
AIP/123-QED

Development of a Machine Learning Interatomic Potential for Exploring

Pressure-Dependent Kinetics of Phase Transitions in Germanium

A. Fantasia,1, a) F. Rovaris,1 O. Abou El Kheir,1 A. Marzegalli,1 D. Lanzoni,1 L.

Pessina,1 P. Xiao,2 C. Zhou,3 L. Li,3 G. Henkelman,4 E. Scalise,1 and F. Montalenti1, b)

1)Department of Materials Science, University of Milano-Bicocca, 20125 Milano,

(Italy)
2)Dept. of Physics & Atmospheric Science, Dalhousie University,

1453 Lord Dalhousie Drive, B3H 4R2, Halifax, NS (Canada)
3)Dept. of Materials Science and Engineering, Southern University

of Science and Technology, 1088 Xueyuan Avenue, 518055, Shenzhen,

(China)
4)Dept. of Chemistry, The University of Texas at Austin, 105 East 24th Street STOP A5300,

78712, Austin, TX (USA)

(Dated: 29 September 2024)

We introduce a data-driven potential aimed at the investigation of pressure-dependent

phase transitions in bulk germanium, including the estimate of kinetic barriers. This is

achieved by suitably building a database including several configurations along minimum

energy paths, as computed using the solid-state nudged elastic band method. After train-

ing the model based on density functional theory (DFT)-computed energies, forces, and

stresses, we provide validation and rigorously test the potential on unexplored paths. The

resulting agreement with DFT calculations is remarkable in a wide range of pressures. The

potential is exploited in large-scale NPT simulations, displaying local nucleation in the R8

to β -Sn pressure-induced phase transformation, here taken as an illustrative example.
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I. INTRODUCTION

In recent years, there has been a remarkable transformation in how we approach atomistic

simulations, and at the forefront of this change is the increase in the popularity of machine learning

interatomic potentials (MLIPs). This innovative approach offers a way to significantly reduce the

computational cost of ab initio calculations, typically based on density functional theory (DFT),

with a great accuracy/efficiency trade-off allowing us to study larger systems and/or longer time-

scale processes. The remarkable efficiency and precision of MLIPs have made them essential

tools, gaining widespread recognition and adoption for exploring various atomistic systems1–11

Our objective in this work is the development of an interatomic potential suitable for inves-

tigating crystal phase transitions, taking germanium as a particularly interesting system due to

its potential applications12. The emphasis lies in showcasing and testing the developed potential,

rather than conducting a comprehensive study of phase transitions in Ge. It’s important to note that

this endeavor necessitates the creation of an MLIP capable of accurately representing pressure-

dependent kinetic barriers. Merely training the MLIP relying solely on configurations close to

equilibrium and snapshots from molecular dynamics near metastable crystal structures would not

provide adequate insight into transition mechanisms. This limitation arises because crucial saddle

points defining kinetic barriers would be under-represented or excluded from the training dataset,

leading to unreliable predictions. To address this, we incorporated into our dataset configurations

along minimum energy paths obtained through solid-state nudged elastic band (ssNEB) calcula-

tions under varying stress conditions, to provide insight into transition barriers.

Empirical potentials, including Stillinger-Weber13,14, Tersoff15, and modified-embedded-atom-

method (MEAM)16,17, have been developed to significantly reduce computational costs compared

to DFT calculations, but may be unreliable when dealing with metastable phases18 and, more

generally, with kinetics.

The interesting electronic properties of germanium, such as a high intrinsic electron mobil-

ity, make it useful for novel high-speed electronic and photonic devices. Additionally, its narrow

band gap enables efficient infrared detection in optoelectronic devices, rendering Ge a valuable

material for advancing modern technology. Ge is a well-known semiconductor that typically ex-

hibits a cubic diamond (CD) structure (space group Fd3m1) at ambient pressure and temperature.

