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Abstract
Central Argentina from the Pampean flat-slab segment to northern Patagonia 
(27°–41°S) represents a classic example of a broken retroarc basin with strong 
tectonic and climatic control on fluvial sediment transport. Combined with previ-
ous research focused on coastal sediments, this actualistic provenance study uses 
framework petrography and heavy-mineral data to trace multistep dispersal of vol-
caniclastic detritus first eastwards across central Argentina for up to ca. 1,500 km 
and next northwards for another 760 km along the Atlantic coast. Although detri-
tus generated in the Andes is largely derived from mesosilicic volcanic rocks of the 
cordillera, its compositional signatures reflect different tectono-stratigraphic levels 
of the orogen uplifted along strike in response to varying subduction geometry as 
well as different character and crystallization condition of arc magmas through 
time and space. River sand, thus, changes from feldspatho-litho-quartzose or 
litho-feldspatho-quartzose in the north, where sedimentary detritus is more com-
mon, to mostly quartzo-feldspatho-lithic in the centre and to feldspatho-lithic in 
the south, where volcanic detritus is dominant. The transparent-heavy-mineral 
suite changes markedly from amphibole ≫ clinopyroxene > orthopyroxene in the 
north, to amphibole ≈ clinopyroxene ≈ orthopyroxene in the centre and to orthopy-
roxene ≥ clinopyroxene ≫ amphibole in the south. In the presently dry climate, 
fluvial discharge is drastically reduced to the point that even the Desaguadero 
trunk river has become endorheic and orogenic detritus is dumped in the retroarc 
basin, reworked by winds and temporarily accumulated in dune fields. During the 
Quaternary, instead, much larger amounts of water were released by melting of 
the Cordilleran ice sheet or during pluvial events. The sediment-laden waters of 
the Desaguadero and Colorado rivers then rushed from the tract of the Andes with 
greatest topographic and structural elevation, fostering alluvial fans inland and 
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The knight is not free: it moves in an L-shaped manner 
because it is forbidden to take the straight road." 

(Viktor Shklovsky, Knight's Move, 1923)

1  |   INTRODUCTION

The horizontal movement of lithospheric plates does 
not only produce uplift and subsidence, and hence sedi-
ment sources and sediment sinks, but also defines and 
constrains the complex pathways along which detritus 
moves across continents from source to sink (Audley-
Charles et al., 1977; Dickinson, 1988; Potter, 1978). This 
article investigates transcontinental sediment transfer 
from an active to a passive continental margin and how 
variations in subduction style dependent on geological 
features of the lower plate may influence the retroarc-
basin drainage network on the upper overriding plate. The 
Central and Southern Andes (Figure 1), where latitudinal 
changes in subduction mode, climate, and continental 
width have determined a complex evolution of drainage 
systems along the retroarc-side of the cordillera through 
time (Potter,  1997), represents a superb training ground 
in this regard (Capaldi et al., 2020; DeCelles et al., 2011; 
Horton, 2018).

The Andean cordillera, the largest and longest orogenic 
belt on Earth, developed in response to eastward subduc-
tion of Pacific oceanic lithosphere down the Peru-Chile 
trench (Figure 2; Ramos, 2009). Subduction angle, gener-
ally shallow as typical of east-dipping subduction zones 
(Aragón et al., 2020; Doglioni, Harabaglia, et al., 1999), is 
far from constant along strike and geodynamic processes 
related to the geometry, topographic irregularities, age 
and thermal state of the subducting plate profoundly in-
fluence the interplay among tectonics, climate and sedi-
mentation on the overriding plate at different latitudes 
(Ramos & Folguera, 2009; Ranero et al., 2006; von Huene 
et al., 1997).

This sediment-provenance study focuses on central 
Argentina, where the change from flat-slab subduction 
between ca. 27°S and 33°S to shallow subduction between 
34°S and 40°S (Figure 2) has exerted a fundamental control 
on the tectonic, magmatic and sedimentary evolution of 

the retroarc region (Horton et al., 2016; Ramos et al., 2002). 
In the northern tract drained by the Río Desaguadero, cor-
responding to the Pampean flat-slab segment, the Andean 
cordillera reaches the highest elevation, touching 6,962 m 
above sea level at the summit of Aconcagua, the highest 
peak on Earth outside the Himalaya-Karakorum Range. 
Contraction coupled with flexural arching caused by the 
load of the orogen (Dávila et  al.,  2007, 2010) triggered 
the rupture of the retroarc basement and crustal blocks 
bounded by reverse faults are exposed at altitudes up to 
6,097 m a.s.l. in the Sierras Pampeanas (Figure 2). High 
relief, semiarid climate in the rain shadow of the cordil-
lera and structural partitioning of the broken retroarc 
basin gave rise to a drainage pattern strongly conditioned 
by tectonic lineaments and interspersed with dune fields 
(médanos) and saline lakes (Zárate & Tripaldi, 2012), which 
changed repeatedly in response to changing climatic, mag-
matic and tectonic regimes through time (Damanti, 1993; 
Tripaldi & Forman, 2016). Although temporarily stored in 

flowing in much larger valleys than today towards the Atlantic Ocean. Sand and 
gravel supply to the coast was high enough not only to promote rapid progradation 
of large deltaic lobes but also to feed a cell of littoral sediment transport extending 
as far north as the Río de la Plata estuary.

K E Y W O R D S

Andean cordillera, Argentina, broken retroarc basin, Desaguadero, Colorado and Negro rivers, 
drainage network, flat-slab subduction, sedimentary petrology, Sierras Pampeanas

Highlights

•	 Classic example of broken retroarc basin 
with strong tectonic and climatic control on 
sedimentation.

•	 Sand composition reflects magmatic gap and 
structural elevation in the Pampean flat-slab 
segment.

•	 Volcaniclastic detritus traced E-wards and N-
wards for 2,000 km from the Andes to Río de la 
Plata.

•	 Stream power, drainage connectivity and sedi-
ment fluxes are sharply reduced in present dry 
climate.

•	 Retroarc basins, foreland basins and foredeeps 
are formed by different geodynamic processes.

•	 Most detritus ends up in the Atlantic Ocean 
due to low, long-term retroarc-basin storage 
capacity.
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sand seas during arid phases or deviated by the uprise of 
faulted blocks and flexural upwarps (Capaldi et al., 2019; 
Nivière et al., 2013), large volumes of detritus generated in 
the highlands have been transferred across the northern 
Patagonia plateau to the Atlantic Ocean through time.

In this study, we combine framework petrography 
and heavy-mineral data on sand generated in the Río 
Desaguadero, Río Colorado and Río Negro catchments 
to trace provenance and multistep dispersal of volcani-
clastic detritus for more than 2,000 km, first southwards 
and eastwards across central Argentina and next north-
wards along a littoral cell of sand drift extending as far 
as the Río de la Plata estuary mouth (Figure 3a; Garzanti 
et al., 2021). The Argentine coast has long been indicated 
as a manifest example where transcontinental sediment 
dispersal leads to large-scale deposition of volcaniclastic 
detritus with typical magmatic-arc signature onto a pas-
sive margin, thus creating a patent mismatch between the 
tectonic setting of the source and the tectonic setting of 
the sink (Potter, 1984). Previous studies on compositional 

signatures and provenance of sediments generated in cen-
tral Argentina were carried out on Miocene retroarc-basin 
deposits (e.g. Pinto et al., 2018) and on modern sediments 
of Río Colorado (Blasi,  1991; Blasi & Manassero,  1990), 
Río Desaguadero (Capaldi et al., 2017, 2019), dune fields 
(Tripaldi et al., 2010) and beaches (Potter, 1994; Teruggi 
et al., 1959, 1964).

The main goal of this actualistic provenance study is 
to build on our present knowledge of complex sedimen-
tary systems associated with orogenic belts, thus increas-
ing the intelligence needed to unravel the interplay of 
processes controlling landscape evolution and decrypt the 
stratigraphic archive. Research on modern sediments spe-
cifically aimed at improving our understanding of the rela-
tionships between the geology of orogenic source areas and 
the petrographic and mineralogical signatures of detritus 
derived from them represents an essential step to interpret 
ancient sandstone suites and reconstruct the history of ad-
jacent orogenic belts. In the final part of this article, we 
shall broaden our view to contrast what we believe to be 

F I G U R E  1   F Topography and drainage in central Argentina, with sampling sites (base map from Google Earth™; figure modified from 
the companion paper Garzanti et al., 2021, where the composition of coastal sands is described in detail). The La Pampa High is interpreted 
to be the Andean flexural bulge bending the palaeovalley floors (‘valles trasversales’) that headed eastwards towards the Pampa Deprimida 
backbulge (Nivière et al., 2013). Rivers: A = Azúl; AE = Agua Escondida; I = Iglesia; P = Pie de Palo. Dune fields: G = Grandes; N = Negro; 
T = Telteca. F.Z. = Pacific fracture zones. Central Pampean dune field after Zárate and Tripaldi (2012) 
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three fundamentally distinct types of sedimentary basins 
associated with three different types of orogenic belts, ar-
chetypes of which are considered the Andes, the Himalaya 
and the Apennines. These three basin types are formed in 
geodynamic settings characterized by a remarkably differ-
ent system of applied forces, leading to radically different 
subsidence magnitude and hence radically different sed-
iment storage versus export capacity, drainage networks 
and compositional signatures of terrigenous sediments.

2  |   RETROARC-BASIN 
LANDSCAPES AND RIVER SYSTEMS

The studied Desaguadero, Colorado and Negro river 
catchments jointly cover an area of 530,000 km2 (a fifth 
of the entire Argentina; Figure 1). These rivers have their 
headwaters in the high-relief Andean cordillera, which re-
ceives limited amounts of rainfall especially in the north, 
and cross the wide semiarid Patagonian plateau covered 
by grassy steppe vegetation to reach the Atlantic Ocean. 
Before being disconnected in the presently dry climatic 
condition, the Desaguadero and Colorado rivers joined 
ca. 300 km upstream of the mouth and their catchment 
covered an area of 400,000 km2 spanning almost thirteen 
degrees of latitude (Figure 1).

2.1  |  Climate and landscape

The high Andean cordillera represents a barrier to the 
strong prevailing westerlies, causing orographically en-
hanced rainfall on the western Chilean side (Figure 3a). 
Annual precipitation exceeds 800  mm in a narrow strip 
along the Southern Andes and rapidly decreases north-
wards and eastwards across the Argentine retroarc region 
that remains in the rain shadow. The southeast trade-
wind circulation associated with the Atlantic subtropi-
cal anticyclone, however, carries abundant moisture to 
the Argentine Pampas east of the Andes (Figure  3b). 
Climatic conditions, thus, vary from temperate humid to 
sub-humid in the cordillera (mean temperature 6–8°C) to 
the semiarid northern Patagonian plateau, where annual 
rainfall is ca. 200  mm and mean temperature 14–16°C 
(Brunet et al., 2005).

