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1 Introduction

In the 18th century, with the work of mathematicians such as Euler, d’Alembert, La-
grange, and Laplace, the study of Partial Differential Equations (PDE’s) started having
a central role. In particular, this tool turned out to be extremely useful for analytically
describing a wide range of phenomena arising in physical science. During the mid-19th
century, with the work of many mathematicians including Riemann, PDE’s also became
a tool used to study problems originating from other areas of mathematics. This duality
of theoretical aspects of PDE’s and real applications was predicted for the first time by
H. Poincare in [98] and arrived at the present days. On the one hand, he claimed that
many problems arising in different areas (electricity, hydrodynamics, heat, magnetism,
optics, elasticity) present very common features, and they can be treated using similar
methods. On the other hand, he insisted on the importance of rigorous proofs, even if
the models were an approximation of the reality, since he was convinced that the theory
that would emerge from this study would have a significant impact on other branches
of Mathematics. For instance, we can mention differential geometry, real analysis and
functional analysis, topology, probabilistic models, algebraic geometry, chaos theory (the
interested reader can consult [29] for a complete survey on the history of PDE’s and on
the interactions with other research fields).

One of the aspects that has a particular importance in the study of PDE’s is the
existence of solutions of nonlinear Partial Differential Equations. This research field has
been extremely active in the last two centuries. A natural way to approach the problem
turned out to be the so-called Variational Methods. The idea behind these techniques
is to associate to the equation a functional. Choosing appropriately the functional, it
is possible to establish a one-to-one correspondence between the critical points of the
functional and the solutions of the PDE’s. In this spirit, one of the main results in order
to prove the existence of critical points is the Mountain Pass Theorem proved by A.
Ambrosetti and P.H. Rabinowitz in their seminal paper [3]. This article and the ideas
contained in it lead the way to the development of a sector of mathematics known in
literature as Critical Point Theory.

At the end of the previous century, Analysis on non-Euclidean settings started to be an
area under great development. This was due to numerous problems arising in Geometry
and Physics that lead to the study of some PDE’s set in particular on Riemannian
Manifolds. As a consequence of that, in order to apply the strategies used in the Euclidean
case, it was necessary to build a theory of Sobolev spaces on Riemannian manifolds and in
this direction the contributions of T. Aubin and E. Hebey were very relevant. After that,
the study of PDE’s set in particular on Riemannian manifolds attracted the attention
of many researchers, since they are usually quite challenging from a mathematical point
of view and existing techniques are inadequate to solve them. On the other hand, if
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1 Introduction

analytical tools are not effective, the geometry of the manifold may help to solve some
issues and this make the problems taken under consideration deeply interesting.

Another very active research field in the last decades has been the study of Partial
Differential Equations driven by non-local operators. It is well known that the value
in a point of a local differential operator, such as the classical Laplacian, depends only
on what happens in a neighbourhood of the point, as suggested by the name. Unlike
them, the value of a non-local operator is influenced by what happen in the whole space.
Because of this feature, non-local operators turned out to be extremely useful to model a
wide class of situations in the real world. As a consequence of that, many researchers were
attracted by these operators, and they started studying them. Undoubtedly, the most
studied non-local operator is the fractional Laplacian and one of the first techniques to
obtain existence of solutions and qualitative properties of fractional differential equations
was proposed by L. Caffarelli and L. Silvestre in [33]. They showed that it is possible to
derive a fractional differential equation from a local equation in higher dimension. More
recently, with the publications of [103] and [104], mathematicians started studying these
kinds of problem via Variational Methods without the Caffarelli-Silvestre extension.

In all the problems and techniques mentioned above, there is an issue that one usually
has to face, and it is the compactness. Here, with compactness we mean that the Sobolev
space in which we are looking for solutions of a given Partial Differential Equations is
compactly embedded into the Lebesgue spaces. When this is not true, the compactness
condition introduced by R. Palais and S. Smale, known as the Palais-Smale condition
or PS for short, does not hold in general and standard variational methods can not be
applied. Hence, one must rely on more sophisticated strategies which are still the subject
of great interest and study today.

