see (2.23), the collinear functions are the

perturbative matching coefficients, when threshold-collinear fields are matched to c-PDF

fields in the presence of external soft structures that describe the emission of one (or sev-

eral) soft gluons. Due to the strict scale separation and systematic power expansion, the

collinear functions are single-scale objects. They are extracted from partonic matrix ele-

ments since the threshold-collinear scale is assumed to be much larger than the scale of

strong interactions, Q(1− z)1/2 � Λ.

The tree-level collinear function required for LL resummation in threshold DY (and

Higgs) production has already been used in [14, 15]. In this work, we computed the one-

loop O(αs) corrections (4.30) and (4.33) to the collinear functions, which can contribute to

the DY cross section at NNLO, and to the one-loop one-gluon emission amplitude. These

15See also [36], where a different type of divergent convolution is discussed.
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results confirm explicitly the observation made in [14, 15] that the DY collinear function

cannot contain LLs. The one-loop calculation demonstrates the validity of the definition

of these NLP objects and allows us to verify the correctness of the factorization formula at

NNLO by comparing its expansion in powers of αs with existing results obtained at this

order with the expansion-by-regions method.

However, our investigation also highlights that factorization at NLP is not yet under-

stood at a similar level as at LP. The factorization formula separates the scales relevant

to the DY threshold in the form of well-defined, dimensionally regulated collinear and soft

functions, which have to be convoluted in the soft momentum variables ωi. The O(α2
s)

calculation makes explicit what can already be seen from general scaling arguments that

the convolutions exist only for the d-dimensional functions. When the expansion in ε is

performed before the convolution, the latter is ill-defined and leads to a divergence. This

implies that the formula is not yet in a form suitable for the resummation of large threshold

logarithms beyond the LLs through the renormalization group equations for renormalized

hard, collinear and soft functions. Nevertheless, it may be hoped that it provides the start-

ing point for understanding how to renormalize d-dimensional convolutions, which would

open the path to NLL resummations beyond LP.
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A Subleading SCET Lagrangian

A.1 Quark-gluon subleading SCET Lagrangian

The quark-gluon interaction terms of subleading power in the soft-collinear SCET La-

grangian [29] are given by

L(1)
ξ = χ̄cix

µ
⊥
[
in−∂B+

µ

] /n+

2
χc,

L(2)
1ξ =

1

2
χ̄cin−xn

µ
+

[
in−∂B+

µ

] /n+

2
χc,

L(2)
2ξ =

1

2
χ̄cx

µ
⊥x

ν
⊥
[
i∂νin−∂B+

µ

] /n+

2
χc,
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L(2)
3ξ =

1

2
χ̄cx

µ
⊥x

ν
⊥
[
B+
ν , in−∂B+

µ

] /n+

2
χc,

L(2)
4ξ =

1

2
χ̄c
(
i/∂⊥ +A/c⊥

) 1

in+∂
ixµ⊥γ

ν
⊥
[
i∂νB+

µ − i∂µB+
ν

] /n+

2
χc + h.c.,

L(2)
5ξ =

1

2
χ̄c
(
i/∂⊥ +A/c⊥

) 1

in+∂
ixµ⊥γ

ν
⊥
[
B+
ν ,B+

µ

] /n+

2
χc + h.c.,

L(1)
ξq = q̄+A/c⊥χc + h.c.,

L(2)
ξq = q̄+

[
in−∂ + n−Ac +

(
i∂/⊥ +A/c

) 1

in+∂

(
i∂/⊥ +A/c

)]n/+

2
χc

+ q̄+

(
i
←−
∂ µ + Bµ+

)
x⊥µ

(
i∂/⊥ +A/c

)
χc + h.c. . (A.1)

A.2 YM subleading SCET Lagrangian

The subleading-power gluon self-interaction terms of the soft-collinear Yang-Mills La-

grangian [29] expressed in terms of the collinear and soft gauge-invariant fields are given by