The dry northernmost part of the study area is drained 
by the endorheic Río Abaucán (Figure 1), which loses its 
waters in a salty semi-desert (Desague del Río Salado). In 
the upper catchment of Río Desaguadero, a series of vege-
tated and mostly stabilized dune fields (médanos), grown 
and sculpted by interplaying fluvial and aeolian processes, 
represent the remnants of a wide late Pleistocene Pampean 
Sand Sea (Figure  3b; Iriondo,  1999). The Colorado and 
Negro drainage basins straddle the boundary between 

F I G U R E  2   Main tectonic domains 
(redrawn after Ramos & Folguera, 2005, 
2009). Distribution of volcanism in the 
central (CVZ) and southern (SVZ) active 
volcanic zones separated by the Pampean 
flat-slab segment, fracture zones and 
age of subduction of Pacific lithosphere 
after Stern (2004) and Geological Map of 
South America (2019). Sierras Pampeanas: 
F = Famatina; P = Pie de Palo; V = Valle 
Fértil 
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subtropical summer and mid-latitude winter rains. 
Landscapes change in cold semiarid Patagonia to the 
south, where hundreds of glacial lakes occur along the 
Andean foothills. Lake Nahuel Huapi (area 557 km2, depth 
≤157 m), feeding Río Limay, is an oligotrophic proglacial 
lake with clear waters (Figure 1; Markert et al., 1997).

2.2  |  Río Desaguadero

Río Desaguadero −named Bermejo upstream of the Río 
San Juan confluence, Salado upstream of the Río Atuel 
confluence, next Chadileuvú (in Mapuche language chadi, 
salt; leuvú, river), and finally Curacó − has a drainage 
area of ca. 300,000 km2 and flows southwards for almost 
1,500 km along the Andean retroarc basin, characterized 
by broad floodplains and ephemeral salty lagoons. The 
river drains the tract of the Central Andes corresponding 
to the Pampean flat-slab subduction segment (Figure 2), 
where Palaeozoic to Miocene rocks have been tectonically 

uplifted to nearly 7,000 m a.s.l. in the Aconcagua massif 
(Figure  3; Farías et  al.,  2008; Ramos & Folguera,  2009). 
Tributaries carrying detritus from the Cordillera Principal, 
Cordillera Frontal, Precordillera and Sierras Pampeanas 
generate alluvial megafans at entry points into the retro-
arc basin, where wind reworking in arid climatic condi-
tions has promoted the growth of dune fields (Tripaldi & 
Forman, 2007).

Río Bermejo, the upstream branch of Río Desaguadero, 
flows along a Neogene strike-slip fault across the west-
ern Sierras Pampeanas (Introcaso & Ruiz,  2001), which 
reach above 6,000  m a.s.l. in the Sierra de Famatina (F 
in Figure 2; B in Figure 3). Detritus is, thus, derived not 
only from the Andes but also from basement rocks ex-
humed in the Sierra Valle Fértil and Sierra Pie de Palo 
uplifts (V and P in Figure 2; Ramos et al., 2002). The Río 
San Juan, sourced from the Cordillera de la Ramada and 
Mercedario massif, drains the Cordillera Frontal and the 
Precordillera fold-thrust belt. The Río Mendoza is sourced 
from the Aconcagua massif in the Cordillera Principal (A 

F I G U R E  3   Climate and landscapes of Argentina. (a) Rainfall map (after Bianchi & Cravero, 2010). Longshore sand transport after 
Garzanti et al. (2021). Highest peaks in the cordillera (A = Cerro Aconocagua: M = Cerro Mercedario) and in the Sierras Pampeanas 
(B = Cerro General Belgrano) coincide with the Pampean flat-segment and magmatic gap between the Central Volcanic Zone (O = Ojos del 
Salado) and northern Southern Volcanic Zone (D = Domuyo; P = Payún Matrú; Tr = Tromen; T = Tupungato). (b) Aeolian deposits and 
wind regimes (after Tripaldi & Forman, 2007, 2016). Wind rose for 1995–2004 near San Juan (grey circle) 
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in Figure  3) and cuts across the Cordillera Frontal and 
the southern tip of the Precordillera to reach the retroarc 
basin, where it flows northwards along the western border 
of the Médanos Telteca to join Río San Juan south of the 
Médanos Grandes (Capaldi et al., 2019).

2.3  |  Río Colorado

Río Colorado (in Mapuche language Colú Leuvú: colo/
coli, brownish/coloured) owes its name to its brown-
ish, sediment-laden waters. Formed by the confluence 
between the Río Grande and Río Barrancas, the river is 
ca. 1,100  km-long with a basin area of ca. 70,000  km2. 
Sourced in the Cordillera Principal, the river drains the 
northern Neuquén Basin and basalts of the Quaternary 
Payenia volcanic province (Pa in Figure  4; Ramos & 
Folguera,  2011). In this region, basaltic lavas were 

emplaced as far as 500–600 km away from the trench also 
during the late Miocene, a period of inferred shallow sub-
duction and eastward arc migration (Litvak et  al.,  2015; 
Stern,  2004). Downstream, the river crosses the arid 
northern Patagonia plateau and the southern Pampa and 
is estimated to deliver 4–4.5 km3 of water, ca. 7·106 tons 
of suspended solids, and ca. 3·106 tons of dissolved sol-
ids to the  Atlantic Ocean (Latrubesse & Restrepo,  2014; 
Milliman & Farnsworth, 2011, p. 209). Discharge fuelled 
by melting of mountain snow reaches maximum in 
October and continues during the rainy summer.

2.4  |  Río Negro

The ca. 1,200-km-long Río Negro (in Mapuche language 
Curú Leuvú: curú, black), formed by the confluence be-
tween Río Limay and Río Neuquén, is the largest river of 

F I G U R E  4   F Geological map of central Argentina (after Schenk et al., 1999 and Geological Map of South America, 2019) with sampling 
sites (the composition of coastal sands is described in detail in the companion paper Garzanti et al., 2021). Pa = Payenia volcanic province 
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Patagonia. Sourced in the Cordillera Principal, the Río 
Negro drains the Agrio fold-thrust belt and the southern 
Neuquén basin, where an Upper Triassic to Paleogene 
continental and marine sedimentary succession is ex-
posed (Howell et al., 2005; Valcarce et al., 2006; Zapata 
& Folguera, 2005). The drainage basin (ca. 130,000 km2), 
situated between 36°S and 42°S, is characterized by a 
strong climatic gradient from the Andean slopes –  re-
ceiving up to 3,000 mm of annual rainfall locally (Lago 
Frías) – to Neuquén (500 mm) and the river mouth (100–
200 mm). Annual water discharge (23 km3 for Río Limay 
and 9 km3 for Río Neuquén; Bonetto & Wais, 2006) has 
two maxima, fed from melting of mountain ice and snow 
in spring and by heavy rains in winter (May to August). 
The discharge of Río Limay (62,000 km2), the emissary 
of Lake Nahuel Huapi (limay, clear water; nahuel, jag-
uar; huapi, island), is regulated naturally upstream by 
glacial lakes and artificially downstream by a sequence 
of five big dams closed between 1973 and 1999. The Río 
Neuquén (ca. 40,000  km2) gave rise to sudden floods 
causing serious economic losses. For both flood-control 
and hydropower generation, a series of dams (Cerros 
Colorados Complex) were, thus, built between 1969 and 
1980 on the lower Neuquén valley and excess flow dur-
ing flood can now be diverted via an artificial channel to-
wards the natural depressed area of Lago Pellegrini. Río 
Negro is estimated to deliver 13–18·106 tons of suspended 
solids and ca. 5·106 tons of dissolved solids to the Atlantic 
Ocean (Latrubesse & Restrepo,  2014; Milliman & 
Farnsworth, 2011, p. 209).

2.5  |  The Atlantic coast

The Argentine continental shelf is one of the largest and 
smoothest shelves in the world (average width 400 km). 
This passive continental margin developed during the 
initial opening of the South Atlantic and is characterized 
by several failed rifts orthogonal to the continent-ocean 
boundary (e.g. Colorado basin; Franke et al., 2006) formed 
by NE–SW extension in the late Mesozoic during clock-
wise rotation away from Africa (Richetti et al., 2018).

The ca. 1,500-km-long Atlantic coast from Golfo San 
Matias to Río de la Plata has no major river outlet besides 
the Negro and Colorado mouths, which are only 190 km 
apart. The few other small rivers and creeks supply negligi-
ble amounts of sediment, whereas contribution from cliff 
erosion is significant (Isla & Cortizo, 2014). Dominantly 
siliciclastic sedimentation was profoundly affected by late 
Pleistocene to Holocene climatic and eustatic changes, 
which determined large variations of detrital supply with 
phases of deltaic growth followed by reworking by waves 

and tides (Ponce et  al.,  2011). Sediment fluxes from the 
Andes have been progressively reduced as an effect of dry-
ing climate, and eventually in the last century by flood reg-
ulation and construction of major dams since 1969 in the 
Río Negro catchment and by closure of the Casa de Piedra 
Dam on Río Colorado in 1996 (Piccolo & Perillo, 1999).

The Río Negro mouth is a mesotidal inlet with an asym-
metric ebb tidal delta, indicating net northward longshore 
sand transport (del Rio et al., 1991). Littoral sand drift fu-
elled by swell waves from the SW feeds stable to rapidly 
prograding beaches north of the mouth. Here, backshore 
dunes migrate north-eastwards under the prevalent effect 
of strong winds from the south-west (Cortizo & Isla, 2012; 
Vergara Dal Pont et al., 2017).

The coast to the north includes the deltaic lobe of Río 
Colorado, prograding slowly and deflected northwards 
by longshore currents, together with several tidal chan-
nels, salt marshes, and tidal flats representing the rem-
nants of a ca. 200-km-wide deltaic complex formed by Río 
Colorado in the late Pleistocene–early Holocene (Spalletti 
& Isla, 2003). The ca. 660-km-long mesotidal to microtidal 
coast of the Buenos Aires Province farther north includes 
wide sandy beaches and backshore dunes (Isla et al., 2001) 
with coastal stretches undergoing erosion especially in 
anthropized areas (Isla et  al.,  2018). Swells and storm 
waves impacting obliquely onto the coast mainly from 
the south promote a steady northward littoral sand drift 
in winter and spring, with partial inversion in summer 
months when northerly winds predominate (Isla, 2014). 
Northward littoral sand drift was most active in the late 
Pleistocene–early Holocene, when alternating waxing and 
waning of glaciers and more humid stages provided suit-
able conditions for the efficient fluvial transfer of much 
larger volumes of volcaniclastic detritus from the Andes 
to the Atlantic Ocean than today (Spalletti & Isla,  2003; 
Zárate & Blasi, 1993).