Through anvil press and nanoindentation experiments, CD transforms into a metallic phase with

the β -Sn structure (I41/amd) upon non-hydrostatic pressure at around 10 GPa19–21, showing re-
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markable stability over a wide range of pressures. Upon increasing pressure, β -Sn undergoes a

series of transitions into other high-density metallic phases including simple hexagonal (SH) and

HCP22,23. Upon unloading from β -Sn, CD is not recovered and different metastable allotropes

are reached instead. Experiments shown the presence of metastable BC8 (Ia3), ST12 (P43212),

and R8 (R3) phases, and led to believe that the formation of such allotropes depends on stress

conditions and rate of decompression from β -Sn 24–28. Sustained interest in ST12 stems from

its optical properties29, with recent advancements leading to the synthesis of a large pure bulk

sample30, the production of ST12 nanoparticles31,32 and also the fabrication of nanowires33. BC8

and R8 are observed to transform to a hexagonal diamond (HD) phase under ambient pressure

and temperature34,35. This is of great technological interest given HD’s predicted narrow direct

band gap, rendering it well-suited for optoelectronic applications compatible with silicon12. It is

also noteworthy that amorphous Ge (a-Ge) has been extensively documented in various experi-

ments: observed as a byproduct during the unloading from β -Sn, as a pathway to achieve β -Sn

through loading, and also through observed transitions from a low-density to a high-density form

of a-Ge36–38.

II. METHODS

A. Ab initio calculations and simulation details

The Vienna Ab Initio Simulation Package (VASP)39,40 was used to perform all DFT calcula-

tions. Ge 3d 4s4p electrons were treated as valence electrons by the projector augmented-wave

(PAW) method41. The Perdew-Burke-Ernzerhof (PBE)42 was used as exchange-correlation func-

tional as it is a popular choice given its reasonable accuracy over a wide range of systems. Since

metallic phases of Ge are demanding in terms of convergence, we conducted convergence tests to

find the optimal balance between accuracy and efficiency. The truncation energy of the plane wave

basis was set to 500 eV, and the k-point grid spacing was fixed at 0.14 Å
−1

. Formation energies

were computed by taking the energy per atom difference between a given structurally optimized

crystal phase and the most stable one, the CD phase. Specifically, using the selected k-point grid

spacing, we observed that the formation energies for the 4H-HD, 2H-HD, BC8, ST12, and R8

phases have already reached convergence, showing variations of less than 1 meV/atom upon fur-

ther parameter refinement. However, for denser metal structures like β -Sn, Fmmm, SH, HCP,
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BCC, and FCC, there are still oscillations, with some reaching up to approximately 5 meV/atom

in their computed energies. We still consider this result as satisfactory since different DFT func-

tionals would predict formation energies with even larger discrepancies. Since we are interested

in pressure-dependent phase transitions we also monitored the convergence in terms of pressure.

Using the selected k-point grid spacing of 0.14 Å
−1

we observed that semiconducting phases have

already reached a convergence of about 0.01 GPa. Some denser metallic structures, more de-

manding in terms of convergence, still present oscillations, with some limited examples reaching

≈ 1 GPa.

Molecular dynamics (MD) simulations were carried out in LAMMPS43 using the DeePMD ex-

tension44. To sample data, both the canonical (NVT) and the isothermal-isobaric (NPT) ensemble

were used with an integrator time step of 1 fs while the temperature and pressure were set using a

Nose-Hoover thermostat and barostat45 with a relaxation time of 0.5 ps and 5.0 ps respectively.

To perform local structural optimizations, the Fast Inertial Relaxation Engine (FIRE) opti-

mizer46 within the Atomic Simulation Environment (ASE)47 was employed by setting up the

trained MLIP as a calculator to obtain potential energies, forces, and stresses.

When investigating transitions, a critical parameter of focus is the activation energy barrier

associated with the reaction mechanism. This is significant because, following transition state

theory48, the transition rate is directly proportional to the exponential of the free energy barrier.

Many different methods have been developed to accurately locate such transition states49–55, but

only a few take into account variable cell transformations. In this work, a generalized solid-state

nudged elastic band (ssNEB) method56 with climbing-image57,58 was employed for determining

reaction pathways of crystal phase transitions involving both atomic and cell degrees of freedom.

