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Replication timing alterations are associated
with mutation acquisition during breast and
lung cancer evolution

Michelle Dietzen 1,2,3,9, Haoran Zhai 1,3,9, Olivia Lucas 1,3,4,5, Oriol Pich 1,3,
Christopher Barrington 6, Wei-Ting Lu 3, Sophia Ward 1,3,7, Yanping Guo8,
Robert E. Hynds 1,3, Simone Zaccaria 1,4, Charles Swanton 1,3,5,10,
Nicholas McGranahan 1,2,10 & Nnennaya Kanu 1,3,10

During each cell cycle, the process of DNA replication timing is tightly regu-
lated to ensure the accurate duplication of the genome. The extent and sig-
nificance of alterations in this process during malignant transformation have
not been extensively explored. Here, we assess the impact of altered replica-
tion timing (ART) on cancer evolution by analysing replication-timing
sequencing of cancer and normal cell lines and 952 whole-genome sequenced
lung and breast tumours. We find that 6%–18% of the cancer genome exhibits
ART, with regions with a change from early to late replication displaying an
increased mutation rate and distinct mutational signatures. Whereas regions
changing from late to early replication contain genes with increased expres-
sion and present a preponderance of APOBEC3-mediated mutation clusters
and associated driver mutations. We demonstrate that ART occurs relatively
early during cancer evolution and that ART may have a stronger correlation
with mutation acquisition than alterations in chromatin structure.

Cancer development is an evolutionary processwheremutations serve
as a substrate upon which selection can act. Thus, understanding the
mechanisms underlying mutational accumulation is crucial to illumi-
nate the processes that shape tumour evolution1. DNA replication
during each cell cycle is an essential biological process that involves
theduplicationof the entire genome faithfully2. To ensureefficient and
accurate replication, and to limit the potential for acquisition of
somatic alterations, each chromosome is divided into segments that
are replicated in a defined and highly organised temporal order,
termed the replication timing (RT) programme2,3. In non-malignant
cells, the RT programme is highly conserved across 50%–70% of the

genome, while the remaining 30%–50% can dynamically vary during
normal development, contributing to tissue-specificity3. Changes to
the RT programme during normal lineage differentiation are asso-
ciated with differences in the transcription level of genes4.

The RT programme has been linked to the non-uniform acquisi-
tion of somatic mutations across the genome during cancer
development5. Multiple studies have shown that late replicated
regions, which often coincide with condensed chromatin regions,
accumulate more mutations including both single nucleotide variants
(SNVs)6–8 and somatic copy number alterations (SCNAs)9–11, compared
to regions replicated early during S phase which often are actively
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transcribed and exhibit open chromatin6,12. Linked to this, prior work
has revealed that the patterns of mutational signatures observed
across the genome are strongly associated with the RT programme13.

However, despite the association between the RTprogramme and
the overall genetic alterations in cancer, few studies have focused on
how the plasticity and changes to the RT programme interact with the
genomic landscape in cancer and thus contribute to cancer
development4,14–16. Changes to the RT programme between acute
lymphoblastic leukaemia cells were reported to be much smaller than
those between leukaemia cells and matched normal lymphocytes,
suggesting dramatic alterations to RT in cancer compared to normal
cells14,15. Similar results were reported in prostate adenocarcinoma
compared to matched prostate epithelial cells, with RT changes coin-
ciding with specific types of translocations in cancer16.

The potential mechanisms responsible for the association
between late RT and increased genetic alterations remain unclear.
Given the link between chromatin configuration and RT3,17–19, the ele-
vated mutation rate in late replicated regions could primarily reflect a
condensed chromatin structure and low DNA repair activity20. How-
ever, an in-depth evaluation of the relative impact of changes in
chromatin structure versus alterations in RT during cancer develop-
ment is lacking. Further, the extent to which alterations to the RT
programme are associated with the activity of mutational processes
remains unclear.

Here, we set out to explore the extent to which replication timing
changes during malignant transformation and its correlation with
mutation acquisition, gene expression and chromatin structure during
cancer evolution.

Results
A resource to evaluate replication timing in lung and
breast cancer
To evaluate the dynamics of mutation acquisition during cancer evo-
lution,wefirst explored thedensity ofmutations across the genomeby
analysing 952 cancer genomes derived from the 100,000 Genomes
Project21 and Nik-Zainal et al.22. This cohort consists of 470 lung ade-
nocarcinoma (LUAD) and 482 breast carcinoma (BRCA) tumours,
containing 152 triple negative breast carcinomas (TNBC), 266 HER2-
negative (HER2-), 22 HER2-positive (HER2+) and 42 other breast car-
cinomas (“Methods” section).

Comparing the mutation density in genomic regions harbouring
different types of somatic copy number alterations (SCNAs) revealed a
significantly elevatedmutation rate in genomic regions subject to copy
number (CN) gains relative to ploidy compared to those without
(Fig. 1A, B). This suggests that previous studies examining the density
of mutations across the genome may be confounded by ignoring the
impact of SCNAs on mutation acquisition. To exclude this potential
bias, we, therefore, adjusted the local mutation burden (i.e., the
mutational burden in a given region of the genome) by the estimated
number of alleles harbouring each mutation relative to the total copy
number at that position (Fig. 1C). The mutational density across the
genome was then calculated as the adjusted number of mutations in
50 kb windows for the aggregated set of mutations for all BRCA and
LUAD tumours respectively (Fig. 1C; “Methods” section). Nevertheless,
even after correcting for underlying copy number alterations, we
observed a high variability in local mutation burden across the whole
genome (BRCA: mean = 2717.88, standard deviation (SD) = 539.51;
LUAD: mean = 6511.58, SD = 3579.71) and between cancer
types (Fig. 1D).

To explore the extent to which this variability in local mutation
burden could be explained by replication timing, we obtained
replication-timing sequencing (Repli-seq) data from different tissue
types and cell differentiation states from ENCODE (“Methods”
section)23,24. In total, we obtained Repli-seq data from 16 cell lines
including 5 non-malignant (“normal”) and 11 malignant cell lines.

Broadly, the genome could be divided into regions exhibiting con-
servedRT (where allfive non-malignant cell lines exhibited concordant
early or late replication timing) or non-conserved RT (where we
observed discordance in replication timing between the cell lines)
(Fig. 1E). In both BRCA and LUAD, we observed that RT in conserved
regions was better able to predict local mutation burden than RT in
non-conserved regions (Fig. 1F). Therefore, we reasoned that changes
to the RT programme that occur during the malignant transformation
from normal to tumour cells may also correlate with mutation acqui-
sition during tumour development.

Given the tissue-specificity of the RT programme16,25, an evalua-
tion of RT changes during malignant transformation requires RT
information from malignant and their matched non-malignant cells
derived from the same tissue-of-origin. However, most publicly avail-
able RT cancer datasets do not include paired non-malignant samples
derived from the tissue-of-origin of the cancer sample. Therefore, to
systematically investigate the association of RT and RT changes in
cancer, we conducted Repli-seq experiments for 2 BRCA, 4 LUAD, 3
LUSC, 2 patient-derived cell lines (PDCs) from two TRACERx LUAD
tumours, aswell as 4 immortalised non-transformed (non-malignant as
“normal”) cell lines including cells that were derived from the likely
originating tissue (referred to as tissue-of-origin) of BRCA (i.e., human
mammary epithelial cells (HMEC)) and LUAD (i.e., pulmonary alveolar
epithelial type II cells (T2P)) (“Methods” section; Supplementary Fig. 1
and Supplementary Table 1). High concordance, robustness, and
reproducibility within and between the data generated as part of this
study (IN-STUDY) and ENCODE data were observed when comparing
the RT signal of a subset of biological replicates in this comprehensive
RT cohort (Supplementary Fig. 2; “Methods” section).

To evaluate the extent to which the RT programme is different in
cancer cells from their normal counterparts, we performed unsu-
pervised hierarchical clustering of the RT signals of 9 non-malignant
and 22 cancer cell lines from different organ sites (ENCODE and IN-
STUDY data) and calculated the clusterwise Jaccard bootstrapmean to
measure the stability of our clustering results (Fig. 1G). The overall
fraction of early versus late replicated genomic regions was similar
across all normal and cancer cells (mean 38% early and 62% late)
(Supplementary Fig. 3A). However, consistentwith previous work16, we
identified two distinct RT groups, separating normal from cancer cells
(Jaccard bootstrap mean: 0.77 for the normal cluster and 0.78 for the
cancer cluster), suggesting fundamental changes to RT profiles during
malignant transformation from normal to cancer cells.

Replication timing alterations in cancer are recurrent and cor-
relate with mutation acquisition
Next, to evaluate specific genomic regions exhibiting alterations to the
RT programme in BRCA and LUAD, we compared the RT signal of each
cancer cell line to a non-malignant cell line derived from the likely
matched tissue-of-origin for both cancer types26,27. Regions of the
genome with altered replication timing (ART) were classified as either
LateN-to-EarlyT (late replicated in normal, but early replicated in can-
cer) or EarlyN-to-LateT (early replicated in normal, but late replicated in
cancer) replicated, while other genomic regions with no change in
replication timing were classified as EarlyN+T or LateN+T replicated
(Fig. 2A; Supplementary Fig. 3B–D; “Methods” section).

On average, 5.7% of the cancer genome was subject to LateN-to-
EarlyT shifts (range, 3.5%–8.7%) and 5.2% to EarlyN-to-LateT shifts
(range, 2.3%–9.2%) across LUAD and BRCA cell lines (Fig. 2B). These
proportions are consistent with previous findings in other cancer
types14,16. Most conserved RT regions identified in the four non-
malignant cell lines in our IN-STUDY cohort were also conserved
among all five non-malignant cell lines from ENCODE (Supplementary
Fig. 4A). Furthermore, the majority of ART regions in BRCA and LUAD
coincided with non-conserved RT regions across non-malignant cells
(Supplementary Fig. 4B, C).
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Fig. 1 | Overview of the data cohort used to explore the relationship between
mutationacquisitionand replication timing.A,BMutationdensity (measured as
the number of mutations relative to the size of the affected genomic regions) in
gained, lost and copy number neutral genomic regions in 482 breast carcinomas
(BRCA) (A) and 470 lung adenocarcinomas (LUAD) (B). P-values reflect one-sided
pairedWilcoxon tests. The centre line of the box plots represents themedian value,
the limits represent the 25th and 75th percentile, and the whiskers extend from the
box to the largest and lowest value no further than 1.5 * IQR (interquartile range)
away from the box. C Schematic demonstrating the method of copy number cor-
recting the mutation load within a single 50 kb bin. Both the total copy number at
the mutated position (referred to as CN segment) and the number of mutated
alleles (referred to as CN mutation) are calculated. D Copy number adjusted
mutation load in 5Mb bins across the genome for 482 BRCA and 470 LUAD
tumours. E Fraction of the genome presenting conserved and non-conserved RT

across 5 non-malignant cell lines from ENCODE. F Variance in mutation load
explained by the average replication timing (RT) signal across all 16 ENCODE cell
lines in conserved and non-conserved RT regions identified across non-malignant
cells. The bars represent the R2 value derived from a linear model with mutation
loadas an independent variable and the averagedRTsignal as a dependent variable.
G Hierarchical clustering of RT signals in 50kb windows across the genome. The
Euclidean distance and the ward criterion were used to cluster RT signals of 31 cell
lines (including 15 IN-STUDY and 16 ENCODE cell lines). Additional information
about the cell lines, including whether the cell line was derived from normal or
cancer cells and the presence of different driver gene mutations, are displayed on
the top tracks. Names of a subset of cell lines were coloured regarding their
involvement in the corresponding cancer type in further analyses. A549 was Repli-
sequenced as part of both the ENCODE and our IN-STUDY cohort representing two
replicates; A549(E) presents the results using the ENCODE data.
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Notably, only an average of 15.9% of ART regions (range
13.7%–18.4%) were concordantly classified as subject to ART across all
LUAD cell lines when using three different non-malignant lung cell
lines which were derived from the matched (i.e., T2P) or unmatched
(i.e., TT1 and IMR90) originating cell type as a reference (Fig. 2C, D,
Supplementary Fig. 5A–D). Similar results were observed in BRCA
when comparing ART regions identified with the matched (HMEC)
versus unmatched (MCF10A) non-malignant cells (mean 22.0%, range
22.6%–35.2%) (Supplementary Fig. 5E–H). These results highlight the
importance of using an appropriate control to identify ART regions in
cancer cells.

To identify genomic regions that are recurrently prone to ART
across samples within the same cancer type, we evaluated the cancer
type specific overlap of ART regions across cancer cells (Supplemen-
tary Fig. 5I, J). The observed numbers of overlapping ART regions in
50 kb bins were significantly higher than expected within both LUAD
and BRCA cells (Supplementary Fig. 5K; “Methods” section). Intrigu-
ingly, although the four different BRCA cell lines were derived from
different breast cancer subtypes, their RT profiles were highly corre-
lated (Fig. 1G; Pearson correlation coefficient range 0.76–0.86; p-
values < 2.2e−16), with 18% of ART regions recurrently identified in all
four BRCA cell lines (recurrent ART) and 44% identified in at least two
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but not all cell lines (shared ART) (Fig. 2E; “Methods” section). In
comparison, 40% of ART regions were shared and only 4% were
recurrently altered among the four LUAD cell lines (Fig. 2E, Supple-
mentary Fig. 5I, J).

