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On MRAs and prewavelets based on elliptic splines

Barbara Bacchelli and Milvia Rossini

Abstract We consider shift-invariant multiresolution spaces generated by
q-elliptic splines in Rd, d ≥ 2, which are tempered distributions characterized
by a complex-valued elliptic homogeneous polynomial q of degree m > d.
To construct Riesz bases of L2(Rd), a family of non-separable basic smooth
functions are obtained by localizing a fundamental solution of the operator
q(D), properly. The construction provides a generalization of some known
elliptic scaling functions, the most famous being polyharmonic B-splines.
Here, we prove that real-valued q leads to r-regular multiresolution analysis,
with r = m − d − 1. In addition, we prove that there exist r-regular non-
separable prewavelet systems associated with not necessarily regular multire-
solution analyses. These prewavelets have m − 1 vanishing moments and the
approximation order of the prewavelet decomposition can be established.
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1 Introduction

The class Eq(Rd) of q-elliptic splines can be defined as the subset of
tempered distributions f on Rd such that the differential operator q(D),
D = (∂/∂x1, . . . , ∂/∂xd), applied to f is a measure supported on the integer
lattice Zd in Rd; q is a complex, homogeneous polynomial of degree m > d
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which is required to be zero in Rd only in the origin, hence the use of the term
elliptic.

The first paper introducing multiresolution analysis (MRA) for elliptic
spline is [14] where a dyadic prewavelet decomposition of L2(Rd) is provided.
In that paper, the authors introduced a special family of q-elliptic splines φ
having Fourier transform of the form

φ̂ = T̂ q−1,

where T̂ is a trigonometric polynomial which is zero only in the grid 2πZd
and there exists a positive integer s such that T̂ (ω)−q(ω) = O(‖ω‖m+1+s

∞ ), as

ω → 0. This implies that φ̂(ω)→ 1 as ω → 0. If we specialize that q(D) is the
kth-iterate of the Laplace operator (k = m/2,m even) we obtain polyharmonic
B-splines, which include the elementary and high level k-harmonic ”B-splines”
defined by Rabut in his seminal papers [16,17] and all the ones introduced later
on (see e.g. [3,18,19,22]). MRAs based on polyharmonic B-splines have been
widely studied and explicit constructions of the filters can be found for instance
in [1,4,22].

More recently, in the two dimensional setting, the authors of [8] modify the
Laplacian of order α ∈ R+

0 by a differential operator of Wirtinger type and

allow for φ less restrictive assumptions than [14] by requiring that
∣∣∣φ̂(ω)

∣∣∣ →
c > 0 as ω → 0. When α is an integer, their special complex q is a homogeneous
elliptic polynomial and the introduced scaling functions and prewavelets are
in Eq(R2) (see also [23]).

In all the above cases, the resulting q-elliptic splines are non-separable
and non-compactly supported. Non-compactly supported scaling functions and
wavelets may have some drawback when we consider implementation aspects
and applications, then r-regularity, in the sense of Meyer [13], is a very de-
sirable property in order to produce reliable numerical results. Furthermore,
r-regularity of the MRA has important consequences from a theoretical point
of view, as for instance on the convergence properties of the projections onto
the multiscale spaces of functions in Sobolev spaces. We refer to the book [13]
for a basic treatment of the subject.

In this paper, we deepen the knowledge on elliptic splines with a particular
attention to r-regularity. As main results, we provide a class of scaling function
with less restrictive assumptions on φ̂ than those in [14,8] and we prove r-
regularity of the MRAs corresponding to real-valued polynomials q, where r
is the degree of smoothness of the functions. Moreover, we show that for any
q-elliptic spline based MRA, a r-regular complex prewavelet system exists in
Eq(Rd).

More precisely, we introduce a new family LEq(Rd) ⊂ Eq(Rd) of localized
q-elliptic splines which turn out to be valid scaling functions for generating
stationary MRAs of L2(Rd). We provide a simple proof based on a result

that can be found in [10]. The novelty consists in requiring that φ̂ = T̂ q−1

is bounded and not null in the d-dimensional torus. Our definition includes
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those mentioned above and it is mainly motivated when dealing with complex-
valued polynomials q. The Fourier transform of φ may not be continuous, thus,
in that case, φ /∈ L1(Rd). Refinability intrinsically binds the dilation matrix
A for Zd with the generating polynomial q in a relation that, thanks to the
homogeneity of q, is always satisfied when A is a dyadic dilation. These scaling
functions are non-separable, non-compactly supported with algebraic decay at
infinity.

In the special case of real-valued polynomials q, we can introduce the La-
grange q-elliptic function Λq just in terms of q, extending the definition given in
[11] for the polyharmonic case. We prove that Λq is a localized q-elliptic spline,
then it is a scaling function, and that Λq and any φ in LEq(Rd) generates the
same MRA, associated with an admissible dilation A for Zd. Moreover, we can
prove that Λq and its derivatives up to the order r := m − d − 1 exponen-
tially decay at infinity. Thus, the Lagrange scaling function Λq is r-regular.
These results are attractive since we can say that when q is real-valued, the
shift-invariant approximation spaces of the multiscale analysis are character-
ized essentially by q and A and the resulting MRA is r-regular. For example,
the well-known MRAs generated by polyharmonic B-splines are r-regular, im-
proving our knowledge on these splines. We conclude the real-valued q analysis
by discussing some interpolation properties of Λq. In particular, the cardinal
interpolation problem for data of polynomial growth has solution in Eq(Rd)
and Λq has the polynomial reproducing property up to the degree m − 1,
thus generalizing the known results for polyharmonic Lagrange splines (see
e.g. [11]).

Moving on to the aim of providing r-regular prewavelet basis in Eq(Rd),
we remark that in the mentioned literature the wavelet constructions depend
explicitly on a scaling function generating the MRA, so that one may suppose
an algebraic decay at infinity. Also, it is well-known that for any r-regular
MRA associated with a dilation A such that |detA| > (d + 1)/2 there exists
a set of wavelets consisting of |detA| − 1 r-regular functions (see e.g. [24]).

In our approach, the MRA may not be r-regular and the scaling function
generating the approximation spaces is not explicitly involved in the prewavelet
definition that actually depends on the real valued polynomial |q|2. Thanks to
some characterizations of a set of wavelets given in Sect. 5.1 and to the regula-
rity properties shown for Lagrange elliptic splines associated with real-valued
polynomials, we can construct a family of r-regular complex prewavelets and
duals, for any complex-valued q. These non-separable elliptic splines depend
only on q and A, have vanishing moments up to the order m− 1 and provide
approximation order m.

Finally, we provide some particular polynomials q and associated scaling
functions in LE q(Rd) together with prewavelets.

The paper is organized as follows. In Sect. 2 we give some notations and
definitions. In Sect. 3 we define the subspace LEq(Rd) of tempered distribu-
tions of localized q-elliptic splines and we prove that they are scaling functions
generating MRAs of L2(Rd). In Sect. 4 we define the Lagrange elliptic spline
in LEq(Rd) associated with real-valued q and we prove its properties. Sect. 5
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deals with the construction of a r-regular prewavelet systems. In Sect. 6 we
illustrate connections to prior definitions and some examples.

2 Basic notations and definitions

Let d be the dimension of the space Rd, and d ≥ 2. We use standard notations
for the spaces Lp and `p with norms ‖·‖p , p ∈ [1,∞], and we denote by ‖·‖
the usual Euclidean norm on Rd. If z ∈ C, the complex plane, then |z| is the
usual modulus and we use the same notation for real z. N = {0, 1, 2, ...} . The
inner product between functions f, g in L2(Rd), or between vectors x, y in Rd
is denoted respectively as

(f, g) :=

∫
Rd

f(x) g(x) dx, < x, y >:=

d∑
k=1

xkyk.

The space of locally square integrable functions which are 2πZd-periodic is
denoted by L2(Rd/2πZd), and Td := (−π, π]d is the d-dimensional torus. We

use ̂ for the Fourier transform, i.e. for any function f ∈ L2(Rd), f̂(ω) :=∫
Rd f(x)e−i<ω,x>dx. We also use ̂ for the Fourier transform of distributions.