3  |   GEOLOGICAL FRAMEWORK

The Andean cordillera has undergone a complex tectonic 
evolution, traditionally subdivided into five main oro-
genic cycles, the latest Neoproterozoic Pampean stage 
(555–515 Ma), the Cambro-Ordovician Famatinian stage 
(495–460  Ma), the Carboniferous to Middle Triassic 
Gondwanian stage, the Jurassic–Cretaceous Patagonide 
stage and the Cenozoic Andean stage (Charrier et al., 2015; 
Ramos, 1988). The southern Central Andes (Pampean seg-
ment) and northern Southern Andes (Payenia to northern 
Patagonia segment) exhibit significant along strike varia-
tion in subduction angle, tectonic shortening, magmatism 
and exposed geological units (Figure 4).
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3.1  |  Pampean segment (27°–33°S)

The modern Pampean segment of the Nazca-South America 
plate boundary is characterized by very shallow subduc-
tion, a ca. 600-km-long gap in active volcanism, and base-
ment uplifts of the Sierras Pampeanas (Alvarado et al., 2009; 
Barazangi & Isacks, 1976; Jordan et al., 1983). These base-
ment blocks occupy an area larger than the orogen, extending 
inland towards the Río de la Plata Craton for up to 430 km. 
Flat subduction may have started when the Juan Fernández 
Ridge in the Nazca Plate reached the Chilean trench, and 
propagated southwards during the Miocene. The corre-
sponding diachronous uplift of the Sierras Pampeanas initi-
ated in the latest Miocene at 27°S and continued through 
the Pliocene at 33°S (Ramos et al., 2002). The Pampean flat-
slab segment of the Andes comprises a Jurassic–Cenozoic 
magmatic arc (Cordillera Principal), Carboniferous–Triassic 
basement uplifts (Cordillera Frontal), a thin-skinned, fold-
thrust belt (Precordillera), an adjacent broken retroarc basin 
(Bermejo Basin) and basement-cored block uplifts (Sierras 
Pampeanas; Figure 2).

The Andean magmatic arc, generated by east-dipping 
subduction of Paleo-Pacific plates, consists of N/S-
trending belts of mostly granite/granodiorite intrusions 
and andesite lava flows. These belts show a systematic 
eastward decrease in age, from Jurassic (200–165  Ma) 
and Cretaceous (130–90 Ma) along the Chilean coast, to 
Palaeocene–Eocene (67–38 Ma) and Oligocene–Miocene 
(27–18  Ma) along the western flank of the Cordillera 
Principal, and finally Neogene (17–2 Ma) volcanic rocks 
in the eastern Cordillera Principal, Cordillera Frontal and 
retroarc region (Haschke et  al.,  2006; Jones et  al.,  2016; 
Kay et al., 1991; Parada et al., 1988, 1999).

Carboniferous–Triassic igneous rocks form much of 
the Cordillera Frontal, with the Choiyoi igneous com-
plex spanning the Cordillera Principal along the Chile–
Argentina border and flanking regions to the west and 
east including the retroarc region (Kleiman & Japas, 2009; 
Ramos et al., 2004). Batholith emplacement in the north-
ern Cordillera Frontal involved diverse successive phases 
of Carboniferous to Triassic orogenic and post-orogenic 
magmatism (Hervé et  al.,  2014; Sato et  al.,  2015). Late 
Carboniferous to Early Permian magmatism was syn-
chronous with growth of the NW-trending Gondwanide 
orogenic belt (Giambiagi et al., 2014; Hervé et al., 2014; 
Nelson & Cottle, 2019). After the cessation of Gondwanide 
shortening and crustal thickening, the emplacement of 
calc-alkaline to alkaline bimodal intrusive suites and ex-
ceptionally thick (>5 to 10 km) ignimbrites of the Choiyoi 
Group (ca. 280–248 Ma) is consistent with crustal melting 
and possible post-orogenic disruption during the earliest 
stages of Gondwana breakup (Kleiman & Japas,  2009; 
Mpodozis & Kay, 1992; Sato et al., 2015).

The Precordillera is an east-directed, fold-thrust belt 
involving a Palaeozoic marine clastic and carbonate suc-
cession (Allmendinger & Judge,  2014). The Cambrian–
Ordovician carbonate platform is overlain by Upper 
Ordovician–Devonian clastic rocks in eastern and central 
thrust sheets, passing to slope and deep-marine facies 
in western thrust sheets. Carboniferous–Permian ma-
rine to non-marine strata follow. The Silurian–Devonian 
sediments are derived from the Cuyania basement and 
Famatinian arc, whereas Carboniferous–Permian sedi-
ments are dominated by Famatinian and Pampean arc 
material with some input from a nascent Carboniferous 
arc (Capaldi et al., 2017). Over 100 km of E–W shorten-
ing was accommodated by imbricate thrusting above a 
ca. 12-km-deep décollement (Cristallini & Ramos,  2000; 
Fosdick et al., 2015; von Gosen, 1992).

The proximal Bermejo retroarc basin flanking the 
Precordillera contains a thick, principally Miocene suc-
cession of fluvial and alluvial-fan deposits (Capaldi 
et al., 2020; Johnson et al., 1986; Jordan et al., 1993, 2001; 
Reynolds et al., 1990). Active megafans were fed by large 
catchment areas (>10,000 km2) with focused entry points 
into the retroarc basin (Damanti, 1993).

The western Sierras Pampeanas (i.e. Pie de Palo, 
Umango and Maz-Espinal) consist of Mesoproterozoic 
mafic-ultramafic rocks representative of the Grenville-
aged basement of the Cuyania-terrane and lower 
Palaeozoic metasedimentary rocks (Rapela et  al.,  2010, 
2016). Uppermost Ediacaran to Devonian igneous and 
metamorphic rocks are exposed across the eastern 
Sierras Pampeanas (Valle Fértil and Famatina), includ-
ing the roots of the Cambro–Ordovician Famatinian arc 
and of the Ediacaran–Cambrian Pampean arc (Sierra de 
Cordoba) (Bahlburg et al., 2009; Ramos et al., 1986). The 
Precambrian to Ordovician history included accretion of 
Laurentian terranes (e.g. Cuyania) to the Gondwana mar-
gin, followed by accretion of the Chilenia terrane (Martin 
et  al.,  2020; Ramos et  al.,  1984; Thomas et  al.,  2015). 
Isolated granitic plutons of Devonian age occurring across 
the region are interpreted to have been emplaced during 
extension (Dahlquist et al., 2013; Moreno et al., 2020).

3.2  |  Payenia to northern Patagonia 
segment (34°–42°S)

The northern Southern Andes are characterized by the 
active Southern Volcanic Zone, broad and low-relief 
retroarc-basin uplifts and higher dip of the subducting 
Nazca slab, which progressively increases from ca. 30° 
in the Payenia segment to ca. 55° in northern Patagonia 
(Folguera & Ramos,  2011; Horton et  al.,  2016). In this 
region of Argentina, the Andes consist of a magmatic 
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arc (Cordillera Principal) with a thin-skinned belt lo-
cally involving basement (Malargüe, Agrio, and North 
Patagonian fold-thrust belts). The eastern retroarc basin 
(Neuquén Basin) is partitioned by basement uplifts (San 
Rafael Block and North Patagonian Massif) and hosts 
large Neogene to recent igneous provinces (Payenia and 
Somuncurá volcanic fields).

The Southern Volcanic Zone is emplaced over exhumed 
Middle Jurassic to upper Miocene magmatic rocks. The 
Andean drainage divide north of 38°S is formed by upper 
Oligocene to upper Miocene volcanic and volcaniclastic 
rocks preserved in extensional within-arc basins (Charrier 
et al., 2002; Mackaman-Lofland et al., 2019). The northern 
Patagonia Andean magmatic arc includes numerous NW-
trending belts of plutonic suites and volcanic equivalents, 
including the Lower Jurassic Subcordilleran Belt (ca. 185–
181 Ma) and the Cretaceous to Cenozoic North Patagonian 
Batholith (ca. 173–5  Ma; Aragón et  al.,  2011; Pankhurst 
et  al.,  1999; Rapela et  al.,  2005). The eastward advance 
of the Andean magmatic arc in northern Patagonia at 
ca. 90–70  Ma and subsequent cessation during ca. 70–
55 Ma reflected a transient slab-shallowing event (Butler 
et al., 2020; Folguera & Ramos, 2011; Gianni et al., 2018).

The Malargüe and Agrio fold-thrust belts involve 
a complex combination of detached thin-skinned and 
basement-involved structures that commonly reacti-
vated Mesozoic normal faults, with shortening estimated 
as 15–45 km (Folguera et al., 2015; Fuentes et al., 2016; 
Giambiagi et al., 2012). The North Patagonian fold-thrust 
belt deforms Jurassic–Cretaceous plutonic rocks and 
Jurassic–Neogene volcanic rocks along basement-involved 
structures indicating <10 km of E/W shortening (Ramos 
et al., 2014).

The triangular Neuquén Basin contains a 5–7-km-thick 
succession of Upper Triassic to Neogene quartzo-
feldspatho-lithic to litho-feldspatho-quartzose sandstones, 
black shales and minor carbonates and evaporites taper-
ing eastwards onto the San Rafael Block to the north and 
onto the North Patagonian Massif to the south (Di Giulio 
et  al.,  2012, 2017; Eppinger & Rosenfeld,  1996; Howell 
et  al.,  2005). The stratigraphic succession records initial 
Mesozoic extension and thermal subsidence followed by 
flexural subsidence of the Upper Cretaceous–Cenozoic 
retroarc basin interrupted by a prolonged mid-Eocene to 
early Miocene (ca. 40–20 Ma) depositional hiatus (Horton 
et al., 2016).

The San Rafael Block is a broad, east-verging basement-
involved uplift consisting of Mesoproterozoic metamor-
phic rocks and tightly folded Palaeozoic metasedimentary 
rocks intruded and unconformably overlain by Permian 
to Triassic granitoids and volcanic rocks of the Choiyoi 
Group (Kleiman & Japas,  2009; Ramos & Kay,  2006). 
The pre-Carboniferous stratigraphic units, preserving 

structures related to the Gondwanide orogeny, have been 
associated with the Cuyania terrane and Precordillera 
to the north (Cingolani & Ramos, 2017). Triassic rift ba-
sins were inverted during the Andean orogeny (Ramos 
et al., 2004).