In both BRCA and LUAD, we observed that genomic regions
subject to LateN-to-EarlyT alterations in cancer exhibited a higher
density of genes compared to regions with unaltered LateN+T or EarlyN-
to-LateT replication timing (Fig. 2F) which might explain the observed
non-uniform distribution of ART regions across the genome (Fig. 2A;
Supplementary Fig. 6).

To explore the association between both unaltered RT and ART
with the mutation distribution across the genome in cancer, we har-
nessed the mutation data from the 952 lung and breast cancer gen-
omes.We first compared the copy number correctedmutation load in
genomicbins betweendifferent unalteredRT andART regions in BRCA
and LUAD. As expected, and consistent with previous work, we
observed an increased mutation load in late compared to early repli-
cated regions in both lung and breast cancer (Supplementary
Fig. 7A)28,29. We also observed a significantly higher mutation load in
EarlyN-to-LateT replicated regions compared to unaltered EarlyN+T
regions and a significantly lower mutation burden in LateN-to-EarlyT
regions compared to unaltered LateN+T regions (Supplementary
Fig. 7A). These results suggest that ART has a significant correlation
with mutation accumulation during tumour evolution, with LateN-to-
EarlyT regions potentially providing protection from mutagenesis.

To explore whether a difference in the mutation distribution
could be observed at the boundaries of ART, we analysed the average
mutation distribution from500 kilobasepairs (kb) upstream to 500 kb
downstream of the start of unaltered RT and recurrent ART regions.
Given that RT is regulated at the replication domain level30, we com-
bined multiple adjacent genomic bins displaying the same unaltered
RT or ART classification into one RT domain and used the start of this
domain for this analysis (“Methods” section). A clear difference in the
mutation load was observed at the start of different unaltered RT and
ART domains, with an increased mutation load in EarlyN-to-LateT
replicated regions but a decreased mutation load in LateN-to-EarlyT
regions (Fig. 3A). These data indicate that the mutation distribution in
ART regions predominantly reflects the resulting RT in cancer (i.e.,
after the RT change), rather than the RT in the tissue-of-origin (i.e.,
before the RT change).

RT alterations occur early during cancer development
Conceivably, if ART occurs before any mutations have accumulated
(i.e., very early during tumour development), EarlyN-to-LateT regions
should harbour a similar mutation burden to unaltered LateN+T
regions, while the mutation burden in LateN-to-EarlyT regions should
be equivalent to unaltered EarlyN+T (Panel labelled as “expected” in
Fig. 3B). Conversely, if ART occurs late during tumour evolution (i.e.,

after the majority of somatic mutations have accumulated), the
mutation burden in LateN-to-EarlyT genomic regions should appear
equivalent to unaltered LateN+T and the mutation burden in EarlyN-to-
LateN should be similar to unaltered EarlyN+T (Panel labelled as
“expected” in Fig. 3B).

To quantify whether ART occurred at different time points during
tumour evolution in BRCA and LUAD, we applied a bootstrapping
approach to compare the average truncal mutation load (i.e., muta-
tions present in the most recent common ancestor (MRCA) of all
cancer cells and prior to subclonal diversification) between different
unaltered RT and ART regions (Fig. 3B, “Methods” section).

Simulating ART to occur at different epochs of tumour evolution
revealed that the observed differences in the mutation frequency
between ART and unaltered RT regions can be used to estimate the
proportion of mutations that have accumulated before ART during
tumour evolution (Supplementary Fig. 8; “Methods” section). Applying
this approach revealed that in BRCA, approximately 11% of mutations
were accumulated before LateN-to-EarlyT changes and 16% before
EarlyN-to-LateT changes. Thus, we speculate that the majority of
mutations likely occur following ART changes. Likewise, in LUAD, it
was estimated to be 22% for LateN-to-EarlyT changes and 47% for
EarlyN-to-LateT alterations (Panel labelled as “observed” in Fig. 3B).
These data also suggest that in molecular evolution time, the LateN-to-
EarlyT changes potentially occur earlier than the EarlyN-to-LateT
changes in both BRCA and LUAD. Repeating the same analysis within
each BRCA subtype confirmed that the observed similarities between
unaltered and altered RT regions were not influenced by subtype-
specific characteristics (Supplementary Fig. 7B–D).

Evolutionary timing of ART within individual tumours
The above analysis focused on aggregated mutations across all LUAD
and BRCA tumours respectively which may mask important inter-
tumour heterogeneity. Therefore, we next evaluated the extent to
whichARTmay correlatewithmutation acquisition between individual
tumours. We first performed a bootstrapping test to identify tumours
with a significant difference (bootstrap p-value < 0.001) in mutation
density between EarlyN+T and LateN+T replicated regions. We reasoned
these tumours harbour a sufficiently highmutation burden to evaluate
whether ART also has an associationwithmutation density (“Methods”
section). We identified a significant difference in 178 out of 470 LUAD
tumours, whereas only 3 out of 482 BRCA tumours exhibited a sig-
nificant difference (Supplementary Fig. 7E), consistent with the sig-
nificantly lower mutation burden in BRCA tumours. Thus, only these
178 LUAD tumours were included for the per-tumour analysis.

When comparing the average burden of mutations that were
present in the MRCA between different unaltered RT and ART regions
for each of the 178 LUAD tumours, each tumour presented a clear
difference in the mutation distribution in ART versus unaltered RT

Fig. 2 | Replication timing alterations in BRCA and LUAD cell lines.
ADistribution of ART across the genome for one lung adenocarcinoma (LUAD) cell
line, H1650. The bars on the left illustrate the proportion of each chromosome
affected by altered replication timing (ART). The bars on the right present the
localisation of genomic regions with ART on each chromosome. One genomic
regiononchromosome 1 isdisplayed tohighlight thedefinition of altered EarlyN-to-
LateT and LateN-to-EarlyT replicated regions.B Proportions of the genome affected
byART ineachof thebreast carcinoma (BRCA)andLUADcell lines.CTwoexamples
illustrating how IMR90 and TT1 result in distinct ART regions when used as normal
reference for H1650 cells. The regions presented as grey rectangles can be con-
sidered false-positive ART regions. In contrast, the yellow rectangle shows a true
ART regionwhichhas beenmissed by IMR90 andTT1 (false negative).D Proportion
of overlapping ART regions that have been identified when using three different
cell lines as a reference (IMR90, TT1 and cellsmost closely resembling the reported
tissue-of-origin for LUAD, T2P). The proportions are displayed as pie charts for the

4 different LUAD cell lines with the upset plot present for the H1650 cell line. E Pie
charts showing the proportions of overlapping ART regions between cell lines
within each cancer type by using the correct tissue-of-origin as normal reference,
and line charts showing examples of genomic regions with recurrent, shared and
unique ART. F Comparisons of gene density between genomic regions with unal-
tered replication timing or shared and recurrent ART in BRCA and LUAD cell lines
(BRCA: 9521 genes with unaltered EarlyN+T replication timing, 4531 genes with
EarlyN-to-LateT ART, 4129 genes with LateN-to-EarlyT ART and 17873 genes with
unaltered LateN+T replication timing; LUAD: 11104 genes with unaltered EarlyN+T
replication timing, 1569 genes with EarlyN-to-LateT ART, 2029 genes with LateN-to-
EarlyT ART and 21782 genes with unaltered LateN+T replication timing). The centre
line of the box plot represents the median value, the limits represent the 25th and
75th percentile, and the whiskers extend from the box to the largest and lowest
value no further than 1.5 * IQR (interquartile range) away from the box. P-values
reflect two-sided paired Wilcoxon tests.
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in breast carcinomas (BRCA) and lung adenocarcinomas (LUAD). B Expected and
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Lower plots: Observed distributions of mean mutation load values in different
altered and unaltered RT regions per cancer type and their estimated ART timing

relative to the mutation accumulation in their MRCA. Middle plot: Bars represent
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upper plots highlighted in grey. C The bootstrapped mean mutation load dis-
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the box. E Proportions of the genome presenting EarlyN-to-LateT and LateN-to-
EarlyT alterations in patient-derived cell cultures (PDCs) from two LUAD tumours
from TRACERx patients. F Bootstrapped mean mutation load distributions in ART
and unaltered RT regions using mutation and RT information from the same
cell line.
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regions (Fig. 3C, D), consistent with our observations at the cohort
level (Fig. 3B). These results support the notion that shared ART
regions identified in different cancer cell lines (Fig. 2E) within the same
cancer type can be used as a proxy for ARTpresent in human tumours.
Analysing the fraction of mutations accumulated in the MRCA prior to
ART within each tumour (EarlyN-to-LateT range 7%–95%; LateN-to-
EarlyT range 0.1%–65%) revealed that in all analysed tumours a small
fraction of truncal mutations likely accumulated after ART, which
suggests that ART occurs prior to the emergence of MRCA in LUAD
tumour evolution (Fig. 3D). However, it is notable that in 15% (26/178)
of LUAD tumours we observed that the EarlyN-to-LateT ART change
potentially occurred prior to the LateN-to-EarlyT change.

To further exclude the potential bias caused by inter-tumour
heterogeneity and provide additional validation of the association
between ART and mutation accumulation across the genome, we
performed Repli-seq andWGS for two patient-derived cell lines (PDCs;
CRUK0557-CL and CRUK0977-CL). These cultures were derived from
two patients with diagnoses of LUAD enrolled in the TRACERx study
(“Methods” section). Similar to other LUAD cell lines, 5.7% of the
CRUK0557-CL genome and 6.0% of the CRUK0977-CL genome had
ART relative to the T2P cell line, which was used as a tissue-of-origin
control (Fig. 3E; “Methods” section). Consistent with ART influencing
the acquisition of mutations, we observed a significantly higher
mutation burden in genomic regions that were replicated late in can-
cer but early in normal compared to genomic regions that were
replicated early in cancer but late in normal. Estimating the fraction of
mutations that likely accumulated prior to ART within the two PDCs
confirmed that ART is likely to be an early event during cancer evo-
lution in LUAD (EarlyN-to-LateT: 10% and 26%; LateN-to-EarlyT: 11% and
12%; Fig. 3F). This observation supports our conclusion that ART
occurs early during tumour evolution and that the shared ART regions
identified in LUAD cell lines can be used to explore the impact of ART
on mutation accumulation in larger cohorts of patient tumours.

Differential correlation of ART and chromatin structure with
mutation accumulation
In order to elucidate the relative associations between alterations to
replication timing and chromatin localisation, and mutation distribu-
tion, we analysed publicly available Hi-C data (“Methods” section).
Genomic regions in 50 kb bins were classified as A compartment
(active genomic regions with an open chromatin structure and a
location at the interior of the nucleus) or B compartment (inactive
genomic regions with a closed chromatin structure and a location at
the periphery of the nucleus) in cell lines for which we also had per-
formed Repli-seq analyses (i.e., HMEC, MCF-7, T47D and A549). As
expected, unaltered EarlyN+T replicated regions were located pre-
ferentially in the A compartment while LateN+T were located pre-
ferentially in the B compartment. However, we also observed a
significant increase in the fraction of genomic bins classified as A
compartment among LateN-to-EarlyT replicated regions in two BRCA
cell lines (MCF-7 andT47D) compared to their normal referenceHMEC
(Fig. 4A). Consistently, the fraction of genomic bins identified as B
compartment was significantly increased among EarlyN-to-LateT
regions in both BRCA cell lines compared to their normal refer-
ence (Fig. 4A).

We next quantified the degree of altered chromatin compartment
(ACC) regions across the genome in BRCA cells relative to their normal
reference. 50 kb bins defined as A compartment in normal but B
compartment in cancer cellswere classified as alteredAN-to-BT regions
whereas bins within the B compartment in normal but A compartment
in cancer cells were labelled altered BN-to-AT regions. Unaltered
chromatin compartment regions were classified as either unaltered
AN+T or BN+T regions (“Methods” section).

We observed a similar fraction of genomic bins with ACC to
those with ART (AN-to-BT average 8.3%, BN-to-AT average 6.4%;

Fig. 4B). As expected, unaltered AN+T regions were enriched in 50 kb
genomic bins predominantly exhibiting early RT and BN+T regions
were associated with late RT in both normal and cancer cells
(Fig. 4C). A higher fraction of bins replicated early in cancer than
replicated early in normal was observed among BN-to-AT compart-
ment regions and a higher fraction of bins replicated late in cancer
than replicated late in normal was detected in AN-to-BT regions
(Fig. 4C), highlighting the relationship between RT and chromatin
structure even in altered regions in cancer.

