
PangeBlocks: customized construction 
of pangenome graphs via maximal blocks
Jorge Avila  Cartes1, Paola Bonizzoni1*, Simone Ciccolella1, Gianluca Della  Vedova1 and Luca Denti1,2 

Background
The notion of a microbial pangenome goes back to 2005 [1], and it is usually considered 
the first example of the use of the term pangenome to describe multiple genomes. Under 
this definition, the microbial pangenome comprises two fundamental components: the 
core genome, encompassing the genes that are ubiquitous across all strains within a 
given microbial population, and the dispensable genomes, which encompass genes that 
are absent in at least one strain within the population.

Abstract 

Background:  The construction of a pangenome graph is a fundamental task 
in pangenomics. A natural theoretical question is how to formalize the computational 
problem of building an optimal pangenome graph, making explicit the underlying 
optimization criterion and the set of feasible solutions. Current approaches build 
a pangenome graph with some heuristics, without assuming some explicit optimiza-
tion criteria. Thus it is unclear how a specific optimization criterion affects the graph 
topology and downstream analysis, like read mapping and variant calling.

Results:  In this paper, by leveraging the notion of maximal block in a Multiple 
Sequence Alignment (MSA), we reframe the pangenome graph construction problem 
as an exact cover problem on blocks called Minimum Weighted Block Cover (MWBC). 
Then we propose an Integer Linear Programming (ILP) formulation for the MWBC prob-
lem that allows us to study the most natural objective functions for building a graph. 
We provide an implementation of the ILP approach for solving the MWBC and we 
evaluate it on SARS-CoV-2 complete genomes, showing how different objective func-
tions lead to pangenome graphs that have different properties, hinting that the spe-
cific downstream task can drive the graph construction phase.

Conclusion:  We show that a customized construction of a pangenome graph based 
on selecting objective functions has a direct impact on the resulting graphs. In par-
ticular, our formalization of the MWBC problem, based on finding an optimal subset 
of blocks covering an MSA, paves the way to novel practical approaches to graph 
representations of an MSA where the user can guide the construction.
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Nowadays sequencing organisms is essentially routine, as we have witnessed dur-
ing the SARS-CoV-2 pandemic, when millions of viral genomes have been sequenced. 
The introduction of Next-Generation Sequencing (NGS) technologies in 2006 made 
sequencing cheaper and more accessible. Later on, a new sub-area of research in com-
putational biology was consolidated to address the intrinsic challenges introduced by the 
availability of several genomes, named computational pangenomics. In computational 
pangenomics, a pangenome is a collection of genomic sequences to be analyzed jointly, 
or to be used as a reference [2]. The natural representation of a pangenome is a directed 
graph [3], therefore computational pangenomics highlights the transition from working 
with reference genomes as strings to pangenome graphs.

Pangenome graphs have demonstrated their ability to encompass more comprehensive 
information, notably in the domain of crops  [4], bovine  [5] and human  [6] data, with 
important implications for accurate identification of structural variations, especially 
when contrasted with conventional linear reference genome assemblies. Furthermore, 
a noteworthy issue associated with linear reference genome assemblies is the lack of 
genetic diversity that characterizes, for example, the human reference, but is especially 
evident in bacterial pangenomes. Specifically, it has been empirically established that the 
current human reference (GRCh38) inadequately captures the genetic diversity within 
the African population [7].

The need for richer data structures to represent pangenomes is clear. However, the 
pursuit of establishing an unambiguous notion of optimal pangenome graph is still 
unsettled. For example, pangenome graphs can be built with different tools (vg   [8], 
minigraph  [9], pggb  [10], minigraph-cactus  [6], make_prg  [11], founder-
blockgraph   [12]), but the comparison of their results has always relied on specific 
downstream analyses [5, 6, 13], while we would like to have a quality measure that is not 
overly dependent on downstream analysis.

It is noteworthy that computational tools diverge in several critical attributes, includ-
ing scalability, the ability to represent exactly the original genomes, the presence of 
cycles in the graph, and the proficiency in showcasing well-documented genetic vari-
ants. In particular, a critical aspect to consider in the construction of a pangenome graph 
is whether the graph is suitable for tasks such as mapping reads under the seed-and-
extend paradigm. In fact, when most of the vertices have a label that is shorter than the 
seed length, obtaining a high quality alignment becomes harder [8, 14–16].

We propose a formal framework to build a variation graph  [3]) that (1) is acyclic 
and (2) represents perfectly the input genomes, from a Multiple Sequence Alignment 
(MSA) of the input genomes. More precisely, we frame the pangenome construction 
problem as finding an optimal tiling of the MSA into blocks, where each block is the 
set of cells of the MSA defined by a set of rows and an interval of consecutive columns, 
where all rows of the block are labeled by the same string. Each block becomes a ver-
tex of the pangenome graph and we add arcs to the graph to connect blocks that are 
adjacent in the MSA. This guarantees that each input sequence corresponds to a path 
of an acyclic graph. More precisely, we introduce an optimization problem, the Mini-
mum Weight Block Cover problem, in short MWBC, which, given a set of blocks, finds 
an optimal subset of blocks that cover the MSA. The MWBC problem is a special case 
of a more general optimization problem, called General Minimum Weight Block Cover 
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problem that asks for a set of blocks that cover the MSA, where the set is optimum w.r.t. 
a weighted function defined over the solution.

Other approaches, based on Elastic Founder Graphs (EFG) [12, 17, 18] use the notion 
of block as a portion of the MSA resulting from a vertical segmentation of it. Under this 
definition, a block is essentially a subMSA instance, where several strings might belong 
to a block, while our definition of block is based on maximal blocks and relates to a 
unique string. The EFG approach aims to create indexable graphs for linear time pattern 
matching queries and propose several optimization criteria for the segmentation of the 
MSA for enhancing the efficiency and expressiveness of the graph for queries.