When f is a distribution, and ζ ∈ Cd, f̂(ζ) is the Fourier-Laplace transform

of f. Restricted to Rd, f̂ becomes the Fourier transform of f. All equalities
between functions and other related notions are interpreted in the distribu-
tional sense whenever possible. If α = (α1, . . . , αd) ∈ Nd is a multi-index,

|α| :=
∑d
k=1 αk, ∂

αf :=
∂|α|f

(∂x1)α1 . . . (∂xd)αd
, and ∂0f := f. Cr(Rd) is the set

of functions that are r times continuously differentiable on Rd. According to
Meyer [13], given r ∈ N, a function f on Rd is r-regular if f ∈ Cr(Rd) and for
each α ∈ Nd with |α| ≤ r

|∂αf(x)| ≤ cα,n(1 + ‖x‖)−n, ∀x ∈ Rd, ∀n ∈ N. (2.1)

If f is r-regular then f ∈ L1(Rd) ∩ L2(Rd).
Given a function φ in L2(Rd) we denote by V (φ) the L2(Rd)-closure of the set
generated by all linear combinations of its Zd-translates

V (φ) := closL2(Rd)

∑
k∈Zd

ckφ(· − k), ck ∈ `2(Zd)

 .

In this paper, a d × d matrix A denotes a dilation for Zd, that is AZd ⊂ Zd,
and the eigenvalues of A have modulus greater than one. A dilation matrix
enjoys the properties that |detA| is an integer ≥ 2 and it gives the number
of cosets of the quotient group Zd/AZd. We denote by z a complete set of
representatives of this group, then |detA| = ]z. We assume that 0 ∈ z. We
call z′ = z \ {0} and B = AT . The identity matrix in Rd is denoted by Id.

A multiresolution analysis (MRA) of L2(Rd) associated with (Zd, A) is a family
V ={Vj}j∈Z of closed subspaces of L2(Rd) with the following properties
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• Vj ⊂ Vj+1, j ∈ Z,
•
⋃
j∈Z Vj is dense in L2(Rd),

• for all f ∈ L2(Rd) and all j ∈ Z, f(·) ∈ Vj ⇐⇒ f(A−1·) ∈ Vj−1,
• there is a function φ ∈ L2(Rd), which is called scaling function, such that

the set {φ(· − k)}k∈Zd is a Riesz basis of V0.

In short, we will say that φ generates the MRA with dilation A. Clearly,
V0 = V (φ) and if φ ∈ Ck(Rd), k ∈ N, then

⋃
j∈Z Vj ⊂ Ck(Rd).

A MRA of L2(Rd) is r-regular if there exists a r-regular scaling function ge-
nerating it (see e.g. [13,24]).

Throughout this paper, we denote by q a complex-valued homogeneous poly-
nomial on Rd of degree m > d

q(ω) :=
∑
|α|=m

qαω
α, ω ∈ Rd, qα ∈ C,

which is required to be elliptic, in other words, q(ω) = 0 for some ω ∈ Rd
implies that ω = 0. Consequently, the following bounds hold for some positive
constants C1, C2

C1 ‖ω‖m∞ ≤ |q(ω)| ≤ C2 ‖ω‖m∞ , w ∈ Rd. (2.2)

3 Localized q-elliptic scaling functions

Definition 3.1 The set Eq(Rd) of q-elliptic splines is the subspace of tem-
pered distributions f on Rd such that the differential operator q(D) applied
to f is a measure supported on the integer lattice Zd in Rd. Symbolically

q(D)f(x) =
∑
k∈Zd

ckδ(x− k), x ∈ Rd, ck ∈ C, (3.1)

where D = (∂/∂x1, . . . , ∂/∂xd) and δ(x) is the unit Dirac measure supported
at the origin.

It is known that every linear partial differential operator q(D) with con-
stant coefficients has a fundamental solution (see e.g. [12]). In our case there
exists a tempered distribution u such that q(D)u(x) = δ(x), x ∈ Rd whose
generalized Fourier transform û(ω) = (−i)mq−1(ω), ω ∈ Rd has a pole of order
m at the origin. Due to the fact that Fourier transformation is an isometric
isomorphism on L2(Rd), u /∈ L2(Rd) since û /∈ L2(Rd). Therefore, in order
to get a scaling function φ ∈ Eq(Rd)

⋂
L2(Rd), we cancel the singularity at

the origin by multiplying q−1 by an appropriate function. This is a classical
procedure to get localized basis functions used not only in wavelet theory but
in many contexts of approximation theory (see e.g. [5]).

The following definition introduces a family of tempered distributions φ,
the localized q-elliptic splines, capable to generate MRAs.
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Definition 3.2 The set LEq(Rd) of localized q-elliptic splines is the subspace
of tempered distributions φ on Rd defined by the formula of their Fourier
transform

φ̂ := T̂ q−1 (3.2)

where T̂ and q enjoy the following properties:

(A1) T̂ (ω) is a bounded, 2πZd-periodic function such that T̂ (ω) 6= 0 for all
ω ∈ Td� {0} ;

(A2) there is a positive constant c such that

0 <
∣∣∣φ̂(ω)

∣∣∣ < c for ω ∈ Td. (3.3)

Our definition generalizes and includes the ones of [14,16,17] and [8] by

relaxing the requests on the behavior of φ̂(ω) in a neighborhood of the origin.
We refer to Sect. 6 for more details.

Proposition 3.1 LEq(Rd) ⊂Eq(Rd).

Proof Let φ ∈ LEq(Rd). The periodicity of the tempered distribution T̂ implies
that T satisfies

T (x) =
∑
k∈Zd

bkδ(x− k),

where bk =
∫
Td e

i<k,ω>T̂ (ω)dω. From (3.2), we can write qφ̂ = T̂ and by
inverting the Fourier transform we get

q(D)φ(x) =
∑
k∈Zd

ckδ(x− k),

where ck = imbk, k ∈ Zd. That is, φ ∈ Eq(Rd). ut

We discuss now the properties of localized q-elliptic splines.

Proposition 3.2 Let φ in LEq(Rd). Then the following properties hold:

(i)
∣∣∣φ̂(ω)

∣∣∣ ≤ K

1 + ‖ω‖m∞
, ∀ω ∈ Rd.

(ii) φ̂ ∈ L2(Rd).
(iii) φ ∈ Cm−d−1(Rd).
(iv) As ‖x‖ → ∞, φ(x) = O(‖x‖−s), s ∈ (d/2, d].

Proof By (A2) in Definition 3.2 and by (2.2), φ̂ is bounded on Rd and φ̂ =
O(‖ω‖−m), as ‖ω‖ → ∞. Thus (i) holds and (ii) follows since m > d. Moreover,

ωβφ̂ is in L2(Rd) for |β| < m − d/2. Then φ belongs to the Sobolev space
Ht(Rd) for t < m−d/2, and by the embedding theorem φ ∈ Cm−d−1(Rd), and
(iii) is proven. To prove (iv), observe that since φ ∈ L2(Rd), φ decays better

than ‖x‖−d/2 as ‖x‖ → ∞. Also, φ̂ ∈ L1(Rd), but φ̂ is not required to be

continuous, thus, in general, φ /∈ L1(Rd) and φ decays not better than ‖x‖−d
as ‖x‖ → ∞. ut
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Note that despite (iv) is true in the general case, a better decay is possible.

Given a dilation A for Zd, φ is refinable if

φ̂(ω) = S(B−1ω)φ̂(B−1ω) (3.4)

for some S(ω) ∈ L2(Rd/2πZd). Replacing (3.2) in (3.4), we get

S(ω) =
T̂ (Bω)

T̂ (ω)

q(ω)

q(Bω)
.

In order to obtain a 2πZd-periodic measurable function S(ω), q(w) and q(Bw)
need to cancel each other up to a scalar factor. Then the matrix B = AT and
q must satisfy

q(ω)

q(Bω)
= κ (3.5)

for some constant κ. In particular, by virtue of the homogeneity of q, (3.5)
holds whenever A = 2dId and κ = 2−d.

Despite the fact that functions in LEq(Rd) may not be in L1(Rd), we prove
that they are valid scaling functions.

Proposition 3.3 Any φ ∈ LEq(Rd) generates a MRA V = {Vj}j∈Zd of L2(Rd)
associated with (Zd, A), whenever A enjoys (3.5).

