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To my parents.



Well, they say it right when they flood the house, and they tear it to shreds that, like, uh,
destruction is a form of creation. So the fact that they burn the money is ironic.

They just want to see what happens when they tear the world apart.
They want to change things.

— Richard Kelly, Donnie Darko

People sometimes say “There must be more than just this world, than just this life”.
But how much more do you want?

We are going to die, and that makes us the lucky ones.
Most people are never going to die because they’re never going to be born.

The number of people who could be here, in my place, outnumber the sand grains of Sahara.
If you think about all the different ways in which our genes could be permuted,

you and I are quite grotesquely lucky to be here.
The number of events that had to happen in order for you to exist, in order for me to exist...

we are privileged to be alive and we should make the most of our time on this world.

— Richard Dawkins, The God Delusion
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The recent advancements in Neural Networks research have pushed forward

the state-of-the-art in many language-related tasks, including Information Retrieval,

bringing new opportunities for representing and leveraging user-related informa-

tion during personalization. However, their application in the context of Personalized

Search is still an open research area, with many issues and challenges to be addressed

and tackled. In this dissertation, we focus on representing the user preferences from

multiple perspectives, managing and selecting the user information to personalize

the current search, and improving query representations with user-specific data by

proposing new approaches based on Neural Networks. Moreover, we address the

lack of publicly available large-scale datasets suited for training and evaluating Neu-

ral Networks-based approaches for Personalized Search. We first study the problem

iv



of leveraging the user preferences represented from multiple perspectives by propos-

ing a multi-representation re-ranking model. We show that our proposed approach

achieves competitive performance while being fast, scalable, and extended to include

additional representations and features. We then conduct an in-depth analysis of

a Neural Networks mechanism, the Attention, when employed for user modeling,

highlighting some shortcomings due to one of its internal components, the Softmax

normalization function. We address those shortcomings by introducing a novel At-

tention variant, the Denoising Attention, that adopts a more robust normalization

scheme and employs a filtering mechanism. Experimental evaluations clearly show

the benefits of our proposed approach over other Attention variants. Furthermore,

we address the enhancement of query representations with user-specific data by

proposing a novel Personalized Query Expansion approach designed for contextu-

alized word embeddings, which leverages an offline clustering-based procedure to

identify the user-related terms that better represent the user interests. We show

it improves in terms of retrieval effectiveness over word embedding-based Query

Expansion methods at the state-of-the-art while also achieving sub-millisecond ex-

pansion time thanks to an approximation we propose. Finally, we discuss the state

of Personalized Information Retrieval evaluation and the available publicly available

datasets and propose and share a novel large-scale benchmark across four domains,

with more than 18 million documents and 1.9 million queries. We present a detailed

description of the benchmark construction procedure, highlighting its characteristics

and challenges, and provide baselines for future works. The solutions and findings

presented in this dissertation show that Personalized Search is still an open research

area. Moreover, the new opportunities brought to the table by the recent advance-

ments in Neural Networks also introduce new challenges that need to be correctly

addressed to both take full advantage of their potential and make them valuable for

real-world Personalized Search applications.
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CHAPTER 1

INTRODUCTION

Information Retrieval is a scientific discipline concerned with finding information,

primarily in the form of unstructured textual documents, in response to the infor-

mation needs of the users. Usually, users express their information needs as textual

queries, which they issue to an Information Retrieval System, i.e., a search engine.

In response, the system provides lists of documents ranked by their estimated rel-

evance w.r.t. the user queries, and their underlying information needs. Every day,

Information Retrieval technologies enable billions of users to find the information

they need through Web search engines and domain-specific retrieval systems. The

concept of the relevance of a document w.r.t. to a user query is often inherently

subjective as user-specific preferences play a crucial role in the users’ perception of

relevance. Multiple users issuing the same query can find different documents more

appropriate to answer their specific information needs. For example, users looking

for events happening in the city they live could search for “events in Milan today”

regardless of whether they are interested in live music shows or visual art events.

In the past two decades, academia and industry have put much effort into tailor-

ing search results to specific user preferences by leveraging previously-gathered and

heterogeneous user-specific information during the information retrieval process.

However, despite the conspicuous number of previous studies, Personalization in In-

formation Retrieval is far from being a solved task. Novel techniques for representing

user-related information and documents have recently brought new opportunities
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and challenges to the field. In particular, the recent advancements in Deep Learning

and its Representation Learning sub-field have paved the way for designing novel

approaches for Personalized Search. Deep Learning techniques allow building rich

representations of textual information by projecting text into latent vector spaces that

embed the language semantics. These representations of text are commonly called

word embeddings. Word embedding techniques have pushed forward the state-

of-the-art in many language-related tasks, including Information Retrieval. Their

adoption allows information systems to leverage the semantics of the documents’

contents and exploit it during retrieval, overcoming some limitations of traditional

approaches. However, their usage in the context of Personalization is still an open

research area. For example, how to represent the user preferences inferred from

multiple perspectives and signals and how to leverage them for retrieval purposes

is still an open issue. Similarly, how to correctly manage and select the user infor-

mation to be used for personalizing the current search conducted by the user is an

almost entirely unexplored research area. Another open issue is how to effectively

and efficiently enhance query representations based on word embeddings with user-

specific information. Finally, the data-hungry nature of Deep Learning techniques

and the lack of publicly available large-scale benchmark datasets suited for evalu-

ating Personalized Search Systems poses additional challenges for evaluating Deep

Learning-based personalization approaches.

In this dissertation, we deal with the aforementioned open challenges of Person-

alization in Information Retrieval. In the following sections, we review the topics,

challenges, and tasks studied in this dissertation and briefly introduce our contribu-

tions, outlining the content of the subsequent chapters.
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1.1 Multi-Representation User Modeling

In real-world applications, user-related information of multiple natures is often avail-

able. We can leverage this information to infer both document properties and related

users’ interests. For example, users frequently generate textual content in the form of

comments on news articles or reviews describing their experience with some product.

This content usually includes information regarding both the characteristics of the

object under consideration and the related users’ opinions. Moreover, as documents

are often classified in topical categories, we could infer the users’ categorical interests

by mining the user interactions with them. The mined categorical interests can con-

tribute to delineating user profiles. Finally, the similarity between a user’s behavior

and those of other users can provide further information to personalize the user’s

subsequent interactions with the system. Making full use of these different kinds of

information, accounting for multiple perspectives of the user’s preferences, could al-

low a more informed representation of the user model. During the retrieval process,

a system can rely on this representation to deliver personalized search results, thus

enhancing its retrieval capabilities.

In this dissertation, we study the problem of leveraging multiple personalized

relevance signals in the context of Product Search (i.e., search on e-commerce web-

sites). In particular, we propose a multi-representation re-ranking model based on

the fusion of scores computed by comparing distinct user and product representa-

tions, which support multiple perspectives. More specifically, the representations we

propose account for both content-based information extracted from user reviews and

item categories and collaborative information extracted from user-item interactions.

The proposed approach is fast and scalable, can be added to the top of any search

engine, and can be extended to include additional representations and features.
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1.2 Query-Aware User Modeling

Two main challenges of Personalized Search are how and when to personalize the user

search results. As users have multiple and diverse interests, not all the information

we can collect about their preferences is equally related to all their searches. Thus,

it is natural that some of the data gathered about a specific user will be helpful to

personalize some of her queries and not others. Moreover, it could happen that by

relying on user-related information unrelated to her current search, a personalization

procedure could negatively impact the overall retrieval process. For example, this

situation could occur when the user’s preferences towards a specific domain are

unknown. In this case, if the system tries to personalize the search results, it could

potentially decrease the retrieval effectiveness.

With the recent advances in the research related to Neural Networks, a new trend

in Personalized Search emerged. Commonly called query-aware user modeling, it

consists in building a representation of the user preferences, i.e., the user model,

at query time. In such a user modeling approach, the sources of user interests

are weighed w.r.t. the current search by assigning more importance to those most

related to the query. This procedure, usually carried out by employing the neural

Attention mechanism, allows to automatically discern between beneficial and noisy

user-related information on a query basis.

In this dissertation, we conduct an in-depth analysis of the Attention mechanism

when employed for query-aware user modeling, highlighting some shortcomings

due to one of its internal components, the Softmax normalization function. In user

modeling, Softmax can cause the model to be excessively noisy or skewed towards

a single source of user interest. This component also causes personalization to be

performed even when those sources are not related to the current search conducted

by the user, potentially harming the retrieval process. We address the previous short-

comings by introducing a novel Attention variant, the Denoising Attention, which
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adopts a more robust normalization scheme and employs a filtering mechanism. We

specifically design the Denoising Attention’s components to finely filter out noisy

user-related information and produce a balanced representation of the user interests

w.r.t. the current search.

1.3 Personalized Query Expansion

Users often rely on short keyword queries to express their information needs when

interacting with Information Retrieval systems. While formulating simple queries

allows users to retrieve documents rapidly, a system may struggle to provide satis-

factory results when the users provide only a broad description of their information

needs. One well-known solution to this problem is Query Expansion, the task of

reformulating the initial user query with additional terms to improve the retrieval

effectiveness of the system. This process can be performed on a user basis, taking

into account the user-related information to extract the terms to add the query. In

this case, we talk about Personalized Query Expansion.

Recent approaches to this task rely on word embeddings to select the additional

terms from the user-related information. Although delivering promising results with

former word embedding techniques, we argue that these methods are not suited for

use with the more recent and powerful contextual word embedding approaches,

which produce a unique vector representation for each term occurrence in texts by

accounting for its context. Specifically, current methods have a high probability of

selecting redundant expansion terms as, with contextual word embeddings, we deal

with many potentially similar vector representations. Moreover, as those approaches

rely on computing a similarity score between the query and each user-related term

embedding to select those most appropriate for expanding the query, they can in-

troduce an overhead directly proportional to the number of candidate expansion
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terms. If not carefully handled, these issues could slow down the retrieval process,

impacting the system’s scalability.

In this dissertation, we address these issues by introducing a novel Personalized

Query Expansion method designed to take advantage of contextual word embed-

dings in this task. Specifically, by leveraging an offline clustering-based procedure to

group the embeddings of the user terms and identify those that better represent the

user interests, it avoids selecting multiple expansion terms of similar meanings. In

addition, by employing an approximation procedure based on the user term clusters

during the expansion terms selection, our approach introduces very low latency in

the retrieval process, even in very data-rich scenarios. Finally, we introduce a novel

metric to evaluate the query expansion terms diversity and empirically show the

unsuitability of previous Personalized Query Expansion approaches based on word

embeddings when employed along with contextual word embeddings, which cause

the selection of multiple semantically overlapping terms for expanding the query.

1.4 Personalized Search Evaluation

Personalization in Information Retrieval has been a hot topic in both academia and

industry for the past two decades. However, there is still a lack of high-quality

standard benchmark datasets for conducting offline comparative evaluations in this

context. In the past, the Text Retrieval Conference (TREC) promoted some evaluation

campaigns targeting Personalized Search. However, those initiatives are limited in

the amount of user-related information made available, thus reducing their appeal

for evaluating modern Deep Learning-based Personalized Search methods, which

require large amounts of data to be trained. For this reason, the problem of defining

a standard approach to the evaluation of Personalized Search is still a hot research

topic. Recently, some efforts have been made to define large-scale datasets suitable for
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evaluating Personalized Search approaches. Unfortunately, all these datasets come

with specific issues, from content availability and privacy concern to anonymized

texts, which make personalized semantic retrieval approaches not usable. In the

past few years, researchers have proposed several methodologies to overcome those

issues and derive synthetic datasets for evaluating Personalized Search models. Un-

fortunately, due to data-quality issues, concerns have been raised about adopting

as standard benchmarks for Personalized Search the synthetic datasets obtained by

employing those methods.

In this dissertation, we first discuss the methodologies previously proposed for

deriving synthetic datasets suitable for evaluating Personalized Information Retrieval

approaches, highlighting some problems that affect them. Then, we revisit and ex-

tend the most promising of those methodologies, overcoming their limitations while

preserving their benefits, and propose and share a novel large-scale benchmark

across four domains, with more than 18 million documents and 1.9 million queries,

designed for the evaluation of Personalized Search approaches. We present a detailed

description of the benchmark construction procedure by highlighting its character-

istics and challenges. We also provide baselines for future works, opening room for

the evaluation of Personalized Search approaches, as well as Domain Adaptation and

Transfer Learning methods in the context of Personalization.

1.5 Other Works

Besides the works already introduced, this dissertation also covers additional works

regarding the Semantic Labeling of Information Retrieval queries and the work un-

dertaken in the implementation of an open-source tool for the evaluation, compar-

ison, and fusion of the ranked lists produced by Information Retrieval systems in

response to a query.
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1.5.1 Semantic Query Labeling

Searching in a domain-specific corpus of structured documents (e.g., e-commerce,

media streaming services, job-seeking platforms) is often managed as a traditional

retrieval task. Semantic Query Labeling is the task of locating the constituent parts of

a query and assigning domain-specific predefined semantic labels to each of them. It

allows unfolding the relations between the query terms and the documents’ structure

while leaving unaltered the keyword-based query formulation typical of the Infor-

mation Retrieval Systems. Due to both the lack of a publicly available dataset and

the high cost of producing one, there have been few published works in this regard.

In this dissertation, we first introduce a novel large-scale dataset of manually an-

notated queries in the movie domain that are suitable for studying Semantic Query

Labeling. Then, based on the assumption that a corpus already contains the infor-

mation the users search for, we propose a method for the automatic generation of

semantically labeled queries and show that a semantic tagger trained on our synthetic

queries achieves results comparable to those obtained by the same model trained with

real-world data. We also investigate whether pre-training the model with synthetic

queries can improve the performance of the model trained only with real-world data.

Lastly, by simulating a dynamic environment, we evaluate the consistency of perfor-

mance improvements brought by pre-training as real-world training data becomes

available.

1.5.2 ranx

Offline evaluation and comparison of different Information Retrieval systems is a

fundamental step in developing innovative solutions. A few years ago, the introduc-

tion of trec_eval1 by the Text Retrieval Conference (TREC) allowed standardizing

evaluation metrics in Information Retrieval. This handy tool comes as a standalone

1https://github.com/usnistgov/trec_eval
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C executable that researchers and practitioners must compile and run through a

command-line interface. Unfortunately, it does not provide additional functionali-

ties, such as comparing results from different Information Retrieval systems or ex-

porting the evaluation response to specific formats (e.g., LATEX). Nowadays, the large

majority of Information Retrieval researchers rely on Python as their primary coding

language. Because of that, many recent tools provide experimentation and evaluation

utilities in Python, such as evaluation metrics. Nevertheless, we think there is still

the need for a user-friendly Python library following a truly Plug & Play paradigm,

which can also be helpful for young researchers with different backgrounds.

For this reason, in this dissertation, we present ranx2: a library of fast ranking

evaluation metrics implemented in Python with modern technologies that allows

for high-speed vector operations and automatic parallelization. ranx offers a user-

friendly interface to compute multiple evaluation metrics, run statistical tests, and

visualize comparison summaries, all in a few lines of code. Furthermore, it offers a

convenient way of managing the evaluation results, allowing the user to export them

in LATEX format for scientific publications. We also recently extended ranx with

several Metasearch algorithms and dedicated functionalities previously unavailable

to the research community.

2https://github.com/AmenRa/ranx
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1.6 Outline and Contributions

The following chapters of this dissertation are organized as follows:

1. In Chapter 2, we introduce the fundamental concepts of Personalization in

Information Retrieval and discuss how it is usually carried out.

2. In Chapter 3, we introduce a novel personalized results re-ranking approach

for Product Search. The proposed model is based on the fusion of the relevance

score deriving from multiple user/item representations, accounting for both

content-based information (i.e., reviews, categorical information) and collabo-

rative information (i.e., representations extracted from the user-item interaction

graph). Furthermore, the approach we introduce is fast and scalable, can be

easily added on top of any search engine and it can be extended to include

additional user/item representations. The performed comparative evaluations

show that our model outperforms modern Neural Network-based personalized

retrieval models for Product Search in the great majority of cases.

3. In Chapter 4, we analyze the effects of the Attention mechanism when em-

ployed for query-aware user modeling, highlighting some shortcomings that

can cause the user model to be excessively noisy or skewed towards a single

source of user interest. We address those shortcomings by introducing a novel

Attention variant called Denoising Attention. By employing a robust normal-

ization scheme and a filtering mechanism, our proposal can finely filter out

noisy user-related information and produce a balanced representation of the

user interests w.r.t. the current search, outperforming other attention variants

when it comes to personalization.

4. In Chapter 5, we introduce the a novel Personalized Query Expansion method

designed for contextual word embeddings. Our approach employs an offline
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clustering-based procedure to group the user-related terms and identify those

that better represent the user interests. This mechanism allows us to avoid

adding redundant expansion terms to the query, a very relevant problem when

employing contextual word embeddings for Query Expansion. Furthermore,

by implementing an approximation mechanism based on the user term clusters,

our Personalized Query Expansion method achieve extremely low latency while

outperforming previously proposed methods at the state-of-the-art in terms of

effectiveness.

5. In Chapter 6, we discuss the available benchmark datasets for Personalized

Search evaluation and introduce a novel large-scale benchmark. In particular,

the proposed benchmark spans across four domains and accounts for more

than 18 million documents and 1.9 million queries. We also provide baselines

for future works, opening room for the evaluation of Personalized Search ap-

proaches, as well as Domain Adaptation and Transfer Learning methods in the

context of Personalization.

6. In Chapter 7, we first introduce a novel large-scale dataset of manually an-

notated queries for Semantic Query Labeling. Then, we introduce a method

for generating semantically labeled synthetic queries directly from a document

collection and show that a semantic tagger trained on those queries achieves re-

sults comparable to those obtained by the same model trained with real-world

data. We also investigate the effect of pre-training the model with the synthetic

queries and assess whether such an approach can improve the performance of

the model trained only with real-world data. Lastly, we simulate a dynamic

environment and evaluate the consistency of the performance improvements

brought by pre-training as real-world training data becomes available.

7. In Chapter 8, we present ranx, a Python library implementing a user-friendly
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interface to compute Information Retrieval evaluation metrics, run statistical

tests, and visualize comparison summaries, all in a few lines of code. It also

offers a convenient way of managing the evaluation results, allowing to export

them in LATEX format for scientific publications. Finally, it provides several

Metasearch algorithms and dedicated functionalities previously unavailable to

the research community. By leveraging modern technologies for high-speed

vector operations and automatic parallelization, ranx also outperforms cur-

rently available alternatives in terms of efficiency.

8. In Chapter 9, we summarize the contribution from the previous chapters, high-

light some remaining open issues, and discuss several future directions.

1.7 Publications

The list of the papers related to the research activity presented in this dissertation

follows below. The contributions of the author of this dissertation, Elias Bassani, to

each paper are indicated using the Contributor Roles Taxonomy3 (CRediT).

• Elias Bassani and Gabriella Pasi, “A Multi-Representation Re-Ranking Model for
Personalized Product Search”, in Information Fusion (journal), 2022.

Contributions: Conceptualization, Methodology, Software, Validation, Formal
analysis, Investigation, Resources, and Writing - Original Draft.

Discussed in Chapter 3.

• Elias Bassani, Pranav Kasela, and Gabriella Pasi, “Denoising Attention for Query-
aware User Modeling in Personalized Search”, Submitted to journal, TBA.

Contributions: Conceptualization, Methodology, Software, Validation, Formal
analysis, Investigation, Resources, Data Curation, and Writing - Original Draft.

Discussed in Chapter 4.

3https://www.elsevier.com/authors/policies-and-guidelines/
credit-author-statement
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• Elias Bassani, Nicola Tonellotto, and Gabriella Pasi, “Personalized Query Expan-
sion with Contextual Word Embeddings”, Submitted to journal, TBA.

Contributions: Conceptualization, Methodology, Software, Validation, Formal
analysis, Investigation, Resources, Data Curation, and Writing - Original Draft.

Discussed in Chapter 5.

• Elias Bassani, Pranav Kasela, Alessandro Raganato, and Gabriella Pasi, “A
Multi-domain Benchmark for Personalized Search Evaluation”, in Proceedings of
the 31st ACM International Conference on Information and Knowledge Man-
agement, 2022.

Contributions: Conceptualization, Software, Validation, Investigation, Re-
sources, Data Curation, and Writing - Original Draft.

Discussed in Chapter 6.

• Elias Bassani and Gabriella Pasi, “Semantic Query Labeling Through Synthetic
Query Generation”, in Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, 2021.

Contributions: Conceptualization, Methodology, Software, Validation, Formal
analysis, Investigation, Resources, Data Curation, and Writing - Original Draft.

Discussed in Chapter 7.

• Elias Bassani and Gabriella Pasi, “On Building Benchmark Datasets for Under-
studied Information Retrieval Tasks: the Case of Semantic Query Labeling”, in Pro-
ceedings of the 11th Italian Information Retrieval Workshop, 2021.

Contributions: Conceptualization, Data Curation, and Writing - Original Draft.

Discussed in Chapter 7.

• Elias Bassani and Gabriella Pasi, “Evaluating the Use of Synthetic Queries for
Pre-training a Semantic Query Tagger”, in Proceedings of the 44th European
Conference on Information Retrieval, 2022.

Contributions: Conceptualization, Methodology, Software, Validation, Formal
analysis, Investigation, Resources, Data Curation, and Writing - Original Draft.

Discussed in Chapter 7.
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• Elias Bassani “ranx: A Blazing-Fast Python Library for Ranking Evaluation and
Comparison”, in Proceedings of the 44th European Conference on Information
Retrieval, 2022.

Contributions: Conceptualization, Software, Resources, and Writing - Original
Draft.

Discussed in Chapter 8.

• Elias Bassani “Towards an Information Retrieval Evaluation Library”, in Proceed-
ings of the 12th Italian Information Retrieval Workshop, 2022.

Contributions: Conceptualization, and Writing - Original Draft.

Discussed in Chapter 8.

• Elias Bassani and Luca Romelli “ranx.fuse: A Python Library for Metasearch”,
in Proceedings of the 31st ACM International Conference on Information and
Knowledge Management, 2022.

Contributions: Conceptualization, Software, Resources, and Writing - Original
Draft.

Discussed in Chapter 8.
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CHAPTER 2

PERSONALIZATION IN INFORMATION RETRIEVAL

Personalization in Information Retrieval aims to tailor search results to specific users

to overcome the one-size-fits-all behavior of search engines. In this context, Per-

sonalization is mainly conducted by refining the users’ search queries and adapting

search results to their specific preferences. Personalization pipelines usually com-

prise three stages [96, 161]: 1) user-related information gathering, 2) representation

of the gathered information to define a user model, and 3) exploitation of the user-

related information to improve the quality of the search outcome. In the following

sections, we introduce and review those stages.

2.1 User-Related Information Gathering

Gathering user-related information means employing different tools and approaches

to collect information about the users’ interests and preferences that the system can

use to create profiles for the users to exploit during personalization. This process

can be carried out both explicitly by asking for explicit relevance feedback from

the users [189, 61, 112] (i.e., asking for users’ preferences, interests, opinions about

search results, etc.) and implicitly by collecting implicit relevance feedback from

the users’ behavior and related contents [252, 245, 250, 62, 3, 260], such as previous

queries, clicks, browsing activity, authored contents, email, etc., and/or contextual

factors (i.e., user background, search task, etc.). Although users may be a good
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source of relevance feedback, multiple works have shown the usefulness of directly

asking the users for feedback to be limited by the tradeoff between user effort and

performance improvement [27, 229]. Moreover, concerns have been raised regarding

the additional time and effort required to supply the information needed to assist

the personalization process, which is also sometimes provided inconsistently by the

users [49, 56]. Generally, systems that collect implicit information are more likely

to be used as they do not require the users to perform any additional actions other

than those they normally carry out during a search session. Furthermore, in practice,

they perform as well or better than those requiring explicit user feedback to be

collected [94]. Nowadays, studies on Personalization and industrial applications

widely rely on implicit relevance feedback because of its unobtrusive nature for the

user and lower data collection cost, which allows gathering large amounts of data

for training Deep Learning-based Personalization models. In this dissertation, we

mainly rely on implicit feedback as our main source of user-related information.

2.2 Definition of the User Model

At the core of Personalization is User Modeling, the process of building a representa-

tion of the previously-gathered user-related information to assist the personalization

process. Over time, researchers have proposed several modeling approaches to rep-

resent the information about the users, from methods based on language [258, 248]

and topic [116, 53, 284] modeling to Deep Learning models [153, 247, 295, 274]. The

outcome of this process is a user profile that stores the user’s preferences and search

interests.

User modeling techniques are traditionally classified as long-term and short-term,

depending on whether they embed the general and persistent user interests or the

immediate preferences related to the current user’s information need. Generally
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speaking, long-term user models are derived from information gathered over long

periods, spanning multiple search sessions, and employed for personalization in the

long run, while short-term user models are based on the user behavior in the current

search session and are used to personalize the search outcome in the same session.

Short-term user models play the same role as long-term profiles in providing the

system with additional information to personalize search results.

The kinds of user-related information flowing into short-term and long-term user

models greatly impact their personalization potential. On the one hand, short-

term user models are much more focused on the user preferences regarding her

immediate information needs. However, they often struggle to provide meaningful

improvements to the retrieval process at the very beginning of a search session as

the system collects user-related information from the session itself. On the other

hand, long-term user models, by accumulating user-related information over time,

allow the system to leverage information regarding a wider variety of user interests

during personalization and can do it successfully even for the first search in a ses-

sion. Unfortunately, the broader scope of user-related information accumulated in

the long-term user models could eventually lead to noisy — w.r.t. the current search

— user representations if not carefully handled, potentially harming the retrieval

improvements that personalization can provide. Not surprisingly, a number of stud-

ies [31, 83] have found a conjunct use of both short-term and long-term user models

to improve personalization performances over those obtained by the two approaches

taken separately. In general, the more information about the user we provide to the

system, the better it can understand the user’s interests and preferences, leading to

better retrieval performances.

In this dissertation, we focus on long-term user modeling and how to manage and

use the user-related information collected over time to robustly enhance the retrieval

process.
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2.3 Exploitation of the User-Related Information

The last stage of the personalization process consists of the actual implementation

and execution of personalization. Generally, a system implements personalization by

adapting the user’s query or the retrieved results. The adaptation process of a query

takes place in a pre-processing phase and consists of expanding its original terms with

additional ones, aiming to retrieve more relevant results [183]. This process is usually

called Query Expansion. In the personalization context, the system generally draws

the expansion terms from a user vocabulary inferred from user-related contents (e.g.,

documents previously accessed or authored by the user, previous queries submitted

to the system by the user). The adaptation of a results list is generally carried out by

means of result scoring, results re-ranking, or result filtering [96]. Results re-ranking

consists in performing an additional ranking round as a post-processing step to re-

order the documents retrieved by the system in response to the user query, aiming to

display specific results at higher ranks. In the context of personalization, re-raking

aims to adapt the result lists to user preferences. Results filtering consists of hiding

the documents that the system considers irrelevant w.r.t. the user interests. Results

scoring techniques aim to incorporate adaptation features directly in the primary

scoring function adopted by the system. In practice, Information Retrieval systems

often incorporate both query and result adaptation components.

In the following sections, we introduce the two main personalization techniques

we focused on in the works presented in this dissertation: 1) Query Expansion and

2) Results Re-Ranking.

2.3.1 Personalized Query Expansion

In this section, we introduce Personalized Query Expansion, one of the Personalized

Information Retrieval tasks we tackled in the works presented in this dissertation.
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Nowadays, most search engines provide users with a simple interface to specify

their information needs through short keyword-based queries, which are usually

two-to-three terms long in the case of Web search [124]. However, as a query only

broadly describes a user’s information need, search engines may struggle to provide

satisfactory results. Multiple factors related to how users choose terms for their

queries can affect a system’s retrieval effectiveness [18]. For example, the terms

composing a query can be related to multiple topics, leading the system to provide

results not focused on the user’s topic of interest. Moreover, out of habit, users often

issue queries too short to clearly express complex information needs, ultimately

failing to find documents valuable to fulfill them. Finally, users sometimes have only

a broad idea of the information they need, and hence they issue queries that are not

appropriate to find documents that can answer their information needs.

A well-known technique proposed to overcome those issues is Query Expansion,

whereby the user’s original query is augmented with new terms, known as expansion

terms, to improve the system’s effectiveness. The identification of proper expansion

terms aims to clarify the user’s search intent and bridges the gap between the orig-

inal query terms and the documents’ vocabulary [55], addressing the well-known

vocabulary mismatch problem [90].

Query Expansion techniques can leverage user-related information previously

gathered to derive the expansion terms, in which case we talk about Personalized

Query Expansion. Personalized Query Expansion techniques rely on user-related

documents, such as previously accessed Web pages and user-generated content [140],

e.g., product reviews or tweets, to extract expansion terms directly from the users’

vocabulary or the vocabulary used in documents of their interest.

A Personalized Query Expansion pipeline is depicted in Figure 2.1. As shown

in the figure, the user issues a query to the system, which leverage the user profile

to select the personalized expansion terms with which to expand the original query.
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Figure 2.1: Personalized Query Expansion.

Then, the system provides the expanded query to a retrieval component, which

computes a set of potentially relevant documents to show to the user. Finally, the

ranked list of results is provided to the user.

2.3.2 Personalized Results Re-Ranking

In this section, we introduce Personalized Results Re-ranking, an Information Re-

trieval task we considered in many of the works presented in this dissertation for

evaluating the proposed Personalized Search approaches.

In Results Re-Ranking, a retrieval system’s component, commonly called first-

stage retriever, retrieves a ranked list of documents in response to a search query.

Then, another component, the re-ranker, computes new relevance scores for the

initially retrieved documents leveraging additional information. Finally, the new

relevance scores computed by the re-ranker, or a combination of those and the scores
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computed by the first-stage retriever, are used to re-rank the initially retrieved list

of documents. In the latter case, the two relevance scores are often aggregated via

convex combination:

final_score = (1− λ) · s1 + λ · s2 (2.1)

where, s1 and s2 are the relevance scores computed by the first-stage retriever and

the re-ranker, respectively, and λ is a parameter that controls the influence of the two

on the final score.

The main difference between the first-stage retriever and the re-ranker is that they

usually differ in terms of efficiency and effectiveness. On the one hand, the first-stage

retriever aims to efficiently retrieve an initial set of potentially relevant documents

focusing on recall rather than precision. On the other hand, the re-ranker is generally

a much more effective retrieval model but with little efficiency (e.g., a Transformer-

based ranker [158]), which is why it is employed to rank only a limited portion of the

document collection, the top-n documents retrieved by the first-stage retriever. By

combining those two components, we can efficiently retrieve most of the documents

relevant to the query with the first-stage retriever and rank them appropriately by

leveraging the effectiveness of the re-ranker, benefitting from the best of both worlds.

This process can also be carried out by leveraging previously-gathered user-

related information during the re-ranking step, in which case we talk about Person-

alized Results Re-ranking. A Personalized Results Re-ranking pipeline is depicted

in Figure 2.2. As shown in the figure, the user issues a query to the system, which

retrieves an initial set of documents from the document collection by relying on the

first-stage retriever. Then, the system provides the initially retrieved set of documents

to the Personalized Re-Ranker, which computes their final ordering by leveraging the

user profile, usually comparing the user’s interests and preferences representation,

i.e., the user model, with those of the documents. Finally, the ranked list of results is

provided to the user.
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In the case of Personalized Results Re-ranking, the λ parameter of Eq. 2.1 is

generally used to control the influence of personalization on the ordering of the

documents provided to the user. The higher the value of λ, the more personalized

the search results shown to the user.

The Employed First-Stage Retriever: BM25

Since all the works on Results Re-Ranking presented in this dissertation rely on the

classic retrieval model BM25 as a first-stage retriever, we introduce it in this section.

BM25 is a popular bag-of-words-based probabilistic relevance model [227] pro-

posed by Robertson and Walker [226], which extends the classic TF-IDF relevance

model [233]. BM25 assumes the relevance of a document w.r.t. a user query to be

binary. It also assumes statistical independence between term occurrences to provide

a simple and tractable scoring function, which assesses the relevance of a document
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d w.r.t. a given query q as follows:

sq,d =

|q|∑
i=1

IDF (qi, C) · tf(di, d) · (k1 + 1)

tf(di, d) + k1 · (1− b+ b · |d|
avg(|d|))

(2.2)

where sq,d is the relevance score of d w.r.t. q, qi is the i-th query term, IDF (qi, C)

is the inverse document frequency [129] of qi in the corpus C, tf(qi, d) is the term

frequency [171] of qi in d, |d| is the length of d, and avg(|d|) is — with a slight abuse

of notation — the average length of the documents in the corpus. The coefficients

k1 and b are the hyper-parameters of the model. The former is the term frequency

saturation coefficient, which regulates the contribution of each term so that it cannot

exceed a saturation point. The latter controls the normalization effect of document

length. k1 and b need to be tuned according to both the queries and the corpus for

maximizing the model effectiveness.

We relied on BM25 as our first-stage retriever for several of the experimental

evaluations discussed in this dissertation because, over the years, it has proven

multiple times to be a robust retrieval model and a competitive baseline for retrieval

evaluation. Moreover, it has been widely adopted in real-world applications thanks

to being the default retrieval algorithm of the popular commercial search engine

Elasticsearch1.

1https://www.elastic.co
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CHAPTER 3

A MULTI-REPRESENTATION RE-RANKING MODEL
FOR PERSONALIZED PRODUCT SEARCH

The last 25 years have witnessed the birth of major e-commerce websites as well as

a multitude of smaller ones. Online shopping is a popular activity nowadays, and it

is expected to become even more popular in the next years, reaching over 2 billion

people [253]. In 2020, retail e-commerce sales worldwide amounted to 4.28 trillion

US dollars [254] and accounted for 18% of all retail sales [255].

Users often decide which items to buy after they have searched the available

products through a search engine. In the context of Product Search, users’ needs

are highly personal, and a search engine should tailor the result lists on the user

preferences, as users’ diversity largely affects the notion of relevance of the retrieved

products. Therefore, personalization is inherently an integral part of Product Search.

Generally, e-commerce websites allow users to express their opinions and consider-

ations on the products they have purchased. This feedback takes the form of ratings

and reviews. Customers’ reviews provide valuable information for modeling both

users and items, as they contain clues about user preferences and product proper-

ties, which are often not specified in their descriptions. While user-generated content

allows capturing the specificity and diversity of users, the analysis of users’ purchas-

ing behavior can provide complementary information to enrich both user and item

representations. This information allows capturing the similarities among users as

well as items’ popularity.
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To address personalization in Product Search many Neural Network-based re-

trieval models have been recently proposed. They make use of auxiliary side in-

formation to infer item properties and users’ interest towards them. Recent efforts

mainly focused on leveraging user reviews [6, 106, 296, 7, 33, 291, 8, 107], brands

and categories [8], and product images [106] to personalize the user search experi-

ence. Guo et al. [107] also studied the effect of the long and short-term preferences

in Product Search, while Zamani and Croft [291] proposed to jointly model person-

alization in Product Search and Product Recommendation tasks. Bi et al. [33] and

Zhang et al. [296] approached the problem of personalization in Product Search in

a conversational context. Inspired by Gysel et al. [109], these approaches share the

assumption that Product Search is an inherently semantic task, due to the severe vo-

cabulary mismatch [90] between user queries and item descriptions. Because of that,

the authors model the internal query matching procedure on the semantic similarity

between queries and item information, by mapping them in the same latent space.

Differently from recent works where personalization is directly injected into the

retrieval model, we tackle personalization in Product Search as a results re-ranking

task, where the list of items retrieved by a search engine is re-ranked based on the

computation of a new relevance score obtained by fusing the relevance score assessed

by the search engine with several user-item compatibility scores. More specifically,

we propose a simple yet effective Personalized Results Re-Ranking model based

on the fusion of the relevance score computed by the well-known ranking model

BM25 [226] (introduced in Section 2.3.2) with a popularity-based value of the items

(an important relevance signal that appears to have been overlooked in previous

works) and three compatibility scores computed between latent representations of

users and items built upon both content-based and collaborative information (i.e.,

reviews, categorical information, purchasing behaviors). Despite the preeminent

adoption of semantic matching-based models by recent works in the literature, we opt
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for a classic lexical matching retrieval model. This choice is driven by the assumption

that in Product Search, user queries usually contain “a producer’s name, a brand

or a set of terms that describe the category of the product” [230] and this kind

of information is usually present as-is in product-related information. Finally, our

approach is fast and scalable, it can be added on the top of any search engine, and it

is easily extendable to accommodate additional relevance/compatibility scores.

To verify the effectiveness of the proposed approach we have performed several

experiments. In particular, we have comparatively evaluated its effectiveness with

respect to recently proposed Neural Network-based approaches specifically designed

for Product Search [6, 8, 109], on a variety of datasets from Amazon1, which have been

previously employed in the literature. Our model consistently increases the retrieval

effectiveness of the underlying retrieval model, BM25, and, in the great majority of

cases, considerably outperforms modern Neural Network-based baselines.

The main contributions of this chapter are threefold:

• we propose a score fusion-based approach for personalized re-ranking in Prod-

uct Search that leverages multiple user/item representations;

• the proposed model makes use of both content-based information (i.e., reviews,

categorical information) and collaborative information (i.e., representations ex-

tracted from the user-item interaction graph);

• the proposed approach is fast and scalable, it can be added on top of any search

engine and it is easily extendable to include additional user/item representa-

tions.

This chapter is structured as follows: after reviewing the related works related

to Product Search in Section 3.1, we present the proposed Personalized Re-Ranking

model in Section 3.2. In Section 3.3, we introduce the experimental setup of the

1https://www.amazon.com
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performed evaluation, and in Section 3.4, we present and discuss the evaluation

results, conducting an in-depth performance analysis.

3.1 Related Works

With the widespread of online shopping in the past few years, the task of Product

Search has received increasing attention from the research community. Early works

in this area focused on modelling the interaction between users and products-related

information stored in relational databases through faceted search [28, 157, 270, 271].

Later, to reduce the gap between Web search, the kind of search to which users

are most familiar, and search on products’ structured data, which usually requires

the formulation of structured queries, some works investigated the application of

language modeling [218] approaches to Product Search [81, 80, 79]. In the meantime,

other studies tackled the problem of results diversity [210, 290], paving the way for the

more recent efforts on personalization in this area. More recently, learning-to-rank

strategies were also studied in Product Search [15, 236, 122].

The great majority of the works recently published in the context of Product Search

rely on the application of Neural Network-based models to tackle both problems of

vocabulary mismatch between queries and item descriptions, and personalization.

Gysel et al. [109] introduced a latent vector space model for Product Search to address

the problem of vocabulary mismatch. The proposed model maps queries and items

in the same latent space where their semantic similarity can be directly computed.

Ai et al. [6] enhanced the approach proposed in [109] by adding personalization.

This effect was obtained by mapping users in the same latent space of queries and

items. Ai et al. [8] refined their first model by adding side information, such as

item brands and item categories, to user and item representations. Guo et al. [107]

modelled user preferences from both long-term and short-term perspectives. Guo
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et al. [106] studied the effect of the visual modality on user preferences by leveraging

item images in the personalization process. Their approach resulted particularly

effective on fashion-related domains.

Other directions in the context of Product Search have also been explored. For

example a recent study [7] addressed the problem of when and how to rely on per-

sonalization to enhance product retrieval. Zamani and Croft [291] investigated the

possibility of jointly modeling and optimizing product retrieval and recommenda-

tion tasks, due to their complementary nature. They proposed a general framework

to simultaneously learn a retrieval model and a recommendation model by opti-

mizing a joint loss function. Bi et al. [33] and Zhang et al. [296] tackled Product

Search from a conversational perspective. Lin et al. [159] proposed an unsupervised

method relying on implicit user’s feedback from clicks to collect a large amount of

query classification data and highlighted some shortcomings of neural approaches in

learning useful representations for queries, due to the fact that queries are composed

of a few words. Sondhi et al. [246] recently focused on understanding user search

behavior in E-Commerce search applications and how it relates to user query gen-

eration, by proposing a query taxonomy for Product Search. Other studies focused

on query intent for query refinement [182] and term weighting [181], and perceived

satisfaction [256] in Product Search.

In this chapter, we focus on the task of personalization in Product Search. In

particular, instead of injecting personalization in the retrieval process, we propose

a novel model for re-ranking the results produced by an underlying search engine;

our model aims at fusing a number of different personalization scores, which are

obtained by considering both content-based and collaborative features, related to

both users and items. As the underlying search engine, we employ a classic proba-

bilistic retrieval model, i.e. BM25, and we perform comparative evaluations finalized

at the assessment of the effectiveness of our approach with respect to state-of-the-art

28



User-Item Interactions Graph

Node2Vec

User Node
Representations

Item Node
Representations

Cosine Similarity

Node Compatibility Score

Reviews

Doc2Vec

User Review
Representations

Item Review
Representations

Cosine Similarity

Review Compatibility Score

mean

Categories

Category Rep.s

Item Category
Representations

sum

User Category
Representations

Dot Product

Category Compatibility Score

Popularity

n-root Scaling

Item Popularity Score

Query

BM25

Item Relevance Score Re-Ranking
Function

New Score

mean

Purchase History

Eq. 5

Figure 3.1: Overview of the re-ranking model.

approaches in personalized Product Search. We rely on the re-ranking process to

both personalize the ranking of the initially retrieved relevant items and smooth the

lexical matching score of BM25 with scores computed from latent representations

of users and items. Finally, our approach is much less resource-intensive both in

training and online with respect to the recent Neural Network-based approaches.

3.2 The Proposed Re-Ranking Approach

In this section, we introduce an extendable approach for Personalized Results Re-

Ranking in Product Search. As previously outlined, our approach relies on a novel

multi-faceted personalized re-ranking model applied to the ranked list of items (prod-

ucts) computed by a traditional search engine in response to a user query. The

proposed re-ranking algorithm makes use of various information (relevance signals)

related to users/items, which may indicate the possible relevance of the products

w.r.t. the user’s preferences. The considered relevance signals are carried by various
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kinds of information shared by users and items (e.g., reviews and user-system inter-

actions) and by specific properties of the items, such as items’ popularity. Each of

the above kinds of information is formally represented, and a score associated with

a given relevance aspect is computed either as a compatibility score between the

related representation of users and items or as a score assessing the items’ proper-

ties. The various relevance signals concur to an informed definition of the re-ranking

process to make it effective, as they provide complementary information regarding

the compatibility between users and items, which we express through the computa-

tion of distinct relevance scores, as previously commented. The re-ranking function

employed by the proposed model is based on the fusion of these multiple scores,

which provide evidence of the possible relevance of an item to a user from different

perspectives. The approach we propose can be easily extended to accommodate

additional representations to enrich the model.

In the system implemented and evaluated in this dissertation (Figure 3.1), we

consider three relevance signals that are supported by three distinct formal repre-

sentations of users and items: 1) a review-based representation built by employing the

neural text embedding model PV-DBOW [147] on the product reviews written by

the users, 2) an interaction-based representation built by leveraging the node embed-

ding model Node2Vec [103] on the user-item interactions graph, which is built upon

user-item purchasing relations, and 3) a category-based representation that captures the

user’s categorical interests towards the items’ categories. For the items only, we also

use a popularity-based score, which provides a valuable relevance indicator.

In the following, we first introduce the proposed user and item representations

and the related compatibility scores. Finally, we outline the re-ranking function

used to compute the personalized ranking scores for the items retrieved by BM25 in

response to a user query.
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3.2.1 Review-based Representations

A first information that may carry a relevance signal is constituted by the textual

reviews that the users write to express their opinions towards the products they

purchased. In fact, reviews are short textual descriptions that contain information

regarding user preferences and product characteristics. We first collect the reviews

written by each user and associated with each item. Then, we define a vector rep-

resentation for each of the reviews by employing the PV-DBOW model [147], which

we will describe later in this section, and compute the review-based representations

for both users and items as the arithmetic mean of the vector representations of the

related reviews, i.e., the reviews written by the users for representing the users and

the reviews associated with the items for representing the items. Finally, when a

user queries the system, we compute a compatibility score for every item in the top-k

results retrieved by BM25 as the cosine similarity between the user’s and the items’

review-based representations. The re-ranking function uses those scores to compute the

personalized relevance scores used for re-ranking, as described later.

We now describe the neural text embedding model employed to create the review

representations. PV-DBOW [147] is a text embedding model that maps documents —

in our case reviews — into a low-dimensional latent vector space where semantically

similar documents are close to each other. Following the distributional hypothesis [115,

87, 232] and similarly to the Word2Vec Skip-Gram model [147], where the latent

representation of each word is learned by predicting nearby words, the PV-DBOW

model is trained to predict for each document the words it contains. PV-DBOW

operates under the bag-of-words assumption, i.e., it assumes independence between

words, and models the generative probability of a word w in document d (a review in

our case) through the softmax function over the vocabulary as follows:

P (w|d) = exp(w⃗ · d⃗)∑
w′∈V exp(w⃗′ · d⃗)

(3.1)
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where w⃗ and d⃗ are the vector representations of w and d, and V is the vocabulary

of the training corpus. The softmax function outputs a probability distribution over

the input. As the softmax function becomes prohibitively heavy to compute for large

vocabularies, Negative Sampling [147] is employed to approximate its computations.

Negative Sampling is a procedure that samples a certain number of words from the

vocabulary, which are then used in the softmax instead of the whole corpus vocab-

ulary, drastically increasing the training speed and avoiding unnecessary numerical

computations.

3.2.2 Interaction-based Representations

The analysis of the user behavior can unveil meaningful information regarding the

user’s interests. In our case, the user behavior coincides with the actions performed

by him/her on an e-commerce platform. Typically, those actions correspond to user-

item interactions, such as visiting the page of an item (view), assigning a numerical

evaluation to an item (rate), expressing an opinion towards an item through text

(review), purchasing an item (buy), and so on. In our work, to define an interaction-

based representation of both users and items, we consider only the interactions

corresponding to purchasing actions.

First of all, we build the user-item interaction graph (Figure 3.2a). The nodes

of this graph represent users and items while the edges represent the user-item

interactions. Specifically, if a user purchased an item an edge is drawn between

the node representing the user and the node representing the item. Secondly, we

create vector representations of the user and item nodes by employing the Node2Vec

model [103], which we will describe later in this section. Finally, similar to the review-

based representations, when a user queries the system, we compute a compatibility

score for every item in the top-k results retrieved by BM25 as the cosine similarity

between the user’s and the items’ interaction-based representations. Again, the re-
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ranking function employs those scores to compute the personalized relevance scores

used for re-ranking.

We now review the node embedding model employed to create the node represen-

tations. Node2Vec [103] is a neural model that takes a graph as input and maps each

node of the graph into a low-dimensional vector space where the nodes that share

similar neighbors are close to each other. Firstly, Node2Vec generates training sam-

ples by employing a sampling strategy based on a random walk procedure. While

the model explores the graph following the random walk procedure, it stores the

sequences of nodes visited during each random walk (Figure 3.2b). These sequences

are ordered lists of nodes’ unique identifiers (e.g., walk = [n1, n5, n2]). Secondly, the

model converts the node sequences to strings (e.g., [n1, n5, n2] → “n1 n5 n2”) so that

they can be treated as sequences of words, i.e., sentences. Finally, Node2Vec feeds the

string version of the node sequences to the Word2Vec Skip-Gram model [192] that,

by treating the node sequences as word sentences, learns vector representations of

the nodes (Figure 3.2c). As previously described, Word2Vec learns representations

of words by predicting nearby words, i.e., the words that co-occur in the same sen-

tences. As Node2Vec feeds Word2Vec with sequences of nodes, the model embeds

the neighborhood information carried by the node sequences in the same fashion as

learning representations of words by predicting their nearby words. By construction

of the user-item interactions graph, the neighborhood of a user node comprises 1)

the items he/she purchased, 2) the users who bought the same items purchased by

the user, and 3) the other items they bought. Therefore, Node2Vec will map users

with similar purchasing behaviors and the items they purchased in the same region

of the latent space. Consequently, the similarity between the vector representations

of user and item nodes is suitable to evaluate the likelihood of a user purchasing an

item. As the vector representations embed behavioral neighborhood information,

this approach is foundationally similar to the collaborative filtering approaches used
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Figure 3.2: Node2Vec

in Recommender Systems.