Currently, make_prg [11] and founderblockgraph [12] are the only tools that 
guarantee the construction of an acyclic graph. The former builds a sequence graph, 
which is a graph whose paths are not distinguished. On the other hand, the second one 
creates a variation graph with all sequences explicitly expressed as a path in the graph, 
but both express all input sequences in the final graph. On the other hand, vg can 
remove cycles from a variation graph, but only at a later step: its main heuristics are tai-
lored for the general case.

The MWBC problem is similar to some problems that have been studied in the litera-
ture, such as the Weighted Rectangle Cover [19] or the Maximum Weighted Submatrix 
Coverage [20] problems. Unfortunately, none of those problems are on matrices contain-
ing characters and where the order of the rows is irrelevant, therefore MWBC does not 
inherit their hardness results. On the other hand, the similarities are sufficiently strong 
that we conjecture that MWBC is NP-hard.

Besides the formulation of the MWBC problem, we propose an ILP approach for solv-
ing MWBC, based on the classical ILP formulation of Exact Set Cover  [21]. To avoid 
including all possible blocks of an MSA in the formulation, first we identify its maximal 
blocks, a notion introduced in the context of haplotyping, since they can be computed in 
linear time [22].

More precisely, we use an extension, called Wild-pBWT1 [23], that works on an arbi-
trary alphabet, with this approach we can compute blocks directly over an MSA over 
the alphabet � = {A,C ,G,T ,N } extended with the special symbol − called indel. Hence 
characters N and − are treated equally as ACGT​ for computing blocks.

Moreover, we restrict our attention to blocks that are obtained by decomposing over-
lapping maximal blocks. We will describe two decomposition strategies; a slower strat-
egy that produces more blocks, but is limited to smaller instances, and a faster strategy 
that can be applied to larger MSAs. The result of the decomposition phase is a set of 
blocks that is an instance of MWBC.

We propose and analyze five different objective functions for the ILP formulation, 
each tailored for a different goal. Those objective functions aim to highlight some meas-
urable properties that the graph should exhibit, such as the length of the labels, the num-
ber of paths traversing the vertices, and the total size of the graph. These are the first 
elementary properties that can be measured or optimized when constructing the graph. 
On the other hand, an open question is how can we computationally encode in the graph 

1  https://github.com/AlgoLab/Wild-pBWT
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construction some properties that are biological meaningfully, such as how to represent 
similarities or differences between the sequences or some biological events.

We assess experimentally the impact on the final pangenome graph of the different 
strategies used to produce the set of blocks that is an instance of the MWBC prob-
lem. Then we measure the impact of the objective functions on an MSA built from 
50 complete SARS-CoV-2 genomes — we have obtained similar results on 20 and 100 
complete SARS-CoV-2 genomes.

Our results show that a strategy that produces a larger set of blocks improves sig-
nificantly the optimal values reached by each objective function at the expense of an 
increase in the computation time for solving the MWBC problem.

Most notably, with pangeblocks we were able to construct variation graphs where 
the number of potential seeds is much larger than the graphs computed by pggb— this 
is a property that helps tools based on seeding approaches like GraphAligner [14]. We 
also notice that graphs built with vg are closer (w.r.t. the properties measured) to the 
graphs built with pangeblocks when minimizing the length of the graph. On the 
other hand, compared to pggb, pangeblocks is able to produce graphs with a smaller 
number of nodes in general, and in particular has significantly fewer nodes that are used 
by only a smaller percentage of the input genome sequences. In conclusion, the experi-
mental analysis shows that pangenome graph measures may significantly change with 
the use of objective functions in building an optimal graph under such functions.

Methods
Preliminaries

In what follows, we recall and give some definitions needed to define the problem we 
are solving. We start with the definitions of variation graph and sequence graph [3]. 
In the paper, we deal with strings over the alphabet � = {A,C ,G,T ,N } extended with 
the special symbol − called indel that is not in � . The length of the string s, denoted 
by |s|, is the number of characters of s.

Given a string s, we denote s[b  : e] the substring of s from position b to position e, 
where 1 ≤ b ≤ e ≤ |s| , and the i-th element of s is denoted by s[i].

Definition 1  (Variation Graph  [3]) A variation graph G = �V ,A,W � is a directed 
graph whose vertices are labeled by nonempty strings, with � : V �→ �+ being the labe-
ling function, and where A denotes the set of arcs and W denotes a nonempty set of 
distinguished walks.

A sequence graph G = �V ,A� is a graph obtained from a variation graph by ignoring 
the set W of distinguished walks. Let G be a variation graph and let w = �v1, . . . , vl� be 
a walk of G. Then the label of the walk w is the concatenation �(w) = �(v1) · · · �(vl) of 
the labels of the vertices of the walk. Given the string g, then G expresses g if there is a 
walk w ∈ W  such that the label of the walk w is exactly g, that is �(w) = g .

Since our algorithm starts from an MSA, we need to provide a formal definition of 
multiple sequence alignment, while referring the reader to  [24] for a more detailed 
exposition.
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Definition 2  (Expansion of a sequence) Given a string s = s[1]s[2] · · · s[n] over the 
alphabet � , an expansion t of s is obtained by possibly inserting indels into s . A maximal 
substring of t containing only indels is called a gap.

Definition 3  (Multiple Sequence Alignment (MSA)) Let S = {s1, . . . , sm} be a set of 
m strings. Then an MSA of S is a set T = {t1, . . . , tm} such that each ti is an expansion 
of si , all ti have the same length n (also called the length of the MSA) and for all j with 
1 ≤ j ≤ n , then there exists a ti such that ti[j] �= −.

We will use the example of Fig.  1 as a running example to introduce the technical 
aspects of this paper.

A variation graph is a representation of an MSA [25], but such a representation is not 
unique. Indeed there can exist more than one variation graph expressing the sequences 
in an MSA. Conversely, from each variation graph we can obtain several MSAs, e.g. 
depending on where indels are inserted. However, it is not immediate to obtain those 
alignments, since a graph might contain cycles that must be broken to obtain the MSA.

