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was most characteristic of a particular mental state. This 
study aimed to develop a method suitable for Brain Com-
puter Interface (BCI) purposes, in order to detect, at least 
roughly, the patients’ physiological needs and desires. In 
Proverbio and Pischedda (2023a) it was shown how second-
ary motivational states (such as, desire for music, move-
ment or social play) can be detected through ERPs, but 
literature on non-compelling urges is very scarce. Extensive 
research within the addiction field has described ‘craving’ 
has an exceedingly compelling but subjective state that indi-
viduals struggle to resist. In contrast, desire denotes a less 
intense level of wanting (Peterson-Sockwell et al. 2023). 
While biological determinants of craving have been exten-
sively examined (e.g. Antons et al. 2023; Betts et al. 2021; 
Ferguson and Shiffman 2009), little is known about ‘non-
pathological’ motivational states, including desires, urges, 
and related constructs. These states can vary in strength, 
specificity, awareness, and intensity (Stults-Kolehmainen 
et al. 2020), and may have emotional implications. Gener-
ally, a ‘desire’ signifies a conscious state of longing or an 
urge, wherein an individual’s attention is directed towards 

Introduction

The objective of this research was to pinpoint neural indica-
tors for imaginative and motivational processes, using elec-
tromagnetic signals such as the N400 component of ERPs. 
The potential for detecting, at least in broad classes, the 
mental content of perfectly still and silent individuals was 
explored here by using a neuroimaging technique and sub-
jecting the results of individual source reconstructions to sta-
tistical analysis to identify the brain region whose activation 
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Abstract
The literature has demonstrated the potential for detecting accurate electrical signals that correspond to the will or inten-
tion to move, as well as decoding the thoughts of individuals who imagine houses, faces or objects. This investigation 
examines the presence of precise neural markers of imagined motivational states through the combining of electrophysi-
ological and neuroimaging methods. 20 participants were instructed to vividly imagine the desire to move, listen to music 
or engage in social activities. Their EEG was recorded from 128 scalp sites and analysed using individual standardized 
Low-Resolution Brain Electromagnetic Tomographies (LORETAs) in the N400 time window (400–600 ms). The activa-
tion of 1056 voxels was examined in relation to the 3 motivational states. The most active dipoles were grouped in eight 
regions of interest (ROI), including Occipital, Temporal, Fusiform, Premotor, Frontal, OBF/IF, Parietal, and Limbic areas. 
The statistical analysis revealed that all motivational imaginary states engaged the right hemisphere more than the left 
hemisphere. Distinct markers were identified for the three motivational states. Specifically, the right temporal area was 
more relevant for “Social Play”, the orbitofrontal/inferior frontal cortex for listening to music, and the left premotor cortex 
for the “Movement” desire. This outcome is encouraging in terms of the potential use of neural indicators in the realm of 
brain-computer interface, for interpreting the thoughts and desires of individuals with locked-in syndrome.
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achieving pleasure, easing discomfort, fulfilling a require-
ment, or performing actions associated with these desired 
results (Kavanagh et al. 2005).

Desire is not merely an emotion, even though it displays 
an affective quality. It involves the psychological occur-
rence of mental imagery or verbal ideation of the attractive 
features of desired items or activities (Salkovskis and Reyn-
olds 1994). The importance of imagery in the experience 
of desire has been emphasized by Kavanagh et al. (2005), 
as it emulates the sensory and emotional aspects of desired 
experiences. While images of desire can bring momentary 
satisfaction, they also highlight physical and emotional 
inadequacies. Such imagery intensifies cravings and desires, 
engaging multiple senses. Kavanagh et al. (2005) proposed 
that it is not the meaning of the envisioned desire that cap-
tivates individuals, but rather the sensory components and 
emotional response it evokes. Research has shown that 
imagery tasks are an effective strategy for eliciting desires 
(Devos et al. 2022), where the intensity of the craving expe-
rienced is linked to the vividness of the imagined scenario 
(Harvey et al. 2005). Kavanagh and colleagues (2005) pro-
posed that specific brain regions are activated when experi-
encing desires or cravings, similar to those activated during 
sensory imagery within the same sensory category. Indeed, 
the intention to initiate a movement leads to the activation 
of motion-related areas, such as the premotor cortex, or the 
parietal lobe and cerebellum (Decety et al. 1990, 1994). In 
the same vein, the desire for music might lead to activa-
tion of brain regions associated with music imagery, i.e., the 
prefrontal cortex, the inferior frontal gyrus, or the superior 
temporal gyrus (Herholz et al. 2012).

On the other hand, ‘mental imagery’ refers to the subjec-
tive experience of representing sensory information with-
out an external stimulus. It involves the retrieval of stored 
memory to allow the individual to re-experience a version 
of the original stimulus or to combine previously encoun-
tered stimuli (Pearson et al. 2015). It is recognised that there 
are common areas of activation across all forms of imagery, 
such as the frontal and parietal regions (McNorgan 2012). 
These areas support short-term memory processes that are 
essential for the storage and manipulation of information 
(Chen et al. 2021; Pearson 2019), while the occipital area 
facilitates perceptual experience (e.g. Winlove et al. 2018; 
Dijkstra et al. 2019). Furthermore, the neural pathways 
responsible for perceiving sensory information within a 
specific modality are also activated during mental imagery 
(Kosslyn et al. 2001). Research on activation patterns has 
backed the idea that imagining specific modalities or recall-
ing information from different modalities leads to height-
ened activation in the corresponding sensorimotor areas of 
the brain (McNorgan 2012). For example, multiple lines 
of evidence converge to suggest that motor imagery (MI) 

