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Latent variable models

Latent variable models

A latent variable model (Bartolucci et al., 2022) is a statistical
model in which the distribution of the response variables is affected
by one or more variables that are not directly observable

A possible classification of these models distinguishes between
discrete and continuous latent variables; here, we consider two special
classes of discrete latent variable models, namely latent class and
hidden Markov
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Latent variable models

Expectation-Maximization algorithm

Maximum likelihood estimation of model parameters is based on the
complete data log-likelihood function ℓ∗(θ) and it is performed
through the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977; McLachlan and Krishnan, 2008)

Alternate the following steps until a suitable convergence condition:

E-step: compute the conditional expected value of ℓ∗(θ), given the
observed data and the value of the parameters at the previous step
M-step: maximize the expected value of ℓ∗(θ) and so update the
model parameters

The E-step is based on specific conditional posterior probabilities,
with respect to which the expected values are computed, in the
following generically referred to as q(·)
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Latent variable models The problem of local maxima

The problem of local maxima

The EM algorithm is straightforward to implement, it is able to
converge in a stable way to a local maximum of the log-likelihood
function and it is used for parameter estimation in many available
packages

However, a well-known drawback is related to the multimodality of
the log-likelihood function, especially when the model has many latent
classes; therefore the global maximum is not ensured to be reached

Currently, a multi-start strategy is typically adopted, based on
deterministic and random rules; however this approach may be
computationally intensive and it does not guarantee convergence to
the global maximum
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Tempered EM algorithm The basic idea of tempering techniques

Tempering approach

In an optimization context, tempering and annealing (Sambridge,
2013), constitute a broad family of methods consisting in re-scaling
the objective function on the basis of a variable, known as
temperature, that controls the prominence of all maxima

By properly tuning the sequence of temperature values, the
procedure is gradually attracted towards the global maximum,
escaping local sub-optimal solutions:

high temperatures allow exploring wide regions of the parameter
space, avoiding being trapped in non-global maxima

low temperatures guarantee a sharp optimization in a local region of
the solution space

A similar approach was applied to Gaussian mixture models (Ueda
and Nakano, 1998; Zhou and Lange, 2010; Lartigue et al., 2021)
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Tempered EM algorithm Derivation of the algorithm

Tempered EM Algorithm: Derivation

We implement the tempered EM (T-EM) algorithm, by adjusting
the computation of the conditional expected frequencies in the E-step

We define the following family of tempered probabilities:

q̃(τ)(·) ∝ q(·)1/τ ,

where τ ∈ [1,+∞) is the temperature value such that:

the choice τ → +∞ yields q̃(τ)(·) to a uniform distribution

the choice τ = 1 recovers the original distribution q(·)

At each E-step of the T-EM algorithm, the conditional expected
frequencies are computed accordingly
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Tempered EM algorithm Derivation of the algorithm

Tempering profile

We define a sequence of temperatures (τh)h≥1, such that:

τ1 is sufficiently small so that q̃(τ1)(·) is relatively flat

τh tends towards 1 as the algorithm iteration counter increases

The resulting sequence, known as tempering profile, guarantees a
proper convergence of the T-EM algorithm

To ensure flexibility to the tempering profile, it depends on a set of
constants; a suitable grid-search procedure is employed to select the
optimal configuration of tempering constants
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Tempered EM algorithm Derivation of the algorithm

Tempering profile

In particular, we consider two classes of tempering profiles:

a monotonically decreasing exponential (M-T-EM) profile:

τh = 1 + eβ−
h/α

a non-monotonic profile with gradually smaller oscillations
(O-T-EM)

τh = tanh
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Simulation study

Simulation study

To evaluate the performance of the T-EM algorithm, we conduct an
extensive Monte Carlo simulation study:

1 after fixing a set of models parameters, we draw many samples from
the corresponding model

2 for each sample, we estimate a misspecified model 100 times; in
particular, 100 starting values are randomly selected and employed to
fit the model with EM, M-T-EM and O-T-EM algorithms

3 on the basis of the maximized log-likelihood values, we compare the
performance of the EM and T-EM algorithms

The criteria considered to compare the behavior of the algorithms are
the following:

mean and median of the maximized log-likelihood values
ability to reach the global maximum
mean distance from the global maximum
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Simulation study

Objectives of the study

1 We analyze the performance of the T-EM algorithm when the
termpering profile is optimally tuned through a grid-search
procedure

2 We test the proposal without performing a preliminary tuning
procedure for the tempering constants, but fixing them in advance

3 We compare the proposed T-EM algorithm with the original EM
algorithm with regard to the computational time
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Simulation study

1. Analysis of T-EM with optimally tuned profiles

Employing the T-EM algorithm, the distribution of maximum
log-likelihood values appears to be much more concentrated towards
the global maximum: both mean and median show significantly
higher values with the M-T-EM or O-T-EM