In this thesis we are going to present some results for some Partial Differential Equa-
tions, driven by fractional operators or set on a Riemannian manifold, in which for some
reasons we have a loss of compactness, and the problem became demanding. The first
problem we are going to analyze is the existence of solutions for the fractional Schrödinger
equation with prescribed L2-mass. Here the loss of compactness is caused by the invari-
ance of RN with respect to the non-compact group of translations. To solve the issue,
we will use some Concentration-Compactness arguments introduced for the first time by
P.L. Lions in [71] and [72]. The second equation we will take under examination is a
fractional p-Kirchhoff type equation critical in the sense of Sobolev. The presence of the
critical exponent prevents from having a functional associated to the problem that is
sequentially weakly lower semicontinuous and that satisfies the Palais-Smale condition.
The generalization to the fractional case of the second Concentration-Compactness Prin-
ciple of P.L. Lions (see [73], [74]) will be crucial to carry out our analysis. After these
two problems, we will draw our attention to the Schrödinger equation set on Rieman-
nian manifolds in two particular cases. The first one is on a non-compact Riemannian
manifold with very general assumptions on the Ricci tensor, which are usually referred
as asymptotically non-negative. In this case, we will deal the non-compactness of the
manifold with a coercivity hypothesis on the potential in the differential operator. The
second one is on a homogeneous Cartan-Hadamard manifold with a nonlinearity with
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an oscillating behaviour. Working on a Sobolev space where the functions have some
"symmetries" will enable us to recover the compactness and prove the existence of in-
finitely many solutions. All the problems were studied in collaboration of my Ph.D.
advisor Prof. Simone Secchi, Prof. Giovanni Molica Bisci from University of Urbino and
Alessio Fiscella from University of Milano-Bicocca. The content of chapters 3, 4, 5 are
published respectively in [14], [11], [13]. Chapter 6 was accepted for publication, and a
paper version is available on [10].
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2 Mathematical background

This chapter is devoted to introducing some mathematical concepts that will be useful
throughout the thesis. We will give some information on fractional Sobolev spaces and on
the fractional Laplace operator. After that, we will recall some rudiments on Riemannian
geometry and on Sobolev spaces on manifolds.

2.1 Fractional Sobolev spaces

In this section we will recall some basic notions on fractional Sobolev spaces. We will
present the topics without proofs, and we remind the reader to [41] and the references
therein for a more detailed discussion.

We fix s ∈ (0, 1), an integer N > 2s and p ∈ [1,+∞). We consider a general open set
Ω in RN (also non-smooth is allowed). We define the fractional Sobolev spaces W s,p(Ω)
as

W s,p(Ω) :=

{︄
u ∈ Lp(Ω) | |u(x)− u(y)|

|x− y|
N
p
+s
∈ Lp(Ω× Ω)

}︄
, (2.1)

endowed with the natural norm

∥u∥W s,p(Ω):=

(︃∫︂
Ω
|u|p dx+

¨
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)︃ 1
p

, (2.2)

where

[u]W s,p(Ω) :=

(︃¨
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)︃ 1
p

(2.3)

is the so-called fractional Gagliardo seminorm of u.
The case p = 2 is very relevant and is somehow special, since the fractional Sobolev

space W s,2(Ω) turns out to be a Hilbert space, usually denoted by Hs(Ω), with scalar
product

⟨u, v⟩Hs(Ω) =

∫︂
Ω
uv dx+

¨
Ω×Ω

(u(x)− u(y)) (v(x)− v(y))
|x− y|N+2s

dx dy.

These spaces, introduced almost simultaneously, are a sort of intermediary spaces between
Lp(Ω) and W 1,p(Ω).

Analogously to the case in which s is an integer, it is possible to define a critical
exponent that plays the same role in the embedding theorems. Namely, we define

p∗s :=
Np

N − sp
,
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2 Mathematical background

and we have

Theorem 2.1. Let s ∈ (0, 1) and p ∈ [1,∞) such that sp < N . Then there exist a
positive constant C = C(N, p, s) such that, for any u ∈W s,p(RN ), we have

∥u∥pp∗s≤ C
¨

R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy.