shares similarities with the processes involved in planning 
and preparing real actions, albeit with the distinction that 
actual execution is inhibited at some point within the corti-
cospinal pathway (Jeannerod and Decety 1995). Extensive 
research has been conducted on motor imagery within the 
field of brain-computer interfaces. For instance, Yuan et al. 
(2010) investigated brain activity triggered by motor imag-
ery and actual movements through fMRI and EEG source 
imaging. The utilization of EEG source imaging for study-
ing motor imagery dates back to 2004 (Qin et al. 2004) in an 
offline environment, and more recently in an online setting 
(Edelman et al. 2019). Motor imagery involves the capac-
ity to mentally simulate a movement, which necessitates 
an internal representation of the movement itself, the envi-
ronmental limitations, and the sensory outcomes it entails 
(Munzert et al. 2009). This notion is supported, among oth-
ers, by research using imaging techniques that show that 
brain regions involved in action execution are also activated 
during mental imagery (Hardwick et al. 2018). In fact, the 
premotor cortex (PMC), supplementary motor areas (Gerar-
din et al. 2000; Johnson et al. 2002; Kuhtz-Buschbeck et 
al. 2003; Oostra et al. 2016; Orlandi et al. 2020), parietal 
regions (Decety et al. 1994; Sirigu et al. 1996; Pelgrims et 
al. 2009), cerebellum and basal ganglia (Decety et al. 1994; 
Grealy and Lee 2011; Heremans et al. 2011; Oostra et al. 
2016) have been found active in various motor imagery 
tasks. The PMC and parietal areas would share a functional 
neural circuitry in the distributed Fronto-Parietal Network 
(dFPN) (Hétu et al. 2013; Ptak et al. 2017), enabling emula-
tion. This core process specifically handles dynamic motor 
representations, regardless of the stimulus or output mecha-
nism (Ptak et al. 2017), and does not seem to include the 
primary motor cortex (Barhoun et al. 2022).

Partial overlap in actual neural activation was observed 
during the perception of auditory and musical stimuli in 
musical and auditory imagery. Auditory imagery entails 
internal, deliberate perception of sounds and music with-
out the need for physical actions or actual auditory stimuli. 
Studies associate the primarily right-sided activation in 
frontal and superior temporal regions with auditory imag-
ery (Halpern and Zatorre 1999; Griffiths 2000; Leaver et 
al. 2009), There is scarce evidence of activation of the pri-
mary auditory cortex during musical imagery (Herholz et 
al. 2012), despite its significant stimulation during musi-
cal listening. Furthermore, music-induced emotions would 
stimulate the dopaminergic nigro-striatal reward-motivation 
pathway (Blood and Zatorre 2001; Matthews et al. 2020) 
thus modulating the activity of brain structures associated 
with emotion and aesthetic appreciation, such as the orbi-
tofrontal cortex (Koelsch 2014) and the nucleus accumbens 
(Kim et al. 2019).
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In contrast, there are not many studies on imagery of social 
experiences and interactions. Regarding the neural circuits 
of the ‘social brain’, the literature points to the medial pre-
frontal cortex, which represents stereotypes, prejudices and 
social characteristics of people (Proverbio et al. 2017; Ray 
et al. 2008; Shamay-Tsoory et al. 2009; Tsuchida and Fel-
lows 2012; Proudfit 2015; Molenberghs et al. 2016; Nejati 
et al. 2021); the insula, which plays a key role in experienc-
ing emotions and processing social cues (Calder et al. 2000; 
Pugnaghi et al. 2011; Knutson et al. 2013; Boucher et al. 
2015; Li et al. 2020); the anterior cingulate cortex (ACC), 
which is involved in the regulation of emotional and social 
processes (Hornak et al. 2003; Hadland et al. 2003) and the 
temporal lobe, which plays an important role in encoding 
facial expressions, recognising familiar faces and voices, 
and regulating social behaviour (Toller et al. 2015; Redcay 
et al. 2016; Ong et al. 2021; Lee Masson and Isik 2021; 
Reisch et al. 2022; Su et al. 2022).

Regarding the neural correlates of motivational states, 
the available evidence comes from the field of addiction 
research. Cravings for substances such as food (Harvey et 
al. 2005; Asmaro et al. 2012; Wolz et al. 2017; Zorjan et al. 
2020; Zapparoli et al. 2022), tobacco (Zinser et al. 1999; 
McDonough and Warren 2001; Knott et al. 2008; Ferguson 
and Shiffman 2009; Betts et al. 2021; Tamburin et al. 2021; 
Gan et al. 2023), alcohol (Herrera-Díaz et al. 2016; Huang 
et al. 2018), and drugs (Reid et al. 2003; Michel and Koe-
nig 2018; Lin et al. 2022) have been investigated. A recent 
study revealed the existence of a central craving network, 
characterised by changes in the activity and functional con-
nectivity of several brain regions, in which limbic regions, 
together with the pregenual ACC and OBF, may encode the 
emotional component of associative learning of the para-
doxical reward of craving (Huang et al. 2018).

Overall, there is limited knowledge regarding the neural 
markers of motivational states of non-pathological needs. 
To examine this matter, a swLORETA investigation was 
conducted to scrutinize the different patterns of cerebral 
activations underlying simulated motivational conditions, 
including “Social Play”, “Music” and “Movement” desires.

These mental states were chosen for several reasons: (i) 
they were able to clearly and unambiguously modulate the 
N400 component of ERPs recorded under imagery condi-
tions in a previous experiment by Proverbio and Pischedda 
(2023a); (ii) they were presumably represented at the cor-
tical level (rather than, for example, in the hypothalamus, 
which regulates the oemostatic needs of hunger and thirst); 
and (iii) they reflected realistic rather than fictitious needs 
that could be easily imagined and experienced by the young 
adult participants in the EEG experiment. The N400 is an 
ERP component that is typically evoked in response to con-
ceptually meaningful stimuli (DeLong and Kutas 2020).For 

example, it is more negative in response to incongruent than 
congruent words in a sentence, and more negative to unre-
lated than related words following a prime word. This sen-
sitivity to semantic meanings in relation to an individual’s 
mental context makes it a reliable index of conceptual repre-
sentation, particularly interesting for imagery (Gullick et al. 
2013) and brain-computer interfaces (Dijkstra et al. 2020).

The EEG data were recorded while participants were 
requested to vividly imagine distinct motivational states 
triggered by pictograms. Therefore, individual ERP data 
underwent independent swLORETA analyses (Palmero-
Soler et al. 2007) to determine the intracortical generators of 
the N400 potentials associated with the three motivational 
states.