L(1)
1YM = − 1

g2
s

tr
([
n+∂Acν⊥

][
xρ⊥ in−∂ B+

ρ ,Aν⊥c
])
,

L(1)
2YM = − 1

g2
s

tr
([
n+∂Aν⊥c

]
in−∂ B+

ν⊥

)
,

L(2)
1YM = − 1

2g2
s

tr
([
n+∂Acν⊥

][
n−x in−∂ n+B+, Aν⊥c

])
,

L(2)
2YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥x⊥ω

[
∂ω, in−∂ B+

ρ

]
, Aν⊥c

])
,

L(2)
3YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥x⊥ω

[
Bω+, n−∂ B+

ρ

]
, Aν⊥c

])
,

L(2)
4YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥
[
i∂ρB+

ν⊥
− i∂ν⊥B+

ρ

]
, n−Ac

])
,

L(2)
5YM = − 1

2g2
s

tr
([
n+∂Acν⊥

] [
xρ⊥
[
B+
ρ ,B+

ν⊥

]
, n−Ac

])
,

L(2)
6YM = − 1

g2
s

tr
([
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

][
ixρ⊥
[
i∂ρB+

µ⊥
− i∂µ⊥B+

ρ

]
, Acν⊥

])
,

L(2)
7YM = − 1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

][
ixρ⊥
[
i∂ρB+

µ⊥
− i∂µ⊥B+

ρ

]
, Acν⊥

])
,

L(2)
8YM = − 1

g2
s

tr
([
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

][
ixρ⊥
[
B+
ρ ,B+

µ⊥

]
, Acν⊥

])
,

L(2)
9YM = − 1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

][
ixρ⊥
[
B+
ρ ,B+

µ⊥

]
, Acν⊥

])
,

L(2)
10YM = − 1

2g2
s

tr
([
n+∂ n−Ac

]
n−∂ n+B+

)
,

L(2)
11YM =

1

g2
s

tr
((
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

) (
i∂µ⊥B+

ν⊥
− i∂ν⊥B+

µ⊥

))
,

L(2)
12YM =

1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

] (
i∂µ⊥B+

ν⊥
− i∂ν⊥B+

µ⊥

))
,
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L(2)
13YM =

1

g2
s

tr
((
i∂µ⊥Aν⊥c − i∂ν⊥Aµ⊥c

) [
B+
µ⊥
,B+

ν⊥

])
,

L(2)
14YM =

1

g2
s

tr
([
Aµ⊥c ,Aν⊥c

] [
B+
µ⊥
,B+

ν⊥

])
,

L(2)
15YM = − 1

g2
s

tr
([
n+∂Aν⊥c

]
x⊥σ

[
∂σ, n−∂B+

ν⊥

])
,

L(2)
16YM =

1

g2
s

tr
([
n+∂Aν⊥c

]
x⊥σ

[
iBσ

+, n−∂B
+
ν⊥

])
. (A.2)

B One-loop single soft real emission amplitude

In the main body of the text we focused on the factorization formula at the cross-section

level. As a by-product of the computation of the collinear functions, which are amplitude-

level objects, we also obtained the power-suppressed one-loop one-soft emission DY am-

plitude, which we summarize here. The results below, computed directly in SCET, were

shown to agree with in-house results obtained by applying the expansion-by-regions method

to the same quantity.

We consider the following operator, which is the right-hand side of (3.4) without the

soft current Js: ∑
m1,m2

∫
{dtk} {dt̄k̄} C̃m1,m2 ({tk}, {t̄k̄}) J m1,m2

ρ ({tk}, {t̄k̄}) (B.1)

where

J m1,m2
ρ ({tk}, {t̄k̄}) = Jm1

c̄ ({t̄k̄}) Γm1,m2
ρ Jm2

c ({tk}) (B.2)

as in (3.5). The variables appearing in this expression are defined in section 3.1, and the

sum is performed over the different power-suppressed currents in the N -jet SCET operator

matched to the QCD current.