Consequently, the space W s,p(RN ) is continuously embedded in Lq(RN ) for any q ∈ [p, p∗s].

Remark 2.2. The notation ∥·∥q will denote the classic norm on the Lebesgue space
Lq(RN ). In the rest of the thesis we will also study some problems in bounded do-
mains Ω, but since the functions can be extended equal to zero in RN \Ω we will always
use the same notation for the norm of Lq(Ω).

Requiring a hypothesis of regularity on the boundary Ω, it is possible to generalize the
celebrated Rellich-Kondrachov Theorem for fractional Sobolev spaces.

Proposition 2.3. Let s ∈ (0, 1) and p ∈ [1,∞) be such that sp < N . Let q ∈ [1, p∗s),
let Ω ⊂ RN be a bounded Lipschitz domain for W s,p(Ω) and let F be a bounded subset of
Lp(Ω). Suppose that

sup
u∈F

¨
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy <∞.

Then F is pre-compact in Lq(Ω).

Remark 2.4. The last Proposition tells us that W s,p(Ω) ↪→↪→ Lq(Ω) compactly for all
q ∈ [1, p∗s).

2.2 Fractional Laplacian

Fractional Sobolev spaces are strictly related to the fractional Laplacian operator. Before
giving its definition, it is necessary to fix some notation.

We denote with

S(RN ) :=

{︄
u ∈ C∞(RN ) | sup

x∈RN

|xαDβu(x)|<∞ ∀ α, β ∈ NN
}︄

where C∞(RN ) is the space of infinitely differentiable functions (functions that admits
continuous derivative of any order) and α, β are multi-indexes, i.e.

α = (α1, . . . , αN ),

with αi ∈ N and
xα = xα1

1 · · ·x
αN
n .
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2.2 Fractional Laplacian

With the symbol Dβ we mean

Dβ =
∂|β|

∂xβ11 · · · ∂x
βN
N

where

|β|=
N∑︂
i=1

βi.

Now, for every u ∈ S(RN ) we can define the fractional Laplacian as

(−∆)su(x) = C(N, s)P.V.

∫︂
RN

u(x)− u(y)
|x− y|N+2s

dy

= C(N, s) lim
ϵ→0+

∫︂
RN \Bϵ(x)

u(x)− u(y)
|x− y|N+2s

dy.

Here P.V. stands for "in the principal value sense" (as defined by the previous equation),
and C(N, s) is a dimensional constant that depends on N and s, precisely given by

C(N, s) =

(︃∫︂
1− cos(ζ1)

|ζ|N+2s
dζ

)︃−1

.

For our purposes, and since the parameter s is kept fixed in all the problems we are going
to study in the next chapters, we will always work with a rescaled fractional operator, in
such a way that C(N, s) = 1.

At this point, the relation between the fractional Laplacian and the classical Laplace
operator for s = 1 may be not clear. This connection between the two operators is
more clear using an approach via the Fourier transform. Indeed, for any u ∈ S(RN ) an
alternative definition for the fractional Laplacian is

(−∆)su = F−1
(︁
|ξ|2sF (u)

)︁
,

where
F (ξ) =

1

(2π)
N
2

∫︂
RN

e−iξ·xu(x) dx

is the usual Fourier transform, F−1 is its inverse and · is the scalar product in RN . It is
possible to show that these two definitions of fractional Laplacian are equivalent for any
u ∈ S(RN ). Furthermore, using the second one and standard properties of the Fourier
transform, it is straightforward to verify that when s = 1 the fractional Laplacian and
the Laplacian coincide. With this second definition via the Fourier transform, we also
have the following Proposition that relates the fractional Gagliardo semi-norm with the
L2 norm of the operator.