To explore the association between ACC and mutation accumu-
lation, we applied a bootstrapping approach to compare the average
load of mutations that were present within the MRCA between dif-
ferent unaltered chromatin compartments and ACC regions (“Meth-
ods” section). While the ACC genomic regions were associated with a
significant change in mutation density, the observed differences
appeared less pronounced compared to the association with ART
(Figs. 4D; 3B). In fact, the variability in localmutationburden across the
genome in BRCA tumours was better predicted by the RT signal in
cancer cells than by the chromatin compartment signal in cancer or
any of the two signals in normal cells (Fig. 4E; Supplementary Fig. 7F;
“Methods” section). These data suggest that in BRCA, ART may have a
stronger correlation with mutation accumulation than alterations to
the chromatin landscape.

In the absence of publicly available Hi-C data for paired normal
and LUAD cells, we assessed the fraction of A and B compartment
regions among unaltered RT and ART regions in A549 cells. We
observed an increase in bins classified as A compartment in LateN-to-
EarlyT compared to unaltered LateN+T regions and an increase of B
compartment bins in EarlyN-to-LateT compared to unaltered EarlyN+T
regions in LUAD cells, supporting an association between ART and
ACC in LUAD (Fig. 4F–G).

The interplay between ART and mutational processes
The non-uniform distribution of mutations across the genome is
influenced by different activities of DNA damage and repair
mechanisms5,31. Differences in DNA damage can be caused by various
mutational processes inducing specific mutation patterns, termed
mutational signatures32. The exposure of mutational signatures across
the genome in relation to different epigenetic features including RT,
has revealed differences in the number of mutations induced by cer-
tain mutational processes in early versus late replicated genomic
regions33,34.

To explore whether the distribution of mutations induced by
different biological processes across the genome was impacted by
changes to the RT programme, we performed a de novo mutational
signature extraction analysis using thewhole-genomesequencing data
from the 952 BRCA and LUAD tumours with a hierarchical Dirichlet
process (HDP) model in relation to the different RT regions35,36

(“Methods” section). We identified 13 known mutational signatures in
BRCA and 12 in LUAD tumours (Supplementary Fig. 9). The activity of
mutational processes was similar between unaltered EarlyN+T and
LateN-to-EarlyT replicated regions and also between unaltered LateN+T
and EarlyN-to-LateT replicated regions in BRCA and LUAD (Fig. 5A, B,
Supplementary Fig. 10A, B). This suggests that the majority of muta-
tions which were accumulated as a result of these mutational pro-
cesses likely occurred after ART.

In LUAD, two smoking-associated signatures (SBS4 and SBS92)
were detected. While SBS4 was enriched in LateN+T and EarlyN-to-LateT
regions, SBS92 was enriched in EarlyN+T and LateN-to-EarlyT regions
(Fig. 5B). This finding suggests that these two smoking-associated
signaturesmay reflect twodifferent biological processes related to the
mutagenic insults of smoking. Given that the burden of SBS4 muta-
tions in LUAD has previously been found to be highly correlated with
smoking history, as measured by pack years37, the observation that
smoking-induced mutations were also enriched in EarlyN-to-LateT
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replicated regions suggests that the patients were still smoking fol-
lowing the change in RT. This is consistentwith the notion that ART is a
relatively early event during LUAD evolution. In BRCA, SBS127, which
has recently been reported to be present in the majority of BRCA
tumours but whose aetiology is still unknown38, was identified to be
enriched in EarlyN+T and EarlyN-to-LateT replicated regions. This

suggests that the corresponding mutagenic process was potentially
active before ART and thus may indicate one of the earliest mutagenic
processes during BRCA evolution (Fig. 5A).

Taken together, these results support the hypothesis that ART
represents an early evolutionary event during BRCA and LUAD devel-
opment. Furthermore, the link between ART and mutational
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signatures suggests that a shift in RT correlates with the likelihood of
mutation acquisition in different genomic regions.

ART and the activity of DNA mismatch repair
Mutations induced by the APOBEC3 family of cytidine deaminases
have been detected in tumours deriving from many different cancer
types34,39–41. We observed that the APOBEC3-related mutational sig-
nature SBS13 was enriched not only in unaltered EarlyN+T replicated

regions but also in altered LateN-to-EarlyT replicated regions in BRCA
and LUAD (Fig. 5A, B). A recent study found that APOBEC3-mediated
mutations in early replicated regions often occur in small mutation
clusters (2–4 clustered mutations) termed omikli events, which are
likely promoted by the enriched DNA mismatch repair (MMR) activity
in early replicated regions42.

To elucidate whether changes to the RT programme during
malignant transformation alsohave thepotential to change the activity
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Fig. 5 | The correlation of ART with the activity of DNA damage and repair
mechanisms. A,B Scatter plot comparing themedian difference in the exposureof
mutational signatures in unaltered LateN+T and EarlyN+T replicated regions (x-axis)
against the median difference of mutational signature exposures in altered LateN-
to-EarlyT and EarlyN-to-LateT replicated regions (y-axis) in breast carcinoma (BRCA)
(A) and lung adenocarcinoma (LUAD) (B) tumours. Signatures located in the top
right quadrant were found to be enriched in LateN+T and EarlyN-to-LateT replicated
regions. Signatures located in the bottom left quadrant were found to be enriched
in EarlyN+T and LateN-to-EarlyT replicated regions. The size of the points demon-
strates the fraction of tumours in which the different mutational signatures have
been found active. C The number of APOBEC3-mediated omikli mutations (top bar

plots) and the unclustered APOBEC3 mutations (bottom bar plots) per Mb in dif-
ferent unaltered replication timing (RT) and altered replication timing (ART)
regions in BRCA and LUAD tumours.D The number of APOBEC3mutations perMb
in an omikli (top) and unclustered (bottom) context in cancer-associated genes
localised at different unaltered RT and ART regions in BRCA tumours. Middle plot:
the odds ratio is shown as dots and the 95% confidence intervals as vertical lines
obtained by Fisher’s tests to investigate whether therewas a significant enrichment
of APOBEC3-mediated omikli mutations in cancer genes relative to unclustered
APOBEC3 mutations in different unaltered RT and ART regions. Cancer-associated
genes with LateN-to-EarlyT replication timing in BRCA are highlighted.
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of MMR, we applied the hyperClust method42 to identify omikli events
and differentiated them from unclusteredmutations within or outside
an APOBEC3 context (“Methods” section). Consistent with previous
work, we found a significant enrichment of APOBEC3-mediated omikli
events in EarlyN+T regions in comparison to LateN+T regions (Fig. 5C).
Moreover, by leveraging our ART data, we uncovered an enrichment
of APOBEC3-mediated omikli events in LateN-to-EarlyT compared to
LateN+T replicated regions, which suggests that the activity of MMR
was deregulated after the RT shift occurred in these regions (Fig. 5C,
Supplementary Fig. 10C, D).

Given that MMR is directed towards genes in early replicated
regions that are crucial for essential functions of the cell, mutagenic
processes induced byMMR activities have been associated with a high
likelihood of inducing driver mutations during tumour evolution42,43.
We identified a significant enrichment of APOBEC3-mediated omikli
mutations in cancer-associated genes in unaltered EarlyN+T (Fisher’s
test: odds ratio = 3.38, p-value = 0.004) as well as in LateN-to-EarlyT
(Fisher’s test: odds ratio = 4.49, p-value = 0.041) replicated regions in
BRCA (Fig. 5D). A total of 18 cancer genes including ERBB2/HER2, ATR,
ESR1 and MAP3K1 were identified to be LateN-to-EarlyT replicated in
BRCA and affected by an APOBEC3-mediated omikli event in at least
one tumour in thebreast cancer cohort. These results suggest thatART
has the potential to increase the likelihood of acquiring specific driver
mutations, which might lead to a fitness advantage of emerging sub-
clones. This analysis could not be applied to the LUAD cohort as the
numbers of APOBEC3-mediated omikli mutations in cancer genes
within ART regions were too low.

Taken together, changes in the RT programme during malignant
transformation were found to correlate with the activity of mutagenic
processes and MMR.

LateN-to-EarlyT replicated regions are associated with increased
transcription
Genomic alterations reflect footprints of mutational processes that
have been active during tumour development. To further investigate
whether ART correlates with the phenotype of cancer cells at the
time of tumour resection, we investigated the association between
ART and gene transcriptional levels in tumours. We first calculated a
differential gene expression score (log2-transformed fold change
(log2FC)) for each expressed gene in tumour samples compared to
the paired normal tissues from TCGA using their bulk RNA sequen-
cing (RNA-seq) data (“Methods” section). Comparing the differential
expression score of genes with ART versus those with unaltered RT in
BRCA and LUAD revealed that LateN-to-EarlyT replicated genes were
frequently overexpressed compared to matched normal samples,
whereas the opposite was true for EarlyN-to-LateT genes (Pie plots in
Fig. 6A), supporting previous findings in prostate cancer and
leukaemia4,16.

To explore the relationship between transcription and RT, we
compared genes in regions of ART to their unaltered counterparts,
using a bootstrapping approach to control for gene number (“Meth-
ods” section). We observed that LateN-to-EarlyT replicated genes in
cancer cells harboured higher expression levels compared to other
unaltered LateN+T genes both in BRCA and LUAD (Dot plots in Fig. 6A).
Thus, a change in RT during malignant transformation correlates with
the expression levels of affected genes. Conversely, the expression of
EarlyN-to-LateT genes was lower than unaltered EarlyN+T genes (Dot
plots in Fig. 6A). When we applied a similar bootstrapping test to the
copy number data in TCGA tumours, we observed no clear association
between ART and copy number gains or losses, suggesting that the
changes in expression of genes with ART were independent of copy
number alterations (Fig. 6B; “Methods” section). Furthermore we dis-
covered cancer genes to be affected by ART in BRCA and LUAD
(Fig. 6C), supporting our previous findings that ART plays an impor-
tant role during malignant transformation.

Discussion
Priorwork has documented that theRTprogrammecorrelateswith the
burden of genomic5,6,12,28,29,33, transcriptomic44,45 and epigenetic16

alterations in cancer. Although the contribution of RT to the acquisi-
tion of mutational signatures has been studied in several tumour
types46, the extent to which the RT programme changes during cancer
development and the relationship of thiswithmutation acquisition has
not been comprehensively explored. Here, we investigated RT in
multiple BRCA and LUAD cancer cells and compared these to non-
malignant cells derived from the likely tissue-of-origin, to elucidate the
extent and importance of altered replication timing (ART) in tumour
evolution.

We integrated the whole-genome and transcriptome sequencing
data of breast and lung tumours and revealed that alterations in the RT
programme in cancer correlate significantly with both the acquisition
of mutations and gene expression across the cancer genome. Our
analyses of mutation accumulation in ART and unaltered RT regions
suggest that changes to the RT programme occur relatively early
during the development of both BRCA and LUAD, reshaping their
genomic landscape andplaying a role in their evolutionary trajectories.
Further analyses, incorporating data from pre-invasive disease, may
enable an explorationofwhether this changeoccurs prior tomalignant
transformation, and whether it could be exploited for early detection
of cancer.

Our data suggest that cancer cells maintain the same ratio of early
to late replicated regions across the genome as observed in non-
malignant cells, with 1/3 of the genomic regions being early replicated
and 2/3 being late replicated (Supplementary Fig. 3). Themaintenance
of this ratio might be related to the limited resources for DNA repli-
cation in early versus late S phase, the limited number of dormant
replication origins to complete DNA replication under replication
stress or the limited space in the interior of the nucleus to harbour
highly transcribed and early replicated euchromatin with an open
structure47,48. This suggests that LateN-to-EarlyT changes may occur
first as a response to DNA replication stress, which is then followed by
EarlyN-to-LateT, consistent with our data timing the ART in cancer.

The RT in human cells has been fine-tuned as a result of natural
selection. It is therefore tempting to speculate that shifts in RT during
cancer development represent the footprint of selectionmoulding the
cancer genome. For instance, alterations in RT may protect certain
genomic regions from DNA damage and replication stress which is
pervasive in lung and breast cancer evolution.

Despite the small proportion of the genome presenting ART from
normal to cancer cells, we observed that ART regions play an impor-
tant role in cancer evolution by shaping themutation landscape across
the genome and enriching omikli events in LateN-to-EarlyT regions
which are prone to cause cancer driver events. A large proportion of
EarlyN-to-LateT regions were classified as B compartment in both
normal and cancer cells while many LateN-to-EarlyT regions were
classified as A compartment (Fig. 4A). Although this observationmight
suggest that some ART regions have already been poised to change
fromnormal to cancer, we still observe significant differences between
altered replication timing (ART) and altered chromatin compartment
(ACC) regions across the genome, especially when assessing differ-
ences in their correlations with mutation density.