In this paper we explore a connection between MSAs and variation graphs based on 
the notion of block, where a block is a portion of the MSA correponding to the same 
string and is associated with a vertex of the variation graph.

In what follows, given a set S = {s1, . . . , sm} of sequences and a subset K ⊂ {1, . . . ,m} 
of indexes, S|K  is defined as the set {si : i ∈ K } . We can now introduce the definition of 
block.

Definition 4  (Block) Let T = {t1, . . . , tm} be an MSA of length n. Then a block is a tri-
ple (K, b, e) with K ⊆ {1, . . . ,m} , K  = ∅ and 1 ≤ b ≤ e ≤ n , such that ti[b : e] = tj[b : e] 
for all i, j ∈ K .

The label of the block (K, b, e) is the string tl[b : e] , for any l ∈ K .
Informally, a block is a collection K of rows of the MSA and an interval of columns 

between b and e such that all rows of K in that interval are the same sequence.
In this paper, each vertex of the variation graph corresponds to a block, and the label 

of the vertex is exactly the label of the block. Moreover, the vertices of the graph corre-
spond to non-overlapping blocks of the MSA. While the number of blocks is exponential 
in the number of sequences, maximal blocks can be computed in linear time, where a 
block (K, b, e) is maximal if enlarging K, decreasing b, or increasing e does not result in 
a block.

Fig. 1  Example of MSA on the sequences � = AACCGA , � = AAACGAT  , ♦ = GAACGAT  , 
�

= CAACGAT  , and 
�

= AATCCGGAA
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Definition 5  (Maximal block) Let T = {t1, . . . , tm} be an MSA of length n, and let 
(K, b, e) be a block of T  . Then (K, b, e) is a maximal block if: 

1.	 for each h ∈ {1, . . . ,m} \ K  , th[b : e] �= tk [b : e] for any k ∈ K  (row-maximality),
2.	 b = 1 or ti[b− 1] �= tj[b− 1] for some ti, tj ∈ T

∣

∣

K
 (left-maximality), and

3.	 e = n or ti[e + 1] �= tj[e + 1] for some ti, tj ∈ T
∣

∣

K
 (right-maximality).

Finally, we say that two blocks are overlapping if they share some entry of the MSA.

Definition 6  (Overlapping blocks) Two blocks (K1, b1, e1) and (K2, b2, e2) overlap if (1) 
K1 ∩ K2 �= ∅ and (2) there exists an integer i such that b1 ≤ i ≤ e1 and b2 ≤ i ≤ e2.

The MWBC problem

We formalize the variation graph construction as computing a block cover of the MSA.

Definition 7  (Block Cover) Let T = {t1, . . . , tm} be an MSA of length n over m 
sequences, and let B be a set of blocks of T  . Then B is a cover of the MSA T  if, for 
each 1 ≤ i ≤ m and 1 ≤ j ≤ n , there exists at least a block (K, b, e) such that i ∈ K  and 
b ≤ j ≤ e . Moreover, if all blocks in B are non-overlapping, then B is an exact cover of 
the MSA.

The natural computational problem that we formalize is the Minimum Weight 
Block Cover, where the instance is an MSA and we want to compute an exact cover of 
the MSA using blocks that minimize some objective function (Figs. 2, 3).

Notice that we are not specifying the objective function here, since different biolog-
ical settings will result in different objecting functions. In fact, one of the advantages 
of our approach is that we can easily consider different objective functions, resulting 
in the following (meta)problem .

Problem 1  (General Minimum Weight Block Cover (G-MWBC)) The instance of the 
G-MWBC problem is an MSA T  . Then a feasible solution is an exact cover C of T  . We 

Fig. 2  Two overlapping maximal blocks whose sets of rows are not nested. On the left, the (dashed line) 
block ({�,�,

�
}, 1, 2) , on the right the (solid line) block ({�,♦,△}, 2, 9)
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denote f() as the objective function. Then C is an optimal solution if C minimizes the 
objective function.

Our strategy to solve G-MWBC will mainly consist of selecting a set of blocks B and 
looking for a subset of B that is an exact cover of the MSA. This is formalized with the 
following computational problem, where the set of possible blocks is given as part of the 
instance.

Problem  2  (Minimum Weight Block Cover given a set of blocks (MWBC)) The 
instance of the MWBC problem is an MSA T  and a set B of blocks of the MSA. Then a 
feasible solution, if it exists, is an exact cover C ⊆ B of T  . We denote f() as the objective 
function. Then C is an optimal solution if C minimizes the objective function.

As already observed, we conjecture that G-MWBC and MWBC are NP-hard even 
though they are restricted versions of the (weighted) exact set cover. In fact, we can eas-
ily encode an instance of MWBC as an instance of minimum weight exact set cover, and 
G-MWBC is the special case of MWBC where B is the set of all possible blocks of the 
MSA.

Building a variation graph from a block cover

Once we have an exact cover C of the MSA (e.g.  Fig. 4), we compute a variation graph 
whose vertices are exactly the blocks of the cover, and two blocks (K1, b1, e1) and 
(K2, b2, e2) are an arc of the graph iff e1 = b2 − 1 , and K1 ∩ K2 �= ∅ , that is those blocks 

Fig. 3  Two overlapping maximal blocks with nested sets of rows. Starting from the left, we have the (solid 
line) block ({�,♦,△}, 2, 9) and the (dashed line) block ({�,�,♦,△,

�
}, 7, 8) . The second (dashed line) block is 

a vertical block because it contains all rows of the MSA

Fig. 4  Exact cover of the MSA of Fig. 1. Blocks with a solid line contain at least 2 rows. Blocks with dashed 
lines contain only 1 row — they are one-row or one-character blocks. The same colors will be used for the 
associated variation graph (see Figs. 5 and 6)
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correspond to consecutive columns of the MSA, and share at least one row. Observe 
that the variation graph we build is a directed acyclic graph.

