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Semi-inclusive hadron production in longitudinally polarized deep-inelastic lepton-nucleon scattering is
a powerful tool for resolving the quark flavor decomposition of the proton’s spin structure. We present the
full next-to-next-to-leading order QCD corrections to the coefficient functions of polarized semi-inclusive
deep-inelastic scattering (SIDIS) in analytical form, enabling the use of SIDIS measurements in precision
studies of the proton spin structure. The numerical impact of these corrections is illustrated by a comparison
with data of polarized single-inclusive hadron spectra from the DESY HERMES and CERN COMPASS
experiments.
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Introduction—The proton is a complex bound state of
quarks and gluons. Its internal structure can be described in
a probabilistic manner in the parton model, formulated in
the framework of the theory of strong interactions [quan-
tum chromodynamics (QCD)]. Owing to a large wealth of
experimental data from hadron colliders and lepton-hadron
scattering, the momentum distributions of quarks and
gluons [parton distribution functions (PDFs)] are now
known to percent level accuracy [1–4].
The understanding of other aspects of the proton

structure is much less well developed. Most notably,
information on the proton’s spin structure [5] is still quite
sparse, relying on a limited set of data from polarized
lepton-nucleon scattering at fixed target energies and from
polarized proton-proton collisions at the BNL RHIC
collider. It is one of the primary objectives of the planned
electron-ion collider (EIC) at BNL to provide in-depth
probes of the nucleon spin structure through a variety of
different measurements in polarized electron-proton colli-
sions [6].
An essential aspect of the proton’s spin structure is

encoded in polarization-dependent PDFs, describing the
probability of finding a parton with a given momentum
fraction x at a resolution scaleQ2 with its helicity aligned or
anti-aligned to the nucleon’s spin. One considers the
unpolarized and polarized combinations:

fðx;Q2Þ ¼ fþðx;Q2Þ þ f−ðx;Q2Þ;
Δfðx;Q2Þ ¼ fþðx;Q2Þ − f−ðx;Q2Þ; ð1Þ

where � refers to the relative orientation of the parton
helicity with respect to the parent nucleon spin. fðx;Q2Þ
are the well-established (unpolarized) PDFs, while
Δfðx;Q2Þ contain the essential information on the spin
structure of the nucleon. Experimental probes of the
polarized PDFs Δfðx;Q2Þ rely on the measurement of
asymmetries in collisions where both probe and target are
longitudinally polarized.
The main experimental information entering into the

determination of polarized PDFs [7,8] comes from polarized
deeply inelastic lepton-nucleon scattering [9–16], which
probes specific charge-weighted combinations of the polar-
ized quark distributions. Semi-inclusive identified hadron
production in deep inelastic scattering (SIDIS) offers valuable
supplementary information [17–19], since the identified
hadron species can be associated to the flavor of the parton
that was produced in the underlying hard scattering process.
This connection is described by fragmentation functions
(FFs), encoding the probability of a parton fragmenting into
a hadron of a given type. Similar to the PDFs, FFs are
universal, nonperturbative objects that factorize from the
parton-level subprocess and whose evolution with the reso-
lution scale is determined by the DGLAP equations.
Especially future SIDIS measurements at the BNL EIC will
provide an indispensable tool to disentangle the precise flavor
structure of the nucleon spin [20,21].
Global fits of the unpolarized PDFs are routinely per-

formed at next-to-leading order (NLO) and next-to-next-
to-leading order (NNLO) in QCD, thereby requiring
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corrections at the appropriate order to the evolution kernels
and to the parton-level cross sections for all experimental
observables that are included in the fits.
For polarized PDFs, the evolution kernels are known to

NLO [22,23] and NNLO [24–26], but corrections to
parton-level coefficient functions beyond NLO have up
to now been obtained only for inclusive polarized DIS
[27,28]. The polarized SIDIS coefficient functions are
currently known to NLO [29]. Following up on initial
leading-order (LO) studies [30,31], polarized PDFs have
been determined routinely at NLO through global fits
[7,8,32–37] to spin-asymmetry data.
In view of future precision data from the BNL EIC, an