Below we focus solely on the case in which the power suppression is in the collinear

sector, thereby setting m1 = A0, and allow for structures which give power-suppression

up to O(λ2) (NLP). Specifically, we consider the time-ordered product of J m1,m2
ρ with

subleading-power Lagrangian insertions between an emitted soft gluon 〈g(k)K |, and an in-

coming collinear quark and anticollinear antiquark, |q(p) q̄(l) 〉. This defines the amplitude

MK
ρ = 〈g(k)K |

∑
m

∫
{dtk} dt̄ C̃A0,m ({tk}, t̄ ) J A0,m

ρ ({tk}, t̄ ) |q(p) q̄(l)〉 , (B.3)

that we calculate at the one-loop order. Concretely, we consider only the time-ordered

products of the collinear operator part Jm2
c in (B.2) with subleading-power soft-collinear

(not: soft-anticollinear) Lagrangian insertions. The complete result for the amplitude is

obtained by subtracting from the contributions given below the corresponding ones with

n+ and n− interchanged.

In the following sections we present the different contributions to this object. Partial

results obtained when the virtual loop is collinear (soft) carry a subscript c (s),Mc (Ms).
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Figure 8. One-loop collinear diagrams with one soft gluon emission. Only the LP current, A0, is

used here. Power suppression is provided by the time-ordered product insertion of L(2) Lagrangian

terms. The collinear gluon in the loop attaches either to the collinear quark or the collinear Wilson

line of the χc field, which is part of the A0 current. Note the difference in the drawing of the

diagrams in those in figure 6: here we included the anticollinear leg and hard current.

The NLO contributions from the one-loop hard matching coefficient are marked with h,

Mh. Moreover, we further split the results according to the polarization of the off-shell

DY photon γ∗ produced by the vector current, that is, we separate the amplitude into the

terms proportional to γ⊥ρ, n+ρ, and n−ρ. Notice that the γ⊥ρ structure appears due to the

LP current in (3.2), while n±ρ terms arise from the power-suppressed A1 and B1 currents

in (3.18) and (3.19), respectively.

B.1 Collinear loop: γ⊥ρ

We begin with the results for the set of diagrams in which the virtual loop has collinear

momentum scaling and the virtual photon created by the vector current has a transverse

ρ index. In (B.3) this means taking the LP current, and index m spans over time-ordered

product insertions of the L(2) Lagrangian. The equations below are in fact related to the

results presented in (4.29) and come from calculation of the diagrams in figure 8.

We separate the resulting expression into the amplitude with colour factor CF and CA.

The former receives contributions from the diagrams in the top line of figure 8, the latter

from those in the bottom line and the non-abelian part of the last two diagrams in the top

line. We find

Mγ⊥ρK
c,CF

= v̄c̄(l)γ
ρ
⊥
igsαs
(4π)

[
(n+p)(n−k)

µ2

]−ε CFTK

(n+p)(n−k)

eεγEΓ[1 + ε]Γ[1− ε]2
(1 + ε)(1− ε)Γ[2− 2ε]

(B.4)

×
{

(n+k)n−ν

(
3

ε
− 4− 7ε

)
+ [/k⊥, γ⊥ν ]

1

2

(
1− ε2

)
+ k⊥ν

(
2

ε
− 5− 6ε+ ε2

)
+ (n−k)n+ν

(
−1

ε
− 1 + ε+ ε2

)}
uc(p)ε

∗ν(k) ,
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Mγ⊥ρK
c,CA

= v̄c̄(l)γ
ρ
⊥
igsαs
(4π)

[
(n+p)(n−k)

µ2

]−ε CATK

(n+p)(n−k)

eεγEΓ[1 + ε]Γ[1− ε]2
(1 + ε)(1− ε)Γ[2− 2ε]

(B.5)

×
{

(n+k)n−ν
1

2

(
− 1

ε2
− 1

ε
− 2 + 11ε+ ε2

)
+ [/k⊥, γ⊥ν ]

1

2

(
−1 + ε2

)
+ k⊥ν

(
− 1

ε2
− 1

ε
+ 3 + 3ε

)
+ (n−k)n+ν

1

2

(
− 1

ε2
− 1

ε
+ 8−5ε−ε2

)}
uc(p)ε

∗ν(k) .