3.2.3 Category-based Representations

E-commerce websites organize items into product categories (e.g., smartphones,

sports clothing, home products, etc.), which are often structured into hierarchies.

This information can be leveraged to evaluate the user’s interest in different product

categories. In particular, by combining the customer’s purchase history with the

product categories of the items he/she purchased, we can infer his/her categorical

interest towards unseen products. To do so, we rely on the item category tree struc-

ture found in many e-commerce platforms and the users’ purchase history to define

a category-based representation for both users and items, as described later in this sec-

tion. Again, when a user queries the system, we compute a category interest-related

score of the user towards every item in the top-k results retrieved by BM25 as the

dot product between their category-based representations. The re-ranking function uses

those scores to compute the personalized relevance scores used for re-ranking, as

described later in this section.

We now describe the method proposed for modelling the category-based represen-

tations of both users and items. First of all, we leverage the hierarchical structure of

the categories to assign to each of them a weight equal to the inverse of its position
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in the hierarchy it belongs to, so that root categories weights more than intermediate

and leaf categories (Figure 3.3a). The rationale behind this process is that generic

categories better capture the long-term user interests (e.g., a user that recently bought

a new laptop will probably be more interested in acquiring computer accessories

than another laptop). In case a category tree structure is missing, we can assign the

same weight to each category. User and item category-based representations are then

computed as follows. Firstly, categories are represented as weighted one-hot vectors,

with the non-zero entries set to their associated weights (Figure 3.3a). Then, items are

represented as the sum of the representations of the categories they belong to (Figure

3.3b). To map users in the category space, we first initialize their representations to

a vector with all components set to 1:

user_initu = 1⃗ (3.2)

In this way, we set a minimum interest level for all the categories regardless of the user

purchase history. This initialization allows avoiding penalizing item categories for

which the user interest is not known when we compute the compatibility scores (dot

product) between users’ and items’ category-based representations. Then, we compute

a vector representation of the user purchase history from a category-based perspective

through a diminishing return formula based on exponential decay as follows:

purchase_historyu = 1⃗− exp(−λp⃗u) (3.3)

where 1⃗ is a vector with all components set to 1, exp(·) is the element-wise exponential

function, λ is the decay constant and p⃗u is a vector representing the actual purchases

of the user u. The components of vector p⃗u correspond to the item categories and

its entries are equal to the number of items purchased by u in the corresponding

categories. Eq. 3.3 has a smoothing effect that balances the representation of the

35



Category Embeddings

a)

b)

Category-based User Representation

Category-based Item Representation

+

Category Embeddings

1  0  0  0  0  ···  0

0  0.5  0  0  0  ···  0

c1:

c2:

c)

Category Hierarchy

1  0  0  0  0  ···  0

0  0  0.5  0  0  ···  0

0  0  0  0.33  0  ···  0

c1:

c3:

c4:

0  0.5  0  0  0  ···  0c2:

wc1 = 1/1 = 1

wc2 = 1/2 = 0.5

wc3 = 1/2 = 0.5

wc4 = 1/3 = 0.33

wc5 = 1/3 = 0.33

Category Weights

0  0  0  0  0.33  0  ···  0c5:

User Purchases Vector

c1

c3 ···c2

c4 c5 ···

Eq. 5

0  0  0  0  0.33  0  ···  0c4:

1  0.5  0  0  0.33  0  ···  0ic4:

1.26  1.18  1.1  1.1  1.1  1  ···  1u: 3  2  1  1  1  0  ···  0  0pu:

Figure 3.3: Category-based representations.

user’s purchase history and avoids excessively skewing it towards already purchased

items’ categories. Finally, we sum the user’s initialization vector with the vector

representation of her/his purchase history:

useru = user_initu + purchase_historyu (3.4)

If a user did not purchase items from a specific category yet, then the value of

the corresponding component of the user representation will be equal to 1 as the

purchase history vector’s entry for that category will be zero. This mechanism

allows not penalizing the products belonging to the categories for which we do not

know the user’s interest while increasing the importance of the other items according

to the user’s interest towards the related categories.
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3.2.4 Item Popularity

Item popularity is inherently valuable in the context of Product Search as users often

buy the most purchased, most rated, or most reviewed items corresponding to their

needs. Therefore, we employ an item-popularity-based score during re-ranking to

account for this relevance indicator and promote items usually purchased by the

users. The popularity score of a given item is computed as the n-root of the total

number of times the item has been purchased. The n-root scaling allows us to avoid

penalizing low popular items and to smooth the popularity gap between low and

high popular items. Although this score could skew the re-ranked results list towards

popular items, the employed scaling mechanism, and the other scores — that are all

personalized — counterbalance this effect.

3.2.5 Re-Ranking Function

As introduced in Section 2.3.2, Results Re-Ranking is usually performed by taking

a convex combination of the scores computed by the first-stage retriever and the re-

ranker, following Eq. 2.1. Since our approach accounts for multiple relevance scores

besides that computed by the underlying search engine (BM25), we extend Eq. 2.1

to account for those multiple relevance scores and calculate the final score for each

retrieved item i taking into account the preferences of the user u as follows:

new_scoreu,q,i =
(
1−

n∑
k=1

wk

n

)
· rq,i +

n∑
k=1

wk

n
· sk (3.5)

where n is the number of the considered user/item representations; rq,i is the rele-

vance score computed by the employed search engine — based on BM25 in our case

— for the item i and a given query q. sk and wk are the values of the score related

to the user/item representation k and the weight associated with it, respectively. In

our case the scores are the cosine similarity between user and item review-based
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representations, the cosine similarity between user and item interaction-based rep-

resentations, the dot product between user and item category-based representations

and the item popularity score. The value
∑n

k=1
wk

n
in the linear combination depends

on the weights associated with the considered representations. Both the represen-

tation weights and their sum range in the interval [0, 1]. As reported later (see Sec-

tion 3.3.3), the representation weights choice has been automatically conducted as an

hyper-parameter search problem using the Python package Optuna [9]. The search

result lists are re-ranked according to the ranks computed by the linear combination

in Eq. 3.5.

Depending on the items for sale in e-commerce sites, users may not want to buy

the same product twice. This is not the case of grocery products, but if we think to

products such as books or CDs a user may not like to see among the top ranked results

the items he/she already purchased. To avoid this situation, we suggest to employ

a simple mechanism to alter the ranking position of the already purchased items

regardless of their relevance score. In the experiments presented in the following,

we have pushed to the bottom of the re-ranked list the products already bought by

the user as this is consistent with the datasets we have used for the evaluation of the

proposed approach (see Section 3.3.1). However, other strategies can be employed

for this purpose. For example, we could insert the already purchased items at a

fixed position in the results list so that the user would be able to find them easily.

We think there is no correct choice in general, as it depends on specific real-world

applications, and it is strictly related to the products an e-commerce platform sells

and to the behavior of its typical user.
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3.3 Experimental Setup

In this section we describe the experimental settings and introduce the baseline

methods used in our experiments to perform comparative evaluations. We also

present and discuss our model settings and hyper-parameters.

3.3.1 Datasets

Due to the lack of publicly available datasets for Product Search, the Amazon Review

5-Core dataset [186] has been recently adopted as a benchmark dataset for Product

Search along with synthetically generated queries [6, 106, 296, 7, 33, 291, 8, 107, 109],

as it does not contain query logs. The Amazon Review 5-Core dataset has been

widely used for the evaluation of Recommender Systems as it contains millions of

users and items as well as user-generated reviews and ratings, item descriptions, and

item categories. Also, each user and each item have at least 5 associated reviews,

which correspond to actual purchases.

To the aim of generating synthetic queries to be used with the Amazon Review

5-Core dataset as an appropriate benchmark for Product Search evaluation, previous

research works [6, 106, 296, 7, 33, 291, 8, 107, 109] have followed the query extraction

method proposed by Gysel et al. [109]. This approach is based on the assumption

that users search for “a producer’s name, a brand or a set of terms which describe the

category of the product” [230] and it works as follows: for each category c generate a

query q by 1) concatenating the terms in the category hierarchy of c, 2) removing the

stop-words, and 3) removing duplicated words in reverse order (e.g., Camera & Photo

→ Digital Camera would generate “photo digital camera”). Each item belonging to the

category c is considered as relevant to the query q.

To comparatively evaluate the proposed approach with the considered baselines,
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Table 3.1: Statistics of the benchmark datasets.

Electronics Kindle Store CDs & Vinyl CP & A

# users 192 403 68 233 75 258 27 879
# items 63 001 61 934 64 663 10 429
# reviews 1 689 188 982 618 1 097 591 194 439
# queries 989 4 603 694 165

which are detailed in the next section, we relied on the datasets proposed and shared2

by Ai et al. [6]. These datasets contain data from four subsets of the Amazon Review

5-Core dataset — Electronics, Kindle Store, CDs & Vinyl, and Cell Phones & Accessories —

along with queries generated following Gysel et al. [109]. The datasets proposed by

Ai et al. [6] are suitable for studying personalization in Product Search as the authors

have built user-query pairs by linking user-item pairs with item-related queries. In

this setting, only the items purchased by a user and related to a query are considered

as relevant for that user-query pair. Each dataset comes already partitioned into

training and test sets. Partitioning was done so that every query and user-query-item

triplet in the test set is new and unobserved. Reviews related to user-query-item

triplets in the test sets were removed from the training sets. Table 3.1 reports some

statistics about the datasets; the reader can refer to [6] for additional information.

Note that in our work and all previous efforts, the four datasets were considered

separately without sharing information, despite coming from the same e-commerce

website.

3.3.2 Baselines

We have compared the proposed model with four different retrieval approaches.

The first one is a traditional domain-agnostic retrieval model based on bag-of-words

representations, BM25 [226]. The other three are recent Neural Network-based re-

2https://github.com/QingyaoAi/Amazon-Product-Search-Datasets

40

https://github.com/QingyaoAi/Amazon-Product-Search-Datasets


trieval models specifically designed for Product Search, namely Latent Semantic

Entity [109], the Hierarchical Embedding Model [6] and the Dynamic Relation Em-

bedding Model [8].

BM25 The first baseline is the classic probabilistic retrieval model BM25 [226] in-

troduced in Section 2.3.2, which is also used as first-stage retriever by our proposed

re-ranking approach. We consider BM25 as a baseline for the specific purpose of

assessing if our re-ranking approach is able to enhance the retrieval effectiveness of

the underlying retrieval model. BM25 scores are computed on product titles, de-

scriptions, and reviews as a whole, by first removing stop-words and applying the

Krovetz stemmer [139].

Latent Semantic Entity (LSE) LSE [109] is a Product Search model based on a Neu-

ral Network trained to project both items and queries in the same latent space where

their semantic representations can be directly compared to evaluate the relevance of

an item with respect to a given query. LSE relies on a tunable parameter to control

the embedding dimension. We considered LSE as a baseline mainly to compare

the effectiveness of lexical matching approaches (BM25) with respect to semantic

matching ones in Product Search.

Hierarchical Embedding Model (HEM) HEM [6] is a personalized Product Search

model based on Neural Networks. Through HEM, the users, items, and queries

are projected in the same latent space where they can be directly compared. The

distributed representations of users, items, and queries are learned in a generative

fashion, by maximizing the likelihood of the observed user-query-item triplets. Sim-

ilarly to LSE, HEM is based on a purely semantic retrieval model. HEM makes use of

tunable hyper-parameters to control the personalization impact and the embeddings

dimension.
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Dynamic Relation Embedding Model (DREM) DREM [8] is a state-of-the-art Neu-

ral Network-based model that, similarly to HEM, maps users, items, and queries in

the same latent space. Unlike HEM, which makes use only of reviews, DREM takes

advantage of many additional side information, such as item brands and item cate-

gories. DREM shares the same query representation model of HEM, and therefore

it can be considered a purely semantic retrieval model. DREM delivers the best re-

trieval performance among the considered baselines at the state-of-the-art in Product

Search. DREM relies on two tunable hyper-parameters to control the personalization

impact and the embeddings dimension.

3.3.3 Model Training and Hyper-Parameters Tuning

To the aim of defining the user and item representations described in Section 3, both

Node2Vec and PV-DBOW were trained using the hyper-parameters configurations

proposed by their respective authors. Lemmatization and stop-words removal were

performed on reviews before feeding them to PV-DBOW. The weights wk in Eq. 3.5

and the root smoothing parameter for item popularity were tuned using the hyper-

parameter optimization Python package Optuna [9]. The search space for each

parameter ranges from 0.01 to 1.0 — note that the n-root operation used for item

popularity smoothing has been implemented as power-of-n. These values were

sampled from a discrete uniform distribution, with a discretization step equal to

0.01. This means that our search space was composed of 1010 possible combinations.

The number of trials was limited to 10. The decay constant λ in Eq. 3.3 was set to 0.1

for all datasets.
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3.3.4 Evaluation Metrics

To evaluate the proposed approach and compare it with the baselines, we employed

three different evaluation metrics: 1) mean average precision (MAP), 2) mean re-

ciprocal rank (MRR) and normalized discounted cumulative gain (NDCG). MAP is

the arithmetic mean of the average precision values — the mean of the precision

scores after each relevant item is retrieved. MRR of a query results list is computed

as the inverse of the rank of the first relevant item. MRR gives information about

the expected number of results a user needs to view before finding one she/he is

interested in. NDCG gives insights into how good a ranked list is compared to the

optimal one. MAP and MRR were computed on the top 100 items retrieved by each

model, whereas NDCG was computed on the top 10: these cutoffs have been chosen

accordingly to previous works [6, 8] for evaluation consistency. Statistical significance

testing was conducted with the Fisher’s randomization test [244] with p ≤ 0.01.

3.4 Results and Discussion

In this section, we present the results obtained on different Product Search benchmark

datasets by our model as well as by the considered baselines. First, we discuss the

retrieval performance of all the considered models and analyze the results in detail.

Then, we conduct an ablation study of the side information employed by our re-

ranking model and discuss the effect of personalization over the underlying retrieval

function, BM25.

3.4.1 Retrieval Performance

Table 3.2 shows the effectiveness of our model and those of the baselines on the

datasets Electronics, Kindle Store, CDs & Vinyl and Cell Phones & Accessories. Our

model’s results refer to the application of the proposed re-ranking approach to the
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Table 3.2: Effectiveness of our model and those of the baselines on four benchmark
datasets. Best values are highlighted in boldface. ∗, ⋆, †, ‡ denote significant differ-
ences w.r.t. BM25, LSE, HEM and DREM respectively, in Fisher’s randomization test
with p ≤ 0.01.

Model Electronics Kindle Store

MAP@100 MRR@100 NDCG@10 MAP@100 MRR@100 NDCG@10

BM25 0.320⋆ 0.321⋆ 0.368⋆† 0.015⋆ 0.017⋆ 0.017⋆

LSE 0.233 0.234 0.239 0.006 0.007 0.007
HEM 0.308⋆ 0.309⋆ 0.329⋆ 0.029∗⋆ 0.035∗⋆ 0.033∗⋆

DREM 0.366∗⋆† 0.367∗⋆† 0.408∗⋆† 0.057∗⋆† 0.067∗⋆† 0.067∗⋆†

Our 0.405∗⋆†‡ 0.406∗⋆†‡ 0.451∗⋆†‡ 0.046∗⋆† 0.054∗⋆† 0.055∗⋆†

Model CDs & Vinyl Cell Phones & Accessories

MAP@100 MRR@100 NDCG@10 MAP@100 MRR@100 NDCG@10

BM25 0.027⋆ 0.031⋆ 0.032⋆ 0.205⋆† 0.205⋆† 0.212⋆†

LSE 0.018 0.022 0.020 0.098 0.098 0.084
HEM 0.034∗⋆ 0.040∗⋆ 0.040∗⋆ 0.124 0.124 0.153⋆

DREM 0.074∗⋆† 0.084∗⋆† 0.086∗⋆† 0.249∗⋆† 0.249∗⋆† 0.282∗⋆†

Our 0.077∗⋆†‡ 0.088∗⋆†‡ 0.092∗⋆†‡ 0.294∗⋆† 0.294∗⋆† 0.306∗⋆†

top-1000 results produced by BM25 in response to the user queries. HEM’s and

DREM’s results refer to the best hyper-parameter configuration found by their re-

spective authors on the test sets of the same benchmark datasets, while LSE’s results

refer to the best hyper-parameter configuration found by Ai at al. [6] for these same

datasets. Note that the evaluation datasets used here as well as their training/test

splits are the same of the previous works and so are the performance scores of previ-

ous models. BM25’s hyper-parameters were tuned using Optuna [9], with a number

of trials limited to 10.

BM25 performed consistently better than LSE, achieving a NDCG increase rang-

ing from 54% on Electronics to 143% on Kindle Store. The employed lexical retrieval

model outperforms LSE, although the latter was specifically designed for Product

Search. We claim that the main reason for this is related to the fact that vocabulary

mismatch — the main issue that drove the design of LSE — is not so severe in Prod-

uct Search. Moreover, we think lexical matching is fundamental when searching for
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products as real-world objects usually have a well-defined related lexicon. Users

and sellers usually know this lexicon, and they use it to describe their needs and

the characteristics of the products they sell, respectively. Finally, as already pointed

out by Guo et al. [104] in an ad-hoc retrieval scenario, “relevance matching requires

proper handling of the exact matching signal” and, therefore, supporting vocabu-

lary mismatch through semantic search while decreasing lexicon-based matching

capabilities is not ideal.

Surprisingly, BM25 also outperformed HEM on two datasets out of four, achiev-

ing a NDCG increase of 12% on Electronics and 39% on Cell Phones & Accessories,

respectively. We suspect HEM failed to deliver better performance than BM25 on

two of the considered datasets, despite its personalization mechanism, due to its

semantic-based retrieval function, similarly to LSE.

Our proposed model consistently improved BM25 performances by a consider-

able margin across all the benchmark datasets, demonstrating the effectiveness of

the proposed re-ranking approach as well as of the employed user and item repre-

sentations. Our approach also outperformed all the considered baselines across all

datasets with the sole exception of DREM on the Kindle Store dataset. Our approach

achieved a NDCG increase over LSE ranging from 89% on Electronics to 686% on Kin-

dle Store and a NDCG increase over HEM ranging from 37% on Electronics to 130% on

CDs & Vinyl. This again demonstrates the superiority of BM25 as a ranking function

over the ranking function learned by LSE and HEM as well as the better performance

of the proposed personalization approach over that of HEM.

Regarding the comparison with the state-of-the-art model DREM, our approach

achieved strong improvements on the Electronics and the CDs & Vinyl datasets, +11%

and +7% on the NDCG score, respectively, while performing similarly on the Cell

Phones & Accessories, as no statistically significant difference was detected by the

Fisher’s randomization test [244]. DREM achieves better results then our model on
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the Kindle Store dataset. By further analyzing the results, it is easy to spot that DREM

outperforms our model on the dataset where BM25 achieved the worst performance.

As a consequence of being a re-ranking approach, our model struggles when the

recall of the underlying retrieval function is poor, despite being able to consistently

improve the ranking of the initially retrieved items. This is because, by design, re-

ranking approaches do not have full access to the product catalog but only to the initial

result list. Therefore, if the underlying retrieval function fails to retrieve the relevant

items, a re-ranking model cannot improve the result list. However, we suppose the

poor performances of BM25 on Kindle Store and CDs & Vinyl are due to the synthetic

queries contained in the benchmark datasets [6] used for conducting the comparative

evaluation and the available information about the products in those datasets and

not to the model itself. Following Gysel et al. [109], queries were generated from

categorical information related to the items. There is no query related to authors

or book titles for Kindle Store nor artist names or album titles for CDs & Vinyl. This

seems to be largely unlikely as music can be listened to before buying on many web

platforms and more. We guess that users often issue queries containing the title

— or part of it — of a book or its author’s name because they already know what

they are looking for. Often people buy books because of word-of-mouth or because

they watched their authors interviewed in television programs. A similar discussion

can be done for Electronics and Cell Phones & Accessories where, for example, brands

have a high impact on sales. However, the categorical information used to generate

the queries for Electronics and Cell Phones & Accessories always contains item types,

such as “screen protector” or “bluetooth speaker”, that are highly discriminative and

resemble real user queries, despite the lack of more specific information, such as the

storage capacity for an external Hard Drive. On the other hand, Kindle Store and

CDs & Vinyl contains very few item types and the categorical information is mostly

based on literature and music genres, respectively. In addition, Kindle Store and CDs
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& Vinyl have a very high number of missing item titles (100% and 23%, respectively)

and descriptions (75% and 27%, respectively), probably due to how the item-related

data were obtained by McAuley et al. [186]. Finally, it is worth mentioning that

DREM makes use of item categories as a source of item-related information when

computing their latent representations. Despite the author of DREM anonymized

item categories when computing item representations, their model can still learn

to draw strong relationships between the information about item categories and the

terms of the queries, that following [109] were constructed from the item categories, as

extensively described in Section 3.3.1. BM25 would suffer from a very similar problem

if we index the item categories as text along with the other item-related information

(titles, descriptions, and reviews). Therefore, to not trivialize the retrieval task, we

did not index the item categories. However, it would probably be a good practice in

a real-world scenario as users often search for a product using “terms that describe

the category of the product” [230]. As our re-ranking approach does not have direct

access to the query terms and a fixed formula is used to compute user and item

category-based representations, as discussed in Section 3.2, it is not affected by the

aforementioned issue.

3.4.2 Ablation Study

In this section we analyze the contribution of each of the employed compatibil-

ity scores and item popularity on our proposed personalized re-ranking process,

by leveraging them in isolation. In Table 3.3 the results of the ablation study are

reported. Review, Interaction, Category and Popularity refer to our personalized re-

ranking approach with the sole use of Review-based representations, Interaction-based

representations, Category-based representations and Item popularity, respectively.

As shown in the table, the chosen side information used for re-ranking pur-

pose always increases BM25’s effectiveness also when used in isolation. There is no
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Table 3.3: Effectiveness of BM25 and our approach with the use of each kind of side
information in isolation.

Model Electronics Kindle Store

MAP@100 MRR@100 NDCG@10 MAP@100 MRR@100 NDCG@10

BM25 0.320 0.321 0.368 0.015 0.017 0.017
Review 0.320 0.321 0.372 0.023 0.028 0.027
Interaction 0.340 0.340 0.387 0.057 0.068 0.068
Category 0.371 0.371 0.422 0.016 0.018 0.018
Popularity 0.346 0.347 0.396 0.016 0.018 0.018

Model CDs & Vinyl Cell Phones & Accessories

MAP@100 MRR@100 NDCG@10 MAP@100 MRR@100 NDCG@10

BM25 0.027 0.031 0.032 0.205 0.205 0.212
Review 0.047 0.054 0.056 0.230 0.230 0.231
Interaction 0.066 0.077 0.079 0.200 0.200 0.216
Category 0.034 0.039 0.040 0.240 0.240 0.264
Popularity 0.029 0.034 0.035 0.214 0.214 0.218

clear insight on which of those information is the strongest/weakest for re-ranking

products, as their effect vary on a dataset bases. Interestingly, the sole use of the

Interaction-based representations in the Kindle Store dataset allows our approach to

achieve state-of-the-art performance even on the toughest of the benchmark dataset.

This mainly indicates the necessity of a smarter score fusion approach, able to dy-

namically select and weight the contribution of the side information when computing

the re-ranking scores. We leave this for future studies.

We also performed an ablation study of the procedure we employed to build the

category-based representations described in Section 3.2.3. In particular, we changed

the category weighing scheme, trying two different alternatives. Firstly, we reversed

the category importance, giving more weight to more specific categories instead of

the broader ones. Secondly, we applied a flat weighing scheme so that each category

has the same importance. Table 3.4 shows the results of this analysis. Reversed refers

to using the compatibility scores obtained by reversing the weighing scheme, while

Flat refers to using a flat weighing scheme instead. The results of this analysis confirm

that the formulation we proposed is more effective.
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Table 3.4: Effectiveness of our model and those of its variants using the alternative
categories weighing schemes. Best values are highlighted in boldface.

Model Electronics Kindle Store

MAP@100 MRR@100 NDCG@10 MAP@100 MRR@100 NDCG@10

Our 0.405 0.406 0.451 0.046 0.054 0.055
Reversed 0.401 0.402 0.455 0.042 0.050 0.051
Flat 0.402 0.403 0.446 0.045 0.053 0.054

Model CDs & Vinyl Cell Phones & Accessories

MAP@100 MRR@100 NDCG@10 MAP@100 MRR@100 NDCG@10

Our 0.077 0.088 0.092 0.294 0.294 0.306
Reversed 0.071 0.082 0.085 0.286 0.286 0.295
Flat 0.073 0.084 0.087 0.282 0.282 0.291

3.4.3 Analysis of the Efficiency of the Proposed Approach

In this section, we analyze the overhead deriving from the employed re-ranking

model on top of BM25 and the time needed to train the review-based and the

interaction-based representation models. To conduct this evaluation, we selected

1000 user-query pairs from the Electronics dataset. We assumed the various user and

item representations to be previously computed and stored in the system’s RAM.

Note that the size of the representations of all the Electronics’ users (192k) and items

(63k) is less than 40MB in total. The average time required by BM25 to retrieve a set of

documents from the Electronics dataset in response to a user query amount to 152ms

in our test system. Preparing all the compatibility scores required by our re-ranking

function, computing the new scores, and re-order the retrieved list of documents only

takes 17ms. Therefore, the overhead deriving from our personalization approach at

run-time is negligible and should not negatively impact the user experience while in-

creasing the overall retrieval performances. Regarding the training time of the neural

models employed by the proposed approach (PV-DBOW and Node2Vec), they are

very computationally efficient, and only one hour is required to train each model

on a single CPU core (Intel® Core i7-4790k) on the largest of the evaluation datasets

(Electronics). For comparison, training HEM [6], the smaller model among the per-
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sonalized baselines, on an NVidia® Titan X GPU usually requires 7-8 hours on the

same dataset.

3.5 Summary

In this chapter, we addressed the problem of Personalized Results Re-Ranking in the

context of Product Search. In particular, we investigated the use of four different

user/item representations to enhance BM25 performances on the top 1000 results.

We employed representations derived from user-generated content, user purchasing

behavior, categorical information, and item popularity. Our empirical evaluations

show that the proposed approach consistently enhances BM25 and outperforms

recently proposed Neural Network-based models specifically designed for Product

Search on multiple benchmark datasets. Finally, our proposed Personalized Results

Re-Ranking approach is fast and scalable and it is easily extendable to accommodate

additional relevance/compatibility scores.
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CHAPTER 4

DENOISING ATTENTION FOR QUERY-AWARE
USER MODELING IN PERSONALIZED SEARCH

The past few years have witnessed an increasing interest in the application of Deep

Learning techniques for tackling various tasks of Information Retrieval [105], such

as Personalized Search.

Two of the main challenges of Personalized Search are how and when personal-

ization should take place. First, not all the data gathered to represent specific users’

preferences in their user models are equally related to each of their searches, as users

usually have multiple and diverse interests. Second, personalization is not always

beneficial to the retrieval process [261] as it could cause the information need ex-

pressed by the user to be misinterpreted by the system. For example, this might

happen when the user’s interests in a specific domain are unknown, but the system

still applies personalization, which, in this case, leverages user-related information

potentially unrelated to the user’s information need; this could ultimately decrease the

system’s effectiveness.

A recent trend in Personalized Search [95, 166, 302, 7, 298, 288, 126, 301, 34, 36,

165] is query-aware user modeling, which consists in building a representation of the

user preferences, i.e., the user model, at query time, based on various sources of

user interest and by giving more importance to those related to the current search

performed by the user. Since a user is typically interested in different and even

unrelated topics, a desirable property for defining reliable personalization models
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is the ability to discern between beneficial and noisy user-related information on a

query basis. Previous works in this context that make use of neural models rely on

the Attention mechanism [19], to differently weigh the contribution of distinct sources

of user-related information in building the user representation at query time. Despite

the increasing use of the Attention mechanism in user modeling, there is still a lack

of an in-depth analysis of its behavior and effects on personalization, as well as a

systematic comparison with simpler operators in this context.

In this chapter, we first describe and analyze the Attention mechanism when used

for query-aware user modeling, highlighting some shortcomings of the standard

Attention formulation related to its use of the Softmax function (Section 4.2). Specif-

ically, the exponential function employed by the Softmax can cause the user model to

be excessively noisy or skewed towards a single piece of user information. Moreover,

as it will be extensively discussed in Section 4.2, due to the fact that the standard

Attention mechanism uses the Softmax’s outputs to weigh the contribution of the

sources of user information to build the user model at query time, personalization

is performed even when those sources are not related to the current search con-

ducted by the user. To overcome these weaknesses, in Section 4.3, we propose the

Denoising Attention mechanism, an Attention variant specifically designed to finely

filter out noisy user-related information and produce a balanced representation of

the user interests w.r.t. the current search. Firstly, we introduce a novel filtering

mechanism based on the Rectifier Linear Unit [199] and a threshold value. Secondly,

we depart from the Softmax function and opt for a more straightforward and robust

weighting scheme. To evaluate our proposal, we tackle the task of Personalized Re-

sults Re-Ranking; to make a comparative evaluation of the proposed user model with

alternative user models at the state-of-the-art, we rely on a framework that allows us

to switch the user representation model with ease. We introduce the considered task

and the related framework in Section 4.4. Then, we present the research questions we
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addressed and describe the experimental setup of our comparative evaluation (Sec-

tion 4.5). Finally, in Section 4.6, we present the comparison between the Denoising

Attention, the standard Attention, the Zero Attention strategy [7], an Attention variant

previously proposed for user modeling, and the Multi-Head Attention [272], and we

also ablate our proposed Attention variant. The results of our evaluation clearly show

the advantages of Denoising Attention and the importance of the filtering mechanism

it implements. We will share all the code to reproduce the experimental evaluation,

and make available the implementation of Denoising Attention for future works once

the related article will be published.

4.1 Related Work

Personalization of search results has received considerable attention from both academia [274,

95, 166, 288, 301, 34, 36, 165, 53, 242, 258, 116, 219, 302, 134] and industry [101, 102,

247, 295, 153, 31, 78, 248, 185, 284, 54, 261, 7, 298, 126, 220, 260]. Over time, many

different approaches have been proposed to tackle this task. Early personalization

models relied on click-based features [31, 78, 261, 263], language models [258, 248],

topic modeling [116, 53, 284], ontologies [242, 219], content-based features [185, 261],

social network analysis [54], and other sources of user-related information as well as

other formal means to build user representations. Recently, researchers have focused

on the application of Deep Learning and Word Embeddings for the personalization

of search results [153, 247, 295, 274]. These works take advantage of the opportunity

given by Representation Learning [30] to build latent semantic vector representa-

tions of queries, documents, and the gathered user-related information. Among

those works, a new trend in modeling user interests has recently emerged. In par-

ticular, several works [95, 166, 302, 7, 298, 288, 301, 126, 34, 36] rely on the Attention

mechanism to weigh and aggregate the available user-related information on a query
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basis, thus building a representation of the user preferences, i.e., the user model, at

query time. With the aim of applying query-aware personalization, these models

try to take advantage of the diverse interests that a user may have. Many previous

works [95, 166, 288] rely on the Attention mechanism to weigh, w.r.t. the current query,

the contribution of a user’s prior search sessions (represented as a combination of

the representations of the previous queries and those of the documents accessed by

the user after issuing them) for composing the user model employed for conducting

session-based personalization. Zhou et al. [302] tackle the problem of user re-finding

behavior and rely on Attention to weigh, w.r.t. a user’s current search, the previous

queries she issued, and the documents she accessed in the past, which are then used

as sources of the user interests for personalizing the current search results. By lever-

aging the Attention mechanism, Zhong et al. [298] weigh user-related terms w.r.t. the

query the user is typing, and use a weighted combination of those terms and the

original query terms to generate personalized query suggestions. Jiang et al. [126]

propose an attentive Personalized Item Retrieval model leveraging the Attention mech-

anism to estimate the importance of each item in the user history while conducting

personalization. Despite the increasing application of the Attention mechanism for

user modeling, the vast majority of the previous works did not conduct an in-depth

analysis of its behavior and effects on personalization. The sole exception is repre-

sented by the Zero Attention Model proposed by Ai et al. [7]. The authors propose an

Attention variant defined to allow the retrieval model to avoid personalization when

no source of user information is related to her current search, which is not possible

using the standard Attention formulation, as we will discuss in Section 4.2.2. Al-

though the promising results obtained by the authors, successive works [34, 35, 126]

have shown that the Zero Attention Model may perform inconsistently, and often it

exposes equal or lower effectiveness than the standard Attention formulation.

In this chapter, we first discuss some shortcomings of the standard Attention
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formulation that prevent it from being an optimal solution when it comes to per-

sonalization. Then, we propose a novel Attention variant, called Denoising Attention,

designed to solve these issues and show the benefits of our approach over other user

modeling mechanisms.

4.2 Preliminaries on Query-aware User Modeling

Users usually have diverse interests in multiple domains. Although the representa-

tion of multifaceted user preferences is a powerful resource for personalization, not

all those preferences are equally relevant to a specific user’s information need. For

example, if a user is looking for a new book to read, her apparel preferences prob-

ably do not matter for personalizing the results of her current query. Query-aware

User Modeling consists in building a user model at query time, based on previously

gathered sources of user interest, by giving more importance to those related to the

current search performed by the user. In the literature, the definition of a user model

with the previous characteristics has been provided by relying on the Attention mech-

anism [19], which allows weighing the contribution of the user-related data w.r.t. the

current search query.

In the following sections, we first describe the Attention mechanism as it is usually

employed in the context of Personalized Search. Then, we discuss some shortcomings

of its standard formulation when used for personalization.

4.2.1 Attention Mechanism

The Attention mechanism, introduced by Bahdanau et al. [19] in Neural Machine

Translation, aims at computing a context vector by weighing the available contextual

information w.r.t. a given input. A context vector can enrich the information carried

by the input, helping, for example, to disambiguate its meaning.
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In Personalized Search, the context vector is interpreted as the user’s context vector,

i.e., the user model; the contextual information is intended as the user’s contextual

information, i.e. the available user-related data, and the input is the search query.

In the following, we assume that the user-related information sources and data

are documents in the form of textual documents written by the users, previously

accessed documents (e.g., web pages), user-generated content [140] (e.g., product

reviews or tweets), previously issued queries, or other content related to the users,

their preferences, and behavior. At query time, the Attention mechanism weighs

the vector representations of these documents w.r.t. the query vector and aggregates

them to produce the user model employed in the personalization process. The

Attention mechanism comprises three steps aiming to build the context vector: scoring,

normalization, and aggregation. The three steps are presented here below.

Scoring First of all, an alignment model [19] (or scoring function) a is used to score

how well the representations of the user-related documents match with the input

query:

eq,d = a(q,d) (4.1)

where, d ∈ Rm and q ∈ Rn are the vector representations of a user document and

a given query, respectively, and eq,d ∈ R is the matching score computed by the

alignment model a : Rm × Rn → R for the vectors d and q. It is important to outline

that, usually, the dimension of the representations of the user document d and the

query q are the same as they are projected in the same latent space.

The alignment model can be as simple as the dot-product, in which case we talk

about Dot-Product Attention [172] and Scaled Dot-Product Attention [272], or the cosine

similarity, usually called Content-based Attention [100]. Alternatively, the alignment

model can be a parameterized function, such as a Neural Network [19].
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Normalization The second step of the Attention mechanism consists in the normal-

ization of the matching scores computed by the alignment model to generate a prob-

ability distribution of the contextual information. The normalized matching scores

are commonly called attention weights. This step is usually accomplished through the

use of the Softmax function [19, 172, 272, 100]:

α(q,d) = Softmax(eq,d) =
exp(eq,d)∑

d′∈Du
exp(eq,d′)

(4.2)

where, exp is the exponential function, Du is the set of all the documents related to

the user u, and α(q,d) ∈ R is the attention weight of d w.r.t. q.

Aggregation Finally, the third step consists in the aggregation of the contextual infor-

mation to produce the context vector u, which, in our case, represents the user model.

This process is carried out by summing the user document vector representations

weighed by their corresponding attention weights:

u =
∑
d∈Du

α(q,d) · d (4.3)

4.2.2 Attention-based User Modeling Shortcomings

Although the Attention mechanism allows building user models at query time, some

shortcomings prevent it from being an optimal solution for personalization. These

issues are related to the Normalization step and specifically to the use of the Softmax

and the exponential function. The Softmax function, which is based on the Luce’s choice

axiom [170], was proposed by Bridle [46] as a softened (continuous and differentiable)

generalization of the Arg max function. Arg max is an operation that aims to find the

point of the domain of a function in which it assumes maximum value. Arg max is

neither continuous nor differentiable and, therefore, it does not allow for gradient-
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based optimizations [97] (i.e., it cannot be used in Neural Networks, as it would

break back-propagation). Softmax is primarily used by classifiers for computing a

probability distribution over n output classes. During training, the model should

learn to maximize the output of the correct class.

Because of the nature of the Softmax function, whose goal is to select one among n

options, and its use of the exponential, a Softmax-based user modeling approach natu-

rally tends to skew the user representation towards a single user document, the one

that best aligns with the query. Such drawback is usually not ideal for personalization

as the other user documents could concur to a more informed and balanced represen-

tation of the user interests and preferences. For example, given the following vector of

alignment scores [7.0, 3.0, 1.0,−2.0], by applying Eq. 4.2 for normalization, we obtain

the following attention weights [0.9796, 0.0179, 0.0024, 0.0001]. These weights cause the

user model to be strongly biased towards the contextual information contained in a

single user document.

A possible solution could be to constrain the alignment function’s output so that

the Normalization step cannot produce an overly narrow probability distribution of

the contextual information. However, if, for example, we constrain the alignment scores

near zero by using the cosine similarity as the alignment model, the Softmax normaliza-

tion will overly smooth the scores, thus causing that noisy information will be injected

into the user model and have a strong influence on the current search. For example,

given the following vector of alignment scores [0.7, 0.3, 0.1,−0.2], by applying Eq. 4.2 for

normalization we obtain the following attention weights [0.3809, 0.2553, 0.2090, 0.1548].

These weights highly reduce the initial alignment scores’ diversity, giving consider-

able importance to the less relevant user-related information and penalizing the most

relevant one. Moreover, the user information source whose alignment score with the

query is negative, indicating very low relatedness, gets a positive attention weight.

In this case, we can say that Softmax promotes the presence of potentially noisy in-
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formation in the user model instead of penalizing or filtering it out. Note that, to

properly work with Softmax, which produces higher values for the higher alignment

scores among its input, an alignment model must assign high alignment scores to the

user documents appropriate for personalization and low alignment scores to those

potentially harmful.

Lastly, as the Softmax normalizes its input into a probability distribution, it fol-

lows that the attention weights from Eq. 4.2 are all positives and sum to 1 [63]. Even

if all the alignment scores were zero or negative, the attention weights would all be

positive and sum to 1. For example, given the following vector of alignment scores

[0.0, 0.0, 0.0, 0.0], by applying Eq. 4.2 for normalization we obtain the following at-

tention weights [0.25, 0.25, 0.25, 0.25]. The same happens when all the alignment scores

are negative: [−7.0,−3.0,−1.0,−2.0] → [0.0016, 0.0899, 0.6641, 0.2443]. As there will

always be at least one positive attention weight and the sum of the attention weights

will always be 1, the context vector cannot be filtered out. In the context of person-

alization, this means that the user’s context vector will never be zero, causing the

personalization of search results to be performed even when no source of user-related

information is in line with her current search. In such cases, personalization could

hurt the effectiveness of the search engine instead of improving it.

4.3 Denoising Attention Mechanism

In this section, we present our proposal to address the shortcomings of the standard

Attention when used for personalizing search results. As extensively discussed in

Section 4.2.2, the principal issues of the Attention are related to its normalization

step, described in Section 4.2.1, and specifically to the use of the Softmax function to

produce the attention weights. To counteract these issues, we need a mechanism able

to avoid overly narrowing or overly smoothing the attention weights, which can cause the
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model either to focus only on a single source of user-related information or to reduce

the diversity of their estimated importance. Moreover, this mechanism should finely

filter out noisy contextual information, thus preventing it from flowing into the user

model. Finally, it should zero out the user’s context vector when personalization

could harm the retrieval process, i.e., when all the user-related information is noisy

or irrelevant with respect to the current search. In this regard, we propose the

Denoising Attention mechanism. The Denoising Attention mechanism departs from

the Softmax function by adopting a more straightforward and robust normalization

scheme, and it introduces a filtering mechanism based on the Rectifier Linear Unit [199]

and a threshold value. To complement those changes, we rely on a cosine similarity-

based alignment model to evaluate the relatedness of the sources of user-related

information w.r.t. the current search.

Scoring For an alignment model to act in a complementary way with the changes

introduced in the next paragraph, we need a function a(q,d) bounded between 0 and

1, as an unbounded function would make it difficult to control which information

flows into the user model. To compute the alignment scores eq,d, we then rely on the

following cosine similarity-based function:

a(q,d) =
cos(q,d) + 1

2
(4.4)

This function shifts the cosine similarity codomain to [0, 1].

Filtering The first change we propose to the standard Attention mechanism is the

explicit addition of a filtering step. First, we introduce a threshold parameter t that

we use to negativize the alignment scores of the user data loosely related to the input
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query. We call this operation alignment scores shifting and we define it as follows:

shifted_eq,d = eq,d − σ(t) (4.5)

where σ is a squashing function [120], which allows us to constrain t in [0, 1] during

training. We relied on the Sigmoid function in our final implementation. Secondly,

we apply the Rectifier Linear Unit (ReLU) [199] to the shifted alignment scores. ReLU is

a very popular activation function used in Neural Networks, and it is formulated as

follows:

ReLU(x) = max{0, x} (4.6)

What makes ReLU convenient in the personalization context is its ability to zero

out negative values, in our case, the shifted alignment scores of noisy user-related

information, while leaving unaltered the others:

filtered_eq,d = ReLU(shifted_eq,d) (4.7)

By combining these two operations, we can both control the information flow from

the user data to the user model in diverse search scenarios and filter out the noisy

user-related information that could harm the retrieval process. To avoid the well-

known dying ReLU problem [164, 2] and let the model learn to zero out the user

model correctly, we sum the user model to the query representation during training.

Normalization The second major change we propose to the standard Attention

mechanism is the use of the plain normalization operation in place of the Softmax for

the computation of the attention weights, which is defined as follows:

α(q,d) =
filtered_eq,d∑

d′∈Du
filtered_eq,d′

(4.8)
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As the plain normalization can cause numerical instability when all the filtered_eq,d

are zero, we slightly change Eq. 4.8 into:

α(q,d) =
filtered_eq,d

max
{∑

d′∈Du
filtered_eq,d′ , ε

} (4.9)

where ε is a very low positive value.

Note that the proposed filtering mechanism cannot work correctly with Softmax.

First of all, the Softmax function is translationally invariant, which means that adding

or removing the same value to all the components of its input does not change

its output. For example, Softmax([0.7, 0.3, 0.1,−0.2]) = Softmax([0.7, 0.3, 0.1,−0.2]

−0.3) = [0.3809, 0.2553, 0.2090, 0.1548]. Secondly, zeroing out negative values through

ReLU does not prevent the Softmax from producing positive attention weights for

those values, as already shown in Section 4.2.2. On the contrary, Eq. 4.9 does not

suffer from those issues and can produce zero attention weights. By avoiding the use

of the Softmax and its exponential function, the Denoising Attention normalization step

does not suffer from many of the Attention shortcomings discussed in Section 4.2.2.

Aggregation The aggregation of the user-related information is performed as a

linear combination, following the standard Attention formulation (Section 4.2.1).

However, as normalizing with Eq. 4.9 allows to produce zero attention weights, the

aggregation step can yield a zero context vector, which ultimately allows avoiding per-

sonalization when no source of user information is related to her current search.

Denoising Attention Weights To sum up, we propose to compute the weights for

the user-related information as follows:

α(q,d) =
ReLU (eq,d − σ(t))∑

d′∈Du
ReLU (eq,d′ − σ(t))

(4.10)
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In contrast with the standard Attention formulation, Denoising Attention is able to 1) se-

lectively filter out the noisy contextual information from the user-related data before

aggregating them in the context vector, and 2) zero out the context vector when all the

sources of user-related information are unrelated to her current search. Moreover,

the combined use of our filtering mechanism and normalization function makes our

Attention variant prone to avoid overly narrow or overly smooth attention weights. This

way, the model preserves the estimated importance of the user-related information

sources and does not focus only on one of them, thus composing a balanced repre-

sentation of the user preferences related to the current query while filtering those

unrelated. For a sake of comparison, the alignment scores [0.7, 0.3, 0.1,−0.2] produce

the attention weights [0.3809, 0.2553, 0.2090, 0.1548] when fed to Eq. 4.2, whereas they

produce the attention weights [0.75, 0.25, 0.0, 0.0] when fed to Eq. 4.10 with σ(t) = 0.1.

4.4 Evaluation Task and Framework

To evaluate the proposed user modeling approach we address the task of Personalized

Results Re-Ranking, as described in Section 2.3.2. To conduct the comparative evalua-

tion reported in the following sections, we employed a Personalized Results Re-Ranking

Framework that allowed us to test different user modeling techniques with ease.

Fig. 4.1 depicts the Personalized Results Re-Ranking Framework we relied on for com-

paring various user modeling techniques for Personalized Search (Section 4.5 and 4.6).

The framework comprises two modules that generate the vector representations of

the top-k results retrieved by the first stage retriever and those of the user-related

documents. Once computed the user-related document representations, the user

representation module aggregates them into the user model. In the case of query-

aware user modeling, as the query is involved in weighing the contribution of each

user-related document, an additional module is employed to produce the query rep-
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Figure 4.1: Personalized Results Re-Ranking Framework.

resentation used in that process. Finally, a scoring function computes a personalized

relevance score for each initially retrieved result by comparing its representation with

the user representation. Those scores are then combined with the scores computed

by our first stage retriever BM25 (see Section 2.3.2) as in Eq. 2.1.

In the experiments presented in Section 4.6, we relied on TinyBERT [128] followed

by a mean pooling operation to embed both the top retrieved documents, the user in-

formation, and the query (if needed), as they all are in text format in the dataset we em-

ployed for the evaluation. TinyBERT is a distilled [118, 99] version of the well-known

Transformer-based [272] Neural Language Model BERT [76]. We chose TinyBERT

due to its training and inference speed, lightweight GPU memory consumption, and,

above all, due to our hardware limitations (for experimentation, we used an NVidia®

RTX 2080 Ti GPU with 11 GBs of VRAM, which is not enough to fine-tune BERT in

our specific setting). As with many recent ranking models [224, 93, 133, 149, 175] that

rely on learned dense representations of documents [158], we employed the cosine

similarity as our scoring function.

As the main purpose of the contribution we present in this chapter is to propose a
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novel Attention variant for defining user models at query time, the simple technique

we implement for re-ranking aims at making it possible to comparatively evaluate

the effectiveness of the proposed model with alternatives at the state-of-the-art with

ease, allowing us to switch the compared user models seamlessly. We also point

out that the authors of previous contributions did not share their code or did not

provide adequate instructions to reproduce the results they obtained or train/run

their proposed models, posing several reproducibility issues.

4.5 Experimental Setup

The experiments reported in this section aim to answer the following research ques-

tions:

RQ1 Do the query-aware Attention-based user models increase the effectiveness of

a personalized retrieval model w.r.t. simpler operations for aggregating user

data?

RQ2 Does the Denoising Attention-based user model increase the effectiveness of a

personalized retrieval model w.r.t. other Attention-based user models?

RQ3 Is the query-aware user representation produced by the Denoising Attention

better-balanced w.r.t. the query-related user preferences than those of other

Attention variants?

RQ4 Is the Denoising Attention-based personalization more robust, i.e., less likely to

decrease the system’s effectiveness due to noisy user-related data, than the

other considered approaches?

To answer the research questions RQ1 and RQ2, we conducted a comparative evalu-

ation of the retrieval effectiveness of the personalized re-ranking pipeline described
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Table 4.1: Statistics of the employed datasets.