extension of polarized PDF studies to NNLO accuracy
would be very much desirable. With the enhanced precision
and including polarized SIDIS measurements, these will
not only help disentangle the PDFs of polarized gluons,
valence and sea quarks, but also allow to discern quark and
anti-quark contributions to the polarized flavor PDFs. First
steps in this direction were taken most recently, with NNLO
fits by two groups [38,39] to polarized inclusive DIS and
SIDIS data, approximating [40] the NNLO SIDIS coef-
ficient functions from a threshold expansion.
With this Letter, we enable consistent precision studies

by computing the NNLO QCD coefficient functions for
longitudinally polarized SIDIS, following up on recent
NNLO results obtained for unpolarized SIDIS [41,42].
Kinematics of polarized SIDIS—We consider the obser-

vation of an unpolarized hadron h from the scattering of a
polarized lepton off a polarized nucleon. Both polarizations
are longitudinal. Following the notation of [29,43], we
describe polarized semi-inclusive deep-inelastic scattering

as l
!ðkÞp⃗ðPÞ → lðk0ÞhðPhÞX, with some inclusive final-

state radiation X. The vector q ¼ k − k0 denotes the
momentum transfer between the leptonic and hadronic
systems, and y ¼ ðP · qÞ=ðP · kÞ the associated energy
transfer at virtuality Q2 ¼ −q2. The quantities

x ¼ Q2

2P · q
and z ¼ P · Ph

P · q
ð2Þ

are the momentum fractions of the nucleon carried by the
incoming parton (x), and of the outgoing parton carried by
the identified hadron (z) at Born level. The center-of-mass
energy of the lepton-nucleon system

ffiffiffi
s

p
is given by

s ¼ Q2=ðxyÞ.
The experimentally measured double spin asymmetry is

obtained from the difference of anti-aligned and aligned
spin orientations of probe and target [44]. After correcting
for QED effects and neglecting higher-twist contributions,
it can be expressed as ratio of hadronic SIDIS structure
functions as

Ah
1ðx; z;Q2Þ ¼ gh1ðx; z; Q2Þ

Fh
1ðx; z; Q2Þ : ð3Þ

The gh1 polarized SIDIS structure function receives con-
tributions from different partonic channels. These are given
by the convolution between the polarized PDF Δfp for a
parton p, the FF Dh

p0 of parton p0 into hadron h, and the
polarized coefficient function ΔCp0p for the partonic tran-
sition p → p0:

2gh1ðx; z; Q2Þ ¼
X

p;p0

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
Δfp

�
x
x̂
; μ2F

�

×Dh
p0

�
z
ẑ
; μ2A

�
ΔCp0pðx̂; ẑ; Q2; μ2R; μ

2
F; μ

2
AÞ:

ð4Þ

Likewise, the unpolarized SIDIS structure function Fh
1

reads

2Fh
1ðx; z; Q2Þ ¼

X

p;p0

Z
1

x

dx̂
x̂

Z
1

z

dẑ
ẑ
fp

�
x
x̂
; μ2F

�

×Dh
p0

�
z
ẑ
; μ2A

�
CTp0pðx̂; ẑ; Q2; μ2R; μ

2
F; μ

2
AÞ:

ð5Þ

In the above expressions, μF and μA denote the mass
factorization scales of PDFs and FFs, while μR is the
renormalization scale. The SIDIS coefficient functions
ðΔÞCp0p encode the hard-scattering part of the process,
and can be computed in perturbative QCD. Their
perturbative expansion in the strong coupling constant αs
reads

ðΔÞCp0p ¼ ðΔÞCð0Þ
p0p þ

αsðμ2RÞ
2π

ðΔÞCð1Þ
p0p

þ
�
αsðμ2RÞ
2π

�
2

ðΔÞCð2Þ
p0p þOðα3sÞ: ð6Þ

At LO, only the qq channel (γ�q → q) contributes, with
the LO coefficient function normalized to

ΔCð0Þ
qq ¼ e2qδð1 − x̂Þδð1 − ẑÞ; ð7Þ

where eq is the quark charge. At NLO [29], the channels qg

and gq start to contribute, yieldingΔCð1Þ
qq ,ΔCð1Þ

gq , andΔCð1Þ
qg .

In this Letter we present results for the NNLO correc-

tions ΔCð2Þ
p0p to all partonic channels appearing at this order.