Materials and methods

Participants

Twenty right-handed students, (8 males, 12 females), aged 
18–35 years (23.20, SE = 1.70) with corrected or normal 
vision, with no current or history of psychiatric or neuro-
logical disorder took part in the study. Inclusion criteria 
included not having sought treatment for substance mis-
use, not having any chronic illness and not taking any 
prescribed medication of any kind. Two participants were 
excluded from the sample for excessive EEG or ocular arti-
facts. Participants provided written informed consent. The 
experiment was conducted in accordance with international 
ethical standards and Helsinki declaration. The project, 
entitled “Neurobiological bases of mental reconstruction 
of visual and auditory stimuli” was pre-approved by the 
Research Assessment Committee of the Department of Psy-
chology (CRIP) for minimal risk projects, under the aegis of 
the Ethical committee of University of Milano-Bicocca, on 
February 3rd, 2020, protocol n: RM-2020-242).

Stimuli

In the EEG study, pictures taken from a previously vali-
dated Motivational Pictionary (see Proverbio and Pischedda 
2023b for details) were visually shown to the participants to 
elicit specific motivational states. The stimuli were coloured 
vignettes (Fig. 1) depicting male and female characters of 
the apparent age of a university student who, through their 
facial expressions, facial expressions, context, and use of 
props, showed clear signs of being in an imagined motiva-
tional state of need. Inside a small cloud representing the 
participant’s thoughts, the fulfilment of the wish was picto-
rially described. These desires were selected based on ques-
tionnaire preliminary administered to a sample of students. 
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session which included two 15-stimulus runs. The session 
aided the participants in comprehending the task require-
ments. Importantly, they were not asked to imagine move-
ment, music or play, but to actively evoke a motivational 
state of craving and desire for the three conditions.

EEG recording

Brain activity was monitored using 128 electrodes placed 
according to the 10 − 5 International system, with horizon-
tal and vertical electro-oculograms also being recorded. The 
averaged mastoids were used as the reference. Electrode 
impedance was kept below 5 kΩ, and the sampling rate 
was 512  Hz. EEG and EOG signals were captured using 
the Cognitrace system (ANT Software) and amplified with 
a bandpass filter (0.16–70 Hz). Any EEG artifacts exceed-
ing ± 50 µV were automatically rejected before averaging. 
EEG epochs synchronized with stimulus presentation were 
processed through the EEProbe system (ANT Software). 
ERPs were averaged offline from 100 ms before to 1200 ms 
after stimulus onset (of prompt for imagery).

The N400 response was quantified in the time window 
and where it reached its maximum amplitude (in between 
400 and 600 ms at anterior frontal sites, for details see Pro-
verbio and Pischedda 2023a). The component was similar 
to the fronto/polar N400 described in previous literature 
on imagery-related components (e.g., Schendan and Ganis 
2012). It proved to be very sensitive to the motivational 
state, being larger during imagery related to social play than 
movement and music.

The stimuli have been used and tested for their ability to 
clearly target mental content in a previous electrophysiolog-
ical study (Proverbio and Pischedda 2023a). The pictograms 
were correctly classified by 98.4% of the validation partici-
pants: the motivational states selected for this study were 
rated 2.7 (on a scale of 0–3) as easy to imagine, suggesting 
the reliability of the methodological procedure.

Stimuli were presented randomly to each participant in 
sets consisting of 36 stimuli. Each stimulus lasted for 2000 
ms and was followed by an ISI, which consisted of a blank, 
illuminated screen lasting between 900 ± 100 ms. The ISI 
was intended to eliminate any after-images on the retina 
resulting from the prior stimulation (see Fig.  2). A bright 
yellow frame was presented as a visual prompt for imagery. 
The frame was located in the corner of the screen against a 
grey background and lasted 2000 ms. The Inter Trial Inter-
val (ITI) was 150 ± 50 ms. Each stimulus was repeated 6 
times in different runs for averaging purposes.

Observers had to maintain focus on a specific point while 
recording. Participants were given written instructions to 
recreate the emotional or motivational state associated with 
the previously viewed image. They were required to keep 
their gaze fixed on the center of the screen and evoke a 
subjective feeling based on their own sensations. Prior to 
the EEG recording, participants attended a concise training 

Fig. 2  Time sketch of the experimental procedure

 

Fig. 1  Pictograms used to prompt for the three motivational states were taken from the “P.A.I.N. set” pictionary for assessing individual needs and 
motivational states in patients who are unable to communicate (Proverbio and Pischedda 2023b)
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Parietal areas (PARIETAL), Limbic areas (LIMBIC), Pre-
motor areas (PREM), Medial, Superior Frontal, and Dorso-
lateral Prefrontal areas (FRONTAL) and Orbitofrontal and 
Inferior-Frontal areas (OBF/IF). After initial analysis of all 
ROIs, the data relative to PARIETAL and LIMBIC ROIs 
were not included in the statistical analyses due their poorly 
differentiated values across the different motivational states 
examined. Indeed, they are known to be always active dur-
ing imagery of emotional relevant content, regardless of the 
specific motivational state (Antons et al. 2023; Sambuco et 
al. 2020).

As each ROI sometimes had more than one active dipole, 
the dipole with the highest magnitude in a given hemisphere 
was identified, and then the dipole with the highest magni-
tude in the corresponding homologous brain area was iden-
tified. Priority was given to homologous areas (same BA 
and same gyrus), but if this was not possible, the dipole with 
the highest magnitude in the opposite hemisphere within 
the ROI considered was selected. For statistical analysis, 
those homologous areas that were not active according to 
swLORETA were assigned a value of 0.50 nA (i.e., below 
statistical threshold).

A three-way repeated measures ANOVA was applied 
to the individual magnitudes of activation of the different 
active sources (in nA) recorded in the N400 latency range 
in the different imaginary states. Factors were: MOTIVA-
TIONAL STATE (3 levels: social play, music, movement), 
ROI (6 levels: OCC, FUSIF, TEMP, PREM, FRONTAL, 
OBF/IF) and HEMISPHERE (2 levels: left, right). Fisher 
and Tukey post-hoc comparisons were used to assess differ-
ences between means.