In this appendix, we use the on-shell condition k2 = 0 to rewrite k2
⊥ = −(n−k)(n+k), but

we do not impose the transversality relation (4.13). Notice that in (B.5) there are still 1/ε2

poles. These only cancel once soft structures are combined as described in the main text.

B.2 Collinear loop: nρ− and nρ+

These contributions are due to time-ordered products of the power-suppressed hard currents

defined in (3.18) and (3.19) with L(1) Lagrangian insertions. The corresponding diagrams

are shown in figure 9. Separating the two colour structures, we find

Mn±ρK
c,CF

= v̄c̄(l)

(
nρ−
n−l
− nρ+
n+p

)
igsαs
(4π)

[
(n+p)(n−k)

µ2

]−ε
CFTK eεγEΓ[1 + ε]Γ[1− ε]2

(1 + ε)(1− ε)Γ[2− 2ε]

×
(
γ⊥ν −

/k⊥n−ν
(n−k)

)(
1 + 2ε+ ε2

)
uc(p)ε

∗ν(k) , (B.6)

Mn±ρK
c,CA

= v̄c̄(l)

(
nρ−
n−l
− nρ+
n+p

)
igsαs
(4π)

[
(n+p)(n−k)

µ2

]−ε
CATK eεγEΓ[1 + ε]Γ[1− ε]2

(1 + ε)(1− ε)Γ[2− 2ε]

×
(
γ⊥ν −

/k⊥n−ν
(n−k)

)(
1

ε
− 2 ε− ε2

)
uc(p)ε

∗ν(k) . (B.7)

B.3 Soft loop: γ⊥ρ

In this section we present the result for the soft one-virtual, one-real soft gluon amplitude

proportional to γ⊥ρ. Only one SCET diagram, shown in figure 10, is needed to reproduce

the corresponding virtual-real contribution from the expansion-by-regions method. Hence

only non-abelian contributions arise here and we find

Mγ⊥ρK
s,CA

= v̄c̄(l) γ
ρ
⊥
igsαs
(4π)

(−(n−k)(n+k)

µ2

)−ε CATK

(n+p)(n−k)

eεγEΓ[1 + ε]2Γ[1− ε]3
Γ[2− 2ε]

×
(
n+k n−ν + k⊥ν +

1

2
[/k⊥, γ⊥ν ]

) ( 1

ε2
− 2

ε

)
uc(p)ε

∗ν(k) . (B.8)

Details on the vanishing of numerous other a priori possible diagrams are provided

in figures 11 and 12. Note that the latter figure also includes diagrams that represent

insertions of both, the collinear (on the upper leg) and anticollinear (on the lower leg)

subleading soft-collinear interactions, when a = b = 1. However, as all these terms vanish,

there is a unique separation of contributions from collinear Lagrangian insertions and

from anticollinear Lagrangian insertions. In (B.8) have we have given the a = 2, b = 0

contribution from the last diagram in figure 12, while the a = 0, b = 2 anticollinear one
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Figure 9. Collinear one-loop diagrams with one soft gluon emission. The O(λ1) power-suppressed

currents A1 and B1 defined in (3.18) and (3.19), respectively, are used here. The collinear virtual

gluon must attach to the B1 current, because of the additional Ac⊥ gluon field present in this

subleading current.

s

s

s

kp

l

A0

2

Figure 10. The only diagram relevant to the one virtual, one-real contribution to the two-loop

soft function. Here the power suppression is placed on the collinear leg as indicated by the O(λ2)

vertex.

is obtained by exchanging n+ ↔ n−. We further note that the absence of a contribution

of the second diagram in figure 12, containing a power-suppressed two-soft gluon vertex,

implies the statement made in section 5.2.3 that only the single soft-gluon structures with

their corresponding soft functions S1, S6 contribute at NNLO, of which only S1 is relevant

at cross-section level as explained in the main text.
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Figure 11. Diagrams with one soft emitted gluon and one soft loop. Since all the diagrams

here include the LP JA0,A0 current, the O(λ2) power suppression must be provided by Lagrangian

insertions. This means using all possible insertions such that a + b (+ c) = 2 at the indicated

vertices. Out of the 20 possibilities, many vanish immediately due to contractions which yield

n2± = n±·γ⊥ = 0 or propagators which give zero due to the vanishing external transverse momentum.