Overlying the San Rafael Block are the Pliocene to 
Holocene basaltic flows and cinder cones of the Payenia 
volcanic province (Ramos & Folguera, 2011). Magmatism 
may have been triggered by a short-lived episode of flat-
slab (and plume?) subduction followed by injection of 
hot asthenosphere during re-steepening of the subduct-
ing Nazca Plate (Folguera et al., 2009; Gianni et al., 2017; 
Kay et  al.,  2006). The North Patagonian Massif consists 
of Paleozoic–Mesozoic metamorphic and igneous rocks 
capped by a voluminous Jurassic rhyolitic ignimbrite 
associated with the Chon Aike province (Pankhurst & 
Rapela,  1995). The Somuncurá volcanic province in the 
eastern part of the North Patagonian Massif records exten-
sive mafic magmatism peaking between ca. 27 and 22 Ma 
(Kay et al., 2007).

4  |   SAMPLING AND ANALYTICAL 
METHODS

In this study, we have analysed 40 modern sand samples 
collected between 2014 and 2018 on active bars of the 
Abaucán, Desaguadero, Colorado and Negro rivers, and 
of their tributaries and sub-tributaries in Argentina from 
Tinogasta (ca. 28°S) to San Carlos de Bariloche (ca. 41°S). 
Another 25 modern sand samples from beaches, rivers 
and aeolian dunes collected along the Argentine coast 
between Río de la Plata (ca. 35°S) and Golfo San Matias 
(ca. 41°S) were studied with the same methodological ap-
proach and described in Garzanti et al. (2021). Full infor-
mation on all sampling sites is provided in Table S1 and in 
the Google Earth file ArgenRetroarc.kmz.

An aliquot of each sand sample was impregnated with 
araldite epoxy and cut into a standard thin section stained 
with alizarine red to distinguish dolomite and calcite. 
Petrographic analyses were carried out by counting 450 
points on each thin section following the Gazzi-Dickinson 
method (Ingersoll et  al.,  1984). Sand classification was 
based on the relative abundance of the three main frame-
work components quartz (Q), feldspars (F) and lithic frag-
ments (L), considered if exceeding 10%QFL. According 
to standard use, the less abundant component goes first, 
the more abundant last (e.g. a sand is named quartzo-
litho-feldspathic if F > L > Q > 10%QFL). Fifteen fields 
are, thus, defined in the QFL plot; if quartz, feldspar and 
lithic fragments are all present in subequal proportions, 
(i.e. ≥30%QFL), then a Q ≈ F ≈ L field is also considered. 
(Garzanti,  2019, p. 551). Rock fragments were classified 
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according to protolith composition and metamorphic rank 
(Garzanti & Vezzoli, 2003).

Heavy-mineral analyses were carried out on the 15–
500  µm class obtained by wet sieving. From a split ali-
quot of each bulk sample, the dense mineral fraction was 
separated by centrifuging in Na-metatungstate (density 
2.90 g/cm3) and recovered by partial freezing with liquid 
nitrogen. In order to obtain correct volume percentages 
of diverse species, ≥200 transparent heavy minerals were 
point-counted at suitable regular spacing on each grain 
mount (Garzanti & Andò, 2019).

Transparent heavy-mineral assemblages are called 
‘tHM suites’ for brevity throughout the text. Rock frag-
ments, iron oxides, soil clasts, phyllosilicates and carbon-
ates were not considered as integral part of the tHM suite. 
According to the concentration of transparent heavy min-
erals (tHMC index of Garzanti & Andò, 2007), tHM suites 
are described as ‘poor’ (tHMC <1), ‘moderately poor’ 
(1 ≤ tHMC < 2), ‘moderately rich’ (2 ≤ tHMC < 5), ‘rich’ 
(5 ≤ tHMC < 10) or ‘very rich’ (10 ≤ tHMC < 20).

The ZTR index (sum of zircon, tourmaline and rutile 
over total tHM; Hubert,  1962) expresses the durability 
of the tHM suite through multiple sedimentary cycles 
(Garzanti, 2017). The Amphibole Colour Index (ACI) var-
ies from 0 in detritus from low-grade metamorphic rocks 
yielding exclusively blue-green amphibole to 100 in de-
tritus from granulite-facies or volcanic rocks yielding ex-
clusively brown amphibole and oxyhornblende. The ACI 
resulted to be particularly useful to discriminate between 
magmatic amphiboles derived from the Andean cordil-
lera (brown titanian pargasite and magnesio-hornblende; 
Deruelle, 1982; Pinto et al., 2018) from blue-green amphi-
boles shed by the Sierras Pampeanas.

Other parameters used are the P/F (plagioclase/total 
feldspar) ratio, which increases with increasing percent-
age of volcanic supply, and the Vm/V (mafic+interme-
diate volcanic/total volcanic rock fragments) and Cpx/
Px (clinopyroxene/total pyroxene) ratios, which decrease 
with increasing silica content of volcanic source rocks. 
Significant detrital components are listed in order of abun-
dance (high to low) throughout the text. The complete 
petrographic and heavy-mineral datasets are provided in 
Tables S2 and S3.

5  |   SAND PETROGRAPHY AND 
HEAVY MINERALS

In this section, we illustrate first the main mineralogi-
cal signatures of sand generated in the Desaguadero, 
Colorado and Negro river catchments (Figure 5) and next 
briefly summarize sand composition in beaches and aeo-
lian dunes along the Atlantic coast (Table 1).

5.1  |  Río Desaguadero and tributaries

Sand composition changes progressively southwards 
along the Desaguadero mainstem (Figure 6a), from litho-
feldspatho-quartzose in Río Bermejo upstream (Figure 5d) 
to feldspatho-litho-quartzose downstream of the Tunuyán 
confluence and eventually quartzo-feldspatho-lithic vol-
caniclastic upstream of the Atuel confluence (Figure 5i). 
Microlitic volcanic lithics prevail over felsitic and lath-
work types; sedimentary and metasedimentary lithics 
are subordinate and decrease downstream (Figure  6b). 
Plagioclase prevails over K-feldspar (Figure 6c). Celestite 
grains or mud clasts frequently occur and are locally abun-
dant in Desaguadero and Atuel river sand, respectively. 
The moderately poor to moderately rich tHM suite mainly 
contains amphibole with garnet and clinopyroxene in Río 
Bermejo and subequal amounts of augitic clinopyroxene, 
orthopyroxene (hypersthene) and amphibole (green-
brown hornblende and oxyhornblende with very minor 
blue-green hornblende), with minor epidote, garnet and 
zircon downstream (Figure 6d,e).

Most Desaguadero tributaries carry quartzo-feldspatho-
lithic sand with plagioclase ≫K-feldspar, lathwork, micro-
litic and felsitic volcanic lithics. Quartz content is highest 
in Abaucán and Bermejo sand in the north (Figure  5d), 
intermediate in San Juan and Mendoza sand in the cen-
tre (Figure  5e) and lowest in Atuel sand in the south 
(Figure 5h). Sedimentary and low-rank metasedimentary 
rock fragments also decrease southwards. Commonly 
perthitic K-feldspar, biotite and mainly felsic (quartz-
feldspar) to intermediate (plagioclase-hornblende) igne-
ous/metaigneous rock fragments are most common in 
Río Mendoza sand at the mountain front. Carbonate rock 
fragments occur but are never abundant. Shale, slate and 
phyllite rock fragments are most common in Río Jáchal 
sand. Quartz tends to slightly increase downstream Río 
San Juan and Río Mendoza, but otherwise no clear sys-
tematic compositional trend is displayed from west to east 
across the cordillera.

Heavy-mineral assemblages are more varied and show 
clearer trends from north to south. In the north, mainly 
moderately rich tHM suites are amphibole-rich and 
orthopyroxene-poor, with clinopyroxene, locally common 
garnet, subordinate epidote, zircon, apatite, minor titanite 
and rare staurolite, kyanite or sillimanite. ZTR indices are 
slightly higher and ACI indices lower than in the south; 
olivine was never detected. Amphibole dominates the 
moderately rich tHM suite of the Río Iglesia, one headwa-
ter branch of the Río Jáchal, whereas the rich tHM suite 
of Río Jáchal sand downstream of the Cuesta del Viento 
Dam is clinopyroxene-dominated. The moderately poor 
tHM suite of San Juan and Mendoza sands mostly con-
tains clinopyroxene and amphibole, with minor epidote 
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and orthopyroxene. Apatite is significant in Río Mendoza. 
The moderately rich tHM suite of Río Tunuyán sand con-
tains subequal amounts of amphibole, orthopyroxene and 
clinopyroxene. The rich tHM suites of Río Atuel sand is 
dominated by orthopyroxene and clinopyroxene with sub-
ordinate amphibole and minor olivine, epidote and garnet.

Detritus shed by the Sierra Pie de Palo is radically 
distinct from Andean detritus, being feldspatho-
litho-quartzose with abundant high-rank metapelite, 
metapsammite and amphibolite rock fragments, and 
common muscovite and biotite (Figure  5f). The very 
rich tHM suite is dominated by mostly blue-green horn-
blende and garnet, with minor epidote and rare kyanite.

5.2  |  Río Colorado and tributaries

Río Colorado carries to the Atlantic Ocean quartzo-
feldspatho-lithic, plagioclase-dominated sand with mostly 
lathwork to microlitic volcanic lithics (Figure  6a). The 
moderately rich tHM suite mostly consists of clinopyrox-
ene and orthopyroxene, with minor amphibole (green-
brown hornblende and oxyhornblende), garnet and 
olivine. The upstream branches carry feldspatho-lithic 
(Río Barrancas) or quartzo-feldspatho-lithic (Río Grande; 
Figure  5b), plagioclase-dominated volcaniclastic sand 
with lathwork to microlitic, carbonate (mostly sparite) 
and locally siltstone and shale grains. The rich tHM suite, 
dominated by clinopyroxene prevailing over orthopyrox-
ene, includes subordinate green-brown to brown horn-
blende and oxyhornblende, olivine and minor epidote and 
garnet (Figure 6d,e).