With the standard EM algorithm the proportion of times the global
maximum is reached rarely exceeds 70%. With the T-EM algorithms,
such a proportion noticeably increases: it results very often equal to
100%, thus meaning that the algorithm always leads to the global
maximum

When the T-EM algorithm is employed, the mean distance from the
global maximum decreases for all samples, often reaching very low
values. Only in a tiny minority of cases this improvement is just mild
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Simulation study

1. Analysis of T-EM with optimally tuned profiles

As an example, we propose a portion of the results obtained for the
LC model

We compare the mean and the median of maximized log-likelihood
values, proportion of global maximum and mean distance from the
global mode, using EM, M-T-EM and O-T-EM alogorithms; each row
refers to a specific sample, and values in bold highlight the best results

Mean Median Freq. [Dist.] (Glob. Max)

EM M-T-EM O-T-EM EM M-T-EM O-T-EM EM M-T-EM O-T-EM

-2821.79 -2820.59 -2820.20 -2820.80 -2820.20 -2820.20 71% [1.59] 91% [0.39] 100% [0.00]
-2859.49 -2859.17 -2858.32 -2859.97 -2858.32 -2858.32 81% [1.75] 94% [1.43] 100% [0.58]
-2816.34 -2813.95 -2813.84 -2813.99 -2813.99 -2813.99 74% [3.26] 99% [0.87] 100% [0.76]
-2771.62 -2769.18 -2768.82 -2768.82 -2768.82 -2768.82 62% [2.80] 94% [0.36] 100% [0.00]
-2834.76 -2833.62 -2833.19 -2833.19 -2833.19 -2833.19 64% [1.57] 89% [0.43] 100% [0.00]
-2841.04 -2840.85 -2840.46 -2840.95 -2840.95 -2840.95 93% [1.60] 100% [1.41] 100% [1.02]
-2807.84 -2806.24 -2806.68 -2807.49 -2805.89 -2806.68 69% [2.42] 100% [0.82] 100% [1.26]
-2802.44 -2800.01 -2799.58 -2801.32 -2799.58 -2799.58 66% [2.86] 95% [0.43] 100% [0.00]
-2880.24 -2879.76 -2879.06 -2879.10 -2879.07 -2879.06 67% [1.65] 76% [1.16] 100% [0.47]
-2846.62 -2845.37 -2845.07 -2845.14 -2845.07 -2845.07 66% [2.56] 95% [1.30] 100% [1.01]
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Simulation study

2. Analysis of T-EM with fixed profiles

All the chosen configurations of tempering parameters provide
excellent results: given a fixed configuration, the T-EM algorithm
outmatches the standard version in around 70% of samples

Once a configuration of tempering constants is set by grid-search
over a specific sample, it generically remains valid for more than
70% of other samples sharing the same features (mainly, the same
number of response variables and categories)

For most cases, the optimal configurations of tempering constants
have to be chosen from a list simply depending on the sample
characteristics, thus making the tuning procedure significantly
faster, and the proposed tempering approach suitable and sufficiently
general for a broad class of models

Only a few samples still require a proper and complete tuning of
tempering profile
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Simulation study

2. Analysis of T-EM with fixed profiles

The advantage is relevant for both the monotonic and the oscillating
tempering profiles and for both models
In the example below, a list of 12 different configurations of
tempering constants (on the rows) is considered for applying the
M-T-EM algorithm to 40 different samples (on the columns) drawn
from an HM model with categorical responses
When the M-T-EM version outperforms the standard EM algorithm in
all criteria, a blue square is shown; when at least one criterion shows
a better result for the classic EM algorithm, a green square is shown

α β Samples
3 0.4
3 0.3
3 0.2
2 1.1
2 1
2 0.9
2 0.8
2 0.7
2 0.6
1 2
1 1.9
1 1.8
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Simulation study

3. Analysis of T-EM in terms of computational time

Computational time (in seconds) of the EM, M-T-EM, and O-T-EM
algorithms considering 50 samples drawn from the LC model and 100
starting values for each sample

Algorithm Minimum Median Mean Maximum

EM 0.0571 0.3050 0.3591 1.9521
M-T-EM 0.1025 0.4727 0.5647 2.1454
O-T-EM 0.1023 28.5897 28.9212 63.4069

EM algorithm and M-T-EM are approximately equally fast

O-T-EM requires a much larger computational time (up to 30
times slower)
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Simulation study

3. Analysis of T-EM in terms of computational time

Computational time (in seconds) of the EM and M-T-EM algorithm
considering 40 samples drawn from the HM model with categorical
responses and 100 starting values for each sample

Algorithm Minimum Median Mean Maximum

EM 0.098 2.319 2.705 13.332
M-T-EM 3.261 26.502 31.635 109.250

Differently from what observed for the LC model, the computational
time of the M-T-EM algorithm is higher than that of the standard
EM algorithm

The overall behavior of the T-EM algorithm is still the best, since a
single execution requires the same time of about 10 runs of the EM
algorithm, which are insufficient to detect the global maximum
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