The label of a vertex is the label of the corresponding block, as shown in Fig. 5.
Observe that, by construction, each row of the MSA is the concatenation of the 

labels of blocks corresponding to a path of the graph. This means that the graph we 
have obtained is a lossless representation of the input sequences of the MSA.

Although the graph represents each input sequence without any loss of informa-
tion, it might require some post-processing steps to obtain a simpler graph that is 
able to represent the same set of sequences. First, we remove all nodes whose label 
consists of indels only — when such a node is removed, an arc is added between its 
predecessors and successors, to preserve the property that the graph expresses all the 
input sequences. Then we remove indels from all labels (Fig. 6).

Finally, we collapse each non-branching subpath into a single node. Notice that the 
initial graph construction requires time linear in the MSA size, while the final step 
consists of a graph traversal that updates the graph. The creation of nodes and arcs 
from consecutive blocks is illustrated in Figs. 4 and 5.

Fig. 5  The Variation graph obtained from the Exact Cover of Fig. 4, by defining a node for each block, and 
including arcs between consecutive blocks sharing at least one row in the MSA

Fig. 6  The result of postprocessing on the variation graph of Fig. 5: indels are removed from node labels, and 
nodes labeled only by indels are removed. Non-branching paths are collapsed to a single node
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Solving the MWBC problem

Since the number of blocks of an MSA T  can be exponential in the MSA size, it is unfea-
sible to use a direct ILP formulation of the MWBC problem to obtain an optimal solu-
tion. Therefore we must describe some approaches that reduce the running time, based 
on restricting the set of possible blocks, that is solving an instance of MWBC, and forc-
ing some blocks to be part of the solution.

We first look at blocks spanning all rows, called vertical blocks (see  Fig. 11). We intro-
duce an additional parameter α : all maximal vertical blocks spanning at least α columns 
will be a block in our Exact Cover. The final effect is that each long substring that is 
shared by all rows of the MSA results in a single vertex of the variation graph, and all 
paths traverse such vertex. This heuristic will greatly reduce the running time, since we 
can split the MSA into smaller subMSAs, one for each portion delimited by two verti-
cal blocks. For example, if a vertical block consists of columns 10–20 of the MSA and 
another vertical block consists of columns 57-81, and then we extract and solve the 
subMSA corresponding to the columns 21-56. Those subMSAs are then solved indepen-
dently (if possible, in parallel) to obtain an exact cover of the initial ILP.

Even restricting to subMSA might result in a huge number of blocks, therefore we 
need to compute a set of blocks that is sufficiently small to be manageable but allows us 
to find an almost-optimal exact cover. To obtain such a set, we start from the set B of all 
maximal blocks. Then a procedure, we called decomposition, is applied to each pair of 
overlapping maximal blocks to create some smaller blocks that are added to B — we will 
detail in Sect. 2.3.2 the decomposition procedures.

Finally, we add some blocks to guarantee the existence of an exact cover in the set of 
blocks B , we will detail this procedure in Sect. 2.3.3.

Computing maximal blocks

As observed before, to obtain the instance B for the MWBC problem, we first compute 
the set of maximal blocks, since their number is linear in the MSA size and they can be 
computed in linear time [22] via the Positional Burrows-Wheeler Transform (PBWT). 
In particular, in   [22] the notion of maximal perfect haplotype blocks has been intro-
duced in the framework of genome-wide selection. Maximal perfect haplotype blocks 
correspond to the notion of maximal block over a binary alphabet with the requirement 
that the block has at least two rows. In our context, we used an implementation that 
extends the maximal haplotype block notion to the DNA alphabet extended with the 
indel symbol.

Still, an exact cover consisting only of maximal blocks might not exist, while we need 
to apply the ILP approach on a set B of blocks that contain a feasible solution to the 
MWBC problem.

Decomposition of maximal blocks into non‑overlapping blocks

First, we will show (Lemma  1) that two overlapping maximal blocks can involve two 
nested intervals of columns if and only if the two sets of rows involved are one included 
in the other.
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Lemma 1  Let (K1, b1, e1) and (K2, b2, e2) be two overlapping maximal blocks. Then 
b2 ≤ b1 ≤ e1 ≤ e2 if and only if K2 ⊂ K1.

Proof  (⇒ ) Assume to the contrary that ∃r ∈ K2\K1 . Since b2 ≤ b1 ≤ e1 ≤ e2 , this 
implies that r[b1 : e1] is equal to the label of the block (K1, b1, e1) , hence contradicting 
the maximality of (K1, b1, e1).

(⇐) Assume now that K2 ⊂ K1 . Since the two maximal blocks are overlapping, 
b2 ≤ e1 ≤ e2 or b2 ≤ b1 ≤ e2 . Assume that b2 ≤ e1 ≤ e2 (the other case is symmetrical), 
and assume to the contrary that b1 < b2 . Since K2 ⊂ K1 , also (K2, b1, e2) is a block, con-
tradicting the maximality of (K2, b2, e2).

The coverage of an MSA can be split into two parts: those positions covered by maxi-
mal blocks and the remaining ones. In the latter case, there exists a unique option to 
cover the positions, that consists in creating one-row blocks. We can now focus our 
attention on finding the coverage of the regions covered by maximal blocks.

Our purpose is to define a procedure to create blocks contained in maximal blocks. 
We introduce the first notion of decomposition called row-maximal decomposition, 
which builds on Lemma 1. It creates blocks from two intersecting maximal blocks such 
that each new block preserves all rows (its row-maximality) of the maximal block it is 
contained in.

Definition 8  (Row-maximal decomposition of maximal blocks) Given two overlapping 
blocks l1 = (K1, b1, e1) and l2 = (K2, b2, e2) with b1 ≤ b2 , the result of their row-maximal 
decomposition consists of the following blocks:

Notice that more than one condition might be true in Definition  8. In that case, the 
result consists of all blocks whose conditions hold. We show two examples of row-maxi-
mal decomposition in Fig. 7, where we can observe that all columns part of the intersec-
tion are excluded.