We utilized this well-established technique by means of its implementation for the ASE package

in the TSASE code59.

B. Dataset Generation

In order to build the MLIP for Ge, a reference dataset for the training process is generated using

an iterative training procedure, exploiting the concept of active learning60–63.

To thoroughly explore the kinetics of solid-solid phase transitions, we integrated configurations

explored by performing ssNEB calculations into our dataset. This inclusion is pivotal, as relying

solely on sampling configurations near metastable crystal structures would not be sufficient for
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studying transition barriers.

The outlined procedure, schematically illustrated in Fig. 1, can be summarized as follows: We

selected many different Ge-crystalline phases from the Materials Project (MP) database64. These

include the CD (mp-32), 4H-HD (mp-1091415), 2H-HD (mp-1007760), BC8 (mp-1080106),

ST12 (mp-137), R8 (mp-128), β -Sn (mp-78), SH (mp-1224349), Imma (mp-1061054), Fmmm

FIG. 1. Outline of the active learning approach utilized in this work. The procedure involves a cycle in which

multiple NN models are trained. A model is tasked with sampling numerous configurations via NPT MD

and ssNEB under varying stress conditions. A visual representation illustrating how the enthalpy landscape

may shift under applied pressure is depicted in the top-right panel. The consistency in predicting energies

(E), forces (F), and stresses (S) for these sampled structures is checked by comparison of the previously

trained models’ predictions. Configurations exhibiting significant deviations are identified as unreliable and

subjected to DFT single-point calculations. Subsequently, these configurations are incorporated into the

dataset, and the models undergo further refinement through additional training iterations, thus completing

the cycle.
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(mp-148), HCP (mp-1008733), BCC (mp-998883), FCC (mp-12093). After replicating these

cells, the lattice parameters and the atomic positions are perturbed to obtain many different con-

figurations. A starting incomplete dataset is built based on these structures that are labeled with

energies, forces, and stresses computed through DFT calculations. An initial, coarse model trained

on this dataset is used to explore more configurations. This is done by sampling snapshots from

NVT and NPT MD, and intermediate images from ssNEBs. The energies, forces, and stresses

of these structures are computed again through single-point DFT calculations and added to the

existing starting dataset.

Multiple Neural Network (NN) models are then trained using identical training sets but with

different random seeds. Consequently, these models would lead to diverse predictions for the same

configuration. If predictions are consistent among the different models, it would suggest that the

configuration aligns closely with the training set; conversely, discrepancies indicate unreliability

in predictions. By employing this approach, we can select configurations exhibiting unreliable

predicted energies, forces, and stresses, compute these observables again through single-point

DFT calculations, and then iteratively expand the training set by incorporating such data deemed

most relevant.

The sequential addition of inaccurately estimated configurations into the training dataset during

iterations is a crucial aspect of constructing the MLIP.

The final dataset, upon which the actual model is trained, is composed of roughly 2700 struc-

tures making up a total of roughly 112 thousand atomic environments, and it’s split into 87%

training and 13% validation sets. The split was done randomly, except for certain structures we

specifically included in the training set: phases at their minimum energy configuration and with

lattice parameter perturbations close to the values corresponding to this minimum. Since many

crystal-phase transitions are pressure-induced, structures covering a wide range of pressure have

been sampled, reaching almost 100 GPa for some configurations. Most of the sampling was con-

ducted within a pressure range of 5 GPa tensile to 30 GPa compressive strain. This range was

chosen because the most technologically relevant crystal phase transformations in Ge, such as the

formation of Hexagonal Ge and ST12, occur after loading of CD to β -Sn and subsequent unload-

ing; these experiments are typically performed below 20 GPa. Structures containing interstitial

atoms and vacancies were obtained by sampling MD starting from manually crafted configura-

tions. Disordered structures were obtained by heating and then cooling some given crystal phases

to get highly defective and amorphous-like configurations. These highly varied structures allow
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Structure type No. structures No. environments