Proposition 2.5. Let s ∈ (0, 1) and u ∈ Hs(RN ) then

[u]2Hs(RN ) = 2C(N, s)−1∥(−∆)
s
2u∥22

7



2 Mathematical background

As we did for the fractional Laplacian, if p ̸= 2 we can also generalize the p-Laplace
operator to the fractional case. More precisely, the p-fractional Laplacian can be defined
up to a normalization constant as

(−∆p)
su(x) = 2 lim

ϵ→0+

∫︂
RN \Bϵ(0)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+ps

dy.

Unfortunately, if p ̸= 2, it is not possible to find an equivalent definition utilizing the
Fourier transform, so understating the relation of this operator with the classical p-
Laplace operator is more intricate. We remind to [25] where the authors proved that

lim
s→1−

(1− s)
∫︂
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy = C1(N, s, p)

∫︂
RN
|∇u|p dx

where C1 is a positive constant that depends on N and p. It is also worth mentioning [39]
where the reader can find a discussion on three different representations of the fractional
p-Laplacian.

2.3 Elements of Riemannian geometry

This section is devoted to recalling some basic concepts of Riemannian geometry and to
fix the notation. Throughout the thesis, we assume that the reader is already familiar
with the basic definition and results on Riemannian geometry, so we will not go into
detail about it. We remind the reader to the classical [42, 52, 53, 54] and [65] for a more
in-depth discussion on these topics.

Let (M, g) be a d-dimensional Riemannian manifold where g is a (0, 2) positive definite
tensor and gij are its component. We will denote the tangent space and the cotangent
ofM at a point σ ∈M with TσM and T ∗

σM respectively. We recall that if f :M→N ,
where N is a d′–manifold the differential of Dfσ:TσM→ Tf(σ)N is defined as

Dfσ(v)(h) := v(h ◦ f)

for all h ∈ C∞(N ) and v ∈ TσM. From the notion of differential, if A is a covariant
k-tensor field of M we can define a covariant k-tensor field f∗A onM defined as

(f∗A)σ(v1, ..., vk) = Af(σ)(Dfσ(v1), . . . , Dfσ(vk))

for v1, ..., vk ∈ TσM called the pullback of A by f . If N is endowed with a metric g̃ we
will say that f is an isometry if f∗g̃ = g. It is straightforward to verify that requiring
thatf is an isometry is equivalent to ask it preserves the scalar product, i.e.

⟨Dfσ(v1), Dfσ(v2)⟩f(σ) = ⟨v1, v2⟩σ

for v1, v2 ∈ TσM where ⟨·, ·⟩σ = gσ(·, ·). In the following, the group of all isometries
φ:M→M will be denoted by Isomg(M). If S ⊂M we can define

diam(S) := sup {dg(σ1, σ2) | σ1, σ2 ∈ S} ,

8



2.3 Elements of Riemannian geometry

where dg:M ×M → [0,+∞) is the geodesic distance associated to the Riemannian
metric g. We will denote with g∇ the Levi-Civita connection associated with the metric
g. Fixed a chart, we will denote by ∂xi and dxi the orthogonal frame of TσM and T ∗

σM
respectively. From basic linear algebra, we have that

g∇∂xi∂xj = Γkij∂xk

where Γkij are the so-called Christoffel symbols, and we are assuming the Einstein sum-
mation convention. For a general (p, q) tensor T, we will denote with g∇T the covariant
derivative of T induced by the Levi-Civita connection that is a (p, q+1) tensor field that
in local coordinate is

(g∇T )j1···jqi1···ip+1
= (g∇∂xi1 T )

j1···jq
i2···ip+1

=
∂T

j1···jq
i2···ip+1

∂xi1
−

p+1∑︂
k=2

Γαi1ik(T )
j1···jq
i2···ik−1αik+1···ip+1

+

q∑︂
k=1

Γjki1αT
j1···jk−1αjk+1···jq
i2···ip+1

.

In particular, given a function u ∈ C∞(M) we denote by g∇ku the k-th covariant
derivative and by |g∇ku| the norm that in local coordinates is defined as

|g∇ku|2= gi1j1 · · · gikjk(g∇ku)i1···ik(
g∇ku)j1···jk .