Proof If A enjoys (3.5), there exists S(ω) = κT̂ (Bω)/T̂ (ω) in L2(Rd/2πZd)
such that the refinement equation (3.4) holds. Since φ̂ ∈ L2(Rd) (see Proposi-
tion 3.2), the 2πZd-periodic series

G(ω) :=
∑
k∈Zd

∣∣∣φ̂(ω + 2πk)
∣∣∣2

converges. If ω ∈ Td, G(ω) ≥
∣∣∣φ̂(ω)

∣∣∣2 and by (3.3)
∣∣∣φ̂(ω)

∣∣∣ > 0. Then G(ω) > 0

in Td and by periodicity G(ω) > 0 for ω ∈ Rd. Observe that

|φ̂(ω)|2

G(ω)
=

|q(ω)|−2∑
k∈Zd |q(ω + 2πk)|−2

=
1

1 + |q(ω)|2
∑
k 6=0 |q(ω + 2πk)|−2

.

Thus |φ̂|2/G is a continuous function equal to 1 at the origin. The thesis follows
by virtue of [10, Proposition 5]. ut
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4 q real-valued and Lagrange function Λq

In this Section, we assume that the homogeneous and elliptic polynomial q is
real-valued. In this case, we can introduce a function Λq in LEq(Rd) that enjoys
some remarkable properties. The definition in the Fourier domain involves only
q, and it satisfies the interpolation property that characterizes a Lagrange
function: Λq(k) = δ0k, k ∈ Zd. Moreover, any φ in LEq(Rd) generates the
same MRA V generated by Λq, that is, given a dilation A for Zd enjoying
(3.5), a q-elliptic MRA associated with (Zd, A) is essentially determined only
by the polynomial q. Then we prove that Λq and its derivatives up to the
order r, exponentially decay at infinity, where r = m − d − 1 is the degree of
smoothness of the class LEq(Rd). Thus, Λq is r-regular. This property will be
used in Section 5 to construct r-regular prewavelet systems. Here, we deduce
that the MRA V is r-regular. Of course, the special case of real-valued q
includes the well-known polyharmonic scaling functions, where q = ‖ · ‖m,
m even, improving our knowledge on the MRAs generated by these splines.
Finally, thanks to the properties of Λq, we show that the cardinal interpolation
problem of data with polynomial growth has solution in Eq(Rd) and Λq has
the polynomial reproducing property up to the degree m− 1.

Let us consider the distribution Λq defined by the formula of its Fourier
transform

Λ̂q(ω) :=
q−1(ω)∑

k∈Zd q−1(ω − 2πk)
. (4.1)

We remember that d ≥ 2, then m is even and q has constant sign. By using
(2.2), we get

0 ≤ Λ̂q(ω) ≤ C2

C1
‖ω‖−m∞

∑
k∈Zd

‖ω − 2πk‖−m∞

−1 .
Since m > d, Λq is well defined as an absolutely convergent integral. Moreover,

Λ̂q is a continuous function with Λ̂q(0) = 1 and Λ̂q(2πk) = 0, k ∈ Zd� {0} .
Let us introduce the 2πZd-periodic distribution

Φ̂ := qΛ̂q. (4.2)

Proposition 4.1 The following properties hold for Λq :

(i) Λq ∈ LEq(Rd).
(ii) Λq(k) = δ0k, k ∈ Zd.
(iii) For any φ ∈ LEq(Rd), V (φ)=V (Λq) and Λq and φ generate the same MRA

V of L2(Rd) associated with (Zd, A), whenever A enjoys (3.5).

Proof Let Φ̂ be defined as in (4.2). Clearly, Λ̂q = Φ̂q−1. Φ̂ is bounded since
continuous. If ω ∈ Td and k 6= 0 then ω − 2πk ∈ Rd�Td and q(ω − 2πk) 6=0.

Hence Φ̂(ω) 6= 0 for all ω ∈ Td� {0} , namely Φ̂ enjoys (A1) of Definition 3.2.

Since Λ̂q(0) = 1 it follows Λ̂q(ω) 6= 0 for all ω ∈ Td, and Λ̂q is bounded on
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Td because it is continuous; thus Λ̂q enjoys (A2) of Definition 3.2 and we can
conclude that Λq ∈ LEq(Rd).

To prove (ii), we observe that
∑
k∈Zd Λ̂q(ω − 2πk) = 1, and for k ∈ Zd we

can write

Λq(k) =
1

(2π)d

∫
Rd

Λ̂q(ω)ei<k,ω>dω =
∑
l∈Zd

1

(2π)d

∫
Td

Λ̂q(ω − 2πl)ei<k,ω>dω

=
1

(2π)d

∫
Td

∑
l∈Zd

Λ̂q(ω − 2πl)ei<k,ω>dω =
1

(2π)d

∫
Td

ei<k,ω>dω = δ0k.

Let us prove (iii). According to Proposition 3.3, let V be the MRA generated
by Λq associated with (Zd, A), where A enjoys (3.5). Let φ be in LEq(Rd) with

φ̂ = T̂ q−1, as in Definition 3.2. Consider the periodic distribution

H(ω) :=
T̂ (ω)

Φ̂(ω)
,

where Φ̂ is defined in (4.2). If ω ∈ Td we can write H(ω) = φ̂(ω)/Λ̂q(ω). Since

Λq is in LEq(Rd),
∣∣∣Λ̂q∣∣∣ is positive in Td by (3.3). Indeed, by continuity, there

exists a positive constant a such that
∣∣∣Λ̂q(ω)

∣∣∣ ≥ a for all ω ∈ Td . Then

0 < |H(ω)| < c a, ω ∈ Td,

where c is the positive constant in (3.3). By periodicity |H(ω)| > 0, ω ∈ Rd.
Moreover, H(ω) ∈ L2(Rd/2πZd). Since

φ̂(ω) = H(ω)Λ̂q(ω),

by virtue of [10, C6, Lemma 4], V (φ)=V (Λq) = V0 and we can conclude that
φ also generates the MRA V. ut

Let V = {Vj}j∈Zd be a MRA of L2(Rd) associated with (Zd, A) generated by
a localized q-elliptic splines with real-valued q. We observe that every element f
in V0 is continuous and can be uniquely expressed as f(x) =

∑
k∈Zd f(k)Λq(x−

k). Then the MRA V consists of generalized splines in the sense of Meyer (see
[13]).

Moreover, since for any φ in LEq(Rd) V (φ)=V (Λq) = V0, we can say that
the properties of the multiscale spaces Vj , j ∈ Zd depend only on q and can

not be improved by the choice of T̂ in φ̂ = T̂ q−1.
In general, T̂ acts on the shape and decay of φ, as it has already been

shown for example for polyharmonic B-splines (see e.g. [3,18,19,22]). We note

that Λq meets the property Λ̂q = Nq−1, where N is the Fourier expansion of

the continuous and periodic function Φ̂. Thus, Λ̂q has quite the same form as

φ̂, the infinite expansion giving the possibility of an exponential decay instead
of an algebraic one.
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Remember that exponential decay at infinity of Lagrange polyharmonic
splines was proven in [11]. Here, we improve that result by extending it to Λq
and also to all its admissible derivatives, for any real-valued q.

These properties can be derived from the fact that Λ̂q has a holomorphic
extension to a tube about the real axis. We use the following notations. If
ζ = (ζ1,..., ζd) ∈ Cd then Rζ and Iζ denote the vector of the real and imaginary

parts of the components of ζ, |ζ| =

√
|ζ1|2 + ...+ |ζd|2, ‖ζ‖∞ = maxj=1,...,d

|ζj | and ζα =
∏dk
k=1 ζ

αk

k . Clearly, |ζα| =
∏dk
k=1 |ζk|

αk ≤ ‖ζ‖|α|∞ . Given a subset
Ad j Rd and ε > 0, we denote by Adε the following subset of Cd = Rd + iRd,
i2 = −1,

Adε =
{
ξ = ω + iν : ω ∈ Ad , ‖ν‖∞ < ε

}
. (4.3)

Lemma 4.1 The functions Λ̂q and Φ̂, defined as in (4.1) and (4.2) respec-
tively, have holomorphic extensions to a tube Rdε , for some positive ε.