5.3  |  Río Negro and tributaries

Río Negro transports to the Atlantic Ocean feldspatho-
quartzo-lithic, plagioclase-dominated sand with mostly 
microlitic to lathwork volcanic lithics (Figure  6). The 
moderately rich tHM suite mostly consists of orthopy-
roxene and clinopyroxene, with epidote and minor oli-
vine and blue-green to green-brown hornblende. Sand 
carried by the Limay, Neuquén, and Collon Cura rivers 
is feldspatho-lithic, with plagioclase and mostly lath-
work and subordinate microlitic and felsitic volcanic 
lithics. Moderately rich to rich tHM suites consist of or-
thopyroxene prevailing over clinopyroxene, with minor 
hornblende, epidote, and olivine. Litho-feldspathic sand 
of Río Agrio is particularly rich in plagioclase and or-
thopyroxene (Figure  5c). Río Neuquén carries some 
garnet grains. Río Picun Leuvú (picun, north) carries 
feldspatho-quartzo-lithic sand including K-feldspar, 
volcanic but also carbonate, shale, slate and other R
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F I G U R E  6   Framework-petrography and heavy-mineral modes. (a) River sands from the Andes are mostly quartzo-feldspatho-
lithic (Colorado and Desaguadero), but range from feldspatho-lithic (Limay, Neuquén) to feldspatho-litho-quartzose (Abaucán) and 
litho-feldspatho-quartzose (Bermejo). (A′) Classification scheme (Garzanti, 2019). (b) Lithic fragments are mostly volcanic-derived, but 
sedimentary lithics become common in the north (Bermejo, Jáchal) and metamorphic lithics are shed by the Sierras Pampeanas (Pie de 
Palo). (c) Quartz decreases progressively southwards, from Río Bermejo to Río Limay, with slight increase of the P/F ratio. (d) Five end-
member tHM suites are distinguished from north to south: (i) amphibole > clinopyroxene (Bermejo); (ii) amphibole ≈ clinopyroxene 
(Mendoza, San Juan); (iii) amphibole ≈ clinopyroxene ≈ orthopyroxene (Tunuyán); (iv) clinopyroxene ≥ orthopyroxene (Colorado) and (v) 
orthopyroxene ≥ clinopyroxene (Negro). The Sierras Pampeanas (Pie de Palo) shed amphibole and garnet. (e) The biplot (Gabriel, 1971; 
CoDaPack software by Comas-Cufí & Thió-Henestrosa, 2011) visualizes both differences among samples (points) and relationships among 
variables (rays). If the angle between rays is 0°, 90° or 180°, then the corresponding variables are correlated, uncorrelated or anticorrelated, 
respectively. Q = quartz; F = feldspar (P = plagioclase; K = K-feldspar); L = lithics (Lm = metamorphic; Lv = volcanic; Ls = sedimentary; 
Lvf = felsic volcanic; Lvm = mafic and intermediate volcanic; Lmv = low-rank metavolcanic; Lc = carbonate; Lsm = other 
sedimentary and low-rank metasedimentary; Lmh = high-rank metamorphic); tHMC = transparent heavy-mineral concentration; 
ZTR = zircon + tourmaline + rutile; SKA = staurolite + andalusite + kyanite + sillimanite 
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sedimentary, very-low-rank metasedimentary and meta-
volcanic rock fragments, common olivine and minor zir-
con grains.

5.4  |  Argentine coastal sand

Beaches and aeolian dunes south and north of the Río 
Negro mouth (Pared del Golfo and Bahía San Blas 
coastal provinces defined in Garzanti et  al.,  2021, from 
which the following information is taken) consist of 
quartzo-litho-feldspathic to quartzo-feldspatho-lithic, 
plagioclase-dominated volcaniclastic sand with orthopy-
roxene, clinopyroxene and minor amphibole and epidote. 
Beaches and aeolian dunes north of the Río Colorado 
mouth (Bahía Blanca coastal province) consist of quartzo-
feldspatho-lithic, plagioclase-dominated volcaniclastic 
sand, with clinopyroxene, orthopyroxene and minor am-
phibole, epidote and garnet. North of the Tandil High, 
sand is litho-feldspatho-quartzose, reflecting additional 
sediment supply from sea cliffs.

The hook-shaped Samborombón Bay to the north has 
no sand. Only mud is deposited in this flat wetland un-
derlain by shell ridges, either from very-low-gradient dis-
tributary channels draining the salt marshes or from the 
Paranà River in flood. The tHM suites of Río Salado mud 
near the mouth and of Río de la Plata beach sand as far as 
Buenos Aires are much richer in amphibole than beach 
sand to the south.

6  |   PROVENANCE OF RIVER 
SAND

The Andes largely consist of geological units extending 
roughly parallel to strike for thousands of kilometres (e.g. 
mesosilicic volcanic rocks of the Cordillera Principal). 
Orogenic detritus generated in the study area and fed into 
the retroarc basin consequently displays broadly similar 
compositional signatures, characterized by intermedi-
ate to mafic volcanic rock fragments, plagioclase and 
generally rich tHM suites dominated by clinopyroxene 
(green augite), orthopyroxene (hypersthene) and brown 
magmatic hornblende and oxyhornblende in different 
proportions, with minor olivine, apatite or zircon locally 
(Table  1). Despite several similarities, however, sedi-
ments carried by major river systems in this area can be 
confidently discriminated, and compositional trends from 
north to south are manifest. They reflect both the differ-
ent lithological units exposed along the retroarc-side of 
the Andes or within the broken retroarc basin (Figure 4) 
and the different characteristics and crystallization con-
ditions (mafic vs. felsic, lower vs. higher temperature or 

pressure and alkali or water content; Gill, 1981, ch. 6) of 
arc magmas through time and space (Deruelle, 1982; Kay 
et al., 2005).

These geological and mineralogical factors are all deci-
sively influenced by subduction geometry. A gap in mag-
matic activity and greater structural elevation with wider 
exposure of deeper-seated tectono-stratigraphic basement 
levels both in the cordillera and in the adjacent retroarc 
basin characterize the Pampean flat-slab segment, in con-
trast with the extensive Quaternary Payenia basaltic lava 
field corresponding to the less-shallow-subduction segment 
in the south (Figure 7a). Because of different source-rock 
lithologies, river-sand composition ranges from feldspatho-
litho-quartzose (Abaucán) or litho-feldspatho-quartzose 
(Bermejo) in the north (28°–30°S), to mostly quartzo-
feldspatho-lithic in the centre (30°–34°S; Jáchal, San Juan, 
Mendoza, and Tunuyán) and feldspatho-lithic in the south 
(34°–41°S; Atuel, Neuquén and Limay) (Figure  7b). The 
tHM suite composition also changes, being characterized by 
amphibole ≫ pyroxene in the north (Bermejo), by amphi-
bole ≈ clinopyroxene ≫ orthopyroxene in the centre-north 
(San Juan and Mendoza), by amphibole  ≈  clinopyrox-
ene ≈ orthopyroxene in the centre (Tunuyán), by clinopy-
roxene ≥ orthopyroxene ≫ amphibole in the centre-south 
(Río Colorado catchment) and by orthopyroxene ≥ clinopy-
roxene ≫ amphibole in the south (Río Negro catchment) 
(Figure 7b). The abundance of quartz, K-feldspar, sedimen-
tary to low-rank metasedimentary rock fragments, and am-
phibole, thus, reaches maximum in correspondence with 
the Pampean flat-slab segment where volcanism is inactive, 
whereas volcanic detritus from the Cordillera Principal and 
Payenia lava flows becomes progressively overwhelming 
southwards (Figure 7).

Five end-member sources of detritus can be identified, 
based mainly on rock fragments and heavy minerals: (a) 
lathwork volcanic rock fragments, clinopyroxene and oliv-
ine distinctive of mafic lavas (e.g. Payenia basalts; Søager 
et al., 2013); (b) mainly microlitic volcanic rock fragments, 
plagioclase, clinopyroxene, and either brown amphibole 
or orthopyroxene distinctive of andesites and dacites of 
the Cordillera Principal (Deruelle, 1982; Kay et al., 2005); 
(c) felsitic volcanic to low-rank metavolcanic rock frag-
ments distinctive of rhyolites of the Permian–Triassic 
Choiyoi Group (Kleiman & Japas, 2009); (d) sedimentary/
metasedimentary rock fragments, quartz, K-feldspar and 
ZTR minerals distinctive of sedimentary to metasedimen-
tary rocks exposed in the Precordillera (Allmendinger & 
Judge, 2014); (e) high-rank metamorphic rock fragments, 
quartz, feldspars, micas, blue-green amphibole and gar-
net distinctive of basement blocks uplifted in the Sierras 
Pampeanas (Rapela et al., 2010).

The contribution of these diverse end-member sources 
to each river system and the varying proportions of detritus 
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derived from volcanic, sedimentary and basement rocks 
in different tributaries and along the mainstem were ten-
tatively assessed with forward mixing calculations (for a 
detailed illustration of methods and rationale see Garzanti 
et al., 2012; Resentini et al., 2017; further information is 
contained in Appendix A). Estimates derived from such 
calculations are provided in the subsections below.

6.1  |  Upper Desaguadero 
(Bermejo) catchment

The geological units drained by the Abaucán, Bermejo, 
Jáchal, San Juan and Mendoza rivers in the north-
ern part of the study area include the igneous rocks 
of the Cordillera Frontal, the sedimentary to low-
grade metasedimentary rocks of the Precordillera and 
the amphibolite-facies basement rocks of the Sierras 
Pampeanas. The Cordillera Principal here drains mostly 
towards Chile and a limited amount of detritus from 
Mesozoic and Cenozoic arc rocks is fed into the retroarc 

basin mixed with detritus from the bimodal (basal mafic 
and upper felsic) rocks of the Permian–Triassic Choiyoi 
igneous complex. Palaeozoic strata of the Precordillera 
supply sedimentary and metasedimentary rock frag-
ments and polycyclic detritus originally derived from arc 
and basement rocks. The intermontane valleys across the 
Precordillera are floored by Neogene retroarc-basin de-
posits consisting of Andean arc material and these sedi-
ments are extensively recycled in modern rivers owing to 
their erodibility and high sand-generation potential, as 
documented by detrital-zircon geochronology (Capaldi 
et al., 2017).

Composition of Abaucán and Bermejo river sand in the 
north is distinct from that of San Juan and Mendoza river 
sand in the south (Figure 7b). Quartz is three times more 
abundant in the north, whereas volcanic lithics and clin-
opyroxene are three times more abundant in the south. In 
the north, high-rank metamorphic lithics, blue-green am-
phibole, garnet and rare kyanite and sillimanite document 
minor contributions from amphibolite-facies basement 
rocks of the Sierras Pampeanas. Upper Río Bermejo sand 

F I G U R E  7   Relationships among subduction geometry, magmatic activity and sediment composition. (a) The Pampean flat-slab 
segment corresponds to a magmatic gap, highest structural elevation and exposure of deeper-seated tectono-stratigraphic basement levels 
of the Andean orogen (slab depth after Capaldi et al., 2021). (b) Abundance of quartz (Q), K-feldspar (KF), sedimentary to low-rank 
metasedimentary rock fragments (Lsm) and amphibole (Amp) all reach maximum in coincidence with the magmatic gap and decrease 
southwards, where volcanic to low-rank metavolcanic rock fragments (Lvm), plagioclase (P) and pyroxene derived from the Southern 
Volcanic Zone progressively increase. The ratio between clinopyroxene (Cpx) and orthopyroxene (Opx) increases with the mafic character of 
the eroded volcanic products (e.g. Payenia basalts). Lmh + mi = high-rank metamorphic + mica 
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consists of common quartz, ZTR minerals, some feldspars, 
carbonate, sandstone and pelite rock fragments derived 
from Lower Palaeozoic strata of the Precordillera (≥50%), 
with subordinate volcanic detritus (30%–40%) and minor 
contributions from metamorphic rocks of the Sierras 
Pampeanas (ca. 10%). Detritus from Silurian–Devonian 
shales, slates and phyllites of the Precordillera reaches 
maximum (ca. 40%) in Río Jáchal sand, where domi-
nant clinopyroxene is plausibly recycled from Neogene 
retroarc-basin volcaniclastic deposits (Capaldi et al., 2017; 
Gonzalez et al., 2020).