Following the notation of [42,45], the seven partonic
channels appearing at Oðα2sÞ are

PHYSICAL REVIEW LETTERS 133, 211904 (2024)

211904-2



ΔCð2Þ
qq ¼ e2qΔCNS

qq þ
�X

j

e2qj

�
ΔCPS

qq;

ΔCð2Þ
q̄q ¼ e2qΔCq̄q;

ΔCð2Þ
q0q ¼ e2qΔC1

q0q þ e2q0ΔC
2
q0q þ eqeq0ΔC3

q0q;

ΔCð2Þ
q̄0q ¼ e2qΔC1

q0q þ e2q0ΔC
2
q0q − eqeq0ΔC3

q0q;

ΔCð2Þ
gq ¼ e2qΔCgq;

ΔCð2Þ
qg ¼ e2qΔCqg;

ΔCð2Þ
gg ¼

�X

j

e2qj

�
ΔCgg: ð8Þ

With q
ð−Þ0

we indicate an (anti-)quark of flavor different
from q.
Analytical calculation—To obtain the matrix elements

relevant to the polarized coefficient functions, we use the
projectors from the inclusive calculation [27]. The appear-
ance of the inherently four-dimensional objects γ5 and εμνρσ

in the external projectors requires a consistent treatment
in dimensional regularization [46]. A common choice is the
‘t Hooft-Veltman-Breitenlohner-Maison (HVBM) scheme
[46,47]. The Larin prescription [48,49] is derived from the
HVBM scheme, and consists of setting

γμγ5 ¼
i
3!
εμνρσγ

νγργσ ð9Þ

and evaluating the Dirac traces in d dimensions. The
two remaining Levi-Civita tensors are contracted into
d-dimensional metric tensors. Quantities in the Larin
scheme will be denoted by an upper index L, and are
subsequently converted to the MS scheme.
The NNLO corrections consist of three types of con-

tributions, defined relative to the underlying Born process:
double-real (RR) corrections stem from two additional
radiations, the real-virtual (RV) corrections from a one-loop
correction and an additional radiation, and the double-
virtual (VV) corrections from two-loop virtual insertions.
The evaluation and integration of the RR and RV

contributions proceed like in the unpolarized calculation
[42]: following integration-by-part (IBP) reduction [50,51]
with Reduze2 [52], the RR contributions are expressed in
terms of 21 master integrals, which were computed by
solving their differential equations [53]. Their analytic
expressions are presented in [54]. The RV integrals are
solved by analytically integrating out the loop [53], then
continuing the appearing hypergeometric functions to the
appropriate Riemann sheets and subsequently expanding
out the phase space measure in terms of distributions in
each of the sheets as described in [55]. The master integrals
for the VV part are taken from [56].

The calculation is carried out using Mathematica and
FORM [57]. We express the integrals in terms of harmonic
polylogarithms (HPLs) [58] with the help of the packages
HPL [59] and PolyLogTools [60].
Interestingly, the NLO virtual (V) and the NNLO VV

contributions to gh1 are described by the respective vector
form factors [56] rather than by their axial counterparts: the
photon couples to the quark line through a vector coupling,
whereas the antisymmetric current carried by the photon is
contracted only from the external leg. As a consequence,
traces of quark-loops coupling to the polarized photon can
be carried out consistently in d ¼ 4 − 2ϵ dimensions
without giving rise to the axial anomaly [61,62]. This
stands in sharp contrast to calculations of operator matrix
elements (OME), e.g. [63], where the g1 projector of the
photon is absorbed into an operator insertion, rendering the
photon coupling axial, and giving rise to the anomaly.
We renormalize αs in the MS scheme to remove poles of

ultraviolet origin. The remaining infrared poles can be
eliminated by mass factorization on the polarized PDFs and
unpolarized FFs. At this stage, all coefficient functions are
formulated in the Larin scheme. Consequently, the polar-
ized PDF mass factorization counterterms are taken in the
Larin scheme, constructed from the polarized spacelike
splitting functions in this scheme.
These splitting functions [22,23] in Larin and MS are

related by a scheme transformation [27], which follows
from the scheme invariance of the measurable inclusive
structure function g1 [63]:

g1 ¼ ΔCMS ⊗ ΔfMS

¼ ðΔCL ⊗ Z−1Þ ⊗ ðZ ⊗ ΔfLÞ ¼ ΔCL ⊗ ΔfL ð10Þ

with

ΔC¼
�ΔCq
ΔCg

�T

; Δf¼
�Δq
Δg

�
; Z¼

�
zqq zqg
zgq zgg

�
; ð11Þ

where the entries of Z in nonsinglet and singlet case are
given in [24]. All convolutions are carried out by using
MT [64].
In order to obtain the MS SIDIS coefficient functions, we

scheme-transform the Larin-scheme coefficient functions
according to (10). Our results with full scale dependence
(μR, μF, μA) are provided in the Supplemental
Material [65].
Several checks were performed to validate our results.