Proof Let ω ∈ Td and put

F (ω) :=
∑

k∈Zd\{0}

q−1(ω − 2πk) (4.4)

which is a uniformly convergent series in Td. Since q is real valued q(ω)F (ω) ≥
0 and observe that for ω in Td Φ̂(ω) = q(ω) [1 + q(ω)F (ω)]

−1
and Λ̂q(ω) =

[1 + q(ω)F (ω)]
−1
. Let q(ξ) be the analytic extension to Cd of the polynomial

q. Since q is homogeneous and elliptic, there is a positive ε such that q(ξ) 6=0,
ξ ∈ Rdε�Tdε . It follows that if ξ ∈ Tdε and j 6= 0 then ξ − 2πj ∈ Rdε�Tdε and
q(ξ− 2πj)6=0. Hence F extends analytically to Tdε . By reducing ε if necessary,

we may assume that 1 + q(ξ)F (ξ) has no zeros in Tdε . It follows that Φ̂ extends
analytically to Tdε and hence, by periodicity, it extends analytically to Rdε .
Also, it is evident that Λ̂q has analytic extension in Tdε . Since q(ξ) 6= 0 in
Rdε�Tdε , then by (4.2) this extension is analytic in all Rdε . ut

Lemma 4.2 Let q be real valued and let α be a multi-index, with |α| ≤ m −
d− 1. Then

(i) the series
∑
j∈Zd ∂̂αΛq(ζ + 2πj) converges absolutely and uniformly in the

cube Tdε , for some ε > 0;
(ii) the periodic distribution

Ĝx(ω) :=
∑
j∈Zd

∂̂αΛq(ω + 2πj) ei<x, ω +2πj>, ω ∈ Rd, (4.5)

has extension which is analytic in a tube Rdε , for some ε > 0.

Proof Let ε as that in Lemma 4.1. The term with j = 0, ∂̂αΛq(ζ) = (−2πiζ)αΛ̂q(ζ),

is bounded in Tdε because of the analyticity of Λ̂q in Rdε . Let j ∈ Zd \ {0} be
fixed and assume ζ = u+ iv in Tdε , namely, u ∈ [−π, π]d and v ∈ (−ε, ε)d. We
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use the notation µj = ζ+2πj = (u+ 2πj)+ iv. When ζ belongs to Tdε then µj
belongs to Rdε\Tdε . By virtue of analyticity of Φ̂ = q Λ̂q and since it is periodic,

Φ̂ is bounded in Rdε . The following inequalities hold:

‖µj‖∞ ≥ ‖Rµj‖∞ ≥ |‖u‖∞ − ‖2πj‖∞| ≥ π ‖j‖∞ ,∣∣µαj ∣∣ ≤ ‖µj‖|α|∞ ≤ (3π + ε)α ‖j‖α∞ .

Then, by using (2.2), it is possible to choose ε small enough so that∣∣∣∂̂αΛq(µj)∣∣∣ =
∣∣∣µαj Λ̂q(µj)∣∣∣ =

∣∣∣∣Φ̂(µj)
µαj
q(µj)

∣∣∣∣ ≤ C ‖j‖|α|−m∞ ,

where C is a positive constant independent of µj . Since m− |α| ≥ d+ 1, then

(i) is proved. Since Λ̂q has analytic extension in Rdε , for some ε > 0, then each
term of the series (4.5) has analytic extension in Rdε too. Let ζ ∈ Tdε . Clearly,∣∣∣Ĝx(ζ)

∣∣∣ ≤ e‖x‖ε ∑
j∈Zd

∣∣∣∂̂αΛq(ζ + 2πj)
∣∣∣ .

Then, for (i), Ĝx extends analytically to Tdε and hence, by periodicity, it ex-
tends analytically to the whole Rdε . ut

Now we are ready to prove the main result on regularity.

Proposition 4.2 Let q be real valued and let α be a multi-index, with |α| ≤
m− d− 1. Then there are positive constants C and c, depending on d, m and
α but independent of x, such that for all x ∈ Rd,

|∂αΛq(x)| ≤ C e− c‖x‖. (4.6)

Proof Since
∣∣∣Λ̂q(ω)

∣∣∣ ≤ C|ω|−m, then
∣∣∣∂̂αΛq(ω)

∣∣∣ ≤ K |ω||α|−m , ω ∈ Rd. Ac-

cording to the hypothesis |α| ≤ m− d− 1, we can apply the Fourier inversion
formula and we can write

∂αΛq(x) = (2π)−d
∫
Rd

∂̂αΛq(ω) ei<x,t>dω

= (2π)−d
∑
j∈Zd

∫
Td

∂̂αΛq(ω + 2πj) ei<x, ω +2πj> dω

= (2π)−d
∫
Td

Ĝx(ω) dω,

where Ĝx is the same of (4.5). Now, by virtue of analyticity of Ĝx, the set Td
in the last integral can be replaced by Sd =

{
ζ ∈ Cd : Rζ ∈ Td, and Iζ = γ

}
,

where γ = (γ1, ..., γd), γk are constants, |γ| = ε/2, k = 1, ..., d, (here ε is the
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same as that in Lemma 4.2) and the sign of γk is chosen so that < x, γ >
/ ‖x‖ > 0, x 6= 0; then

|∂αΛq(x)| = (2π)−d

∣∣∣∣∣∣
∫
Sd

∑
j∈Zd

∂̂αΛq(ζ + 2πj) ei<x,Rζ>e− c‖x‖dζ

∣∣∣∣∣∣
≤ (2π)−de− c‖x‖

∫
Sd

∑
j∈Zd

∣∣∣∂̂αΛq(ζ + 2πj)
∣∣∣ dζ = C e− c‖x‖,

where C and c are positive and independent from x. The convergence of the
series in the last integral is established in Lemma 4.2. ut

Proposition 4.3 Let q be real valued of degree m > d and let r = m− d− 1.
Then

(i) Λq is r-regular.
(ii) MRAs generated by localized q-elliptic splines are r-regular.
(iii) For any x ∈ Rd,

q(D)Λq(x) =
∑
k∈Zd

akδ(x− k), and |ak| ≤ C exp(−c ‖k‖), k ∈ Zd, (4.7)

where C and c are positive constants independent of k.
(iv) If A is a dilation matrix enjoying (3.5) then Λq meets the refinement equa-

tion
Λq(A

−1x) =
∑
k∈Zd

lkΛq(x− k),

where the so called refinement coefficients lk = Λq(A
−1k), k∈ Zd, have

exponential decay, as ‖k‖ → ∞.

Proof Properties (i) and (ii) are a transparent consequences of Proposition
4.2 and (iii) of Proposition 4.1. By (i) of Proposition 4.1, Λq ∈ LEq(Rd), and
LEq(Rd) ⊂ Eq(Rd) by Proposition 3.1, then by definition the equality in (4.7)
holds for some sequence of constants {ak}k∈Zd . The proof of the exponential
decay of {ak}k∈Zd is analogous to the proof of (4.6) in Proposition 4.2. Property
(iv) follows in view of the interpolation property (ii) of Proposition 4.1 and
because of the exponential decay stated by Proposition 4.2. ut

Corollary 4.1 MRAs generated by polyharmonic spline-based scaling func-
tions are r-regular. ut

We end the Section by generalizing some properties that are well-known in
the polyharmonic case. More precisely, we prove that the cardinal interpolating
problem for data of polynomial growth has solution in the class Eq(Rd), for
any real-valued q, and Λq satisfies the Strang-Fix conditions of order m − 1
[21], then it reproduces the polynomials up to the degree m − 1. We remark
that any polynomial of degree s ≤ m− 1 is in Eq(Rd).
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Proposition 4.4 Let q be real valued of degree m > d and let r = m− d− 1.
Suppose that v = {vk}k∈Zd is a sequence of polynomial growth, then

fv(x) =
∑
j∈Zd

vjΛq(x− j), (4.8)

is a tempered distribution in the class Cr(Rd), fv is in Eq(Rd), and fv(k) = vk
for all k. Moreover, for any polynomial P of degree s ≤ m− 1

P (x) =
∑
k∈Zd

P (k)Λq(x− k), x ∈ Rd, (4.9)

Proof Since the sequence v has a polynomial growth, ‖vk‖∞ ≤ K ‖k‖N∞ for

some N ∈ N. According to Proposition 4.2, |∂αΛq(x)|∞ ≤ C ‖x‖
−(N+d+1)
∞ for

all α such that |α| ≤ r, and all the series

∑
j∈Zd

vj∂
αΛq(x− j) = ∂α

∑
j∈Zd

vjΛq(x− j)

 , |α| ≤ r,

are absolutely and uniformly continuous on any compact subset of Rd. Then
fv is a tempered distribution in the class Cr(Rd), with r = m− d− 1. Clearly,
fv(k) = vk for all k, by (ii) of Proposition 4.1. Moreover

q(D)fv(x) =
∑
l∈Zd

vlq(D)Λq(x− l) =
∑
l∈Zd

vl
∑
k∈Zd

akδ(x− l − k)

=l+k=t

∑
l∈Zd

∑
t∈Zd

vlat−l

 δ(x− t) =
∑
t∈Zd

dtδ(x− t),

where the equalities hold because {ak}k∈Zd has exponential decay (see (4.7)).