In addition, the Wilcoxon signed-rank test was used to 
compare the strength of the N400 electromagnetic sources 
in the brain areas of interest. More detailed analyses were 
performed for activations recorded in the temporal, OBF/
IF and pre-motor ROIs, in both left and right hemispheres, 
across the motivational states of ‘social play’, ‘music’ and 
‘movement’.

Results

Individual swLORETAs were applied to individual N400 
voltages (400–600 ms) recorded during the three motiva-
tional states. A list of all active electromagnetic dipoles, 
recorded for each individual as a function of the ROI and 
the motivational state considered is reported in Supplemen-
tary file 1. The resulting individual neuroimages are shown 
in the results section. The statistical analyses applied to the 
individual dipole strengths (in nA) recorded as a function 
of motivational state, ROI and cerebral hemisphere are 
reported below.

Data processing and analyses

To identify the cortical sources of the N400 component 
in response to simulated motivational scenarios of ‘social 
play’, ‘music’, and ‘exercise’, three swLORETA models 
were conducted per participant corresponding to each moti-
vational state. The N400 component was selected in that it 
proved to be the earliest and most reliable ERP index of 
category-specific imagery of motivational states, based on 
Proverbio and Pischedda (2023a) investigation.

Overall, 54 swLORETAs were analysed to identify corti-
cal sources associated with the N400 component elicited by 
simulated scenarios of “Social Play”, “Music”, and “Move-
ment” motivations. LORETA (Pascual-Marqui et al. 1994, 
1999, 2002; Pascual-Marqui 1999, 2002) is an inverse solu-
tion that estimates the density of cortical electric current 
based on measurements taken from the scalp. It utilizes 
realistic electrode coordinates and is applied to a three-con-
centric-shell spherical head model, which is registered to 
a standardized MRI atlas (Talairach and Tournoux 1988). 
This allows for an approximate anatomical labeling of the 
neocortical volume. A variant of LORETA, the standard-
ized Low-Resolution Brain Electromagnetic Tomography 
(sLORETA), introduced by Pascual-Marqui (2002), pro-
vided additional normalization of results to reduce sensi-
tivity to individual differences in brain anatomy. Later on 
Palmero-Soler et al. (2007), proposed another method to 
enhance the sLORETA called swLORETA (the one used in 
this study), which aimed to address two main challenges: 
firstly, to overcome the tendency of the linear inverse pro-
cedure to reconstruct sources near the sensor location and 
secondly, to reduce the solution’s sensitivity to noise in the 
data. This novel approach had shown superior performance 
compared to sLORETA, particularly in noisy conditions and 
for reconstructing deep sources (Palmero-Soler et al. 2007). 
SwLORETA offers improved accuracy and robustness in 
inverse solutions (e.g. Boughariou et al. 2015).

SwLORETA is a brain imaging technique that provides 
subset of 1056 electromagnetic dipoles, providing infor-
mation on their magnitude of activation (in nA) and tridi-
mensional coordinates in the cerebral space (Talairach and 
Tournoux 1988). In order to statistically analyze the large 
amount of data, and differentiate the specific sources of 
brain activation across the various motivational states, 8 
regions of interest (ROIs) per hemisphere were identified 
following the ROI clustering procedure used to perform sta-
tistical analyses on individual LORETA solutions (Babiloni 
et al. 2004, 2006; Cannon et al. 2008, 2009). The selected 
ROIs are listed in Table 1.

The designed ROIs, illustrated in Fig. 3, were the follow-
ing ones: Occipital areas (OCC), Fusiform gyri (FUSIF), 
Superior, Middle and Inferior Temporal areas (TEMP), 
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nA, SE = 0.32), occipital (M = 2.52 nA, SE = 0.26) and pre-
motor (M = 2.11 nA, SE = 0.18) ROIs. Intermediate brain 
activation was observed in the OBF/IF area (M = 1.94 
nA, SE = 0.26) (p < 0.03), while the smallest activity was 
recorded in the frontal area (M = 1.66 nA, SE = 0.17), which 
differed from the temporal (p < 0.001), fusiform (p < 0.01) 
and occipital (p < 0.02) activations.

Motivational state

The main factor Motivational State was not significant per 
se [F (2,34) = 0.76, p = 0.48], suggesting an anatomical 
specificity of brain activations depending on the three moti-
vational states.

Hemisphere

The ANOVA revealed the significant effect of hemisphere [F 
(1,17) = 6.06, p < 0.02], with greater magnitudes recorded 
over the right hemisphere (M = 2.47 nA, SE = 0.23) than 
over the left hemisphere (M = 2.06 nA, SE = 0.17), as shown 
in Fig. 4.

ROI

The ROI factor was also significant [F (5.85) = 5.05, 
p < 0.001], with greater amplitude over the temporal area 
(M = 2.78 nA, SE = 0.30), independent of motivational 
state. Post-hoc comparisons showed no significant differ-
ence in the activations recorded in the fusiform (M = 2.56 

Table 1  List of regions of interest identified and referenced to the Gyri and Brodmann areas (BAs) included in each cluster
ROIs BA GYRUS
OCC 18, 19 Inferior Occipital Gyrus
(Occipital Cortex) Middle Occipital Gyrus

Superior Occipital Gyrus
Lingual Gyrus (also BA 17)
Cuneus (also BA 17)

FUSIF 19, 20, 37 Fusiform Gyrus
(Fusiform Area) Cerebellum, Anterior Lobe

Posterior lobe, Declive
Middle occipital gyrus (only BA 37)
Inferior temporal gyrus (only BA 37)

TEMP 19, 20, 21, 22, 38, 39, 41, 42 Superior Temporal Gyrus
(Superior, Middle and Inferior Temporal Cortex) Middle Temporal Gyrus

Inferior Temporal Gyrus
PREM 4, 6 Precentral Gyrus (also BA 43)
(Premotor Cortex) Middle Frontal Gyrus

Medial Frontal Gyrus
Superior Frontal Gyrus
Precentral Gyrus
Paracentral Lobule

FRONTAL 8, 9, 46 Middle Frontal Gyrus
(Medial, Superior Frontal and Dorsolateral Prefrontal Cortex) Medial Frontal Gyrus

Superior Frontal Gyrus
ORB\IF 10, 11, 44, 45, 47 Superior Frontal Gyrus
(Orbitofrontal and Inferior Frontal Cortex) Medial Frontal Gyrus