We verified that our results in each of the channels in (8)
fulfill the renormalization group equations in both Larin
and MS scheme. Moreover, we used the underlying RR,
RV, and VV polarized subprocess matrix elements to re-
derive the inclusive NNLO coefficient function for g1,
finding full agreement with [27]. We subsequently inte-
grated specific subprocess contributions to the SIDIS
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coefficient functions over the final-state parton momentum
fraction z, recovering the respective contributions to the g1
coefficient functions. We also compared our leading and

subleading power terms for the ΔCð2Þ
qq coefficient function

against the prediction from NNLL threshold-resummation
in [40], finding full agreement. Finally, an independent
calculation of the polarized SIDIS coefficient functions at
NNLO was performed by another group [66] in close
timely coincidence with our results, finding mutual agree-
ment in all channels.
Results—Measurements of SIDIS for various species of

final state hadrons on proton targets were performed by
CERN COMPASS [18] and the DESY HERMES [19]
fixed-target experiments. The experiments present their
results in terms of the longitudinal double spin asymmetry
Ah
1 (3). COMPASS [18] measured at

ffiffiffi
s

p ¼ 17.4 GeV and
included all hadrons produced in the range 0.2 < z < 0.85.
The HERMES [19] data were taken at

ffiffiffi
s

p ¼ 7.25 GeV and
included hadrons in the range 0.2 < z < 0.85. The asym-
metry Ah

1 is evaluated at central bin values in x and Q2,
justified by a relatively narrow range inQ2 for each bin due
to the kinematical restrictions of the experiments, at
μR ¼ μF ¼ μA ¼

ffiffiffiffiffiffi
Q2

p
.

To illustrate the numerical impact of the newly computed
NNLO corrections to the polarized SIDIS coefficient
functions, we compare COMPASS data [18] for Aπþ

1 to
predictions at LO, NLO, and NNLO. To single out the
impact of the coefficient functions, predictions at the
different orders are computed with the same sets of parton

distributions and fragmentation functions. We display
predictions for two different setups: (a) PDFs and FFs at
NLO throughout: we use the polarized NLO PDF DSSV14
set [8], in combination (as used in the original DSSV14 fit)
with unpolarized NLO PDFs from the MRST2002
set [67] and NLO FFs from the DSS08 set [68]. For αs,
we use the APFEL++ [69,70] routine at NLO with

reference value Λðnf¼4Þ
QCD ¼ 334 MeV, corresponding to

αsðMZÞ ¼ 0.119. (B) PDFs and FFs at NNLO throughout:
we use the polarized NNLO BDSSV24 set [39], with
unpolarized NNLO PDFs from MSHT20 [2] and NNLO
FFs from BDSSV22 [71] and αs at NNLO through
LHAPDF [72], with αsðMZÞ ¼ 0.118.
Figure 1 compares the predictions for Aπþ

1 from
COMPASS [18] and HERMES [19]. We observe that
the predictions for the asymmetry are very stable between
LO and NLO. Including the NNLO corrections slightly
decreases the asymmetry at high x and leads to a small
enhancement of the asymmetry at lower values of x. These
changes are more pronounced for the predictions using
NLO PDFs and FFs (left frames). Both the COMPASS and
HERMES datasets on Aπþ

1 were included in the DSSV14
NLO and BDSSV24 NNLO fits of polarized PDFs, using
exact SIDIS coefficient functions at NLO and an approxi-
mation [40] at NNLO. The numerical magnitude of the
NNLO corrections to the SIDIS asymmetry Aπþ

1 at low x
clearly demonstrates the potential impact of the exact
corrections and calls for a careful reassessment of the
impact of SIDIS data in a future global fit at NNLO.

FIG. 1. Asymmetries Aπþ
1 at different perturbative orders compared to data from COMPASS [18] and HERMES [19], computed using

NLO PDFs and FFs (left) and NNLO PDFs and FFs (right).