The San Juan and Mendoza rivers, which mainly drain 
the Cordillera Frontal and the Precordillera, carry sand 
with similar detrital signatures. Carbonate and pelitic rock 
fragments are common in the headwaters, indicating con-
tributions from Jurassic-Cretaceous strata exposed along 
the eastern rim of the Cordillera Principal (Aconcagua 
fold-thrust belt; Mpodozis & Ramos, 1989). The amount of 
felsitic volcanic to very-low-rank metavolcanic rock frag-
ments, largely derived from the Permian-Triassic Choiyoi 
Group, remains relatively constant downstream in both 
rivers (Figure  6). Sedimentary detritus, including slate 
and metasiltstone rock fragments shed from Silurian–
Devonian strata of the Precordillera, increases downstream 
of Río San Juan. Río Mendoza sand at the mountain front 
is uniquely characterized by K-feldspar, biotite and mostly 
felsic to intermediate but also mafic igneous/metaigneous 
rock fragments. This peculiar signature indicates limited 
supply from Palaeozoic strata of the Precordillera and 
may be accounted for by sequestering of a large part of 
the bedload fraction in the Potrerillos Reservoir upstream 
(De Doncker et al., 2020) and consequently largely local 
detrital supply from Permian–Triassic granite to monzon-
ite intrusions (Cingolani et al., 2012). This is supported by 
somewhat lower ACI in this sample and U-Pb zircon-age 
spectrum characterized by a unimodal Permian–Triassic 
peak (figure 5 in Capaldi et al., 2017). The effect of sed-
iment trapping in artificial reservoirs is also manifest for 
the Rio Jáchal sample collected downstream of the Cuesta 
del Viento Dam, which displays a peculiar composition 
sharply distinct from sand in its upstream branch Río 
Iglesia and including abundant shale/slate rock fragments 
derived from locally exposed Palaeozoic strata of the 
Precordillera (Figure 4).

Along the Bermejo–Desaguadero trunk river, the vol-
canic component of detritus is calculated to decrease from 
ca. 40% close to the mountain front to ca. 20% upstream of 
the Médanos Grandes and then to increase again to ca. 35% 
downstream of the Tunuyán confluence. Conversely, detritus 
from Sierras Pampeanas basement rocks first increases from 
ca. 10% to 30% and then decreases to <20%. Sedimentary de-
tritus invariably accounts for half of the sand.

6.2  |  Lower Desaguadero catchment

The geological units drained by the Tunuyán, Diamante 
and Atuel rivers include the Cenozoic volcanic rocks of 
the Cordillera Principal and the Quaternary Southern 
Volcanic Zone, the Jurassic–Cretaceous retroarc strata 
of the Malargüe fold-thrust belt containing detritus 
from Andean arc rocks presently exposed in Chile, 
and Devonian–Carboniferous strata with the overlying 
Permian-Triassic Choiyoi volcanics uplifted in the San 
Rafael Block (Kleiman & Japas, 2009). The Diamante and 
Atuel rivers cut across the northern tip of Quaternary 
Payenia basaltic fields exposed across the San Rafael uplift.

Tunuyán river sand has composition similar to San 
Juan and Mendoza sands, but with a much higher Vm/V 
ratio and much lower Cpx/Px ratio, suggesting supply from 
the northern edge of the Southern Volcanic Zone along 
with recycling of retroarc-basin strata (Porras et al., 2016).

In Diamante and Atuel sands, dominant andesitic to 
basaltic detritus derived from both the Cordillera Principal 
and the Payenia volcanic province is associated with only 
minor sedimentary to low-rank metasedimentary detritus 
derived from the Malargüe fold-thrust belt or San Rafael 
Block. Quartz, K-feldspar and the ZTR index are lowest rel-
ative to all studied catchments, whereas the tHMC index 
is highest, indicating minimum recycling of siliciclastic 
rocks. Prevalence of andesitic to dacitic detritus from the 
Cordillera Principal is indicated by Cpx/Px <50%, whereas 
minor olivine is plausibly shed from Payenia basalts.

Along the Desaguadero trunk river, volcanic detritus is 
estimated to reach ca. 70% upstream of the Atuel conflu-
ence, where sedimentary detritus and contribution from 
basement rocks of the Sierras Pampeanas are reduced to 
20% and ≤10%, respectively. Locally abundant celestite 
grains were considered as intrabasinal in origin and re-
worked from evaporite crusts formed in the floodplain or 
even within the river channel during dry seasons. Erosion 
of barite and celestite ores sparsely hosted in mid-Jurassic to 
Lower Cretaceous evaporites (Ramos & de Brodtkorb, 1990) 
is considered less likely because of rare exposures, limited 
clast durability and only local accumulations.

6.3  |  Colorado and Negro catchments

Cenozoic andesites of the Cordillera Principal and basalts 
of the Payenia province represent the dominant sources of 
detritus for the Grande and Barrancas headwater branches 
of Río Colorado. Composition is, thus, similar to Atuel 
sand, but with greater contribution from Payenia basalts 
as reflected by Cpx/Px >50%. Río Colorado sand near the 
coast is roughly estimated to be derived approximately 
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two thirds from volcanic rocks and one third from sedi-
mentary rocks.

Detritus from the Payenia volcanic province is neg-
ligible in the Río Negro catchment to the south, where 
dominant provenance from andesites and dacites of the 
Cordillera Principal is reflected by Cpx/Px <50% in most 
tributary sands. Río Picun Leuvú extensively drains 
Jurassic–Cretaceous sedimentary rocks of the Neuquén 
Basin, as reflected by markedly higher quartz, K-feldspar, 
carbonate and shale rock fragments and by an only mod-
erately poor tHM suite with significant ZTR minerals. 
Volcanic detritus includes olivine derived from olivine 
basalts emplaced in the retroarc region during different 
Oligo-Miocene to Pliocene stages (Kay & Copeland, 2006; 
Leanza et  al.,  2001). Similar feldspar  ≤  quartz  ≤  lithics 
composition characterizes Río Negro sand near the coast, 
indicating significant contribution (≤40% of total sand) 
from sedimentary rocks of the Neuquén Basin.

7  |   THE KNIGHT ’S MOVE: 
TRANSCONTINENTAL TRANSPORT 
FOLLOWED BY LITTORAL DRIFT

The petrographic and mineralogical signatures of sedi-
ment generated in the Andes and conveyed towards the 
Atlantic Ocean by the Desaguadero, Colorado and Negro 
rivers allowed us to trace a huge Quaternary sediment 
dispersal system that bypasses the retroarc basin and 
continues at right angles for several hundreds of kilome-
tres along the Argentine passive-margin shores (Garzanti 
et al., 2021).

7.1  |  Tectonic control on fluvial 
transport across the broken retroarc basin

In central Argentina, strong tectonic control on sedi-
ment transport is exerted by basement uplifts within the 
broken retroarc basin (Figure  2), including the Sierras 
Pampeanas in the north, the San Rafael block in the west, 
the Pampa Central block in the east (La Pampa High, in-
cluding the Chadileuvú block; Nivière et  al.,  2013), and 
the North Patagonian Massif in the south (Alicia Folguera 
et  al.,  2015). The sediment route towards the Atlantic 
Ocean is, thus, confined to a narrow latitudinal transfer 
zone (i.e. Colorado and Negro river valleys) delimited by 
these broad uplifted retroarc regions (Figure 8).

The structure and relief of the retroarc basement is 
related to the subduction geometry of the Nazca Plate. 
Very shallow slab dips (ca. 5°–10°) in the Pampean seg-
ment, likely related to subduction of the Juan Fernández 
seamount chain (Stern,  2020; Yáñez et  al.,  2001), are 

associated with greatest amount of Andean shortening 
and most pronounced basement uplifts within both the 
Andes (Aconcagua fold-thrust belt, Cordillera Frontal 
and Precordillera) and the adjacent basin (Sierras 
Pampeanas), reaching topographic elevations of nearly 
7,000 m in the orogen and above 6,000 m in the broken 
retroarc region. As subduction angle increases south-
wards, from ca. 30° in the Payenia segment to ca. 55° 
in northern Patagonia (Figure  7a), the retroarc basin is 
partitioned by broader, low-relief structures (San Rafael-
Pampa Central Block and North Patagonian Massif). The 
age of the Andean arc also changes along strike, being 
predominantly Miocene in the Pampean segment and 
Cretaceous in northern Patagonia.

In the actively uplifting segment of the Andes where 
elevation approaches 7,000  m a.s.l. (Lossada et  al.,  2018), 
rugged relief and slope instability, coupled with intense seis-
micity and extreme climatic events, trigger large landslides 
and debris flows as major agents of sediment generation 
(e.g. Hermanns et  al.,  2015; Moreiras et  al.,  2021; Vergara 
et al., 2020). However, because of dry climate, erosion rates 
are estimated to reach only moderate annual values up to ca. 
0.3 mm near 34°S on both sides of the range, based on gauged 
suspended sediment and cosmogenic nuclides (Carretier 
et al., 2018; Val et al., 2018). Higher annual values ≥1 mm 
were estimated for the Mendoza catchment based on silt-
ation rate of the Potrerillos reservoir (De Donker et al., 2020).

The Pampean flat-slab segment from 27° to 33°S, cor-
responding to the magmatic gap between the Central 
and Southern Volcanic Zones, coincides with the highest 
topographic and structural elevations in the Cordillera 
Principal, Cordillera Frontal, Precordillera, as in the 
uplifted basement blocks of the broken retroarc basin 
(Figure 3a; Ramos et al., 2002; Stern, 2004). Compressional 
tectonics and dynamic uplift of the retroarc region (Dávila 
& Lithgow-Bertelloni, 2015; Siame et al., 2005) exerted a 
direct control on the evolution of the drainage network. 
The course of Río Bermejo is funnelled along the trace 
of the NW/SE-trending fault bounding the Sierra Valle 
Fértil uplift (Figure 8). Downstream, the Río Desaguadero 
mainstem descends the retroarc basin axially along a 
structurally controlled slope away from the culmination 
of the Sierras Pampeanas basement uplifts.