The case when b2 < 1 is symmetrical to the one of Definition 8.
A second decomposition, called complete decomposition, extends the row-maxi-

mal decomposition, by creating blocks on the shared columns of the intersection of 

(1)(K1, b1, b2 − 1)

(2)(K2, e1 + 1, e2) if e1 < e2

(3)(K1, e2 + 1, e1) if e2 < e1.

Fig. 7  The additional blocks obtained by the row-maximal decomposition on the overlapping maximal blocks 
of Fig. 2 (on the left) and of Fig. 3 (on the right). Additional blocks are colored
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maximal blocks, these new blocks are fully contained in only one maximal block or in 
both at the same time, see an example in Fig. 8.

This second decomposition returns a superset of the blocks computed with a row-
maximal decomposition, hence resulting in a larger set of blocks. Just as for Defini-
tion 8, we describe only the case when b1 ≤ b2 , since the other case is symmetrical.

Definition 9  (A complete decomposition of maximal blocks) Given two overlapping 
blocks l1 = (K1, b1, e1) and l2 = (K2, b2, e2) with b1 ≤ b2 , the result of their complete 
decomposition consists of the union of the result of their row-maximal decomposition, 
and the following blocks:

Notice that more than one of the above conditions might be true. In that case, the result 
consists of all blocks whose conditions hold.

For each pair of overlapping maximal blocks, we compute their decomposition, and 
the result is added to the set of blocks. In Sect. 3 we will discuss when to use the row-
maximal or complete decomposition.

Adding short blocks

Maximal blocks involving only one row — blocks (K, b, e) with |K | = 1 — correspond 
to vertices of the variation graph encoding an entire genome, without highlighting the 
common portions of the genomes we want to represent in a pangenome. For this rea-
son, they are undesirable and we remove them from the set B of blocks. On the other 
hand, their removal does not guarantee that B contains an exact cover. To overcome 
this problem, we add to B all blocks of the form ({r}, b, e) where [b,  e] is a maximal 

(4)(K1 ∩ K2, b1, e1), (K1 ∩ K2, b2, e2) if K1 ∩ K2 �= ∅

(5)(K1 \ K2, b1, e1), (K1 \ K2, b2, e2) if K1 \ K2 �= ∅

(6)(K2 \ K1, b1, e1), (K2 \ K1, b2, e2) if K2 \ K1 �= ∅

(7)(K1 ∩ K2, b2, e1) if K1 ∩ K2 �= ∅ and b2 < e1

(8)(K1 \ K2, b2, e1) if K1 \ K2 �= ∅ and b2 < e1

(9)(K2 \ K1, b2, e1) if K2 \ K1 �= ∅ and b2 < e1

Fig. 8  The additional blocks obtained by the complete decomposition on the overlapping maximal blocks of 
Fig. 2 (on the left) and of Fig. 3 (on the right). Additional blocks are colored



Page 12 of 23Avila  Cartes et al. BMC Bioinformatics          (2024) 25:344 

interval in the row r not covered by any maximal block spanning at least two rows. 
We refer to these blocks as one-row blocks.

Finally, we add to B all blocks of the form (Kσ , b, b) for each 1 ≤ b ≤ n and for each 
character σ , where Kσ is the set of rows that have the character σ in column b. Notice 
that, for each column b there are at most |�| + 1 such blocks, since the character σ 
can be the indel. We refer to these blocks as one-character blocks. The addition of one-
row and one-character blocks guarantees that the set B contains a feasible solution of 
MWBC.

An ILP for MWBC

We can now describe the ILP for solving the MWBC that forms the main ingredient of 
our approach. We recall that the set of blocks B fed to the solver consists of the following 
blocks: i) the set of maximal blocks, ii) the result of the decomposition of the maximal 
blocks described in Sect. 2.3.2 (which is either the row-maximal or the complete decom-
position), iii) the one-row blocks, and finally iv) the one-character blocks described in 
Sect. 2.3.3. Our implementation also removes duplicate blocks, but that is not relevant 
to our discussion.

The binary variables we use are C[K, b, e] for each block (K, b, e), where C[K , b, e] = 1 
iff the block (K, b, e) belongs to the solution. The main constraints in our ILP are the 
usual ones used to encode an exact cover:

The above constraints express the condition that exactly one block in the solution covers 
each position (r, c) of the MSA.

We have not introduced the objective function of our ILP approach, since different 
biological or computational goals can be better modeled with different objective func-
tions: one of the advantages of an ILP approach is that we do not rely on a specific objec-
tive function, but we can leave it as a decision that the final user will take.

We recall that each block in the solution will be later transformed into a node of a 
Variation Graph. We are going to show five possible objective functions, the first three 
will be a subject of our experimental assessment in Sect. 3.

We will denote by γ (K , b, e) the label of the blocks (K, b, e) without considering indels. 
Clearly, the length of γ (K , b, e) , denoted as |γ (K , b, e)| , is at most e − b+ 1 and it is equal 
to e − b+ 1 when the string in the block does not contain indels. 