Observe that for k = 1 and with the classical Euclidean metric δij we obtain the standard
norm of a vector in RN . When k = 1 we will drop the dependence of k in the covariant
derivative writing simply |g∇u|.

Given a (1, 1) tensor field T that can be written as

T = T ij∂xi ⊗ dxj

we define the contraction as the usual trace

C(T ) = trT = T ii .

and for a vector field X the divergence can be set as

divX := C(g∇X).

We point out that, exploiting the isomorphism between the tangent space and the cotan-
gent space induced by the metric at any point, it is possible to transform a (2, 0) tensor
field in a (1, 1) tensor field and compute the contraction.

Let u ∈ C∞(M). The Laplace-Beltrami operator that is defined as

∆gu := tr(g∇ g∇u).

9



2 Mathematical background

will be of particular relevance. It is possible to prove that in local coordinates this
operator has the expression

∆gu :=
1√︂
det g

∂

∂xi

(︃
gij
√︁
det g

∂u

∂xj

)︃
.

or
∆gu = gij

(︂
∂xi∂xju− Γkij∂xku

)︂
using the Christoffel symbols. We emphasize that we have defined ∆g with the “analyst’s
sign convention”, so that −∆g coincides with −∆ in Rd with its flat metric. Finally, we
recall that in local coordinates the Riemannian volume form can be expressed as

dvg :=
√︁

det(g)dx1 ∧ ... ∧ dxd.

Once one has defined dvg, it is possible to notice that it induces a measure onM. Namely,
if S ⊂M we have

Volg(S) :=
∫︂
S
dvg.

2.4 Curvature

Given a Riemannian manifold (M, g), the Riemann curvature (1, 3)-tensor field defined
by

Riem(X,Y )Z := g∇Y
g∇X Z −

g∇X
g∇Y Z + g∇[X,Y ] Z

where X,Y, Z are vector fields and [·, ·] denotes the Lie brackets. Observe that through
the identification of the tangent space and the cotangent space, it is possible to see
Riem as a (0, 4) tensor field. The idea lying behind this definition is to measures the
non-commutativity of the covariant derivative, and a as a consequence of that, how far
we are from being Euclidean. Despite this, the definition of the Riemann curvature
tensor should be considered more or less formal, and for a more precise geometrical
interpretation we rely on the notion of sectional curvature that we are going to introduce.
Namely, point-wisely the sectional curvature is defined as

Sectσ(v1, v2) :=
⟨Riem(v1, v2)v1, v2⟩σ

⟨v1, v1⟩σ⟨v2, v2⟩σ − ⟨v1, v2⟩2σ

for all v1, v2 ∈ TσM. Multiple factors contribute to the importance of the sectional
curvature. As anticipated, the first is the geometrical interpretation. Indeed, from the
definition it is clear it is defined on two-dimensional subspaces of the tangent space,
where it corresponds to the notion of Gaussian curvature. Secondly, it characterizes the
manifold’s curvature completely. In other words, the curvature tensor Riem is determined
by the knowledge of Sect for all two-dimensional subspaces of the tangent.

At this point, we are ready to introduce a very important class of manifolds that will
play a relevant role in this thesis.

10



2.5 Sobolev spaces on Riemannian manifolds

Definition 2.6. A Cartan-Hadamard manifold is a Riemannian Manifold that is com-
plete, simply connected and has everywhere non-positive sectional curvature. We also
say that a Riemannian manifold M is homogeneous if for all σ1, σ2 ∈ M there is an
isometry φ ∈ Isomg(M) such that φ(σ1) = σ2.