The style of retroarc-basin deformation changes farther 
south, where uplift of the Pampa Central Block may repre-
sent a flexural bulge induced by the eastward propagation 
of Andean deformation since the late Miocene (La Pampa 
High of Nivière et al., 2013). The southward-progressing 
uplift of the bulge determined the stepwise southward shift 
of the Río Desaguadero course, which left a mark in the six 
main ≥100 km-long, 1–2 km-wide and ≤100 m-deep ‘valles 
trasversales’, paleochannels formerly directed towards the 
swampy Pampa Deprimida backbulge (Figure  8; Pampa 
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Sur in Iriondo, 1994). Abandonment of these channels in-
dicates that flexural uplift outpaced stream power during 
dry climatic stages.

Progressive southward migration led Río Desaguadero 
to flow along a broad open valley meeting the Atlantic 
coast at Bahía Blanca (Perillo et  al.,  2001) and, finally, 
to become confined in the narrow strip between the San 
Rafael Block and the Chadileuvú block, join Río Colorado 
and feed a large single delta south of Bahía Blanca (Melo 
et al., 2003; Spalletti & Isla, 2003). Equally dictated by tec-
tonic regime is the course of the Colorado and Negro riv-
ers, funnelled between the San Rafael block to the north 
and the North Patagonian Massif to the south, where they 
run subparallel to each other, locally only ca. 40 km apart 
(Figure 8).

7.2  |  Littoral transport of volcaniclastic 
sand along the Argentine passive margin

Sediment generated from the 1,600-km-long eastern flank of 
the Central and Southern Andes between ca. 27° and 41°S 
is transferred eastwards via the Desaguadero, Colorado and 
Negro rivers, reaching the Atlantic Ocean at two entry points 
lying only 190 km apart (39°40′S and ca. 41°S). Beyond the 
Negro and Colorado river mouths, sand transport changes 
to mostly northwards and parallels the Atlantic shoreline 
for nearly 1,000 km (Garzanti et al., 2021). This composite 
cell of littoral sand drift was generated by swells and winter 
storms prevalently from the south and extends as far as the 
southern mouth of Río de la Plata estuary. All along this tract 
of the Argentine coast, sand is, thus, dominantly (ca. 70%) 

F I G U R E  8   Tectonically controlled trajectories of transcontinental sediment dispersal in time (present: blue dashed arrows; past: grey 
dashed arrows and shaded areas). In the north, Río Desaguadero follows the Bermejo fault (BF; red line) and descends between the uplifted 
blocks of the broken retroarc basin along a slope that parallels the southward-increasing angle of the subducting Nazca Plate. In the south, 
Río Negro skirts around the Northern Patagonian Massif and flows side by side with Río Colorado. All volcaniclastic sediment generated 
from a 1,600-km-long tract of the Andes, thus, reaches the Atlantic passive margin almost in the same point. During the Plio-Pleistocene, 
southern rivers could initially flow directly eastwards but were displaced stepwise by the southward progressing flexural wave, leaving their 
mark in the Valles trasversales. Río Desaguadero and Río Colorado eventually joined and the sediment mass transported during deglaciation 
or humid stages fed alluvial fans inland and large deltaic lobes at sea (Spalletti & Isla, 2003; Vogt et al., 2010). Transport direction here 
changes from eastwards to northwards (the knight's move) and sand entrained by swell-induced longshore currents reaches as far north as 
Río de la Plata. Glacio-eustatic changes forced the Río de la Plata coastline to shift landward and seaward by up to ca. 700 km (Violante & 
Parker, 2004). In the present dry climate, Río Abaucán and Río Desaguadero have become endorheic (lighter blue colours) 
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volcaniclastic, similar to detritus shed by magmatic arcs 
and quite unusual for a rifted margin (Garzanti et al., 2001, 
2014). Such a discrepancy between the geodynamic setting 
of the source and the depositional sink has been long rec-
ognized (Blasi & Manassero, 1990; Potter, 1984, 1994) and 
a similar mismatch caused by transcontinental sediment 
transfer over thousands of kilometres occurs in other oro-
genic regions worldwide (e.g. Vezzoli et al., 2016).

Besides the relative proportions of felsitic, microlitic 
and lathwork volcanic rock fragments, preferentially de-
rived from rhyodacite, andesite and basalt, respectively 
(Affolter & Ingersoll,  2019; Dickinson,  1970; Le Pera & 
Morrone, 2020; Marsaglia & Ingersoll,  1992), the Cpx/
Px ratio and the percentage and colour (ACI) of detrital 
amphibole (Andò et  al.,  2014) provide the most diag-
nostic tracers for longshore sediment dispersal. In the 
ca. 1,200-km-long coastal stretch from San Antonio to 
the Río de la Plata (Figure  1), beach and dune sand re-
mains mainly quartzo-feldspatho-lithic to quartzo-litho-
feldspathic. However, abundant orthopyroxene and lower 
ACI indices characterize the southern tract, indicating 
major influence of the Río Negro, whereas clinopyroxene 
prevails over orthopyroxene and ACI indices are notably 
higher north of the Río Colorado mouth, revealing domi-
nant supply from the Río Colorado (Garzanti et al., 2021).

7.3  |  Processes controlling 
generation and long-distance transfer of 
volcaniclastic sediment

Sedimentation in central Argentina is controlled by three 
main factors: (a) intense subduction-related tectonic and 
magmatic activity in the Andean cordillera, leading to the 
development of high relief, slope instability, rapid ero-
sion, and efficient sediment production via landslides and 
debris flows (Moreiras & Sepúlveda,  2015); (b) limited 
or even negative storage capacity in the retroarc basin, 
caused by inversion tectonics and articulated basement 
uplifts associated with changing geometries of the sub-
ducting Nazca Plate (Capaldi et al., 2020) and (c) arid cli-
mate in the retroarc region, leading to inefficient fluvial 
transport, sediment dumping, wind deflation and sand ac-
cumulation in dune fields (Zárate & Tripaldi, 2012).

High sediment supply in the highlands and limited sed-
iment sequestration in the lowlands would lead to efficient 
transfer of huge detrital volumes to the Atlantic Ocean if 
not impeded by scarce rainfall and, therefore, reduced river 
discharge and sediment-transport capacity, which charac-
terize the present and past stages with dry climate and lim-
ited glacial cover. Transport efficiency, however, was greatly 
augmented during deglaciation stages of the Pleistocene 
to early Holocene, when large amounts of water were 

released by melting of the Cordilleran ice sheet, or during 
pluvial events characterized by higher precipitation over 
sufficiently long periods (Iriondo & Garcia, 1993; Martinez 
& Kutschker,  2011). The swollen sediment-laden waters 
of the Desaguadero and Colorado rivers then rushed from 
the highest-relief tract of the Andes, fostering alluvial fans 
and floodplains inland (Vogt et  al.,  2010) and flowing to-
wards the Atlantic Ocean in much larger valleys than today 
(Zárate & Blasi, 1993). Sand and gravel supply to the coast 
was high enough not only to promote rapid progradation of 
deltaic lobes and form a ca. 200-km-wide deltaic complex 
(Spalletti & Isla, 2003) but also to feed the cell of littoral sed-
iment transport extending for hundreds of kilometres along 
the coast of the Buenos Aires Province (Figure 8). Water dis-
charge and consequently stream power, flow competence 
and sediment fluxes have been strongly reduced since the 
last deglaciation stage (Zárate & Blasi, 1993). The present 
dry climate impacted the most the Río Desaguadero, which 
drains the tract of the Cordillera where elevation and relief 
are highest, until it became virtually disconnected from the 
Colorado mainstem (Nivière et al., 2013). Because of dras-
tically decreased sediment supply, the Colorado delta was 
extensively reworked by tides and waves during the late 
Holocene sea-level rise (Melo et al., 2003).

8  |   TECTONICS AND 
SEDIMENTATION IN RETROARC 
BASINS

Different types of orogenic belts are associated with three 
main types of sedimentary basins floored by continental 
crust (as defined in Garzanti,  2020): (a) foreland basins, 
formed on the lower plate undergoing E/NE-dipping con-
tinental subduction (e.g. Indo-Gangetic plain; Burbank 
et al., 1996); (b) foredeeps, formed on the lower plate under-
going W-dipping continental subduction (e.g. Apenninic 
foredeep; Carminati & Doglioni,  2012) and (c) retroarc 
basins, formed on the upper plate of an E-dipping oceanic 
subduction (e.g. Andean retroarc basin; Jordan, 1995).

These three basin types coincide, respectively, with the 
collisional, retreating-collisional and retroarc foreland-
basin systems illustrated in DeCelles (2012). The funda-
mental difference with the widely adopted depositional 
model of DeCelles and Giles (1996) – underscored by the 
choice of a partly different nomenclature – lies in the obser-
vation that depozones have different character and archi-
tecture in these three types of basins formed by profoundly 
different subsidence mechanisms. A flexural component 
proportional to the size (load) of the orogen is present in 
all three cases, although dominant only for retroarc basins 
(Naylor & Sinclair,  2008; Sinclair & Naylor,  2011). Larger 
orogens, such as the Alps, the Himalaya or the Andes, exert 

 13652117, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bre.12607, W

iley O
nline L

ibrary on [03/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3426  |    
EAGE

GARZANTI et al.

a stronger flexural effect, but they have less-subsident, typ-
ically overfilled associated basins relative to much smaller 
thrust belts such as the Carpathians or the Apennines, as-
sociated with much more rapidly subsiding, truly deep fore-
deeps (Doglioni, 1994). The Apennine belt itself has been 
so strongly subsident through time that remained covered 
by pelagic and turbiditic sediments for most of its history 
(Cibin et  al.,  2001). Strongly underfilled (deep) foredeep 
and wedge-top depozones hosting deep-water sediments 
exist only beside and on top of Apennine-type orogenic 
belts, where piggy-back basins were in fact originally de-
fined (Ori & Friend, 1994). Foredeeps (i.e. deep-water ba-
sins hosting deep-water sediments) are not formed in the 
flexural moat of all types of orogens. To this misleading 

idea have contributed earlier studies of the Alpine fore-
land basin (‘underfilled trinity model’ of Allen et al., 2001; 
Sinclair, 1997), where turbidites were indeed deposited but 
only at an early stage when Europe ceased to be the lower 
plate of the Alpine subduction to become the upper plate of 
the Apenninic subduction and was, thus, affected by strong 
tectonic extension/transtension (Dèzes et al., 2004; Doglioni 
et al., 1999; Hu et al., in review). Orogenic sediments issued 
from the Alps, the Himalayas, or the Andes typically display 
marginal marine to continental ‘molasse’ facies.