Web Search Dataset

# documents 1 291 695 # users 30 166
# train queries 212 386 avg. query length 3.57 ± 1.51
# val queries 31 064 avg. relevants 1.15 ± 0.46
# test queries 36 052 avg. user docs 136.62 ± 134.17

Academic Search Dataset

# documents 4 201 265 # users 63 738
# train queries 419 004 avg. query length 7.53 ± 2.64
# validation queries 4 241 avg. relevants 5.33 ± 5.11
# test queries 24 056 avg. user docs 53.59 ± 50.94

in Section 4.4 using several different user models. Then, we compared the retrieval

effectiveness of the user models for the queries personalized by the Denoising Atten-

tion-based model to answer question RQ3. Finally, to answer the research question

RQ4, we compared the number of times the considered user models decreased the

retrieval effectiveness of our first-stage retriever, BM25.

In the following, we present the datasets we employed for conducting our evalu-

ations (Section 4.5.1), we introduce the baselines we have selected (Section 4.5.2), and

we outline the training setup and evaluation procedure (Section 4.5.3). We make all

our code available for future works and reproducibility purposes1.

4.5.1 Datasets

To conduct our experimental evaluations, we relied on two datasets that account

for different search scenarios. First, we considered a Web Search dataset based on

the AOL query log [214]. Then, we relied on a synthetic dataset we built following

the procedure described by Tabrizi et al. [257] to simulate a domain-specific search

scenario, in our case Academic Search. We describe both datasets in detail in the

following sections.

1We will add a link to the repository upon acceptance
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Web Search Dataset

Thanks to its potential, personalization in Web Search has been a hot topic for many

years and has attracted the attention of several researchers both from academia

([111, 242, 203]) and private companies ([260, 261, 262]). Users search for a myriad

of information on the Web, and discerning among the diverse - and often unrelated

- interests a user can have could highly influence the personalization effectiveness

in this scenario. This characteristic makes Web Search a perfect fit to evaluate the

Attention variant we propose in this work.

The AOL query log [214] is one of the most known large-scale set of data for the

evaluation of session-based personalization models ([4, 5, 287, 301, 166, 303, 288, 289,

75]). Although we are not focusing on session-based personalization, we can rely on

this same query log to evaluate the effectiveness of our proposal. Unfortunately, the

authors of the previous works that relied on the AOL query log did not release the

instructions to re-build the datasets they employed in their evaluations. Therefore, we

derive a novel Web Search dataset suited for our evaluation from it. We acknowledge

the availability of other large-scale Web Search datasets, such as the Yandex2 dataset,

but, unfortunately, those datasets provide only anonymized texts for queries and

documents, they are not publicly available, or they lack user unique identifiers.

We now review the procedure we followed to build our Web Search dataset from

the AOL query log and make all the scripts to re-build such a dataset available for

future research3.

Retrieving documents A noticeable limitation of the AOL query log is that it does

not provide the document contents but only the URL of clicked documents (if any).

Because the logs date back to 2006, many of the clicked URLs are not available today,

or the content of the documents they point to has changed since users accessed them.

2https://www.kaggle.com/competitions/yandex-personalized-web-search-challenge
3We will add a link to the repository upon acceptance
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To retrieve document contents similar to those seen by the users when the logs were

collected, we relied on the recently proposed aolia-tools [177], which leverage the

Internet Archive’s Wayback Machine service. We refer the reader to MacAvaney

et al. [177] for an in-depth discussion on this topic. Once retrieved the document

contents, we identified and removed non-English documents by analyzing them

using Google’s Compact Language Detector v34.

Query logs cleaning The AOL query log comprises queries issued by real users

between March 1, 2006, and May 31, 2006. To derive a dataset suited for our eval-

uation, we operated a cleaning process aiming at obtaining an high quality query

set while reducing noise that could interfere in our evaluation. First, we discarded

all the queries with no related clicks from the query log and those pointing to non-

English documents. Then, following MacAvaney et al. [177], which reported that

several queries from the AOL query log have a navigational nature, we discarded

those containing Internet domain references (e.g., .com, .org, etc.) or website names as

they do not need personalization and can be easily identified during pre-processing.

For ethical reasons, we also discarded all the queries containing or pointing to adult

or illegal contents. Following Sordoni et al. [249], we removed non-alphanumeric

characters from the queries, applied a spelling corrector (SymSpell5) and lower-cased

the queries. Then, we discarded all the queries shorter than three characters. To

avoid introducing in the test set ⟨query, user, document⟩ triplets also present in the

train set, we kept only the first appearance of such triplets by comparing their as-

sociated timestamps. Note that we are not interested in re-finding behavior in our

work [267].

4https://github.com/google/cld3
5https://github.com/wolfgarbe/SymSpell
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Training / Validation / Test Splits Following previous works [249, 5], we considered

the queries formulated in the first five weeks as a background set. We discarded all

the queries from users with less than 20 associated queries in this set to ensure having

enough user-related data to conduct personalization, which, in this case, is based on

previously accessed web pages. We then temporally split the remaining weeks’

worth of queries. We used six weeks for training queries, one week for validation

queries, and one week for test queries. Then, we fine-tuned the hyper-parameters of

BM25 [226], which we use as our first stage retriever in the experimental evaluation,

on thousands of non-test queries. Finally, we discarded the queries for which BM25

does not retrieve any relevant document in the top 1000 results. Likewise, for the

remaining ones, we retain only the relevant documents present in the top 1000 results

retrieved by BM25, as we are interested in results re-ranking.

Table 4.1 reports the statistics of the final dataset.

Academic Search Dataset

Alongside Web Search, Domain-specific Search is a popular research topic nowa-

days. Unlike Web Search, in domain-specific search scenarios, the user interests are

more focused on particular topics, which could make finely discerning among the

user-related data to pick those most promising for personalizing the current search

conducted by the user more challenging.

Due to the lack of a publicly available Domain-specific Search dataset for studying

personalization, researchers have recently tackled personalization in Product Search

scenarios relying on synthetic datasets built upon product reviews from a popular e-

commerce platform [6, 35, 34, 36, 25]. However, due to the number of different queries

present in these datasets, a few hundred in most cases, and their low quality [25],

we did not employ them in our comparative evaluation. Instead, we followed the

procedure described by Tabrizi et al. [257] to build an Academic Search dataset
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that allow us to test our Attention variant in a domain-specific search scenario. In

particular, we relied on the ArnetMiner’s Citation Network Dataset V12 [259], which

makes available the metadata, such as titles, abstracts, list of authors, and list of citations,

of 4 894 081 academic papers (papers’ full texts are not available). We now describe

the process we followed to build our dataset.

Query Generation Firstly, we removed all non-English papers by leveraging Google’s

Compact Language Detector v36. Then, following the approach described by Tabrizi

et al. [257], we generated user-query-document triplets as follows: for each academic

paper, we considered its title as a query, the list of its citations as the documents

relevant to that query, and we assumed that the first author is the user submitting the

query. Tabrizi et al. [257] proposed other methods to generate synthetic queries from

research papers, but they only reported the evaluation of the one we employ here.

As the titles of academic papers are written in well-formed natural language, we ap-

plied stop-word removal using the NLTK’s [38] stop-words list and a non-destructive

stemmer, i.e., the Krovetz stemmer [139], to obtain queries that resemble real-world

ones. Finally, we discarded all the generated queries whose related users have less

than 20 associated documents, i.e., published papers.

Training / Validation / Test Splits We split the obtained dataset into training and

test sets chronologically, i.e. by using the queries generated from papers published

after 2018 as the test set. We then randomly split the training set to obtain a training

set and a validation set, using a splitting ratio of 99 : 1. We opted for a chronological

training / test split instead of a random partitioning so that the dataset is closer to a

real scenario, where all the searches in the test set happen after the searches in the

training set.

6https://github.com/google/cld3
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Dataset Refining As discussed by Tabrizi et al. [257], not all the references of a

paper are necessarily relevant (from an Information Retrieval perspective) to the

topic expressed by its title, which we use as a query. The authors, however, claim

that since mistakenly considering some irrelevant documents as relevant will be the

same for all the compared models, their presence does not violate the fairness of the

comparisons if evaluation measures are averaged over many queries (thousands, in

our case). To reduce the presence of spurious relevant documents and malformed

queries, we applied simple heuristics, similarly to Tabrizi et al. [257]. As we are

comparing different user modeling techniques in the context of Personalized Results

Re-Ranking, we consider well-formed only the queries for which BM25 [226], which

we use as a first-stage retriever, retrieves relevant documents in the top results.

Although this is a strong assumption, the reader should consider two key factors.

First, every re-ranking approach is inherently bounded by the recall of the first stage

retriever. Therefore, as all the compared models re-rank the BM25’s results, they all

share the same limitations. Secondly, only an exiguous subset of a paper’s references

can be considered relevant w.r.t. its main topic. For example, if considering our

paper, we would consider only the works concerning query-aware personalization,

presented in Section 4.1, as truly relevant documents for a query built using our title.

Although filtering the references by their positioning in the paper (the section in

which they appear) could be a better solution in this case, we lack such information.

From the original query set, we removed all the queries for which BM25 does not

retrieve any relevant document in the top-1000 results. Likewise, for each of the

remaining queries, we retain only the relevant documents present in the top 1000

results retrieved by BM25. Before computing the BM25 results, to maintain most

queries and relevant documents as possible, we fine-tuned its parameters on the

validation queries. Table 4.1 reports the statistics of the final dataset. We make the
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dataset and all the scripts to re-build it available for future research7.

4.5.2 Baselines

In this section, we introduce the baselines employed in our comparative evaluation.

We compared the Denoising Attention-based user model with user models based

on the standard Attention formulation, the Zero Attention strategy proposed by Ai

et al. [7], and the Multi-Head Attention [272]. We also considered a user model built

by simply averaging the user-related documents’ representations to assess whether

Attention-based user models can improve over simpler operations for aggregating

user data.

For reference, we also performed comparison with the classic probabilistic re-

trieval model BM25 [226], which we used as first stage retriever.

• Attention: The first baseline is a query-aware user model based on the standard

Attention formulation.

• Zero Attention: The second baseline is a query-aware user model based on the

Zero Attention Strategy proposed by Ai et al. [7]. The Zero Attention Strategy,

introduced in Section 4.1, was proposed to automatically determines when and

how to conduct personalization.

• Multi-Head Attention: The third baseline is a query-aware user model based on

the Multi-Head Attention [272], a scaled-up variant of the Attention mechanism.

Multi-Head Attention allows the model to jointly attend to information from different

representation subspaces [272]. We use 4 Attention heads in our experiments.

• Mean: The fourth baseline is static user model that computes user representa-

tions as the arithmetic mean of the user-related documents’ representations. As

7We will add a link to the repository upon acceptance

72



averaging is a simple form of vector aggregation, its addition to the evaluation

allows us to assess whether query-aware user modeling techniques are truly

beneficial.

We trained three variants for both the Attention-based and the Zero Attention-based

user models by employing different alignment functions. The first variant employs the

scaled-dot product, popularized by the Transformer architecture [272]. The second one

uses the cosine similarity, similarly to our Denoising Attention. The latter relies on the

alignment model proposed by Bahdanau et al. [19] in the paper where the Attention

mechanism was proposed, which is commonly called Additive Attention [272].

We leave experimentation and comparison with Transformer models [272] for

future work. We note that our proposed Attention variant could also be used in place

of the standard formulation in these complex architectures.

4.5.3 Setup & Evaluation Metrics

We relied on ElasticSearch [98] for BM25, HuggingFace’s Transformers [280] for Tiny-

BERT8, and PyTorch [215] for the implementation of all the neural models. We fine-

tuned BM25’s k1 and b parameters on thousands of non-test data before computing

the result lists for all the queries. BM25 scores were computed on the concatenation

of documents’ title and body (the papers’ abstracts) by first removing stop-words and

applying the Krovetz stemmer [139]. We trained each variation of the Personalized

Results Re-Ranking Framework introduced in Section 4.4 on an NVidia® RTX 2080 Ti

GPU for 20 epochs using a hinge loss [279] defined over a triplet, similarly to [93],

with a margin set to 0.1 (we found larger margins to decrease performances in all cases),

and AdamW optimizer [162, 163] with learning rate set to 5× 10−5, and batch size set

to 32. We train the model with hard negatives sampled from the top results retrieved

by BM25 and in-batch random negatives samples.

8https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D

73

https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D


During training, due to our hardware limitations, we randomly sampled the titles

of 20 user documents to use for personalization, while during the evaluation, we

used those from all the available user documents. After training, we fine-tuned the λ

parameter of Eq. 2.1 and the Denoising Attention’s threshold with grid-search on the

validation set. In the case of the Academic Search Dataset, during the experiments,

for each query, we skipped all the documents published after the release of the

manuscript used for generating the query as none of them has relevant judgments

for it because of dataset construction and, therefore, they would only add noise to the

evaluation as suggested by Tabrizi et al. [257]. For the final evaluation, we re-ranked

the top 1000 results retrieved by BM25 with each of the considered user models.

To evaluate the effectiveness of the compared models, we employed 1) Mean Av-

erage Precision (MAP), 2) Mean Reciprocal Rank (MRR), and 3) Normalized Discounted

Cumulative Gain (NDCG). MRR and NDCG were computed on the top 10 documents

retrieved by each model, whereas MAP was computed on the top 100. Statistical

significance testing was conducted using a Bonferroni corrected Fisher’s randomiza-

tion test [244] with p < 0.001. Metrics computation and comparison were conducted

using the Python evaluation library ranx [23].

4.6 Results and Discussion

In this section, we present the results of our comparative evaluations. First, we

discuss the retrieval effectiveness of the personalized re-ranking pipeline described

in Section 4.4 when considering different user modeling techniques. Second, we

evaluate how balanced the user preferences expressed by the considered user models

are w.r.t. each query. Third, we analyze the robustness of the compared user models,

evaluating the probability they decrease the system’s effectiveness in the presence

of noisy user-related data. Finally, we analyze the performance of our proposed
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Attention variant from multiple perspectives and ablate our proposal. We remind

the reader that the only difference between the compared personalization models is

the technique used for defining the user model, while the other components are the

same for all the considered models.

4.6.1 Overall Retrieval Effectiveness

In this section, we review the results obtained when combining a document’s rele-

vance score produced by different user models with the document’s relevance score

produced by BM25, as described in Section 4.4, aiming to answer questions RQ1 and

RQ2.

As reported in Table 4.2, combining personalized relevance scores with those

coming from our first stage retriever, BM25, improved the retrieval effectiveness of

the latter regardless of the user modeling mechanism employed, thus confirming the

utility of personalization in both the considered search scenarios and datasets.

The Attention and Zero Attention-based user models generally improved over the

Mean user model. However, we notice this is not always the case. Of all the different

variants, only those using the scaled-dot as an alignment model significantly improved

over Mean on both the considered datasets. On the other hand, those relying on the

additive and the cosine alignment models achieved mixed results, sometimes even de-

creasing w.r.t. Mean. Moreover, we highlight that in the case of the Web Search Dataset,

the best-performing Attention baselines’ improvements are not that pronounced (only

3% in MAP, MRR, and NDCG, respectively). The Zero Attention-based user models

generally achieved slightly worse results than their Attention-based counterparts,

which raises questions regarding the efficacy of its employed mechanism for con-

ducting differentiated personalization. Our findings on the Zero Attention-based user

model are consistent with results from previous works [34, 35, 126]. The results ob-

tained by both the standard Attention-based user model and the Zero Attention-based
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user model with the cosine similarity as alignment model confirm that constraining the

alignment scores causes noisy information to leak in the user model, as discussed in

Section 4.2.2. Finally, the Multi-Head Attention-based user model’s results are among

the lowest for both datasets. The additional complexity introduced by this approach

did not deliver improvements over the other Attention-based models while introduc-

ing additional overhead. We suspect this is because we are employing high-quality

text representations obtained using TinyBERT [128], a distilled version of the well-

known Transformer [272] model BERT [76], which alleviates the need for attending

information from different representation sub-spaces [272] during personalization. We

leave further investigation for future work. If we consider only the Attention-based

user model with the scaled-dot alignment model, the obtained results positively an-

swer our first research question, RQ1. However, this is not the case for all the other

Attention baselines, which confirms the need for the in-depth investigation we are

conducting on the use of the Attention mechanism for query-aware personalization.

When employing the Denoising Attention-based user model, the results re-ranking

pipeline achieved substantial improvements over both that using the Mean-based

user model and those relying on Attention-based user models, corroborating our

intuitions about the shortcomings of the standard Attention formulation when it

comes to personalization (Section 4.2.2) and the advantages brought by our proposal

(Section 4.3). In particular, it improved over Mean by 20%, 22%, and 19% in MAP,

MRR, and NDCG, respectively, on the Web Search Dataset and by 23%, 15%, and 21%

in MAP, MRR, and NDCG, respectively, on the Academic Search Dataset. Moreover,

it increased over the best-performing Attention-based baseline by 17%, 18%, and

16% in MAP, MRR, and NDCG, respectively, on the Web Search Dataset and by 14%,

10%, 13% in MAP, MRR, and NDCG, respectively, on the Academic Search Dataset.

Finally, it enhanced the BM25 effectiveness by 38%, 41%, and 40% in MAP, MRR, and

NDCG, respectively, on the Web Search Dataset and by 50%, 29%, and 41% in MAP,
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MRR, and NDCG, respectively, on the Academic Search Dataset. The obtained results

clearly show the robustness of our proposed Attention variant to search scenarios

with noticeable structural differences. On one side, for Web Search, it is fundamental

to finely select among the user-related data those most promising for conducting

personalization to improving over standard operations for building user models, i.e.,

averaging over the representations of the user-related data. On the other side, in

the case of Academic Search, user-related information is very focused and, therefore,

it is easier to improve a user model that averages the representations of the user-

related data by simply weighing the contribution of those data w.r.t. the current

query. Nonetheless, Denoising Attention still exhibits significant advantages over

the other Attention variants. These results, which positively answer our second

research question, RQ2, highlight the importance of correctly managing the user-

related information in personalization and the potential of deepening this research

area.

4.6.2 Weighting Schemes Comparison

In this section, aiming to answer our third research question (RQ3), we compare the

mechanism employed by our proposed Attention variant to weigh the contribution

of the user-related data in composing the user model at query time with the other

considered Attention baselines. We also consider the Mean-based user model, which

uses an even weighting scheme, as a reference. To conduct this evaluation, we

consider only the queries for which Denoising Attention outputs a non-zero user

model and employ only the scores deriving from the comparisons between the user

models and the documents to re-rank the initially retrieved BM25 result lists. We

assume that if a user model achieves significantly better retrieval effectiveness than

the others, then its weighting scheme is better, as we employ the same user-related

information to build all the user models. Since the goal of re-ranking is to improve
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Table 4.2: Effectiveness of BM25 and those of the Personalized Results Re-Ranking
Framework with different user models. ∗ and † denote significant improvements in a
Bonferroni corrected Fisher’s randomization test with p < 0.001 over Mean and over
all the baselines, respectively. Best results are highlighted in boldface.

Web Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.245 0.238 0.280 — —

Mean — 0.282 0.276 0.329 0.2 —

Attention
Additive 0.281 0.276 0.328 0.2 —
Cosine 0.287∗ 0.281∗ 0.335∗ 0.2 —
Scaled-Dot 0.290∗ 0.285∗ 0.339∗ 0.2 —

Zero
Attention

Additive 0.277 0.272 0.325 0.2 —
Cosine 0.286∗ 0.281∗ 0.334∗ 0.2 —
Scaled-Dot 0.290∗ 0.285∗ 0.338∗ 0.2 —

Multi-Head Scaled-Dot 0.275 0.269 0.324 0.2 —

Denoising Cosine-based 0.338† 0.336† 0.393† 0.4 0.7

Academic Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.119 0.294 0.171 — —

Mean — 0.146 0.328 0.200 0.6 —

Attention
Additive 0.156∗ 0.340∗ 0.213∗ 0.6 —
Cosine 0.151 0.332 0.206 0.6 —
Scaled-Dot 0.157∗ 0.343∗ 0.214∗ 0.6 —

Zero
Attention

Additive 0.155∗ 0.338 0.211∗ 0.6 —
Cosine 0.150 0.330 0.204 0.6 —
Scaled-Dot 0.156∗ 0.341∗ 0.212∗ 0.6 —

Multi-Head Scaled-Dot 0.152 0.336 0.207 0.6 —

Denoising Cosine-based 0.179† 0.378† 0.241† 0.6 0.6

over a first-stage retriever, we also consider BM25 results for reference.

As reported in Table 4.3, there is generally a clear difference in the retrieval

effectiveness of the Attention-based user models and that of the Mean-based user

model, highlighting the potential of weighing the contribution of multiple sources

of user-related information during personalization. In the best case scenario (Scaled-
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dot), the Attention-based baselines increased over Mean by 11%, 13%, and 11% in

MAP, MRR, and NDCG, respectively, on the Web Search Dataset, and by 34%, 30%,

and 34% in MAP, MRR, and NDCG, respectively, on the Academic Search Dataset.

Despite the already good improvements brought by the Attention as a mecha-

nism for weighting user-related data in query-aware personalization, the Denoising

Attention reached a significantly higher level of effectiveness. With respect to the best

performing Attention baselines, the Denoising Attention improved by 73%, 86%, and

76% in MAP, MRR, and NDCG, respectively, on the Web Search Dataset, and by 57%,

53%, and 55% in MAP, MRR, and NDCG, respectively, on the Academic Search Dataset.

This great difference is due to both the shortcoming of the Attention mechanism

described in Section 4.2.2, which makes it under-perform in many situations, and the

solution we have proposed to solve them, which allows filtering noisy information

and does not reduce the diversity of the estimated importance of the user-related

documents. We also highlight that the Denoising Attention-based user model is the

only user model that improved over our first stage retriever, BM25, while of the other

considered user models largely decreased its effectiveness. Specifically, the Denoising

Attention-based user model improved over BM25 by 10%, 10%, and 14% in MAP,

MRR, and NDCG, respectively, on the Web Search Dataset, and by 19%, 08%, and 13%

in MAP, MRR, and NDCG, respectively, on the Academic Search Dataset. These results

positively answer our third research question, RQ3

4.6.3 Robustness

In this section, we evaluate and discuss the robustness of the considered user models

when used in combination with BM25, aiming to answer our fourth research ques-

tion, RQ4. Specifically, we consider the number of times personalization decreased

BM25 effectiveness in terms of MAP@100. We remind the reader that the Web Search

Dataset based on the AOL query log we employed has 36 052 test queries, while the
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Table 4.3: Effectiveness of BM25 and those of the user models when used in isolation.
∗ and † denote significant improvements in a Bonferroni corrected Fisher’s random-
ization test with p < 0.001 over Mean and over all the baselines, respectively. Best
results are highlighted in boldface.

Web Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.240∗ 0.233∗ 0.274∗ — —

Mean — 0.136 0.120 0.157 1.0 —

Attention
Additive 0.136 0.120 0.155 1.0 —
Cosine 0.141∗ 0.125∗ 0.166∗ 1.0 —
Scaled-Dot 0.152∗ 0.137∗ 0.177∗ 1.0 —

Zero
Attention

Additive 0.125 0.108 0.144 1.0 —
Cosine 0.148∗ 0.132∗ 0.169∗ 1.0 —
Scaled-Dot 0.153∗ 0.138∗ 0.177∗ 1.0 —

Multi-Head Scaled-Dot 0.128 0.111 0.148 1.0 —

Denoising Cosine-based 0.264† 0.256† 0.312† 1.0 0.7

Academic Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

BM25 — 0.120∗ 0.295∗ 0.172∗ — —

Mean — 0.068 0.160 0.094 1.0 —

Attention
Additive 0.090∗ 0.205∗ 0.123∗ 1.0 —
Cosine 0.076∗ 0.172∗ 0.103∗ 1.0 —
Scaled-Dot 0.091∗ 0.208∗ 0.125∗ 1.0 —

Zero
Attention

Additive 0.086∗ 0.195∗ 0.117∗ 1.0 —
Cosine 0.075∗ 0.171∗ 0.103∗ 1.0 —
Scaled-Dot 0.088∗ 0.201∗ 0.120∗ 1.0 —

Multi-Head Scaled-Dot 0.074∗ 0.172∗ 0.101∗ 1.0 —

Denoising Cosine-based 0.143† 0.319† 0.194† 1.0 0.6

Academic Search Dataset has 24 056. Table 4.4 shows the number of times person-

alization was actually harmful to the retrieval effectiveness in terms of MAP@100.

Quite surprisingly, the Attention-based user models are often more harmful than the

user model based on the average of the user document representations, Mean, al-

though more effective in general, as previously reported. Conversely, the Denoising
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Table 4.4: Number of times (and ratios) personalization decreased BM25 effectiveness
in terms of MAP@100 (lower is better). Best results are highlighted in boldface. Best
baselines are highlighted in italic.

Model Alignment Web Search Dataset Academic Search Dataset

Mean — 10 798 (30%) 6 165 (26%)

Attention
Additive 11 157 (31%) 6 076 (25%)
Cosine 9 877 (27%) 6 580 (27%)
Scaled-Dot 9 426 (26%) 5 954 (25%)

Zero
Attention

Additive 11 508 (32%) 6 201 (26%)
Cosine 10 234 (28%) 6 708 (28%)
Scaled-Dot 9 356 (26%) 6 131 (25%)

Multi-Head Scaled-Dot 12 049 (33%) 6 366 (26%)

Denoising Cosine-based 6 780 (19%) 5 509 (23%)

Attention-based user model considerably decreased for both datasets the number of

times personalization harmed the retrieval process w.r.t. the other considered user

models. Compared to the Denoising Attention-based user model, the best baselines

on the Web Search Dataset and the Academic Search Dataset decreased the retrieval

effectiveness of BM25 for 38% and 8% more queries, respectively. The much more sig-

nificant difference between the Denoising Attention-based user model and the other

considered user models on the Web Search Dataset than on the Academic Search

Dataset is due to the different nature of the employed datasets. In the Web Search

Dataset, the user-related data accounts for many different user interests, while on

the Academic Search Dataset, they are much more focused on particular topics. In

the first case, personalization is much more likely to harm the retrieval process if a

filtering mechanism for the user information is not employed, as in the case of all the

considered user models but the one based on our Attention variant. We conclude the

Denoising Attention-based user model is much more robust than the other considered

user models regardless of the search scenario, which positively answer our fourth

research question, RQ4.
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4.6.4 Model Analysis

In this section, we first evaluate the Denoising Attention-based user model perfor-

mances for various threshold values. Then, we compare the performances of the

considered user models for queries with various amounts of associated user-related

documents. Finally, we ablate the design choices underlying our proposed Attention

variant.

Threshold Figures 4.2a and 4.2b show the performances of the results re-ranking

pipeline with the Denoising Attention-based user model for different threshold values

on the considered datasets. The figures also report the average number of filtered

user documents for each considered threshold value. On average, the test queries

have 181 and 61 associate user-related documents in the Web Search Dataset and the

Academic Search Dataset, respectively, while the average number of filtered ones for

the best threshold values are 169 and 35, respectively. The different ratios of average

filtered user-related documents are again due to the distinct nature of the two search

scenarios and datasets. Our proposed approach is able to adapt to different search

contexts thanks to the threshold parameter and our filtering mechanism. When the

threshold is zero, which corresponds to not filtering any user-related document in

our case, the model effectiveness is very low for both datasets. When the threshold is

equal to 0.5, which corresponds to using the cosine similarity with no modification

as our alignment model, the model still does not reach its full potential. These results

highlight again the need for a filtering mechanism that can be tuned and modulated.

In Figures 4.2c and 4.2d, we can observe how the distribution of the documents

used for personalization changes using the Denoising Attention-based user model. As

expected, the number of documents used for personalization decreases drastically in

both the considered search scenarios. In particular, for the Web Search scenario, which

comprises, for each user, a very diverse set of user-related documents, we registered
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Figure 4.2: Threshold analysis.

a very pronounced selection of the user data used for personalization.

As the filtering mechanism employed by the Denoising Attention is applied to each

user document independently, the model can filter numerous documents that are not

strictly related to the query.

User Document Count Figures 4.3a and 4.3b report the performances of the results

re-ranking pipeline with each of the considered user models on the test queries

grouped by their amounts of associated user-related documents on the Web Search
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Dataset and the Academic Search Dataset, respectively. We grouped queries by the

range in which their associated amount of user documents lays. In particular, we

considered the queries in the following ranges: 20:49, 50:99, 100:149, 150:199, and

200+ for the Web Search Dataset, and 20:29, 30:39, 40:49, 50:59, and 100+ for the Academic

Search Dataset. We chose different ranges for the two datasets as their user document

distribution is very different, as shown in Figures 4.2a and 4.2b. Moreover, by datasets

construction (Section 4.5.1), all queries have at least 20 associated user documents. As

shown in the figures, the baselines achieved mixed results. It is not clear at a glance

which one performed the best overall. Looking closely, we can see that the Attention-

based user model with the scaled-dot alignment model (purple bar) generally performed

better than or equal to the other baselines in the considered ranges. Conversely, the

Denoising Attention-based user model consistently outperformed all the considered

baselines for each group of queries in each dataset, showing its benefits generalize

regardless of the number of available user documents and search scenario.

Ablation Study Table 4.5 shows the performances of the results re-ranking pipeline

with the Denoising Attention-based user model and with some variations derived by

ablating our proposal. For comparison purposes, we added the results of the best

performing baseline from previous experiments, the Attention-based model with

the scaled-dot alignment model. The first variation of our proposed Attention variant,

called Filter Attention, employs the ReLU-based filtering mechanism we proposed

and Eq. 4.9 for the normalization step to the Attention with the scaled-dot alignment

model. As discussed before, using Eq. 4.9 for the normalization step is mandatory

for the filtering mechanism to have effect as Softmax normalization is translationally

invariant. We did not use the threshold parameter in this variation of the Denoising

Attention as the employed alignment models’ output is unbounded, making it difficult

to calibrate such a parameter. For the other variation we considered the Denoising

84



2020 9999 7803 5307 10918

Query count

20:49 50:99 100:149 150:199 200+
0.28

0.31

0.34

0.37

0.4

User document count

N
D
C
G
@
1
0

Mean

Attention Additive

Attention Cosine

Attention Scaled-Dot

Zero Attention Additive

Zero Attention Cosine

Zero Attention Scaled-Dot

Multi-Head Attention

Denoising Attention

(a) Web Search Dataset

7707 4438 2669 5859 3381

Query count

20:29 30:39 40:49 50:99 100+
0.17

0.19

0.21

0.23

0.25

User document count

N
D
C
G
@
1
0

Mean

Attention Additive

Attention Cosine

Attention Scaled-Dot

Zero Attention Additive

Zero Attention Cosine

Zero Attention Scaled-Dot

MultiHead Attention

Denoising Attention

(b) Academic Search Dataset

Figure 4.3: Effectiveness of the user models when combined with BM25 for queries
with different amounts of associated user-related documents.

Attention with Softmax normalization to show the need of using Eq. 4.9 and departing

from Softmax to make our proposed mechanism to work properly. We called this

variation Denoising Softmax.

As shown in the table, Denoising Softmax performs poorly and decreases the re-

trieval effectiveness of the system w.r.t. our best performing baseline on both datasets,

confirming that using our filtering mechanism with Softmax normalization does not

perform properly. On the other hand, Filter Attention significantly improved over the

Attention-based model with the scaled-dot alignment model, corroborating our intuition

that the Softmax normalization is not optimal in the context of personalization and
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Table 4.5: Effectiveness of the Personalized Results Re-Ranking Framework with
different Denoising Attention variations. † denotes significant improvements in a
Bonferroni corrected Fisher’s randomization test with p < 0.001 over over all the
baselines. Best results are highlighted in boldface.

Web Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

Attention Scaled-Dot 0.290 0.285 0.339 0.2 —
Filter Attention Scaled-Dot 0.299 0.294 0.351 0.3 —
Denoising Softmax Cosine-based 0.285 0.280 0.334 0.2 0.1
Denoising Cosine-based 0.338† 0.336† 0.393† 0.4 0.7

Academic Search Dataset

Model Alignment MAP@100 MRR@10 NDCG@10 λ σ(t)

Attention Scaled-Dot 0.157 0.343 0.214 0.6 —
Filter Attention Scaled-Dot 0.165 0.354 0.223 0.6 —
Denoising Softmax Cosine-based 0.151 0.332 0.206 0.5 0.1
Denoising Cosine-based 0.180† 0.382† 0.243† 0.6 0.6

suggesting the proposed alternative is effective regardless of the employed align-

ment model. The Denoising Attention significantly outperformed all of its considered

variations, verifying the utility of our design choices and their complementarity.

4.7 Summary

In this chapter, we have addressed some issues related to the use of the Attention

mechanism for query-aware user modeling and proposed a novel user-data aggre-

gation model called Denoising Attention, designed to solve the shortcomings of the

standard Attention formulation and, in particular, filter out noisy user-related in-

formation. Experimental evaluation in two different search scenarios, namely Web

Search and Academic Search, shows the benefits of our proposed approach over other

Attention variants and highlights the potential of correctly managing the user-related

information. Finally, the ablation study we conducted clearly illustrates the benefits

of our design choices and their synergy.
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CHAPTER 5

PERSONALIZED QUERY EXPANSION WITH
CONTEXTUAL WORD EMBEDDINGS

Nowadays, most search engines provide users with a simple interface to specify their

information needs through short keyword-based queries, which are usually two-to-

three terms long in the case of Web search [124]. However, as a query only broadly de-

scribes a user’s information need, search engines may struggle to provide satisfactory

results. Multiple factors related to how users choose terms for their queries can affect

a system’s retrieval effectiveness [18]. For example, the terms composing a query can

be related to multiple topics, leading the system to provide results not focused on

the user’s topic of interest. Moreover, out of habit, users often issue queries too short

to clearly express complex information needs, ultimately failing to find documents

valuable to fulfill them. Finally, users sometimes have only a broad idea of the infor-

mation they need, and hence they issue queries that are not appropriate to find doc-

uments that can answer their information needs. A well-known technique proposed

to overcome those issues is Query Expansion, whereby the user’s original query is

augmented with new terms, known as expansion terms, to improve the system’s effec-

tiveness. The identification of proper expansion terms aims to clarify the user’s search

intent and bridges the gap between the original query terms and the documents’ vo-

cabulary [55], addressing the well-known vocabulary mismatch problem [90]. Query

Expansion techniques can leverage user-related information previously gathered to

derive the expansion terms, in which case we talk about Personalized Query Expan-
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sion [62, 207, 32, 135, 51, 110, 37, 304, 39, 239, 198, 127, 143, 282, 300, 13]. Personalized

Query Expansion techniques rely on user-related documents, such as previously ac-

cessed Web pages and user-generated content [140], e.g., product reviews or tweets,

to extract expansion terms directly from the users’ vocabulary or the vocabulary used

in documents of their interest.

Historically, most approaches to Personalized Query Expansion [29, 32, 37, 39,

299, 198, 282] focused on leveraging social information derived from folksonomy

platforms1 to extract expansion terms. On those platforms, like the former social

bookmarking website del.icio.us2, users apply public tags to online items, such

as Web pages. Works in this area addressed the selection of personalized expan-

sion terms by relying on term co-occurrence-based approaches and social relations

analyses.

More recently, to overcome the limitations of lexical matching-driven term co-

occurrence analysis, which suffers from the vocabulary mismatch problem, researchers [13,

300, 143] started experimenting with word embedding models, which project text into

dense low dimensional vector spaces where the semantic similarity among terms can

be computed as the cosine similarity of their vector representations. Existing ap-

proaches [13, 300, 143] rely on the well-known Word2Vec model [191, 192] to generate

word embeddings for both queries and user-related texts and on cosine similarity

to evaluate their semantic relatedness, which they use to select the personalized ex-

pansion terms. A limitation of the word embeddings produced by Word2Vec and

similar models is that terms are always mapped to the same vectors regardless of

their context, which usually varies for each occurrence of a term.

Recently, to overcome the limitations of traditional word embeddings, new tech-

niques [217, 76, 47, 221] have been introduced. These new methods map each word

occurrence to a unique representation based on its surrounding terms, thereby cap-

1https://en.wikipedia.org/wiki/Folksonomy
2https://en.wikipedia.org/wiki/Delicious_(website)
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turing the different meanings it can assume across varied contexts. The new rep-

resentations are commonly called contextual word embeddings and have allowed

reaching a new state-of-the-art in many different Natural Language Processing tasks.

In the past few years, contextual word embeddings have also been successfully ap-

plied to Information Retrieval [158], advancing the state-of-the-art in multiple tasks

and opening new opportunities and challenges for retrieval-enhancing tasks, such as

Personalized Query Expansion. In the following, we use the locution “word embed-

ding” to refer to the “word embedding techniques” and “term embedding” to refer

to the actual vector representation computed by one of those techniques for a given

term.

In this chapter, we address Personalized Query Expansion using contextual word

embeddings, which, as mentioned above, open new opportunities for this task while

also introducing new challenges. We argue that two of the main challenges in

employing contextual word embeddings to select expansion terms are (i) reducing

redundancy among expansion terms and (ii) addressing scalability issues. Previous

Personalized Query Expansion methods based on word embeddings [13, 300, 143]

rely on ranking functions based on cosine similarity to rank all the user-related terms

before selecting those for query expansion. However, when working with contextual

word embedding models, which produce a unique embedding for each term occur-

rence, we could end up with very similar embeddings for multiple occurrences of

the same term appearing in similar contexts. We argue that, if not carefully handled,

this aspect of contextual word embeddings could cause the selection of multiple ex-

pansion term embeddings with very close, if not identical, semantic meanings, thus

reducing the potential utility of Query Expansion. Because of the lack of a mechanism

accounting for the presence of multiple, very similar embeddings, previous methods

have a high probability of selecting expansion terms that are redundant with each

other, as we will show. Moreover, as previous approaches [13, 300, 143] rely on com-
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puting a similarity score between the query and each user-related term embedding

to select those most appropriate for expanding the query, they could introduce an

overhead proportional to the number of candidate expansion terms. While with tra-

ditional word embeddings, such as Word2Vec, each unique term is represented once,

with contextual word embeddings, we have a different representation for each term

occurrence, potentially making the problem much more severe. This issue could

cause query expansion methods based on contextual word embeddings to suffer a

low-scalability problem, making their application in data-rich real-world scenarios

debatable, such as in Web Search, where we could leverage very long user browsing

histories to conduct personalization.

In this chapter, we present PQEWC (pronounced “quick”), a Personalized Query

Expansion method designed to work With Contextual word embeddings. To address

the scalability issues arising from the adoption of contextual word embeddings in

Personalized Query Expansion and to reduce the impact of potentially redundant ex-

pansion terms, we employ an offline clustering-based procedure aiming at grouping

the user-related terms and identifying those that better represent the user interests.

By selecting only the expansion term that better represents the user interests w.r.t. the

current query from each cluster, we avoid adding to the query multiple expansion

terms with similar semantic meanings, thus reducing the chance of expanding it with

redundant expansion terms. Finally, we implement an approximation mechanism

for selecting the expansion terms, which allows our proposed approach to achieve a

sub-millisecond expansion time even in very data-rich scenarios, making it suitable

for many real-world applications.

The rest of the chapter is organized as follows. Section 5.1 discusses the related

works and positions our work w.r.t. them. In Section 5.2, we present our novel Per-

sonalized Query Expansion approach and discuss our design choices. Section 5.3

introduces the retrieval task we tackled to evaluate our proposal. Section 5.4 presents
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our research questions and describes the experimental setup of our comparative eval-

uation. Finally, in Section 5.5, we compare our proposed approach and other query

expansion methods at the state-of-the-art [278, 143, 300] both in terms of effectiveness

and efficiency, and ablate our design choices. The results of our evaluation clearly

show the advantages of PQEWC w.r.t. the considered query expansion baselines,

which are outperformed both in retrieval effectiveness and efficiency. Across all

the considered datasets, the proposed approach improves by up to 4% in terms of

MAP@100 over our base retrieval system, based on BM25 [226] and ColBERT [136],

and by up to 3% w.r.t. the best performing baseline [143]. We will share all the code

to reproduce the experimental evaluation we conducted once the related article will

be published.

5.1 Related Work

Query Expansion is a well-established technique in Information Retrieval. It has

received significant attention from the research community in the past few decades

and continues to attract many researchers. In this section, we first cover the state-of-

the-art of Query Expansion, and then we focus on its Personalized counterpart. In

both cases, we pay particular attention to the methods based on word embeddings.

5.1.1 Query Expansion

Among the several approaches proposed for Query Expansion [55, 18], a line of

research that still attracts the research community’s interest is represented by the

methods founded on the pseudo-relevance feedback technique [228]. These meth-

ods [123, 60, 285, 52, 173, 67, 150] rely on a first retrieval stage to collect the so-called

feedback documents, i.e., documents appearing in the top positions of the ranked

list of documents, which are assumed to be relevant w.r.t. the query and from which
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terms to expand the initial query are extracted . Query Expansion methods based on

pseudo-relevance feedback have proved their effectiveness over the years and are still

relevant today. The most important of these models is RM3 [123], which leverages

statistical information on the occurrences of terms in feedback documents and in the

corpus to select the expansion terms. Intuitively, RM3 expands the initial query with

terms that are frequent in the feedback documents and infrequent in the corpus.

With the advent of word embedding techniques, new Query Expansion methods

leveraging semantic term representations have been proposed [142, 231, 77]. Instead

of exploiting the pseudo-relevance feedback documents using statistical methods

to select the expansion terms, those methods choose them by evaluating the se-

mantic similarity between the query terms and the corpus vocabulary. Generally,

they expand a query with the closest terms in the word embedding space, i.e., the

most semantically similar terms. For example, Kuzi et al. [142] propose to use the

Word2Vec model [191, 192] to compute latent representations of all terms appear-

ing in the corpus on which the search is conducted, and to apply cosine similarity

to select expansion terms that are semantically related to the query. Similarly, Roy

et al. [231] rely on Word2Vec to obtain word embeddings for their corpus vocabu-

lary. To select the expansion terms for a given query, the authors employ a k-nearest

neighbor method based on cosine similarity. The authors found their approach

could improve over their underlying retrieval model without expansion but not over

the pseudo-relevance feedback expansion model RM3. Diaz et al. [77] investigate

whether training word embedding models such as Word2Vec and GloVe [216] lo-

cally, i.e., on the available test collection, instead of using globally trained models,

i.e., models trained on general domain-agnostic texts, can benefit Query Expansion.

The authors found locally-trained word embeddings to generally improve the per-

formance of Query Expansion w.r.t. globally-trained word embeddings. The most

significant drawback of those methods, which do not deliver significant improve-
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ments over the pseudo-relevance feedback approaches, is the lack of a mechanism

to identify the most prominent terms from a retrieval perspective, i.e., the terms

that allow improving the identification of the relevant documents, as only the terms’

semantic relatedness is considered. Moreover, after expansion, the authors rely on

traditional retrieval models based on lexical term matching, which notoriously do

not account for semantic relatedness.

More recently, the contextual word embedding techniques renovated the research

community’s interest in Query Expansion, and novel approaches based on this new

kind of embedding were proposed [297, 200, 278]. The authors of new approaches,

aware of the limitations of previous methods based on word embeddings, combine

the new contextual word embedding techniques with the pseudo-relevance feedback

approach.

Zheng et al. [297] propose a novel Query Expansion method based on contex-

tual word embeddings that leverage a BERT-based [76] re-ranker [202] in a pseudo-

relevance feedback fashion. After a first re-ranking round, the most relevant text

chunks are extracted from the top re-ranked documents and used to compute ad-

ditional relevance scores for the documents. Finally, the newly computed relevance

scores are aggregated with the original ones to obtain the scores to compute the

final documents ranking. Their experimental evaluation shows that the proposed

model delivers promising retrieval effectiveness improvements. Naseri et al. [200]

revisit the pseudo-relevance feedback approaches to Query Expansion by employing

the similarity between the query’s contextual word embeddings and those of the

feedback documents in deriving probability values to use in in place of those of the

original formulation. Although improving over non-contextual Query Expansion

methods based on word embeddings, the model proposed by Naseri et al. [200] only

performs on par with the classic expansion method RM3 [123]. Wang et al. [278]

have recently introduced ColBERT-PRF, a novel query expansion method based on
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the neural retrieval model ColBERT [136] and pseudo-relevance feedback. After a

first ranking stage with ColBERT, this method leverages Kmeans clustering [180] to

group the term embeddings of a certain number of feedback documents. Then, it

selects the tokens corresponding to the cluster centroids with higher Inverse Docu-

ment Frequency scores [129] for expanding the original query. The authors report

encouraging improvements over ColBERT without query expansion as well as many

other baselines. Unfortunately, despite some promising improvements in terms

of retrieval effectiveness, previous Query Expansion methods based on contextual

word embeddings suffer from poor efficiency [278], limiting their applicability in

real-world applications.

5.1.2 Personalized Query Expansion

In the early 2000s, the increasing popularity of social tagging systems, where users can

associate public tags with online items such as Web pages, attracted some attention

from the research community thanks to the large amount of accessible data provided

by those platforms. In particular, researchers leveraged those data to derive test

beds for Personalized Information Retrieval in social network-like environments [40,

41, 42, 43, 284, 276, 299]. Among the approaches for personalization proposed in

this period, several Personalized Query Expansion methods were presented [29, 32,

37, 39, 299, 198, 282, 44]. Most of the works in this area approach the selection

of personalized expansion terms by leveraging both term co-occurrences statistics

and social relations among the users. For example, Bender et al. [29], Bertier et al.

[32], Mulhem et al. [198], and Wu et al. [282] derive terms for Personalized Query

Expansion by leveraging the relations and similarities among users, documents, and

tags. Biancalana and Micarelli [37] propose a method for selecting expansion terms

based on a three-dimensional co-occurrence matrix from which the authors derive

relations among the query terms appearing in a document, terms associated with
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similarly tagged documents, and those appearing in user-related documents, among

which the authors select the expansion terms. Bouadjenek et al. [39, 44] approach

Personalized Query Expansion by employing a combination of social proximity and

semantic similarity to identify the terms similar to those mostly used by a given

user and his social relatives. Unfortunately, we found most of the previous works to

lack comparisons with other Personalized and non-Personalized Query Expansion

methods, making it difficult to draw general conclusions about their effectiveness.

Other than the works related to social tagging systems, the literature comprises

some approaches leveraging other contextual data. For example, Zhu et al. [304]

leverage the co-occurrences of the query terms with terms from user-related docu-

ments located in their desktop environment to select personalized expansion terms.

Some works focus on building ontology-based user profiles from previous queries

formulated by the user [51] and previously accessed documents [110]. Palleti et al.

[207] build user profiles by leveraging collaborative information approaches and

derive personalized expansion terms from those. Chirita et al. [62] exploit local

user-related information to derive personalized terms and expand the queries before

submitting them to Web search engines. This way, the authors preserve the users’

privacy and anonymity while enhancing their Web search experience. Sarwar et al.

[239] leverage users’ status messages from social networks to identify personalized

expansion terms for their queries. The authors first retrieve the most relevant sta-

tus messages with BM25 and then select from those the expansion terms relying on

their Inverse Document Frequency. Again, those works lack comparisons with other

Personalized and non-Personalized Query Expansion methods.

More recently, some researchers have addressed Personalized Query Expansion

using word embeddings [143, 300, 13]. Similarly to previous works leveraging non-

contextual word embeddings for Query Expansion, the authors mostly employ word

embeddings computed with Word2Vec and evaluate cosine similarity to assess the
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semantic relatedness of the query terms and, in this case, the user vocabulary to select

the expansion terms. Amer et al. [13] conduct an exploratory study on the use of

Word2Vec’s word embeddings for Personalized Query Expansion. Specifically, they

compare the performance of a Query Expansion method that selects expansion terms

based on their cosine similarity with the query term embeddings when employing

locally trained embeddings, i.e., embeddings trained individually for each user only

on the specific user-related texts, and globally trained embeddings, i.e., embeddings

trained on the whole corpus. Similarly to previous Query Expansion methods based

on word embeddings, the authors employ the word embeddings only during the

expansion process and rely on a Language Model with Dirichlet smoothing [293]

as their retrieval model. The authors report that the expansion methods did not

improve the retrieval effectiveness of the original queries, and the globally trained

embeddings outperformed the locally trained ones. Kuzi et al. [143] address the

Personalized Query Expansion task in the context of email search. Similarly to the

work by Amer et al. [13], the authors compared a Query Expansion method based

on word embeddings with globally trained word embeddings and locally trained

ones with the pseudo-relevance feedback expansion model RM1 [146]. The authors

report findings similar to those of Amer et al. [13], but the personalized variant

of their Query Expansion method based on word embeddings allows to improve

the performance of the original queries. Zhou et al. [300] focus on enriching user

profiles with information from external sources and propose two Personalized Query

Expansion methods based on word embeddings and topic modeling. The model

based on word embeddings ranks the user-related term embeddings by their cosine

similarity with the sum of the query term embeddings and selects the top n for

expansion. The authors report good results on folksonomy-based datasets for both

the proposed models.