Middle Frontal Gyrus
Inferior Frontal Gyrus
Rectal Gyrus

PARIETAL 1, 2, 3, 7, 19, 39, 40 Superior Parietal Lobule
(Parietal Cortex) Inferior Parietal Lobule

Precuneus
Postcentral Gyrus
Supramarginal Gyrus
Angular Gyrus

LIMBIC 20, 23, 24, 28, 31, 34, 35, 36, 38 Uncus
(Limbic Area) Cingulate Gyrus

Anterior Cingulate
PPA
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state, particularly the occipital (M = 2.94 nA, SE = 0.32; 
p < .001), fusiform (M = 2.79 nA, SE = 0.33; p < .001), and 
temporal (M = 2.54 nA, SE = 0.27; p = .005) ROIs. Simple 
effect analyses (within the two hemispheres) showed that the 
hemispheric asymmetry in brain activation was particularly 
pronounced during the Music motivational state, with stron-
ger right hemisphere activation (M = 2.74 nA, SE = 0.24) 
compared to the left (M = 2.02 nA, SE = 0.18). The more 
prominent ROI for music listening was the bilateral OBF/IF 
(M = 2.30 nA, SE = 0.36), as shown in Fig. 6. Post-hoc com-
parisons showed that the OBF/IF area was bilaterally more 
active (p = 0.02) during ‘music’ (M = 2.31 nA, SE = 0.36) 
than ‘social play’ (M = 1.58 nA, SE = 0.18) and ‘movement’ 
(M = 1.95 nA, SE = 0.37), motivational states.

Finally, the pre-motor ROI was more active during 
movement (M = 2.36 nA, SE = 0.22) than during the other 
motivational states (music: M = 2.05 nA, SE = 0.21; social 
play: M = 1.93 nA, SE = 0.30), as shown in Fig. 7. The pre-
motor cortex (M = 2.36 nA, SE = 0.23) was significantly 
more active (p < 0.001) than the frontal ROI (M = 1.37 nA, 
SE = 0.27) during the motivational state “Movement”. Acti-
vation in the pre-motor cortex (M = 2.36 nA, SE = 0.23) was 
significantly greater (p < 0.001) than activation in the frontal 
cortex (M = 1.37 nA, SE = 0.27) during the movement moti-
vation state. The frontal area was found to be the least active 
during this motivational state (p < 0.01), with a significantly 
lower magnitude (nA) compared to the following areas 
Occipital (M = 2.17 nA, SE = 0.29), Fusiform (M = 2.65 nA, 
SE = 0.39), Temporal (M = 2.61 nA, SE = 0.42). Overall, a 
simple effects analysis revealed a hemispheric asymmetry 

Motivational state x ROI

Indeed, the ANOVA showed the significant interaction of 
motivational state x ROI [F (10,170) = 2.30, p = 0.01]. 
Tukey post-hoc comparisons showed that the temporal area 
was the most active ROI during the Social Play motivational 
state (M = 3.20 nA, SE = 0.46) compared to all other areas: 
Premotor (M = 1.93 nA, SE = 0.30, p = 0.006), Frontal 
(M = 1.95 nA, SE = 0.33, p = 0.009), OBF/IF (M = 1.58 nA, 
SE = 0.18, p < 0.001), Occipital (M = 2.48 nA, SE = 0.28, 
p = 0.022) and Fusiform (M = 2.25 nA, SE = 0.44, p = 0.003) 
areas. Furthermore, the Temporal ROI was more active 
during the Social Play state than the Music Listening state 
(M = 2.54 nA, SE = 0.27, p = 0.04), and as a trend (p = 0.06) 
also with respect to the Movement motivational state 
(M = 2.61 nA, SE = 0.42). This difference reached full sig-
nificance over the right temporal cortex (p = 0.03), as shown 
by simple effects (“Social Play” M = 3.37 nA, SE = 0.53 vs. 
“Movement” M = 2.45 nA, SE = 0.42) (see Fig. 5). Posterior 
brain areas were more active during the Music motivational 

Fig. 4  Strength of electromagnetic signals (along with SD values) 
recorded over the left and the right hemispheres during the three moti-
vational states

 

Fig. 3  Anatomical subdivision of chosen regions of interest (ROIs) are 
displayed in an external side view (top) and sagittal view (bottom). 
Occipital areas are in green, fusiform in red, temporal in yellow, pre-
motor in light blue, frontal in blue, OBF/IF in orange, parietal in pink, 
limbic in purple
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Non-parametric tests

Wilcoxon signed-rank test was performed to more closely 
compare specific subsets of activations in specific brain 
areas, across motivational states, by focusing on ROIs that 
were found by ANOVA to be distinctive for a motivational 
state. The difference in strength of N400 electromagnetic 
sources (in nA) between the motivational states “Social 
Play”, “Music” and “Movement” with a focus on the 

in favour of the left hemisphere, with a stronger activation 
(p = 0.05) of the left premotor area during “Movement” 
(M = 2.66 nA, SE = 0.32) than during “Music” (M = 1.82 
nA, SE = 0.36) and “Social Play” motivational states 
(M = 1.82 nA, SE = 0.34).

Fig. 5  a) Example of pictogram used to prompt the social play desire; 
b) individual data relative to dipole strengths recorded within the left 
and right temporal ROIs as a function of motivational state; c) mean 
values of N400 power recorded as a function of the ROI, cerebral 
hemisphere and motivational state; d) coronal view of swLORETA 
source reconstruction of N400 surface potentials recorded in the 
400–600 ms time window during the social play motivational state 
(group data). Group LORETAs were performed on grand-average 
ERPs. The various colours represent differences in the magnitude of 

the electromagnetic signal (nA), with brighter colours (from orange to 
red) indicating maximum strength, and the darkest colours (from blue 
to black) indicating a value of 0. The electromagnetic dipoles appear 
as arrows and indicate the position, orientation and magnitude of the 
dipole modelling solution applied to the ERP waveform in the specific 
time window. L, left; R, right; numbers refer to the displayed brain 
slice in the coronal MRI imaging plane: from 1 to 217, where 18 is the 
most posterior cortical slice and 217 is the most anterior. Cortical slice 
numbering excluded MRI slices not containing cortex

 

1 3



Brain Topography

motivational states. This area provides to be a reliable 
marker of the social play motivational states across partici-
pants, with some variability (see Fig. 5b).