Thus fν is in Eq(Rd).
If ω ∈ Td, and we can write Λ̂q in the form Λ̂q(ω) = [1 + q(ω)F (ω)]−1,

where F is defined as in (4.4). Λ̂q is analytic, then by a Taylor expansion about
ω = 0 we get

Λ̂q(ω)− 1 = O(‖ω‖m∞), ω → 0.

Making a Taylor expansion of (4.1) about ω = 2kπ, k 6= 0 we get

Λ̂q(ω) = O(‖ω − 2kπ‖m∞), ω → 2kπ, for all k ∈ Zd\ {0} .

Then Λq satisfies the Strang-Fix conditions of order m − 1 [21] and we get
(4.9). ut
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5 Prewavelets

5.1 Preliminary results

Let V = {Vj}j∈Z be a MRA of L2(Rd) associated with (Zd, A). For any j ∈ Z,
the wavelet space Wj , is the orthogonal complement of Vj in Vj+1,

Wj := Vj+1 	 Vj , j ∈ Z.

It is clear that the space Wj is the Aj-dilate of W0, j ∈ Z. The spaces Wj ,
j ∈ Z are mutually orthogonal, and

L2(Rd) = ⊕Wj .

Given a finite set of functions Ψ = {ψν}ν∈I from L2(Rd), we say that Ψ
has `2-stable integer translates, or more simply that Ψ is `2-stable, if there
exist constants 0 < M1 ≤M2 < +∞ such that

M1 ‖h‖22 ≤

∥∥∥∥∥∥
∑
ν∈I

∑
k∈Zd

hνkψ
ν(· − k)

∥∥∥∥∥∥
2

2

≤M2 ‖h‖22 , (5.1)

for all h =
{
hν = {hνk}k∈Zd

}
ν∈I ∈ `

2(Zd).
Clearly, Ψ = {ψν}ν∈I is `2-stable if and only if the family of functions

{ψν(· − k)}k∈Zd,ν∈I is a Riesz basis of the closure in L2(Rd) of its linear span
S. In this case we say that Ψ = {ψν}ν∈I provides a Riesz basis of S.

We use the following notations for the dilations and shifts of a function f

fj,k := pj/2f(Aj · −k), k ∈ Zd, j ∈ Z, (5.2)

where here and in the sequel p := |detA| .
A finite set Ψ = {ψν}ν∈I of functions in L2(Rd) is called set of wavelets if

R =
{
ψνj,k

}
ν∈I,j∈Z,k∈Zd

is a Riesz basis of L2(Rd) (see e.g. [2]). For every MRA with dilation A there
exists an associate wavelet set consisting of p − 1 elements [24]. In order to
find a set of wavelets, it suffices to find a set of p− 1 functions Ψ in W0 which
provides a Riesz basis of W0.

When the MRA V = {Vj}j∈Z is generated by a continuous scaling function
then ∪j∈ZVj ⊂ C0(Rd) and we can give the following characterization of a set
of wavelets.

Proposition 5.1 Let V = {Vj}j∈Z be a MRA of L2(Rd) with dilation A,
generated by a continuous scaling function and let Ψ = {ψν}ν∈I be a finite
set of functions in W0. Then Ψ provides a Riesz basis of W0 if and only if
]Ψ = p− 1, and Ψ has `2-stable integer translates.
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Proof We premise the following argument. Let φ ∈ V0 be a continuous scaling
function generating the MRA V. Since {φ(· − k)}k∈Zd is a Riesz basis of V0,
then the family

{
φ1,k = |detA|1/2 φ(A · −k)

}
k∈Zd

is a Riesz basis of V1. Since

each k ∈ Zd can be expressed in the unique form k = As+λ, where s ∈ Zd and
λ ∈ z, then if we define φλ(x) := φ(Ax + λ), λ ∈ z it is clear that

{
φλ
}
λ∈z

is a set of p functions which provides a Riesz basis of V1. We consider a set
Ψ = {ψν}ν∈I of functions from W0, and let Φ = {φ} ∪ Ψ. We have Φ ⊂ V1.
According to [2, pag.33], since Φ ⊂ C0(Rd), Φ provides a Riesz basis of V1 if
and only if ]Φ = ]z = p and Φ is `2-stable.

If Ψ provides a Riesz basis of W0, then Ψ is `2-stable and Φ = {φ} ∪ Ψ is
`2-stable too. Since φ provides a Riesz basis of V0, it follows that Φ provides
a Riesz basis of V1. By the previous argument, ]Φ = p. But φ /∈ Ψ, then
]Ψ = p− 1.

Viceversa, if Ψ ⊂ W0, with ]Ψ = p−1 and Ψ is `2-stable, then, by definition,
Ψ provides a Riesz basis of

S = closL2(Rd)span{ψν(· − k), k ∈ Zd, ν ∈ I},

Since φ /∈ W0, then Φ = {φ} ∪ Ψ consists in p functions in V1 ⊂ C0(Rd) which
are `2-stable. By the previous argument, Φ provides a Riesz basis of V1. But
again, φ /∈ W0. Then S =W0. ut

In view of the previous Proposition, and remembering that ]z′ = p − 1,
we number the elements of a family of wavelets Ψ ⊂ W0 by using the coset
representative symbology, that is, Ψ = {ψλ}λ∈z′ .

In the following, we provide a sufficient condition to establish that a family
Ψ = {ψλ}λ∈z′ is `2-stable whenever the functions ψλ, λ ∈ z′, are generated
by one single function ψ according to the following definition:

ψλ := ψ(· −A−1λ), λ ∈ z′. (5.3)

We denote by L2(Rd) the linear space of all functions f on Rd for which

∫
[0,1)d

∑
k∈Zd

|f(x− k)|

2

dx <∞.

If f ∈ L2(Rd) is r-regular, r ∈ N, then f ∈ L2(Rd).

Proposition 5.2 Let ψ ∈ L2(Rd) such that ψ̂(ω) = 0 if and only if ω =
2πBk, k ∈ Zd. Then

(i) ψ has `2-stable integer translates;
(ii) the family Ψ = {ψλ}λ∈z′ of functions defined as in (5.3) has `2-stable

integer translates.
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Proof It is known that ψ has `2-stable integer translates if and only if

sup
l∈Rd

∣∣∣ψ̂(ω + 2πl)
∣∣∣ > 0 for all ω ∈ Rd

(see e.g. [9, Theorem 3.5]). We have to show that there is no ω ∈ Rd such that

ψ̂(ω + 2πl) = 0, for all l ∈ Zd. (5.4)

By hypothesis, ψ̂(ω) = 0, iff ω = 2πBk, k ∈ Zd. Each l ∈ Zd can be expressed
in the form l = Bk + µ, l ∈ Zd, µ ∈ Ω, where Ω is a complete set of represen-
tatives of the distinct cosets of Zd/BZd, containing 0. Thus (5.4) is equivalent

to show that there is no ω ∈ Rd such that ψ̂(ω + 2πBk + 2πµ) = 0, for all
k ∈ Zd, and µ ∈ Ω. Chose k = 0. Then it is enough to prove that there is no
ω ∈ Rd such that

ψ̂(ω + 2πµ) = 0, for all µ ∈ Ω.

Observe that there is at most one µ ∈ Ω such that ψ̂(ω + 2πµ) = 0. Indeed,
if there were two distinct values µ′, µ′′ ∈ Ω, we would have µ′ − µ′′ = Bl, for
some l ∈ Zd which is impossible unless µ′ = µ′′. Since ]Ω = |detB| ≥ 2, we
get a contradiction.