As we reported for the other works about Personalized Query Expansion, most
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of the authors of methods based on word embeddings did not compare their ap-

proaches with other Personalized Query Expansion methods. We argue that the

lack of standard Personalized Search test collections, as we will discuss in Chapter 6,

and of publicly available implementations for all the presented Personalized Query

Expansion methods poses severe issues in determining the state-of-the-art in this

context. However, we highlight that many proposals, such as those based on social

interactions, are of difficult application in domains different from the original ones.

In this work, we focus on the adoption of contextual word embeddings in Per-

sonalized Query Expansion. More specifically, to overcome the limitations of both

semantic and lexical methods previously reported, we propose an approach that com-

bines the usage of contextual word embeddings with a clustering-based procedure,

which allows for identifying the topic of interest for each user and the terms that better

represent the user’s specific preferences. Moreover, we also pay particular attention

to the efficiency issue affecting the Query Expansion methods based on contextual

word embeddings reported in the previous non-personalized works [297, 200, 278]

and propose an approximation procedure that allows our approach to achieve a

sub-millisecond expansion time and to scale even in very data-rich scenarios.

For transparency and to encourage future work in this area, we conduct our

experimental evaluation on publicly available datasets (see Section 5.4.1) and share

the code of both the implementation of the novel Personalized Query Expansion

approach we present in Section 5.2 and those of the baselines (Section 5.4.2), which

we implemented from scratch, as well as all the information needed to reproduce our

experimental evaluation (Section 5.5).
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5.2 The Proposed Approach

In this section, we present PQEWC3 the method we propose to tackle the challenges

introduced by the adoption of contextual word embeddings in Personalized Query

Expansion, as described at the beginning of this chapter and in Section 5.1. First,

in Section 5.2.1, we describe the approach we propose to identify the embeddings

most representative of the user’s interests that are also discriminative from a retrieval

perspective (i.e., the embeddings that allow identifying documents relevant w.r.t. the

query and the user preferences), and show how to avoid selecting multiple expansion

terms with similar semantic meanings. Then, we introduce our expansion terms

selection strategy and an effective mechanism to drastically reduce the number of

computations required in the expansion terms selection stage (Section 5.2.2). Finally,

in Section 5.2.3, we introduce ColBERT [136], a recent state-of-the-art retrieval model,

which we enhance with our Personalized Query Expansion approach. We also

discuss how we compute the relevance score of a document w.r.t. an expanded

query.

In the following, we assume to have gathered a set of related textual content for

each user, such as documents authored by the user, previously accessed web pages,

user-generated content [140] (e.g., product reviews or tweets), previously issued

queries, or other kinds of textual content related to the user.

5.2.1 Word Embeddings Representative of the User Interests

In this section, we introduce the first step of our proposed approach, which aims at

identifying the word embeddings that better represent the interests of a specific user

that are also discriminative from a retrieval perspective (i.e., the embeddings that

allow identifying documents relevant w.r.t. the query and the user preferences).

3Personalized Query Expansion With Wontextual word embeddings, pronounced “quick”.
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Figure 5.1: Embedding space partitioning example.

The method we propose aims at pre-computing bags of candidate personalized

expansion terms (in the form of word embeddings), among which we select those

most related to the current search performed by the user (see Section 5.2.2). To identify

the specific user’s interests, we first partition the embedding space into regions

where embeddings with similar semantic meanings lay. We do this by grouping the

embeddings of all terms in the document collection using the hierarchical density-

based clustering method HDBSCAN [187]. We rely on density-based clustering

instead of the more commonly used centroid-based methods, such as k-means [180],

because estimating a reasonably good number of centroids/clusters a priori can be

difficult, and finding an optimal configuration can be computationally expensive.

Once the clusters of the collection’s term embeddings have been found, we use

the nearest centroid classifier [265] (a.k.a. Rocchio classifier [183]) defined upon

them to classify and group the user-related term embeddings. As exemplified in

Figure 5.1, we partition the embedding space following the document collection’s

topic distribution in that same latent semantic space. Thus, relying on the nearest

centroid classifier, we classify and group the user-related term embeddings according

to the identified document collection’s topics.
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To identify the clusters that better capture the specific user interests and contain

discriminative embeddings, we propose a function ϕ : R → R inspired by the TF-

IDF [233] formulation and defined as follows:

ϕ(cui) =
|cui|∑k
j=1 |cuj|

· log
∑k

j=1 |cj|
|ci|

(5.1)

where k is the number of the latent semantic space regions identified by the

application of HDBSCAN and the nearest centroid classifier to the embeddings of

the document collection, cuj is the set corresponding to the cluster of the user u’s term

embeddings laying in the semantic space region j, and cj is the set corresponding to

the cluster of the collection’s term embeddings laying in that same region. Similarly,

cui and ci are the sets corresponding to the cluster of the user u’s term embeddings and

the cluster of the collection’s term embeddings that lay in the semantic space region i,

respectively. The first part of the formula, inspired by the Term-Frequency [171], tells

us how frequently a term embedding of the user u lays within a specific latent region

identified by HDBSCAN and the nearest centroid classifier, which we interpret as

the user interest in the topic of the document collection represented by that region

in the latent space (in other words, it is the percentage of user’s term embeddings

that are in region ci). The second part of the formula expresses the specificity of a

topic (represented here by a term embedding cluster and its corresponding latent

region), quantified as the inverse function of the number of term embeddings of the

collection that lay in the related region ci of the latent space. We use this quantity to

weigh the user interest in a specific topic w.r.t. its discriminative power, similarly to

the Inverse-Document-Frequency [129] in the TF-IDF formulation.

We use ϕ to rank and identify the top n clusters of user’s term embeddings from

which we select the expansion terms at query time, as it will be discussed in the next

section. This process is conducted for each user separately. The whole procedure is

shown in Figure 5.2.
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Figure 5.2: Offline step: user term embeddings clustering

We use a collection-level clustering approach instead of separately generating the

term clusters from each user’s vocabulary so that the resulting user-term clusters

reflect the distribution of the topics of the collection in the embedding space. More-

over, as the clustering procedure is independent of the number of term embeddings

related to each user, we do not incur to generate low-quality clusters when a user has

few associated term embeddings. As we will show in Section 5.5.4, this choice allows

us to achieve better results than partitioning the embedding space differently for each

user by applying the clustering method directly on each user’s term embeddings.

Using a clustering-based approach to pre-compute bags of candidate expansion

terms for each user has two beneficial effects. Firstly, it lowers the chances of ex-

panding the queries with terms that are redundant with each other, as we assign

semantically close terms to the same clusters and select only one per cluster, as later

discussed in Section 5.2.2. Secondly, by only considering the topnmost representative

clusters for each user, we reduce the computations required to choose the expansion

terms at query time as the number of the candidate expansion terms is drastically

lower than the total number of user-related terms, thus allowing to achieve far better

efficiency and greater scalability than other recent Query Expansion methods (see

Section 5.5.2).
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5.2.2 Selection of Expansion Terms

In this section, we introduce the procedure we propose to select the expansion term

embeddings from the user-related clusters, and the approximation we employ to

drastically decrease its computation time.

Once we have built and identified the most representative clusters for a specific

user following the method presented in the previous section, we select from each

user-related cluster the term embedding with the highest maximum cosine similarity

with the query term embeddings, and employ those selected for expansion. In

other words, given a user-related cluster, for each term embedding in the cluster

we compute its cosine similarity with each query term embedding, and take the

maximum value. Then, we rank the term embeddings in the cluster according to their

maximum similarity score and pick the one with the highest value. We repeat this

operation for each of the most representative user-related cluster identified following

the method presented in the previous section.

During the selection of expansion term embeddings, we are only interested in

the maximum similarity value between each user term embedding and query term

embeddings. Therefore, all the comparisons that do not produce a maximum sim-

ilarity score are potentially unnecessary. As we cannot predict which comparison

will result in a maximum similarity value without actually performing all of them,

we propose to approximate our selection procedure to maximize efficiency. To do

so, we first assign to each cluster the query term embedding most similar to the

cluster centroid, computed as the average of the user term embeddings belonging to

it. In doing so, we implicitly suppose the assigned query term embedding would

produce the maximum similarity values for all the term embeddings belonging to

that cluster. Consequently, for each user-related cluster, we only evaluate the simi-

larity between its term embeddings and the embedding of the query term assigned

to that cluster. Finally, for each cluster, we select the embedding that obtained the
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highest similarity score to expand the query. This way, we considerably reduce the

number of comparisons needed to select the Personalized Query Expansion terms,

while leaving the effectiveness practically unaltered, as later shown in Section 5.5.4.

For example, for a query representation composed of 32 embeddings, such as those

computed by ColBERT [136] (introduced in the next section), and a user with 16 as-

sociated term clusters of 100 terms each, we reduce the number of comparisons from

32× 100× 16 = 51 200 to only 32× 16 + 16× 100 = 2 112, thus drastically decreasing

the computation time.

5.2.3 Query Expansion with ColBERT

ColBERT is a neural retrieval model recently introduced by Khattab and Zaharia

[136] that achieves state-of-the-art performances. Unlike other recent retrieval mod-

els based on Neural Networks and contextual word embeddings [158], ColBERT

directly leverages query and document term embeddings to estimate the relevance

scores of the documents in response to a query instead of, for example, comparing

query and document embeddings obtained by a pooling operation over their term

embeddings [224, 133, 283, 93, 167], such as taking their average. This characteristic

makes ColBERT a good candidate model to study Query Expansion with contextual

word embeddings, as we can add the additional expansion term embeddings to the

query representation before computing the documents’ relevance scores seamlessly.

More formally, given a text t consisting of a sequence of tokens [t1, . . . , tn], ColBERT

computes a matrix of size n × D, where n is the number of tokens in the text and

D is the dimension of each token representation. Under the hood, Colbert relies on

BERT [76] to generate contextual vector representations of queries’ and documents’

terms. On top of BERT, a linear layer with no activation function controls the em-

beddings’ dimension D, compressing the BERT representations to reduce memory

consumption. In addition, Colbert leverages BERT’s capabilities to augment queries
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shorter than a predefined length, generating additional vectors that contribute to the

estimation of the documents’ relevance scores. The final query representations have

a fixed size of 32 embeddings. ColBERT computes the relevance score of a document

d in response to a query q as the sum of the maximum cosine similarities among the

document’s and the query’s term embeddings:

sq,d =
∑
qi∈q

max
dj∈d

cos(qi,dj) (5.2)

where q and d are the sets of the query term embeddings and the document term

embeddings, respectively, and qi and dj are the embeddings of specific query and

document terms. In the actual implementation, Colbert normalizes the term rep-

resentations to a unit L2 norm and evaluates the similarity between queries’ and

documents’ term embeddings using the dot product, which is equivalent to the

cosine similarity in this particular case.

Although the query augmentation mechanism leveraged by ColBERT is effective

in enhancing its retrieval effectiveness, Wang et al. [278] have shown that an additional

query expansion stage can improve it even further, paving the way for future studies

on query expansion with contextual word embeddings.

In this work, we enhance ColBERT through Personalized Query Expansion with

contextual word embeddings and show that our proposed approach significantly

improves its retrieval effectiveness with minimal overhead. Our proposed method

outperforms Wang et al. [278] approach and recent Personalized Query Expansion

methods based on word embeddings [143, 300] both in retrieval effectiveness (Sec-

tion 5.5.1) and efficiency (Section 5.5.2).

For Query Expansion purposes, we extend Equation (5.2) to account for the expan-

sion term embeddings by taking a convex combination of the scores of the original

query term embeddings and those produced by the expansion term embeddings as
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follows:

sq,e,d = (1− γ) ·
∑
qi∈q

max
dj∈d

cos(qi,dj) + γ ·
∑
ek∈e

max
dj∈d

cos(ek,dj) (5.3)

where q, e and d are the sets of the query term embeddings, the personalized

expansion term embeddings, and the document term embeddings, respectively, qi,

ek and dj are the embeddings of specific query, expansion, and document terms, and

γ is a parameter that controls the influence of the original and the expansion term

embeddings on the final score.

5.3 Personalized Query Expansion Framework

In this section, we describe the Personalized Query Expansion framework we em-

ployed for the comparative evaluation reported in the following sections. This frame-

work allowed us to test different Personalized Query Expansion approaches isolating

their contribution from the rest on the retrieval pipeline.

Figure 5.3 depicts the Personalized Query Expansion framework we relied on for com-

paring the Personalized Query Expansion methods presented in Section 5.4.2 and

our newly proposed approach introduced in Section 5.2. The framework comprises

one module that generates the vector representations of the terms of each document

of the collection, those of the user-related documents’ terms, and those of the query

terms. Once computed the user-related term embeddings and the query term em-

beddings, the Expansion Module selects the term embeddings for expansion among

those of the user and adds them to the query. Finally, a scoring function computes a

personalized relevance score for each document of the document collection by com-

paring the representations of its terms with those of the expanded query terms. In

our experiments, we rely on ColBERT [136] to generate the term representations, one

of the Personalized Query Expansion baselines described in Section 5.4.2, or our novel
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Figure 5.3: Personalized Query Expansion Framework.

approach introduced in Section 5.2 as the Expansion Module, and we employed Equa-

tion (5.3) to compute the personalized relevance scores for the documents. As the

main contribution we present in this work is the novel Personalized Query Expansion

method introduced in Section 5.2, the framework we implement for the evaluation is

functional to comparatively evaluate the effectiveness of the proposed approach with

previous methods at the state-of-the-art with ease, allowing us to switch between the

Query Expansion models seamlessly.

For evaluation purposes, we apply our framework to re-rank the results retrieved

for the initial queries by BM25 [226]. This choice was conditioned by the employed

benchmark, which, by construction, is meant to be used for re-ranking BM25 results,

as described in Chapter 6. The lack of publicly available large-scale datasets of

high-quality is a known issue in Personalized Search Evaluation, as reported by

Tabrizi et al. [257] and as we will discuss in greater detail in Chapter 6. Moreover,

the approach used to derive evaluation datasets for Personalized Query Expansion

from the data of social tagging platforms used in the past (see Section 5.1.2) has

been criticized for the low-quality of the obtained benchmarks [257] and none of
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these datasets is currently available. We refer the reader to Chapter 6 for a detailed

description of the current state of the datasets for Personalized Search Evaluation. We

also acknowledge, the re-ranking setting is often considered for evaluation purposes

of novel retrieval models [202, 136, 158] based on contextual word embeddings and

Transformer architectures [272], such as ColBERT, to leverage the efficiency of fast

first-stage retriever while retaining much of the effectiveness on these new models.

In Section 5.5, we report both retrieval effectiveness statistics when only the re-

ranker scores are employed and those obtained when combining them with the BM25

scores. In the latter case, we aggregated the two relevance scores via the weighted

sum fusion algorithm provided by ranx, a Python library presented in Chapter 8. In

this context, weighted-sum fusion works as a convex combination of the BM25 and

re-ranker scores:

final_score = (1− λ) · a+ λ · b (5.4)

where a and b are the relevance scores computed by BM25 and the re-ranker, re-

spectively, and λ is a parameter that controls the influence of the two on the final

score.

5.4 Experimental Setup

The experiments reported in this section aim to answer the following four research

questions:

RQ1 Can a Personalized Query Expansion approach based on contextual word em-

beddings enhance ColBERT’s retrieval effectiveness?

RQ2 Is our approach more effective than previously proposed expansion methods?

RQ3 Is our approach more robust than previously proposed expansion methods?

RQ4 Is our approach more efficient than previously proposed expansion methods?
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RQ5 Does our approach improve the expansion terms diversity compared to previ-

ous Personalized Query Expansion methods?

RQ6 Does the collection-level term clustering strategy proposed in Section 5.2.1 allow

us to achieve better retrieval effectiveness than a user-level one?

RQ7 Is Equation (5.1) effective in identifying the user term clusters that better rep-

resent the user’s interests, thus enhancing the retrieval effectiveness of our

proposed approach?

RQ8 Does our approximated expansion terms selection perform on par of the origi-

nal procedure proposed in Section 5.2.2 in terms of retrieval effectiveness?

RQ9 Does the approximation proposed to select the personalized expansion terms

increase the efficiency w.r.t. the original procedure proposed in Section 5.2.2?

To answer the research questions RQ1, RQ2, RQ3, RQ4, and RQ5 we conduct a

comparative evaluation of the retrieval effectiveness, robustness, and efficiency of

different personalized and non-personalized Query Expansion methods and analyze

the similarity among the terms they select for expansion. Similarly, to answer the re-

search questions RQ6, RQ7, RQ8, and RQ9, we compare our proposed Personalized

Query Expansion approach described in Section 5.2 with several variants.

In the following sections, we present the dataset we employ for conducting our

evaluations (Section 5.4.1), introduce the baselines we have selected (Section 5.4.2),

outline the training setup (Section 5.4.3) and the hyper-parameters optimization

procedure (Section 5.4.4), and introduce the evaluation metrics (Section 5.4.5) used

to assess the models’ effectiveness. We make all our code available for future works

and reproducibility purposes4.

4We will add a link to the repository upon acceptance
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5.4.1 Datasets

In this section, we introduce the datasets employed to conduct our experimental eval-

uation. Due to the lack of standardized test collections for Personalized Search, we

rely on the Personalized Results Re-Ranking benchmark we later propose in Chap-

ter 6. This benchmark accounts for 18 million documents and 1.9 million queries

divided into four datasets in the following domains: Computer Science, Physics,

Psychology, and Political Science. As later described, we built the datasets by ap-

plying and refining the PERSON methodology [257], which consists in leveraging

academic papers to derive user-query-document triplets. Specifically, the authors of

PERSON proposed to consider, for each paper, the title as a query, the documents

listed in its references section as relevant documents, and one of its authors as the

user submitting the query. Since titles of academic papers are well-formed natural

language, we applied stop-word removal and Krovetz stemming to obtain queries

closer to real-world ones.

To compose the benchmark datasets, we started by collecting paper titles, ab-

stracts, references, and other metadata for several millions of papers across multiple

disciplines from the Microsoft Academic Knowledge Graph [86, 243]. Once composed

and cleaned the document collections, we generated candidate queries following the

approach we previously discussed. Then, to ensure the personalization potential for

those queries, we discarded the queries whose users published less than 20 papers

before the one used as the query. As discussed by Tabrizi et al. [257], the authors of

PERSON, not all the documents listed in the references section of a paper are neces-

sarily relevant — from an Information Retrieval perspective — to the topic expressed

by a query constructed from the paper’s title. Therefore, to reduce the presence of

spurious relevant documents and malformed queries, we considered well-formed

queries only those for which BM25 [226] places relevant documents in the top rank-

ing positions. Likewise, for each of the remaining queries, we retained only the
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Table 5.1: Statistics of the employed benchmark datasets.

Computer Science Physics Political Science Psychology

# documents 4 809 684 4 926 753 4 814 084 4 215 384
# train queries 552 798 728 171 162 597 544 882
# validation queries 5 583 7 355 1 642 5 503
# test queries 6 497 6 366 5 715 12 625
# relevants (avg ± sd) 3.25± 3.27 4.17± 4.15 3.88± 5.17 4.73± 4.4

relevant documents present in the top results retrieved by BM25. Finally, to closely

resemble real-world scenarios — where all searches in the test set happen after those

in the training set — the datasets were split chronologically into training and test

sets. Training sets were then randomly split into training sets and validation sets,

using a splitting ratio of 99 : 1. Table 5.1 reports some statistics about the datasets.

5.4.2 Baselines

In this section, we introduce the baselines employed in our comparative evaluation.

First, we compare our proposed Personalized Query Expansion-enhanced ColBERT

to its original implementation, to assess whether our proposed approach is able

to improve its retrieval effectiveness. Then we considered other query expansion

approaches based on word embeddings, three of which take into account the user

preferences, to verify if our proposed approach is improving over the state-of-the-art.

In all our experiment, we consider BM25 [226], our first-stage retriever, for reference.

• ColBERT: ColBERT [136] is the recent BERT-based retrieval model introduced

in Section 5.2.3. We consider ColBERT as a baseline to assess whether the com-

pared query expansion methods are able to enhance its retrieval capabilities.

• ColBERT-PRF: ColBERT-PRF [278] is a recently introduced query expansion

method based on ColBERT relying on pseudo-relevance feedback [228]. Specif-

ically, given a query, it first ranks the documents using ColBERT, then clus-
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ters the term embeddings of a certain number of feedback documents with k-

Means [180] and selects the tokens corresponding to the cluster centroids with

higher Inverse-Document-Frequency scores for expanding the original query.

We consider ColBERT-PRF as a baseline to assess whether personalization is

meaningful for query expansion in our context.

• Baseline 1: It is a Personalized Query Expansion method introduced by Kuzi

et al. [143] that selects expansion terms based on the cosine similarity between

their embeddings and the query term embeddings. Specifically, it first com-

putes the cosine similarity between each user-related term embedding and each

query term embedding. Then, it softmax-normalizes those similarities to get

a probability distribution of the importance of user-related term embeddings

w.r.t. each query term embedding. Finally, it sums the log probabilities of each

user-related term embedding and selects the top-scored ones for expanding the

original query.

• Baseline 2: It is a Personalized Query Expansion method introduced by Zhou

et al. [300] that selects expansion terms based on the cosine similarity between

their embeddings and the sum of the query term embeddings. That is, it simply

computes the cosine similarities among the user-related-term embeddings and

the sum of the query term embeddings and selects the top-scored ones for

expanding the original query.

• Baseline 3: It is a variant of Baseline 2 we introduce by using the CLS token

embedding in place of the sum of the query term embeddings. The CLS to-

ken is a special token appended by BERT [76] at the beginning of each text

before computing its contextual word embeddings. It was originally intro-

duced for sentence-level classification tasks but its embedding was also used

in Information Retrieval as a single embedding representation of queries and
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documents [224, 133, 283, 167]. At a theoretical level, the CLS token embedding

is a sort of weighted sum of the other token embeddings and represents the

semantic meaning of the input text as a whole.

We apply all the expansion methods before re-ranking the BM25 results with Col-

BERT. We do not consider the Personalized Query Expansion approach based on

word embeddings proposed by Wu et al. [282] as it requires data unavailable in our

setting. We do not consider other Personalized Query Expansion approaches based

on word embeddings, such as that proposed by Amer et al. [13], as they are almost

identical to the considered baselines or their authors did not report encouraging

results.

5.4.3 Implementation Details

We relied on PyTorch [215], HuggingFace’s Transformers [280], and PyTorch Light-

ning [84] for implementing and training ColBERT. We employed the cuML’s GPU-

based implementation of HDBSCAN [222] for clustering purposes. Finally, we im-

plemented and optimized all the considered expansion methods with Numpy [114]

to allow for a fair CPU-based efficiency comparison. To further ensure the repro-

ducibility of the experiments, we relied on Hydra [286] to store the experiments’

configurations.

We trained ColBERT on an NVidia® RTX A6000 GPU for 20 epochs following the

instruction reported in its original paper [136]: learning rate set to 3 × 10−6, batch

size set to 32, number of embeddings per query set to 32, Adam optimizer [137],

and pairwise softmax cross-entropy loss over a triplet composed of a query, a rele-

vant document, and a non-relevant document. During training, we sampled hard

negatives from the top results retrieved by BM25 and used the other documents in

the batch as random negative samples. Since the machine used for experimentation

only had 64GB of RAM, we set the maximum number of embeddings per document
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to 128 and truncated the longer ones. We also set the embedding dimension to 16

to reduce the memory footprint further. As all the compared models but BM25,

which is a classical retrieval model, share the embeddings generated by ColBERT,

they are all affected in the same way, preserving the fairness of our comparison.

To reduce the time needed to find the term embedding clusters with HDBSCAN,

we heavily down-sampled the embeddings of each collection from ~500 to 10 mil-

lion. For ColBERT and all its Query Expansion-enhanced variants, we aggregated

the newly computed document relevance scores with the BM25 scores shared with

the employed datasets (see Chapter 6), using the weighted sum fusion algorithm

provided by ranx (see Chapter 8) after optimization on the validation set. Finally,

we removed the word embeddings of stop-words from the possible embeddings to

choose for query expansion.

5.4.4 Hyper-parameters Tuning

All the baseline expansion methods considered in our comparison and the proposed

one have hyper-parameters controlling their behavior, which we optimize on the

validation set. Specifically, they all have a parameter controlling the number of ex-

pansion terms to add to the queries, which in the case of PQEWC also corresponds

to the number of user-related term embedding clusters to consider as the most rep-

resentative of the user interests. ColBERT-PRF, Baseline 1, and PQEWC also have

a parameter controlling the importance of the expansion terms when computing

the document relevance scores, i.e., the expansion terms’ weight. Finally, ColBERT-

PRF has a parameter controlling the number of feedback documents to consider as

pseudo-relevance feedback and a parameter controlling the number of clusters for

grouping the feedback documents’ term embeddings. We also report here the best

values for the λ parameter of Equation (5.4) found on the validation set of each

dataset for each model. We consider the following intervals and sets to generate the
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hyper-parameters configurations during optimization:

• Number of expansion terms in the interval [1, 32];

• Expansion terms weight in the interval [0.1, 0.9] with a step of 0.1;

• Number of feedback documents in the interval [1, 10];

• Number of clusters in the set [8, 16, 24, 32, 40, 48, 56, 64];

• λ in the interval [0.1, 0.9] with a step of 0.1.

We optimized Baseline 2 and Baseline 3 with a greed search on the validation set as

they have only one hyper-parameter, the number of expansion terms. We fine-tuned

the hyper-parameters of ColBERT-PRF, Baseline 1, and PQEWC with the Python

optimization package Optuna [9], testing 100 hyper-parameters configurations for

each of them. After the models’ parameters optimization, we proceeded optimizing

the λ parameter of Equation (5.4) using the greed search already implemented in

ranx, the Python library we employed for score fusion. Table 5.2 reports the best

hyper-parameters configuration for each method and dataset.

Table 5.2: Best hyper-parameters configurations. CS, PHY, PS, PSY stand for Com-
puter Science, Physics, Political Science, and Psychology, respectively.

Model # Feedback Docs # Clusters # Expansion Terms Exp. Terms Weight λ

CS PHY PS PSY CS PHY PS PSY CS PHY PS PSY CS PHY PS PSY CS PHY PS PSY

ColBERT — — — — — — — — — — — — — — — — 0.8 0.8 0.8 0.9
ColBERT-PRF 6 1 1 1 16 24 24 16 8 22 3 13 0.1 0.1 0.1 0.1 0.8 0.8 0.8 0.8
Baseline 1 — — — — — — — — 32 30 19 30 0.2 0.2 0.3 0.2 0.9 0.9 0.8 0.9
Baseline 2 — — — — — — — — 16 14 32 22 — — — — 0.9 0.9 0.9 0.9
Baseline 3 — — — — — — — — 8 4 10 3 — — — — 0.8 0.9 0.8 0.9
PQEWC — — — — — — — — 32 32 31 32 0.3 0.3 0.4 0.3 0.9 0.9 0.9 0.9

5.4.5 Evaluation Metrics

To evaluate the effectiveness of the considered models, we re-ranked the top 1000

results retrieved by BM25 and we employed 1) Mean Average Precision (MAP), 2)

Mean Reciprocal Rank (MRR), 3) Normalized Discounted Cumulative Gain (NDCG), and
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4) Rank-biased Precision (RBP). MRR and NDCG were computed on the top 10 docu-

ments retrieved by each model, whereas MAP was computed on the top 100. RBP’

persistence was set to 0.95. Statistical significance testing was conducted using a Bon-

ferroni corrected Two-sided Paired Student’s t-Test [244] with p < 0.005. To evaluate

the robustness of the query expansion methods, we employ the Robustness Index

(RI) [66]. RI is defined as N+−N−

|Q| , where N+ and N− are the amounts of queries

whose results lists are improved or worsened by an expansion method in terms of

Average Precision (at 100) w.r.t. ColBERT, and |Q| is the total number of queries. The

higher the RI, the more robust an expansion method is. Metrics computation and

comparison were conducted using the Python evaluation library ranx [24].

5.5 Results and Discussion

In this section, we present the results of our comparative evaluation. First, we discuss

the retrieval effectiveness, the efficiency, and the diversity of the terms chosen for

expansion by the compared models in Section 5.5.1, 5.5.2, 5.5.3, respectively. Then,

we ablate the design choices of our proposal in Section 5.5.4. Finally, we summarize

our findings in Section 5.5.5.

5.5.1 Effectiveness

In this section, we discuss the performances of each of the compared models as well

as the results of their fusion with the first-stage retriever, BM25, aiming to answer

our research questions RQ1, RQ2, and RQ3.

First, we compare the results of the re-ranking models without the document

scores interpolation of Equation (5.4). As shown in Table 5.3, all the ColBERT-based

re-rankers were able to consistently outperform the first-stage retriever, BM25, by

a considerable margin. However, there are some clear differences in the benefits
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Table 5.3: Effectiveness of the compared models. † and ‡ denote significant improve-
ments in a Bonferroni corrected Two-sided Paired Student’s t-Test with p < 0.005
over ColBERT and over all the other considered models, respectively. Best results are
highlighted in boldface. Best baselines’ results are underlined.

Model Computer Science Physics

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 12.25 48.92 22.45 13.22 — 12.77 53.68 26.88 16.05 —
ColBERT 18.10 56.56 28.24 17.62 — 17.91 61.86 32.92 20.20 —
ColBERT-PRF 18.56† 56.82 28.68† 17.90† 20 18.77† 61.50 33.76† 20.75† 17
Baseline 1 18.46† 56.88 28.64† 17.86† 5 18.35† 62.50 33.40† 20.55† 9
Baseline 2 17.92 56.23 28.11 17.47 0 17.93 61.83 32.97 20.26 4
Baseline 3 18.18 56.86 28.43 17.66 6 18.05† 62.56 33.14† 20.30 10
PQEWC 19.03‡ 57.66† 29.23‡ 18.23‡ 15 19.17‡ 63.81‡ 34.46‡ 21.12‡ 22

Model Political Science Psychology

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 13.27 50.23 24.07 14.24 — 12.58 51.19 23.93 13.84 —
ColBERT 16.06 53.51 26.40 16.11 — 21.39 62.78 33.39 20.17 —
ColBERT-PRF 16.42† 53.51 26.86† 16.33† 11 21.92† 62.53 33.83† 20.43† 10
Baseline 1 16.39† 53.61 26.66† 16.39† 7 21.60† 62.98 33.54 20.29† 3
Baseline 2 15.92 52.80 26.11 16.04 -1 21.22 63.26 33.40 19.99 -2
Baseline 3 15.49 52.85 25.84 15.74 -5 21.37 62.76 33.37 20.15 4
PQEWC 17.24‡ 55.10‡ 27.71‡ 16.99‡ 14 22.30‡ 64.21‡ 34.47‡ 20.75‡ 12

brought by the Query Expansion methods to ColBERT. ColBERT-PRF, our non-

personalized Query Expansion baseline, achieved statistically significant improve-

ments over vanilla ColBERT for all the considered datasets in MAP, NDCG, and RBP,

but not MRR. In two cases, Physics and Psychology, ColBERT-PRF even decreased in

MRR w.r.t. ColBERT. Baseline 1 achieved the best performances among the Person-

alized Query Expansion baselines, generally improving vanilla ColBERT’s retrieval

effectiveness for all the considered datasets and metrics. Compared to ColBERT-PRF,

Baseline 1 achieved slightly worse results in all the considered evaluation metrics but

MRR. Baseline 2 and Baseline 3 were not able to significantly improve over vanilla

ColBERT and sometimes they even harmed its retrieval effectiveness, especially in the

Political Science dataset. The main difference between those baselines and the other

Query Expansion approaches is that they employ a pooling operation over the query

term embeddings before selecting the expansion ones. In other words, they select

the expansion term embeddings by their relatedness with the query represented as a

whole (single embedding) instead of evaluating it by considering the query term em-
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Table 5.4: Effectiveness of the compared models when the document scores they
compute are interpolated with those computed by the first-stage retriever BM25 using
Equation (5.4). † and ‡ denote significant improvements in a Bonferroni corrected
Two-sided Paired Student’s t-Test with p < 0.005 over BM25 + ColBERT and over all
the other considered models, respectively. Best results are highlighted in boldface.
Best baselines’ results are underlined.

Model Computer Science Physics

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 12.25 48.92 22.45 13.22 — 12.77 53.68 26.88 16.05 —
BM25 + ColBERT 20.08 60.72 30.99 18.83 — 19.93 65.26 35.74 21.74 —
BM25 + ColBERT-PRF 20.21 60.56 30.95 18.87† 6 20.12† 64.96 35.77 21.80 1
BM25 + Baseline 1 20.17 60.44 31.01 18.92† 5 20.27† 65.87 36.15† 22.00† 8
BM25 + Baseline 2 19.87 60.55 30.86 18.70 1 20.06 65.56 36.00 21.88† 8
BM25 + Baseline 3 20.21 60.72 31.04 18.88 4 19.98 65.73 35.91 21.80 4
BM25 + PQEWC 20.73‡ 61.45‡ 31.53‡ 19.26‡ 11 20.92‡ 66.28† 36.85‡ 22.45‡ 21

Model Political Science Psychology

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

BM25 13.27 50.23 24.07 14.24 — 12.58 51.19 23.93 13.84 —
BM25 + ColBERT 19.03 59.55 30.39 18.15 — 23.06 66.02 35.73 21.22 —
BM25 + ColBERT-PRF 19.13† 59.21 30.43 18.23† 4 23.02 65.55 35.48 21.12 -4
BM25 + Baseline 1 19.27† 59.48 30.58 18.36† 5 23.33† 66.10 35.96† 21.38† 6
BM25 + Baseline 2 18.95 59.32 30.37 18.10 0 23.11 66.53 35.98 21.22 0
BM25 + Baseline 3 18.82 58.97 30.22 18.07 0 23.07 66.02 35.74 21.22 5
BM25 + PQEWC 19.81‡ 60.57‡ 31.24‡ 18.72‡ 11 23.96‡ 67.14‡ 36.71‡ 21.76‡ 14

beddings separately. These results suggest that a single embedding representation

for the query is less effective than considering the query term embeddings separately

when selecting the expansion terms.

Our proposed Personalized Query Expansion method, PQEWC, achieved the best

results on all the considered datasets and significantly improved over ColBERT and

all the considered baselines in all the considered search scenarios. On average, it

improved over ColBERT by 6%, 2%, 4%, and 4% in MAP, MRR, NDCG, and RBP,

respectively, and over the best performing baselines by 3%, 2%, 2%, and 2% in MAP,

MRR, NDCG, and RBP, respectively. Moreover, it scored a higher Robustness In-

dex than all the other Personalized Query Expansion methods for all the considered

datasets and higher than ColBERT-PRF on three datasets out of four. We also no-

tice that our proposed approach is the only Query Expansion approach to achieve

statistically significant increments over ColBERT w.r.t. MRR. These results confirm

that a pre-processing phase aimed at identifying the most relevant user interests
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and reducing the impact of redundant expansion terms is beneficial for Personalized

Query Expansion with contextual word embeddings.

When the document scores produced by ColBERT and its Query Expansion-

enhanced variants are aggregated with the scores produced by the first-stage re-

triever (BM25) following Equation (5.4), we record much less difference between

vanilla ColBERT and its variants, with the sole exception of the one employing our

proposed Personalized Query Expansion method PQEWC. As shown in Table 5.4,

there is generally a little-to-no difference between vanilla ColBERT and the considered

baselines regarding retrieval effectiveness. Conversely, PQEWC-enhanced ColBERT

achieved the best performances for all the considered metrics and datasets. These

results highlight that our proposed method captures personalized relevance signals

that are complementary to both those of vanilla ColBERT and BM25. On average, it

improved over BM25 + ColBERT by 4%, 2%, 3%, and 3% in MAP, MRR, NDCG, and

RBP, respectively.

With and without interpolation, PQEWC outperformed ColBERT and all the other

considered baselines and generally reached a higher Robustness Index. These results

positively answer both our first, second, and third research questions, RQ1, RQ2 and

RQ3.

5.5.2 Efficiency

In this section, we compare the efficiency of the considered expansion methods

in terms of the average time required to expand a query on the CPU (an AMD

Ryzen™ 5950X, in our case), aiming to answer our research question RQ4. We

suppose to have already loaded all the data needed for query expansion into memory.

This way, we can focus on the expansion term selection latency. Note that all the

compared models took less than one millisecond to re-rank the top-1000 BM25 results

with ColBERT on our GPU. Therefore, we do not report the re-ranking times.
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The second-to-fifth rows of Table 5.5 reports the expansion time required by the

considered Query Expansion methods on the datasets employied in our evaluation.

ColBERT-PRF was the least efficient of them, requiring 32 ms to expand a query on

average, which makes its applicability to real-world scenarios questionable. Baseline

1, which performed the best among the personalized baseline methods, required 4

ms to expand a query on average, almost than ten times less than ColBERT-PRF while

delivering similar retrieval performances. Baseline 2 and Baseline 3, which delivered

very similar results in terms of effectiveness, both took less than one millisecond to

expand a query on average. Finally, our proposed Personalized Query Expansion

approach, PQEWC, achieved an expansion time inferior to one millisecond while

delivering the best retrieval performances across the line.

Although all the considered Personalized Query Expansion methods are very

efficient in our context, the number of operations needed by PQEWC is much lower

than the other methods. PQEWC only compares the query term embeddings with

small subsets of the user term embeddings, as discussed in Section 5.2.1, allowing our

proposed method to be much more scalable than the others. On average, it compares

the query term embeddings with less than 15% of the term embeddings associated

with a user. In contrast, all the other methods consider all of them. Moreover, as

introduced in Section 5.2.2, it only compares a single query term embedding with

the most representative ones of each user.

To further prove our claims on PQWEC scalability, we conducted an empirical

evaluation based on synthetically generated data. Since ColBERT-PRF latency was

already high on our test sets, we did not consider it in this additional experiment.

For each personalized expansion method, we investigated several different scenarios.

Specifically, we considered three different embedding dimensions, denoted d, and

four different amounts of average user-associated term embeddings, denoted T .

As for embedding dimensions d, we considered 16, 128, and 768, which are the

119



dimension of the embedding we used in the experiment previously reported, the

embedding dimension originally proposed for ColBERT, and the dimension of the

uncompressed BERT embeddings, respectively. As for the average number of user

term embeddings T , we considered 1 000, 10 000, 100 000, and 1 000 000.

As reported in Table 5.5, Baseline 1 rapidly saturates as more user-related terms

becomes available, making it not suitable for real-world scenarios with high avail-

ability of user-related texts. On average, Baselines 2 and 3 require the same time to

expand a query. Their applicability is mainly affected by the number of available

user term embeddings rather than their dimension. As expected, PQEWC is the

most scalable of the compared query expansion methods, and it is suited even for

data-intensive scenarios. As shown in the table, it took just a fraction of the time

required by the other models to expand the queries in each considered scenario.

The embedding dimension has a noticeable impact on all the Personalized Query

Expansions’ execution times. However, the efficiency advantages of PQEWC make it

the sole model able to scale to both high user data availability scenarios and highl di-

mensional vector spaces. To conclude, these results corroborate our claims regarding

the scalability of PQEWC and positively answer our fourth research question RQ4.

5.5.3 Expansion Terms Diversity

In this section, we compare the diversity of the user term embeddings selected for

expansion by the considered Personalized Query Expansion methods aiming at an-

swering our fifth research question, RQ5. Moreover, this analysis allows us to verify

our intuitions regarding the potential issues of employing previous Personalized

Query Expansion methods based on word embeddings with contextual word em-

beddings, as discussed at the beginning of this chapter. In this regard, we introduce

a novel metric to evaluate the percentage of semantically non-overlapping expansion

terms per query. For each query, we first count the number of expansion term em-
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Table 5.5: Query expansion methods execution time in milliseconds. d is the embed-
ding dimension. T is the average number of user term embeddings.

ColBERT-PRF Baseline 1 Baseline 2 Baseline 3 PQEWC

Computer Science 39 5 < 1 < 1 < 1
Physics 34 5 < 1 < 1 < 1
Political Science 28 2 < 1 < 1 < 1
Psychology 27 4 < 1 < 1 < 1

d = 16, T = 1000 — < 1 < 1 < 1 < 1
d = 16, T = 10 000 — 5 < 1 < 1 < 1
d = 16, T = 100 000 — 61 7 7 < 1
d = 16, T = 1000 000 — 651 88 88 1

d = 128, T = 1000 — < 1 < 1 < 1 < 1
d = 128, T = 10 000 — 7 1 1 < 1
d = 128, T = 100 000 — 72 12 12 < 1
d = 128, T = 1000 000 — 740 141 140 9

d = 768, T = 1000 — 1 < 1 < 1 < 1
d = 768, T = 10 000 — 8 2 2 < 1
d = 768, T = 100 000 — 147 23 23 3
d = 768, T = 1000 000 — 1494 249 249 26

beddings having a maximum cosine similarity score w.r.t. the other expansion term

embeddings below a certain semantic overlap threshold. Then, we divide this counter

by the number of terms selected for expansion and take the average across all queries.

Our Expansion Terms Diversity (ETD) metric is as follows:

ETD τ =
1

n

n∑
q=1

1

k

k∑
i=1

1 if max
ej ̸=i∈Eq

cos(ei, ej) < τ and , 0 otherwise (5.5)

where n is the number of queries, k is the number of expansion terms for the query

q, Eq is the set of expansion term embeddings selected for the query q, ei is the

i-th expansion term embedding, and τ is the semantic overlap threshold. We further

propose to evaluate ETD with the following values for the semantic overlap threshold

parameter τ : 0.99, 0.95, and 0.90. The rationale behind those values is as follows: low

ETD.95/ETD.99 scores mean the query expansion method selects term embeddings

with high/extremely-high semantic overlap, i.e., almost-duplicate term embeddings,
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while we interpret EDT.90 scores near 0.5 as an indication that the expansion terms

are topically focused but not semantically overlapping, thus they are diverse but

semantically related. Note that a high EDT.90 score means the expansion terms

are loosely correlated. We highlight that the expansion terms diversity score is not

directly correlated nor proportional to the effectiveness gain brought by a Query

Expansion method. However, it can help us understand why a method performs

better or worse than another relative to a specific application domain.

Table 5.6 shows the ETD scores for the compared Personalized Query Expansion

methods. The low ETD.99 and ETD.95 scores that Baseline 2 and Baseline 3 achieved

in all datasets tell us those methods are prone to select expansion term embeddings

that suffer from semantic overlap, a property not desirable in our search evaluation

domains given the unsatisfactory results achieved by those methods and discussed

in Section 5.5.1. Although Baseline 1 selected much more diverse expansion term

embeddings than the other two baselines, it could not reach the expansion terms

diversity of PQWEC because of the lack of a mechanism that prevents the selection

of multiple semantically overlapping expansion terms. Generally, those results cor-

roborate our intuitions regarding the potential issues of employing previous Person-

alized Query Expansion methods based on word embeddings with contextual word

embeddings discussed at the beginning of this chapter. By employing a clustering-

based procedure to group and find the term embeddings that better represent the

user interests and preferences (Section 5.2.1) and selecting only one embedding per

user-related term embedding cluster for query expansion purposes (Section 5.2.2),

PQEWC achieved very high ETD.99 and ETD.95 scores. Therefore, term embeddings

selected for query expansion by PQEWC benefit from great diversity. Moreover, the

EDT.90 scores tell us PQEWC generally select topically focused but not semantically

overlapping expansion term embeddings. These results positively answer our fifth

research questions, RQ5.

122



Table 5.6: Expansion terms diversity of the compared Personalized Query Expansion
methods. Higher is better for ETD.99 and ETD.95. Values near 0.5 for ETD.90 are
better. Reported results are in percentages. Best results are highlighted in boldface.

Model Computer Science Physics Political Science Psychology

ETD.99 ETD.95 ETD.90 ETD.99 ETD.95 ETD.90 ETD.99 ETD.95 ETD.90 ETD.99 ETD.95 ETD.90

Baseline 1 97.10 75.09 54.28 96.00 75.91 57.65 96.70 79.65 63.29 93.99 72.64 55.31
Baseline 2 85.05 41.35 20.37 83.43 33.82 11.14 91.40 42.44 13.16 88.86 34.13 11.94
Baseline 3 89.52 40.44 17.99 89.02 27.91 7.71 93.04 39.02 15.12 86.14 33.90 14.38
PQEWC 99.56 88.38 64.39 99.41 81.24 50.06 99.68 84.72 55.35 99.38 82.41 53.93

5.5.4 Ablation Study

In this section, we conduct the ablation study of our proposal to assess whether our

design choices are effective.

Effectiveness To evaluate whether our design choices are functional effectiveness-

wise and the approximation method we proposed in Section 5.2.2 does not harm

the retrieval effectiveness of our proposal, we compared it with the three following

variants:

• Local: This variant relies on user-level term clustering instead of assigning

user terms to collection-level clusters as proposed in Section 5.2.1. As there

is no direct relations between local and global clusters (i.e., Equation (5.1) is

not applicable), we consider as the most representative user term embedding

clusters for each user those with the highest number of associated embeddings.

This variant allows us to assess whether clustering the user terms following

the collection topic distribution in the embedding space improves the retrieval

performances over partitioning the embedding space user-wise (RQ6).

• Top Clusters: Instead of relying on the user-term clusters that better represent

the user interests, this variant focuses on the user-term clusters that are most

related to the query. First, it selects the top n user-term clusters most similar to

the query. Then, following the procedure proposed in Section 5.2.2, it chooses

from each top user-term cluster a term embedding to use for query expansion.
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This variant allows us to assess whether considering the user-term clusters

identified with Equation (5.1) as the best clusters to draw the expansion term

embeddings from is an effective design choice (RQ7).

• Non-Approximated: This variant does not employ the approximated expan-

sion terms selection strategy described in Section 5.2.2. It allows us to assess

the impact on the retrieval effectiveness of the approximation we proposed to

reduce the expansion term selection time (RQ8).

As for the main evaluation, all the expansion methods are applied before re-ranking

the BM25 results with ColBERT and their hyper-parameters have been optimized on

the validation set.

Table 5.7 reports the retrieval effectiveness of PQEWC, those of its considered

variants, and — for reference — those of ColBERT. The results show that clustering

the embeddings at the collection level and considering as best clusters to draw the

expansion terms embeddings from following Equation (5.1) is more effective than the

considered alternatives for all the considered datasets and evaluation metrics. Fur-

thermore, PQEWC and Non-Approximated reached comparable effectiveness and

robustness on all datasets but Political Science, where PQEWC increased over Non-

Approximated. In general, our intuition regarding the computation of many unnec-

essary comparisons between the query term embeddings and the user-related term

embeddings, discussed in Section 5.2.2, proved to be true. These results positively

answer our research questions RQ6, RQ7, and RQ8.

Efficiency In this section, we compare the efficiency of PQEWC with that of its

Non-Approximated variant. This comparison aims to evaluate in which contexts the

approximation mechanism proposed in Section 5.2.2 is required and in which it is

not. As shown in Table 5.8, for all the considered datasets PQEWC and its Non-

Approximated variant achieved sub-millisecond execution time. This result means
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Table 5.7: Overall effectiveness of the our proposal variants and that of ColBERT. ⋆,
†, and ‡ denote significant improvements in a Bonferroni corrected Two-sided Paired
Student’s t-Test with p < 0.005 over ColBERT, Local, and Top Clusters, respectively.