Cubic Diam. 253 9312

Hex. Diam. (4H) 158 6528

Hex. Diam. (2H) 185 8016

BC8 173 6000

ST12 274 8508

R8 177 6408

β -Sn 169 5648

Simple Hex. 150 4808

Other phases 151 7280

Interstitials 62 4092

Vacancies 63 3906

Disordered 278 26640

Transitions 597 14672

TOTAL ∼ 2700 ∼ 112000

TABLE I. Summary of the dataset for the germanium model. The first column shows the number of struc-

tures in the database, while the second one shows the number of atoms (and, therefore, atomic environments)

in the database for each structure type.

for a more comprehensive sampling of possible atomic environments, leading to a more robust

interatomic potential. Transition structures were obtained by sampling intermediate images from

ssNEB calculations between different crystal phases over a wide range of pressures. Also, after

replicating these intermediate images, the lattice parameters and the atomic positions are perturbed

to sample more different configurations close to the transition pathway found. This simple yet

effective procedure is an alternative to other methods, such as Transition Path Sampling65, Meta-

dynamics66, Umbrella Sampling67, or many more recent ones68–72, employed for an extensive

sampling of the configuration space close to transition states and along a reaction coordinate.

The dataset resulting from our iterative procedure is detailed in Tab. I.
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C. Machine Learning Model

Utilizing our dataset, the NN potential was trained using the Deep Potential Molecular Dy-

namic package (DeePMD-kit)73,74. The deep potential (DP) model decomposes the total energy

of the system into atomic contributions by employing a local geometric description of the atomic

environment. In this approach, a multilayer NN is used as a regression model to describe the

relationship between atomic configurations and energy. For each local system, an embedding

network converts the atomic coordinate information into a descriptor matrix which is fed into a

fitting network mapping the matrix to the local atomic energy. An in-depth explanation of the NN

architecture is given in the original paper73.

To accurately capture the structural information of many Ge crystal phases and different con-

figurations, we used two types of descriptors constructed from all information (both angular and

radial) in the so-called DeepPot-SE framework74: a “se_e3" type embedding which takes angles

between two neighboring atoms as input, and a “se_e2_a" type embedding which takes the dis-

tance between atoms as input. For the former descriptor, we used a cutoff value of rc = 3.30 Å,

a smoothing cutoff rs = 2.00 Å, and a three-layer embedding network containing 8, 16, and 32

neurons. For the latter, rc = 6.60 Å, rs = 3.30 Å were used along with a three-layer embedding

network containing 16, 32, and 64 neurons with 32 axis neurons. For the fitting net, three hidden

layers with 160, 120, and 80 neurons in each layer were employed. We trained and tested multiple

models with various architectures and hyperparameters to empirically identify optimal values that

balance accuracy and efficiency.

The family of loss functions L of the model, minimized by using an Adam stochastic gradient

descent optimizer75 with an exponentially decreasing learning rate, takes into account energies,

forces, and virials by

L =
pe

N
∆E2 +

p f

3N

N

∑
i
|∆Fi|2 +

pξ

9N
||∆Ξ ||2 (1)

Here ∆E, ∆Fi and ∆Ξ represent the difference in energy, force (on atom i) and virial, respectively,

between the training data and the NNP prediction; N is the number of atoms; pe, p f , and pξ are

tunable weights. Eq. (1) reports the loss contribution due to a single configuration in the training

set, the total loss will be the sum over all the configurations. As suggested in the original paper73

to reduce the total training time, we progressively increased pe and pξ and decreased p f during

the training procedure, so that the force term dominates at the beginning, while energy and virial

terms become important at the end. We decided to use also forces and virials along with energies in
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the training process to significantly reduce the number of reference data needed to train accurate

and robust models74. Furthermore, a model that accurately predicts stresses is crucial for the

investigation of pressure-induced crystal phase transitions.

Fig. 2 illustrates the regression plots for energies, forces, and stresses concerning both the

training and validation datasets. Our model demonstrates satisfactory performance, with root mean

square errors (RMSEs) of approximately 5 meV for energies and 0.1 eV/Å for forces. Stress

prediction is also robust, exhibiting an RMSE of less than 0.5 GPa over a broad spectrum spanning

approximately 100 GPa.