PHYSICAL REVIEW LETTERS 133, 211904 (2024)

211904-4



In Fig. 2 we study the impact of each partonic channel on
gπ

þ
1 at LO, NLO, and NNLO for COMPASS kinematics. We
use the NNLO BDSSV24 PDFs [39] and BDSSV22 FFs
[71] throughout. For x and Q2 we use the central values of
the kinematical bins from the COMPASS analysis [18],
integrating over z∈ ½0.2; 0.85�. While the q → q channel
remains the dominant contribution, the q → g channel plays
a more prominent role at NNLO than at NLO, but in the
small-x region also the g → q channel provides a sizable
contribution starting from NNLO. We notice a reduction in
the size of the NNLO corrections for larger values of x (and
in turn of Q2), which points at an improvement in the
convergence of the perturbative series with increasing Q2.
To study the perturbative convergence of the polarized

SIDIS predictions at higher energies, Fig. 3 displays gπ
þ

1

(integrated over 0.2 < z < 0.85) of the proton for EIC-like
kinematics with

ffiffiffi
s

p ¼ 45 GeV. We consider several values
of Q2, and for each value of Q2 we plot predictions for
values of x constrained by the requirement 0.5 < y < 0.9.
Using the polarized PDFs and FFs at NNLO throughout
allows us to assess the uncertainty on the theory predictions
in a consistent manner through a seven-point scale variation
on μR and μF ¼ μA around their central value

ffiffiffiffiffiffi
Q2

p
,

discarding opposite variations of any pair of scales.
We observe very good perturbative convergence of the

predictions. While the NLO contributions enhance the LO
prediction by 5%–30%, we note that in the range
0.03 < x < 0.5, inclusion of the NNLO contribution
changes the predictions by less than �5%, slightly increas-
ing towards smaller or larger values of x. The scale
uncertainty at NLO ranges between �5% at low x values
to �15% at high x. At NNLO, it is reduced throughout the
kinematical range to �2% at low ðx;Q2Þ and at most �8%

at larger values. The nontrivial kinematical shape of the
NNLO corrections highlights their importance for precision
physics studies at the EIC.
Conclusions—Important information on the quark

flavor decomposition of the proton spin content is gained
from polarization asymmetries in SIDIS. We computed the
NNLO QCD corrections to the polarized SIDIS coefficient
functions, which turn out to have a sizable numerical
impact on the asymmetries especially at low x and low Q2.
Our results allow us to include polarized SIDIS data in
future NNLO precision studies of polarized parton distri-
butions, thereby enabling an unprecedented level of detail
in the understanding of the spin structure of the proton.

Acknowledgments—We would like to thank the authors
of [66] for discussions on the comparison of results. We are
grateful to Daniel de Florian for providing us with the DSSV
PDF set [8], and to IgnacioBorsa for theBDSSVPDF set [39]
and detailed validations of the numerical implementation of
the NNLO coefficient functions. This work has received
funding from the Swiss National Science Foundation (SNF)
under Contract No. 200020-204200 and from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program Grant
Agreement No. 101019620 (ERCAdvanced Grant TOPUP).

[1] J. Gao, L. Harland-Lang, and J. Rojo, Phys. Rep. 742, 1
(2018).

[2] S. Bailey, T. Cridge, L. A. Harland-Lang, A. D. Martin, and
R. S. Thorne, Eur. Phys. J. C 81, 341 (2021).

FIG. 2. Channel decomposition of theory predictions for gπ
þ

1

with COMPASS kinematics.
FIG. 3. Longitudinally polarized SIDIS structure function gπ

þ
1

for EIC kinematics at
ffiffiffi
s

p ¼ 45 GeV, evaluated at different
perturbative orders.

PHYSICAL REVIEW LETTERS 133, 211904 (2024)

211904-5

https://doi.org/10.1016/j.physrep.2018.03.002
https://doi.org/10.1016/j.physrep.2018.03.002
https://doi.org/10.1140/epjc/s10052-021-09057-0


[3] T.-J. Hou et al., Phys. Rev. D 103, 014013 (2021).
[4] R. D. Ball et al. (NNPDF Collaboration), Eur. Phys. J. C 82,

428 (2022).
[5] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Mallot, Rev.