Model Computer Science Physics

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

ColBERT 18.10 56.56 28.24 17.62 — 17.91 61.86 32.92 20.20 —
Local 18.52⋆ 57.27 28.68⋆ 17.88⋆ 7 18.48⋆ 62.83⋆ 33.57⋆ 20.60⋆ 11
Top Clusters 18.80⋆† 58.47⋆† 29.33⋆† 17.98⋆ 11 18.59⋆ 63.36⋆ 33.97⋆† 20.66⋆ 13
Non-Approximated 19.05⋆†‡ 57.58⋆ 29.25⋆† 18.24⋆†‡ 15 19.17⋆†‡ 63.88⋆† 34.44⋆†‡ 21.12⋆†‡ 23
PQEWC 19.03⋆†‡ 57.66⋆ 29.23⋆† 18.23⋆†‡ 15 19.17⋆†‡ 63.81⋆† 34.46⋆†‡ 21.12⋆†‡ 22

Model Political Science Psychology

MAP@100 MRR@10 NDCG@10 RBP.95 RI MAP@100 MRR@10 NDCG@10 RBP.95 RI

ColBERT 16.06 53.51 26.40 16.11 — 21.39 62.78 33.39 20.17 —
Local 16.14 53.24 26.38 16.28⋆ 1 21.56⋆ 62.94 33.56 20.27⋆ 3
Top Clusters 16.78⋆† 54.92⋆† 27.41⋆† 16.56⋆† 9 21.89⋆† 64.02⋆† 34.17⋆† 20.43⋆† 12
Non-Approximated 16.87⋆† 53.91 27.18⋆† 16.73⋆†‡ 7 22.33⋆†‡ 64.24⋆† 34.51⋆†‡ 20.76⋆†‡ 12
PQEWC 17.24⋆†‡ 55.10⋆† 27.71⋆† 16.99⋆†‡ 14 22.30⋆†‡ 64.21⋆† 34.47⋆†‡ 20.75⋆†‡ 12

the prominent factor in achieving top efficiency is limiting the search for expansion

term embeddings to only the most representative user-term embedding clusters.

However, the reader should consider that the similar expansion times of PQEWC

and Non-Approximated are also due to the efficient vector operations offered by the

Intel® Math Kernel Library [275], which we use as the back-end for Numpy [114]. In

fact, the number of term comparisons performed without approximation is 32 times

larger than when employing our approximation mechanism, as ColBERT’s query

representations are always composed of 32 embeddings. Table 5.8 also reports the

average expansion time needed by the two approaches in the same simulated scenar-

ios described in Section 5.5.2. As shown in the table, the Non-Approximated variant

suffers in very data-rich scenarios. Nonetheless, it achieves far better efficiency than

all the considered Personalized Query Expansion baselines, whose execution times

are reported in Table 5.5. These results positively answer our ninth research question,

RQ9. We conclude that the most important factor efficiency-wise is restricting the

expansion term embeddings selection to a small portion of the user-related term em-

beddings (15% of all of them, in our case). However, as the effectiveness of PQEWC is

not inferior to its Non-Approximated variant, the additional efficiency brought by the

proposed approximation mechanism comes at no cost and still noticeably improves
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Query Expansion latency.

Table 5.8: PQEWC variants execution time in milliseconds. d is the embedding
dimension. T is the average number of user term embeddings.

Non-Approximated PQEWC

Computer Science < 1 < 1
Physics < 1 < 1
Political Science < 1 < 1
Psychology < 1 < 1

d = 16, T = 1000 < 1 < 1
d = 16, T = 10 000 < 1 < 1
d = 16, T = 100 000 2 < 1
d = 16, T = 1000 000 13 1

d = 128, T = 1000 < 1 < 1
d = 128, T = 10 000 < 1 < 1
d = 128, T = 100 000 2 < 1
d = 128, T = 1000 000 20 9

d = 768, T = 1000 < 1 < 1
d = 768, T = 10 000 1 < 1
d = 768, T = 100 000 5 3
d = 768, T = 1000 000 49 26

5.5.5 Findings

In this section, we summarize our findings w.r.t. the research questions introduced

in Section 5.4, which we report here for simplicity.

• RQ1 Can a Personalized Query Expansion approach based on contextual word em-

beddings enhance ColBERT’s retrieval effectiveness? Baseline 1 performed the best

among the considered Personalized Query Expansion baselines, and it often sig-

nificantly improved over ColBERT. Baseline 2 and Baseline 3 rarely improved

over ColBERT, and sometimes they even decreased ColBERT’s retrieval effec-

tiveness. Finally, PQWEC consistently and significantly outperformed ColBERT

in all the considered datasets and for all the considered evaluation metrics.
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• RQ2 Is our proposed Personalized Query Expansion approach more effective than

previously proposed expansion methods? Among both the compared Query Ex-

pansion approaches, PQWEC performed the best, significantly improving over

the other approaches w.r.t. MAP@100, MRR@10, NDCG@10, and RBP.95 in

almost all cases.

• RQ3 Is our proposed Personalized Query Expansion approach more robust than previ-

ously proposed expansion methods? Robustness-wise, PQEWC achieved much

higher Robustness Index scores than all the other considered Personalized

Query Expansion methods. It also outperformed ColBERT-PRF in all cases

but one, Computer Science without BM25’s scores fusion.

• RQ4 Is our proposed Personalized Query Expansion approach more efficient than

previously proposed expansion methods? PQEWC is more efficient than every

other expansion method in our experimental evaluation, especially w.r.t. the

best performing baselines ColBERT-PRF and Baseline 1, and achieved sub-

millisecond expansion time even in very data-rich scenarios.

• RQ5 Does our approach improve the expansion terms diversity compared to previous

Personalized Query Expansion methods? Our approach selects topically focused

but not semantically overlapping expansion term embeddings, which benefit

from higher diversity compared to those picked by previous methods. This

characteristic allowed our approach to reach significantly higher retrieval effec-

tiveness than all the considered baselines in our comparative evaluation.

• RQ6 Does the collection-level term clustering strategy proposed in Section 5.2.1 allow

us to achieve better retrieval effectiveness than a user-level one? Our collection-

level term clustering strategy allowed us to reach far better improvements over

ColBERT than the user-level one, which often achieved mixed results.
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• RQ7 Is Equation (5.1) effective in identifying the user term clusters that better represent

the user’s interests, thus enhancing the retrieval effectiveness of our proposed approach?

Using Equation (5.1) for identifying the user term clusters that better represent

the user’s interests was generally more effective than selecting user term clusters

using other means.

• RQ8 Does our approximated expansion terms selection perform on par of the original

procedure proposed in Section 5.2.2 in terms of retrieval effectiveness? For all the con-

sidered datasets, the approximation we proposed to improve the efficiency of

the original expansion terms selection procedure proposed in Section 5.2.2 did

not affect the retrieval effectiveness improvements brought by our Personalized

Query Expansion method.

• RQ9 Does the approximation proposed to select the personalized expansion terms

increase the efficiency w.r.t. the original procedure proposed in Section 5.2.2? Although

the original expansion terms selection procedure proposed in Section 5.2.2 is

already very efficient, our approximated variant still significantly improved the

time needed to expand a given query.

5.6 Summary

In this chapter, we have addressed some issues arising from employing contextual

word embeddings with current Personalized Query Expansion methods and pro-

posed PQEWC, an approach designed to counteract those problems and take full

advantage of contextual word embeddings. Specifically, our proposed method em-

ploys a clustering-based technique to group and identify the term embeddings most

representative of the user interests and preferences and an approximation procedure

of the personalized expansion terms selection to increase efficiency. Experimental

evaluation shows the benefits of our proposed approach both in terms of efficiency

128



and effectiveness. Moreover, it highlights how the effectiveness and the efficiency of

Personalized Query Expansion based on word embeddings can be greatly improved

with effective procedures. Finally, the ablation study we conducted clearly illustrates

the benefits of our design choices and the lack of drawbacks deriving from those.
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CHAPTER 6

A MULTI-DOMAIN BENCHMARK FOR
PERSONALIZED SEARCH EVALUATION

Personalization in Information Retrieval has been a hot topic in both academia and

industry for the past two decades. However, there is still a lack of high-quality

standard benchmark datasets for conducting offline comparative evaluations in this

context. To mitigate this problem, in the past few years, approaches to derive syn-

thetic datasets suited for evaluating Personalized Search models have been proposed.

In this dissertation, we put forward a novel evaluation benchmark for Personalized

Search with more than 18 million documents and 1.9 million queries across four

domains.

In the following sections, we first discuss the current state of Personalized Search

evaluation (Section 6.1). Then, in Section 6.2, we introduce a novel evaluation bench-

mark for Personalized Search and present a detailed description of the construction

procedure we undertook, highlighting its characteristics and challenges. Finally, we

run a comparative evaluation to establish baseline performances on the novel intro-

duced datasets (Section 6.3 and 6.4), including pre-trained neural models, opening

room for the evaluation of personalized approaches, as well as domain adaptation

and transfer learning scenarios.
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6.1 State of Personalized Search Evaluation

Personalization in Information Retrieval has been long studied by academia [250,

240, 190, 219] and industry [82, 260, 261, 220] from both modeling and evaluation

perspectives. It is well known that evaluations based on the Cranfield [64] paradigm

are not suited for Personalised Search, which produces search results tailored to

specific users with their own perception of relevance. Unfortunately, text collections

shared by initiatives on search evaluation do not usually provide the information

needed for evaluating personalization, i.e., information about specific users and their

preferences.

In the past, evaluation campaigns targeting Personalized Search, such as the In-

teractive [206], HARD [10, 11, 12], Contextual Suggestion [71, 72, 73, 74, 117], and

Session tracks [130, 131, 132, 57, 58], were promoted by the Text Retrieval Conference

(TREC). However, all the above are limited in the amount of user-related informa-

tion considered for the evaluation process; for this reason, the problem of defining

a standard approach to the evaluation of Personalized Search is a hot research topic

needing effective solutions. A first attempt to go towards the generation of a col-

lection accounting for specific user search behaviors was made at the 2011 FIRE

Conference [91]. Later, within CLEF 2017, the PIR-CLEF [213, 212, 211] benchmark

was launched with the purpose of combining user-centered methods with the Cran-

field evaluation paradigm, with the potential benefit of producing evaluation results

that are easily reproducible.

Recently, some efforts have been devoted to the definition of large-scale task-

related datasets (on which we focus in this paper). Specifically, three available real-

world test collections that have also been employed to evaluate Personalized Search

are the following: 1) the AOL Query Log [214] (Web Search), 2) the CIKM Cup
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2016 dataset1 (Product Search), and 3) the Yandex Query Log2 (Web Search). Unfor-

tunately, all these datasets come with specific issues, from content availability and

privacy concern [22, 1], to anonymized texts, making personalized semantic retrieval

approaches not usable. Due to the above issues, researchers have proposed several

methodologies to define synthetic datasets for evaluating personalized retrieval sys-

tems, most notably the folksonomy-based datasets [40, 41, 42, 43, 284, 276, 299], the

Amazon Product Search Datasets [6], and PERSON [257].

In folksonomy websites, users assign tags to online items, such as web pages.

Datasets based on these data consider the tags as queries issued by the users to

retrieve the tagged web pages. The main concern about this methodology is that tags

can be very generic and far from expressing a real user’s information need. Moreover,

tag-based queries are usually composed of one or two terms only.

The Amazon Product Search Datasets [6] are designed to evaluate Personalized

Search approaches in e-commerce scenarios. They are based on the Amazon Review

5-Core dataset [186], which contains millions of users, items, and user-generated

reviews. Lacking user queries, the authors take advantage of the Amazon Product

structural properties, using item categories to generate synthetic ones. Recently,

some concerns were raised regarding the quality of the generated queries and the

item data, as the first are far from realistic for many search scenarios, and the latter

miss many descriptions and titles [25]. Moreover, the number of different queries

present in these datasets is very low, a few hundred in most cases. Finally, many

subsequent works [36, 34, 85, 209] generated alternative datasets following the same

methodology instead of employing those previously shared by Ai et al. [6], making

it challenging to conduct comparative evaluations.

Tabrizi et al. [257] have recently proposed PERSON, a new methodology for build-

ing synthetic datasets for Personalized Search based on citation networks. The main

1https://competitions.codalab.org/competitions/11161
2https://www.kaggle.com/c/yandex-personalized-web-search-challenge

132

https://competitions.codalab.org/competitions/11161
https://www.kaggle.com/c/yandex-personalized-web-search-challenge


idea behind this methodology is to leverage academic papers to derive user-query-

document triplets. To this end, the authors consider the paper titles as queries, the

papers cited in the references section as relevant documents w.r.t. the queries, and

one of the papers’ authors as the user issuing the generated query. The authors

conduct an extensive evaluation of their approach, showing its benefits over other

methodologies, such as those based on folksonomy data. For example, datasets built

using PERSON methodology provide thousands of queries, making them suitable for

training Deep Learning-based retrieval models. They also inherit social network-like

information that can be exploited for personalization purposes and contain temporal

information, which allows tracking the evolution of user preferences over time. Un-

fortunately, the dataset shared by Tabrizi et al. [257] requires users to build custom

parsers to extract the data and lacks potentially valuable information for personal-

ization, such as author affiliations and papers’ publication dates and venues, despite

being present in the original data. Finally, since it relies on ArnetMiner’s Citation

Network Dataset3 [259], it covers one discipline only, preventing an evaluation across

different domains.

In this work, we revisit and extend the PERSON methodology, overcoming the

aforementioned limitations while keeping its benefits, paying particular attention

to data processing, query generation, selection, and data splitting. As a result of

our pipeline, we build and share a large-scale benchmark across four domains, with

more than 18 million documents and 1.9 million queries, designed for evaluating Per-

sonalized Search approaches, including transfer learning scenarios. We perform ex-

periments to establish baseline performances, including personalization approaches

and recent pre-trained neural models. Data, code, and models for reproducing the

experiments are publicly available online.4

3https://www.aminer.org/citation
4https://github.com/AmenRa/a-multi-domain-benchmark-for-personalized-search-evaluation
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6.2 Benchmark Datasets

In this section, we detail the procedure we employed to build our proposed bench-

mark datasets, suited for the task of Personalized Results Re-Ranking (Section 2.3.2)

in the Academic Search setting.

Data gathering and License We rely on the Microsoft Academic Knowledge Graph

dump5 [86, 243], a large-scale knowledge graph, to collect the metadata of 240M

papers across several disciplines, which enables us to build multiple datasets. The

dataset accounts for paper titles, abstracts, references, keywords, related fields of

studies, publication dates and venues, and authors and their affiliations, and it comes

under the CC BY 4.0 license6, allowing us to transform and redistribute the original

data.

Data processing After gathering the dataset, we proceeded by parsing its content as

it comes in RDF format. Then, we cleaned the data to obtain a high-quality document

collection. The cleaning process comprises several steps. First, we selected all and

only the English papers by relying on the language attribute already present in the

original data. Then, we divided the documents by discipline. Since some papers may

belong to more than one discipline, we have duplicated them and placed a copy of

each in the document collections of the disciplines they belong. Then, we discarded

all the papers with no abstract, no date, no authors, and no associated keywords.

Finally, we decreased the collections’ sizes to reduce the hardware requirements

needed to handle them, making them manageable with consumer-grade hardware.

To do so by retaining only the most cited papers, we pruned the citation graph,

where nodes represent the papers and edges represent the citation among them. In

particular, we iteratively removed the nodes/papers with no incoming citations until

5https://zenodo.org/record/4617285
6https://creativecommons.org/licenses/by/4.0
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we reached a size of fewer than five million documents. During each iteration, we

removed all the papers with no incoming citations. As already noted by Clough

et al. [65], an academic citation network should be a Direct Acyclic Graph as the edges

(citations) must always point backward in time. However, this is not always the

case due to wrong dates or updated versions of papers. Therefore, we discarded the

citations not pointing backward to avoid a non-controllable pruning behavior and

ease the future application of graph-based personalization approaches.

Query generation Once we had cleaned the document collections, we proceeded by

generating the candidate queries for our benchmark datasets, following the approach

proposed by Tabrizi et al. [257]. The approach is to generate user-query-document

triplets as follows: for each academic paper, the title is considered the query, the

papers cited in its references section as the relevant documents, and one of its authors

(the first listed in the original data, in our case) is assumed to be the user submitting

the query.

Although Tabrizi et al. [257] proposed several methods to generate synthetic

queries from research papers, they only reported the evaluation of the title-based

ones. We also considered using the keywords associated with each paper as queries,

but we found this method to produce lower quality queries w.r.t. the title-based

one. Moreover, we noticed that the keywords present in our dataset come from the

abstracts rather than from those defined by the authors. However, we do not have

additional information on how they were extracted.

Since the titles of academic papers are well-formed natural language, we pro-

cessed them to obtain queries that resemble real-world ones. Specifically, we applied

stop-word removal using the NLTK’s [38] stop-word list and stemmed them using a

non-destructive stemmer, i.e., the Krovetz stemmer [139].
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Query selection As we are interested in personalization, we need each query to

be associated with at least a minimum amount of user-related data to personalize

the search results. We set this minimum to 20 user documents. Consequently,

we kept only the queries whose users have published at least 20 papers before the

one used as the query. We explicitly considered only the papers published by the

user/author before the one used as the query to preserve the temporal aspect and

the user interests evolution. Previous works, such as those that relied on the Amazon

data to derive Personalized Search datasets [6, 34, 36], ignored these aspects, which

we believe are essential to resemble real-world search scenarios and correctly evaluate

personalization models.

As discussed by Tabrizi et al. [257], not all the references are necessarily relevant

(from an Information Retrieval perspective) to the topic expressed by a paper’s title,

which we use here as a query. The authors, however, claim that since mistakenly con-

sidering some irrelevant documents as relevant will be the same for all the compared

models, their presence does not violate the fairness of the comparisons if evaluation

measures are averaged over many queries. To reduce the presence of spurious rel-

evant documents and malformed queries, we applied simple heuristics, similarly to

Tabrizi et al. [257]. As we are proposing a series of datasets designed for evaluat-

ing Personalized Results Re-Ranking approaches, we consider well-formed only the

queries for which BM25 [226], which we use as a first-stage retriever, retrieves rele-

vant documents in the top results. Although this is a strong assumption, it should

be noted that every re-ranking approach is limited by the first stage retriever’s recall.

We acknowledge that filtering the references by their positioning in the paper (the

section in which they appear) could be a better alternative, but unfortunately, we lack

such information. Specifically, we kept the queries for which BM25 retrieved at least

one relevant document in the top-100 results for the training and validation queries

and the queries for which it retrieved at least ten relevant documents in the top-1000
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results for the test queries (see the next paragraph for a discussion of the data splits).

Likewise, for each of the remaining queries, we retained only the relevant documents

present in the top results retrieved by BM25. Before computing the BM25 results, to

maintain most queries and relevant documents as possible, we fine-tuned its param-

eters b and k1 on 5000 randomly selected non-test queries using the hyper-parameter

optimization library Optuna [9] and evaluating the retrieval effectiveness of each

configuration with ranx [23].

Data splits We split the obtained datasets into training and test sets chronologically,

i.e. by using the queries generated from papers published starting from 2016 for

Political Science, 2017 for Computer Science and Physics, and 2019 for Psychology

as test queries. Then, we randomly split each training set to obtain a training set

and a validation set, using a splitting ratio of 99 : 1. We opted for a chronological

training/test split instead of a random partitioning, so that the datasets are closer to

real scenarios, where all searches in the test sets happen after those in the training

sets. We choose the splitting dates to have thousands of queries in each test set. To

prevent data leakage due to wrong data manipulation by future users, we removed

from the collections all the documents published after the train/test splitting dates.

Final datasets In this paragraph, we describe the final datasets we share, their con-

tent, and some possible usage of the provided data. We opted for Computer Science,

Physics, Political Science, and Psychology papers to compose the datasets we share.

In the final datasets, each document comprises a title, an abstract, related field of

studies, associated keywords, publication date and timestamp, proceeding/journal-

related metadata, and the DOI of the original paper. For each query, we provide

text, timestamp, relevant document ids, user id, user-related document ids, and the

BM25 results (document ids and scores), which can be used both for re-ranking and

as hard negatives to train Machine Learning models. We also make available the
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data about the paper fields of study hierarchical structures, the author affiliations,

the user-document authorship relations, and the paper references. We highlight that

many of the provided data are not available in the dataset shared by Tabrizi et al.

[257], which also has the limitation of considering a single domain. Table 6.1 reports

some statistics of the final datasets. Note that the number of users refers to the

number of authors of the documents in the document collections, while the average

number of user documents refers to those associated with the queries.

The shared large-scale datasets are suited for training and evaluating content-

based personalization models and collaborative-filtering approaches, as we provide

a rich set of metadata for each document and all the data to derive the user-document

interactions, which could also be leveraged by citation prediction approaches [14].

Moreover, the relations among the data, such as authorship relations and the paper

references, can be represented by graph structures and leveraged by graph-based

personalization approaches. Finally, our datasets allow the study and design of

novel joint Personalized Search and Recommendation models [292].

Limitations Our proposed datasets share some limitations affecting previous syn-

thetic datasets for personalization. Specifically, these datasets cannot be employed

for evaluating session-based personalization approaches due to the lack of search

sessions. We leave for future work the design of a procedure for generating search

sessions for our datasets. Another limitation of those datasets is that all the synthetic

user-query-document triplets are unique as they derive from non-repeatable user

actions, such as writing a paper or a review or tagging an online item. Therefore,

approaches relying on re-finding behavior, such as P-Click [78], cannot be used.
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Table 6.1: Statistics of the proposed benchmark datasets.

Computer Science

# documents 4 809 684 # users 5 260 279
# train queries 552 798 avg. query length 8.01 ± 2.74
# val queries 5 583 avg. user docs 61.94 ± 60.32
# test queries 6 497 avg. relevants 3.25 ± 3.27

Physics

# documents 4 926 753 # users 5 835 016
# train queries 728 171 avg. query length 9.21± 3.43
# val queries 7 355 avg. user docs 60.98 ± 56.54
# test queries 6 366 avg. relevants 4.17 ± 4.15

Political Science

# documents 4 814 084 # users 6 347 092
# train queries 162 597 avg. query length 8.97 ± 3.35
# val queries 1 642 avg. user docs 40.64 ± 29.32
# test queries 5 715 avg. relevants 3.88 ± 5.17

Psychology

# documents 4 215 384 # users 4 825 578
# train queries 544 882 avg. query length 9.36 ± 3.27
# val queries 5 503 avg. user docs 61.66 ± 62.72
# test queries 12 625 avg. relevants 4.73 ± 4.4

6.3 Experimental Setup

In this section, we present the baselines we evaluated on the novel test collections

we have constructed, and we introduce the evaluation metrics we adopted for their

evaluation.

Our first baseline is BM25, whose results we re-rank with the other baselines.

For re-ranking the BM25 results, we consider a document popularity-based model

(Pop), a bi-encoder-based retrieval model (BiEnc) similar to several recent neural

retrieval approaches [224, 93, 133, 149], and two embedding-based personalized

retrieval models. The first (Mean) defines the user models as the average of their

associated document representations. The second (QA) adopts a query-aware user
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modeling technique [95, 7, 126] using the Attention mechanism [19] to weigh the

contribution of the user-related document representations to generate the user model.

Both approaches compare the user models with the documents retrieved by BM25

to compute personalized relevance scores. In each case, we aggregate the original

BM25 scores with those computed by the re-rankers using the weighted sum fusion

algorithm implemented in ranx.fuse [26], which we optimize on the validation set.

Each model computes the document representations using MiniLM-L6-v27 with a

mean pooling head on the document titles. To assess domain adaptation and transfer

learning opportunities, we train BiEnc on all four domains (All-BiEnc) and evaluate

its effectiveness on each dataset separately. Furthermore, we combine the relevance

scores of BM25, BiEnc, and the personalization models to assess whether they can all

be combined to improve effectiveness further.

As for the evaluation metrics, we consider Mean Average Precision (MAP) at 100,

Mean Reciprocal Rank (MRR) at 10, and Normalized Discounted Cumulative Gain

(NDCG) at 10.

6.4 Results and Discussion

Table 6.2 summarizes the results achieved by the various models on the provided

test sets. All the considered baselines substantially improve over BM25, indicating

that the benchmark is suitable for evaluating (Personalized) Re-Ranking models. By

comparing the results of the personalized models (Mean and QA), we registered a

clear advantage of the query-aware personalization model (QA). However, we notice

that the differences between the two models are largely reduced if we also consider

the scores of the neural re-ranker (BiEnc) during re-ranking. In this latter case, BiEnc

+ QA was able to statistically improve over BiEnc + Mean only on two datasets out

7https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table 6.2: Effectiveness of BM25 and those of the re-ranking models. † denote
significant improvements in a Bonferroni corrected Two-sided Paired Student’s t-Test
with p < 0.001 over all the baselines. Best results are highlighted in boldface.

Model Computer Science Physics

MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10

BM25 12.25 48.93 22.45 12.77 53.68 26.88
BM25 + Pop 16.64 58.63 28.97 15.45 59.61 30.88
BM25 + BiEnc 18.21 58.02 28.90 16.98 60.99 32.13
BM25 + All-BiEnc 17.82 57.79 28.59 16.81 60.95 32.02
BM25 + Mean 16.37 54.57 26.69 16.44 59.05 31.18
BM25 + QA 17.88 57.21 28.49 17.47 61.80 32.72
BM25 + BiEnc + Mean 19.92 60.64 30.80 18.91 63.88 34.51
BM25 + BiEnc + QA 20.11† 61.17 31.15† 18.98 64.78 34.81

Model Political Science Psychology

MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10

BM25 13.27 50.23 24.07 12.58 51.19 23.93
BM25 + Pop 16.04 57.39 28.46 15.13 56.46 27.29
BM25 + BiEnc 18.15 57.64 29.25 20.72 63.41 33.11
BM25 + All-BiEnc 18.51 58.82 29.94 20.23 62.91 32.64
BM25 + Mean 16.61 55.05 27.58 16.73 57.05 28.42
BM25 + QA 17.69 57.58 28.94 18.90 60.92 31.12
BM25 + BiEnc + Mean 19.26 59.76 30.63 21.97 65.21 34.71
BM25 + BiEnc + QA 19.85† 61.20† 31.41† 21.99 65.62 34.85

of four. BiEnc generally delivered slightly better results than the personalization

models. However, those approaches are not mutually exclusive, as we can observe

from the effectiveness reached by their combinations, which achieved the best per-

formances across the board. Regarding domain adaptability, the All-BiEnc model,

i.e., the BiEnc model trained across domains, performed slightly worse than BiEnc

on every dataset but Political Science. Those results were not entirely unexpected,

given how diverse the domains are. Although training on such diverse data usually

allows obtaining more robust re-ranking models, models trained on domain-specific

data generally outperform the former models in their specific domain. However,

we notice that All-BiEnc can obtain comparable performance to the BiEnc trained

on specific domains, which requires four separate training instances. Moreover, All-

BiEnc outperformed BiEnc on Political Science, the dataset with the lower number

of associated training queries, which benefits the most from the additional training
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data from the other domains.

6.5 Summary

In this chapter, we presented and shared a novel benchmark for Personalized Search

evaluation, composed of four large-scale datasets in multiple domains and accounting

for millions of documents and hundreds of thousands of queries. The size of the

proposed benchmark, along with its rich structured information, opens up new

research opportunities, from adopting graph-based approaches for personalization

to designing and training novel Deep Learning-based personalization approaches.

Furthermore, we provided performance baselines including recent pre-trained neural

models, showing that there is big room for improvement for personalized approaches.

Finally, by providing multiple datasets across different domains, we pave the way for

domain adaptation and transfer learning in the personalization context.
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CHAPTER 7

SEMANTIC QUERY LABELING WITH
SYNTHETICALLY GENERATED DATA

Nowadays, many different kinds of vertical online platforms, such as media streaming

services (e.g., Netflix1, Spotify2), e-commerce websites (e.g., Amazon3), job-seeking

platforms (e.g., LinkedIn4), and several others, provide access to domain-specific

information through a search engine. This information is usually organized in struc-

tured documents. In this context, like in Web Search, users typically convey their

information needs by formulating short keyword-based queries. However, in Verti-

cal Search5, users’ queries often reference specific structured information contained

in the documents. Nevertheless, Vertical Search is often managed as a traditional

retrieval task, treating documents as unstructured texts and taking no advantage

of the latent structure carried by the queries; exploiting this latent structure would

allow leveraging the document structure during retrieval.

Semantic Query Labeling [184, 21], the task of locating the constituent parts of

a query and assigning domain-specific predefined semantic labels to each of them,

allows unfolding the relations between the query terms and the documents’ structure,

thus enabling the search engine to leverage the latter during retrieval while leaving

unaltered the keyword-based query formulation. For example, the query “alien ridley

1http://netflix.com
2http://spotify.com
3http://amazon.com
4http://linkedin.com
5Search conducted on domain-specific corpora of structured documents.
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scott 1979” comprises the title of a movie, Alien, the name of a movie director, Ridley

Scott, and a date, 1979. In this case, the query could be segmented into alien, ridley

scott, and 1979 and the query segments could be tagged with the labels Title, Director,

and Year, respectively.

Semantic Query Labelling is a challenging task that can add context and structure

to keyword-based queries, usually composed of a few terms that may be ambiguous.

The main challenges of this task are related to the vocabulary overlap among dif-

ferent semantic classes, which could require the use of contextual information and

disambiguation techniques, and vocabulary mismatch [90] between the vocabulary

employed by the users to express their information need and the vocabulary used

to describe the corresponding answers in the document collection. Unfortunately,

the production of an appropriate dataset to evaluate the effectiveness of automatic

query tagging approaches is costly, and actually, there is a lack of publicly available

datasets for this task.

Despite semantic query labeling could play an important role in Vertical Search,

very little work has been done in this regard. The majority of past efforts in this

context come from private companies, such as Microsoft ([184, 152, 151, 238, 160])

and Yahoo! ([138]). Due to privacy issues, companies cannot release the datasets used

in their studies. As well known, this makes it hard to reproduce their approaches

and comparatively evaluate them. Moreover, the lack of public datasets makes it

difficult for academic researchers to propose novel Semantic Query Labeling models,

and evaluate their effectiveness.

The aim of the work presented in this chapter is three-fold: 1) we propose a method

to alleviate the need for manually labeled training data for Semantic Query Labeling

by leveraging a rule-based query generator that only requires a structured document

collection for producing synthetic queries; 2) we conduct an in-depth analysis of the

usage of synthetic queries both as a means for training with no further fine-tuning
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and pre-training with subsequent fine-tuning on real-world data a semantic query

tagger; 3) we release a large-scale dataset of manually annotated queries in the movie

domain.

In particular, the query generation method we define leverages the structured

information of a domain-specific corpus and simple query variation techniques to

produce semantically annotated training queries. By automatically generating train-

ing queries, we alleviate the need for large manually labeled query datasets and

their cost. Moreover, we show that synthetic and real-world queries can play a

complementary role in effectively training a semantic query tagger. We propose a

combination of BERT’s contextual word embeddings, gazetteers-based features, and

Conditional Random Fields as our semantic query tagging model.

To evaluate the proposed approach, we need to compare the performances of our

semantic query tagger when trained with synthetic or real-world data or a combina-

tion of those. To this aim, we define a novel dataset of manually annotated queries in

the movie domain6. Our dataset is composed of 6749 unique keyword-based queries

similar to those formulated by users on movie streaming platforms.

Experimental evaluation shows that training a semantic query tagger with syn-

thetic queries allows for results comparable to those obtained with real-world ones.

Furthermore, pre-training our semantic query tagging model with synthetic queries

and fine-tuning it with real-world ones allows for the best results across the line.

In Section 7.1 we discuss the related works. Then, in Section 7.2 we describe

our query generation procedure and the semantic query tagger we propose. In

Section 7.3, we introduce a novel benchmark dataset for Semantic Query Labeling

and discuss the process we undertook to build it. Then, in Section 7.4 we describe

the experimental setup. Finally, we discuss the evaluation results in Section 7.5.

6https://github.com/AmenRa/semantic-query-tagging-dataset
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7.1 Related Work

Although the semantic tagging of query terms could play a key role in advancing

Vertical Search, there have been few published works in this regard, mainly due to the

lack of publicly available datasets of annotated queries for this task. Because of that,

the majority of past research efforts in this context come from private companies [184,

152, 151, 238, 160, 138]).

Manshadi and Li [184] proposed the use of a probabilistic grammar to produce

all the possible interpretations of the queries. The interpretations are then re-ranked

using a Support Vector Machine-based module [69] and several contextual features.

Li et al. [152] trained a Conditional Random Fields-based [144] query tagger in

a semi-supervised fashion, leveraging a database comprising 20M products, 750k

(query, product) pairs, and more than 20k manually labeled queries. Li [151] focused

on noun phrase queries, i.e., queries composed of intent heads and intent modifiers, and

proposed to use semi-Markov Conditional Random Fields [237] with semantic and

syntactic features. Sarkas et al. [238] proposed an unsupervised method that, given

a collection of structured tables, produces all possible annotations for a given query

and assess the likelihood of each of them by using a generative model. The authors

trained their generative model by leveraging a combination of structured data and

query logs. Liu et al. [160] studied the problem of expanding the lexicons collected

from structured corpora, which often have limited coverage, are ambiguous, and lack

terms importance, by exploiting query logs for extracting query patterns and new

lexicon elements. Recently, Kozareva et al. [138] studied semantic tagging of product

search queries. The authors made use of the Word Embedding-model Word2Vec [192]

trained on 2.5M shopping queries for representing query terms and adopted a Long

Short-Term Memory network [119] with a Conditional Random Field on top as their

query tagger.

Differently from those works, we propose an approach to train a semantic query
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tagger with synthetic queries generated by leveraging the structured information of a

domain-specific corpus without the need for manually annotated data or a query log.

Moreover, we investigate the potential of pre-training a semantic query tagger with

synthetic data and evaluate the model performance over time to assess whether this

pre-training is always beneficial. Finally, we share a real-world dataset of manually

annotated queries for evaluating semantic query tagging models.

7.2 Proposed approach

In this section, we define a method for generating semantically annotated training

queries from a structured corpus and describe the proposed semantic query tagger.

7.2.1 Synthetic Query Generation

Building a query generator that produces queries similar to those issued by real

users can be very time-consuming, and it could require a large amount of data [174].

These scenarios are incompatible with the underlying motivation of our experiment

— the unavailability or scarcity of real-world training data. Therefore, we propose

to rely on the concatenation of values extracted from structured corpora as the base

query generation method. This choice is also motivated by the empirical observation

that, in Vertical Search, users usually issue queries as bag-of-features of what they are

searching. For example, e-commerce users usually search for “a producer’s name, a

brand or a set of terms which describe the category of the product” [230]. This information

is often present in the queried corpus.

Queries generated by simple concatenation of values from structured corpora

have, however, some limitations. First of all, real-world queries often contain terms

used for connecting query segments, such as from in the query “horrors from 1990s”,

that cannot be directly generated using values contained in a structured corpus.
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Moreover, there could be a vocabulary mismatch between the user queries and the

structured documents. For example, a user will likely search for “italian movies” and

not for “italy movie” (the value used in the Country field of movie corpora for Italian

movies).

To solve these issues, we apply some steps finalized at defining query variations.

For example, converting country names to their demonyms (e.g., Italy → Italian)

is a straightforward operation that can be automated by using publicly available

mappings7. Other means to obtain variations of the query terms can be derived, for

example, from query logs [160], if available, or by using synonyms dictionaries [193].

Note that we explicitly avoid to use external domain-specific information in our

experiments, as it is not always available. Regarding the generation of segment

connectors, we employ very simple rules based on the semantic classes of the query

segments. Also, to the purpose of generating query variations, the query generation

process randomly removes words and alter the word order.

For our experiments in the movie domain, we only used: 1) demonyms conver-

sion and date alterations (e.g., 1979 → 1970s), which can be easily automated, 2)

some alternative values for movie genres, such as scary for horror, 3) some terms for

connecting query segments, and 4) some values for indicating ordering preferences.

The generation process has been implemented as follows:

1. Randomly compose a query pattern of 1-to-n predefined semantic components

— e.g., <GENRE O YEAR>

(O indicates segment connectors);

2. Randomly select a movie m from the corpus — e.g., Alien;

3. Select the values corresponding to the query pattern semantic classes from m

metadata and predefined values — e.g., GENRE → horror, O → from, YEAR →

7https://github.com/mledoze/countries
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1979;

4. Randomly apply alterations — e.g., 1979 → 1970s;

5. Compose the annotated query with IOB2 labeling format [223, 235] — e.g.,

horror B-GENRE from O 1970s B-YEAR;

6. Accept the query if new and unobserved, discard otherwise. During the exper-

iments described later in this chapter, we discarded all the queries present in

the dev and test sets.

7.2.2 Labeling Model

We propose to represent query terms through contextual word embeddings produced

using BERT [76] (HuggingFace’s [280] bert-base-uncased), as they allowed achieving

state-of-the-art results in many sequence labeling tasks, and they have not been

employed before for Semantic Query Tagging. We also use some custom features

based on corpus-derived gazetteers that allow the labeling model to leverage the

corpus information. Specifically, for each query term t, for each semantic class c, we

employed the following gazetteers-based features, basing on the structured corpus

lexicons: 1) t in c; 2) t and t−1 in c; 3) t and t+1 in c; 4) t, t−1, and t−2 in c; 5) t, t+1, and t+2

in c; 6) t, t−1, and t+1 in c; where t−i is the i-th term preceding t and t+j is the j-th term

following t. The values of these features are based on discriminative probabilities

computed w.r.t. corpus lexicons — i.e., P (c|t) = occurrencest,c
occurrencest

, where occurrencest,c is

the number of occurrences of t in c w.r.t. our corpus and occurrencest is the number

of occurrences of t in our corpus as a whole. As semantic query tagger we employ

a model based on Conditional Random Fields [144], a standard sequence labeling

model that can incorporate arbitrary features as input. We do not deepen further in

the model description due to space constraints, and we leave the ablation study of its

components for future work.
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7.3 Benchmark Dataset

This section describes the dataset we have defined and the process we followed

for manually annotating each query term. Our dataset comprises thousands of

manually-labeled real-world queries in the movie domain for training and evaluating

novel methods for Semantic Query Labeling.

The choice of working in the movie domain is motivated by the fact that movie

streaming platforms are popular nowadays, but they still provide a sub-optimal

search experience to their users. Moreover, structured search is fundamental in this

context: as we assessed during our work described here, users tend to compose

their queries referring to specific movie-related information, such as the name of an

actor or a director, a movie genre, a topic, and others, which are usually available as

metadata. By conducting a qualitative evaluation of the top 10 results returned by

the search engine of one of the most popular movie streaming services, we assessed

that it is not able to correctly retrieve movies even for simple queries. For example,

“horror 2015” retrieved only one horror movie from 2015, many other results were

neither horror movies nor movies from 2015. “2015 horror” did not retrieved any

result at all. Neither “leone eastwood” nor “sergio leone clint eastwood” retrieved any

result despite the presence on the platform of all the movies directed by Sergio Leone

and starring Clint Eastwood at the time of the experiment.

7.3.1 Query Gathering

The first step in building a dataset suitable for studying Semantic Query Labeling

is the query gathering. To collect the queries that are part of our dataset, we relied

on a publicly available large-scale query log of the AOL Web search engine8, which

was shared by Pass et al. [214]. This query set comprises queries issued by real users

8https://www.aol.com

150

https://www.aol.com


between March 1, 2006, and May 31, 2006. First of all, we defined a list of seed-terms

for identifying movie-related queries: movie, movies, film, and films. Leveraging these

terms, we extracted 39 635 unique queries. Then, we manually filtered out all the

queries that did not fall into our category of interest: keyword-based queries that

resemble those used by users for searching movies on movie streaming platforms. We

ended up with 9752 candidate queries, as the large majority of the initially extracted

queries were related to theaters’ movie listings — note that AOL offers a general-

purpose Web search engine. After removing the seed-terms used for gathering the

queries, manually correcting misspellings, normalizing strings, removing the stop-

words, and applying lemmatization, our dataset accounts for 6 749 unique queries.

Our stop-word list was composed only of a, an and the, as we found all the other

query terms useful for semantic labeling purposes. We applied lemmatization only

to nouns, by leveraging the SpaCy9 POS-based lemmatizer.

7.3.2 Semantic Labels Assessment

The second step in the building process of our dataset was to define 1) the semantic

label set to use for the creation of the ground truth and 2) the procedure to follow to

assign the semantic labels to the query terms, ensuring the quality of the proposed

dataset.

Semantic Labels

After an initial analysis of the harvested queries, we defined the following semantic

classes to assign to each query term: Title, Country, Year, Genre, Director, Actor,

Production company, Tag (mainly topics and plot features), Sort (e.g., new, best, popular,

etc.). Following previews works in Natural Language Processing and Sequence

Labeling [266], we used the IOB2 labeling format [223, 235] for manually assigning

9https://spacy.io

151

https://spacy.io


both semantic labels and segmentation delimiters. For example, the query “alien

by ridley scott 1979” is labeled as follows: “alien B-TITLE by O ridley B-DIRECTOR

scott I-DIRECTOR 1979 B-YEAR”, where the prefix B- indicates the beginning of a

segment, the prefix I- indicates that the term is inside a segment, and the tag O is used

to label terms with no semantic values, such as the preposition by in our example.

Creation of the Ground Truth

One of the main reasons for choosing to work in the movie domain is the public

availability of movie-related information. We relied on this information to ensure

the quality of the ground truth labels we manually assigned to the query terms. In this

regard, we consulted many websites that contain movie-related information while

labeling the queries, such as Wikipedia10, IMDb11, and many others. Furthermore,

particular attention was paid in discerning actors from directors, as sometimes a

single person is both an actor and a director, such as Ron Howard. In these cases, we

followed a simple rule: if the query contains elements pointing towards a specific

interpretation of the query, we labeled the query accordingly (e.g., in the query “1999

ron howard”, Ron Howard has been labeled as a Director as in 1999 he directed the

movie EDtv and did not star in any movie), otherwise we assigned the most likely

label based on the number of movies the person has directed or starred. Therefore,

we can state that, where meaningful, we applied a contextual labeling.

7.4 Experimental Setup

The experiments reported in this section aim to answer the following research ques-

tions:

10https://www.wikipedia.org
11https://www.imdb.com
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RQ1 How does a semantic query tagger trained with synthetic data perform w.r.t. the

same model trained with real-world queries?

RQ2 Can we improve the performance of a semantic query tagger by pre-training it

with synthetic data before fine-tuning it with real-world queries?

RQ3 Can pre-training with many synthetic queries improve the model consistency

in predicting semantic classes under-represented in a real-world training set?

RQ4 Is the performance boost given by pre-training, if any, consistent over time while

new real-world training data become available?

RQ5 When does fine-tuning with real-world data become effective for achieving

performance improvements over a model trained only on synthetic queries?

To answer the research questions RQ1, RQ2, and RQ3, we conducted a com-

parative evaluation of the classification effectiveness of the semantic query tagger

described in Section 7.2.2 when trained with synthetic data, real-world data, or a

combination of both. Then, we simulated a dynamic environment where new la-

beled queries are collected over time to evaluate the models at regular intervals,

allowing us to answer the research questions RQ4 and RQ5.

In this following, we describe the experimental settings, the model training con-

figuration and the evaluation metrics used to assess the effectiveness of the proposed

approach.

7.4.1 Compared Models

All the models we compare in our experimental evaluation are based on the query

tagger described in Section 7.2.2. What differs from one another is the data and

training procedure employed to train the model. Specifically, we considered the

following variants:
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• Raw: It refers to the model trained with synthetic queries generated without

the use of query variation techniques described in Section 7.2.1, i.e., the training

queries are generated by sole string concatenation. Raw was added to the

evaluation to assess the importance of adding variations to the query generation

procedure.

• Synthetic: It refers to the model trained with the synthetic queries generated

following the query generation procedure described in Section 7.2.1.

• Raw: It refers to the model trained with queries from the proposed benchmark

dataset introduced in Section 7.3.

• Pre-Trained: It refers to the model pre-trained on the training data of Synthetic

and fine-tuned with the real-world training queries of Real.

7.4.2 Datasets

To promote a realistic evaluation setting, we split the dataset introduced in Section 7.3

into train, dev, and test sets temporally, using the queries issued by the AOL users

in the first two months as train set, and those from the two subsequent two-weeks

periods as dev set and test set. As the queries issued by a user in the same search

session often share several terms, randomly splitting the queries without accounting

for the temporal aspect would cause several query term overlaps between the splits

and thus lead to unrealistic results.

To conduct a fine-grained evaluation, we built three different scenarios of increas-

ing difficulty by subsetting our proposed benchmark dataset. The first scenario, Basic,

comprises only queries containing the following semantic components: Actor, Coun-

try, Genre, Title, Year, and O. We then added the semantic components Director and

Sort to create the Advanced scenario. Finally, we added Production Company and Tag

to create the Hard scenario. The rationale behind these choices is as follows: the Basic
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Table 7.1: Statistics of the benchmark datasets.

Basic Advanced Hard

# train queries 3938 4292 5131
# dev queries 601 672 822
# test queries 538 610 796

Total 5077 5574 6749

scenario is composed of semantic components whose vocabularies are disjoint; the

Advanced scenario introduces vocabulary overlaps (actors/directors), and a semantic

class with few manually defined values; the Hard scenario introduces a semantic class

often subject to omissions, e.g., Walt Disney Pictures→ disney, and a class, Tag, affected

by vocabulary overlaps with the others and vocabulary mismatch between queries

and documents. Table 7.1 reports some statistics regarding the proposed scenarios.

For each of these scenarios, we generated 100000 unique training queries for Raw,

Synthetic, and Pre-Trained. We discarded generated queries present in the dev and test

sets.

7.4.3 Structured Corpus

As a structured corpus to use for query synthetic generation and for computing

the gazetteers-based features, we employ a public dataset hosted on Kaggle12. This

dataset contains structured information about many movies, such as title, genre and

year. This information originally comes from The Movie Database13, a collaborative

online database for movies and TV shows. For consistency with our query set, we

filtered out every movie released after 2006.

12https://www.kaggle.com/rounakbanik/the-movies-dataset
13https://www.themoviedb.org
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7.4.4 Model Training Configuration

In each of the conducted experiments, we trained the models for 50 epochs using

Stochastic Gradient Descent, batch size of 64, and a starting learning rate of 0.1. We

used a starting learning rate of 0.01 only for the Pre-trained model on the Basic and

Advanced scenarios, as the pre-trained model already achieved good performances

(see Section 7.5). We halved the learning rate when the training loss did not decrease

for 5 consecutive epochs. We applied Dropout [251] with a probability of 0.5 on the

Conditional Random Field’s input to help with regularization. As Semantic Query

Labeling is a multi-class classification problem, we optimize our models using Soft-

max Cross-Entropy Loss. We selected the final models basing on their performances

on the dev set in the best epoch.

7.4.5 Evaluation Metrics

To comparatively evaluate the proposed models, we employed F1, Micro-F1 and

Macro-F1 scores. F1 score is defined as the harmonic mean of Precision and Recall.

Micro-F1 is the average of the F1 scores computed independently for each class and

weighted by their number of samples. For imbalanced datasets, the Micro-F1 score

can be skewed towards the most populated classes. Macro-F1 is the average of the

F1 scores computed independently for each class. Each class contributes equally

to this score. A noticeable discrepancy between the Micro-F1 score (high) and the

Macro-F1 score (low) highlights inconsistency in the model predictions, suggesting

that the model is skewed towards specific classes, usually the most popular ones in

the training set.
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7.5 Results and Discussion

7.5.1 Experiment I

The first experiment we conducted aimed to evaluate the performance of the se-

mantic query tagger described in Section 7.2.2 when trained with synthetic data,

real-world data, or a combination of both and to answer the research questions RQ1,

RQ2, and RQ3. Specifically, we aimed to assess whether the model trained with

synthetic data could reach the performance of the model trained with the real-world

ones (RQ1). Moreover, we investigated the use of synthetic data as a means for

pre-training the model before fine-tuning it with the real-world queries (RQ2) and

whether the use of cheap and abundant training data could improve the model from

a consistency perspective (RQ3), i.e., the classification effectiveness for the semantic

classes under-represented in the real-world training set. We conducted this eval-

uation by comparing the obtained Micro-F1 and Macro-F1 scores as described in

Section 7.4.5.