These manifolds are very studied in differential geometry because of their remarkable
properties. For instance, they are diffeomorphic to RN by the Cartan-Hadamard The-
orem. In addition to that, from the Hopf-Rinow Theorem it follows that every couple
of points in a Cartan–Hadamard manifold could be connected by a unique geodesic line.
Sometimes, requiring hypothesis on the Riemann curvature tensor and on the sectional
curvature, turned out to be too restrictive. Then, it is necessary to further introduce a
notion of curvature that a significant importance in many contexts such as the Sobolev
Embedding Theorems. Moreover, some quantities appear with such frequency that they
deserve to be named. The Ricci curvature tensor is defined by

Ricσ(v1, v2) : = tr (v3 ↦→ Riem(v1, v3)v2)

=
d∑︂
i=1

⟨Riem(v1, ei)v2, ei⟩σ

where v1, v2, v3 ∈ TσM and e1, . . . , ed is an orthonormal frame for TσM. The Ricci
curvature tensor can be seen as (0, 2) or (1, 1)-tensor field.

2.5 Sobolev spaces on Riemannian manifolds

This section is devoted to introducing some basic facts on the theory of Sobolev spaces
on Riemannian manifold. Let (M, g) be a Riemannian manifold. We start defining the
space

Ck,pg (M) :=

{︃
u ∈ C∞(M) |

∫︂
M
|g∇j u|p dvg <∞ j = 1, . . . , k

}︃
for p ≥ 1 and k ∈ N. On this space, we can define the following norm

∥u∥k,p:=
k∑︂
j=1

(︃∫︂
M
|g∇j u|p dvg

)︃ 1
p

.

Now, we are ready to define the Sobolev space Hk,p
g (M) as the closure of Ck,pg (M) with

respect to the norm ∥·∥k,p. When M is compact, it is possible to prove that Hk,p
g (M)

does not depend on the metric g, and all the results valid in the Euclidean case are
still true in general. Since in this thesis we are not interested in compact manifolds, we
will not go into details. On the other hand, if the manifold M is non-compact, strange
phenomena may appear, and we have to require some assumptions on the curvature
tensors.

Since the approach in the problem we are going to study in the next chapters will be
variational, we need a Sobolev embedding theorem to have an energy functional well-
defined also on the Lebesgue spaces. A result in this direction is the following. We will

11



2 Mathematical background

deal only with the case k = 1. Observe that when p = 2 we will drop the dependence of
p in Hk,p

g (M) writing simply H1
g (M). Next Theorem was proved for the first time by N.

Th. Varopoulos in [110].

Theorem 2.7. Let (M, g) be a smooth, complete d-Riemannian manifold with Ricci
curvature bounded form below and such that

inf
σ∈M

Volg (Bσ(1)) > 0

where
Bσ(1) := {ξ ∈M | dg(ξ, σ) < 1} .

Then H1,p
g (M) ↪→ Lq(M) continuously where 1/p = 1/q − 1/d.

Strengthening a bit the hypothesis on the curvature, it is possible to have a similar
statement without requiring the lower bound for the volume of small balls. This result
is contained in [55] and is due to D. Hoffman and J. Spruck (see also [54, Lemma 8.1
and Theorem 8.3])

Theorem 2.8. Let (M, g) a smooth, complete, simply connected Riemannian manifold
of non-positive sectional curvature. Then H1,p

g (M) ↪→ Lq(M) continuously where 1/p =
1/q − 1/d.

12



3 Normalized solutions for the fractional
NLS with mass supercritical nonlinearity

In this chapter we investigate the existence of solutions to the fractional Nonlinear
Schrödinger Equation (NLS in the sequel)

i
∂ψ

∂t
= (−∆)sψ − V (|ψ|)ψ, (3.1)

where i denotes the imaginary unit and ψ = ψ(x, t):RN ×(0,∞) → C is an unknown
function. This type of Schrödinger equation was introduced by Laskin in [64], and the
interest in its analysis has grown over the years. An important family of solutions, known
under the name of standing waves, is characterized by the ansatz

ψ(x, t) = eiµtu(x) (3.2)

for some (unknown) function u : RN → R. These solutions are self-similar and conserve
their mass along time, i.e. d

dt∥ψ(·, t)∥2= 0 at any t > 0. Therefore, it is natural and
meaningful to seek solutions having a prescribed L2-norm.