Mod. Phys. 85, 655 (2013).
[6] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).
[7] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo

(NNPDF Collaboration), Nucl. Phys. B887, 276 (2014).
[8] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,

Phys. Rev. Lett. 113, 012001 (2014).
[9] J. Ashman et al. (EMC Collaboration), Nucl. Phys. B328, 1

(1989).
[10] B. Adeva et al. (SMC Collaboration), Phys. Rev. D 58,

112001 (1998).
[11] P. L. Anthony et al. (E142 Collaboration), Phys. Rev. D 54,

6620 (1996).
[12] K. Abe et al. (E143 Collaboration), Phys. Rev. D 58,

112003 (1998).
[13] K. Abe et al. (E154 Collaboration), Phys. Rev. Lett. 79, 26

(1997).
[14] P. L. Anthony et al. (E155 Collaboration), Phys. Lett. B 493,

19 (2000).
[15] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D

75, 012007 (2007).
[16] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B

753, 18 (2016).
[17] B. Adeva et al. (SMC Collaboration), Phys. Lett. B 420, 180

(1998).
[18] M. G. Alekseev et al. (COMPASS Collaboration), Phys.

Lett. B 693, 227 (2010).
[19] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D

99, 112001 (2019).
[20] R. Abdul Khalek et al., Nucl. Phys. A1026, 122447

(2022).
[21] E. C. Aschenauer, I. Borsa, R. Sassot, and C. Van Hulse,

Phys. Rev. D 99, 094004 (2019).
[22] W. Vogelsang, Nucl. Phys. B475, 47 (1996).
[23] R. Mertig and W. L. van Neerven, Z. Phys. C 70, 637

(1996).
[24] S. Moch, J. A. M. Vermaseren, and A. Vogt, Nucl. Phys.

B889, 351 (2014).
[25] J. Blümlein, P. Marquard, C. Schneider, and K. Schönwald,

Nucl. Phys. B971, 115542 (2021).
[26] J. Blümlein, P. Marquard, C. Schneider, and K. Schönwald,

J. High Energy Phys. 01 (2022) 193.
[27] E. B. Zijlstra and W. L. van Neerven, Nucl. Phys. B417, 61

(1994); B426, 245(E) (1994); B773, 105(E) (2007); B501,
599(E) (1997).

[28] J. Blümlein, P. Marquard, C. Schneider, and K. Schönwald,
J. High Energy Phys. 11 (2022) 156.

[29] D. de Florian, M. Stratmann, and W. Vogelsang, Phys. Rev.
D 57, 5811 (1998).

[30] M. Glück and E. Reya, Z. Phys. C 39, 569 (1988).
[31] G. Altarelli and W. J. Stirling, Part. World 1, 40 (1989),

https://cds.cern.ch/record/195615/files/part.world.1.2.40-52
.pdf.

[32] M. Glück, E. Reya, M. Stratmann, and W. Vogelsang, Phys.
Rev. D 53, 4775 (1996).

[33] T. Gehrmann and W. J. Stirling, Phys. Rev. D 53, 6100
(1996).

[34] Y. Goto et al. (Asymmetry Analysis Collaboration), Phys.
Rev. D 62, 034017 (2000).

[35] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
Phys. Rev. Lett. 101, 072001 (2008).

[36] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang,
Phys. Rev. D 80, 034030 (2009).

[37] J. Blümlein and H. Böttcher, Nucl. Phys. B841, 205 (2010).
[38] V. Bertone, A. Chiefa, and E. R. Nocera, arXiv:2404.04712.
[39] I. Borsa, D. de Florian, R. Sassot, M. Stratmann, and W.

Vogelsang, Phys. Rev. Lett. 133, 151901 (2024).
[40] M. Abele, D. de Florian, and W. Vogelsang, Phys. Rev. D

104, 094046 (2021).
[41] S. Goyal, S.-O. Moch, V. Pathak, N. Rana, and V.

Ravindran, Phys. Rev. Lett. 132, 251902 (2024).
[42] L. Bonino, T. Gehrmann, and G. Stagnitto, Phys. Rev. Lett.

132, 251901 (2024).
[43] D. P. Anderle, F. Ringer, and W. Vogelsang, Phys. Rev. D

87, 094021 (2013).
[44] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D

71, 012003 (2005).
[45] D. Anderle, D. de Florian, and Y. Rotstein Habarnau, Phys.