Moreover, we also discovered a correlation between increased
gene expression and LateN-to-EarlyT replication timing, but the causal
link between these two has been controversial in the literature3,17–19.
The interplay among changes in replication timing, chromatin archi-
tecture and gene expression is complicated and may reflect multiple
biological processes, such as transcription-replication conflicts, lim-
ited resources of replication origins, and distinct stimuli of replication
stress amongothers. Further studies arewarranted to unveil the causal
links between these three factors leading to genomic instability,
malignant transformation and cancer evolution.
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This study is not without limitations. Our work highlighted that
copy number gains and losses can confound the interpretation of
mutation acquisition across the genome, andwhile our study attempts
to correct for this, with more sophisticated sequencing technologies
enablingphasingor variantswith individual alleles, itwill bepossible to
more accurately resolve the timing ofmutations and link these to copy
number alterations. Furthermore, we focused on recurrent ART
regions identified in multiple cancer cell lines, enabling us to trans-
late our analysis from cancer cells to patient tumours. One caveat of
our approach is that we used a restricted sample size to define ART
and only included one optimal reference cell line each for LUAD and
BRCA tumours, thus neglecting any potential heterogeneity among
different normal cells. Furthermore, there may be some additional
impact of long-term cell culturing and immortalisation which could
also influence our analyses49. Moreover, while our data point towards

consistent patterns of ART across tumours, as evidenced by a con-
sistent association between ART and mutation acquisition across
LUAD tumours, a significant overlap of ART between cell lines, and a
similar pattern observed when restricting to PDCs, there will likely be
both intra- and inter-tumour heterogeneity that is neglected by our
approach. Conceivably, an exploration of the intra-tumour hetero-
geneity of the RT programme and its relationship with genomic
alterations in individual patient tumours may be possible using
single-cell sequencing data, which is an area of current research50.
Nevertheless, our work provides a comprehensive replication timing
dataset of lung and breast cancer cells together with their matched
optimal tissue-of-origin and offers an insight into the interplay
between ART and cancer development.

In conclusion, our integrated data analysis supports the crucial
role of ART in shaping the genomic and transcriptomic landscape in
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Fig. 6 | The genomic and transcriptomic features of ART regions in BRCA
and LUAD. AComparison of themean log2 fold change (log2FC) of LateN-to-EarlyT
replicated genes (787 genes in BRCA and 634 genes in LUAD) versus 100,000 times
randomly selected (bootstrapped) late replicated genes in normal cells, and the
equivalent comparison between EarlyN-to-LateT replicated genes (835 genes in
BRCAand377genes inLUAD) versus bootstrappedearly replicatedgenes in normal
cells. Proportions of differentially expressed genes are displayed as pie charts with
the numbers and proportions of genes included in each group annotated accord-
ingly. The observed mean log2FC are presented as diamonds in the plot in the
middle while the bootstrapped results are shown as dots with error bars. The error
bars represent the 95th percentile of the bootstrapped mean log2FC values.
B Comparison of the mean copy number values relative to tumour ploidy of LateN-
to-EarlyT replicated genes (806 genes in BRCA and 656 genes in LUAD) in cancer
cells versus bootstrapped late replicated genes innormal cells, and equivalently the

comparison between EarlyN-to-LateT replicated genes (852 genes in BRCA and 387
genes in LUAD) incancer cells versus bootstrappedearly replicatedgenes innormal
cells. The observed values are presented as diamonds while the bootstrapped
results are shown as dots with error bars. The error bars represent the 95th per-
centile of the bootstrappedmean copy number values relative to tumour ploidy. In
A,B, the annotated p-values represent the empiricalp-valueswhichwere calculated
by counting how many bootstrapped mean log2FC values of LateN+T genes were
greater than the observedmean values of LateN-to-EarlyT genes divided by the total
number of iterations, or equivalently, howmany bootstrappedmean log2FC values
of EarlyN+T genes were lower than the observed mean values of EarlyN-to-LateT
genes divided by the total number of iterations. C Cancer-associated genes iden-
tified in altered replication timing (ART) regions in breast carcinoma (BRCA) and
lung adenocarcinoma (LUAD).
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breast and lung cancer as an early truncal event during tumour
evolution.

Methods
This study complies with all relevant ethical regulations required by
the University College London Cancer Institute and the Francis Crick
Institute.

Whole-genome sequencing cohorts
The Genomics England Limited (GEL) lung cohort of the 100,000
Genomes Project. We used the whole-genome sequencing data of
lung adenocarcinoma (LUAD) tumours from the Genomics England
Limited version 8 cohort of the 100,000 Genomes Project21. The GEL
version 8 dataset can be accessed via https://www.genomicsengland.
co.uk/about-gecip/for-gecip-members/data-and-data-access.

After multiple steps of quality control (QC), 470 LUAD tumours
were included in this study (from 259 female patients and 211 male
patients). We excluded formalin-fixed paraffin-embedded samples
(FFPE) and low-purity samples that failed copy number or structural
variant calling. Some samples were duplicated with discordant infor-
mation in the cancer summary table provided by GEL and were
excluded from the final cohort.

Correction for reference bias. The Illumina Isaac pipeline51 has been
used in the 100,000 Genomes Project to align and process the whole-
genome sequencing data to the hg38 assembly. However, recent stu-
dies have demonstrated that the soft clipping of semi-aligned reads
performed by the Isaac aligner leads to a reference bias which affects
the calling of somatic copy number alterations (SCNAs) as well as
purity and cancer cell fraction (CCF) estimations in cancer52. To
address this caveat, a tool called fixVAF52 was developed by Cornish et
al. (https://github.com/danchubb/FixVAF) to remove sources of
reference bias ensuring a robust CCF estimation. We applied fixVAF to
the BAM files and VCF files of the GEL lung cohort which were pro-
duced by the Genomics England core pipeline.

Variant calling. As part of the Genomics England core pipeline,
Strelka53 hasbeen applied for somatic variant calling. The resultingVCF
files were corrected for biases in the variant allele frequency (VAF) by
applying fixVAF52 which includes multiple filtering and QC steps.
Additional filters for single nucleotide variants (SNVs) and INDELs,
informed by the TRACERx pipeline54, were applied. This includes that
any variant located within a blacklist region of the genome, as used in
the TRACERx pipeline and informed by the “blacklisted” regions
reported on ENCODE55, were removed.

Additionalfilters that anSNVhad topass to be included in thefinal
mutation table:

• VAF ≥5%
• alternative reads ≥5
• Germline VAF <1%
• Germline number of alternative reads <5
• Total depth ≥30

Additional filters that an INDEL had to pass to be included in the
final mutation table:

• VAF ≥5%
• alternative reads ≥10
• Germline VAF <1%
• Germline number of alternative reads <5
• Total depth ≥50

Copy number calling. We have applied Battenberg56 (https://github.
com/Wedge-lab/battenberg) to the DNA sequencing data for the esti-
mation of the copy number profile, ploidy and purity of the lung
tumours. For this a nextflow pipeline57 was developed using the fixVAF

corrected tumour and normal BAM files as well as the corrected VCF
file per tumour as input. As a first step of the pipeline, the initial pro-
filing of copy number alterations was conducted using Battenberg.
Afterwards, multiple assessment steps were applied to evaluate the
estimated profile. If any of these criteria were not met, the sample was
re-processed up to 4 times using an updated purity estimate. The
quality assessment included the evaluation of the concordance of
the copy number profile with the VAF distribution of the mutations.
The sample failed if the absolute difference between the sample purity
computed by Battenberg and the VAF estimated purity was >5%. Fur-
thermore, the correct calling of whole-genome doubling (WGD) was
evaluated. If >30% of the genome presented an average total copy
number state of about 0.5 or 1.5, it was assumed that Battenberg had
incorrectly not called WGD. Also, if >20% of the genome presented a
copy number state 2:2 (tetraploid) or 3:3, and <10% of the genome
presented an odd copy number state, and no peak corresponding to a
multiplicity of 1 was observed in the VAF distribution of SNVs in 2:2
(tetraploid) regions, then it was assumed that Battenberg had incor-
rectly called WGD. The clonal architecture was characterised using
DPClust to assess the presence of a clonal mutation cluster consisting
of at least 5%of all variantswith aCCF > 0.9 and<1.1. A sample failed if a
“super-clonal” cluster could be identified by DPClust which contains at
least 5%of all variantswith aCCF > 1.1. Furthermore, a sample failed if it
presented large clonal or subclonal homozygous deletions >10Mb. If a
sample passed all the criteria mentioned above the profile of clonal
and subclonal copy number alterations as well as the purity and ploidy
estimate were returned. If a sample failed any of the criteria the purity
was re-computed using the peaks of the VAF distribution. The re-
computed purity was used to re-estimate the copy number profile and
the quality assessment steps were applied again. This process was
repeated 4 times in total. If after the fourth time, the sample still failed
any of the criteria, it was marked as failed. In total, 1531 lung cancer
tumours includingmultiple different histologies were run through the
pipelinewith 1119of themmarked aspassed and413 failed. Afterwards,
all failed and passed samples were manually reviewed. This resulted in
37/1119 originally passed samples to fail and 70/413 failed samples to
pass. In total, 1152 samples passed and 380 samples failed copy
number QC.

Applying multiple exclusion criteria as mentioned above resulted
in a total GEL lung cohort of 1027 tumours of which 470 were lung
adenocarcinomas.

The 560 breast cancer whole-genome cohort. Mutation and copy
number calls for the 560 breast cancer WGS cohort were provided by
the publication “Landscape of somatic mutations in 560 breast cancer
whole-genome sequences” by Nik-Zainal et al.22. This data was aligned
to the hg19 assembly. Only tumours for which somatic variants and
copy number profiles were provided were used in this study. In the
literature the human mammary epithelial cells (HMEC) have been
reported to be the originating tissue for lobular and ductal breast
cancer subtypes26, hence only tumours with this subtype were inclu-
ded in this analysis. This resulted in a total cohort of 482 breast cancer
tumours (from 479 female patients and 3 male patients).

Publicly available datasets
The Cancer Genome Atlas (TCGA) data. Gene expression and copy
number calls for BRCA and LUAD tumours generated by The Cancer
Genome Atlas pilot project established by the NCI and the National
Human Genome Research Institute were downloaded. The data were
retrieved through database of Genotypes and Phenotypes (dbGaP)
authorisation (accession no. phs000854.v3.p8). Information about
TCGA and the investigators and institutions who constitute the TCGA
research network can be found at https://cancergenome.nih.gov/. Raw
read counts were downloaded for 830 BRCA (ductal and lobular)
tumours and 517 LUAD tumours to identify expressed genes in each
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cancer type. For 149 of these tumours (91 BRCA and 58 LUAD), RNA-
seq data for their adjacent normal tissues were available. These 149
paired normal and tumour samples were used for the differential
expression analysis. ASCAT58 initiated copy number profiles were
downloaded for 766BRCA (ductal and lobular) and 708LUAD tumours
to evaluate whether differences in gene expression were driven by
copy number alterations in the tumour.

Repli-seqdata onENCODE. The replication-timing sequencing (Repli-
seq) data in form of fastq-files for 16 cell lines were downloaded from
ENCODE23,24 (Caki2, NCI-H460, A549, T47D, SK-N-MC, BG02, HeLa-S3,
HUVEC, SK-N-SH,HepG2, IMR-90, BJ, G401, LNCAP, keratinocyte, MCF-
7). The accession numbers of the files are reported in Supplementary
Table 2. This data was provided by two different research groups,
David Gilbert (FSU) and John Stamatoyannopoulos (UW). Both groups
applied different Repli-seq assays resulting in different number of time
points analysed during S phase. While David Gilbert’s group used a
similar assay to ours, their Repli-seq data included fastq-files for early
and late S phase reads (Caki2, NCI-H460, A549, T47D, SK-N-MC, G401,
LNCAP). TheRepli-seqdata of theother cell lines covered6 timepoints
instead of 2 including G1, S1, S2, S3, S4 and G2. In order to make the
data comparable the fastq-files containing G1, S1 and S2 reads were
merged together after alignment and used as early replicated reads for
further analyses whereas the resulting bam files of the fastq-files con-
taining S3, S4 and G2 reads were merged and used as late
replicated reads.

Hi-C data on ENCODE. The ENCODE portal23,24 was used to identify
BRCA and LUAD samples that provided preprocessed Hi-C data that
overlapped with the samples used in our RT analysis (HMEC, MCF-7,
T47D, A549). This Hi-C data was created with two different experi-
mental assays; intact Hi-C and in situ Hi-C. While in situ Hi-C data was
available for A549 and T47D, intact Hi-C data was provided for MCF-7
and both typeswere available for HMEC. The accession numbers of the
samples and files are shown in Supplementary Table 3.

To identify the nuclear compartments, we used POSSUM59 spe-
cifying “-n SCALE” normalisation and 50kb output resolution tomatch
the interval size used for the RT analysis. In downstream analyses, a
negative value is interpreted as a B compartment and a positive value
as an A compartment. The BEDTools60 version 2.3.0 intersect function
was used to attribute nuclear compartments to RT intervals.