Coupling (3.1) with (3.2), we arrive at the problem{︄
(−∆)su = V (|u|)u− µu in RN ,
∥u∥22= m,

where s ∈ (0, 1), N > 2s, µ ∈ R, m > 0 is a prescribed parameter, and (−∆)s denotes
the usual fractional Laplacian.

In order to ease notation, we will write f(u) = V (|u|)u, and study the problem{︄
(−∆)su = f(u)− µu in RN ,
∥u∥22= m.

(Pm)

The role of the real number µ is twofold: it can either be prescribed, or it can arise as
a suitable parameter in the analysis of (Pm). In the present work, we will choose the
second option, and µ will arise as a Lagrange multiplier.

Since we are looking for bound-state solutions whose L2-norm must be finite, it is
natural to build a variational setting for (Pm). Since this is by now standard, we will be
sketchy. To avoid confusion and ease notation, we stress that in this chapter the norm
in Hs(RN ) will be denoted with

∥u∥=
√︂
∥u∥22+[u]2

Hs(RN )
,

13



3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

which naturally arises from an inner product. In the whole chapter we will denote with

⟨u, v⟩Hs(RN ) :=

∫︂
R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s

dx dy

and with
(u, v)L2(RN ) :=

∫︂
RN

uv dx

for all u, v ∈ Hs(RN ). We then (formally) introduce the energy functional

I(u) =
1

2
[u]2Hs(RN ) −

∫︂
RN

F (u) dx

where F (t) =
∫︁ t
0 f(σ) dσ. A standard approach for studying (Pm) consists in looking for

critical points of I constrained on the sphere

Sm =

{︃
u ∈ Hs(RN ) |

∫︂
RN
|u|2 dx = m

}︃
.

The convenience of this variational approach depends strongly on the behaviour of the
nonlinearity f . If f(t) grows slower than |t|1+

4s
N as t → +∞, then I is coercive and

bounded from below on Sm: this is the mass subcritical case, and the minimization
problem

min {I(u) | u ∈ Sm}

is the natural approach. On the other hand, if f(t) grows faster than |t|1+
4s
N as t→ +∞

then I is unbounded from below on Sm, and we are in the mass supercritical case. Since
constrained minimizers of I on Sm cannot exist, we have to find critical points at higher
levels.

When s = 1, i.e. when the fractional Laplace operator (−∆)s reduces to the local
differential operator −∆, the literature for (Pm) is huge ([57], [17], [16], [18], [59]). The
particular case of a combined nonlinearity of power type, namely f(t) = tp−2+µtq−2 with
2 < q < p < 2N/(N − 2) has been widely investigated. The interplay of the parameters
p and q add some richness to the structure of the problem.

The situation is different when 0 < s < 1, and few results are available. Feng et al.
in [47] deal with particular nonlinearities. Stanislavova et al. in [106] add the further
complication of a trapping potential. In the recent paper [114] the author proves some ex-
istence and asymptotic results for the fractional NLS when a lower order perturbation to
a mass supercritical pure power in the nonlinearity is added. It is also worth mentioning
[75], where Luo et al. studied the problem when the nonlinear term consists in the sum
of two pure powers of different order. They provide some existence and non-existence
results, analyzing separately what happens in the mass subcritical and supercritical case
for both the leading term and the lower order perturbation. The interested reader can
also consult [43], [67], [66], [38], [115].
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Very recently, Jeanjean et al. in [58] provided a thorough treatment of the local case
s = 1 via a careful analysis based on the Pohozaev identity. In this chapter we propose
a partial extension of their results to the non-local case 0 < s < 1. Since we deal with a
fractional operator, our conditions on f must be adapted correspondingly.

We collect here our standing assumptions about the nonlinearity f ; we recall that

F (t) =

∫︂ t

0
f(σ) dσ

and define the auxiliary function

F̃ (t) = f(t)t− 2F (t).