Rev. D 95, 034027 (2017).
[46] G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B44, 189

(1972).
[47] P. Breitenlohner and D. Maison, Commun. Math. Phys. 52,

11 (1977).
[48] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 259, 345

(1991).
[49] S. A. Larin, Phys. Lett. B 303, 113 (1993).
[50] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159

(1981).
[51] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).
[52] A. von Manteuffel and C. Studerus, arXiv:1201.4330.
[53] T. Gehrmann and E. Remiddi, Nucl. Phys. B580, 485

(2000).
[54] L. Bonino, T. Gehrmann, M. Marcoli, R. Schürmann, and G.

Stagnitto, J. High Energy Phys. 08 (2024) 073.
[55] T. Gehrmann and R. Schürmann, J. High Energy Phys. 04

(2022) 031.
[56] T. Gehrmann, T. Huber, and D. Maitre, Phys. Lett. B 622,

295 (2005).
[57] J. A. M. Vermaseren, arXiv:math-ph/0010025.
[58] E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A

15, 725 (2000).
[59] D. Maitre, Comput. Phys. Commun. 174, 222 (2006).
[60] C. Duhr and F. Dulat, J. High Energy Phys. 08 (2019) 135.
[61] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[62] J. S. Bell and R. Jackiw, Nuovo Cimento A 60, 47 (1969).
[63] Y. Matiounine, J. Smith, and W. L. van Neerven, Phys. Rev.

D 58, 076002 (1998).
[64] M. Höschele, J. Hoff, A. Pak, M. Steinhauser, and T. Ueda,

Comput. Phys. Commun. 185, 528 (2014).
[65] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.133.211904 for the po-
larized SIDIS coefficient functions at NNLO.

[66] S. Goyal, R. N. Lee, S.-O. Moch, V. Pathak, N. Rana, and V.
Ravindran, following Letter, Phys. Rev. Lett. 133, 211905
(2024).

[67] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S.
Thorne, Eur. Phys. J. C 28, 455 (2003).

PHYSICAL REVIEW LETTERS 133, 211904 (2024)