III. RESULTS AND DISCUSSION

A. Benchmarking of the model

To assess the reliability of the model, a diverse test set consisting of snapshots from MD at

different temperatures and pressures was also prepared. Additionally, the main results concern-

ing transition states are thoroughly discussed in the dedicated section III B. In detail, the test

set comprises 125 diamond structures (CD, 4H-HD, and 2H-HD), corresponding to 7888 atomic

environments, 74 low-density semiconductor structures (BC8, ST12, and R8) (3984 atomic en-

vironments), 97 high-density metal structures (6144 atomic environments), and 146 disordered

or defective structures, encompassing amorphous configurations as well as those with interstitial

atoms or vacancies (13401 atomic environments). Even on this test set, our model exhibits strong

predictive capability, showing minimal deviations in the regression plots of Fig. 2.

Further evaluation focused on the prediction of formation energies. To determine the DFT

formation energies, we computed the energy difference per atom between a specific structurally

optimized crystalline configuration and the cubic diamond reference. Likewise, for estimating the

DP formation energies, we followed the same procedure, but utilizing structures optimized for the

DP. The comparison of the results obtained from such calculations is depicted in Fig. 3 and Tab. II.

The model performs remarkably well, with errors smaller than 5 meV for all the tested struc-

tures, except for the BCC phase. As expected, the predictive ability of the model on the 4H-HD,

2H-HD, BC8, ST12, R8 phases is slightly better than the other higher energy ones. Particularly

noteworthy is the accurate prediction of the 6H-HD phase, despite its absence in the training set.

As an intermediate phase positioned between CD and 4H-HD and characterized by distinct stack-
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ing faults, the inclusion of CD, 4H-HD, and 2H-HD in the training set seems to be enough to

adequately encapsulate the local atomic environments of the 6H-HD structure.

Additionally, we analyzed the accuracy of energy vs. volume curves, as shown in Fig. 4, which

provide insights into the volumetric compression-expansion behavior of different phases. While

the model performs admirably for diamond phases and the other semiconductor structures BC8,

ST12, and R8, it exhibits slightly lower accuracy for metallic phases, especially in the volumetric

expansion region. This is because, apart from the aforementioned issue concerning convergence,

the training set emphasized sampling of these phases under pressure conditions rather than volu-

FIG. 2. Regression plots illustrating correlations of energies (left), forces (middle), and stresses (right)

calculated by the trained deep neural network (NN) potential with corresponding DFT values.
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metric dilation, and it is generally understood that NN models are interpolative, providing reliable

results only within their training domain. This decision was made because these phases are only

competitive under high pressures, rendering volumetric dilation less pertinent from a physical

standpoint.

Three additional phases, which were not part of the training set, are also tested: Pbam, P42/ncm,

and P41212. These structures, recently predicted theoretically, display significantly lower energies

compared to the majority of metastable polymorphs observed in Ge. For this reason, there is spec-

ulation that these phases might emerge as metastable forms in experiments utilizing indentation

or anvil cells76,77. The comparison presented in Tab. II, between formation energies computed via

DFT and those predicted by the DP, reveals a larger error for such crystal phases absent from the

training set. To address this, any investigation aimed at these structures would necessitate their

inclusion in the training set as well.

FIG. 3. Formation energies for the different crystalline phases of Ge computed both through DFT (in blue)

and the developed MLIP (in red) are compared.
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B. Transition Pathways

Crystal phase transitions in germanium were extensively investigated utilizing ssNEB calcu-

lations and NPT MD. Our research revealed several pathways between different crystal phases,

helping to understand the phase transition mechanism and kinetics. As our objective in this paper

is to showcase and assess the developed potential, rather than conduct an exhaustive study of phase

Phase εDFT [meV] εDP [meV] ∆ε [meV]

6H-HD 5.7 6.2 0.5

4H-HD 8.6 9.5 0.9

2H-HD 18.0 19.4 1.4

BC8 140.5 140.7 0.2

ST12 143.7 145.9 2.2

R8 146.3 148.4 2.1

β -Sn 229.3 233.2 3.9

Fmmm 237.4 241.5 4.1

SH 244.8 247.6 2.8

HCP 326.8 328.8 2.0

BCC 333.6 339.0 5.4

FCC 334.6 336.9 2.3

Pbam 31.8 56.7 24.9

P42/ncm 35.8 32.7 -2.9

P41212 38.7 73.9 35.2

TABLE II. Formation energies (ε) and absolute error (∆ε) computed by DFT and the DP model for different

crystalline phases of Ge. Three configurations not present in the training-set are included in the table and

separated by a horizontal line.
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transitions in Ge, here below we delve into a few illustrative examples.