Genomic and transcriptomic data of cell lines. The gene expression
data and mutation profiles for all cancer cell lines were downloaded
from DepMap (https://depmap.org/portal/). Copy number data for all
cancer cell lines, except for SK-BR3, were downloaded from the Cata-
logue of Somatic Mutations in Cancer (COSMIC). The copy number
profiles were identified by applying PICNIC61 to the Affymetrix SNP6.0
array data for each cell line.

Cancer gene lists extracted from publicly available data. Cancer
driver genes for lung and breast cancer were extracted from publicly
available datasets. Mutational breast cancer driver genes reported by
Bailey et al.62, Martincorena et al.1, Nik-Zainal et al.22, and published on
the intOGen website (https://www.intogen.org/search)63 were used in
this analysis. Lung cancer driver genes identified in the TRACERx 100
cohort54, the TRACERx 421 cohort64, Bailey et al.62, Martincorena et al.1

and Berger et al.65 were summarised and used in this analysis. Onco-
genes and tumour suppressor genes were downloaded from COSMIC
census gene lists (https://cancer.sanger.ac.uk/census)66.

Cell culture
All cell lines from lung and breast tissues applied in this study (Sup-
plementary Table 1) were incubated at 37 °C with 5%CO2, according to
the lab standardprotocols. A total of 11 lung and4breast cell lineswere

included, which were related to breast cancer (BRCA), lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma (LUSC).

The pulmonary alveolar epithelial type II cells (T2P) and the other
six lung cancer cell lines (A549, H1650, H1792, H2009, H520 andH2170)
which were provided by Cell Services at the Francis Crick Institute, were
maintained in RPMI medium (Thermo Fisher; 21875034) supplemented
with 10% heat-inactivated foetal bovine serum (FBS) (v/v; 10082-147), 1×
penicillin–streptomycin (100U/ml penicillin, 100μg/ml streptomycin;
Gibco; 15070) and 1x L-Glutamine (v/v). The lung cell line SW900 was
purchased from ATCC67 and cultured in ATCC-formulated Leibovitz’s
L-15 Medium (ATCC; 30-2008) supplemented with 10% FBS. The TT1
(pulmonary alveolar epithelial type I cells) cell line68 was obtained from
DrMichele Chiappi and Professor Terry Tetley (National Heart and Lung
Institute, Imperial College London, UK). Immortalised TT1 cells were
derived from human primary pulmonary alveolar epithelial type II cells
but have a phenotype resembling alveolar epithelial type I cells68. TT1
was cultured in DCCM-1 (Geneflow Ltd, K1-0502) supplemented with
10% penicillin–streptomycin–glutamine (Thermo Fisher, 10378016) and
10% NCS (new-born calf serum, heat inactivated, New Zealand origin;
26010074).

Breast cell lines, including human mammary epithelial cells
(HMEC, known as hTERT-HME 1 cell line), MCF10A, SK-BR3 and
MDA453, were provided by Cell Services at the Francis Crick Institute.
Both HMEC and MCF10A are considered normal, non-malignant,
immortalised breast cell lines. However, MCF10A cells were actually
derived from fibrocystic breast disease and display characteristics of
luminal ductal cells, rather than mammary epithelial cells. Given that
breast cancer cell lines involved in our study are mammary gland
epithelial carcinoma, HMEC cell line, rather than MCF10A, is con-
sidered to represent the originating tissue-of-origin of BRCA.

HMEC was cultured in HMEC-Mammary Epithelial MEGM (Lonza,
CC-2551) supplemented with MEGM BulletKit (Lonza, CC-3150) and
ReagentPack Subculture Reagents (Lonza, CC-5034). MCF10A cells
were cultured in DMEM/F12 media (Invitrogen) supplemented with 5%
horse serum (Invitrogen #16050-122), 20 ng/ml human epidermal
growth factor (hEGF) (Peprotech, AF-100-15), 0.5 µg/mlhydrocortisone
(Sigma #H-0888), 100 ng/ml cholera toxin (Sigma #C-8052), 10 µg/ml
insulin (Sigma#I-1882), and 1× antibiotics (Invitrogen#15070-063). SK-
BR3 was cultured in ATCC-formulated McCoy’s 5a Medium Modified
(30-2007) supplemented with 10% of FBS. MDA453 cells were cultured
in ATCC-formulated Leibovitz’s L-15Medium (30-2008) supplemented
with 10% of FBS.

For Cell Authentication, we use STR (Short Tandem Repeat) Pro-
filing for all our human cell lines using the Promega PowerPlex16HS
system. This profile is compared back to any available commercial cell
banks (such as ATCC).We confirm the species is correct using a primer
system based on the Cytochrome C Oxidase Subunit 1 gene from
mitochondria – we call this test Species ID. Cell Authentication is
carried out in housewithin the Francis Crick Institute. ForMycoplasma
screening we primarily use two different tests – Agar Culture (which
involves culturing any mycoplasma that may be present in the cell
culture on specialised agar) and Fluorescent staining using the
Hoescht Stain. A third detection method, the PCR mycoplasma test
(ATCC), is used on occasion when a rapid result is required. Myco-
plasma testing is carried out in house routinely within the FrancisCrick
Institute and has been negative for cell lines used in this study.

Patient-derived cell cultures
Primary tumour cell cultures were isolated from two patients
(CRUK0977, female andCRUK0557,male) diagnosedwith LUADwithin
the lung TRACERx study with informed consent, sponsored by Uni-
versity College London (UCL/12/0279) and has been approved by an
independent ResearchEthicsCommittee entitled “theHealth Research
Authority NRES Committee London - Camden & Islington” (13/LO/
1546). The methods and details of the ethical review have been
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published here (https://doi.org/10.1002/ijc.31383)69. The isolation and
expansion of the CRUK0557 cell line (CRUK0557-CL) was as previously
described69 except that cells were cultured in the absence of mouse
3T3-J2 fibroblast feeder cells prior to DNA extraction. The CRUK0977
cell line (CRUK0977-CL) was isolated by the culture of primary tumour
tissue in RPMI-1640 medium containing 10% FBS, 1mM sodium pyr-
uvate and 1× penicillin/streptomycin.

Standard whole-genome sequencing (WGS) and Replication tim-
ing whole-genome sequencing (Repli-seq) were applied to CRUK0557-
CL and CRUK0977-CL in this study. For standard WGS, genomic DNA
(gDNA) was extracted from cultured cells after 13 (CRUK0557-CL) or 8
(CRUK0977-CL) passages using theQiagenAllPrep kit according to the
manufacturer’s instructions. The quantity and quality of the gDNA
were assessed using Invitrogen’s Qubit 1x double-stranded DNA
(dsDNA) high sensitivity (HS) assay kit on the Qubit Flex Fluorometer
(Thermo Fisher Scientific, Inc.) and Agilent Technologies’ gDNA
ScreenTape on the TapeStation 4200 (Agilent Technologies, Inc.),
respectively. 400 ng of each gDNA was transferred to a microTUBE
plate and underwent mechanical shearing using the LE220-plus
focused-ultrasonicator (Covaris) followed by a clean-up using SPRI
select beads (Beckman Coulter, Inc.). Libraries were prepared with the
NEBNext® Ultra II DNA library prep kit for Illumina (New England Bio-
labs (NEB) #E7645S) using an input of 250ng of sheared DNA. Unique
dual index primers from NEBNext® Multiplex Oligos for Illumina were
used at a concentration of 15 μM (NEB #E6440S). Four cycles of PCR
amplification were performed. SPRI select beads were used for clean-
ups and size selection (Beckman Coulter, Inc.). 150bp paired-end
sequencing was performed at the Francis Crick Institute using the
Illumina NovaSeq 6000 to achieve 30x coverage (Illumina, Inc.).

The whole-genome sequencing data was processed using the nf-
core Sarek pipeline70. Briefly, FASTQ files were trimmed using Trim-
Galore (v0.6.4) and were aligned to hg38 using bwa-mem (v07.17).
Duplicates were marked and BQSR was done using GATK4 (v4.1.7).
Variant calling was performed using Strelka (v2.9.10) with default
parameters. In addition, variants with less than 5 alternative reads and
a total depth of less than 30 in the tumour as well as 1 or more alter-
native reads in the germline were filtered out. Purity, ploidy and copy
number calling were performed using AscatNGS (v4.2).

Repli-seq protocol
BrdU-labelling and sorting cells. The protocol used in this study was
modified from previously published studies (Supplementary Fig. 1)71,72.
Asynchronized cells were grown in flasks for at least 48 h to achieve at
least 107 cells with confluency of less than 80% and were labelled with
50μM bromodeoxyuridine 5-bromo-2′-deoxyuridine (BrdU; 100 µl
BrdU at 1.5mg/ml were added per 10ml of culture media to achieve a
final concentration at 50 µM) for 2 h at 37 °C in a CO2 incubator in the
dark. Cells were then harvested and washed using ice-cold PBS twice
after spinning down (340 × g for 5min at 4 °C in the dark). Cell pellets
were fixed in a mixture of 7.5ml ice-cold 100% ethanol and 2.5ml PBS
containing 2% (v/v) FBS. The fixed cell pellets were incubated on ice for
at least 30min or stored at −20 °C.

After washing twice using ice-cold washing buffer (PBS with 1%
FBS), DNA contents in the fixed cell pellets were washed twice using
ice-coldwashing buffer and stained using 200μl propidium iodide (PI)
buffer per million cells which contained 50μl 50μg/ml ribonuclease A
(Sigma; P4170) and 150μl 100μg/ml PI (Sigma; R5125). Prior to sorting
cells using fluorescence-activated cell sorting (FACS), to get a single-
cell suspension, the cell pellets weredisaggregated by passing through
a 25G needle using a 1ml syringe and filtered through a 40μm nylon
mesh to remove any clumps or aggregates.

During FACS, BrdU-labelled and PI-stained cells for each cell line
were sorted into 3 fractions based on the DNA contents (G1, Early S,
Late S) using a FACS Aria II cell sorter. In brief, the gating strategy
during FACS was as follows. Cells were initially gated using forward

scatter (FSC) versus side scatter (SSC) to exclude debris and aggre-
gates. Subsequently, sequential gating strategies were employed to
identify single cells, including gating based on FSC-A versus FSC-H,
SSC-A versus SSC-W, and propidium iodide (PI)-A versus PI-W to
exclude apoptotic cells and doublets further. The G0/G1 and G2/M
phases were distinguished by the peak of PI staining intensity, incor-
porating DNA content with cell size (FSC-A) as a reference. To ensure
accuracy, early S and late S phases were equally gated between the G0/
G1 and G2/M phases, while the edges of each population were avoided
to minimise potential artefacts.

After cell sorting, cell pellets were then digested for DNA extrac-
tion and purification using a phenol-chloroformextraction protocol as
previously reported73.
1. Add 1 volume of phenol: chloroform: isoamyl alcohol (25:24:1) to

each sample, and vortex or shake by hand thoroughly for
approximately 20 s;

2. Centrifuge at room temperature for 5min at 16,000× g;
3. Carefully remove the upper aqueous phase, and transfer the layer

to a fresh tube (Be sure not to carry over any phenol during
pipetting);

4. Add 4 µl glycogen and then 1 volume of propanol, mix well. Store
at −80 °C around dry ice for >1 h;

5. Centrifuge at 16,000 × g for 30min at 4 °C. Discard the super-
natant, add 750 µl of cold 70% ethanol to the pellet;

6. Centrifuge at 16,000× g for 5min at 4 °C. Remove all ethanol
(using 10 µl tips) as much as possible, let the pellet air dry;

7. Resuspend the pellet in 50 µl of 1× low TE (10mM of 1M Tris-HCl
and 0.01mM of 0.5M EDTA) at 37 °C for 1 h with 350–400 rpm
shaking.

Then the purified DNA samples were stored at 4 °C in the dark.

Library construction. Purified DNA was then fragmented using a
Covaris ultrasonicator to achieve an average length of 200 bp. The
NEBNext Ultra DNA Library Prep Kit for Illumina (NEB; E7370) and the
NEBNext Multiplex Oligos for the Illumina kit were applied to con-
struct the library by ligating adaptors before BrdU immunoprecipita-
tion. Two commercially available kits were used at this step, by
following the manufacturer’s instructions: the NEBNext Ultra DNA
Library Prep Kit which was used for end repair, and the NEBNext
Multiplex Oligos for Illumina kit which was used for adaptor ligation
and some enzyme treatment. Firstly, the end repair enzyme and the
reaction buffer were added to the fragmented DNA. After a thorough
mixing and quick spinning down, the sample was put in the thermo-
cycler starting from 20 °C for 30min, followed by 65 °C for another
30min. After the end repair, the sample could be held at 4 °C before
thenext step. Second, according to themanufacturer’s instructions for
theNEBNextMultiplexOligos for Illumina kit, theNEBNext Adaptor for
Illumina, the Ligation Enhancer and other buffer included in the kit
were added to the repaired samples from the last step, followed by the
incubation at 20 °C for 15min. Lastly, the uracil-specific excision
reagent (USER) enzyme digestion from the NEBNext Multiplex Oligos
for Illumina kit was performed by adding the USER enzyme to the
ligated sample for further incubation at 37 °C for 15min. The digested
DNA sample was then purified using the QIAquick PCR Purification Kit
and the DNA was eluted in 50μl molecular biology grade water.