1.	 Minimize the number of blocks. The objective function is called blocks and it is 
defined as 

2.	 Minimize the number of vertices of the variation graph, penalizing vertices whose 
labels are shorter than a certain threshold q. Notice that read mappers based on 
seeding, such as GraphAligner [14], can benefit from graphs with longer node labels, 

(10)
∑

(K ,b,e)∈B:r∈K ,b≤c≤e

C[K , b, e] = 1 ∀1 ≤ r ≤ k , 1 ≤ c ≤ n

(11)min
∑

(K ,b,e)∈B

C[K , b, e].
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where it is more likely to find a seed. The objective function is called weighted and it 
is defined as 

 where the penalization function P is defined as 

 and � > 1 is the penalization parameter for these shorter labels.
3.	 Minimize the number of vertices of the variation graphs, penalizing vertices that are 

not used by at least p input sequences, that is we prefer nodes with high coverage. 
The rationale is that some variant calling pipelines (such as minigraph-cactus or vg 
prune) start by removing vertices with low coverage. The objective function is called 
depth and it is defined as 

 where the penalization function P is 

 with � > 1 the penalization parameter.
4.	 Minimize the total length of the labels of the nodes of the variation graph, excluding 

indels. The objective function is called strings and it is defined as 

5.	 Minimize the total length of the labels of the variation graphs, penalizing verti-
ces that are shared by fewer sequences. The objective function is called penalized 
strings and it is defined as 

Results
We randomly select 50 complete SARS-CoV-2 genome sequences from ENA and down-
loaded them with ENA Tools,2 we then create an MSA using MAFFT (version 7.525) 
with default parameters. For results with 20 and 100 sequences see [Additional file 1].

Our analysis is divided into 3 parts. The first part examines the scalability of the 
decomposition strategy, by determining the time and memory needed to apply the 

(12)min
∑

(K ,b,e)∈B

P(|γ (K , b, e)|)C[K , b, e]

P(a) =

{

� if a ≤ q
1 otherwise

(13)min
∑

(K ,b,e)∈B

P(|K |)C[K , b, e]

P(a) =

{

� if a ≤ p
1 otherwise

(14)min
∑

(K ,b,e)∈B

|γ (K , b, e)|C[K , b, e].

(15)min
∑

(K ,b,e)∈B

|γ (K , b, e)|

|K |
C[K , b, e].

2  https://github.com/enasequence/enaBrowserTools
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row-maximal and the complete decomposition on the input MSAs. Secondly, we ana-
lyze the effect of varying the parameter α , that is the minimum length of forced vertical 
blocks. More precisely, we report the values of the objective function blocks for different 
values of α , using both decompositions. Finally, we study the effect of choosing differ-
ent objective functions on the resulting variation graph. The graphs are evaluated on the 
number of vertices, the length of the graph labels, the number of potential seeds it con-
tains, and the number of shared nodes they have. In this last part, we have compared the 
variation graphs computed by pangeblocks with those created with vg, make_prg, 
founderblockgraph (starting from the same MSA), and pggb (using the same set of 
sequences).

While our approach requires more computational resources, the experiments show 
that pangeblocks can be run on a personal computer for real instances.

Assessing the decomposition strategies

We start by investigating the impact of the decomposition strategies on the computa-
tional resources required to run pangeblocks. Since the blocks obtained with the 
complete decomposition (Definition  9) include those obtained with the row-maximal 
decomposition (Definition 8), selecting the complete decomposition leads to a larger ILP 
instance.

We ran pangeblocks varying the number of columns, ranging from 100 to 3000 
(incrementing by 100). For each number of columns, we have extracted 10 random 
MSAs from the complete MSA on 50 SARS-CoV-2 genomes. We ran all those experi-
ments on the blocks objective function, since its the choice should not affect the memory 
and time, and without any forced vertical block (this is imposed by setting α equal to the 
length of the MSA).

RAM usage and user time are comparable when using both decompositions in 
instances up to a few hundred columns. After that point, the complete decomposition 
requires more time and memory than the row-maximal decomposition (see Fig. 9). In 
fact, the complete decomposition failed since it used too much RAM (more than 90GB) 
on approximately 18% of the instances — only successful runs are displayed in the Figure.

Fig. 9  Time (on the left) and peak RAM usage (on the right) needed to solve the ILP, as a function of the 
MSA length and the choice of decomposition. For each MSA length, ranging from 100 to 3000, incremented 
by 100, we have extracted 10 random MSAs with that length from the MSA of 50 SARS-CoV-2 complete 
genomes. The red dashed line represents the complete decomposition, and the blue line represents the 
row-maximal decomposition. The objective function blocks was used in this experiment
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Notice that the row-maximal decomposition never exceeded 12 GB of RAM and com-
pleted its execution in less than 10 min.

Assessing the choice of α

The experiment in this section is run on the MSA on 50 complete SARS-CoV-2 genomes. 
This MSA has 29903 columns.

We recall that the parameter α is the minimum number of columns of all forced verti-
cal blocks, that is all vertical blocks spanning at least α columns are forced to be part of 
the solution. We explore if vertical blocks are chosen by pangeblocks with different 
objective functions.

We focus on those α values where the longest subMSA (between two forced vertical 
blocks) has more columns than the ones with smaller values of α , we refer to those val-
ues of α as breakpoints. Breakpoints are especially relevant since each subMSA can be 
solved independently and in parallel, therefore the computational resources needed are 
affected mostly by the size of the largest subMSA (i.e. the one that changes at a break-
point). Breakpoints are shown in Fig. 10 and can be identified as the values of α where 
the blue curve increases its value. The effect of choosing different values of α on the 
entire MSA can be seen in Fig. 11, where black rectangles represent the forced vertical 
blocks, white areas are the subMSA with the largest number of columns, and the gray 
rectangles are all other subMSAs.

Notice that we have decided to focus on the number of columns of the largest 
subMSA instead of the time and memory used, since Sect. 3.1 shows that the com-
plete decomposition can manage at most a few thousand columns using at most 90 
GB of RAM. On the other hand, Fig. 10 represents all possible number of columns of 
a subMSA, hence it does not have such restriction. Moreover, each subMSA is solved 

Fig. 10  Longest (columns) subMSA obtained for different values of α in the SARS-CoV-2 MSA with 50 
sequences and 29903 columns. The number of columns (y-axis) shows the longest subMSA given that all 
vertical blocks with length at least α (x-axis) are fixed. The curve shows how increasing the value of α implies 
an increase of the number of columns in the longest subMSA. In particular, we call breakpoints of α those 
values of α that determines a change in length of the subMSA. This plot can help to decide a reasonable 
value of α given the available resources. A picture of the MSA given these breakpoints is shown in  Fig. 11
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independently, therefore we can actually use the number of columns of the largest 
subMSA as a proxy of the computational resources needed.