Table 7.2 shows the results obtained by training the models described in Sec-

tion 7.4.1 on each of the proposed scenarios. As expected, the addition of variations

to the query generation process is mandatory to obtain good results, as shown by the

performance differences of Raw and Synthetic in each of the considered evaluation

scenarios. Conversely, we found the comparison between the Synthetic and the Real

models to be very interesting. Both model performed well on the Basic dataset, with

Real slightly outperforming Synthetic. Surprisingly, on the Advanced dataset Synthetic

performed better than Real, with a 12% increment in Macro-F1. The discrepancy in

the Micro-F1 and Macro-F1 scores of Real highlights inconsistency in model predic-

tions, suggesting that the model is skewed towards the most popular classes. It also

suggests the need for many samples to successfully train a semantic query tagger

w.r.t. to less common semantic classes and reinforces the motivations underlying our

157



query generation proposal. We find both Synthetic and Real to achieve unsatisfac-

tory results on the Hard dataset, although the performance of Synthetic is still worth

mentioning, being the model trained only on synthetic data. This last observation

suggests Semantic Query Labeling is far from being solved in difficult domains, and

highlight the importance of the proposed benchmark dataset for advancing in this

regard.

The Pre-trained model consistently outperforms the other considered models in

all the evaluation scenarios, achieving considerable improvements over both the

Synthetic and the Real models. Interestingly, we registered the most noticeable benefits

of pre-training / fine-tuning on Hard, the most complex scenario among the three.

Furthermore, the discrepancies in Micro-F1 and Macro-F1 scores that affected the

Real model — highlighting inconsistency in the model predictions and suggesting it

is skewed towards the most popular classes in the real-world training set — do not

affect the Pre-trained model. The latter gets its consistency from the large synthetically

generated query sets it was pre-trained on, where each semantic class is represented

evenly.

Table 7.3 shows the F1 scores computed for each semantic class. To reduce

table cluttering we do not report results for the Raw model, which underperformed

w.r.t. the other considered models. As shown in the table, the obtained results suggest

that the synthetically generated queries can play a complementary role w.r.t. real-

world queries in effectively training a semantic query tagger. In fact, by pre-training

the semantic query tagger with many synthetic queries, we can expose the model to

abundant in-domain and task-related information and achieve the best performances

across the line.
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Table 7.2: Effectiveness of the models on the three proposed evaluation scenarios.
Best values are highlighted in boldface. Second-best results are underlined.

Model Basic Advanced Hard

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Raw 0.840 0.718 0.756 0.582 0.617 0.514
Synthetic 0.909 0.884 0.903 0.865 0.765 0.756
Real 0.927 0.903 0.896 0.776 0.816 0.756
Pre-trained 0.934 0.910 0.925 0.893 0.840 0.828

Table 7.3: Effectiveness of the models for each semantic class on the three proposed
evaluation scenarios. Best values are highlighted in boldface. Second-best results are
underlined.

Scenario Model Actor Country Genre Title Year Director Sort Tag Company
F1 F1 F1 F1 F1 F1 F1 F1 F1

Basic Synthetic 0.898 0.811 0.867 0.917 0.928 N/A N/A N/A N/A
Basic Real 0.865 0.857 0.897 0.949 0.945 N/A N/A N/A N/A
Basic Pre-trained 0.905 0.857 0.862 0.945 0.978 N/A N/A N/A N/A

Advanced Synthetic 0.885 0.833 0.923 0.914 0.983 0.667 0.853 N/A N/A
Advanced Real 0.844 0.765 0.880 0.921 0.975 0.111 0.937 N/A N/A
Advanced Pre-trained 0.890 0.849 0.895 0.937 1.000 0.750 0.929 N/A N/A

Hard Synthetic 0.857 0.773 0.855 0.777 0.971 0.550 0.876 0.522 0.623
Hard Real 0.831 0.837 0.873 0.854 0.956 0.222 0.883 0.576 0.771
Hard Pre-trained 0.884 0.809 0.897 0.857 0.985 0.667 0.931 0.600 0.817

7.5.2 Experiment II

The second experiment we conducted aimed at two goals. First, we evaluate the

consistency over time of the improvements brought by pre-training with synthetic

data to assess whether it is always beneficial, aiming to answer our fourth research

question, RQ4. Then, to answer our fifth research question (RQ5), we assess when

fine-tuning the pre-trained model with real-world data becomes effective in achieving

performance gains.

For this experiment, we simulated a dynamic environment where new labeled

queries are collected over time by relying on the time-stamps from the original AOL

query logs. During the simulation, we evaluated the models from the previous

experiment at regular intervals. At each evaluation step, we used the corresponding
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Table 7.4: Average effectiveness of the models over time. Best values are highlighted
in boldface. Second-best results are underlined.

Model Basic Advanced Hard

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Synthetic 0.916 0.892 0.896 0.851 0.778 0.743
Real 0.911 0.845 0.899 0.777 0.825 0.753
Pre-trained 0.936 0.907 0.924 0.877 0.850 0.821

week-worth of queries as our test set, the queries from the week before as the dev set,

and all the queries submitted in the antecedent weeks as the train set.

In Table 7.4 are reported Micro-F1 scores and Macro-F1 scores averaged across

all the evaluation steps, for all the evaluation scenarios. As shown in the table,

the Synthetic model registered only a 6% decrease in Micro-F1 on average w.r.t. the

Real model in the worst-case scenario, Hard, while the Pre-trained model consistently

achieves better performances than both the Real model and the Synthetic model,

corroborating the results of the first experiment.

Figure 7.1 depicts the graphs of the results of the over time evaluation we conducted

for the Hard scenario. As shown in the figure, the Pre-trained model overtakes Real

as soon as it is fine-tuned, achieving top performances. Furthermore, the results

highlight that the improvements brought by pre-training are consistent over time.

Because of that, the performance penalty between Synthetic and Real will never take

effect as we can replace Synthetic with Pre-trained as soon as we gather real-world

queries. These results suggest that, while we collect real-world training data for

conducting fine-tuning, we can employ Synthetic with no actual performance loss

w.r.t. Real.
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Figure 7.1: Over time effectiveness of the models in the HARD scenario.

7.6 Summary

In this chapter, we addressed the lack of a publicly available dataset for studying

Semantic Query Labeling by introducing a novel dataset composed of 6749 unique

manually annotated queries that we make available for future research. Moreover,

we proposed a query generation method that, by leveraging the structure of the

documents, automatically produces training data for a semantic query tagger, aiming

at reducing the need for manually labeled data. We also studied the effects of using

these synthetic training data for pre-training a semantic query tagger before fine-
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tuning it with real-world queries. To evaluate our proposal, we compared the same

semantic query tagging model when trained with different data.

Our experimental evaluation shows that a semantic query tagger trained with syn-

thetic data performs comparably to the same model trained with real-world queries.

Moreover, the performance of a semantic query tagger can be improved by first

pre-training it with synthetic data and subsequently fine-tuning it with real-world

queries. Pre-training with many synthetic queries also improves the model consis-

tency in predicting semantic classes under-represented in a real-world training set.

Furthermore, the performance boost given by pre-training is consistent over time

while new real-world training data become available. Finally, fine-tuning with real-

world data becomes effective for achieving performance improvements over a model

trained only on synthetic queries as soon as minimal amounts of real-world training

data become available.

To conclude, leveraging the already available information from a structured cor-

pus is a valuable — and cheap — option for achieving performance gains without the

need for additional real-world data, which, conversely, is very costly.
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CHAPTER 8

RANX: A PYTHON LIBRARY FOR RANKING
EVALUATION, COMPARISON, AND FUSION

Nowadays, researchers in Information Retrieval mostly rely on Python [269, 205]

as their primary coding language. Because of that, many Python tools providing

Information Retrieval experimentation and evaluation functionalities have recently

been proposed [178, 179, 176, 108, 208, 45, 169, 168]. Nevertheless, we think there is

still the need for user-friendly Python libraries following a truly Plug & Play paradigm,

especially for young researchers with different backgrounds. For this reason, in this

chapter, here we present ranx1, a Python library built following a user-centered

design providing several evaluation, comparison, and fusion functionalities. First, we

introduce the implemented functionalities to manage the evaluation and comparison

of Information Retrieval systems in Section 8.1. Then, we discuss the Metasearch

algorithms provided by ranx and the advanced functionalities implemented for

their optimization in Section 8.2.

8.1 Evaluation and Comparison

Offline evaluation and comparison of different Information Retrieval systems is a

fundamental step in developing new solutions [113, 234]. The introduction of

1https://github.com/AmenRa/ranx
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trec_eval2 by the Text Retrieval Conference (TREC)[273] allowed standardizing

evaluation measures in Information Retrieval. This handy tool comes as a stan-

dalone C executable that researchers and practitioners must compile and run through

a command-line interface. Unfortunately, it does not provide additional function-

alities, such as comparing results from different Information Retrieval systems or

exporting the evaluation results to specific formats (e.g., LATEX). Despite some suc-

cessful attempts to bring Information Retrieval trec_eval’s evaluation metrics to

Python [108, 208], there are still no libraries offering advanced functionalities for eval-

uating and comparing multiple retrieval models and offering a user-friendly interface

to those.

To these extents, ranx, the Python library we propose, lets the user calculate

multiple evaluation measures, run statistical tests, and visualize comparison sum-

maries, all in a few lines of code. Furthermore, it offers a convenient way of managing

the evaluation results, allowing exporting them in LATEX format for scientific publi-

cations. On top of that, ranx achieves top-notch efficiency thanks to Numba [145],

a just-in-time compiler [17] for Python and NumPy [204, 268, 114] code, that we

used for implementing all the core functionalities. Specifically, it allows leveraging

high-speed vector operations and automatic parallelization with ease. To the best

of our knowledge, none of the other available tools support multi-threading, which

can vastly improve efficiency and grants ranx the ability to scale on large industrial

datasets.

In the following, we present the main evaluation and comparison functionalities

provided by ranx: the Qrels and Run classes, the evaluatemethod, the compare

method, and the Report class. More details and examples are available in the official

repository.

2https://github.com/usnistgov/trec_eval
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8.1.1 Qrels and Run Classes

The first step in the offline evaluation of the effectiveness of an Information Retrieval

system is the definition of a list of query relevance judgments (qrels) and the ranked

lists of documents retrieved for those queries by the system under evaluation (run).

To ease the managing of these data, ranx implements two dedicated Python classes:

1) Qrels for the query relevance judgments and 2) Run for the computed ranked

lists. As shown in Listing 1, the users can convert the evaluation data from Python

dictionaries, commonly employed to store the query relevance judgments and the

ranked lists of documents retrieved by a retrieval system when working with Python,

into the dedicated ranx classes. The users can also import the evaluation data from

TREC-style and JSON files and Pandas DataFrames [188]. Moreover, ranx integrates

seamlessly with ir-datasets [176], allowing the users to load query relevance judgments

for several Information Retrieval datasets, such as those from TREC’s challenges3,

BEIR [264], and MS MARCO [201]. ranx takes care of sorting and checking the data

so that the users do not need to. Finally, Qrels and Run can be saved as TREC-style

or JSON files for sharing. To learn more about Qrels and Run, we invite the reader

to follow our online Jupyter Notebook4.

8.1.2 Metrics

ranx provides the several ranking evaluation metrics such as Reciprocal Rank, Average

Precision, and Normalized Discounted Cumulative Gain [125, 50], as show in Table 8.1.

We tested the implemented metrics against trec_eval for correctness to assess

the compliancy of those with the standard implementations used for Information

Retrieval evaluation. ranx provides access to the supported evaluation metrics

through a single interface, the method evaluate. As shown in Listing 2, ranx

3https://trec.nist.gov
4https://colab.research.google.com/github/AmenRa/ranx/blob/master/

notebooks/2_qrels_and_run.ipynb
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1 from ranx import Qrels
2

3 # Default usage, convert Python Dictionary
4 qrels_dict = { "q_1": { "d_12": 5, "d_25": 3 },
5 "q_2": { "d_11": 6, "d_22": 1 } }
6

7 qrels = Qrels(qrels_dict)
8

9 # Import qrels from JSON file
10 qrels = Qrels.from_file(path_to_qrels)
11

12 # Import qrels from TREC-Style file
13 qrels = Qrels.from_file(path_to_qrels, kind="trec")
14

15 # Import qrels from Pandas DataFrame
16 qrels = Qrels.from_df(
17 qrels_df,
18 q_id_col="q_id",
19 doc_id_col="doc_id",
20 score_col="score",
21 )
22

23 # Import qrels from ir-datasets (FOR QRELS ONLY)
24 qrels = Qrels.from_ir_datasets("msmarco-document/dev")
25

26 # Save as JSON file
27 qrels.save("qrels.json")
28

29 # Save as TREC-Style file
30 qrels.save("qrels.txt", kind="trec")

Listing 1: Qrels’ methods. The same methods are also available for Run.

allows evaluating a run in a single line of code and allows the user to employ one or

multiple metrics at once and define cut-offs using a convenient syntax. Every time

the user evaluates a metric over a Qrels-Run pair, ranx stores the metrics’ scores

for each query and their averages in the Run instance so that they can be accessed

later on.

As mentioned above, ranx relies on Numba to efficiently compute the scores for

the evaluation metrics. In this regard, we simulated three scenarios of increasing data

intensity to assess both ranx’s efficiency in relation to the pytrec_eval one and

its saturation point. Table 8.2 reports the result of the efficiency comparison between

ranx and pytrec_eval [108], a Python interface to trec_eval, we performed. As
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the table shows, ranx is several times faster than pytrec_eval, allowing it to scale

seamlessly on hundreds of thousands of queries and, potentially, more. Although

we considered very query-rich scenarios, ranx was far from reaching a saturation

point thanks to its Numba-based implementation.

Table 8.1: Provided evaluation metrics. The cut-off column indicates whether the
metric support cut-offs.

Metric Cut-off

Hits ✓

Hit Rate / Success ✓

Precision ✓

Recall ✓

F1 ✓

R-Precision ✗

Bpref [48] ✗

Rank-biased Precision [194] ✗

Mean Reciprocal Rank ✓

Mean Average Precision ✓

NDCG [125] ✓

NDCG Burges [50] ✓

8.1.3 Comparison and Statistical Testing

As comparison is one of the fundamental steps in retrieval systems’ evaluation,

ranx implements a functionality — compare — for comparing multiple Runs. As

shown in Listing 3, it computes the scores for a list of metrics provided by the

user and performs statistical testing on those scores through one of the supported

statistical tests: Two-sided Paired Student’s t-Test, Fisher’s Randomization Test [244],

and Tukey’s HSD Test [59, 89]. As a result, the compare method outputs an object

of the Report class.
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1 from ranx import evaluate
2

3 # Compute score for a single metric
4 evaluate(qrels, run, "ndcg@5")
5 >>> 0.7861
6

7 # Compute scores for multiple metrics at once
8 evaluate(qrels, run, ["map@5", "mrr"])
9 >>> {"map@5": 0.6416, "mrr": 0.75}

10

11 # Computed metric scores are saved in the Run object
12 run.mean_scores
13 >>> {"ndcg@5": 0.7861, "map@5": 0.6416, "mrr": 0.75}
14

15 # Access scores for each query
16 dict(run.scores)
17 >>> {"ndcg@5": {"q_1": 0.9430, "q_2": 0.6292},
18 "map@5": {"q_1": 0.8333, "q_2": 0.4500},
19 "mrr": {"q_1": 1.0000, "q_2": 0.5000}}

Listing 2: Usage example of the evaluate method.

8.1.4 The Report Class

The Report class store all the data produced by performing a comparison as de-

scribed previously. The user can access this information by simply printing a Re-

port in a Python shell, as shown in Listing 3. It also allows exporting a LATEX table

presenting the average scores for each computed metric for each of the compared

models, enriched with superscripts denoting the statistical significance of the im-

provements (if any), as well as a pre-defined caption. Table 8.3 was generated by

report.to_latex().

8.2 Metasearch

In this section we introduce and discuss the Metasearch functionalities provided by

ranx.

Metasearch [16], sometimes called data-fusion [156, 281, 154, 241, 155, 121], is the

problem of combining the results returned by multiple search engines in response
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Table 8.2: Efficiency comparison between ranx (using different number of threads)
and pytrec_eval (pytrec), a Python interface to trec_eval. The comparison
was conducted with synthetic data. Queries have 1-to-10 relevant documents. Re-
trieved lists contain 100 documents. NDCG, MAP, and MRR were computed on
the entire lists. Results are reported in milliseconds. Speed-ups were computed
w.r.t. pytrec_eval.

metric queries pytrec ranx t=1 ranx t=2 ranx t=4 ranx t=8

NDCG
1 000 28 4 7.0× 3 9.3× 2 14.0× 2 14.0×

10 000 291 35 8.3× 24 12.1× 18 16.2× 15 19.4×
100 000 2 991 347 8.6× 230 13.0× 178 16.8× 152 19.7×

MAP
1 000 27 2 13.5× 2 13.5× 1 27.0× 1 27.0×

10 000 286 21 13.6× 13 22.0× 9 31.8× 7 40.9×
100 000 2 950 210 14.0× 126 23.4× 84 35.1× 69 42.8×

MRR
1 000 28 1 28.0× 1 28.0× 1 28.0× 1 28.0×

10 000 283 7 40.4× 6 47.2× 4 70.8× 4 70.8×
100 000 2 935 74 39.7× 57 51.5× 44 66.7× 38 77.2×

Table 8.3: Overall effectiveness of the models. Best results are highlighted in boldface.
Superscripts denote statistically significant differences in Fisher’s Randomization Test
with p ≤ 0.01.

# Model MAP@100 MRR@100 NDCG@10

a model_1 0.3202b 0.3207b 0.3684bc

b model_2 0.2332 0.2339 0.239
c model_3 0.3082b 0.3089b 0.3295b

d model_4 0.3664abc 0.3668abc 0.4078abc

e model_5 0.4053abcd 0.4061abcd 0.4512abcd

to a given query in a way that optimizes the performance of their combination.

Previous works [16, 88, 148, 197, 20, 156, 281, 154, 68, 241, 155, 196] have shown

this combination to consistently improve the retrieval effectiveness of the combined

systems. As discussed by Aslam and Montague [16], Metasearch algorithms can be

applied externally, when the combined search engines are completely independent

from each other, or internally, when a single search engine comprises multiple retrieval

models. In the latter case, Metasearch techniques allow decomposing a large and

monolithic search engine into smaller and more specialized modules, whose results
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1 from ranx import compare
2

3 # Compare different runs and perform statistical tests
4 report = compare(
5 qrels=qrels,
6 runs=[run_1, run_2, run_3, run_4, run_5],
7 metrics=["map@100", "mrr@100", "ndcg@10"],
8 max_p=0.01 # P-value threshold
9 )

10

11 print(report)
12 >>>
13 # Model MAP@100 MRR@100 NDCG@10
14 --- ------- ---------- ---------- ----------
15 a model_1 0.3202b 0.3207b 0.3684bc

16 b model_2 0.2332 0.2339 0.2390
17 c model_3 0.3082b 0.3089b 0.3295b

18 d model_4 0.3664abc 0.3668abc 0.4078abc

19 e model_5 0.4053abcd 0.4061abcd 0.4512abcd

Listing 3: Usage example of the compare method.

are fused after the retrieval phase. Metasearch techniques are usually classified as

score-based [88, 148, 281] or rank-based [16, 196, 154, 241, 155, 68, 156, 197, 20] methods

depending on whether they need relevance scores or just the ranking positions of the

retrieved documents. They can also be divided into supervised and unsupervised

methods, whether they require training data or not.

Despite Metasearch has long been studied in Information Retrieval and simple

combination schemes, such as the weighted sum of multiple relevance scores, are

often used for fusing the rankings produced by modern multi-stage retrieval sys-

tems [277, 92, 158], most of the proposed algorithms do not have a publicly available

implementation. Moreover, there is a lack of a dedicated library providing several

of these algorithms for research and optimization in a single package. As far as

we know, TrecTools5 [208] and Polyfuse6 [141] are the only available tools ex-

posing some Metasearch algorithms. Unfortunately, they both provide few fusion

methods and lack advanced functionalities for fusion optimization. TrecTools is

5https://github.com/joaopalotti/trectools
6https://github.com/rmit-ir/polyfuse
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meant for meta-analysis purposes of TREC-like campaigns’ submissions rather than

Metasearch research or optimization, which explains the lack of more algorithms and

advanced features. Polyfuse was a companion tool for the SIGIR 2018’s tutorial

on fusion [141]. It comes as a simple command-line tool with limited functionalities

rather than a full-fledged library for Metasearch, limiting its adoption as a day-to-day

tool for Information Retrieval researchers and practitioners. The unavailability of a

dedicated Metasearch library providing working implementations of several algo-

rithms and advanced functionalities for fusion optimization motivates the work we

have undergone to extend ranx to accommodate Metasearch functionalities.

Specifically, ranx provides a user-friendly interface to 25 Metasearch algorithms,

implemented leveraging Numba. Our library offers both score-based and rank-based

fusion approaches, all of which can be accessed through a convenient interface, the

method fuse, as we will discuss in the next section. Additionally, ranx allows

the user to experiment with six normalization strategies to transform the results

of different search engines to make them comparable, which is mandatory for the

correct application of many Metasearch algorithms [195, 70]. Finally, since several

Metasearch algorithms require a training or optimization phase, ranx provides a

convenient feature for their optimization that automatically evaluates pre-defined

hyper-parameters configurations via grid search.

In the next section, we introduce the implemented functionalities and provide

usage examples that show their user-centered design and usability. Then, we com-

pare the Metasearch functionalities offered by ranx with those of already available

tools for Metasearch, i.e., TrecTools and Polyfuse, and highlight their differ-

ences. Finally, we discuss some use cases for our library to show the multi-faceted

utility of a publicly available tool providing Metasearch functionalities. More details

and examples are available in the official repository7, documentation8, and Jupyter

7https://github.com/AmenRa/ranx
8https://amenra.github.io/ranx
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Notebook9.

8.2.1 Normalization

The first step when fusing the results of multiple retrieval systems with score-based

fusion methods is to normalize them to make them comparable. This operation is

required as different retrieval models estimate relevance scores on different scales

and ranges and distribute them differently [195]. For example, the classic probabilis-

tic retrieval model BM25 [226] outputs unbounded positive relevance scores, while

modern Deep Learning-based retrieval systems, relying on the dot-product or the

cosine similarity to compute relevance scores, often output unbounded scores or

scores in the interval [−1, 1]. To this extent, ranx offers six normalization strategies:

Min-Max Norm, Max Norm, Sum Norm [195], ZMUV Norm [195], Rank Norm [225],

and Borda Norm [225]. Note that Rank Norm and Borda Norm transform the orig-

inal relevance-based scores assigned to the documents into scores based on their

positioning in the list of ranked results. Therefore, when using these normalization

strategies, score-based fusion methods act as rank-based methods. The reader can

refer to the package documentation for further details on the provided normalization

strategies 10.

8.2.2 Fusion

Table 8.4 lists the fusion algorithms provided by ranx and reports whether they re-

quire a training phase or have hyper-parameters that need to be optimized. We

classify those algorithms into four categories: score-based methods, rank-based

methods, probabilistic methods, and voting-based methods. Score-based meth-

9https://colab.research.google.com/github/AmenRa/ranx/blob/master/
notebooks/5_fusion.ipynb

10https://amenra.github.io/ranx/normalization

172

https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/5_fusion.ipynb
https://colab.research.google.com/github/AmenRa/ranx/blob/master/notebooks/5_fusion.ipynb
https://amenra.github.io/ranx/normalization


ods [88, 148, 281] combine the relevance scores given to the documents retrieved

by multiple search engines to derive the scores used to decide the final arrangement

for the retrieved documents. Rank-based methods [68, 197, 20] rely only on the po-

sitioning of the documents retrieved by the considered search engines to derive the

final ranking. Rank-based methods are particularly useful when the relevance scores

given to the documents retrieved by the different search engines are unavailable (this

is the case of Web search aggregators such as Kayak11 and Skyscanner12). A special

case of the rank-based methods are the probabilistic methods [16, 154, 241, 155, 156],

which derive a probability distribution of the relevance over the ranking positions,

i.e., for each search engine, they assign to each ranking position the probability

of finding a relevant document in that specific position. Probabilistic methods re-

quire a training phase to estimate this probability distribution. The voting-based

methods [16, 196] adapt voting procedures, such as Borda Count and the Condorcet

election method, to Metasearch, combining the preferences of multiple “experts”, i.e.,

the search engines. The voting-based methods can be considered as a special case of

rank-based methods as they only rely on the ranking positions of the documents.

To simplify the use of the provided algorithms, ranx exposes a single interface to

access them: the method fuse, shown in Listing 4. This function takes as input the

runs to be combined (the ranked lists of documents retrieved by the search systems

for multiple queries), the name of the normalization strategy to apply before fusion,

and the name of the fusion method. Optionally, as discussed in the next section,

the fuse function can take in input some parameters required by the chosen fusion

method.
11https://www.kayak.it
12https://www.skyscanner.it
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Table 8.4: Provided fusion algorithms. Supervised means the algorithm requires
a training phase. Params column indicates whether the algorithm has hyper-
parameters that need to be optimized. TT column indicates whether the algorithm
is provided by TrecTools. PF column indicates whether the algorithm is provided
by Polyfuse.

Score-based Methods

Name Supervised Params TT PF

CombANZ [88] ✗ ✗ ✓ ✓

CombMAX [88] ✗ ✗ ✓ ✓

CombMED [88] ✗ ✗ ✓ ✓

CombMIN [88] ✗ ✗ ✓ ✓

CombMNZ [88] ✗ ✗ ✓ ✓

CombSUM [88] ✗ ✗ ✓ ✓

CombGMNZ [148] ✗ ✓ ✗ ✗

Mixed [281] ✗ ✓ ✗ ✗

WMNZ [281] ✗ ✓ ✗ ✗

Weighted Sum ✗ ✓ ✗ ✗

Rank-based Methods

Name Supervised Params TT PF

ISR [197] ✗ ✗ ✗ ✓

Log_ISR [197] ✗ ✗ ✗ ✓

LogN_ISR [197] ✗ ✓ ✗ ✗

RBC [20] ✗ ✓ ✓ ✓

RRF [68] ✗ ✓ ✓ ✓

Probabilistic Methods

Name Supervised Params TT PF

BayesFuse [16] ✓ ✗ ✗ ✗

MAPFuse [156] ✓ ✗ ✗ ✗

PosFuse [156] ✓ ✗ ✗ ✗

ProbFuse [154] ✓ ✓ ✗ ✗

SegFuse [241] ✓ ✗ ✗ ✗

SlideFuse [155] ✓ ✓ ✗ ✗

Voting-based Methods

Name Supervised Params TT PF

BordaFuse [16] ✗ ✗ ✓ ✓

Weighted BordaFuse [16] ✗ ✓ ✗ ✗

Condorcet [196] ✗ ✗ ✗ ✗

Weighted Condorcet [196] ✗ ✓ ✗ ✗
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1 from ranx import fuse
2

3 combined_run = fuse(
4 # The list of Run instances to fuse
5 runs=[run_1, run_2],
6 # The normalization strategy to use
7 norm="min-max",
8 # The fusion algorithm to use
9 method="sum", # Alias for CombSUM

10 )

Listing 4: Usage example of the fuse method.

8.2.3 Fusion Optimization

As reported in Table 8.4, many fusion algorithms require a training or optimiza-

tion step. To this extent, ranx implements the functionalities needed to optimize

those algorithms. Instead of exposing several training and optimization functions,

ranx conveniently provides the users with a single easy-to-use interface, the opti-

mize_fusion method, to optimize those algorithms with ease. Under the hood, it

routes the input parameters to the correct functions and performs other operations

if needed. In the case of the algorithms requiring hyper-parameters optimization,

ranx comes with pre-defined hyper-parameters search spaces, which can be al-

tered by the user. During optimization, ranx automatically generates and evaluates

several hyper-parameters configurations via grid search, relieving the users of the

burden of implementing such procedure for each of the provided algorithms. Once

the optimization is complete, optimize_fusion outputs the trained/optimized

parameters for correctly fusing the ranked lists produced by the search engines the

user want to combine.

Listing 5 shows a usage example of the optimize_fusionmethod. In this case,

the goal is to find the Weighted Sum algorithm’s weights configuration that maximize

the Normalized Discounted Cumulative Gain [125] at depth 100 (NDCG@100). To

do so, the user provides some training data: the query relevance judgments for some
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1 from ranx import fuse, optimize_fusion
2

3 best_params = optimize_fusion(
4 qrels=train_qrels,
5 runs=[train_run_1, train_run_2],
6 norm="min-max",
7 method="wsum", # Alias for Weighted Sum
8 # The metric to maximize during optimization
9 metric="ndcg@100",

10 )
11

12 combined_test_run = fuse(
13 runs=[test_run_1, test_run_2],
14 norm="min-max",
15 method="wsum",
16 params=best_params,
17 )

Listing 5: Usage example of the optimize_fusion method.

training queries (qrels) and the results lists (runs) produced for those queries by the

retrieval systems she aims to combine. After normalization, optimize_fusion

will automatically evaluate several weights configuration and output the best one.

At this point, the user provides the runs for the test queries and the best weights

configuration previously found to the fuse method to compute the final combined

run.

In addition to finding the best hyper-parameters configuration for a given Metasearch

algorithm,optimize_fusion can optionally return a report of the evaluated config-

urations for inspection. This behavior is achieved by setting theoptimize_fusion’s

parameter return_optimization_report to True. Table 8.5 shows the report

for a Weighted Sum optimization over two runs using NDCG@100 as the metric to

maximize. The first column of the table shows the configuration, while the second

shows the score of NDCG@100 obtained with that configuration.

Advanced usage examples are provided in the Jupyter Notebook previously ref-

erenced.
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Table 8.5: Optimization report.

Weights NDCG@100

(0.0, 1.0) 0.502
(0.1, 0.9) 0.517
(0.2, 0.8) 0.531
(0.3, 0.7) 0.553
(0.4, 0.6) 0.556
(0.5, 0.5) 0.543
(0.6, 0.4) 0.528
(0.7, 0.3) 0.511
(0.8, 0.2) 0.493
(0.9, 0.1) 0.480
(1.0, 0.0) 0.452

8.2.4 Comparison with Available Tools

In this section, we compare ranx with existing tools for Metasearch, i.e., Trec-

Tools [208] and Polyfuse [141], highlighting their differences and pointing out

the innovative aspects of the software library we present in this dissertation.

First, we introduce the tools considered for the comparison. TrecTools was

proposed by Palotti et al. [208] as an analysis tool to support TREC-like campaigns. It

provides several functionalities, such as evaluation metrics for Information Retrieval

and fusion algorithms. Polyfuse was a companion software shared with the par-

ticipants of the SIGIR 2018’s tutorial on fusion [141]. It comes as a command-line tool

providing Metasearch functionalities.

Table 8.4 reports the fusion approaches provided by ranx and whether they are

available in TrecTools (TT column) or Polyfuse (PL column). Both TrecTools

and Polyfuse provide a small subset of the fusion methods available in ranx.

Specifically, TrecTools and Polyfuse implement nine and eleven Metasearch

algorithms, respectively. Conversely, ranx provides all the algorithms supported by

the other considered tools for Metasearch, and many others, accounting for 25 fusion

methods. We also notice neither TrecTools nor Polyfuse provides methods

requiring a supervised training phase, while ranx supports six.
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Unfortunately, both TrecTools and Polyfuse lack advanced functionalities for

fusion optimization. In contrast, ranx implements the fusion optimization function-

ality described in Section 8.2.3, which we think will be very convenient for both re-

searchers and practitioners willing to maximize the performance of their Information

Retrieval systems. While ranx and Polyfuse implement normalization strategies,

we noticedTrecToolsdoes not provide any. Note that we found those implemented

by Polyfuse by digging into its source code, as they are not documented.

From a usability perspective, we argue ranx shines among the other tools, pro-

viding easy-to-use functionalities developed following a user-centered design and

accounting for young researchers with different backgrounds. As pointed out in

Section 8.2, ranx offers documentation (which we will enrich over time) pointing

to the original papers of the implemented Metasearch algorithms and providing

their BibTex references. Moreover, it provides a Jupyter Notebook showing its main

features through a hands-on approach. TrecTools offers standard access to the

implemented fusion algorithms through distinct functions, while Polyfuse comes

as a command-line tool only. Both TrecTools and Polyfuse provide a simple

usage example in their repository’s readme files as the only documentation for the

fusion algorithms they implement.

8.2.5 Use Cases

In this section, we briefly discuss some use cases for the Metasearch functionali-

ties our proposed library implements. First, ranx provides the users with working

implementations for several Metasearch algorithms that were previously unavail-

able, allowing the users to try different approaches to fuse the results of multiple

search engines. Second, our library offers new opportunities to combine the rank-

ings produced by modern two-stage retrieval pipelines, usually composed of a term

matching first-stage retriever, e.g., BM25, and a neural re-ranker. In those pipelines,
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multiple rankings computed in response to the same queries are often combined

through a weighted sum of the scores of the documents assigned by the different

retrieval modules [277, 92, 158]. Moreover, finding the best way to combine those

rankings could also be convenient for mining hard negatives to use for training Deep

Learning-based retrieval models [294]. Finally, researchers can leverage the functions

our library exposes to test novel normalization strategies with several Metasearch al-

gorithms in a simple and efficient way. To do so, they can set the norm parameter to

null when calling fuse or optimize_fusion, causing the normalization step to

be bypassed. By doing so, they can test novel normalization strategies by providing

data normalized with the approach at test.

8.3 Summary

In this chapter, we presented ranx, a Python library for the evaluation, comparison,

and fusion of retrieval results powered byNumba. It provides a user-friendly interface

to the most commonly used ranking evaluation metrics and a procedure for com-

paring the results of multiple models and export them as a LATEX table. Moreover, it

implement 25 Metasearch algorithms, both score-based and rank-based methods, six

normalization strategies, and an automatic procedure for optimizing the algorithms

requiring a training or optimization phase. We compared ranx with available tools

for both evaluation and Metasearch, highlighting our library efficiency and pointing

out the innovative aspects from both a functional and a usability perspective.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this chapter, we provide a broad summary of our work. We first summarize

the issues and challenges addressed in our work and our primary contributions and

results. We then highlight open challenges related to Personalized Search and several

potential research directions for future work.

9.1 Overview of our Contributions and Results

In this dissertation, we addressed several topics related to Personalized Information

Retrieval, Semantic Query Labeling, Evaluation, and Fusion. We now summarize

our contributions and results.

Multi-Representation User Modeling In chapter 3, we addressed the problem of

personalization representing the users’ interests and preferences from multiple per-

spectives and proposed a novel personalized results re-ranking approach for Product

Search. In particular, we investigated the use of four different user/item represen-

tations to enhance BM25 performances. We employed representations derived from

user-generated content, user purchasing behavior, categorical information, and item

popularity. Our empirical evaluations show that the proposed approach consistently

enhances BM25 and outperforms recently proposed Neural Network-based models

([109, 6, 8]) specifically designed for Product Search on multiple benchmark datasets.
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Finally, our proposed approach is fast, scalable, and easily extendable to accommo-

date additional representations.

Query-Aware User Modeling In chapter 4, we analyzed the effects of the Atten-

tion mechanism when employed for query-aware user modeling, highlighting some

shortcomings that can cause the user model to be excessively noisy or skewed towards

a single source of user interest. Furthermore, we addressed those shortcomings by

proposing a novel user-data aggregation model called Denoising Attention, which

can finely filter out noisy user-related information. Experimental evaluation in two

different search scenarios, namely Web Search and Academic Search, shows the

benefits of our proposed approach over other Attention variants ([19, 7, 272]) and

highlights the potential of correctly managing the user-related information.

Personalized Query Expansion with Contextual Word Embeddings In chapter 5,

we have addressed some issues arising from employing contextual word embeddings

with current Personalized Query Expansion methods and proposed PQEWC, an ap-

proach designed to counteract those problems and take full advantage of contextual

word embeddings. Specifically, our proposed method employs a clustering-based

technique to group and identify the term embeddings most representative of the

user interests and preferences and an approximation procedure of the personalized

expansion terms selection to increase efficiency. Experimental evaluation shows the

benefits of our proposed approach both in terms of efficiency and effectiveness over

other recent Query Expansion methods, both personalized ([143, 300]) and non per-

sonalized ([278]). Moreover, it highlights how the effectiveness and the efficiency of

Personalized Query Expansion based on word embeddings can be greatly improved

with effective procedures.
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Personalized Search Evaluation In Chapter 6, we discussed the current state of

Personalized Search evaluation and the lack of large-scale datasets for training and

evaluating Neural Networks-based Personalized Information Retrieval models. Fur-

thermore, we introduced a novel large-scale benchmark spanning four domains and

accounting for more than 18 million documents and 1.9 million queries. The size of

the proposed benchmark, along with its rich structured information, opens up new

research opportunities, from adopting graph-based approaches for Personalization

to designing and training novel Neural Networks-based Personalization approaches.

Finally, we provided baselines for future works, opening room for the evaluation of

Personalized Search approaches, as well as Domain Adaptation and Transfer Learn-

ing methods in the context of Personalization.

Semantic Query Labeling In Chapter 7, we addressed the lack of a publicly avail-

able dataset for studying Semantic Query Labeling by introducing a novel dataset

composed of 6749 unique manually annotated queries, which we released for future

research. Moreover, we proposed a query generation method that, by leveraging

the structure of the documents, automatically produces training data for a seman-

tic query tagger, aiming at reducing the need for manually labeled data. We also

studied the effects of using these synthetic training data for pre-training a semantic

query tagger before fine-tuning it with real-world queries. Lastly, we simulated a dy-

namic environment and evaluated the consistency of the performance improvements

brought by pre-training as real-world training data becomes available.

Our experimental evaluation showed that leveraging the already available infor-

mation from a structured corpus is a valuable — and cheap — option for achieving

performance gains without additional real-world data, which is very costly. Specif-

ically, synthetic training queries can be employed to achieve tagging performances

comparable to those obtained with real-world training queries and as a means to ef-
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fectively pre-train a tagger before fine-tuning it with real-world data. We also found

that pre-training with many synthetic queries improves the model consistency in pre-

dicting semantic classes under-represented in a real-world training set and that the

performance boost given by pre-training is consistent over time while new real-world

training data become available.

Evaluation, Comparison, and Fusion In Chapter 8, we presented ranx, a Python

library for the evaluation, comparison, and fusion of retrieval results. It provides a

user-friendly interface to the most commonly used ranking evaluation metrics and a

procedure for comparing the results of multiple models. It also offers a convenient

way of managing the evaluation results, allowing to export them in LATEX format

for scientific publications. Moreover, it implement 25 Metasearch algorithms, both

score-based and rank-based methods, six normalization strategies, and an automatic

procedure for optimizing the algorithms requiring a training or optimization phase,

functionalities previously unavailable to the research community. We compared

ranx with available tools for both evaluation and Metasearch, pointing out the

innovative aspects from both a functional and a usability perspective. Finally, by

leveraging modern technologies for high-speed vector operations and automatic

parallelization,ranx also outperforms the available alternatives in terms of efficiency.

9.2 Future work

Multi-Representation User Modeling The Multi-Representation Personalization

model we presented in 3 employs textual, collaborative, and categorical modalities

to represent the user interests. However, other information could be available for

personalization purposes, such as images, videos, and other relations among users

and documents. The proposed model aggregates the contribution of the different

user and document representations through a convex combination of user-document
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compatibility scores with globally defined coefficients. As demonstrated later in

Chapter 4, weighing the contribution of the user-related information w.r.t. the current

search performed by the user can greatly benefit retrieval performances. Therefore, it

could be interesting to apply this kind of approach in a multi-representation setting,

which comes with its own challenges deriving from the intrinsic differences among

the representations and the data that originated them.

Query-Aware User Modeling Despite the significant improvements brought by the

Denoising Attention mechanism proposed in Chapter 4 when applied for selecting

user-related information for query-aware personalization, some related problems are

worth further study. The alignment model we employed, the scaled cosine similarity,

could be replaced by a parameterized function that could leverage additional infor-

mation other than the textual-based representations of a user-related document and

the query. For example, the dates associated with the user-related documents might

play a role in personalization, as documents written or consulted long before the

query might be less relevant to personalization than more recent ones, despite being

semantically related to the current search. Furthermore, the fixed value threshold

parameter we employed could be sub-optimal in many cases. As shown by the dif-

ference in the threshold parameter values for the two considered datasets, different

queries could benefit from more user-related information or require a finer selection

of the user-related data employed in the personalization process. To conclude, the

management of the user-related information during personalization is fundamental

and far from being a solved issue, leaving room for further improvements.

Personalized Query Expansion with Contextual Word Embeddings Despite the

significant improvements brought by our proposed Personalized Query Expansion

method proposed in Chapter 5 both in terms of efficiency and effectiveness, we think

there still are related topics worth further study. As in previous works, we relied
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on cosine similarity to rank and select the expansion term embeddings. However,

cosine similarity could be replaced by a more sophisticated parameterized function

that, instead of just selecting the expansion terms by their semantic similarity with the

original query terms, could evaluate their utility and assign them specific importance

weights. Moreover, all the compared methods define the number of terms to add to

the query as a fixed parameter, but this number is only generally good and not optimal

for all the queries. Different queries could benefit from more expansion terms or work

better without expansion. Furthermore, a weighing mechanism that can balance the

importance of expansion terms one by one could improve the effectiveness brought

by Query Expansion. Therefore, trying to predict the number of and the related

weights for the expansion terms is a research direction still with much unexplored

potential.

Personalized Search Evaluation Throughout this dissertation, we showed that Per-

sonalization in Information Retrieval can be performed with different methodologies

and data. The benchmark datasets proposed in Chapter 6 fill a huge gap in Personal-

ized Search evaluation and open many new opportunities and possibilities for future

works, such as studying content-based personalization models and collaborative-

filtering approaches, as we provide a rich set of metadata for each document and all

the data to derive the user-document interactions. Moreover, the relations among

the data, such as authorship relations and the paper references, can be represented

by graph structures and leveraged by graph-based personalization approaches. Fi-

nally, our datasets allow the study and design of novel joint Personalized Search and

Recommendation models [292]. Unfortunately, the proposed benchmark is limited

in scope, as it is not suited for training and evaluating short-term user modeling

techniques and session-based personalization approaches due to the lack of search

sessions. However, in our opinion, proposing novel methodologies for evaluating
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those approaches to Personalization is a direction worth pursuing in the future.

Semantic Query Labeling As described in Chapter 7, Semantic Query Labeling is

a very understudied task. In our work, we focused on obtaining cheap-but-reliable

training data for a semantic query tagger from a structured document collection, but

we did not design a retrieval model able to leverage the semantic labels produced

by this tagger due to time constraints. However, we think unfolding the relations

between the query terms and the documents’ structure could allow for designing

sophisticated retrieval models that can potentially overcome the matching-based na-

ture of current retrieval approaches, both lexical and semantic, introducing reasoning

engines able to exploit those relations from a retrieval perspective. In other words,

labeled queries, which contain both lexical (the textual terms), semantic (if projected

into a latent space with word embedding techniques), and symbolic information (the

labels), could enable novel approaches to Information Retrieval that are not possible

without this kind of labeling. We acknowledge that part of the symbolic informa-

tion is intrinsically captured by modern word embedding techniques, although not

in a humanly interpretable way, undermining both explainability and the use of

human-designed reasoning rules. Finally, we think designing methods to leverage

the information already contained in a document collection is a research direction

worth pursuing, and that should be more popular among the research community.

ranx Currently, we are working on ranxhub1, a public hub for sharing state-of-

the-art Information Retrieval Systems’ results (runs) for multiple benchmarks. We

think such a hub could be helpful for both researchers and reviewers, promote

transparency, and speed up Information Retrieval research, lightening the burden of

implementing and training modern state-of-the-art retrieval models based on Neural

Networks. We aim to provide the community with a tool for finding appropriate

1https://amenra.github.io/ranxhub
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baselines for their models and performing comparisons with their results in just

a few minutes and less than ten lines of code, avoiding hardware-demanding and

time-consuming computations and thus reducing our environmental footprint. In

this regard, we are extending our Python library ranx to integrate direct access to

this hub so that all the provided evaluation, comparison, and fusion functionalities

will be readily available to be applied to the shared results.

187



BIBLIOGRAPHY

[1] Eytan Adar. User 4xxxxx9: Anonymizing query logs. In Proc of Query Log
Analysis Workshop, International Conference on World Wide Web, 2007.

[2] Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR,
abs/1803.08375, 2018.

[3] Eugene Agichtein, Eric Brill, and Susan T. Dumais. Improving web search rank-
ing by incorporating user behavior information. In Efthimis N. Efthimiadis,
Susan T. Dumais, David Hawking, and Kalervo Järvelin, editors, SIGIR 2006:
Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Seattle, Washington, USA, August 6-11,
2006, pages 19–26. ACM, 2006. doi:10.1145/1148170.1148177.

[4] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. Multi-task learning
for document ranking and query suggestion. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018.

[5] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. Context atten-
tive document ranking and query suggestion. In Benjamin Piwowarski, Max
Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer, edi-
tors, Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019,
pages 385–394. ACM, 2019. doi:10.1145/3331184.3331246.

[6] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W. Bruce Croft. Learn-
ing a hierarchical embedding model for personalized product search. In Noriko
Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W.
White, editors, Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August
7-11, 2017, pages 645–654. ACM, 2017. doi:10.1145/3077136.3080813.

[7] Qingyao Ai, Daniel N. Hill, S. V. N. Vishwanathan, and W. Bruce Croft. A zero
attention model for personalized product search. In Wenwu Zhu, Dacheng
Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He,
and Jeffrey Xu Yu, editors, Proceedings of the 28th ACM International Conference

188

https://doi.org/10.1145/1148170.1148177
https://doi.org/10.1145/3331184.3331246
https://doi.org/10.1145/3077136.3080813


on Information and Knowledge Management, CIKM 2019, Beĳing, China, November
3-7, 2019, pages 379–388. ACM, 2019. doi:10.1145/3357384.3357980.

[8] Qingyao Ai, Yongfeng Zhang, Keping Bi, and W. Bruce Croft. Explainable
product search with a dynamic relation embedding model. ACM Trans. Inf.
Syst., 38(1):4:1–4:29, 2020. doi:10.1145/3361738.

[9] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework.
In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and
George Karypis, editors, Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
August 4-8, 2019, pages 2623–2631. ACM, 2019. doi:10.1145/3292500.3330701.

[10] James Allan. HARD track overview in TREC 2003: High accuracy retrieval from
documents. In Ellen M. Voorhees and Lori P. Buckland, editors, Proceedings of
The Twelfth Text REtrieval Conference, TREC 2003, Gaithersburg, Maryland, USA,
November 18-21, 2003, volume 500-255 of NIST Special Publication, pages 24–37.
National Institute of Standards and Technology (NIST), 2003.

[11] James Allan. HARD track overview in TREC 2004 - high accuracy retrieval from
documents. In Ellen M. Voorhees and Lori P. Buckland, editors, Proceedings of
the Thirteenth Text REtrieval Conference, TREC 2004, Gaithersburg, Maryland, USA,
November 16-19, 2004, volume 500-261 of NIST Special Publication. National
Institute of Standards and Technology (NIST), 2004.

[12] James Allan. HARD track overview in TREC 2005 high accuracy retrieval from
documents. In Ellen M. Voorhees and Lori P. Buckland, editors, Proceedings
of the Fourteenth Text REtrieval Conference, TREC 2005, Gaithersburg, Maryland,
USA, November 15-18, 2005, volume 500-266 of NIST Special Publication. National
Institute of Standards and Technology (NIST), 2005.

[13] Nawal Ould Amer, Philippe Mulhem, and Mathias Géry. Toward word em-
bedding for personalized information retrieval. CoRR, abs/1606.06991, 2016.