BrdU immunoprecipitation. Eluted DNA samples after the library
construction were immunoprecipitated with 40ul mouse anti-BrdU
antibody at 12.5μg/ml (Monoclonal, Clone B44. BD Biosciences;
347580) for 20min at room temperature with constant rocking and
then followed by 20μg goat anti-mouse secondary antibody at a
concentration of 1mg/ml (IgG-Alexa Fluor 488. Abcam; ab150129). The
procedures in detail for BrdU immunoprecipitation were slightly
modified from literature72 as follows.
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First, 450μl of TE buffer (10mM Tris-HCl and 1mM EDTA in
ddH2O, stored at room temperature) was added to each DNA sample
whichwas eluted in 50μl of H2O. Next, the DNA sample was denatured
at 95 °C for 5min and then cooled down on ice for at least 2min.
Another 60μl 10× IP buffer (to prepare 50ml 10× IP buffer stored at
room temperature: 28.5ml of ddH2O, 5ml of 1M sodium phosphate,
14ml of 5M NaCl, 2.5ml of 10% (wt/vol) Triton X-100) and 40μl of
12.5 μg/ml mouse anti-BrdU antibody (to achieve a final concentration
of 0.83μg/ml) were added to the denatured DNA in each tube, fol-
lowedby the incubation for 20min at roomtemperaturewith constant
rocking. Next, 20μg of the secondary antibody, the goat anti-mouse
IgG (IgG-Alexa Fluor488. Abcam; ab150129) at a concentrationof 1mg/
ml at stock, was added to each tube to achieve a final concentration of
0.03μg/μl. The incubation was extended to overnight at 4 °C to
improve the efficiency of immunoprecipitation.

Next, the supernatant in the sample tube was removed after
centrifuging at 16,000× g for 5min at 4 °C. Then, 10ul tips were used
to remove as much remnant supernatant as possible after spinning it
down quickly. The pellet was washed by 750μl ice-cold 1× IP buffer
twice, and then re-suspended in 200μl of digestion buffer (to prepare
50ml digestion buffer stored at room temperature: 50mM Tris-HCl,
10mM EDTA and 0.5% (wt/vol) SDS in ddH2O) and freshly added
0.25mg/ml proteinase K for further incubation overnight at 37 °Cwith
300 rpm shaking. At the end of incubation, another 1.25μl of 20mg/ml
proteinase Kwas freshly added to each tubewhichwas then incubated
for another 1 h at 56 °C. DNAwas then purified using the QIAquick PCR
Purification Kit following the manufacturers’ instructions and then
eluted in 20μl low TE buffer (10mM Tris-HCI, 0.1mM EDTA in mole-
cular biology grade water).

Validation of replication timing. Before moving to the next step, we
performed qPCR (quantitative polymerase chain reaction) of DNA
samples from G1, early and late S phases to validate whether this
protocol worked to call replication timing properly. Primers of three
known early (HBA1, MMP15, BMP1) and four late (PTGS2, SLITRK6,
ZPF42 andDPPA2) replicated genes were used as previously reported71.
Meanwhile, mitochondrial DNA sequences were used as an inter-
nal control, as mitochondrial DNA is supposed to be equally repre-
sented in early and late S phase fractions.

The primers for the seven genes used for primary validation of
replication timing:
HBA1:

Forward, GACCCTCTTCTCTGCACAGCTC
Reverse, GCTACCGAGGCTCCAGCTTAAC

MMP15:
Forward, CAGGCCTCTGGTCTCTGTCATT
Reverse, AGAGCTGAGAAACCACCACCAG

BMP1:
Forward, GATGAAGCCTCGACCCCTAGAT
Reverse, ACCCGTCAGAGACGAACTTGAG

PTGS2:
Forward, GTTCTAGGCTGGTGTCCCATTG
Reverse, CTTTCTGTACTGCGGGTGGAAC

NETO1:
Forward, GGAGGTGGAATGCTAGGGACTT
Reverse, GCTGAGTGTGGCCTTAAGAGGA

SLITRK6:
Forward, GGAGAACATGCCTCCACAGTCT
Reverse, GTCCTGGAAGTTGAGTGGATGG

ZFP42:
Forward, CTTGTGGGGACACCCAGATAAG
Reverse, AACCACCTCCAGGCAGTAGTGA

DPPA2:
Forward, AGGTGGACAGCGAAGACAGAAC
Reverse, GGCCATCAGCAGTGTCCTAAAC

The primers for mitochondrial DNA are as follows:

Forward, CTAAATAGCCCACACGTTCCC
Reverse, AGAGCTCCCGTGAGTGGTTA

To quantify the replication timing using qPCR, we calculated the
relative abundance of G1, early and late S samples per gene per cell line
using this equation:

RelativeAbundace si,genej
� �

= 2
Ctgenej

Sið Þ�Ctmitochondria sið Þ
� �

P3

t = 1
2

Ctgenej
Stð Þ�Ctmitochondria stð Þ

� �

with i= 1,2,3 and j = 1,:::,n

ð1Þ

In this equation, Si represents one of the three FACS sorted
samples (SiϵfG1, earlyS,lateSg) and genej the j-th gene of n total genes.
Therefore, Ctgenej ðSiÞ describes the Ct value of the i-th FACS sorted
sample and the j-th gene. Similarly, CtmitochondriaðsiÞ describes the Ct
value of the mitochondrial DNA abundance of the i-th sample. The
RelativeAbundaceðsi,genejÞ was calculated for each cell line
separately.

Multiplex WGS. Purified BrdU-immunoprecipitated DNA samples
were applied for indexing and PCR amplification using the NEBNext
Ultra II Kit (NEB; M0544). Primers annealing to the adaptors to deter-
mine the optimal PCR cycle number were as follows:

adqPCR_Forward: ACACTCTTTCCCTACACGACGC
adqPCR_Reverse: GACTGGAGTTCAGACGTGTGC

Next, PCR reactions were purified using AMPure XP beads
(Beckman Coulter; A63880) and DNA was eluted in 10mM Tris-HCl.
After quantifying the DNA concentration of each sample using the
Qubit dsDNA HS Assay Kit (Life Technologies; Q32854), libraries were
pooled, followed by checking the size distribution of DNA fragments.
Whole genome sequencing with 100bp paired end reads was per-
formed on an Illumina HiSeq4000 with 6 or 12 samples per lane.

Repli-seq bioinformatics pipeline
The bioinformatics pipeline was based on the pipeline provided by the
4D Nucleosome Data Coordination and Integration Center74 in com-
bination with the pipeline published in Marchal et al.72.

Alignment. To clean up the raw sequencing data and to remove any
unwanted left-over adaptor sequences, TrimGalore (v0.6.5) a wrapper
tool around Cutadapt75 and FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/), was applied with default settings
to perform quality and adaptor trimming for each set of paired-end
fastq files. The resulting fastq files were provided to bwa-mem
(v0.7.17)76 for alignment to both reference genomes hg19 and hg38
in two separate runs to account for differences in the genome build
used in the downloadedWGSdatasets of lung and breast tumours. The
samtools software (v1.8)77 was used for further quality and filtering
steps. In cases where one Repli-seq run resulted in multiple sets of
fastq-files, samtools merge (flags: -n -f -b) was used to combine them
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into one. Afterwards samtools view (flags: -bhq 20) and samtools sort
(flags: -m 16G –threads 4) were applied to exclude reads with a map-
ping quality lower than 20 and to sort reads in the bam files regarding
their genomic position, respectively. Samtools stats were applied to
quality check the different alignment and filtering steps. To remove
duplicated reads, samtools rmdup was applied resulting in the final
bam files which were indexed by samtools index.

Calculation of the replication timing signal. To estimate the repli-
cation timing (RT) signal measured as the log2-transformed ratio of
early to late replicated reads, the genome was split into 1 kb and 50kb
non-overlapping windows using bedtools makewindows (v2.26)60.
Next, the RPKM metric was calculated per bin to normalise the read
counts obtained by bedtools coverage (flags: -counts -sorted) for
sequencing depth and window size for early and late replicated reads
separately. Windows with a total RPKM value across the two cell cycle
states, early S and late S, less than0.1 andwindowswith an RPKMvalue
equals 0 for early and late replicated reads were excluded from the
analysis due to low coverage regions. The RT signal was calculated as
the log2-transformed ratio of early versus late replicated RPKM values
per bin using bash commands. The following steps were performed in
the statistical environment R (v3.5.1) and restricted to chromosomes
1–22. To make the RT signal distribution of different cell lines com-
parable to each other, the RT signals were quantile normalised relative
to the RT signal of the T2P cell line using the normal-
ize.quantiles.use.target method provided by the R-package pre-
processCore (v1.44). For noise reduction purposes, loess smoothing
with a span of 300 kb was applied per chromosome using the loess
basic R function. A minority of bins presented a big difference in their
RT values before and after smoothing which was attributed to neigh-
bouring bins with NA values. NAs were introduced in regions that were
previously filtered out due to lowmapping quality or low coverage. To
prevent potential biases caused by smoothing artefacts, bins with an
absolute difference greater than 3 between their RT values before and
after smoothing were excluded for further analysis. The smoothed
values were used as the final replication timing signal with positive
values representing early replicated regions and negative values
representing late replicated regions.

Analysis of the effect of copy number alterations on the replication
timing signal. To assess the effect of copy number alterations on the
replication timing analysis, available copy number data have been
obtained from COSMIC and analysed for a subset of lung adeno-
carcinoma (A549, H1650, H1792, H2009) and breast cancer (MCF-7,
MDA453, T47D) cell lines. Specifically, the PICNIC61 algorithm has been
previously used to infer these copy number data. Copy number
alterations were classified relative to the ploidy of the cell lines into
three distinct groups: losses, neutral, and gains. To do this, the copy
number of every 50 kb genomic bin used for the replication timing
analysis was determined by using the total copy number of the seg-
ment that covered most of the bin. In very few cases (less than 200),
where no segment was overlapping, the copy number of the closest
segment was used. As such, the rounded integer value of tumour
ploidy has been used as a reference to identify copy number altera-
tions and every genomic bin was classified as gained if the assigned
copy number was greater than the ploidy and as lost if the copy
number was less than the ploidy. To adopt a conservative approach as
in previous studies78, the integer rounding of ploidy that results in the
least number of copy number events was chosen for the final results.
Lastly, the T signal of genomic regions with different copy number
classifications was compared. Since the number of genomic regions
was substantially different across different classes, we applied a
bootstrapping approach to assess if themedian of the different classes
of replication timing values was different. To do this, 10,000 gained,
lost and neutral bins were randomly sampled, and the median

replication timing signal was calculated per copy number status. This
step was repeated 10,000 times and the results are displayed in Sup-
plementary Fig. 2D.

Pipeline validation with Repliscan as an orthogonal method.
Repliscan79, a published tool to classify replication timing regions
across the genome, was used as orthogonal validation for the repli-
cation timing signal estimated as the log2-transformed ratio between
early and late replicated reads. The resulting bam files from the
alignment step were used as input. To make the results as comparable
as possible similar parameters for the calculation of the log2-ratio-
basedRT signalwere used, including the samewindowsizes of 1 kb and
50 kb. To account for differences in the DNA composition across the
genome, Repliscan normalises for sequencing ability using non-
replicating G1 DNA or a combination of early S phase and late S
phase replicating DNA for correction. Given that not all cell lines
obtained from ENCODE provided data for G1 cells and to stay con-
sistent across all cell lines, the option of combining early and late
replicated reads for copy number correction was used. Repliscan
provides a replication timing signal for early and late replicated reads
separately and classifies genomic regions as either early (ES), late (LS)
or early and late (ESLS) replicated. The comparison of the timing
classifications of the 1 kb and 50 kb bins across the genome provided
by the log2-ratio-based RT signal and Repliscan yielded a high con-
cordance of more than 90% overlap between the two methods in all
cell lines. Themajority of discordant bins consisted of cases where the
replication timing was not confidently detectable in one of the meth-
ods rather than reporting opposite timings.