The different geodynamic setting in which these three 
types of basins are formed implies a different system of ap-
plied forces, as reflected in radically different subsidence 
magnitude (Figure  9). Total long-term subsidence is an 

F I G U R E  9   Three different orogen types associated with different types of sedimentary basins (subsidence rates after Doglioni & 
Panza, 2015). Sediment storage capacity is maximum in foredeeps, where rapid subsidence of both wedge-front and wedge-top depozones is 
induced by slab retreat, and minimum to even negative in broken retroarc basins, where flat-slab subduction leads to greater plate coupling, 
basin inversion and strong uplift of basement blocks 
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order-of-magnitude higher for foredeeps associated with 
much smaller singly-vergent thrust-belts (>1  km/Ma) 
than for foreland basins (<0.3 km/Ma) and retroarc basins 
(even ≤0.1 km/Ma) associated with much larger doubly-
vergent orogens (Doglioni & Panza, 2015). Large tracts of 
retroarc basins are actually uplifting rather than subsid-
ing. Basement blocks reaching elevations of hundreds to 
several thousands of metres do not characterize foreland 
basins (with possible exceptions such as the Kirana Hills 
and Shillong Plateau at the opposite edges of the Indo-
Gangetic Plain) and are certainly at odds with the rapid 
steady subsidence characterizing foredeeps. Loads and 
flexure, therefore, are demonstrably less important sub-
sidence mechanisms than subduction-related dynamic 
processes, such as slab retreat in the case of foredeeps 
(Doglioni et al., 2007) or far-field effects associated with 
the geometry of the subducting slab in the case of retroarc 
basins (Dávila & Lithgow-Bertelloni, 2015).

As a consequence, sediment budgets and the ratio be-
tween what can and what cannot be stored within the 
basin and is, therefore, exported elsewhere are also no-
tably different in these three cases. The entire, generally 
very small amount of detritus shed by Apennine-type 
thrust belts can be easily accommodated in the rapidly 
subsiding foredeep, which remains underfilled unless it 
is fed with sediment derived from external sources (e.g. 
the Alps in the case of the Apenninic foredeep; Garzanti 
& Malusà, 2008; Garzanti et al., 2011). Conversely, most 
of the huge detrital mass shed from Himalayan-type colli-
sion orogens or Andean-type cordilleras cannot be stored 
in the relatively small adjacent foreland or retroarc basin 
and it is, thus, exported away towards other depositional 
sinks, including passive margins and remnant-ocean ba-
sins (Figuereido et al., 2009; Graham et al., 1975; Limonta 
et  al.,  2015). Long periods of reduced or even inverted 
subsidence are documented in foreland and retroarc 
basins by the presence of major unconformities associ-
ated with stratigraphic gaps of up to 20 Ma (DeCelles & 
Horton, 2003; DeCelles et al., 2004; Horton et al., 2016), 
in contrast with prolonged accelerated subsidence char-
acterizing both wedge-top and wedge-front depozones of 
foredeeps (Amadori et al., 2019; Ricci Lucchi, 1986).

Rough calculations indicate that only a minority of 
orogenic sediment produced by erosion of the Himalaya 
through time could be eventually accommodated in the 
adjacent foreland basin, estimated percentages ranging 
from 10% (Lupker et al., 2011; Sinha & Friend, 1994) or 
20% (France-Lanord et al., 2016) to ≤30% (Clift et al., 2001; 
Einsele et  al.,  1996). Sediment budgets gave similar re-
sults for the foreland basin facing the western and eastern 
European Alps since the Oligocene (15%–20% retained 
and 80%–85% exported to the Rhône Fan, Apenninic 
foredeep and other sedimentary basins including the 

North Sea and Black Sea; Hinderer,  2012; Kuhlemann 
et al., 2002).

Along the Andes, much of the sediment generated 
from the cordillera cannot be stored permanently in the 
retroarc basin but it is exported to the Atlantic Ocean via 
the Orinoco River in the north (Gallay et al., 2019), via the 
Amazon River in the centre-north (one-third of sediment 
retained and two-thirds exported in the Madeira catch-
ment; Vauchel et al., 2017), via the Andean sub-tributaries 
of the Paranà River in the centre-south (e.g. Pilcomayo 
and Bermejo rivers; Amsler et al., 2007), and via the stud-
ied Desaguadero-Colorado and Negro river systems in the 
south. The transfer of large masses of detritus from the 
Andean cordillera to the Atlantic Ocean is a consequence 
of the limited long-term storage capacity of the retroarc 
basin, where periods of rapid subsidence can be followed 
by tectonic inversion, uplift and erosion.

During stages of cratonward propagation of orogenic 
deformation, retroarc-basin sediments previously accu-
mulated in flexural moats near the mountain front are ac-
creted to the fold-thrust belt and recycled, whereas those 
deposited along the far side of the basin can be involved in 
flexural uplift and, thus, also eroded away. Tectonic inver-
sion and recycling may be induced by changing subduc-
tion geometry, when reduction of the subduction angle 
drives greater plate coupling and triggers dynamic uplift of 
the retroarc region. Rapid uplift of the retroarc basement 
not only leads to disruption of the storage capacity of the 
basin and to cannibalization of previously deposited sedi-
ments but also generates additional detritus shed from the 
uplifted basement blocks. During humid or deglaciation 
stages, river discharge is augmented by intense rainfall or 
melting ice, and the increased capacity of fluvial transport 
leads to massive export of sediment beyond the basin and 
towards the ocean shores. In dry stages such as the pres-
ent one, instead, fluvial discharge is drastically reduced to 
the point that even main rivers become endorheic (e.g. Río 
Abaucán and Río Desaguadero itself) and orogenic detri-
tus is partly dumped in the retroarc basin, reworked by 
winds, and temporarily accumulated in dune fields.

Finally, and specifically relevant for provenance 
studies and their implications, the compositional sig-
natures of terrigenous sediments accumulated in these 
three different types of sedimentary basins are also rad-
ically different. Foreland basins are typically filled with 
feldspatho-quartzo-lithic sedimentaclastic to litho-
feldspatho-quartzose metamorphiclastic sand, whereas 
the pro-side of an Apennine-type thrust belt sheds chiefly 
quartzo-lithic sedimentaclastic detritus, and the retro-
side of an Andean-type cordillera quartzo-feldspatho-
lithic volcaniclastic to recycled litho-quartzose detritus 
(Garzanti et al., 2007). Such a profound difference makes 
provenance research a fundamental approach not only to 
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determine the palaeogeodynamic setting of ancient oro-
genic sandstone suites but also to discriminate among 
different types of orogenic belts and to unravel their evo-
lution in space and time.

9  |   CONCLUSIONS

Foreland basins, retroarc basins, and foredeeps are dif-
ferent types of sedimentary basins associated with differ-
ent types of orogenic belts, made of different geological 
domains and consequently shedding detritus with dif-
ferent compositional signatures. Different geodynamic 
setting, subduction geometry and location (i.e. lower 
plate vs. upper plate) imply different applied forces, topo-
graphic relief, subsidence mechanisms, and hence drain-
age patterns, storage capacity and different ratio between 
sediment retained in the basin and sediment exported 
long-distance towards depositional sinks formed in even 
totally unrelated tectonic environments.

This sediment-provenance study is focused on central 
Argentina, a classic example of a broken retroarc basin 
where changes in subduction geometry have exerted a 
fundamental control on the tectonic, magmatic and sedi-
mentary evolution of the retroarc region and on transcon-
tinental fluvial sediment transport modulated by climate. 
In the Pampean flat-slab segment, comprised between 27° 
and 33°S and corresponding to a  ca. 600-km-long mag-
matic gap between the Central and Southern Volcanic 
Zones, reduction of the subduction angle drives greater 
plate coupling and strong uplift of the upper plate. Extreme 
elevations above 6,000 m a.s.l. are, thus, reached not only 
within the Andean cordillera but also by strongly uplifted 
basement blocks of the broken retroarc basin. Rugged re-
lief and slope instability, coupled with intense seismicity 
and extreme climatic events, trigger large landslides and 
debris flows, thus generating large amounts of sediment. 
Presently arid climate in the rain shadow of the Andes 
and structural partitioning of the retroarc basin give rise 
to a drainage network strongly conditioned by basement 
uplifts and interspersed with dune fields and saline lakes, 
which has changed repeatedly in response to changing cli-
matic, tectonic and magmatic regimes through time.

Although largely derived from mesosilicic arc rocks of 
the cordillera, the petrographic and mineralogical signatures 
of detritus transported by the Desaguadero, Colorado and 
Negro rivers reflect significant differences in the tectono-
stratigraphic levels of the orogen exposed along strike, 
together with the different character and crystallization 
conditions of arc magmas through space and time. River 
sand, thus, changes from feldspatho-litho-quartzose or litho-
feldspatho-quartzose in the north of the study region, where 
detritus from sedimentary and basement rocks is more 

common, to mostly quartzo-feldspatho-lithic in the centre 
and to feldspatho-lithic in the south, where volcanic detritus 
is overwhelming. The tHM suite also changes markedly from 
amphibole ≫ clinopyroxene > orthopyroxene in the north, 
to amphibole ≈ clinopyroxene ≈ orthopyroxene in the cen-
tre and to orthopyroxene ≥ clinopyroxene ≫ amphibole in 
the south. Such different signatures allow us to trace long-
distance sediment dispersal pathways. Constrained by flex-
ural upwarps and faulted blocks in the retroarc basin and by 
longshore currents generated by swells and storm waves at 
sea, the composite fluvial + littoral sediment route follows a 
knight's move, first eastwards across the continent and next 
northwards along the coast for more than 2,000 km overall.

Sediment generation and transport efficiency from 
source to sink strongly depend on climatic conditions. In 
the dry climate of today, fluvial discharge is reduced to the 
point that even the Río Desaguadero mainstem has be-
come endorheic and orogenic detritus is partly dumped in 
the retroarc basin, where it may be reworked by winds and 
temporarily accumulated in dune fields. Water and sed-
iment discharge were much higher during deglaciation 
and humid stages of the Pleistocene to early Holocene, 
when huge volumes of detritus generated from cordille-
ran highlands were flushed across northern Patagonia to 
the Atlantic Ocean, fostering one of the world's widest and 
smoothest continental shelves and reaching as far north as 
the southern mouth of the Río de la Plata estuary.
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