The remaining integrals, where the integrand does not immediately vanish, are either scaleless or

vanish by Cauchy’s theorem, because all propagator poles lie in one half of the complex momentum

plane.

s

s A0

a
c

b
s

s

A0

a

b

s

s

A0

a
c

b

s

s

s
A0

a

b

Figure 12. Soft one-loop diagrams with one emitted soft gluon. As in the previous figure, only the

LP current is present in these diagrams, however now the virtual soft gluon connects the collinear

and anticollinear legs. Lagrangian insertions must again be chosen such that a+ b (+ c) = 2. Note

that all diagrams with b = 1 vanish, since a single leg cannot carry a O(λ) suppression as explained

in section 3.2. Only the last diagram with a = 2 or b = 2 gives a non-vanishing result. The others

are either scaleless or vanish after momentum conservation is imposed.

B.4 Soft loop: nρ+

The relevant diagram is again the topology of figure 10. However, since one power of λ

is used up by the power-suppressed current, at the soft-collinear vertex we now insert the

L(1) term from the SCET Lagrangian.

The JA0,B1 current cannot give a contribution here since it produces a collinear gluon,

that cannot be contracted to form a soft loop.
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The diagrams shown in figures 11 and 12 are also present here. The only change is

that the LP hard current is replaced by JA0,A1 and the sum of a+ b (+ c) = 1 only. Once

again only the last diagram in figure 12 does not vanish, and we find

Mn+ρK
s,CA

= v̄c̄(l)n
ρ
+

igsαs
(4π)

(−(n−k)(n+k)

µ2

)−ε CATK

(n+p)

eεγEΓ[1 + ε]2 Γ[1− ε]3
Γ[2− 2ε]

(B.9)

×
[
γ⊥ν

1

ε2
+

k⊥ν/k⊥
(n−k)(n+k)

1

ε2
+

(
n+ν

(n+k)
− n−ν

(n−k)

)
/k⊥

(
1

2ε2
− 1

ε

)]
uc(p)ε

∗ν(k) .

There is no term proportional to nρ−.

B.5 Hard loop: γ⊥ρ

As discussed in the main text, there exists also a contribution to the NLO NLP amplitude

from the one-loop hard matching coefficient C A0,A0 given in (5.5). We obtain

Mγ⊥ρK
h,CF

= v̄c̄(l) γ
ρ
⊥
igsαs
(4π)

(−(n−l)(n+p)

µ2

)−ε CFTK

(n+p)(n−k)
(B.10)

×
(

(n+k)n−ν

(
2

ε2
+

1

ε
+ 5− π2

6

)
+
[
/k⊥, γ⊥ν

]( 1

ε2
+

3

2ε
− π2

12
+ 4

)

+ k⊥ν

(
2

ε2
+

3

ε
− π2

6
+ 8

)
+ (n−k)n+ν

(
2

ε
+ 3

)
+O(ε)

)
uc(p)ε

∗ν(k) ,

and Mγ⊥ρK
h,CA

= 0.

B.6 Hard loop: nρ+

This contribution comes from the one-loop correction to the matching coefficient C A0,A1 of

the JA0,A1 current together with an insertion of the O(λ) piece of quark SCET Lagrangian.

C A0,A1 is related to C A0,A0 by reparametrization invariance [46]. With the definition (3.18)

the relation reads C A0,A1 = −1/(n+p)C
A0,A0. We then find

Mn+ρK
h,CF

= v̄c̄(l)n
ρ
+

igsαs
4π

(−(n−l)(n+p)

µ2

)−ε CFTK

(n+p)(n−k)

(
/k⊥n−ν − (n−k)γ⊥ν

)
×
(
− 2

ε2
− 3

ε
− 8 +

π2

6
+O(ε)

)
uc(p)ε

∗ν(k) . (B.11)

There is no term proportional to nρ−.
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