If ψ ∈ L2(Rd), clearly ψλ ∈ L2(Rd), λ ∈ F ′ as well. Then, in order to
prove (ii) we use [9, Theorem 4.1,(i)]. Precisely, we prove that the sequences

(ψ̂λ(ω + 2πl))l∈Zd , λ ∈ z′ are linearly independent. We must show that there
is no ω ∈ Rd and c = {cλ}λ∈z′ 6= 0 such that∑

λ∈z′
cλψ̂λ(ω + 2πl) = 0 for all l ∈ Zd. (5.5)

Since ψ̂λ(ω) = ψ̂(ω) e−i<ω,A
−1λ>, and every l ∈ Zd can be expressed in the

form l = Bk + µ, where k ∈ Zd and µ ∈ Ω, it follows that (5.5) is equivalent
to(∑

λ∈z′

(
cλ e

−i<ω,A−1λ>
)(

e−i<2πµ,A−1λ>
))

ψ̂(ω + 2πBk + 2πµ) = 0, (5.6)

for all k ∈ Zd and µ ∈ Ω. By hypothesis, ψ̂(ω) = 0 if and only if ω = 2πBl,
l ∈ Zd. We choose k = 0 into (5.6). As before, we observe that there is at most

one µ0 ∈ Ω such that ψ̂(ω + 2πµ0) = 0. Hence∑
λ∈z′

(
cλ e

−i<ω,A−1λ>
)(

e−i<2πµ,A−1λ>
)

= 0, for all µ ∈ Ω \ {µ0} .

We finish the proof by proving that the system has only the null solution c = 0,
which is a contradiction. In fact, for any µ0 ∈ Ω the matrix

H =
[
e−i<2πµ,A−1λ>

]
µ∈Ω\{µ0},λ∈z′
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is non singular. To this end, let us consider the matrix

J =
[
e−i<2πµ,A−1λ>

]
µ∈Ω,λ∈z

.

It is known that
1
√
p
J is a unitary matrix (see for example [6, Lemma 2.3]),

and so J−1 = p−1JT . Since every element of J is nonzero, then every element
of J−1 is nonzero too. This is equivalent to say that every minor of J of order
p − 1 is nonzero as well. In particular, the matrix H is nonsingular for any
µ0 ∈ Ω. ut

We can join Proposition 5.2 with Proposition 5.1 to state the following
useful result.

Proposition 5.3 Let ψ ∈ L2(Rd) such that ψ̂(ω) = 0 if and only if ω =
2πBk, k ∈ Zd. Then the family Ψ =

{
ψλ
}
λ∈F ′ of functions defined as ψλ :=

ψ(· − A−1λ), λ ∈ F ′ provides a Riesz basis of W0 if and only if Ψ ⊂ W0. In
this case Ψ is a set of wavelets. ut

It is well known that corresponding to a Riesz basis R, there is a unique

dual Riesz basis R̃ relative to R. If R̃ is of the form R̃ =
{
ψ̃λj,k

}
λ∈z′,j∈Z,k∈Zd

we call Ψ̃ =
{
ψ̃λ
}
λ∈z′

the dual set of Ψ and the pair (Ψ, Ψ̃) is called wavelet

system, in the sense that every function f ∈ L2(Rd) can be obtained equiva-

lently from R or R̃ :

f(x) =
∑
j∈Z

∑
k∈Zd

∑
λ∈z′

(
f, ψ̃λj,k

)
ψλj,k(x) (5.7)

=
∑
j∈Z

∑
k∈Zd

∑
λ∈z′

(
f, ψλj,k

)
ψ̃λj,k(x).

Finally, we remark that any two functions in R, as well as two functions in R̃,
are orthogonal across different levels j, l ∈ Z. However, two functions in the
same level may be not orthogonal. In this case the functions in R and R̃ are
called prewavelets.

5.2 q-elliptic r-regular prewavelets and duals

As usual, let q be an elliptic and homogeneous polynomial of degree m > d
and A be a dilation for Zd which enjoys (3.5). Let V = {Vj}j∈Z be a MRA of

L2(Rd) associated with (Zd, A) generated by a scaling function φ ∈ LEq(Rd).
We underline that q is not required to be real-valued and thus the MRA V
may not be r-regular. Nonetheless, we can generate a complex non-separable
prewavelet system (Ψ, Ψ̃) enjoying the very desirable properties of being r-
regular and of having a certain of number vanishing moments.
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Let us consider the polynomial

|q|2 = qq,

which is real-valued, homogeneous and elliptic, of degree 2m. We make use of
the Lagrange function Λ|q|2 in LE|q|2(Rd) to define a finite set Ψ =

{
ψλ
}
λ∈z′

of r-regular functions which provides a Riesz basis of the space W0. Thanks
to the structure of the wavelet spaces Wj , R = {ψλj,k}λ∈z′,k∈Zd,j∈Z is a Riesz

basis of L2(Rd).

Proposition 5.4 Let V = {Vj}j∈Zd be a MRA of L2(Rd) associated with (Zd, A),

and generated by φ ∈ LEq(Rd). Let ψ and ψλ be defined as follows:

ψ := q(D) Λ|q|2(A·), (5.8)

ψλ := ψ(· −A−1λ), λ ∈ z′. (5.9)

Then ψ is r-regular and the set Ψ :=
{
ψλ
}
λ∈z′ provides an r-regular Riesz

basis of W0, with r = m− d− 1.

Proof The polynomial |q|2 is real valued, then by Proposition 4.3 Λ|q|2 is in the

class C2m−d−1(Rd) and it is (2m− d− 1)-regular. Since q(D) is a differential
operator of order m, it follows that ψ and consequently ψλ, λ ∈ z′, are (m−
d − 1)-regular. In particular, ψ is in L2(Rd). The Fourier transform of ψ is
given by

ψ̂(ω) = imp−1q(B−1ω)Λ̂|q|2(B−1ω). (5.10)

Observe that ψ̂(ξ) = 0, iff ξ = 2πBk, k ∈ Zd. This follows from (5.10), since

q(B−1ξ) = 0 iff ξ = 0, and Λ̂|q|2(B−1ξ) = 0 iff ξ = 2πBk, k ∈ Zd� {0} .
Then ψ satisfies the hypotheses of Proposition 5.3 and, in order to prove that
Ψ provides a Riesz basis of W0, we have only to show that Ψ ⊂ W0. First, let
us show that ψ is in V1, and consequently ψλ ∈ V1, λ ∈ z′. Let φ̂ = T̂ q−1.
According to (4.1) we can write

ψ̂(ω) = imp−1q(B−1ω)
|q|−2 (B−1ω)∑

k∈Zd |q|−2 (B−1ω + 2kπ)

= imp−1
T̂ (B−1ω) q−1(B−1ω)

T̂ (B−1ω)
∑
k∈Zd |q|−2 (B−1ω + 2kπ)

, ω ∈ Rd.

That is,
ψ̂(ω) = imp−1S(B−1ω)φ̂(B−1ω), ω ∈ Rd, (5.11)

with

S(ω) =
1∑

k∈Zd T̂ (ω + 2kπ) |q|−2 (ω + 2kπ)
, ω ∈ Rd.

It is now sufficient to prove that S(ω) is in L2(Rd/2πZd). We observe that

there is no ω ∈ Rd such that the equality T̂ (ω + 2kπ) |q|−2 (ω + 2kπ) = 0 is
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satisfied for all k ∈ Zd. Since T̂ |q|−2 = φ̂q−1, this is equivalent to say that
there is no ω ∈ Rd such that

φ̂(ω + 2πk) = 0 for all k ∈ Zd. (5.12)

To the contrary, suppose that there exists such an ω ∈ Rd, but then T̂ (ω +
2πk) = 0 for all k ∈ Zd. Let l ∈ Zd be such that ‖ω + 2πl‖∞ < π. By (A1) of
Definition 3.2 this implies ω + 2πl = 0, i.e. ω = −2πl for such a l. Choosing
k = l in (5.12), we get φ̂(0) = 0, which is a contradiction. Thus, S(ω) is in
L2(Rd/2πZd).