OBF/IF ROI

For the left OBF/IF area the non-parametric tests revealed 
significant differences in N400 dipole strength between 
“Music” and “Social Play” conditions [Wilcoxon signed-
rank test: Z (11) = 2.93, p = 0.003] and also between “Music” 
and “Movement” motivational states (as can be appreci-
ated in Fig. 6b) [Wilcoxon signed-rank test: Z (11) = 2.49, 
p = 0.013].

For the right OBF/IF area the non-parametric tests 
revealed significant differences in N400 dipole strength 

Temporal, OBF/IF and Premotor ROIs in the two cerebral 
hemispheres, respectively, was assessed through this test.

Temporal ROI

Individual activations recorded in the left Temporal ROI 
were stronger in the “Social Play” condition than in the 
“Music” condition [Wilcoxon signed-rank test: Z (17) = 2.34, 
p < 0. 02], whereas there was no difference with the Move-
ment condition [Wilcoxon signed-rank test: Z (17) = 1.32, 
p = 0.19]. However, individual activations recorded in the 
right Temporal ROI were significantly greater in the “Social 
Play” condition than in the “Music” condition [Wilcoxon 
signed-rank test: Z (17) = 3.52; p < 0.001] and “Move-
ment” [Wilcoxon signed-rank test: Z (17) = 3.62, p < 0.001] 

Fig. 6  a) Example of pictogram used to prompt the music listening 
desire; b) individual data relative to dipole strengths recorded within 
the left and right OBF/IF ROIs as a function of motivational state; c) 
mean values of N400 power recorded as a function of the ROI and 
motivational state but averaged across hemispheres; d) sagittal view of 
swLORETA source reconstruction of N400 surface potentials recorded 
in the 400–600 ms time window during the music listening motivational 
state (group data). Group LORETAs were performed on grand-average 
ERPs. The various colours represent differences in the magnitude of 

the electromagnetic signal (nA), with brighter colours (from orange to 
red) indicating maximum strength, and the darkest colours (from blue 
to black) indicating a value of 0. The electromagnetic dipoles appear 
as arrows and indicate the position, orientation and magnitude of the 
dipole modelling solution applied to the ERP waveform in the specific 
time window. P, posterior; A, anterior; numbers refer to the displayed 
brain slice in the sagittal MRI imaging plane: from 1 to 181, where 1 is 
the rightmost cortical slice and 181 is the leftmost slice
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Fig. 7  a) Example of pictogram used to prompt the movement desire; 
b) individual data relative to dipole strengths recorded within the left 
premotor ROI as a function of motivational state; c) mean values of 
N400 power recorded as a function of the ROI, cerebral hemisphere 
and motivational state (the data are also shown in Fig. 5c); d) axial 
view of swLORETA source reconstruction of N400 surface poten-
tials recorded in the 400–600 ms time window during the movement 
motivational state (group data). Group LORETAs were performed on 
grand-average ERPs. The various colours represent differences in the 
magnitude of the electromagnetic signal (nA), with brighter colours 

(from orange to red) indicating maximum strength, and the darkest 
colours (from blue to black) indicating a value of 0. The electromag-
netic dipoles appear as arrows and indicate the position, orientation 
and magnitude of the dipole modelling solution applied to the ERP 
waveform in the specific time window. L, left; R, right; numbers refer 
to the displayed brain slice in the axial MRI imaging plane: from 1 to 
181, where 1 is the deeper cortical slice (inferior) and 163 is the shal-
lower (superior). Cortical slice numbering excluded MRI slices not 
containing cortex
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and the Premotor ROI activation prevalent during the 
“Movement” state (Fig. 10).

During the imaginary desire state to “Socially Play” 
with friends, the swLORETA tomographic analyses of the 
individuals’ brain function (see Fig.  8) mostly revealed a 
bilateral neural activity in the temporal area. However, most 
participants (12 out of 18) displayed a right hemispheric 
asymmetry in the temporal activation. While consistently 
exhibiting substantial individual variances, activations can 
be also observed in the frontal-premotor and parietal areas.

During the imagined desire to listen to music, the 
swLORETA tomographic solutions of each subject (see 
Fig.  9) demonstrated a focus of activity in the OBF/IF 
region of interest, while still displaying significant indi-
vidual differences in the extent of activation. Additionally, 
common activation was found in the temporal, occipital, 
and frontal regions, with higher activity observed in the 
right hemisphere. Parietal activation was also detected in 
some subjects.

During the recalled desire for movement, the swLORETA 
tomographic solutions of individual subjects (see Fig. 10) 
demonstrated strong bilateral activation of premotor and 
temporal areas, alongside less pronounced activations in the 
occipital and parietal regions. Individual differences per-
sisted. However, most participants (11 out of 18) showed 
activation in the left premotor ROI, while it was on the right 
side for the remaining participants.

between “Music” and “Social Play” conditions [Wilcoxon 
signed-rank test: Z (14) = 3.29, p < 0.001] and as a strong 
trend between “Music” and “Movement” motivational 
states [Wilcoxon signed-rank test: Z (14) = 1.85, p = 0.06].

Premotor ROI

For the left Premotor area the non-parametric tests revealed 
significant differences in N400 dipole strength between 
“Movement” and both “Social Play” [Wilcoxon signed-
rank test: Z (18) = 3.72, p < 0.001] and “Music” [Wilcoxon 
signed-rank test: Z (18) = 3.29, p = 0.001] motivational 
states. This can be appreciated in Fig.  7b. For the right 
Premotor area the non-parametric tests did not reveal any 
statistically significant differences in N400 dipole strength 
between “Movement” and both “Social Play” [Wilcoxon 
signed-rank test: Z (15) = 0.62, p = 0.53] and “Music” [Wil-
coxon signed-rank test: Z (16) = 1.53, p = 0.13] motivational 
states.