Now we can analyze the effect of the choice of α on the number of vertices of the 
resulting graph — results are shown in  Fig.  12 — when we use the blocks objective 
function. Since we need to run pangeblocks on the resulting subMSAs, we have 
been able to consider only values of α smaller than 158.

We expected larger values of α to correspond to fewer vertices, but this is what we 
observe for the complete decomposition only, and even in that case it is not a monot-
onous decrease. This phenomenon is due to the fact the maximal blocks and their 
decomposition is computed independently for each subMSA, therefore the set of 
blocks fed to the ILP for larger values α is not a superset of the set for smaller values. 

Fig. 11  A view of SARS-CoV-2 MSA with 50 sequences and 29903 columns for different values of α (see 
label to the left), from α = 1 to α = 881 (from top to bottom). Forced vertical blocks (those with the number 
of columns less or equal to α ) are shown in black. SubMSAs in between vertical blocks (or at the beginning, 
or the end of the MSA) are in gray. The longest subMSA is shown in light gray. Values of α correspond to 
breakpoints shown in  Fig. 10, where the longest subMSA when fixing α increases in length
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Moreover, the phase where a solution of MWBC is used to compute a variation graph 
introduces an additional uncertainty in the number of vertices of the final graph.

We observe in Fig. 12 that the row-maximal decomposition reach a plateau, or even 
begin to worsen, for moderate values of α — around 90 for the row-maximal decom-
position — hinting that the large computational resources needed for larger values of 
α are not actually necessary in this case. In the case of the complete decomposition, 
due to computational resources, we are limited to consider up to α = 158 , neverthe-
less, in smaller instances (See Supplementary material) we observe the same behavior 
described for the row-maximal decomposition.

It is especially noticeable that both decompositions are able to obtain graphs with 
fewer vertices than vg and pggb as shown in Fig. 12. This is partially surprising since 
vg and pggb can build variation graphs that contain cycles (which helps in reducing the 
size of the graph), while pangeblocks constructs only acyclic graphs. make_prg cre-
ates a graph with the number of nodes in between both decompositions, while found-
erblockgraph graph has more than 3× the number of nodes than all other tools. The 
row-maximal decomposition results in essentially the same number of vertices as vg 
and about 10% fewer vertices than pggb. On the other hand, the more computationally 
expensive complete decomposition obtains 55-60% fewer vertices than vg.

Fig. 12  Number of vertices. The plot is the results of running pangeblocks, pggb, vg, make_prg and 
founderblockgraph on the 50 SARS-CoV-2 genomes instance, using the row-maximal (blue dot) and 
the complete (red square) decomposition. The y-axis is the number of vertices of the variation graphs (after 
post-processing), and the x-axis corresponds to various values of α (from 1 to 158, see Fig. 11). The number of 
nodes for other tools is shown by horizontal lines. The black dotted line corresponds to pggb, the red dashed 
line corresponds to vg, and the orange dash-dot line corresponds to make_prg, and the green dash-dot 
line corresponds to founderblockgraph 
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By choosing α we are fixing vertical blocks with equal or more columns than α , this 
imposes finding a suboptimal solution of the MSA by solving an ILP for each result-
ing subMSA not covered by the fixed vertical blocks. Vertical blocks are nodes in the 
graph traversed by all sequences. We can see in Fig.  13 (right) that with the com-
plete decomposition, the blocks, weighted, and depth objective functions lead to fewer 
nodes that are shared by all sequences when α is increased. With larger values of α , 
the ILP can discard (unforced) vertical blocks to find a better solution that contains 
larger blocks, i.e. those that cover more cells in the MSA. In other words, both the 
number of blocks and the total length of labels of the graph decrease with larger val-
ues of α , as expected since the space of the feasible solution is larger.

The left plot of Fig.  13 is on row-maximal decomposition, where there is no sub-
stantial difference among the objective functions. When choosing the depth objec-
tive function, the procedure prefers to pick blocks traversed by a larger number of 
sequences. Among those, all vertical blocks fit this criteria, therefore they are likely 
to be retained even for larger values of α , hence the final solution computed is largely 
unaffected by the choice of α.

This is likely to be the result of the smaller search space created by this decompo-
sition, which is heavily constrained and does not allow the choice of the objective 
function to affect the selection of the blocks covering the MSA. On the other hand, 
larger values of α and the associated larger search space lead to fewer nodes overall, 
including those shared by all nodes. Finally, comparing the two plots of Fig. 13 we can 
observe that the two decompositions lead to a completely different behavior of the 
ILP when choosing the different objective functions, except for α = 1 , when all verti-
cal blocks are forced to be in the solution.

Fig. 13  Number of vertices of the variation graph that are traversed by all sequences as a function of α 
and the choice of decomposition, on the MSA of 50 SARS-CoV-2 complete genomes. For the complete 
decomposition (right), the objective functions blocks, weighted, and depth coincide in the use of vertical 
blocks (y-axis), and decrease when increasing α , the same tendency for strings with higher usage of vertical 
blocks. In the row-maximal decomposition (left), the tendency is to decrease the use but with lower 
fluctuation due to the smaller search space. The strings objective function does not change with α , meaning 
that vertical blocks are always preferred
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Assessing the objective functions

In this section, we are going to assess the effect of the objective functions on some 
properties of the resulting variation graph. More precisely, we are going to analyze 
the blocks, weighted, and depth objective functions, since the strings and the penal-
ized strings objective functions result in graphs that have a simplistic structure. The 
optimal solution with the strings objective function consists of one-character blocks, 
therefore demanding the nontrivial graph optimization steps to the post-processing 
phase.