[14] Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles
Crawford, Doug Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Murray,
Hsu-Han Ooi, Matthew E. Peters, Joanna Power, Sam Skjonsberg, Lucy Lu
Wang, Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen, and Oren Etzioni.
Construction of the literature graph in semantic scholar. In Srinivas Bangalore,
Jennifer Chu-Carroll, and Yunyao Li, editors, Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 3 (Industry Papers), pages 84–91. Association for Computational
Linguistics, 2018. doi:10.18653/v1/n18-3011.

189

https://doi.org/10.1145/3357384.3357980
https://doi.org/10.1145/3361738
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.18653/v1/n18-3011


[15] Kamelia Aryafar, Devin Guillory, and Liangjie Hong. An ensemble-based
approach to click-through rate prediction for promoted listings at etsy. In
Proceedings of the ADKDD’17, Halifax, NS, Canada, August 13 - 17, 2017, pages
10:1–10:6. ACM, 2017. doi:10.1145/3124749.3124758.

[16] Javed A. Aslam and Mark H. Montague. Models for metasearch. In W. Bruce
Croft, David J. Harper, Donald H. Kraft, and Justin Zobel, editors, SIGIR 2001:
Proceedings of the 24th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, September 9-13, 2001, New Orleans,
Louisiana, USA, pages 275–284. ACM, 2001. doi:10.1145/383952.384007.

[17] John Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113,
2003.

[18] Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques
for information retrieval: A survey. Inf. Process. Manag., 56(5):1698–1735, 2019.
doi:10.1016/j.ipm.2019.05.009.

[19] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[20] Peter Bailey, Alistair Moffat, Falk Scholer, and Paul Thomas. Retrieval consis-
tency in the presence of query variations. In Noriko Kando, Tetsuya Sakai,
Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White, editors, Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pages 395–404.
ACM, 2017. doi:10.1145/3077136.3080839.

[21] Krisztian Balog. Entity-Oriented Search, volume 39 of The Information Retrieval
Series. Springer, 2018.

[22] Michael Barbaro, Tom Zeller, and Saul Hansell. A face is exposed for aol
searcher no. 4417749. New York Times, 9(2008):8, 2006.

[23] Elias Bassani. ranx: A blazing-fast python library for ranking evaluation and
comparison. In Matthias Hagen, Suzan Verberne, Craig Macdonald, Christin
Seifert, Krisztian Balog, Kjetil Nørvåg, and Vinay Setty, editors, Advances in
Information Retrieval - 44th European Conference on IR Research, ECIR 2022, Sta-
vanger, Norway, April 10-14, 2022, Proceedings, Part II, volume 13186 of Lecture
Notes in Computer Science, pages 259–264. Springer, 2022. doi:10.1007/978-3-
030-99739-7_30.

[24] Elias Bassani. ranx: A blazing-fast python library for ranking evaluation and
comparison. In Matthias Hagen, Suzan Verberne, Craig Macdonald, Christin
Seifert, Krisztian Balog, Kjetil Nørvåg, and Vinay Setty, editors, Advances in

190

https://doi.org/10.1145/3124749.3124758
https://doi.org/10.1145/383952.384007
https://doi.org/10.1016/j.ipm.2019.05.009
https://doi.org/10.1145/3077136.3080839
https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1007/978-3-030-99739-7_30


Information Retrieval - 44th European Conference on IR Research, ECIR 2022, Sta-
vanger, Norway, April 10-14, 2022, Proceedings, Part II, volume 13186 of Lecture
Notes in Computer Science, pages 259–264. Springer, 2022. doi:10.1007/978-3-
030-99739-7_30.

[25] Elias Bassani and Gabriella Pasi. A multi-representation re-ranking
model for personalized product search. Inf. Fusion, 81:240–249, 2022.
doi:10.1016/j.inffus.2021.11.010.

[26] Elias Bassani and Luca Romelli. ranx.fuse: A python library for metasearch. In
Proceedings of the 31st ACM International Conference on Information and Knowledge
Management, CIKM 2022, Atlanta, Georgia, USA, October 17-21, 2022. ACM, 2022.

[27] Nicholas J. Belkin, Michael J. Cole, Jacek Gwizdka, Yuelin Li, Jingjing Liu,
Gheorghe Muresan, Catherine Smith, Arthur R. Taylor, Xiaojun Yuan, and
Dmitri Roussinov. Rutgers information interaction lab at TREC 2005: Trying
HARD. In Ellen M. Voorhees and Lori P. Buckland, editors, Proceedings of the
Fourteenth Text REtrieval Conference, TREC 2005, Gaithersburg, Maryland, USA,
November 15-18, 2005, volume 500-266 of NIST Special Publication. National
Institute of Standards and Technology (NIST), 2005.

[28] Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas
Neumann, Shila Ofek-Koifman, Dafna Sheinwald, Eugene J. Shekita, Ben-
jamin Sznajder, and Sivan Yogev. Beyond basic faceted search. In Marc
Najork, Andrei Z. Broder, and Soumen Chakrabarti, editors, Proceedings of
the International Conference on Web Search and Web Data Mining, WSDM 2008,
Palo Alto, California, USA, February 11-12, 2008, pages 33–44. ACM, 2008.
doi:10.1145/1341531.1341539.

[29] Matthias Bender, Tom Crecelius, Mouna Kacimi, Sebastian Michel, Thomas
Neumann, Josiane Xavier Parreira, Ralf Schenkel, and Gerhard Weikum. Ex-
ploiting social relations for query expansion and result ranking. In Proceedings
of the 24th International Conference on Data Engineering Workshops, ICDE 2008,
April 7-12, 2008, Cancún, Mexico, pages 501–506. IEEE Computer Society, 2008.
doi:10.1109/ICDEW.2008.4498369.

[30] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35
(8):1798–1828, 2013. doi:10.1109/TPAMI.2013.50.

[31] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bai-
ley, Fedor Borisyuk, and Xiaoyuan Cui. Modeling the impact of short- and
long-term behavior on search personalization. In William R. Hersh, Jamie
Callan, Yoelle Maarek, and Mark Sanderson, editors, The 35th International
ACM SIGIR conference on research and development in Information Retrieval, SI-
GIR ’12, Portland, OR, USA, August 12-16, 2012, pages 185–194. ACM, 2012.
doi:10.1145/2348283.2348312.

191

https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1016/j.inffus.2021.11.010
https://doi.org/10.1145/1341531.1341539
https://doi.org/10.1109/ICDEW.2008.4498369
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1145/2348283.2348312


[32] Marin Bertier, Rachid Guerraoui, Vincent Leroy, and Anne-Marie Kermar-
rec. Toward personalized query expansion. In Tao Stein and Meeyoung Cha,
editors, Proceedings of the Second ACM EuroSys Workshop on Social Network Sys-
tems, SNS 2009, Nuremberg, Germany, March 31, 2009, pages 7–12. ACM, 2009.
doi:10.1145/1578002.1578004.

[33] Keping Bi, Qingyao Ai, Yongfeng Zhang, and W. Bruce Croft. Conversational
product search based on negative feedback. In Wenwu Zhu, Dacheng Tao,
Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and
Jeffrey Xu Yu, editors, Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM 2019, Beĳing, China, November 3-7,
2019, pages 359–368. ACM, 2019. doi:10.1145/3357384.3357939.

[34] Keping Bi, Qingyao Ai, and W. Bruce Croft. A transformer-based embedding
model for personalized product search. In Jimmy Huang, Yi Chang, Xueqi
Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, editors,
Proceedings of the 43rd International ACM SIGIR conference on research and develop-
ment in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pages 1521–1524. ACM, 2020. doi:10.1145/3397271.3401192.

[35] Keping Bi, Qingyao Ai, and W. Bruce Croft. A review-based transformer model
for personalized product search. CoRR, abs/2004.09424, 2020.

[36] Keping Bi, Qingyao Ai, and W. Bruce Croft. Learning a fine-grained review-
based transformer model for personalized product search. In Fernando Diaz,
Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai,
editors, SIGIR ’21: The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021,
pages 123–132. ACM, 2021. doi:10.1145/3404835.3462911.

[37] Claudio Biancalana and Alessandro Micarelli. Social tagging in query expan-
sion: A new way for personalized web search. In Proceedings of the 12th IEEE
International Conference on Computational Science and Engineering, CSE 2009, Van-
couver, BC, Canada, August 29-31, 2009, pages 1060–1065. IEEE Computer Soci-
ety, 2009. doi:10.1109/CSE.2009.492.

[38] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O’Reilly, 2009. ISBN 978-0-596-51649-9.

[39] Mohamed Reda Bouadjenek, Hakim Hacid, Mokrane Bouzeghoub, and Jo-
hann Daigremont. Personalized social query expansion using social book-
marking systems. In Wei-Ying Ma, Jian-Yun Nie, Ricardo Baeza-Yates, Tat-
Seng Chua, and W. Bruce Croft, editors, Proceeding of the 34th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2011, Beĳing, China, July 25-29, 2011, pages 1113–1114. ACM, 2011.
doi:10.1145/2009916.2010075.

192

https://doi.org/10.1145/1578002.1578004
https://doi.org/10.1145/3357384.3357939
https://doi.org/10.1145/3397271.3401192
https://doi.org/10.1145/3404835.3462911
https://doi.org/10.1109/CSE.2009.492
https://doi.org/10.1145/2009916.2010075


[40] Mohamed Reda Bouadjenek, Amyn Bennamane, Hakim Hacid, and Mokrane
Bouzeghoub. Evaluation of personalized social ranking functions of infor-
mation retrieval. In Florian Daniel, Peter Dolog, and Qing Li, editors, Web
Engineering - 13th International Conference, ICWE 2013, Aalborg, Denmark, July
8-12, 2013. Proceedings, volume 7977 of Lecture Notes in Computer Science, pages
283–290. Springer, 2013. doi:10.1007/978-3-642-39200-9_24.

[41] Mohamed Reda Bouadjenek, Hakim Hacid, and Mokrane Bouzeghoub. Sopra:
a new social personalized ranking function for improving web search. In Gareth
J. F. Jones, Paraic Sheridan, Diane Kelly, Maarten de Rĳke, and Tetsuya Sakai,
editors, The 36th International ACM SIGIR conference on research and development
in Information Retrieval, SIGIR ’13, Dublin, Ireland - July 28 - August 01, 2013,
pages 861–864. ACM, 2013. doi:10.1145/2484028.2484131.

[42] Mohamed Reda Bouadjenek, Hakim Hacid, Mokrane Bouzeghoub, and Athena
Vakali. Using social annotations to enhance document representation for
personalized search. In Gareth J. F. Jones, Paraic Sheridan, Diane Kelly,
Maarten de Rĳke, and Tetsuya Sakai, editors, The 36th International ACM SI-
GIR conference on research and development in Information Retrieval, SIGIR ’13,
Dublin, Ireland - July 28 - August 01, 2013, pages 1049–1052. ACM, 2013.
doi:10.1145/2484028.2484130.

[43] Mohamed Reda Bouadjenek, Hakim Hacid, Mokrane Bouzeghoub, and Athena
Vakali. Persador: Personalized social document representation for improving
web search. Inf. Sci., 369:614–633, 2016. doi:10.1016/j.ins.2016.07.046.

[44] Mohamed Reda Bouadjenek, Hakim Hacid, and Mokrane Bouzeghoub. Per-
sonalized social query expansion using social annotations. Trans. Large Scale
Data Knowl. Centered Syst., 40:1–25, 2019. doi:10.1007/978-3-662-58664-8_1.

[45] Timo Breuer, Nicola Ferro, Maria Maistro, and Philipp Schaer. repro_eval:
A python interface to reproducibility measures of system-oriented IR experi-
ments. In ECIR (2), volume 12657 of Lecture Notes in Computer Science, pages
481–486. Springer, 2021.

[46] John S. Bridle. Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters. In David S.
Touretzky, editor, Advances in Neural Information Processing Systems 2, [NIPS Con-
ference, Denver, Colorado, USA, November 27-30, 1989], pages 211–217. Morgan
Kaufmann, 1989.

[47] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,

193

https://doi.org/10.1007/978-3-642-39200-9_24
https://doi.org/10.1145/2484028.2484131
https://doi.org/10.1145/2484028.2484130
https://doi.org/10.1016/j.ins.2016.07.046
https://doi.org/10.1007/978-3-662-58664-8_1


Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[48] Chris Buckley and Ellen M. Voorhees. Retrieval evaluation with incomplete
information. In Mark Sanderson, Kalervo Järvelin, James Allan, and Peter
Bruza, editors, SIGIR 2004: Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Sheffield,
UK, July 25-29, 2004, pages 25–32. ACM, 2004. doi:10.1145/1008992.1009000.

[49] Jay Budzik and Kristian J. Hammond. User interactions with everyday appli-
cations as context for just-in-time information access. In Doug Riecken, David
Benyon, and Henry Lieberman, editors, Proceedings of the 5th International Con-
ference on Intelligent User Interfaces, IUI 2000, New Orleans, LA, USA, January
9-12, 2000, pages 44–51. ACM, 2000. doi:10.1145/325737.325776.

[50] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds,
Nicole Hamilton, and Gregory N. Hullender. Learning to rank using gradient
descent. In ICML, volume 119 of ACM International Conference Proceeding Series,
pages 89–96. ACM, 2005.

[51] Silvia Calegari and Gabriella Pasi. Personalized ontology-based query expan-
sion. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web In-
telligence and International Conference on Intelligent Agent Technology - Workshops,
9-12 December 2008, Sydney, NSW, Australia, pages 256–259. IEEE Computer
Society, 2008. doi:10.1109/WIIAT.2008.242.

[52] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. Selecting
good expansion terms for pseudo-relevance feedback. In Proceedings of the
31st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, pages 243–250.
ACM, 2008. doi:10.1145/1390334.1390377.

[53] Mark James Carman, Fabio Crestani, Morgan Harvey, and Mark Baillie. To-
wards query log based personalization using topic models. In Jimmy Huang,
Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn Collins-Thompson, and
Aĳun An, editors, Proceedings of the 19th ACM Conference on Information and
Knowledge Management, CIKM 2010, Toronto, Ontario, Canada, October 26-30,
2010, pages 1849–1852. ACM, 2010. doi:10.1145/1871437.1871745.

[54] David Carmel, Naama Zwerdling, Ido Guy, Shila Ofek-Koifman, Nadav Har’El,
Inbal Ronen, Erel Uziel, Sivan Yogev, and Sergey Chernov. Personalized social
search based on the user’s social network. In David Wai-Lok Cheung, Il-
Yeol Song, Wesley W. Chu, Xiaohua Hu, and Jimmy Lin, editors, Proceedings
of the 18th ACM Conference on Information and Knowledge Management, CIKM
2009, Hong Kong, China, November 2-6, 2009, pages 1227–1236. ACM, 2009.
doi:10.1145/1645953.1646109.

194

https://doi.org/10.1145/1008992.1009000
https://doi.org/10.1145/325737.325776
https://doi.org/10.1109/WIIAT.2008.242
https://doi.org/10.1145/1390334.1390377
https://doi.org/10.1145/1871437.1871745
https://doi.org/10.1145/1645953.1646109


[55] Claudio Carpineto and Giovanni Romano. A survey of automatic query ex-
pansion in information retrieval. ACM Comput. Surv., 44(1):1:1–1:50, 2012.
doi:10.1145/2071389.2071390.

[56] John M Carroll and Mary Beth Rosson. Paradox of the active user. In Interfacing
thought: Cognitive aspects of human-computer interaction, pages 80–111. 1987.

[57] Ben Carterette, Ashraf Bah, Evangelos Kanoulas, Mark M. Hall, and Paul D.
Clough. Overview of the TREC 2013 session track. In Ellen M. Voorhees,
editor, Proceedings of The Twenty-Second Text REtrieval Conference, TREC 2013,
Gaithersburg, Maryland, USA, November 19-22, 2013, volume 500-302 of NIST
Special Publication. National Institute of Standards and Technology (NIST), 2013.

[58] Ben Carterette, Evangelos Kanoulas, Mark M. Hall, and Paul D. Clough.
Overview of the TREC 2014 session track. In Ellen M. Voorhees and Angela El-
lis, editors, Proceedings of The Twenty-Third Text REtrieval Conference, TREC 2014,
Gaithersburg, Maryland, USA, November 19-21, 2014, volume 500-308 of NIST Spe-
cial Publication. National Institute of Standards and Technology (NIST), 2014.

[59] Benjamin A. Carterette. Multiple testing in statistical analysis of systems-based
information retrieval experiments. ACM Trans. Inf. Syst., 30(1):4:1–4:34, 2012.
doi:10.1145/2094072.2094076.

[60] Marc-Allen Cartright, James Allan, Victor Lavrenko, and Andrew McGregor.
Fast query expansion using approximations of relevance models. In Proceedings
of the 19th ACM Conference on Information and Knowledge Management, CIKM
2010, Toronto, Ontario, Canada, October 26-30, 2010, pages 1573–1576. ACM,
2010. doi:10.1145/1871437.1871675.

[61] Liren Chen and Katia P. Sycara. Webmate: A personal agent for browsing
and searching. In Katia P. Sycara and Michael J. Wooldridge, editors, Pro-
ceedings of the Second International Conference on Autonomous Agents, AGENTS
1998, St. Paul, Minnepolis, USA, May 9-13, 1998, pages 132–139. ACM, 1998.
doi:10.1145/280765.280789.

[62] Paul-Alexandru Chirita, Claudiu S. Firan, and Wolfgang Nejdl. Personalized
query expansion for the web. In Wessel Kraaĳ, Arjen P. de Vries, Charles L. A.
Clarke, Norbert Fuhr, and Noriko Kando, editors, SIGIR 2007: Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Amsterdam, The Netherlands, July 23-27, 2007, pages 7–14.
ACM, 2007. doi:10.1145/1277741.1277746.

[63] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-based models for speech recognition. In Corinna
Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 577–585, 2015.

195

https://doi.org/10.1145/2071389.2071390
https://doi.org/10.1145/2094072.2094076
https://doi.org/10.1145/1871437.1871675
https://doi.org/10.1145/280765.280789
https://doi.org/10.1145/1277741.1277746


[64] Cyril Cleverdon. The cranfield tests on index language devices. In Aslib pro-
ceedings. MCB UP Ltd, 1967.

[65] James R. Clough, Jamie Gollings, Tamar V. Loach, and Tim S. Evans. Transitive
reduction of citation networks. Journal of Complex Networks, 3(2):189–203, 09
2014. ISSN 2051-1310. doi:10.1093/comnet/cnu039.

[66] Kevyn Collins-Thompson. Reducing the risk of query expansion via robust
constrained optimization. In David Wai-Lok Cheung, Il-Yeol Song, Wesley W.
Chu, Xiaohua Hu, and Jimmy Lin, editors, Proceedings of the 18th ACM Confer-
ence on Information and Knowledge Management, CIKM 2009, Hong Kong, China,
November 2-6, 2009, pages 837–846. ACM, 2009. doi:10.1145/1645953.1646059.

[67] Kevyn Collins-Thompson and Jamie Callan. Estimation and use of uncertainty
in pseudo-relevance feedback. In SIGIR 2007: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Amsterdam, The Netherlands, July 23-27, 2007, pages 303–310. ACM,
2007. doi:10.1145/1277741.1277795.

[68] Gordon V. Cormack, Charles L. A. Clarke, and Stefan Büttcher. Reciprocal rank
fusion outperforms condorcet and individual rank learning methods. In SIGIR,
pages 758–759. ACM, 2009.

[69] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, 1995. doi:10.1007/BF00994018.

[70] W Bruce Croft. Combining approaches to information retrieval. In Advances in
information retrieval, pages 1–36. Springer, 2002.

[71] Adriel Dean-Hall, Charles L. A. Clarke, Jaap Kamps, Paul Thomas, and Ellen M.
Voorhees. Overview of the TREC 2012 contextual suggestion track. In Ellen M.
Voorhees and Lori P. Buckland, editors, Proceedings of The Twenty-First Text
REtrieval Conference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9,
2012, volume 500-298 of NIST Special Publication. National Institute of Standards
and Technology (NIST), 2012.

[72] Adriel Dean-Hall, Charles L. A. Clarke, Nicole Simone, Jaap Kamps, Paul
Thomas, and Ellen M. Voorhees. Overview of the TREC 2013 contextual sug-
gestion track. In Ellen M. Voorhees, editor, Proceedings of The Twenty-Second
Text REtrieval Conference, TREC 2013, Gaithersburg, Maryland, USA, November
19-22, 2013, volume 500-302 of NIST Special Publication. National Institute of
Standards and Technology (NIST), 2013.

[73] Adriel Dean-Hall, Charles L. A. Clarke, Jaap Kamps, Paul Thomas, and Ellen M.
Voorhees. Overview of the TREC 2014 contextual suggestion track. In Ellen M.
Voorhees and Angela Ellis, editors, Proceedings of The Twenty-Third Text REtrieval
Conference, TREC 2014, Gaithersburg, Maryland, USA, November 19-21, 2014,

196

https://doi.org/10.1093/comnet/cnu039
https://doi.org/10.1145/1645953.1646059
https://doi.org/10.1145/1277741.1277795
https://doi.org/10.1007/BF00994018


volume 500-308 of NIST Special Publication. National Institute of Standards and
Technology (NIST), 2014.

[74] Adriel Dean-Hall, Charles L. A. Clarke, Jaap Kamps, Julia Kiseleva, and Ellen M.
Voorhees. Overview of the TREC 2015 contextual suggestion track. In Ellen M.
Voorhees and Angela Ellis, editors, Proceedings of The Twenty-Fourth Text RE-
trieval Conference, TREC 2015, Gaithersburg, Maryland, USA, November 17-20,
2015, volume 500-319 of NIST Special Publication. National Institute of Stan-
dards and Technology (NIST), 2015.

[75] Chenlong Deng, Yujia Zhou, and Zhicheng Dou. Improving personalized
search with dual-feedback network. In K. Selcuk Candan, Huan Liu, Le-
man Akoglu, Xin Luna Dong, and Jiliang Tang, editors, WSDM ’22: The
Fifteenth ACM International Conference on Web Search and Data Mining, Virtual
Event / Tempe, AZ, USA, February 21 - 25, 2022, pages 210–218. ACM, 2022.
doi:10.1145/3488560.3498447.

[76] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Associ-
ation for Computational Linguistics, 2019. doi:10.18653/v1/n19-1423.

[77] Fernando Diaz, Bhaskar Mitra, and Nick Craswell. Query expansion with
locally-trained word embeddings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association for Computer Linguistics,
2016. doi:10.18653/v1/p16-1035.

[78] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation
and analysis of personalized search strategies. In Carey L. Williamson,
Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, edi-
tors, Proceedings of the 16th International Conference on World Wide Web, WWW
2007, Banff, Alberta, Canada, May 8-12, 2007, pages 581–590. ACM, 2007.
doi:10.1145/1242572.1242651.

[79] Huizhong Duan and ChengXiang Zhai. Mining coordinated intent represen-
tation for entity search and recommendation. In James Bailey, Alistair Mof-
fat, Charu C. Aggarwal, Maarten de Rĳke, Ravi Kumar, Vanessa Murdock,
Timos K. Sellis, and Jeffrey Xu Yu, editors, Proceedings of the 24th ACM In-
ternational Conference on Information and Knowledge Management, CIKM 2015,
Melbourne, VIC, Australia, October 19 - 23, 2015, pages 333–342. ACM, 2015.
doi:10.1145/2806416.2806557.

[80] Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. A
probabilistic mixture model for mining and analyzing product search log. In

197

https://doi.org/10.1145/3488560.3498447
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/p16-1035
https://doi.org/10.1145/1242572.1242651
https://doi.org/10.1145/2806416.2806557


Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, editors,
22nd ACM International Conference on Information and Knowledge Management,
CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013, pages 2179–
2188. ACM, 2013. doi:10.1145/2505515.2505578.

[81] Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani.
Supporting keyword search in product database: A probabilistic approach.
Proc. VLDB Endow., 6(14):1786–1797, 2013. doi:10.14778/2556549.2556562.

[82] Susan T. Dumais, Edward Cutrell, Jonathan J. Cadiz, Gavin Jancke, Raman
Sarin, and Daniel C. Robbins. Stuff i’ve seen: a system for personal information
retrieval and re-use. In Charles L. A. Clarke, Gordon V. Cormack, Jamie Callan,
David Hawking, and Alan F. Smeaton, editors, SIGIR 2003: Proceedings of the
26th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, July 28 - August 1, 2003, Toronto, Canada, pages 72–79.
ACM, 2003. doi:10.1145/860435.860451.

[83] Carsten Eickhoff, Kevyn Collins-Thompson, Paul N. Bennett, and Susan T. Du-
mais. Personalizing atypical web search sessions. In Stefano Leonardi, Alessan-
dro Panconesi, Paolo Ferragina, and Aristides Gionis, editors, Sixth ACM In-
ternational Conference on Web Search and Data Mining, WSDM 2013, Rome, Italy,
February 4-8, 2013, pages 285–294. ACM, 2013. doi:10.1145/2433396.2433434.

[84] William Falcon et al. Pytorch lightning. GitHub. Note: https://github.
com/PyTorchLightning/pytorch-lightning, 3:6, 2019.

[85] Lu Fan, Qimai Li, Bo Liu, Xiao-Ming Wu, Xiaotong Zhang, Fuyu Lv, Guli
Lin, Sen Li, Taiwei Jin, and Keping Yang. Modeling user behavior with
graph convolution for personalized product search. In Frédérique Laforest,
Raphaël Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Her-
man, and Lionel Médini, editors, WWW ’22: The ACM Web Conference 2022,
Virtual Event, Lyon, France, April 25 - 29, 2022, pages 203–212. ACM, 2022.
doi:10.1145/3485447.3511949.

[86] Michael Färber. The microsoft academic knowledge graph: A linked data
source with 8 billion triples of scholarly data. In Chiara Ghidini, Olaf Hartig,
Maria Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song,
Maxime Lefrançois, and Fabien Gandon, editors, The Semantic Web - ISWC 2019
- 18th International Semantic Web Conference, Auckland, New Zealand, October 26-
30, 2019, Proceedings, Part II, volume 11779 of Lecture Notes in Computer Science,
pages 113–129. Springer, 2019. doi:10.1007/978-3-030-30796-7_8.

[87] John R Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic
analysis, 1957.

[88] Edward A. Fox and Joseph A. Shaw. Combination of multiple searches. In
TREC, volume 500-215 of NIST Special Publication, pages 243–252. National
Institute of Standards and Technology (NIST), 1993.

198

https://doi.org/10.1145/2505515.2505578
https://doi.org/10.14778/2556549.2556562
https://doi.org/10.1145/860435.860451
https://doi.org/10.1145/2433396.2433434
https://doi.org/10.1145/3485447.3511949
https://doi.org/10.1007/978-3-030-30796-7_8


[89] Norbert Fuhr. Some common mistakes in IR evaluation, and how they can be
avoided. SIGIR Forum, 51(3):32–41, 2017. doi:10.1145/3190580.3190586.

[90] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Du-
mais. The vocabulary problem in human-system communication. Commun.
ACM, 30(11):964–971, 1987. doi:10.1145/32206.32212.

[91] Debasis Ganguly, Johannes Leveling, and Gareth J. F. Jones. Overview of the
personalized and collaborative information retrieval (PIR) track at FIRE-2011.
In Prasenjit Majumder, Mandar Mitra, Pushpak Bhattacharyya, L. Venkata
Subramaniam, Danish Contractor, and Paolo Rosso, editors, Multilingual Infor-
mation Access in South Asian Languages - Second International Workshop, FIRE
2010, Gandhinagar, India, February 19-21, 2010 and Third International Work-
shop, FIRE 2011, Bombay, India, December 2-4, 2011, Revised Selected Papers, vol-
ume 7536 of Lecture Notes in Computer Science, pages 227–240. Springer, 2011.
doi:10.1007/978-3-642-40087-2_22.

[92] Luyu Gao, Zhuyun Dai, Zhen Fan, and Jamie Callan. Complementing lexical
retrieval with semantic residual embedding. CoRR, abs/2004.13969, 2020.

[93] Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme, and
Jamie Callan. Complement lexical retrieval model with semantic residual em-
beddings. In Djoerd Hiemstra, Marie-Francine Moens, Josiane Mothe, Raffaele
Perego, Martin Potthast, and Fabrizio Sebastiani, editors, Advances in Informa-
tion Retrieval - 43rd European Conference on IR Research, ECIR 2021, Virtual Event,
March 28 - April 1, 2021, Proceedings, Part I, volume 12656 of Lecture Notes in
Computer Science, pages 146–160. Springer, 2021. doi:10.1007/978-3-030-72113-
8_10.

[94] Susan Gauch, Mirco Speretta, Aravind Chandramouli, and Alessandro Mi-
carelli. User profiles for personalized information access. In Peter Brusilovsky,
Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web, Methods and
Strategies of Web Personalization, volume 4321 of Lecture Notes in Computer Sci-
ence, pages 54–89. Springer, 2007. doi:10.1007/978-3-540-72079-9_2.

[95] Songwei Ge, Zhicheng Dou, Zhengbao Jiang, Jian-Yun Nie, and Ji-Rong Wen.
Personalizing search results using hierarchical RNN with query-aware atten-
tion. In Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava,
Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan,
Alexandros Labrinidis, Assaf Schuster, and Haixun Wang, editors, Proceedings
of the 27th ACM International Conference on Information and Knowledge Manage-
ment, CIKM 2018, Torino, Italy, October 22-26, 2018, pages 347–356. ACM, 2018.
doi:10.1145/3269206.3271728.

[96] M. Rami Ghorab, Dong Zhou, Alexander O’Connor, and Vincent Wade. Per-
sonalised information retrieval: survey and classification. User Model. User
Adapt. Interact., 23(4):381–443, 2013. doi:10.1007/s11257-012-9124-1.

199

https://doi.org/10.1145/3190580.3190586
https://doi.org/10.1145/32206.32212
https://doi.org/10.1007/978-3-642-40087-2_22
https://doi.org/10.1007/978-3-030-72113-8_10
https://doi.org/10.1007/978-3-030-72113-8_10
https://doi.org/10.1007/978-3-540-72079-9_2
https://doi.org/10.1145/3269206.3271728
https://doi.org/10.1007/s11257-012-9124-1


[97] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[98] Clinton Gormley and Zachary Tong. Elasticsearch: the definitive guide: a dis-
tributed real-time search and analytics engine. " O’Reilly Media, Inc.", 2015.

[99] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowl-
edge distillation: A survey. Int. J. Comput. Vis., 129(6):1789–1819, 2021.
doi:10.1007/s11263-021-01453-z.

[100] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR,
abs/1410.5401, 2014.

[101] Mihajlo Grbovic. Search ranking and personalization at airbnb. In Paolo
Cremonesi, Francesco Ricci, Shlomo Berkovsky, and Alexander Tuzhilin, ed-
itors, Proceedings of the Eleventh ACM Conference on Recommender Systems,
RecSys 2017, Como, Italy, August 27-31, 2017, pages 339–340. ACM, 2017.
doi:10.1145/3109859.3109920.

[102] Mihajlo Grbovic and Haibin Cheng. Real-time personalization using embed-
dings for search ranking at airbnb. In Yike Guo and Faisal Farooq, editors,
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, pages 311–320.
ACM, 2018. doi:10.1145/3219819.3219885.

[103] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-
works. In Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C.
Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, San Francisco, CA, USA, August 13-17, 2016, pages 855–864. ACM, 2016.
doi:10.1145/2939672.2939754.

[104] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance
matching model for ad-hoc retrieval. In Snehasis Mukhopadhyay, ChengXiang
Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang
Zhou, Yi Chang, Yunyao Li, and Parikshit Sondhi, editors, Proceedings of the
25th ACM International Conference on Information and Knowledge Management,
CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, pages 55–64. ACM, 2016.
doi:10.1145/2983323.2983769.

[105] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani,
Chen Wu, W. Bruce Croft, and Xueqi Cheng. A deep look into neural rank-
ing models for information retrieval. Inf. Process. Manag., 57(6):102067, 2020.
doi:10.1016/j.ipm.2019.102067.

[106] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Xin-Shun Xu, and Mohan S.
Kankanhalli. Multi-modal preference modeling for product search. In Susanne
Boll, Kyoung Mu Lee, Jiebo Luo, Wenwu Zhu, Hyeran Byun, Chang Wen Chen,

200

https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1145/3109859.3109920
https://doi.org/10.1145/3219819.3219885
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1016/j.ipm.2019.102067


Rainer Lienhart, and Tao Mei, editors, 2018 ACM Multimedia Conference on
Multimedia Conference, MM 2018, Seoul, Republic of Korea, October 22-26, 2018,
pages 1865–1873. ACM, 2018. doi:10.1145/3240508.3240541.

[107] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Yinglong Wang, Jun Ma, and
Mohan S. Kankanhalli. Attentive long short-term preference modeling for
personalized product search. ACM Trans. Inf. Syst., 37(2):19:1–19:27, 2019.
doi:10.1145/3295822.

[108] Christophe Van Gysel and Maarten de Rĳke. Pytrec_eval: An extremely fast
python interface to trec_eval. In SIGIR, pages 873–876. ACM, 2018.

[109] Christophe Van Gysel, Maarten de Rĳke, and Evangelos Kanoulas. Learning la-
tent vector spaces for product search. In Snehasis Mukhopadhyay, ChengXiang
Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang
Zhou, Yi Chang, Yunyao Li, and Parikshit Sondhi, editors, Proceedings of the
25th ACM International Conference on Information and Knowledge Management,
CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, pages 165–174. ACM,
2016. doi:10.1145/2983323.2983702.

[110] Gyeong June Hahm, Mun Yong Yi, Jae-Hyun Lee, and Hyo-Won Suh. A
personalized query expansion approach for engineering document retrieval.
Adv. Eng. Informatics, 28(4):344–359, 2014. doi:10.1016/j.aei.2014.04.002.

[111] Aniko Hannak, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Krish-
namurthy, David Lazer, Alan Mislove, and Christo Wilson. Measuring person-
alization of web search. In Daniel Schwabe, Virgílio A. F. Almeida, Hartmut
Glaser, Ricardo Baeza-Yates, and Sue B. Moon, editors, 22nd International World
Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, pages
527–538. International World Wide Web Conferences Steering Committee /
ACM, 2013. doi:10.1145/2488388.2488435.

[112] Donna Harman. Relevance feedback revisited. In Nicholas J. Belkin, Peter
Ingwersen, and Annelise Mark Pejtersen, editors, Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. Copenhagen, Denmark, June 21-24, 1992, pages 1–10. ACM, 1992.
doi:10.1145/133160.133167.

[113] Donna Harman. Information Retrieval Evaluation. Synthesis Lectures on In-
formation Concepts, Retrieval, and Services. Morgan & Claypool Publishers,
2011.

[114] Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwĳk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,

201

https://doi.org/10.1145/3240508.3240541
https://doi.org/10.1145/3295822
https://doi.org/10.1145/2983323.2983702
https://doi.org/10.1016/j.aei.2014.04.002
https://doi.org/10.1145/2488388.2488435
https://doi.org/10.1145/133160.133167


Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with numpy. Nat., 585:357–362, 2020.

[115] Zellig S Harris. Distributional structure. Word, 1954.

[116] Morgan Harvey, Fabio Crestani, and Mark James Carman. Building user
profiles from topic models for personalised search. In Qi He, Arun Iyen-
gar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, editors, 22nd ACM Inter-
national Conference on Information and Knowledge Management, CIKM’13, San
Francisco, CA, USA, October 27 - November 1, 2013, pages 2309–2314. ACM, 2013.
doi:10.1145/2505515.2505642.

[117] Seyyed Hadi Hashemi, Jaap Kamps, Julia Kiseleva, Charles L. A. Clarke, and
Ellen M. Voorhees. Overview of the TREC 2016 contextual suggestion track.
In Ellen M. Voorhees and Angela Ellis, editors, Proceedings of The Twenty-Fifth
Text REtrieval Conference, TREC 2016, Gaithersburg, Maryland, USA, November
15-18, 2016, volume 500-321 of NIST Special Publication. National Institute of
Standards and Technology (NIST), 2016.

[118] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge
in a neural network. CoRR, abs/1503.02531, 2015.

[119] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735.

[120] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2(5):359–366,
1989. doi:10.1016/0893-6080(89)90020-8.

[121] D. Frank Hsu and Isak Taksa. Comparing rank and score combination meth-
ods for data fusion in information retrieval. Inf. Retr., 8(3):449–480, 2005.
doi:10.1007/s10791-005-6994-4.

[122] Yujing Hu, Qing Da, Anxiang Zeng, Yang Yu, and Yinghui Xu. Reinforce-
ment learning to rank in e-commerce search engine: Formalization, analysis,
and application. In Yike Guo and Faisal Farooq, editors, Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, KDD 2018, London, UK, August 19-23, 2018, pages 368–377. ACM, 2018.
doi:10.1145/3219819.3219846.

[123] Nasreen Abdul Jaleel, James Allan, W. Bruce Croft, Fernando Diaz, Leah S.
Larkey, Xiaoyan Li, Mark D. Smucker, and Courtney Wade. Umass at TREC
2004: Novelty and HARD. In Proceedings of the Thirteenth Text REtrieval Con-
ference, TREC 2004, Gaithersburg, Maryland, USA, November 16-19, 2004, volume
500-261 of NIST Special Publication. National Institute of Standards and Tech-
nology (NIST), 2004.

202

https://doi.org/10.1145/2505515.2505642
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1007/s10791-005-6994-4
https://doi.org/10.1145/3219819.3219846


[124] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. Real life, real users,
and real needs: a study and analysis of user queries on the web. Inf. Process.
Manag., 36(2):207–227, 2000. doi:10.1016/S0306-4573(99)00056-4.

[125] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of
IR techniques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

[126] Jyun-Yu Jiang, Tao Wu, Georgios Roumpos, Heng-Tze Cheng, Xinyang Yi,
Ed Chi, Harish Ganapathy, Nitin Jindal, Pei Cao, and Wei Wang. End-to-end
deep attentive personalized item retrieval for online content-sharing platforms.
In Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen, editors,
WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages
2870–2877. ACM / IW3C2, 2020. doi:10.1145/3366423.3380051.

[127] Xu Jianmin and Liu Chang. Personalized query expansion based on user
interest and domain knowledge. In 2012 Third Global Congress on Intelligent
Systems, pages 394–399. IEEE, 2012.

[128] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. Tinybert: Distilling BERT for natural language under-
standing. In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November
2020, volume EMNLP 2020 of Findings of ACL, pages 4163–4174. Association for
Computational Linguistics, 2020. doi:10.18653/v1/2020.findings-emnlp.372.

[129] Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 1972.

[130] Evangelos Kanoulas, Paul D. Clough, Ben Carterette, and Mark Sanderson.
Overview of the TREC 2010 session track. In Ellen M. Voorhees and Lori P.
Buckland, editors, Proceedings of The Nineteenth Text REtrieval Conference, TREC
2010, Gaithersburg, Maryland, USA, November 16-19, 2010, volume 500-294 of
NIST Special Publication. National Institute of Standards and Technology (NIST),
2010.

[131] Evangelos Kanoulas, Mark M. Hall, Paul D. Clough, Ben Carterette, and Mark
Sanderson. Overview of the TREC 2011 session track. In Ellen M. Voorhees and
Lori P. Buckland, editors, Proceedings of The Twentieth Text REtrieval Conference,
TREC 2011, Gaithersburg, Maryland, USA, November 15-18, 2011, volume 500-
296 of NIST Special Publication. National Institute of Standards and Technology
(NIST), 2011.

[132] Evangelos Kanoulas, Ben Carterette, Mark M. Hall, Paul D. Clough, and Mark
Sanderson. Overview of the TREC 2012 session track. In Ellen M. Voorhees
and Lori P. Buckland, editors, Proceedings of The Twenty-First Text REtrieval Con-
ference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9, 2012, volume
500-298 of NIST Special Publication. National Institute of Standards and Tech-
nology (NIST), 2012.

203

https://doi.org/10.1016/S0306-4573(99)00056-4
https://doi.org/10.1145/3366423.3380051
https://doi.org/10.18653/v1/2020.findings-emnlp.372


[133] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval
for open-domain question answering. In Bonnie Webber, Trevor Cohn, Yu-
lan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online, November 16-
20, 2020, pages 6769–6781. Association for Computational Linguistics, 2020.
doi:10.18653/v1/2020.emnlp-main.550.

[134] Diane Kelly and Jaime Teevan. Implicit feedback for inferring user preference:
a bibliography. SIGIR Forum, 37(2):18–28, 2003. doi:10.1145/959258.959260.

[135] Hamid Khalifi, Walid Cherif, Abderrahim El Qadi, and Youssef Ghanou. Query
expansion based on clustering and personalized information retrieval. Prog.
Artif. Intell., 8(2):241–251, 2019. doi:10.1007/s13748-019-00178-y.

[136] Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage
search via contextualized late interaction over BERT. In Jimmy Huang,
Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and
Yiqun Liu, editors, Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, pages 39–48. ACM, 2020. doi:10.1145/3397271.3401075.

[137] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[138] Zornitsa Kozareva, Qi Li, Ke Zhai, and Weiwei Guo. Recognizing salient
entities in shopping queries. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 2: Short Papers. The Association for Computer Linguistics,
2016. doi:10.18653/v1/p16-2018.

[139] Robert Krovetz. Viewing morphology as an inference process. In Robert
Korfhage, Edie M. Rasmussen, and Peter Willett, editors, Proceedings of the
16th Annual International ACM-SIGIR Conference on Research and Development in
Information Retrieval. Pittsburgh, PA, USA, June 27 - July 1, 1993, pages 191–202.
ACM, 1993. doi:10.1145/160688.160718.

[140] John Krumm, Nigel Davies, and Chandra Narayanaswami. User-generated
content. IEEE Pervasive Comput., 7(4):10–11, 2008. doi:10.1109/MPRV.2008.85.

[141] Oren Kurland and J. Shane Culpepper. Fusion in information retrieval: SIGIR
2018 half-day tutorial. In Kevyn Collins-Thompson, Qiaozhu Mei, Brian D.
Davison, Yiqun Liu, and Emine Yilmaz, editors, The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval, SIGIR
2018, Ann Arbor, MI, USA, July 08-12, 2018, pages 1383–1386. ACM, 2018.
doi:10.1145/3209978.3210186.

204

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/959258.959260
https://doi.org/10.1007/s13748-019-00178-y
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.18653/v1/p16-2018
https://doi.org/10.1145/160688.160718
https://doi.org/10.1109/MPRV.2008.85
https://doi.org/10.1145/3209978.3210186


[142] Saar Kuzi, Anna Shtok, and Oren Kurland. Query expansion using word em-
beddings. In Proceedings of the 25th ACM International Conference on Information
and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28,
2016, pages 1929–1932. ACM, 2016. doi:10.1145/2983323.2983876.

[143] Saar Kuzi, David Carmel, Alex Libov, and Ariel Raviv. Query expansion for
email search. In Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Ar-
jen P. de Vries, and Ryen W. White, editors, Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pages 849–852. ACM, 2017.
doi:10.1145/3077136.3080660.

[144] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence data.
In Carla E. Brodley and Andrea Pohoreckyj Danyluk, editors, Proceedings of the
Eighteenth International Conference on Machine Learning (ICML 2001), Williams
College, Williamstown, MA, USA, June 28 - July 1, 2001, pages 282–289. Morgan
Kaufmann, 2001.

[145] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-based
python JIT compiler. In LLVM@SC, pages 7:1–7:6. ACM, 2015.

[146] Victor Lavrenko and W. Bruce Croft. Relevance-based language models. In
SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, September 9-13, 2001, New
Orleans, Louisiana, USA, pages 120–127. ACM, 2001. doi:10.1145/383952.383972.

[147] Quoc V. Le and Tomás Mikolov. Distributed representations of sentences and
documents. In Proceedings of the 31th International Conference on Machine Learn-
ing, ICML 2014, Beĳing, China, 21-26 June 2014, volume 32 of JMLR Workshop
and Conference Proceedings, pages 1188–1196. JMLR.org, 2014.

[148] Joon Ho Lee. Analyses of multiple evidence combination. In SIGIR, pages
267–276. ACM, 1997.

[149] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for
weakly supervised open domain question answering. In Anna Korhonen,
David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference
of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 6086–6096. Association for
Computational Linguistics, 2019. doi:10.18653/v1/p19-1612.

[150] Kyung-Soon Lee, W. Bruce Croft, and James Allan. A cluster-based resam-
pling method for pseudo-relevance feedback. In Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, pages 235–242. ACM, 2008.
doi:10.1145/1390334.1390376.

205

https://doi.org/10.1145/2983323.2983876
https://doi.org/10.1145/3077136.3080660
https://doi.org/10.1145/383952.383972
https://doi.org/10.18653/v1/p19-1612
https://doi.org/10.1145/1390334.1390376


[151] Xiao Li. Understanding the semantic structure of noun phrase queries. In
Jan Hajic, Sandra Carberry, and Stephen Clark, editors, ACL 2010, Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, July
11-16, 2010, Uppsala, Sweden, pages 1337–1345. The Association for Computer
Linguistics, 2010.

[152] Xiao Li, Ye-Yi Wang, and Alex Acero. Extracting structured information from
user queries with semi-supervised conditional random fields. In James Allan,
Javed A. Aslam, Mark Sanderson, ChengXiang Zhai, and Justin Zobel, editors,
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July
19-23, 2009, pages 572–579. ACM, 2009. doi:10.1145/1571941.1572039.

[153] Xiujun Li, Chenlei Guo, Wei Chu, Ye-Yi Wang, and Jude Shavlik. Deep learning
powered in-session contextual ranking using clickthrough data. In In Proc. of
NIPS, 2014.

[154] David Lillis, Fergus Toolan, Rem W. Collier, and John Dunnion. Probfuse: a
probabilistic approach to data fusion. In Efthimis N. Efthimiadis, Susan T. Du-
mais, David Hawking, and Kalervo Järvelin, editors, SIGIR 2006: Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Seattle, Washington, USA, August 6-11, 2006, pages
139–146. ACM, 2006. doi:10.1145/1148170.1148197.

[155] David Lillis, Fergus Toolan, Rem W. Collier, and John Dunnion. Extending
probabilistic data fusion using sliding windows. In Craig Macdonald, Iadh
Ounis, Vassilis Plachouras, Ian Ruthven, and Ryen W. White, editors, Advances
in Information Retrieval , 30th European Conference on IR Research, ECIR 2008,
Glasgow, UK, March 30-April 3, 2008. Proceedings, volume 4956 of Lecture Notes in
Computer Science, pages 358–369. Springer, 2008. doi:10.1007/978-3-540-78646-
7_33.

[156] David Lillis, Lusheng Zhang, Fergus Toolan, Rem W. Collier, David Leonard,
and John Dunnion. Estimating probabilities for effective data fusion. In Fabio
Crestani, Stéphane Marchand-Maillet, Hsin-Hsi Chen, Efthimis N. Efthimi-
adis, and Jacques Savoy, editors, Proceeding of the 33rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR 2010, Geneva, Switzerland, July 19-23, 2010, pages 347–354. ACM, 2010.
doi:10.1145/1835449.1835508.

[157] Soon Chong Johnson Lim, Ying Liu, and Wing Bun Lee. Multi-facet product in-
formation search and retrieval using semantically annotated product family on-
tology. Inf. Process. Manag., 46(4):479–493, 2010. doi:10.1016/j.ipm.2009.09.001.

[158] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. Pretrained Trans-
formers for Text Ranking: BERT and Beyond. Synthesis Lectures on
Human Language Technologies. Morgan & Claypool Publishers, 2021.
doi:10.2200/S01123ED1V01Y202108HLT053.

206

https://doi.org/10.1145/1571941.1572039
https://doi.org/10.1145/1148170.1148197
https://doi.org/10.1007/978-3-540-78646-7_33
https://doi.org/10.1007/978-3-540-78646-7_33
https://doi.org/10.1145/1835449.1835508
https://doi.org/10.1016/j.ipm.2009.09.001
https://doi.org/10.2200/S01123ED1V01Y202108HLT053


[159] Yiu-Chang Lin, Ankur Datta, and Giuseppe Di Fabbrizio. E-commerce prod-
uct query classification using implicit user’s feedback from clicks. In Naoki
Abe, Huan Liu, Calton Pu, Xiaohua Hu, Nesreen K. Ahmed, Mu Qiao, Yang
Song, Donald Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, and
Jeffrey S. Saltz, editors, IEEE International Conference on Big Data, Big Data
2018, Seattle, WA, USA, December 10-13, 2018, pages 1955–1959. IEEE, 2018.
doi:10.1109/BigData.2018.8622008.