Firstly, a collective transformation involving a 16-atom cell was observed, connecting the CD

and BC8 phases. Multiple cell geometries have been selected as the starting and ending points

for the ssNEB calculation. We chose the geometries that required the least amount of atomic dis-

placement and bond breaking. The minimum energy path for this transition, illustrated in Fig. 5a,

reveals a relatively high predicted activation energy of approximately 0.28 eV/atom. It is indeed

commonly acknowledged that the reaction barrier during solid phase transition can often be signif-

icant, as numerous chemical bonds are simultaneously formed or broken as the crystal transitions

from one phase to another.

Similarly, another pathway connecting the CD and β -Sn phases was identified, showing a re-

markable agreement between ab initio and NN prediction, as depicted in Fig. 5b. This transfor-

FIG. 4. The relationship between energy and volume per atom across different crystalline phases of Ge

is depicted. The lines represent predictions from the MLIP, while the markers represent calculations from

DFT calculations.
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FIG. 5. Minimum energy paths of the phase transitions: (a) CD to BC8, (b) CD to β -Sn under uniaxial

stress, (c) ST12 to β -Sn under planar stress, and (d) R8 to β -Sn under hydrostatic pressure. A comparison

between the ssNEBs calculations performed with the DP model (solid lines and filled circles) and single-

point DFT calculations of such images (dashed lines and unfilled circles) is shown.

mation is quite easy to identify because the relative positions of atoms in the cell remain con-

stant during the transformation, only the lattice parameters change. This pathway, previously

reported for Silicon78, occurs similarly in Ge. The activation barrier, estimated to be approxi-

mately 0.32 eV/atom, presents a significant obstacle. However, the transformation is not hindered

because stress can be applied to modify the MEP and the transition energy barrier, which directly

affects the rate of phase transition. When subjected to external stress, the energy landscape is

transformed into an enthalpy landscape, accounting for the work done by external stresses. To ex-

plore this phenomenon, we conducted multiple calculations using the ssNEB method with various

levels of uniaxial stress. Through this procedure, we determined that at approximately 7 GPa of

compressive uniaxial stress, the transition is expected to be barrierless. To our knowledge such an
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agreement between ab initio and NN on the calculation of pressure-dependent energy barriers is

unprecedented.

NPT MD simulations were employed to investigate such pressure-induced transformation. To

examine the structural transformation, we utilized a simulation cell measuring approximately

56× 56× 76Å, containing 10368 atoms. The temperature was set at 300 K (room temperature),

with uniaxial compressive stress along the z-direction at 7 GPa. Snapshots from such simulated

transition are shown in Fig. 6a.

To ensure confidence in the model’s accuracy, we calculated the deviation in the predicted force

for each atom at each step using an ensemble of three neural networks. We then computed the mean

deviation at each step and recorded the maximum deviation value among all atoms. As shown in

Fig. 6b, force predictions are considered satisfactory, with mean and maximum deviations below

0.05 eV/Å and 0.15 eV/Å, respectively, even at the transition midpoint where deviations are higher.

We then identified a pathway connecting the ST12 and β -Sn phases, illustrated by its corre-

sponding MEP in Fig. 5(c). This transformation pathway, involving a 12-atom cell, aligns with

a previously proposed atomistic mechanism for such transition80. The activation energy barrier

here is approximately 0.18 eV/atom, but it can be reduced by applying stress. Specifically, we ob-

served that the application of compressive planar stress, in this case, effectively reduces the barrier,

leading to a transition becoming barrierless at approximately 12 GPa of applied planar stress.