Figure 14a shows the total number of vertices of the variation graphs (after post-
processing) obtained with the different objective functions, with α = 168 . In all 
three settings, the number of vertices is smaller than those achieved by pggb and 
vg, even though the difference with vg is negligible when using the row-maximal 

Fig. 14  Four metrics were measured over pan-genome graphs created with five construction tools on the 
50 SARS-CoV-2 genome instance. We report a the number of vertices of each graph, b the total length of 
the graph, c the number of potential seeds (k-mers) of length 20, and d the number of vertices used by at 
least the 11% of the input sequences. For pangeblocks we report the results of three objective functions: 
blocks, depth, and weighted (horizontal axis) The metrics for other tools are shown by horizontal lines. The 
black dotted line corresponds to pggb, the red dashed line corresponds to vg, the orange dash-dot line 
corresponds to make_prg, and the green dash-dot line corresponds to founderblockgraph. Since 
make_prg creates a sequence graph, node depth cannot be computed for it
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decomposition. Choosing the blocks or the weighted objective functions produces 
graphs with the fewest vertices.

When choosing the weighted objective function, we have run pangeblocks with 
the parameter q equal to 20 (all blocks spanning fewer than q columns have cost 
� = 1000 instead of 1). We present only the results with � = 1000 , since smaller 
values of � result in graphs that are very close to those obtained with � = 1 , that 
is without penalization. When choosing the depth objective function, we have run 
pangeblocks with the parameter p equal to 0.11 (all blocks that are traversed 
by fewer than a p fraction of the input sequences have cost � = 1000 instead of 1). 
When choosing the blocks objective function, no parameter is needed.

Notice that choosing the weighted objective function results in a graph with negli-
gible differences from the one created by choosing the blocks objective function.

We recall that the objective function determines the block cover, while the y axis 
of the figure is computed on the result of the post-processing over the block cover, 
nodes that are labeled only by indels are removed. The weighted objective function 
is designed to prefer nodes with longer labels, by penalizing those who contain too 
many indels, see Eq. 12, which leads to the selection of fewer, but longer (w.r.t. their 
label without indels) nodes, as we can see in Fig. 14b.

Figure  14b shows the total number of characters of the graph labels (after post-
processing) obtained with the different objective functions, with α = 158 . In all 
three settings, the total number of characters obtained by pangeblocks is larger 
than that achieved by pggb and vg, even though the differences are marginal when 
using the row-maximal decomposition.

Figure 14c shows the total number of potential seeds (that is the 20-mers that are 
substring of at least a vertex label) of the variation graphs, obtained with the differ-
ent objective functions, with α = 158.

When using the complete decomposition, we obtain a number of seeds that is 
larger than those achieved by pggb and vg. When choosing the row-maximal 
decomposition, the results obtained by pangeblocks are marginally larger than 
both vg and pggb. The weighted objective function produces a graph with more 
seeds, thus the graph can be potentially more informative if the task is aligning reads 
to the graph.

Figure 14d shows the fraction of vertices traversed by at least 11% of the genome 
sequences, obtained with the different objective functions, with α = 158 . When 
using the row-maximal decomposition, the results are slightly smaller than pggb. 
vg on the other hand has the highest number of these nodes. In the case of pange-
blocks, we notice that choosing the depth objective function results in a higher 
number of vertices with this coverage, for both decompositions, as was expected, 
since this objective function was built for this purpose.

In general, we can observe that founderblockgraph creates bigger graphs 
w.r.t. the other tools, both in number of nodes and length of the graph, with the 
particularity of very short nodes, which translates into a small number of potential 
seeds. make_prg creates graphs with fewer nodes than vg, pggb, and founder-
blockgraph, but with longer nodes, showing a higher number of potential seeds 
than the other tools.
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Discussion
We have presented a computational problem, Minimum Weight Block Cover 
(MWBC), that formalizes the problem of constructing a variation graph from an 
MSA. We have proposed an ILP approach for solving the MWBC problem and con-
structing a graph and we implemented it as a tool, called pangeblocks.

We have experimentally shown that pangeblocks can scale to genome-scale 
instances. More precisely, our experimental analysis has been run on an MSA on 
50 complete SARS-CoV-2 genome sequences (approximately 30kbp). We have also 
shown how the ILP formulation is sufficiently flexible to accommodate different goals. 
In fact, by choosing an objective function, the decomposition strategy, or the mini-
mum size of a forced vertical block, we are able to obtain variation graphs that have 
different characteristics, for example we can obtain graphs whose number of verti-
ces ranges from 800 to 1400. Notice that all graphs computed by pangeblocks are 
complete representations of the input MSA, that is each input genome corresponds to 
the concatenation of the labels if a path of the graph.

We have compared pangeblocks with the two most widely used tools for con-
structing variation graphs, vg and pggb, showing that we can obtain graphs that are 
similar to theirs. We have to remind that our ILP approach is more flexible, therefore 
allowing to tailor the graph construction to specific need. At the same time, those 
possibilities affect the computational resources needed by pangeblocks.

Conclusions
We observe that the use of ILP and optimization criteria in the construction of the 
variation graphs allows to include biological constraints. In particular, we have intro-
duced the parameter α to bound the length of the so called vertical blocks, i.e. those 
nodes of the graph corresponding to consecutive MSA columns where the input 
sequences are all identical. While we have introduced α for computational reasons, 
setting its value might have a possible biological motivation, since it can influence the 
regions where recombinations are more likely.

There are some directions for future research. First of all, there is a large gap in both 
the computational resources needed and the resulting graphs, between the complete 
and the Row-maximal decompositions. Therefore we think that different decomposi-
tion strategies can be relevant. Moreover, we would like to keep most of the flexibil-
ity allowed by the ILP approach, but avoiding its computational cost. This requires 
restricting the possible parameters to a subset of those that are currently modeled 
by the ILP, and designing a combinatorial approach that is able to quickly compute a 
solution on those parameter.
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