211904-6

https://doi.org/10.1103/PhysRevD.103.014013
https://doi.org/10.1140/epjc/s10052-022-10328-7
https://doi.org/10.1140/epjc/s10052-022-10328-7
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1016/j.nuclphysb.2014.08.008
https://doi.org/10.1103/PhysRevLett.113.012001
https://doi.org/10.1016/0550-3213(89)90089-8
https://doi.org/10.1016/0550-3213(89)90089-8
https://doi.org/10.1103/PhysRevD.58.112001
https://doi.org/10.1103/PhysRevD.58.112001
https://doi.org/10.1103/PhysRevD.54.6620
https://doi.org/10.1103/PhysRevD.54.6620
https://doi.org/10.1103/PhysRevD.58.112003
https://doi.org/10.1103/PhysRevD.58.112003
https://doi.org/10.1103/PhysRevLett.79.26
https://doi.org/10.1103/PhysRevLett.79.26
https://doi.org/10.1016/S0370-2693(00)01014-5
https://doi.org/10.1016/S0370-2693(00)01014-5
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1016/j.physletb.2015.11.064
https://doi.org/10.1016/j.physletb.2015.11.064
https://doi.org/10.1016/S0370-2693(97)01546-3
https://doi.org/10.1016/S0370-2693(97)01546-3
https://doi.org/10.1016/j.physletb.2010.08.034
https://doi.org/10.1016/j.physletb.2010.08.034
https://doi.org/10.1103/PhysRevD.99.112001
https://doi.org/10.1103/PhysRevD.99.112001
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1103/PhysRevD.99.094004
https://doi.org/10.1016/0550-3213(96)00306-9
https://doi.org/10.1007/s002880050138
https://doi.org/10.1007/s002880050138
https://doi.org/10.1016/j.nuclphysb.2014.10.016
https://doi.org/10.1016/j.nuclphysb.2014.10.016
https://doi.org/10.1016/j.nuclphysb.2021.115542
https://doi.org/10.1007/JHEP01(2022)193
https://doi.org/10.1016/0550-3213(94)90538-X
https://doi.org/10.1016/0550-3213(94)90538-X
https://doi.org/10.1016/0550-3213(94)90135-X
https://doi.org/10.1016/j.nuclphysb.2007.03.002
https://doi.org/10.1016/S0550-3213(97)00389-1
https://doi.org/10.1016/S0550-3213(97)00389-1
https://doi.org/10.1007/JHEP11(2022)156
https://doi.org/10.1103/PhysRevD.57.5811
https://doi.org/10.1103/PhysRevD.57.5811
https://doi.org/10.1007/BF01555989
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://cds.cern.ch/record/195615/files/part.world.1.2.40-52.pdf
https://doi.org/10.1103/PhysRevD.53.4775
https://doi.org/10.1103/PhysRevD.53.4775
https://doi.org/10.1103/PhysRevD.53.6100
https://doi.org/10.1103/PhysRevD.53.6100
https://doi.org/10.1103/PhysRevD.62.034017
https://doi.org/10.1103/PhysRevD.62.034017
https://doi.org/10.1103/PhysRevLett.101.072001
https://doi.org/10.1103/PhysRevD.80.034030
https://doi.org/10.1016/j.nuclphysb.2010.08.005
https://arXiv.org/abs/2404.04712
https://doi.org/10.1103/PhysRevLett.133.151901
https://doi.org/10.1103/PhysRevD.104.094046
https://doi.org/10.1103/PhysRevD.104.094046
https://doi.org/10.1103/PhysRevLett.132.251902
https://doi.org/10.1103/PhysRevLett.132.251901
https://doi.org/10.1103/PhysRevLett.132.251901
https://doi.org/10.1103/PhysRevD.87.094021
https://doi.org/10.1103/PhysRevD.87.094021
https://doi.org/10.1103/PhysRevD.71.012003
https://doi.org/10.1103/PhysRevD.71.012003
https://doi.org/10.1103/PhysRevD.95.034027
https://doi.org/10.1103/PhysRevD.95.034027
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1007/BF01609069
https://doi.org/10.1007/BF01609069
https://doi.org/10.1016/0370-2693(91)90839-I
https://doi.org/10.1016/0370-2693(91)90839-I
https://doi.org/10.1016/0370-2693(93)90053-K
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1142/S0217751X00002159
https://arXiv.org/abs/1201.4330
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1007/JHEP08(2024)073
https://doi.org/10.1007/JHEP04(2022)031
https://doi.org/10.1007/JHEP04(2022)031
https://doi.org/10.1016/j.physletb.2005.07.019
https://doi.org/10.1016/j.physletb.2005.07.019
https://arXiv.org/abs/math-ph/0010025
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1007/JHEP08(2019)135
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRevD.58.076002
https://doi.org/10.1103/PhysRevD.58.076002
https://doi.org/10.1016/j.cpc.2013.10.007
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.211904
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.211904
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.211904
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.211904
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.211904
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.211904
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.211904
https://doi.org/10.1103/PhysRevLett.133.211905
https://doi.org/10.1103/PhysRevLett.133.211905
https://doi.org/10.1140/epjc/s2003-01196-2


[68] D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D
75, 114010 (2007).

[69] V. Bertone, S. Carrazza, and J. Rojo (APFEL Collabora-
tion), Comput. Phys. Commun. 185, 1647 (2014).

[70] V.Bertone,Proc.Sci.,DIS2017 (2018) 201 [arXiv:1708.00911].

[71] I. Borsa, R. Sassot, D. de Florian, M. Stratmann, and W.
Vogelsang, Phys. Rev. Lett. 129, 012002 (2022).

[72] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page,
M. Rüfenacht, M. Schönherr, and G. Watt, Eur. Phys. J. C
75, 132 (2015).

PHYSICAL REVIEW LETTERS 133, 211904 (2024)

211904-7

https://doi.org/10.1103/PhysRevD.75.114010
https://doi.org/10.1103/PhysRevD.75.114010
https://doi.org/10.1016/j.cpc.2014.03.007
https://doi.org/10.22323/1.297.0201
https://arXiv.org/abs/1708.00911
https://doi.org/10.1103/PhysRevLett.129.012002
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8

	Polarized Semi-Inclusive Deep-Inelastic Scattering at Next-to-Next-to-Leading Order in QCD
	Introduction
	Kinematics of polarized SIDIS
	Analytical calculation
	Results
	Conclusions
	Acknowledgments
	References