The following equalities show that ψλ is orthogonal to any elliptic spline
f in V0 :

(f, ψλ) = (f, q(D)Λ|q|2(A · −λ)) = (q(D)f, Λ|q|2(A · −λ))

= (
∑
k∈Zd

ckδ(· − k), Λ|q|2(A · −λ)) =
∑
k∈Zd

ckΛ|q|2(Ak − λ) = 0,

where the last equality holds since λ 6= Ak, for all k ∈ Zd and λ ∈ z′. Recalling
that W0 = V1 	 V0, we have proved that Ψ ⊂ W0. ut

We note that the family Ψ introduced in Proposition 5.4 is a generalization
of the one given in [14] with A = 2I. However, in that paper the Lagrange
function is defined in dependence on the scaling function, that is not our case.
Moreover, the regularity results here stated are new to our knowledge.

In the following Proposition the dual set Ψ̃ of Ψ is defined. Note that this
space is generated by the shifts of one function ψ̃ whose definition in the
Fourier domain depends only on the Fourier transform of the generator ψ.

Proposition 5.5 Let ψ and ψλ, λ ∈ z′ be defined as in Proposition 5.4. Let
ψ̃ be defined in the Fourier domain as follows:

̂̃
ψ(ω) :=

ψ̂(ω)∑
k∈Zd

∣∣∣ψ̂(ω + 2kπ)
∣∣∣2 , (5.13)

and let

ψ̃λ := ψ̃(· −A−1λ), λ ∈ z′. (5.14)

Then ψ̃ is r-regular and the set Ψ̃ :=
{
ψ̃λ
}
λ∈z′

provides a r-regular Riesz

basis of W0 with r = m− d− 1. Moreover,(
ψ̃λ, ψµ(· − l)

)
= δλ,µδl,0, (5.15)

for all λ, µ ∈ z′ and l ∈ Zd.
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Proof Let r = m − d − 1. The r-regularity of ψ̃λ, λ ∈ z′ follows from the
r-regularity of the generator ψ̃. Let us show that ψ̃ is r-regular. It is known
that, if f is r-regular and g is defined by the condition ĝ(ω) = η(ω)f̂(ω) for
a 2πZd-periodic C∞ function η(ω), then g(x) is r-regular ([24], Lemma 5.13).
Let us consider (5.8) defining ψ. By Proposition 5.4, ψ is r-regular. If we look

at (5.13) which defines
̂̃
ψ, it is clear that it suffices to show that the function

η(ω) :=

∑
k∈Zd

∣∣∣ψ̂(ω + 2kπ)
∣∣∣2
−1 (5.16)

is C∞. Since ψ ∈ L1(Rd), then t(ω) :=
∑
k∈Zd

∣∣∣ψ̂(ω + 2kπ)
∣∣∣2 is C∞ ([24],

Corollary 5.14). Moreover, ψ satisfy the hypotheses of Proposition 5.2, then ψ
has `2-stable integer translates, and it follows t(ω) > 0 and η(ω) ∈ C∞(Rd).
So, ψ̃q is r-regular.

Let us show that Ψ̃ provides a Riesz basis ofW0. We can apply Proposition

5.3. Since ψ̃ is r-regular, then ψ̃ is in L2(Rd). We observe that
̂̃
ψ(ξ) = 0 iff

ψ̂(ξ) = 0, namely iff ξ = 2πBk, k ∈ Zd (see the proof of Proposition 5.4). Let

us show that Ψ̃ ⊂ W0. Definition (5.13) implies that ψ̃ =
∑
k∈Zd bkψ(· − k),

{bk}k∈Zd ∈ `2(Zd). Since ψ is in V1, ψ̃ is in V1, as well as ψ̃λ, λ ∈ z′. Moreover,

by using (5.8), (5.14), ψ̃λ =
∑
k∈Zd bkq(D)Λ|q|2(A ·−λ−Ak), and by using an

argument similar to the one used for ψλ in Proposition 5.4, we can conclude
that ψ̃λ is orthogonal to any f in V0. Then Ψ̃ ⊂ W0.

Finally, we show the duality relation (5.15). By the Parseval identity, and
writing Rd as

⋃
k∈Zd

(
Td + 2πk

)
, we get(

ψ̃λ, ψµ(· − l)
)

= (2π)−d
∫
Rd

̂̃
ψλ(ω)ψ̂µ(ω)ei<l,ω>dω

= (2π)−d
∫
Td

ei<l,ω>
∑
β∈Zd

̂̃
ψλ(ω + 2πβ)ψ̂µ(ω + 2πβ)dω.

By a straightforward calculation,∑
β∈Zd

̂̃
ψλ(ω + 2πβ)ψ̂µ(ω + 2πβ) = e−i<A

−1(λ−µ),ω>.

If λ = µ, (
ψ̃λ, ψµ(· − l)

)
= (2π)−d

∫
Td

ei<l,ω>e−i<0,ω>dω = δl,0.

If λ 6= µ, since for all l, Al + µ is an integer different from λ,(
ψ̃λ, ψµ(· − l)

)
= (2π)−d

∫
Td

ei<l,ω>e−i<A
−1(λ−µ),ω>dω,
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and by the change of variable ξ = ATω, we get(
ψ̃λ, ψµ(· − l)

)
= (2π)−dp−1

∫
Td

ei<Al+µ,ξ>e−i<λ,ξ>dξ = 0.

ut

According to the above construction, R̃ = {ψ̃λj,k}λ∈z′,k∈Zd,j∈Z is the dual

basis of R = {ψλj,k}λ∈z′,k∈Zd,j∈Z, and (Ψ, Ψ̃) is a system of prewavelets con-
sisting of r-regular functions, with r = m− d− 1.

5.3 Vanishing moments and approximation order

We conclude this Section by discussing the number of vanishing moments of the
prewavelets and their duals. Vanishing moments is a very desirable property
since it guarantees that the prewavelet representation (5.7) of piecewise smooth
function is sparse. Moreover, it provides the approximation order.

The prewavelets and their duals are in the form ψλ = ψ(· − A−1λ) and

ψ̃λ = ψ̃(·−A−1λ), λ ∈ z′, then it suffices to consider the generators ψ and ψ̃.

Since ψ has `2-stable integer translates,
̂̃
ψ, ψ̂, as defined in (5.10), (5.13) have

the same behavior around ω = 0 and the number of their vanishing moments is
the same. Due to the r-regularity of ψ and ψ̃, for each multi-integer α, |α| ≥ 0,

their moments of order α are well defined. The function ψ̂ is analytic and η(ω),

as defined in (5.16), belongs to C∞(Rd), then
̂̃
ψ is analytic too. Recalling that

Λ̂|q|2(0) = 1 and using the bounds (2.2) for q, we get

ψ̂(ω),
̂̃
ψ(ω) = O(‖ω‖m), ω → 0,

and∫
Rd

xαψ(x) dx = ∂αψ̂(0) = 0,

∫
Rd

xαψ̃(x) dx = ∂α
̂̃
ψ(0) = 0, |α| ≤ m− 1.

Therefore, the system of prewavelets (Ψ, Ψ̃) has m− 1 vanishing moments.
This prewavelet system satisfies the decay hypotheses in [20, Theorem 4],

so that the vanishing moment property for ψ̃ provides the corresponding ap-
proximation order for the prewavelet decomposition (12).

Proposition 5.6 Let the prewavelet system (Ψ, Ψ̃) be defined as in Proposi-
tion 5.4, and Proposition 5.5. Then for any function f in the Sobolev space
Hm, the decomposition (12) has approximation order m :

∥∥∥∥∥∥f −
∑

l<j,l∈Z

∑
k∈Zd

∑
λ∈z′

(f, ψ̃λl,k)ψλl,k

∥∥∥∥∥∥
2

6 C(ε) ‖f‖Hm

(
1

|µ| − ε

)jm
,

where µ is a minimal (in module) eigenvalue of A, ε > 0, |µ| − ε > 1.
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6 Prior definitions and examples

In order to highlight the results studied in this paper, we discuss some examples
both related to prior definitions and to the more general Definition 3.2.