Validation of theRepli-seqprotocol and thebioinformatics pipeline
using biological replicates. To validate the reproducibility of the
Repli-seq protocol and the bioinformatics processing pipeline, biolo-
gical replicates of the T2P and H1650 cell line were processed and the
replication timing signal at different stages of the pipeline was com-
pared between a pair of replicates, for both 1 kb and 50 kb windows. In
addition, our in-house Repli-seq protocol was applied to the A549 cell
line which is also available on ENCODE. Both sets of fastq files derived
from different Repli-seq protocols were processed through the
bioinformatics pipeline and the resulting replication timing signals
were compared between each other for 1 kb and 50kb windows
(Supplementary Fig. 2A–C). The Pearson correlation test was calcu-
lated in R (v3.5.1) for each pair of replicates at different normalisation
stages of the pipeline. This analysis resulted in high agreement
between the replicates which ensures great robustness and reprodu-
cibility of our experiments. The additional step of comparing results
for the A549 cell line derived from our IN-STUDY protocol and the
protocol used for publicly available data on ENCODE issued high
similarity confirming the combined use of both datasets. For down-
stream analyses, replicates of the T2P and H1650 cell lines were com-
bined by calculating the average replication timing signal for each 1 kb
and 50 kbbinwhereas forA549 the results of our IN-STUDY sequenced
A549 cell line were used alone.

Identification of altered replication timing (ART) regions
To identify 50 kb bins that present significantly different RT signals
between normal and cancer, the RT signal between replicates of the
T2P, H1650 and A549 cell lines were compared to estimate differences
due to random background noise induced by technical biases. The
thresholds for altered replication timing identification were chosen
based on the 0.5%-quantile (−1.66) and the 99.5%-quantile (1.45) of the
combined distribution of differences in RT values between the repli-
cates (Supplementary Fig. 4). This means <1% of values were assumed
to be artifactual or outliers. Given that the distribution of differences is
centred around 0, a symmetrical threshold of |2| was used to classify
genomic regionswith replication timing alterations. Genomicbins that
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presented absolute differences in the RT signal between cancer and
tissue-of-origin greater than |2| but exhibiting the same RT classifica-
tion (early or late in both cancer and normal) were excluded from
further analyses due to uncertainties whether these regions were
altered or not.

Replication timing domains. Given that neighbouring 50 kb bins with
the same replication timing are likely part of the same replication
timing domain means that they are not independent. Therefore,
adjacent bins with the same type of altered replication timing were
likely caused by the same alteration event of a certain replication
timing domain. For this reason, for some analyses adjacent bins with
the same RT or ART classification were combined into one RT or ART
domain.

Identification of ART genes. In order to identify genes with an altered
replication timing between tissue-of-origin and cancer we calculated
the mean RT signal using the 1 kb window results, for each gene and
applied the same thresholds as described above.

Recurrent and shared ART regions. Recurrent ART regions were
classified as genomic bins that were identified as presenting ART in all
cancer cell lines relative to the tissue-of-origin within a given cancer
type. Shared ART regions were defined as genomic bins that were
altered in at least 2 cancer cell lines but not all within a given cancer
type. ART regions that were only identified in one of the cell lines were
classified as being uniquely altered. ART regions thatwere present in at
least 2 cell lines or all (shared and recurrent) were used formost of the
analyses in this study. In order to test if the observed overlaps were
significantly higher than random, a bootstrapping approach was
applied to randomlydistribute ARTregions, summarised as replication
timing domains, across the genome for each cell line. Only regions of
the genome that were early replicated in the tissue-of-origin have the
potential to become EarlyN-to-LateT altered replicated in cancer and
vice versa for LateN-to-EarlyT replicated. Therefore, the sampling of
EarlyN-to-LateT domains was restricted to regions that were early
replicated in the tissue-of-origin and vice versa for LateN-to-EarlyT
domains. The altered replication timing domains were randomly dis-
tributed across the genome 1000 times and the number of over-
lapping ART bins between cell lines of the same cancer type were
counted during each iteration. The 95% confidence interval of the
bootstrappeddistributionof overlappingbinswas used as background
distribution to test the observed fractions for significance.

Integration of DNA and RNA sequencing data from lung and
breast cancer tumours
Copy number adjusted mutation load. Differences in the copy
number of the DNA across the genome can influence the accumulation
anddetection ofmutations.More genomicmaterialmight increase the
likelihood of accumulating mutations and lead to higher coverage for
sequencing leading to ahigher detection rate ofmutations. To account
for these differences,mutations of the lung and breast cancer tumours
were not only counted in 50 kb bins but corrected for differences in
copy number. For this, the minor (nMinor) and major (nMajor) copy
number estimate of the genomic segment that a certain mutation was
located on was assigned to each mutation. This information in com-
bination with the mutation’s variant allele frequency (VAF), the
tumour’s purity and the total copy number in the germline (normalCN)
was used to estimate the number of copies that presented the muta-
tion (mutCN):

mutCN =
VAF
purity

� purity � ðnMinor +nMajorÞ+ normalCN
1� purity

� �
ð2Þ

Instead of counting each mutation as 1 in the 50 kb bins, each
mutation was counted as their mutCN divided by the total copy
number (nMinor + nMajor) of the segment that this mutation was
located on.

mutLoadj =
Xnj

i = 1

mutCNi

ðnMinori +nMajoriÞ
ð3Þ

with nj representing the total number of mutations andmutLoadj the
final copy number corrected mutation load of the j-th 50 kb bin
(Fig. 1C). The mutation load in 50 kb bins was calculated on a cohort
level and a per-tumour level. For the cohort analysis, all mutations
within a certain 50 kb binwere pooled together across all tumours of a
certain cohort for the mutation load calculation.

ART timing relative to the mutation accumulation in the most
recent common ancestor (MRCA). For each mutation, its CCF and a
95% confidence interval (CI) (as described in ref. 80) were calculated.
Mutations with an upper 95%-CI greater equals 1 were classified as
clonal and everything else as subclonal. The copy number adjusted
mutation load was calculated for the aggregated data of the BRCA
and LUAD cohort by only considering clonal mutations. The resulting
mutation load estimates were z-transformed to be able to compare
the final results across the two cancer types. Next, themeanmutation
load for the different altered and unaltered replication timing
regions was estimated by applying a bootstrapping method to
account for the high variability in the number of 50 kb bins classified
as presenting different types of altered or unaltered RT. The lowest
number of bins regarding the different timing classifications was
determined per cancer type (BRCA: 4128, LUAD: 1498) and used as
the number of bins that were randomly sampled with replacement
from each timing classification. The sampling step was conducted
10,000 times and during each iteration, the mean mutation load per
RT and ART classification was calculated. This resulted in a dis-
tribution ofmeanmutation load estimates for each timing per cancer
type. To estimate the proportion of mutations that were likely
accumulated before the LateN-to-EarlyT alterations during tumour
evolution, the absolute difference between the mean mutation load
estimates in LateN-to-EarlyT minus unaltered EarlyN+T replicated
regions was calculated per iteration. This difference was normalised
by the absolute difference in mutation load between unaltered
LateN+T minus EarlyN+T.

d Late� to� Earlyð Þi =
jmutLoadðLate� to� EarlyÞi�mutLoadðEarlyÞij

jmutLoadðLateÞi�mutLoadðEarlyÞij
ð4Þ

d Early� to� Lateð Þi =
jmutLoadðEarly� to� LateÞi �mutLoadðLateÞij

jmutLoadðLateÞi �mutLoadðEarlyÞij
with i= 1,:::,10000

ð5Þ

The equivalent was calculated to estimate the proportions of
mutations accumulated before the EarlyN-to-LateT alterations occur-
red during tumour evolution. This resulted in a distribution of pro-
portions accumulated prior to ART (Supplementary Fig. 8F). Themean
values of these proportions were used separately as the final timing
estimates for the two different RT shifts relative to mutation accu-
mulation in the most recent common ancestor. A low proportion
suggests ART to be an early evolutionary event whereas a high pro-
portionmeans that the ARTevent occurred closer to the emergenceof
the MRCA.
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Simulations of different ART time points. To validate the estimation
of the ART timing relative to the mutation accumulation in the MRCA,
different fractions ofmutations thatwere accumulated before the shift
in RTwere simulated as different timepoints. For this, a fixedmutation
rate in early and late replicated regions was assumed, which was esti-
mated based on the fractions of mutations per Mb in unaltered RT
regions for each cancer type (Supplementary Fig. 8A). A higher dis-
parity in the fraction of mutations accumulated in LateN+T versus
EarlyN+T replicated regions was observed in lung cancer in comparison
to breast cancer. For this reason, in breast cancer, the mutation rate in
late replicated regions was set to be 1.3 times themutation rate in early
replicated regions whereas in lung cancer the mutation rate was set to
be 1.5 times higher in late versus early replicated regions for the
simulations. Next, the accumulation of mutations during 10,000
iterations (representing cell divisions) in 1000 genomic bins with dif-
ferent replication timings and corresponding mutation rates was
simulated to explore the resulting mean mutation load patterns when
certain proportions of mutations were accumulated before the ART
event (Supplementary Fig. 8B). Two-thirds of the 1000 bins were
initiated as late replicated (660 bins) and one third as early replicated
(340 bins) which was based on the observed fractions of the genome
harbouring early versus late replicated regions in all cell lines (Sup-
plementary Fig. 3). Themutation rate in early replicated bins was set to
accumulate a mutation with a likelihood of 0.1 in each iteration
whereas late replicated regions accumulated a mutation with a like-
lihood of 0.13 in breast cancer and 0.15 in lung cancer. If a bin was
selected to present ART, the mutation rate changed accordingly for
the remaining iterations. Given that approximately 15% of the genome
displayedART in BRCA and8% in LUAD (Fig. 2B) similar fractions of the
1000 simulated bins were chosen to switch their RT at different time
points during the 10,000 iterations, respectively. In both cancer types,
half of the replication timing alterations presented a switch from
EarlyN-to-LateT whereas the other half presented a change from LateN-
to-EarlyT, which was considered in the simulations. The different time
points for ART were simulated as different proportions of iterations,
ranging from 0 to 1 in 0.01 steps, that accumulated mutations prior to
ART. This means after a certain iteration, the replication timing and
mutation rate were changed for a subset of bins and the remaining
iterations accumulated mutations regarding the updated mutation
rates. The mutations accumulated throughout the 10,000 iterations
were counted for each of the 1000 bins illustrating the mutation load
in bins across the genome. Afterwards, the bootstrapped mean
mutation load values and the differences dðEarly� to� LateÞ and
dðLate� to� EarlyÞ were calculated as described above in Eqs. (4)
and (5) (Supplementary Fig. 8C–E). Comparing the simulated differ-
ences to the observed differences revealed that the estimated pro-
portions of mutations accumulated prior to ART represent an
appropriate timing estimate when assuming constant mutation rather
than throughout tumour development (Supplementary Fig. 8F).

Per-tumour analysis of ART timing relative to the mutation accu-
mulation in the most recent common ancestor (MRCA). The copy
number adjusted mutation load was calculated for each BRCA and
LUAD tumour separately by only considering clonal mutations. The
resulting mutation load estimates were z-transformed and the mean
mutation load for the different altered and unaltered RT regions was
estimated by applying the same bootstrappingmethod as used for the
aggregated cohort analysis. This resulted in a distribution of mean
mutation load estimates for each timing per tumour. To be able to
detect a shift in the mutation distribution in ART versus unaltered RT
regions a significant difference in themutation loadbetweenunaltered
EarlyN+T and LateN+T replicated regions was required. Therefore, for
each tumour a bootstrapping p-value was calculated as the number of
iterations where the mean mutation load value in EarlyN+T replicated
regions was greater than or equal to themutation load value in LateN+T

replicated regions divided by the total number of iterations (10,000).
Only 3 BRCA tumours presented a bootstrapping p-value < 0.001 and
therefore a significant shift in the mutation load between unaltered
EarlyN+T and LateN+T replicated regions, hence BRCA was excluded
from the per-tumour ART timing analysis. A bootstrapping
p-value < 0.001 was detected for 178 LUAD tumours for which ART
timing was estimated on a per-tumour level in the same way as for the
cohort analysis.

Paired RT and mutation analysis in PDCs derived from two TRA-
CERx LUAD tumours. The T2P cell line was used as a normal reference
to identify ART regions in the two PDCs derived from twopatients with
LUAD in the TRACERx study (CRUK0557-CL and CRUK0977-CL). The
copy number adjusted mutation load was calculated separately for
each PDC by only considering clonal mutations. The resulting muta-
tion load estimates were z-transformed and the mean mutation load
for the different altered and unaltered replication timing regions
within the corresponding cell line was estimated by applying the same
bootstrappingmethod as used for the cohort and per-tumour analysis.
This resulted in a distribution of mean mutation load estimates for
both PDCs, where themutation and RT informationwere derived from
the same sample.