Despite interindividual variability, swLORETA Tomog-
raphy Solutions supported statistical analyses of dipole 
strength for the N400 component of ERP recorded dur-
ing different motivational states. The present investigation 
focuses on the Temporal ROI activation, prevalent during 
the “Social Play” motivational state (Fig.  8), the OBF/IF 
ROI activation prevalent during the “Music” state (Fig. 9), 

Fig. 8  Sagittal view of individual swLORETA source reconstructions 
of electromagnetic signals recorded during the social play motiva-
tional state (N = 18). Numbers refer to the displayed brain slice in the 
sagittal MRI imaging plane: from 1 to 181, where 1 is the rightmost 

cortical slice and 181 is the leftmost slice. Twelve out of eighteen par-
ticipants displayed a right hemispheric asymmetry in the activation of 
the temporal ROI. Overall, 100% of participants displayed a temporal 
activation in this motivational state
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Fig. 10  Axial view of individual swLORETA source reconstructions of 
electromagnetic signals recorded during the movement motivational 
state (N = 18). Numbers refer to the displayed brain slice in the axial 
MRI imaging plane: from 1 to 181, where 1 is the deeper cortical slice 

(inferior) and 163 is the shallower (superior). Eleven out of eighteen 
participants displayed a left hemispheric asymmetry in the activation 
of the premotor ROI. Overall, 100% of participants displayed a premo-
tor activation in this motivational state

 

Fig. 9  Sagittal view of individual swLORETA source reconstructions 
of electromagnetic signals recorded during the music listening motiva-
tional state (N = 18). Numbers refer to the displayed brain slice in the 

sagittal MRI imaging plane: from 1 to 181, where 1 is the rightmost 
cortical slice and 181 is the leftmost slice. Overall, 100% of partici-
pants displayed an OBF/IF activation in this motivational state
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component for mental imagery. Most importantly, midline 
cortical structures belonging to the default mode network 
(Horn et al. 2013; Buckner et al. 2008) such as medial pre-
frontal cortex (Frontal ROI), the posterior cingulate cortex 
(Limbic ROI), the precuneus and angular gyrus (Parietal 
ROI) were found often active during all motivational states, 
as shown by a preliminary analysis with all ROIs (see also 
the Supplementary file), which is congruent with their role 
in self-referential processing, self-reflection, day-dreaming, 
and especially emotion of one’s self, i.e., reflecting about 
one’s own emotional state, which corresponded precisely to 
task requirements.

Social play

Overall, the Temporal ROI was more active during the 
“Social Play” than the other two imagery states, especially 
over the right hemisphere. It is noteworthy that the Tempo-
ral region (including the Superior Temporal, Middle Tempo-
ral, and Inferior Temporal Gyri), was the most active brain 
area, in the “Social Play” condition, with respect to the other 
ROIs.

The literature has emphasized the role of this area in 
processing social experiences (Haruno and Kawato 2009; 
Shinoura et al. 2011; Toller et al. 2015; Ong et al. 2021; Su 
et al. 2022), with the temporal region playing a key role in 
social memory and the retrieval of information pertaining 
to prior social experiences (Okuyama et al. 2016), Theory 
of Mind or mentalization during human interactions (Frith 
and Frith 2003), facial expression interpretation (Reisch et 
al. 2022), and visualization of friends’ faces and voices (Lee 
Masson and Isik 2021. The concept of social play is not 
exclusive to humans; as illustrated in the review by Kellman 
and Radwan (2022), it is an innate and universal behaviour 
that represents an intrinsic need for all mammals, allowing 
individuals to cultivate their social, cognitive and commu-
nicative skills. Indeed, Ong et al. (2021) have shown that a 
particular group of neurons in the STS signal the rewards 
procured by social and cooperative behaviour in monkeys, 
while Haruno and Kawato (2009) demonstrated how the 
STS plays a significant role in social and interactive play 
contexts. The participation of this area could also stem from 
its function in giving prognostic clues about the conduct of 
others (Frith 2007). In summary, the main activation of the 
Temporal area during social play desire corresponds to prior 
literature that links this region with various aspects of social 
interactions, specifically within the right hemisphere.

Music

During listening to “Music” motivational state a pro-
nounced right-sided asymmetry in brain activation was 

Discussion

The aim of the present study was to investigate brain signals 
associated with imaginary motivational states, thus possibly 
identify reliable neurocognitive markers of distinct mental 
states. Individual source reconstructions of neural activity, 
based on the N400 component of ERPs, were performed 
in relation to three frequently occurring secondary needs 
of young adults: “Social Play”, “Music” and “Movement”. 
Contrasting sources of reconstruction on an individual data 
level is notably novel, although this approach has been pre-
viously implemented in BCI research (e.g. Babiloni et al. 
2004, 2006; Cannon et al. 2008, 2009).

Both Kosslyn et al. (2001) and McNorgan (2012) (refer-
ring to mental imagery), and Kavanagh et al. (2005) (refer-
ring to motivational states) postulated that imaginary states 
would activate distinct brain regions, somewhat akin to 
those activated during corresponding sensory or functional 
processing, in a category-specific way. Indeed, while Koss-
lyn et al. (2001) and McNorgan (2012) argue that the neural 
processes responsible for perceiving sensory information 
within a specific modality also come into play during the 
process of mental imagery, Kavanagh et al. (2005) highlight 
the decisive role of imagery in desire sensation, as it repli-
cates sensory and emotional aspects of target experiences.

The main effect analysis of this study demonstrated a 
right hemispheric asymmetry in brain activation, irrespec-
tive of motivational states and ROIs. However, the asym-
metry was more pronounced for music imagery with a 
greater magnitude of N400 sources in the right hemisphere 
than the left. Consistently, previous studies have reported 
a right hemispheric asymmetry for tone imagery (Guo and 
Chen 2022), visuomotor imagery (Kwon et al. 2023), spa-
tial navigation imagery (Boly et al. 2007), facial expression 
imagery (Kim et al. 2007), emotional imagery (Tomasino 
et al. 2014) and music imagery (Zatorre and Samson 1991; 
Zatorre and Halpern 1993; Halpern 2001). On the flip side, 
a tendency towards left hemispheric asymmetry would be 
usual for imagining movement (Zou et al. 2022), imagining 
written language (see the review by Liu et al. 2022) or tools 
(Belardinelli et al. 2009).