Elliptic splines were initially studied in some details in [14]. In this sem-
inal paper, the authors provide dyadic MRAs and prewavelet decomposition
of L2(Rd) based on a class of functions φ with φ̂ = T̂ q−1 where the homoge-

neous and elliptic polynomial q of degree m > d and T̂ satisfy the following
conditions:

(B1) T̂ is a trigonometric polynomial

T̂ (ω) =
∑
k∈Zd

cke
−i<k,ω>, ω ∈ Rd

such that T̂ (ω) 6= 0 for all ω ∈ Td� {0} ;

(B2) T̂ (ω)− q(ω) = O(||ω||m+1+s
∞ ) for ω → 0 and some positive integer s.

Condition (B2) implies that φ̂(ω) → 1 for ω → 0; moreover, it is proved
that φ algebraically decays at infinity at least of order d + 1 + s, thus φ ∈
LEq(Rd) ∩ L1(Rd).

We note that for complex q and real T̂ (B2) is never met. While, for
example, if m is even and q is an elliptic polynomial of the form q(ω) =∑
|j|=m/2 ajω

2j , aj ∈ C, then a possible T̂ is
∑
|j|=m/2 aj sin2j(ω/2).

If q(ω) = ‖ω‖m ,m even, we get the polyharmonic B-splines. These func-

tions are characterized by special choices of T̂ which lead to different orders of
decay at infinity (see e.g. [3,16–19,22]). Actually, they are refinable functions
with respect to any dilation matrix which is a similarity, that is, A = %A0

where A0 is an orthogonal matrix and % is a real number such that |detA| is
an integer ≥ 2 (see e.g. [10]).

In [14], following the ideas given in [7] and [15], a prewavelet generator ψ0

is defined in terms of a Lagrange function Λ explicitly involving the scaling
function φ, namely

Λ̂ =

∣∣∣φ̂∣∣∣2∑
k∈Zd

∣∣∣φ̂(·+ 2πk)
∣∣∣2 and ψ̂0 =

im

|detA|
q Λ̂(B−1·). (6.1)

Comparing (6.1) with (4.1) and (5.8), it is clear that Λ̂ ≡ Λ̂|q|2 and ψ̂0 ≡ ψ̂.
Actually, (4.1) and (5.8) are a different formulation of (6.1). The advantage is
that the prewavelet generator ψ just depends on q, and it is evident that its
smoothness and decay are independent of T̂ . Indeed, we have proven that this
construction provides r-regular prewavelet system, with r = m− d− 1.

Formulas based on (6.1) have been used to generate MRAs and prewavelet
decomposition of L2(Rd) based on polyharmonic B-splines (see e.g. [1,4,18]).
However, in these cases, q is real-valued and according to Proposition 4.3 we
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don’t even need to define the periodic function T̂ to design both the MRA and
the prewavelet decomposition. In fact, when q is real-valued, any localized q-
elliptic spline generates the same MRA generated by the Lagrange q-elliptic
spline (4.1). Moreover, the MRA and the prewavelets are r-regular. We illus-
trate the real-valued case in two dimensions by showing the Lagrange scaling
function Λq and the prewavelet generator ψ.

In Fig. 6.1 we consider the polyharmonic case q(ω) = ‖ω‖4 and the pre-

wavelet generator ψ associated with the quincunx dilation matrixA =

(
1 1
−1 1

)
.

Since |detA| = 2, only one prewavelet spans the spaces Wj and both Λq and
ψ are 1-regular.
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Fig. 6.1 q(ω) = ‖ω‖4. Left: Λq . Right: ψ.

In Fig. 6.2 we consider the elliptic polynomial q(ω1, ω2) = 10 ω6
1 + ω6

2 and
the prewavelet generator ψ associated with the dyadic dilation matrix. In this
case, both Λq and the generator ψ are 3-regular.
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A different class of two dimensional q-elliptic splines scaling functions can
be found, as a particular case, in [23] where according to (6.1), the authors pro-
vide a prewavelet generator ψ associated with complex isotropic polyharmonic
B-splines in R2. These functions have Fourier transform φ̂ = T̂ ρ−1 where

ρ(ω1, ω2) = (ω2
1 + ω2

2)α(ω1 − iω2)N , α ∈ R+
0 , N ∈ N, 2α+N > 2, (6.2)

T̂ is a 2πZ2-periodic function such that T̂ (ω) 6= 0 for all ω ∈ Td� {0} that
enjoys ∣∣∣T̂ ∣∣∣ = να+N/2, with ν(ω) = ‖ω‖2 +O(‖ω‖4), ω → 0, (6.3)

where ν is a suitable trigonometric polynomial.

Clearly,
∣∣∣φ̂(ω)

∣∣∣→ 1 as ω → 0, and it is proven in [8] that these φ are scaling

functions generating MRAs of L2(R2) associated with scaled rotation dilation

matrices, i.e. similarities of the form

(
a b
−b a

)
.

When α is an integer, then ρ is a homogeneous elliptic polynomial of degree
2α + N > 2 and it is evident that φ is in LEρ(R2). As it is observed in that
paper, the prewavelet generator ψ is independent of any particular scaling
function in LEρ(R2). Here, according to Proposition 5.4, we can say that ψ is
(2α+N − 3)-regular. In Fig. 6.3 the real and imaginary part of ψ associated
with A = 2I are depicted for α = N = 1.
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Fig. 6.3 α = n = N = 1. From left to right, real and imaginary part of ψ.

We have to mention that the function (6.2) was initially proposed in [8]
where several rotation covariant scaling functions are obtained with real valued
T̂ enjoying (6.3). In that paper it is required that T̂ is a bounded, 2πZ2-periodic

function such that T̂ (ω) 6= 0 for all ω ∈ T2� {0} , and that
∣∣∣φ̂(ω)

∣∣∣→ c > 0 as

ω → 0. But the construction of the prewavelets follows a different approach
from (6.1) and the resulting functions are bounded, uniformly continuous and

slowly decay at infinity like ‖x‖−γ , where γ depends on T̂ .



On MRAs and prewavelets based on elliptic splines 25

The class LEq(Rd) especially motivates for complex polynomials q when
the conditions given in the above mentioned literature are disregarded. In
order to provide an appropriate example, we generalize (6.2), (6.3) for α ∈ N0

integer. More precisely, we consider the two dimensional homogeneous and
elliptic polynomials of degree 2α+ nN > 2

q(ω1, ω2) := (ω2
1 + ω2

2)α (ωn1 − iωn2 )N , α ∈ N0, n,N ∈ N, (6.4)

and let T̂ be a 2πZ2-periodic function such that T̂ (ω) 6= 0 for all ω ∈ Td� {0}
that enjoys ∣∣∣T̂ ∣∣∣ = να+nN/2, ν(ω) = ‖ω‖2 +O(‖ω‖4), as ω → 0, (6.5)

where ν is a trigonometric polynomial.
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Fig. 6.4 α = N = 1, n = 2. From left to right, top to bottom: real and imaginary part of
φ, real and imaginary part of ψ.

Polyharmonic B-splines are obtained when nN = 0. If n = 1 we get the class
introduced in [8,23] corresponding to α ∈ N0.

We note that
∣∣∣φ̂∣∣∣ is positive apart from the grid 2πZ2 and

∣∣∣φ̂(ω)
∣∣∣ =

(ω2
1 + ω2

2)nN/2

(ω2n
1 + ω2n

2 )N/2
+O(‖ω‖2), as ω → 0.
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Fig. 6.5 α = N = 1, n = 2. |φ̂(ω)|, ω ∈ Td.

The case n ≥ 2 is new and
∣∣∣φ̂(ω)

∣∣∣ has no limit as ω → 0, but condition (A2)

of Definition 3.2 is satisfied, thus φ belong to LEq(R2).
In order to specify a particular scaling function in the class LEq(R2), we

chose T̂ in the form (6.5) as follows,

T̂ (ω1, ω2) =
(

sin2 ω1

2
+ sin2 ω2

2

)α+nN/2
.

If nN is even T̂ is a trigonometric polynomial. According to Proposition 5.4,
when we define the prewavelet generator ψ by (5.8), ψ is r-regular with r :=
2α+nN −3, and the set Ψ :=

{
ψλ
}
λ∈z′ provides r-regular Riesz basis ofW0.

In Fig. 6.4, we show for α = N = 1 and n = 2 the real and imaginary part of
the scaling function and of the prewavelet generator associated with A = 2I,
which is 1-regular. The oscillating behavior in a neighborhood of the origin of∣∣∣φ̂∣∣∣ is highlighted in Fig. 6.5.
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