Identification of ACC regions and their correlation with mutation
accumulation across the genome. Only Hi-C data for the normal
breast reference cell line HMEC was available and not for the normal
lung cell line T2P, hence altered chromatin compartment (ACC)
regions were only identified for the two BRCA cell lines MCF-7 and
T47D and no LUADcell line. For this the in situHi-C values in 50kbbins
from T47D were compared against the in situ Hi-C values from HMEC
whereas the intactHi-CHMEC valueswere compared against the intact
Hi-C values from MCF-7. Genomic bins that presented an absolute
difference in Hi-C values between tissue-of-origin and cancer greater
than |0.03| and a shift from A compartment in normal to B compart-
ment in cancer were classified as AN-to-BT altered regions. Similarly,
genomic bins that presented an absolute difference in Hi-C values
greater than |0.03| and a shift from B compartment in normal to A
compartment in cancer were classified as BN-to-AT altered regions.
Genomic bins that presented an absolute difference in Hi-C values
between cancer and tissue-of-origin greater than |0.03| but exhibited
the same chromatin compartment classification (A or B in both cancer
and normal) were excluded from further analyses due to uncertainties
whether these regions were altered or not. Unaltered A compartment
regions are referred to as AN+T and unaltered B regions as BN+T. The
samemethods as for the estimation of ART timing relative tomutation
accumulation in the MRCA were applied for the investigation of the
association of ACC with the accumulation of mutations across the
genome with the only difference being that shared ART regions were
used previously and here the analysis was conducted for ACC regions
in MCF-7 and T47D separately. The copy number adjusted mutation
load of clonal mutations for the BRCA cohort was analysed and
z-transformed. The mean mutation load for the different altered and
unaltered chromatin compartment regions was estimated by applying
the same bootstrapping method as used for the ART analysis.

Comparison analyses of the association of alterations in RT and
chromatin structure with the mutation distribution across
the genome. To explore whether the variability in local mutation
burden across the genome in BRCA tumours can be better explained
by RT or chromatin structure in normal or cancer cells, we conducted
multiple linear regression models. First, we applied 4 univariate linear
regression models for both BRCA cell lines (MCF-7 and T47D) sepa-
rately with the mutation load in BRCA tumours as an independent
variable and the RT signal (Repli-seq log2-ratio) and chromatin com-
partment signal (Hi-C values) in normal (HMEC) and cancer cells as the
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dependent variable, respectively. Afterwards, we compared the
resulting R2-values between the 4 models for both BRCA cell lines. To
evaluate whether RT in cancer is still the best predictor in a multi-
variate setting, we z-transformed the RT signal and chromatin com-
partment signal in normal (HMEC) and cancer (MCF-7 and T47D) cells
and used the resulting values as dependent variables in a multivariate
linear regression model with mutation load in BRCA tumours as
independent variable. Due to the z-transformation, we were able to
compare the absolute estimate values between the different values to
explore which of them contributes the most in explaining the varia-
bility in the mutation distribution across the genome.

De novo extraction of replication timing specific mutational sig-
natures. A Hierarchical Dirichlet Process (HDP) Model35 implemented
in the hdp R-package (v0.1.5) available on GitHub (https://github.com/
nicolaroberts/hdp) was applied to extract de novo signatures for the
different altered and unaltered RT region for BRCA and LUAD sepa-
rately. For this, the trinucleotide profile of mutations located in the
different altered and unaltered RT regions was constructed per patient
and used as input. Using an HDP model to infer mutational signatures
enabled the definition of hierarchies of relatedness between samples
via the tree of parent Dirichlet Process (DP) nodes. This provided the
opportunity to derive mutational signatures in different replication
timing regions per tumour without neglecting tumour-specific sig-
natures. The HDP was structured to have one grandparent DP, four
parent DPs representing the different replication timing categories
and the number of tumours within a certain cohort as child DPs
(BRCA = 482 and LUAD= 470) per parent with the trinucleotide con-
text of the different tumours for the corresponding replication timing
region assigned. If a tumour harboured less than 50mutations for one
of the replication timing categories, it was excluded from the corre-
sponding parent for this analysis. Signatures that were identified to be
commonly active in lung and breast cancer were included as priors
accordingly (BRCA: SBS1, SBS2, SBS3, SBS5, SBS6, SBS8, SBS13; LUAD:
SBS1, SBS2, SBS4, SBS5, SBS13, SBS40). This means for each of these
signatures a cluster was initialised at the start of the algorithm and
their trinucleotide pattern was provided as prior knowledge to force
the algorithm to look for these signatures in the data. 10 random
clusters were initialised in addition to detecting de novo signatures
that were not included in the list of priors. Themodel was initialised by
applying the function hdp_init(). The trinucleotide profiles were
assigned to the leaves by hdp_setdata() and the nodes were activated
by dp_activate(). By applying hdp_posterior() 15 times with different
seeds 15 independent posterior sampling chains were constructed
followed by 10,000 burn-in iterations and the collection of 100 pos-
terior samples off each chain with 200 iterations between each. The
hdp_multi_chain() functionwas applied to combine the results of the 15
chains from which the final components were extracted using
hdp_extract_components(). These components were compared to the
signatures reported in Degasperi et al.38 combined with the signatures
reported on COSMIC (v3.2). For this, the cosine similarity between the
hdp-derived components and the signatures provided by the public
datasets was calculated by the function cosine() of the lsa R-package
(v0.73.2). If a component displayed a cosine similarity greater than
0.85 with any of the known signatures, the corresponding signatures
were assigned to that component. Some signatures were found to be
often co-occurring in cancer, such as SBS1 and SBS5, which makes it
challenging to identify them separately during de novo signature
extraction. In these cases, the Expectation Maximisation (EM) algo-
rithm was used to identify pairs of signatures that might explain the
observed signature. The identified pair was then used to reconstruct
the observed signature considering the weights provided by the EM
algorithm. If the reconstructed signature presented a cosine similarity
greater than 0.85 with the observed signature, the signature was
recognised as a combination of the identified pair. In that instance, the

exposure of the observed signature was split based on the weights
provided by the EM algorithm for further analyses. The full HDP
pipeline for de novo signature extraction canbe accessed fromhttps://
github.com/McGranahanLab/HDP_sigExtraction.

Identification and investigation of APOBEC3-mediated
omikli events. The hyperClust algorithm (https://github.com/
davidmasp/hyperclust) provided in the form of a nextflow pipeline
by Mas-Ponte and Supek42 was applied to identify kataegis and omikli
events across the genome for BRCA and LUAD tumours. Nextflow
version 0.30.0 was used to run the pipeline with all default parameters
as described on GitHub. APOBEC mutations were classified based on
their stringentmutation pattern of C > T and C>Gmutations in a TCW
motif with the C in the middle representing the mutated cytosine and
W corresponding to either A or T41. Mutations that showed a C or G in
the position of the W were excluded from this analysis, due to the
uncertainty of whether these mutations were mediated by APOBEC or
not. Fisher’s tests were applied to statistically test for significant
enrichment of APOBEC-mediated omikli mutations in cancer genes
related to their RT or ART. For this, the number of coding APOBEC and
non-APOBEC mutations in an omikli and unclustered manner within
cancer-associated genes were counted for the different replication
timing regions. The odds ratio of omikli and unclustered mutations in
an APOBEC context versus without was tested for significance for the
different replication timing regions separately.

Differential expression analysis. To identify differentially expressed
genes (DEGs), RNA-seq data from tumour and normal tissues within
the same patient enrolled in TCGAwere analysed using the R-package,
DESeq281. In this analysis, the log2-transformed fold change (log2FC)of
the gene expression in tumour versus normal tissue was calculated for
every gene. A gene was classified as being significantly up-regulated in
cancer if the resulting p-value < 0.05 and the log2FC > 1. Similarly, a
gene was classified as being significantly down-regulated in cancer if
the resultingp-value < 0.05 and the log2FC < 1. Genes that did notmeet
any of these criteria were classified as not differentially expressed in
cancer compared to normal tissues.

Analyses of gene expression and copy number alterations in genes
with and without ART. To investigate whether genes with ART pre-
sented a significant change in their expression in tumour versus nor-
mal than unaltered RT genes, a bootstrapping method was applied to
estimate the log2FC distribution of early and late replicated genes in
the tissue-of-origin. For this, only genes that presented at least 1 read
count in at least 20% of tumour samples in a given cancer type were
considered to be expressed and included in this analysis. We first
calculated the mean log2FC value of genes with EarlyN-to-LateT timing
in each cancer type. Next, the same number of genes that were early
replicated in the tissue-of-origin were randomly sampled from
expressed genes to calculate their mean log2FC. This step was repe-
ated 100,000 times. The mean and 95% confidence interval of the
mean log2FC values was constructed and compared to the observed
mean log2FC. The empirical p-value was calculated by counting how
many bootstrappedmean log2FC values of LateN+T genes were greater
than the observedmean values of LateN-to-EarlyT genes divided by the
total number of iterations, or equivalently, how many bootstrapped
mean log2FC values of EarlyN+T genes were lower than the observed
mean values of EarlyN-to-LateT genes divided by the total number of
iterations.

To validate that differences in the expression were not driven by
somatic copy number alterations (SCNAs), a similar bootstrapping
method was applied to test for significant differences in copy num-
ber of genes with ART. Instead of using the log2FC per gene, the
mean copy number relative to ploidy was considered. Themean copy
number value per gene was calculated by overlapping the copy
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number segments of TCGA tumours with a certain gene and aver-
aging the copy number relative to the overlapping size of the seg-
ments. For this, the total raw copy number values were used. Next,
the difference between the mean copy number of a gene and the
ploidy of the tumour was calculated and divided by the ploidy esti-
mate to normalise the value between 0 and 1. This normalised dif-
ference per gene was provided to the bootstrapping method
described above. The empirical p-value was calculated by counting
how many bootstrapped mean values of LateN+T genes were greater
than the observed mean values of LateN-to-EarlyT genes divided by
the total number of iterations, or equivalently, how many boot-
strapped mean values of EarlyN+T genes were lower than the
observed mean values of EarlyN-to-LateT genes divided by the total
number of iterations.

Statistical analyses
All statistical tests were performed in the R statistical environment
version ≥3.5.1 unless further stated. No statistical methods were used
to predetermine the sample size. In general, comparisons between two
groups were made using an unpaired two-sided Wilcoxon test. In
instances where values of different RT groups within the same tumour
were compared to each other, a paired Wilcoxon test was used. To
examine the significance of the association between a certain feature
and the RT classifications, a contingency table was created, and a two-
sided Fisher’s exact test was applied. For all statistical analyses, the
included data points were either plotted or annotated in the corre-
sponding figure. In general, p-values were indicated as, ns: p ≥0.05;
*p < 0.05; **p <0.01; ***p <0.001; ****p <0.0001. In cases where the
data is displayed as a box plot, the centre line represents the median
value, the limits represent the 25th and 75th percentiles, and the
whiskers extend from the box to the largest and lowest value no fur-
ther than 1.5 * IQR away from the box, where IQR is the
interquartile range.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed data to reproduce the analyses of this study including the
replication timing signal data in 50kb bins for the 31 cell lines analysed
in this study can be accessed via Zenodo82. This repository does not
include data from the Genomics England lung cohort due to restricted
access. The Genomics England lung cohort is part of the 100,000
Genomes Project whose data are held in a secure research environ-
ment and are only available to registered users. For further informa-
tion on how to obtain access visit https://www.genomicsengland.co.
uk/research/academic. Somatic variants for the 560WGSbreast cancer
dataset are available on the International Cancer Genome Consortium
Data Portal (https://dcc.icgc.org/) and were retrieved via ftp://ftp.
sanger.ac.uk/pub/cancer/Nik-ZainalEtAl-560BreastGenomes/. Supple-
mentary files from Nik-Zainal et al.2 were downloaded for additional
information, including clinical data. The TCGA data were retrieved
through the database of Genotypes and Phenotypes (dbGaP) author-
isation (accession no. phs000854.v3.p8). Information about TCGA and
the investigators and institutions who constitute the TCGA research
network can be found at https://cancergenome.nih.gov/. The acces-
sion numbers for the rawRepli-seq data of the 16 cell lines downloaded
from ENCODE are listed in Supplementary Table 2. The accession
numbers for the Hi-C data downloaded from ENCODE are provided in
Supplementary Table 3. The raw data of the 13 in-house repli-
sequenced cell lines has been made publicly available on SRA under
the BioProject accession number PRJNA1096133. The raw data of the
TRACERx PDCs (from the TRACERx study) used during this study has
been deposited at the European Genome–phenome Archive (EGA),

which is hosted by The EuropeanBioinformatics Institute (EBI) and the
Centre for Genomic Regulation (CRG) under the accession
code EGAS00001007773 and is under controlled access due to its
nature and commercial licences. Specifically, data is available through
the Cancer Research UK & University College London Cancer Trials
Centre (ctc.tracerx@ucl.ac.uk) for academic non-commercial research
purposes only and is subject to review of a project proposal by the
TRACERx data access committee, entering into an appropriate data
access agreement and subject to any applicable ethical approvals.
A response to the request for access is typically provided within 10
working days after the committee has received the relevant project
proposal and all other required information. The access to the datawill
expire on the third anniversary of the effective date of the agreement.

Code availability
The majority of statistical analyses were performed in the R statistical
environment version ≥3.5.1. The code for the data analysis can be
accessed via Zenodo82. The Repli-seq pipeline developed for this study
is available for download from https://github.com/McGranahanLab/
RepliSeqPipeline.
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