[160] Jingjing Liu, Xiao Li, Alex Acero, and Ye-Yi Wang. Lexicon modeling
for query understanding. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP 2011, May 22-27, 2011,
Prague Congress Center, Prague, Czech Republic, pages 5604–5607. IEEE, 2011.
doi:10.1109/ICASSP.2011.5947630.

[161] Jingjing Liu, Chang Liu, and Nicholas J. Belkin. Personalization in text in-
formation retrieval: A survey. J. Assoc. Inf. Sci. Technol., 71(3):349–369, 2020.
doi:10.1002/asi.24234.

[162] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam.
CoRR, abs/1711.05101, 2017.

[163] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[164] Lu Lu, Yeonjong Shin, Yanhui Su, and George E. Karniadakis. Dying relu and
initialization: Theory and numerical examples. CoRR, abs/1903.06733, 2019.

[165] Shuqi Lu, Zhicheng Dou, Xu Jun, Jian-Yun Nie, and Ji-Rong Wen. PS-
GAN: A minimax game for personalized search with limited and noisy
click data. In Benjamin Piwowarski, Max Chevalier, Éric Gaussier, Yoelle
Maarek, Jian-Yun Nie, and Falk Scholer, editors, Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, pages 555–564. ACM, 2019.
doi:10.1145/3331184.3331218.

[166] Shuqi Lu, Zhicheng Dou, Chenyan Xiong, Xiaojie Wang, and Ji-Rong Wen.
Knowledge enhanced personalized search. In Jimmy Huang, Yi Chang, Xueqi
Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, editors,
Proceedings of the 43rd International ACM SIGIR conference on research and develop-
ment in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pages 709–718. ACM, 2020. doi:10.1145/3397271.3401089.

[167] Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. Sparse,
dense, and attentional representations for text retrieval. Trans. Assoc. Comput.
Linguistics, 9:329–345, 2021.

207

https://doi.org/10.1109/BigData.2018.8622008
https://doi.org/10.1109/ICASSP.2011.5947630
https://doi.org/10.1002/asi.24234
https://doi.org/10.1145/3331184.3331218
https://doi.org/10.1145/3397271.3401089


[168] Claudio Lucchese, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele
Perego, and Salvatore Trani. Rankeval: An evaluation and analysis framework
for learning-to-rank solutions. In SIGIR, pages 1281–1284. ACM, 2017.

[169] Claudio Lucchese, Cristina Ioana Muntean, Franco Maria Nardini, Raffaele
Perego, and Salvatore Trani. Rankeval: Evaluation and investigation of ranking
models. SoftwareX, 12:100614, 2020.

[170] Robert Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. Wiley,
1959.

[171] Hans Peter Luhn. A statistical approach to mechanized encoding and searching
of literary information. IBM Journal of research and development, 1(4):309–317,
1957.

[172] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective ap-
proaches to attention-based neural machine translation. In Lluís Màrquez,
Chris Callison-Burch, Jian Su, Daniele Pighin, and Yuval Marton, editors, Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1412–1421. The
Association for Computational Linguistics, 2015. doi:10.18653/v1/d15-1166.

[173] Yuanhua Lv and ChengXiang Zhai. Positional relevance model for pseudo-
relevance feedback. In Proceeding of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2010, Geneva, Switzer-
land, July 19-23, 2010, pages 579–586. ACM, 2010. doi:10.1145/1835449.1835546.

[174] Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, and Ryan McDonald. Zero-shot
neural retrieval via domain-targeted synthetic query generation. arXiv preprint
arXiv:2004.14503, 2020.

[175] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto,
Nazli Goharian, and Ophir Frieder. Expansion via prediction of importance
with contextualization. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps,
Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, editors, Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages 1573–1576.
ACM, 2020. doi:10.1145/3397271.3401262.

[176] Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Co-
han, and Nazli Goharian. Simplified data wrangling with ir_datasets. In SIGIR,
pages 2429–2436. ACM, 2021.

[177] Sean MacAvaney, Craig Macdonald, and Iadh Ounis. Reproducing person-
alised session search over the AOL query log. In Matthias Hagen, Suzan Ver-
berne, Craig Macdonald, Christin Seifert, Krisztian Balog, Kjetil Nørvåg, and
Vinay Setty, editors, Advances in Information Retrieval - 44th European Conference
on IR Research, ECIR 2022, Stavanger, Norway, April 10-14, 2022, Proceedings, Part

208

https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.1145/1835449.1835546
https://doi.org/10.1145/3397271.3401262


I, volume 13185 of Lecture Notes in Computer Science, pages 627–640. Springer,
2022. doi:10.1007/978-3-030-99736-6_42.

[178] Craig Macdonald and Nicola Tonellotto. Declarative experimentation in infor-
mation retrieval using pyterrier. In ICTIR, pages 161–168. ACM, 2020.

[179] Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, and Iadh Ounis. Pyter-
rier: Declarative experimentation in python from BM25 to dense retrieval. In
CIKM, pages 4526–4533. ACM, 2021.

[180] J. MacQueen. Some methods for classification and analysis of multivariate
observations. 1967.

[181] Saurav Manchanda, Mohit Sharma, and George Karypis. Intent term weighting
in e-commerce queries. In Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng
Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu, editors,
Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, CIKM 2019, Beĳing, China, November 3-7, 2019, pages 2345–2348.
ACM, 2019. doi:10.1145/3357384.3358151.

[182] Saurav Manchanda, Mohit Sharma, and George Karypis. Intent term selection
and refinement in e-commerce queries. CoRR, abs/1908.08564, 2019.

[183] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to information retrieval. Cambridge University Press, 2008. ISBN 978-0-521-
86571-5. doi:10.1017/CBO9780511809071.

[184] Mehdi Manshadi and Xiao Li. Semantic tagging of web search queries. In
Keh-Yih Su, Jian Su, and Janyce Wiebe, editors, ACL 2009, Proceedings of the
47th Annual Meeting of the Association for Computational Linguistics and the 4th
International Joint Conference on Natural Language Processing of the AFNLP, 2-7 Au-
gust 2009, Singapore, pages 861–869. The Association for Computer Linguistics,
2009.

[185] Nicolaas Matthĳs and Filip Radlinski. Personalizing web search using long
term browsing history. In Irwin King, Wolfgang Nejdl, and Hang Li, editors,
Proceedings of the Forth International Conference on Web Search and Web Data Min-
ing, WSDM 2011, Hong Kong, China, February 9-12, 2011, pages 25–34. ACM,
2011. doi:10.1145/1935826.1935840.

[186] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
Image-based recommendations on styles and substitutes. In Ricardo Baeza-
Yates, Mounia Lalmas, Alistair Moffat, and Berthier A. Ribeiro-Neto, editors,
Proceedings of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, Santiago, Chile, August 9-13, 2015, pages 43–52.
ACM, 2015. doi:10.1145/2766462.2767755.

[187] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density
based clustering. J. Open Source Softw., 2(11):205, 2017. doi:10.21105/joss.00205.

209

https://doi.org/10.1007/978-3-030-99736-6_42
https://doi.org/10.1145/3357384.3358151
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1145/1935826.1935840
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.21105/joss.00205


[188] Wes McKinney et al. pandas: a foundational python library for data analysis
and statistics. Python for high performance and scientific computing, 14(9):1–9, 2011.

[189] Alessandro Micarelli and Filippo Sciarrone. Anatomy and empirical evaluation
of an adaptive web-based information filtering system. User Model. User Adapt.
Interact., 14(2-3):159–200, 2004. doi:10.1023/B:USER.0000028981.43614.94.

[190] Alessandro Micarelli, Fabio Gasparetti, Filippo Sciarrone, and Susan Gauch.
Personalized search on the world wide web. In Peter Brusilovsky, Alfred Kobsa,
and Wolfgang Nejdl, editors, The Adaptive Web, Methods and Strategies of Web
Personalization, volume 4321 of Lecture Notes in Computer Science, pages 195–230.
Springer, 2007. doi:10.1007/978-3-540-72079-9_6.

[191] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient esti-
mation of word representations in vector space. In Yoshua Bengio and Yann
LeCun, editors, 1st International Conference on Learning Representations, ICLR
2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.

[192] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, pages 3111–
3119, 2013.

[193] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38
(11):39–41, 1995. doi:10.1145/219717.219748.

[194] Alistair Moffat and Justin Zobel. Rank-biased precision for measure-
ment of retrieval effectiveness. ACM Trans. Inf. Syst., 27(1):2:1–2:27, 2008.
doi:10.1145/1416950.1416952.

[195] Mark H. Montague and Javed A. Aslam. Relevance score normalization for
metasearch. In Proceedings of the 2001 ACM CIKM International Conference on
Information and Knowledge Management, Atlanta, Georgia, USA, November 5-10,
2001, pages 427–433. ACM, 2001. doi:10.1145/502585.502657.

[196] Mark H. Montague and Javed A. Aslam. Condorcet fusion for improved re-
trieval. In Proceedings of the 2002 ACM CIKM International Conference on Infor-
mation and Knowledge Management, McLean, VA, USA, November 4-9, 2002, pages
538–548. ACM, 2002. doi:10.1145/584792.584881.

[197] André Mourão, Flávio Martins, and João Magalhães. Multimodal medical
information retrieval with unsupervised rank fusion. Comput. Medical Imaging
Graph., 39:35–45, 2015. doi:10.1016/j.compmedimag.2014.05.006.

210

https://doi.org/10.1023/B:USER.0000028981.43614.94
https://doi.org/10.1007/978-3-540-72079-9_6
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/1416950.1416952
https://doi.org/10.1145/502585.502657
https://doi.org/10.1145/584792.584881
https://doi.org/10.1016/j.compmedimag.2014.05.006


[198] Philippe Mulhem, Nawal Ould Amer, and Mathias Géry. Axiomatic term-based
personalized query expansion using bookmarking system. In Sven Hartmann
and Hui Ma, editors, Database and Expert Systems Applications - 27th International
Conference, DEXA 2016, Porto, Portugal, September 5-8, 2016, Proceedings, Part II,
volume 9828 of Lecture Notes in Computer Science, pages 235–243. Springer, 2016.
doi:10.1007/978-3-319-44406-2_17.

[199] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Johannes Fürnkranz and Thorsten Joachims, editors,
Proceedings of the 27th International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 807–814. Omnipress, 2010.

[200] Shahrzad Naseri, Jeff Dalton, Andrew Yates, and James Allan. CEQE: contex-
tualized embeddings for query expansion. In Djoerd Hiemstra, Marie-Francine
Moens, Josiane Mothe, Raffaele Perego, Martin Potthast, and Fabrizio Sebas-
tiani, editors, Advances in Information Retrieval - 43rd European Conference on IR
Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part
I, volume 12656 of Lecture Notes in Computer Science, pages 467–482. Springer,
2021. doi:10.1007/978-3-030-72113-8_31.

[201] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. MS MARCO: A human generated machine reading
comprehension dataset. In Tarek Richard Besold, Antoine Bordes, Artur S.
d’Avila Garcez, and Greg Wayne, editors, Proceedings of the Workshop on Cognitive
Computation: Integrating neural and symbolic approaches 2016 co-located with the
30th Annual Conference on Neural Information Processing Systems (NIPS 2016),
Barcelona, Spain, December 9, 2016, volume 1773 of CEUR Workshop Proceedings.
CEUR-WS.org, 2016.

[202] Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with BERT. CoRR,
abs/1901.04085, 2019.

[203] Michael G. Noll and Christoph Meinel. Web search personalization via social
bookmarking and tagging. In Karl Aberer, Key-Sun Choi, Natasha Fridman
Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Pe-
ter Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe
Cudré-Mauroux, editors, The Semantic Web, 6th International Semantic Web Con-
ference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan,
Korea, November 11-15, 2007, volume 4825 of Lecture Notes in Computer Science,
pages 367–380. Springer, 2007. doi:10.1007/978-3-540-76298-0_27.

[204] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[205] Travis E. Oliphant. Python for scientific computing. Comput. Sci. Eng., 9(3):
10–20, 2007.

[206] Paul Over. The TREC interactive track: an annotated bibliography. Inf. Process.
Manag., 37(3):369–381, 2001. doi:10.1016/S0306-4573(00)00053-4.

211

https://doi.org/10.1007/978-3-319-44406-2_17
https://doi.org/10.1007/978-3-030-72113-8_31
https://doi.org/10.1007/978-3-540-76298-0_27
https://doi.org/10.1016/S0306-4573(00)00053-4


[207] Pallavi Palleti, Harish Karnick, and Pabitra Mitra. Personalized web search
using probabilistic query expansion. In Proceedings of the 2007 IEEE/WIC/ACM
International Conference on Web Intelligence and International Conference on Intel-
ligent Agent Technology - Workshops, 2-5 November 2007, Silicon Valley, CA, USA,
pages 83–86. IEEE Computer Society, 2007. doi:10.1109/WIIATW.2007.4427545.

[208] João R. M. Palotti, Harrisen Scells, and Guido Zuccon. Trectools: an open-
source python library for information retrieval practitioners involved in trec-
like campaigns. In SIGIR, pages 1325–1328. ACM, 2019.

[209] Yaoxin Pan, Shangsong Liang, Jiaxin Ren, Zaiqiao Meng, and Qiang Zhang.
Personalized, sequential, attentive, metric-aware product search. ACM Trans.
Inf. Syst., 40(2):36:1–36:29, 2022. doi:10.1145/3473337.

[210] Nish Parikh and Neel Sundaresan. Beyond relevance in marketplace search.
In Craig Macdonald, Iadh Ounis, and Ian Ruthven, editors, Proceedings of the
20th ACM Conference on Information and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011, pages 2109–2112. ACM, 2011.
doi:10.1145/2063576.2063902.

[211] Gabriella Pasi, Gareth J. F. Jones, Stefania Marrara, Camilla Sanvitto, Deba-
sis Ganguly, and Procheta Sen. Overview of the CLEF 2017 personalised
information retrieval pilot lab (PIR-CLEF 2017). In Gareth J. F. Jones, Séa-
mus Lawless, Julio Gonzalo, Liadh Kelly, Lorraine Goeuriot, Thomas Mandl,
Linda Cappellato, and Nicola Ferro, editors, Experimental IR Meets Multilin-
guality, Multimodality, and Interaction - 8th International Conference of the CLEF
Association, CLEF 2017, Dublin, Ireland, September 11-14, 2017, Proceedings, vol-
ume 10456 of Lecture Notes in Computer Science, pages 338–345. Springer, 2017.
doi:10.1007/978-3-319-65813-1_29.

[212] Gabriella Pasi, Gareth J. F. Jones, Keith Curtis, Stefania Marrara, Camilla San-
vitto, Debasis Ganguly, and Procheta Sen. Overview of the CLEF 2018 person-
alised information retrieval lab (PIR-CLEF 2018). In Linda Cappellato, Nicola
Ferro, Jian-Yun Nie, and Laure Soulier, editors, Working Notes of CLEF 2018 -
Conference and Labs of the Evaluation Forum, Avignon, France, September 10-14,
2018, volume 2125 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.

[213] Gabriella Pasi, Gareth J. F. Jones, Lorraine Goeuriot, Liadh Kelly, Stefania Mar-
rara, and Camilla Sanvitto. Overview of the CLEF 2019 personalised informa-
tion retrieval lab (PIR-CLEF 2019). In Fabio Crestani, Martin Braschler, Jacques
Savoy, Andreas Rauber, Henning Müller, David E. Losada, Gundula Heinatz
Bürki, Linda Cappellato, and Nicola Ferro, editors, Experimental IR Meets Multi-
linguality, Multimodality, and Interaction - 10th International Conference of the CLEF
Association, CLEF 2019, Lugano, Switzerland, September 9-12, 2019, Proceedings,
volume 11696 of Lecture Notes in Computer Science, pages 417–424. Springer,
2019. doi:10.1007/978-3-030-28577-7_31.

212

https://doi.org/10.1109/WIIATW.2007.4427545
https://doi.org/10.1145/3473337
https://doi.org/10.1145/2063576.2063902
https://doi.org/10.1007/978-3-319-65813-1_29
https://doi.org/10.1007/978-3-030-28577-7_31


[214] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search.
In Proceedings of the 1st International Conference on Scalable Information Systems,
Infoscale 2006, Hong Kong, May 30-June 1, 2006, volume 152 of ACM International
Conference Proceeding Series, page 1. ACM, 2006.

[215] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024–8035, 2019.

[216] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
pages 1532–1543. ACL, 2014. doi:10.3115/v1/d14-1162.

[217] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors, Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 2227–2237.
Association for Computational Linguistics, 2018. doi:10.18653/v1/n18-1202.

[218] Jay M. Ponte and W. Bruce Croft. A language modeling approach to information
retrieval. SIGIR Forum, 51(2):202–208, 2017. doi:10.1145/3130348.3130368.

[219] Alexander Pretschner and Susan Gauch. Ontology based personalized search.
In 11th IEEE International Conference on Tools with Artificial Intelligence, ICTAI
’99, Chicago, Illinois, USA, November 8-10, 1999, pages 391–398. IEEE Computer
Society, 1999. doi:10.1109/TAI.1999.809829.

[220] Filip Radlinski and Susan T. Dumais. Improving personalized web search
using result diversification. In Efthimis N. Efthimiadis, Susan T. Dumais,
David Hawking, and Kalervo Järvelin, editors, SIGIR 2006: Proceedings of the
29th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, Seattle, Washington, USA, August 6-11, 2006, pages 691–692.
ACM, 2006. doi:10.1145/1148170.1148320.

[221] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of

213

https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.1145/3130348.3130368
https://doi.org/10.1109/TAI.1999.809829
https://doi.org/10.1145/1148170.1148320


transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21:
140:1–140:67, 2020.

[222] Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in
python: Main developments and technology trends in data science, machine
learning, and artificial intelligence. arXiv preprint arXiv:2002.04803, 2020.

[223] Adwait Ratnaparkh. Maximum entropy models for natural language ambiguity
resolution. In Ph.D. Dissertation in Computer and Information Science. University
of Pennsylvania, 1998.

[224] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiao-
jun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-ĲCNLP 2019, Hong Kong, China, November
3-7, 2019, pages 3980–3990. Association for Computational Linguistics, 2019.
doi:10.18653/v1/D19-1410.

[225] M. Elena Renda and Umberto Straccia. Web metasearch: Rank vs. score based
rank aggregation methods. In Gary B. Lamont, Hisham Haddad, George A.
Papadopoulos, and Brajendra Panda, editors, Proceedings of the 2003 ACM Sym-
posium on Applied Computing (SAC), March 9-12, 2003, Melbourne, FL, USA, pages
841–846. ACM, 2003. doi:10.1145/952532.952698.

[226] Stephen E. Robertson and Steve Walker. Some simple effective approxima-
tions to the 2-poisson model for probabilistic weighted retrieval. In W. Bruce
Croft and C. J. van Rĳsbergen, editors, Proceedings of the 17th Annual Interna-
tional ACM-SIGIR Conference on Research and Development in Information Retrieval.
Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum), pages 232–241.
ACM/Springer, 1994. doi:10.1007/978-1-4471-2099-5_24.

[227] Stephen E. Robertson and Hugo Zaragoza. The probabilistic relevance
framework: BM25 and beyond. Found. Trends Inf. Retr., 3(4):333–389, 2009.
doi:10.1561/1500000019.

[228] Joseph Rocchio. Relevance feedback in information retrieval. The Smart retrieval
system-experiments in automatic document processing, pages 313–323, 1971.

[229] Henning Rode, Djoerd Hiemstra, Georgina Ramírez, Thĳs Westerveld, and Ar-
jen P. de Vries. The lowlands’ TREC experiments 2005. In Ellen M. Voorhees and
Lori P. Buckland, editors, Proceedings of the Fourteenth Text REtrieval Conference,
TREC 2005, Gaithersburg, Maryland, USA, November 15-18, 2005, volume 500-
266 of NIST Special Publication. National Institute of Standards and Technology
(NIST), 2005.

[230] Jennifer Rowley. Product search in e-shopping: A review and research propo-
sitions. Journal of Consumer Marketing, 17, 2000.

214

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/952532.952698
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1561/1500000019


[231] Dwaipayan Roy, Debjyoti Paul, Mandar Mitra, and Utpal Garain. Using word
embeddings for automatic query expansion. CoRR, abs/1606.07608, 2016. URL
http://arxiv.org/abs/1606.07608.

[232] Magnus Sahlgren. The distributional hypothesis. The Italian Journal of Linguis-
tics, 20:33–54, 2008.

[233] Gerard Salton and Chris Buckley. Term-weighting approaches in automatic
text retrieval. Inf. Process. Manag., 24(5):513–523, 1988. doi:10.1016/0306-
4573(88)90021-0.

[234] Mark Sanderson. Test collection based evaluation of information retrieval
systems. Found. Trends Inf. Retr., 4(4):247–375, 2010.

[235] Erik F. Tjong Kim Sang and Jorn Veenstra. Representing text chunks. In EACL
1999, 9th Conference of the European Chapter of the Association for Computational
Linguistics, June 8-12, 1999, University of Bergen, Bergen, Norway, pages 173–179.
The Association for Computer Linguistics, 1999.

[236] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. On
application of learning to rank for e-commerce search. In Noriko Kando,
Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White,
editors, Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11,
2017, pages 475–484. ACM, 2017. doi:10.1145/3077136.3080838.

[237] Sunita Sarawagi and William W. Cohen. Semi-markov conditional random
fields for information extraction. In Advances in Neural Information Processing
Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13-18,
2004, Vancouver, British Columbia, Canada], pages 1185–1192, 2004.

[238] Nikos Sarkas, Stelios Paparizos, and Panayiotis Tsaparas. Structured annota-
tions of web queries. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 771–782, 2010.

[239] Sheikh Muhammad Sarwar, Md. Anowarul Abedin, A. H. M. Sofi Ullah, and
Abdullah Al-Mamun. Personalized query expansion for web search using
social keywords. In Edgar R. Weippl, Maria Indrawan-Santiago, Matthias
Steinbauer, Gabriele Kotsis, and Ismail Khalil, editors, The 15th Interna-
tional Conference on Information Integration and Web-based Applications & Ser-
vices, IIWAS ’13, Vienna, Austria, December 2-4, 2013, page 610. ACM, 2013.
doi:10.1145/2539150.2539266.

[240] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling for
personalized search. In Otthein Herzog, Hans-Jörg Schek, Norbert Fuhr, Ab-
dur Chowdhury, and Wilfried Teiken, editors, Proceedings of the 2005 ACM
CIKM International Conference on Information and Knowledge Management, Bre-
men, Germany, October 31 - November 5, 2005, pages 824–831. ACM, 2005.
doi:10.1145/1099554.1099747.

215

http://arxiv.org/abs/1606.07608
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1145/3077136.3080838
https://doi.org/10.1145/2539150.2539266
https://doi.org/10.1145/1099554.1099747


[241] Milad Shokouhi. Segmentation of search engine results for effective data-
fusion. In Giambattista Amati, Claudio Carpineto, and Giovanni Romano,
editors, Advances in Information Retrieval, 29th European Conference on IR Research,
ECIR 2007, Rome, Italy, April 2-5, 2007, Proceedings, volume 4425 of Lecture Notes
in Computer Science, pages 185–197. Springer, 2007. doi:10.1007/978-3-540-
71496-5_19.

[242] Ahu Sieg, Bamshad Mobasher, and Robin D. Burke. Web search personaliza-
tion with ontological user profiles. In Mário J. Silva, Alberto H. F. Laender,
Ricardo A. Baeza-Yates, Deborah L. McGuinness, Bjørn Olstad, Øystein Haug
Olsen, and André O. Falcão, editors, Proceedings of the Sixteenth ACM Confer-
ence on Information and Knowledge Management, CIKM 2007, Lisbon, Portugal,
November 6-10, 2007, pages 525–534. ACM, 2007. doi:10.1145/1321440.1321515.

[243] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul)
Hsu, and Kuansan Wang. An overview of microsoft academic service (mas) and
applications. In Proceedings of the 24th International Conference on World Wide Web,
WWW ’15 Companion, page 243–246, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450334730. doi:10.1145/2740908.2742839.

[244] Mark D. Smucker, James Allan, and Ben Carterette. A comparison of sta-
tistical significance tests for information retrieval evaluation. In Mário J.
Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L. McGuin-
ness, Bjørn Olstad, Øystein Haug Olsen, and André O. Falcão, editors, Proceed-
ings of the Sixteenth ACM Conference on Information and Knowledge Management,
CIKM 2007, Lisbon, Portugal, November 6-10, 2007, pages 623–632. ACM, 2007.
doi:10.1145/1321440.1321528.

[245] Barry Smyth and Evelyn Balfe. Anonymous personalization in collaborative
web search. Inf. Retr., 9(2):165–190, 2006. doi:10.1007/s10791-006-7148-z.

[246] Parikshit Sondhi, Mohit Sharma, Pranam Kolari, and ChengXiang Zhai. A
taxonomy of queries for e-commerce search. In Kevyn Collins-Thompson,
Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz, editors, The
41st International ACM SIGIR Conference on Research & Development in Information
Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, pages 1245–1248.
ACM, 2018. doi:10.1145/3209978.3210152.

[247] Yang Song, Hongning Wang, and Xiaodong He. Adapting deep ranknet for
personalized search. In Ben Carterette, Fernando Diaz, Carlos Castillo, and
Donald Metzler, editors, Seventh ACM International Conference on Web Search
and Data Mining, WSDM 2014, New York, NY, USA, February 24-28, 2014, pages
83–92. ACM, 2014. doi:10.1145/2556195.2556234.

[248] David A. Sontag, Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White,
Susan T. Dumais, and Bodo Billerbeck. Probabilistic models for personalizing
web search. In Eytan Adar, Jaime Teevan, Eugene Agichtein, and Yoelle Maarek,

216

https://doi.org/10.1007/978-3-540-71496-5_19
https://doi.org/10.1007/978-3-540-71496-5_19
https://doi.org/10.1145/1321440.1321515
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/1321440.1321528
https://doi.org/10.1007/s10791-006-7148-z
https://doi.org/10.1145/3209978.3210152
https://doi.org/10.1145/2556195.2556234


editors, Proceedings of the Fifth International Conference on Web Search and Web Data
Mining, WSDM 2012, Seattle, WA, USA, February 8-12, 2012, pages 433–442.
ACM, 2012. doi:10.1145/2124295.2124348.

[249] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma,
Jakob Grue Simonsen, and Jian-Yun Nie. A hierarchical recurrent encoder-
decoder for generative context-aware query suggestion. In James Bailey, Al-
istair Moffat, Charu C. Aggarwal, Maarten de Rĳke, Ravi Kumar, Vanessa
Murdock, Timos K. Sellis, and Jeffrey Xu Yu, editors, Proceedings of the 24th
ACM International Conference on Information and Knowledge Management, CIKM
2015, Melbourne, VIC, Australia, October 19 - 23, 2015, pages 553–562. ACM, 2015.
doi:10.1145/2806416.2806493.

[250] Mirco Speretta and Susan Gauch. Personalized search based on user search
histories. In Andrzej Skowron, Rakesh Agrawal, Michael Luck, Takahira Ya-
maguchi, Pierre Morizet-Mahoudeaux, Jiming Liu, and Ning Zhong, editors,
2005 IEEE / WIC / ACM International Conference on Web Intelligence (WI 2005),
19-22 September 2005, Compiegne, France, pages 622–628. IEEE Computer Society,
2005. doi:10.1109/WI.2005.114.

[251] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, 2014.

[252] Sofia Stamou and Alexandros Ntoulas. Search personalization through query
and page topical analysis. User Model. User Adapt. Interact., 19(1-2):5–33, 2009.
doi:10.1007/s11257-008-9056-y.

[253] Statista. Number of digital buyers worldwide from 2014 to 2021, 2020.

[254] Statista. Retail e-commerce sales worldwide from 2014 to 2024, 2021.

[255] Statista. E-commerce share of total global retail sales from 2015 to 2024, 2021.

[256] Ning Su, Jiyin He, Yiqun Liu, Min Zhang, and Shaoping Ma. User intent,
behaviour, and perceived satisfaction in product search. In Yi Chang, Chengx-
iang Zhai, Yan Liu, and Yoelle Maarek, editors, Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, WSDM 2018,
Marina Del Rey, CA, USA, February 5-9, 2018, pages 547–555. ACM, 2018.
doi:10.1145/3159652.3159714.

[257] Shayan A. Tabrizi, Azadeh Shakery, Hamed Zamani, and Moham-
mad Ali Tavallaei. PERSON: personalized information retrieval evalua-
tion based on citation networks. Inf. Process. Manag., 54(4):630–656, 2018.
doi:10.1016/j.ipm.2018.04.004.

[258] Bin Tan, Xuehua Shen, and ChengXiang Zhai. Mining long-term search
history to improve search accuracy. In Tina Eliassi-Rad, Lyle H. Ungar,

217

https://doi.org/10.1145/2124295.2124348
https://doi.org/10.1145/2806416.2806493
https://doi.org/10.1109/WI.2005.114
https://doi.org/10.1007/s11257-008-9056-y
https://doi.org/10.1145/3159652.3159714
https://doi.org/10.1016/j.ipm.2018.04.004


Mark Craven, and Dimitrios Gunopulos, editors, Proceedings of the Twelfth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Philadelphia, PA, USA, August 20-23, 2006, pages 718–723. ACM, 2006.
doi:10.1145/1150402.1150493.

[259] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnet-
miner: extraction and mining of academic social networks. In Ying Li, Bing Liu,
and Sunita Sarawagi, editors, Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA,
August 24-27, 2008, pages 990–998. ACM, 2008. doi:10.1145/1401890.1402008.

[260] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing search via
automated analysis of interests and activities. In Ricardo A. Baeza-Yates, Nivio
Ziviani, Gary Marchionini, Alistair Moffat, and John Tait, editors, SIGIR 2005:
Proceedings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Salvador, Brazil, August 15-19, 2005, pages
449–456. ACM, 2005. doi:10.1145/1076034.1076111.

[261] Jaime Teevan, Susan T. Dumais, and Daniel J. Liebling. To personalize or not
to personalize: modeling queries with variation in user intent. In Sung-Hyon
Myaeng, Douglas W. Oard, Fabrizio Sebastiani, Tat-Seng Chua, and Mun-Kew
Leong, editors, Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2008, Singapore, July
20-24, 2008, pages 163–170. ACM, 2008. doi:10.1145/1390334.1390364.

[262] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Potential for per-
sonalization. ACM Trans. Comput. Hum. Interact., 17(1):4:1–4:31, 2010.
doi:10.1145/1721831.1721835.

[263] Jaime Teevan, Daniel J. Liebling, and Gayathri Ravichandran Geetha. Under-
standing and predicting personal navigation. In Irwin King, Wolfgang Nejdl,
and Hang Li, editors, Proceedings of the Forth International Conference on Web
Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12,
2011, pages 85–94. ACM, 2011. doi:10.1145/1935826.1935848.

[264] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. BEIR: A heterogeneous benchmark for zero-shot evaluation of in-
formation retrieval models. In Joaquin Vanschoren and Sai-Kit Yeung, editors,
Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021.

[265] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert
Chu. Diagnosis of multiple cancer types by shrunken centroids of gene expres-
sion. Proceedings of the National Academy of Sciences, 99(10):6567–6572, 2002.

[266] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003
shared task: Language-independent named entity recognition. In Proceedings of

218

https://doi.org/10.1145/1150402.1150493
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.1145/1076034.1076111
https://doi.org/10.1145/1390334.1390364
https://doi.org/10.1145/1721831.1721835
https://doi.org/10.1145/1935826.1935848


the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pages
142–147, 2003.

[267] Sarah K. Tyler, Jian Wang, and Yi Zhang. Utilizing re-finding for personal-
ized information retrieval. In Jimmy Huang, Nick Koudas, Gareth J. F. Jones,
Xindong Wu, Kevyn Collins-Thompson, and Aĳun An, editors, Proceedings of
the 19th ACM Conference on Information and Knowledge Management, CIKM 2010,
Toronto, Ontario, Canada, October 26-30, 2010, pages 1469–1472. ACM, 2010.
doi:10.1145/1871437.1871649.

[268] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The numpy array:
A structure for efficient numerical computation. Comput. Sci. Eng., 13(2):22–30,
2011.

[269] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[270] Damir Vandic, Jan-Willem van Dam, and Flavius Frasincar. Faceted product
search powered by the semantic web. Decis. Support Syst., 53(3):425–437, 2012.
doi:10.1016/j.dss.2012.02.010.

[271] Damir Vandic, Flavius Frasincar, and Uzay Kaymak. Facet selection algorithms
for web product search. In Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and
Rajeev Rastogi, editors, 22nd ACM International Conference on Information and
Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 - November
1, 2013, pages 2327–2332. ACM, 2013. doi:10.1145/2505515.2505664.

[272] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–
6008, 2017.

[273] E Voorhees and D Harman. Experiment and evaluation in information retrieval,
2005.

[274] Thanh Vu, Dat Quoc Nguyen, Mark Johnson, Dawei Song, and Alistair Willis.
Search personalization with embeddings. In Joemon M. Jose, Claudia Hauff,
Ismail Sengör Altingövde, Dawei Song, Dyaa Albakour, Stuart N. K. Watt, and
John Tait, editors, Advances in Information Retrieval - 39th European Conference on
IR Research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, Proceedings, volume 10193
of Lecture Notes in Computer Science, pages 598–604, 2017. doi:10.1007/978-3-
319-56608-5_54.

[275] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. Intel math kernel library. In High-Performance Computing
on the Intel® Xeon Phi™, pages 167–188. Springer, 2014.

219

https://doi.org/10.1145/1871437.1871649
https://doi.org/10.1016/j.dss.2012.02.010
https://doi.org/10.1145/2505515.2505664
https://doi.org/10.1007/978-3-319-56608-5_54
https://doi.org/10.1007/978-3-319-56608-5_54


[276] Qihua Wang and Hongxia Jin. Exploring online social activities for adaptive
search personalization. In Jimmy Huang, Nick Koudas, Gareth J. F. Jones,
Xindong Wu, Kevyn Collins-Thompson, and Aĳun An, editors, Proceedings
of the 19th ACM Conference on Information and Knowledge Management, CIKM
2010, Toronto, Ontario, Canada, October 26-30, 2010, pages 999–1008. ACM, 2010.
doi:10.1145/1871437.1871564.

[277] Shuai Wang, Shengyao Zhuang, and Guido Zuccon. Bert-based dense retriev-
ers require interpolation with BM25 for effective passage retrieval. In Faegheh
Hasibi, Yi Fang, and Akiko Aizawa, editors, ICTIR ’21: The 2021 ACM SIGIR In-
ternational Conference on the Theory of Information Retrieval, Virtual Event, Canada,
July 11, 2021, pages 317–324. ACM, 2021. doi:10.1145/3471158.3472233.

[278] Xiao Wang, Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. Pseudo-
relevance feedback for multiple representation dense retrieval. In Faegheh
Hasibi, Yi Fang, and Akiko Aizawa, editors, ICTIR ’21: The 2021 ACM SI-
GIR International Conference on the Theory of Information Retrieval, Virtual Event,
Canada, July 11, 2021, pages 297–306. ACM, 2021. doi:10.1145/3471158.3472250.

[279] Jason Weston and Chris Watkins. Support vector machines for multi-class
pattern recognition. In ESANN 1999, 7th European Symposium on Artificial Neural
Networks, Bruges, Belgium, April 21-23, 1999, Proceedings, pages 219–224, 1999.

[280] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. Huggingface’s transformers: State-of-the-art natural language
processing. CoRR, abs/1910.03771, 2019.

[281] Shengli Wu and Fabio Crestani. Data fusion with estimated weights. In Proceed-
ings of the 2002 ACM CIKM International Conference on Information and Knowledge
Management, McLean, VA, USA, November 4-9, 2002, pages 648–651. ACM, 2002.
doi:10.1145/584792.584908.

[282] Xuan Wu, Dong Zhou, Yu Xu, and Séamus Lawless. Personalized query ex-
pansion utilizing multi-relational social data. In Mária Bieliková and Marián
Simko, editors, 12th International Workshop on Semantic and Social Media Adapta-
tion and Personalization, SMAP 2017, Bratislava, Slovakia, July 9-10, 2017, pages
65–70. IEEE, 2017. doi:10.1109/SMAP.2017.8022669.

[283] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwĳk. Approximate nearest neighbor negative
contrastive learning for dense text retrieval. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[284] Shengliang Xu, Shenghua Bao, Ben Fei, Zhong Su, and Yong Yu. Exploring
folksonomy for personalized search. In Sung-Hyon Myaeng, Douglas W. Oard,

220

https://doi.org/10.1145/1871437.1871564
https://doi.org/10.1145/3471158.3472233
https://doi.org/10.1145/3471158.3472250
https://doi.org/10.1145/584792.584908
https://doi.org/10.1109/SMAP.2017.8022669


Fabrizio Sebastiani, Tat-Seng Chua, and Mun-Kew Leong, editors, Proceedings of
the 31st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, pages 155–162.
ACM, 2008. doi:10.1145/1390334.1390363.

[285] Yang Xu, Gareth J. F. Jones, and Bin Wang. Query dependent pseudo-relevance
feedback based on wikipedia. In Proceedings of the 32nd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2009, Boston, MA, USA, July 19-23, 2009, pages 59–66. ACM, 2009.
doi:10.1145/1571941.1571954.

[286] Omry Yadan. Hydra - a framework for elegantly configuring complex applica-
tions. Github, 2019.

[287] Jing Yao, Zhicheng Dou, and Ji-Rong Wen. Employing personal word embed-
dings for personalized search. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap
Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, editors, Proceedings
of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages
1359–1368. ACM, 2020. doi:10.1145/3397271.3401153.

[288] Jing Yao, Zhicheng Dou, Jun Xu, and Ji-Rong Wen. Rlper: A reinforcement
learning model for personalized search. In Yennun Huang, Irwin King, Tie-
Yan Liu, and Maarten van Steen, editors, WWW ’20: The Web Conference
2020, Taipei, Taiwan, April 20-24, 2020, pages 2298–2308. ACM / IW3C2, 2020.
doi:10.1145/3366423.3380294.

[289] Jing Yao, Zhicheng Dou, and Ji-Rong Wen. Clarifying ambiguous keywords
with personal word embeddings for personalized search. ACM Trans. Inf. Syst.,
40(3):43:1–43:29, 2022. doi:10.1145/3470564.

[290] Jun Yu, Sunil Mohan, Duangmanee Putthividhya, and Weng-Keen Wong. La-
tent dirichlet allocation based diversified retrieval for e-commerce search. In
Ben Carterette, Fernando Diaz, Carlos Castillo, and Donald Metzler, editors,
Seventh ACM International Conference on Web Search and Data Mining, WSDM
2014, New York, NY, USA, February 24-28, 2014, pages 463–472. ACM, 2014.
doi:10.1145/2556195.2556215.

[291] Hamed Zamani and W. Bruce Croft. Joint modeling and optimization of search
and recommendation. In Omar Alonso and Gianmaria Silvello, editors, Proceed-
ings of the First Biennial Conference on Design of Experimental Search & Information
Retrieval Systems, Bertinoro, Italy, August 28-31, 2018, volume 2167 of CEUR
Workshop Proceedings, pages 36–41. CEUR-WS.org, 2018.

[292] Hamed Zamani and W. Bruce Croft. Learning a joint search and recommen-
dation model from user-item interactions. In James Caverlee, Xia (Ben) Hu,

221

https://doi.org/10.1145/1390334.1390363
https://doi.org/10.1145/1571941.1571954
https://doi.org/10.1145/3397271.3401153
https://doi.org/10.1145/3366423.3380294
https://doi.org/10.1145/3470564
https://doi.org/10.1145/2556195.2556215


Mounia Lalmas, and Wei Wang, editors, WSDM ’20: The Thirteenth ACM Inter-
national Conference on Web Search and Data Mining, Houston, TX, USA, February
3-7, 2020, pages 717–725. ACM, 2020. doi:10.1145/3336191.3371818.

[293] ChengXiang Zhai and John D. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In SIGIR 2001: Pro-
ceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana,
USA, pages 334–342. ACM, 2001. doi:10.1145/383952.384019.

[294] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. Optimizing dense retrieval model training with hard negatives. In Fer-
nando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya
Sakai, editors, SIGIR ’21: The 44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Virtual Event, Canada, July 11-15,
2021, pages 1503–1512. ACM, 2021. doi:10.1145/3404835.3462880.

[295] Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang Jiang, Yun
Xiao, Weipeng Yan, and Wenyun Yang. Towards personalized and seman-
tic retrieval: An end-to-end solution for e-commerce search via embedding
learning. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa
Murdock, Ji-Rong Wen, and Yiqun Liu, editors, Proceedings of the 43rd Interna-
tional ACM SIGIR conference on research and development in Information Retrieval,
SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages 2407–2416. ACM, 2020.
doi:10.1145/3397271.3401446.

[296] Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W. Bruce Croft. To-
wards conversational search and recommendation: System ask, user respond.
In Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava,
Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan,
Alexandros Labrinidis, Assaf Schuster, and Haixun Wang, editors, Proceedings
of the 27th ACM International Conference on Information and Knowledge Manage-
ment, CIKM 2018, Torino, Italy, October 22-26, 2018, pages 177–186. ACM, 2018.
doi:10.1145/3269206.3271776.

[297] Zhi Zheng, Kai Hui, Ben He, Xianpei Han, Le Sun, and Andrew Yates. BERT-
QE: contextualized query expansion for document re-ranking. In Findings of
the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020, volume EMNLP 2020 of Findings of ACL, pages 4718–4728. As-
sociation for Computational Linguistics, 2020. doi:10.18653/v1/2020.findings-
emnlp.424.

[298] Jianling Zhong, Weiwei Guo, Huĳi Gao, and Bo Long. Personalized query
suggestions. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa
Murdock, Ji-Rong Wen, and Yiqun Liu, editors, Proceedings of the 43rd Interna-
tional ACM SIGIR conference on research and development in Information Retrieval,

222

https://doi.org/10.1145/3336191.3371818
https://doi.org/10.1145/383952.384019
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3397271.3401446
https://doi.org/10.1145/3269206.3271776
https://doi.org/10.18653/v1/2020.findings-emnlp.424
https://doi.org/10.18653/v1/2020.findings-emnlp.424


SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages 1645–1648. ACM, 2020.
doi:10.1145/3397271.3401331.

[299] Dong Zhou, Séamus Lawless, and Vincent Wade. Improving search via per-
sonalized query expansion using social media. Inf. Retr., 15(3-4):218–242, 2012.
doi:10.1007/s10791-012-9191-2.

[300] Dong Zhou, Xuan Wu, Wenyu Zhao, Séamus Lawless, and Jianxun Liu.
Query expansion with enriched user profiles for personalized search utiliz-
ing folksonomy data. IEEE Trans. Knowl. Data Eng., 29(7):1536–1548, 2017.
doi:10.1109/TKDE.2017.2668419.

[301] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. Encoding history with context-
aware representation learning for personalized search. In Jimmy Huang,
Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and
Yiqun Liu, editors, Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, SIGIR 2020, Virtual Event, China,
July 25-30, 2020, pages 1111–1120. ACM, 2020. doi:10.1145/3397271.3401175.

[302] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. Enhancing re-finding behavior
with external memories for personalized search. In James Caverlee, Xia (Ben)
Hu, Mounia Lalmas, and Wei Wang, editors, WSDM ’20: The Thirteenth ACM
International Conference on Web Search and Data Mining, Houston, TX, USA, Febru-
ary 3-7, 2020, pages 789–797. ACM, 2020. doi:10.1145/3336191.3371794.

[303] Yujia Zhou, Zhicheng Dou, Yutao Zhu, and Ji-Rong Wen. PSSL: self-supervised
learning for personalized search with contrastive sampling. In Gianluca De-
martini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong,
editors, CIKM ’21: The 30th ACM International Conference on Information and
Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5,
2021, pages 2749–2758. ACM, 2021. doi:10.1145/3459637.3482379.

[304] Zhengyu Zhu, Jingqiu Xu, Xiang Ren, Yunyan Tian, and Lipei Li. Query
expansion based on a personalized web search model. In Third International
Conference on Semantics, Knowledge and Grid, Xian, Shan Xi, China, October 29-31,
2007, pages 128–133. IEEE Computer Society, 2007. doi:10.1109/SKG.2007.83.

223

https://doi.org/10.1145/3397271.3401331
https://doi.org/10.1007/s10791-012-9191-2
https://doi.org/10.1109/TKDE.2017.2668419
https://doi.org/10.1145/3397271.3401175
https://doi.org/10.1145/3336191.3371794
https://doi.org/10.1145/3459637.3482379
https://doi.org/10.1109/SKG.2007.83

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Multi-Representation User Modeling
	Query-Aware User Modeling
	Personalized Query Expansion
	Personalized Search Evaluation
	Other Works
	Semantic Query Labeling
	ranx

	Outline and Contributions
	Publications

	PERSONALIZATION IN INFORMATION RETRIEVAL
	User-Related Information Gathering
	Definition of the User Model
	Exploitation of the User-Related Information
	Personalized Query Expansion
	Personalized Results Re-Ranking


	A MULTI-REPRESENTATION RE-RANKING MODEL FOR PERSONALIZED PRODUCT SEARCH
	Related Works
	The Proposed Re-Ranking Approach
	Review-based Representations
	Interaction-based Representations
	Category-based Representations
	Item Popularity
	Re-Ranking Function

	Experimental Setup
	Datasets
	Baselines
	Model Training and Hyper-Parameters Tuning
	Evaluation Metrics

	Results and Discussion
	Retrieval Performance
	Ablation Study
	Analysis of the Efficiency of the Proposed Approach

	Summary

	DENOISING ATTENTION FOR QUERY-AWARE USER MODELING IN PERSONALIZED SEARCH
	Related Work
	Preliminaries on Query-aware User Modeling
	Attention Mechanism
	Attention-based User Modeling Shortcomings

	Denoising Attention Mechanism
	Evaluation Task and Framework
	Experimental Setup
	Datasets
	Baselines
	Setup & Evaluation Metrics

	Results and Discussion
	Overall Retrieval Effectiveness
	Weighting Schemes Comparison
	Robustness
	Model Analysis

	Summary

	PERSONALIZED QUERY EXPANSION WITH CONTEXTUAL WORD EMBEDDINGS
	Related Work
	Query Expansion
	Personalized Query Expansion

	The Proposed Approach
	Word Embeddings Representative of the User Interests
	Selection of Expansion Terms
	Query Expansion with ColBERT

	Personalized Query Expansion Framework
	Experimental Setup
	Datasets
	Baselines
	Implementation Details
	Hyper-parameters Tuning
	Evaluation Metrics

	Results and Discussion
	Effectiveness
	Efficiency
	Expansion Terms Diversity
	Ablation Study
	Findings

	Summary

	A MULTI-DOMAIN BENCHMARK FOR PERSONALIZED SEARCH EVALUATION
	State of Personalized Search Evaluation
	Benchmark Datasets
	Experimental Setup
	Results and Discussion
	Summary

	SEMANTIC QUERY LABELING WITH SYNTHETICALLY GENERATED DATA
	Related Work
	Proposed approach
	Synthetic Query Generation
	Labeling Model

	Benchmark Dataset
	Query Gathering
	Semantic Labels Assessment

	Experimental Setup
	Compared Models
	Datasets
	Structured Corpus
	Model Training Configuration
	Evaluation Metrics

	Results and Discussion
	Experiment I
	Experiment II

	Summary

	RANX: A PYTHON LIBRARY FOR RANKING EVALUATION, COMPARISON, AND FUSION
	Evaluation and Comparison
	Qrels and Run Classes
	Metrics
	Comparison and Statistical Testing
	The Report Class

	Metasearch
	Normalization
	Fusion
	Fusion Optimization
	Comparison with Available Tools
	Use Cases

	Summary

	CONCLUSIONS AND FUTURE WORK
	Overview of our Contributions and Results
	Future work

	Bibliography