In addition to the activation of distinct ROIs for each 
motivational state, a set of common areas were found to be 
involved during the imaginary motivational states and could 
be identified as their neural substrates. These areas mostly 
included visual, parietal and prefrontal cortices, which were 
particularly active during the imaginary states, as predicted 
based on previous literature (McNorgan 2012; Winlove et 
al. 2018; Dijkstra et al. 2019; Chen et al. 2021). Indeed, the 
parietal and prefrontal regions have been recognized for their 
part in short-term memory, allowing for the retention and 
manipulation of information (Chen et al. 2021); an essential 
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studies have highlighted the crucial role of the premotor 
region during movement execution, specifically in the con-
trolling and learning goal-oriented actions (Mochizuki et al. 
2005; Beurze et al. 2007; Cross et al. 2007; Rizzolatti and 
Sinigaglia 2010), especially in the left hemisphere (Schluter 
et al. 2001; Johansen-Berg et al. 2002; Rushworth et al. 
2003). In the motor imagery field, the functional role of the 
PMC is supported by evidence indicating that stroke patients 
with an intact PMC retain their motor imagery capabilities 
(Johnson et al. 2002). Furthermore, several studies have 
documented the involvement of the PMC region during 
motor imagery tasks (Decety et al. 1990, 2004; Guillot et al. 
2009; Lorey et al. 2009; Gao et al. 2011; Oostra et al. 2016).

In the present study, participants were instructed to imag-
ine the urge to move (which was made easier by the cir-
cumstance that they had to maintain absolute immobility for 
EEG recording purposes). Therefore, it can be assumed that 
they impersonated this desire from a first-person perspec-
tive, incorporating kinesthetic sensations, and thus leading 
to a more pronounced involvement of the left premotor area 
compared to the other two imagery conditions. A left-sided 
asymmetry in kinesthetic motor imagery has been found 
in previous neuroimaging studies (Kuhtz-Buschbeck et al. 
2003; Lorey et al. 2009; Gao et al. 2011; Orlandi et al. 2020). 
For example, Lorey et al. (2009) reported a greater activa-
tion over left sensorimotor and posterior parietal structures 
when performing a first-person perspective task involving 
kinesthetic motor imagery, as opposed to motor imagery tri-
als that adopted a third-person perspective, as if they were 
observing another person performing the movements.

“Movement” motivational state was also associated with 
a large activation of the parietal ROI (see the Supplemen-
tary file), which aligns with prior literature suggesting that 
motor imagery is grounded in a distributed Fronto-Parietal 
Network enabling “emulation”. This core process would 
specifically deals with motor representations that generates 
a dynamic representation of abstract movement kinematics, 
supporting the internal manipulation of these representa-
tions and ensuring their short-term maintenance (Hétu et 
al. 2013; Ptak et al. 2017). Consistent with this notion, dis-
ruptions in this prefrontal-parietal network could explain 
impaired motor imagery ability (McInnes et al. 2016; Oos-
tra et al. 2016).

In conclusion, the present study aimed at reconstructing 
individual patterns of neural activity associated with N400 
ERP component (Proverbio and Pischedda 2023a) recorded 
from scalp in association with different motivational imagi-
nary states. Indeed, ERP responses recorded in highly simi-
lar imagery paradigms were successfully classified through 
machine learning algorithms (Leoni et al. 2022, 2023). Here, 
we investigated whether it was possible to find neural sig-
natures of mental states for brain computer interface (BCI) 

found regardless of the ROI considered, which is consis-
tent with earlier research indicating a right lateralization for 
music processing and music imagery (Halpern and Zatorre 
1999; Halpern et al. 2004; Herholz et al. 2012). Among 
other evidences, there is a documented case where a patient 
with a right hemisphere infarction, affecting the frontal and 
anterior temporal areas, experienced musical hallucinations, 
which clearly points to a role of the right hemisphere in the 
control and development of musical imagery (Buchwald et 
al. 2020).

As the temporal ROI was also highly engaged in the 
“social play” state, the OBF/IF region was found to be the 
most distinctive ROI characterising the “Music” motiva-
tional state, exhibiting greater activity during “Music” than 
the other two states. In the auditory imagery field, several 
studies have shown how the IFG and the PFC (Zatorre et 
al. 1996; Yoo et al. 2001; Leaver et al. 2009; Herholz et al. 
2012; Lima et al. 2015) along with the PMC and the second-
ary auditory cortex are strongly involved in music imagery. 
Interestingly, Griffiths (2000) found a correlation between 
musical hallucinosis and the inferior frontal cortices, tem-
poral lobes, basal ganglia, and the cerebellum. In examin-
ing the more emotional aspect of music, other investigations 
have shown how the optimal groove, sense of rhythm, flow, 
and pulsation that is perceived in a musical piece, are able 
to activate OBF and the NAc, regions that are important 
components of the reward network (Matthews et al. 2020). 
Research has shown that music-induced emotions activate 
the reward-motivation circuit (Blood and Zatorre 2001) and 
can modulate the activity in brain structures linked to emo-
tions, including the OBF (Koelsch 2014). Moreover, Huang 
et al. (2018) proposed that the OBF, along with the limbic 
regions and the pregenual ACC, play a central role in the 
emotional component of a central craving network. It is evi-
dent how the longing and expectation for the enjoyment of 
one’s preferred music could activate the OBF cortex dis-
tinctively for music desire. Moreover, during music moti-
vational state, it was possible to observe the activation of 
the temporal area especially over the right hemisphere. This 
finding is in line with the previous literature the neural basis 
of both music perception (Warren et al. 2003; Warren 2008) 
and imagery (Zatorre et al. 1996; Halpern 2001; Yoo et al. 
2001; Halpern et al. 2004; Herholz et al. 2012; Buchwald 
et al. 2020).

Movement

One of the more active areas, and the most distinctive, for 
the “movement” motivational state was the premotor cor-
tex, with a general left hemispheric asymmetry. Indeed the 
left premotor cortex (PMC) was more active during desire 
for “movement” than the other two imagery states. Several 
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