Additionally, the impact of hydrostatic pressure on the R8 to β -Sn transition was investigated.

Results indicate a gradual reduction in the activation barrier with increasing pressure, as shown in

Fig. 5d. Interestingly, a transition pathway via the BCC phase emerges above 20 GPa. In this case,

more intermediate images have been added to the pathway which has been broken up into separate

NEB calculations between all local minima.

It is noteworthy that, as illustrated in Fig. 5, a comparison of the ssNEB calculations performed

using the MLIP with those conducted using DFT reveals that the prediction of the energy of in-

termediate images in the transition from R8 to β -Sn is quite poor, with errors reaching nearly

30 meV. This discrepancy arises because this transition process was examined as a test after the

development of the MLIP, thus lacking intermediate structures in the training set.

NPT MD simulations were once again utilized to explore this pressure-induced transformation.

A rhomboidal prism-shaped simulation cell housing 12288 atoms was employed, with the tem-

perature maintained at 200 K and hydrostatic pressure at 23 GPa. The pressure valued was chosen

by conducting a ss-NEB calculation on a simulation cell like the one used for the results reported
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in Fig. 5d. We estimated a kinetic barrier at this pressure value to be about 8 meV/atom. Such a

low barrier would allow us to see the transition directly during MD in a short simulation.

Snapshots capturing during MD simulation are are depicted in Fig. 7a. The nucleation of the

FIG. 6. (a) Snapshot images of slices taken from the trajectories of NPT MD simulation for the pressure-

induced transformation mechanism from CD to β -Sn, performed at 300 K and with uniaxial compressive

stress along the z-direction at 7 GPa. Color coding is done based on coordination analysis in Ovito79, with

the CD and β -Sn structures depicted in red and blue respectively.(b) Average and peak force deviations

during the MD simulation.
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BCC structure can be observed emerging from the R8 bulk, and subsequently transform into poly-

FIG. 7. (a) Snapshot images of slices taken from the trajectories of NPT MD simulation of the pressure-

induced transformation mechanism from R8 to β -Sn via the BCC intermediate phase, performed at 200 K

and with hydrostatic pressure at 23 GPa. Color coding is done based on coordination analysis in Ovito,

and it is used to clearly show the R8 bulk (in blue) in which the BCC nucleation process occurs (in red)

and finally transforms to get β -Sn (in blue again). (b) Average and peak force deviations during the MD

simulation.
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crystalline β -Sn with defects. As shown in Fig. 7b, mean deviations are approximately 0.05 eV/Å

and decrease below 0.02 eV/Å as the transition progresses and more β -Sn forms.

The transition from β -Sn to R8, in reverse order with respect to the one investigated here, has

been experimentally observed to occur in nanoindentation upon unloading at specific rates and

stress conditions. However, the R8 to β -Sn transition under loading investigated in this work has

been less studied, primarily because obtaining R8 from β -Sn is a prerequisite. Therefore, for such

a transition there are no existing values to compare our estimation with. Still, our findings could

be valuable for better understanding cyclic nanoindentation experiments, such as those described

in Ref28.

IV. CONCLUSIONS AND PERSPECTIVES

In this work, an accurate and efficient MLIP tailored for investigating pressure-dependent crys-

tal phase transitions in germanium has been developed. The resulting DP is several orders of

magnitude faster than DFT calculations and scales linearly with the number of atoms. Regression

plots comparing NN predicted energies, forces, and stresses with DFT calculations performed on

a suitable test set, together with the shown accurate prediction of formation energies and energy-

volume curves of many relevant crystal phases, demonstrate the robustness of the model in de-

scribing such metastable allotropes of Ge. Moreover, the iterative refinement of the model through

insertion in the training set of transition structures sampled from ssNEB calculations performed

with the model itself has been shown as a simple yet effective practice to get the model to predict

accurate activation barriers.

Our MLIP, which can be downloaded together with the full database81, will serve as a valu-

able tool facilitating further advancements in the study of Ge crystal phase transitions and their

applications.
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