(f0) f :R→ R is an odd and locally Lipschitz continuous function;

(f1) lim
t→0

f(t)

|t|1+4s/N
= 0;

(f2) lim
t→+∞

f(t)

|t|(N+2s)/(N−2s)
= 0;

(f3) lim
t→+∞

F (t)

|t|2+4s/N
= +∞;

(f4) The function t ↦→ F̃ (t)

|t|2+4s/N is strictly decreasing on (−∞, 0) and strictly increasing

on (0,+∞);

(f5) f(t)t <
2N
N−2sF (t) for all t ∈ R \{0};

(f6) lim
t→0

tf(t)

|t|2N/(N−2s)
= +∞.

Remark 3.1. The oddness of f is necessary in order to use the classical genus theory
and to get a desired property on the fiber map that we will introduce in detail in the
next section (see for instance Lemma 3.11 below). Assumption (f2) guarantees a Sobolev
subcritical growth, whereas (f3) characterises the problem as mass supercritical. At one
point, we will need (f5) to establish the strict positivity of the Lagrange multiplier µ.

Example 1. As suggested in [58], an explicit example can be constructed as follows. Set
αN,s =

4s2

N(N−2s) for simplicity, and define

f(t) =

(︃(︃
2 +

4s

N

)︃
log (1 + |t|αN,s) +

αN,s|t|αN,s

1 + |t|αN,s

)︃
|t|

4s
N t

We briefly outline our results. Firstly, we show that the ground-state level is attained
with a strictly positive Lagrange multiplier.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Theorem 3.2. Assume that f satisfies (f0)-(f5). Then (Pm) admits a positive ground-
state for any m > 0. Moreover, for any ground-state the associated Lagrange multiplier
µ is positive.

Furthermore, we can prove some remarkable properties of the ground-state level energy
with respect the variablem and its asymptotic behavior. We refer to (3.16) for the precise
definition of the ground-state level Em.

Theorem 3.3. Assume that f satisfies (f0)-(f6). Then the function m ↦→ Em is positive,
continuous, strictly decreasing. Furthermore, limm→0+ Em = +∞ and limm→∞Em = 0.

Finally, we have a multiplicity result for the radially symmetric case.

Theorem 3.4. If (f0)-(f5) hold and N > 2, then (Pm) admits infinitely many radial
solutions (uk)k for any m > 0. In particular,

I(uk+1) ≥ I(uk)

for all k ∈ N and I(uk)→ +∞ as k → +∞.

The chapter is organised as follows. Section 3.1 contains the proofs of some preliminary
Lemmas that will be useful during the whole remaining part of the chapter. Moreover,
we introduce a fiber map that will play a crucial role for our purposes. In Section 3.2
we define the ground-state level energy for a fixed mass m and we start analyzing its
asymptotic behaviour near zero and infinity. Section 3.3 is devoted to proving our main
existence theorem. Using a min-max theorem of linking type and the fiber map cited
previously, we construct a Palais-Smale sequence whose value of the Pohozaev functional
is zero and we show that a sequence of this kind must be necessarily bounded. Finally,
in Section 3.4, for the sake of completeness, we discuss the existence of radial solutions.
Here, we use a variant of the min-max theorem already cited in Section 3.3, but this time
we are helped by the fact that the space of the radially symmetric functions with finite
fractional derivative is compactly embedded in Lp(RN ) for p ∈ (2, 2∗s).

3.1 Preliminary results

We define the Pohozaev manifold

Pm = {u ∈ Sm | P (u) = 0} ,

where

P (u) = [u]2Hs(RN ) −
N

2s

∫︂
RN

F̃ (u) dx.

Let us collect some technical results that we will frequently used in the chapter. We use
the shorthand

Bm =
{︁
u ∈ Hs(RN ) | ∥u∥22≤ m

}︁
.
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3.1 Preliminary results

Lemma 3.5. Assuming (f0), (f1), (f2), the following statements hold

(i) for every m > 0 there exists δ > 0 such that

1

4
[u]2Hs(RN ) ≤ I(u) ≤ [u]2Hs(RN )

where u ∈ Bm and [u]Hs(RN ) ≤ δ.

(ii) Let (un)n be a bounded sequence in Hs(RN ). If limn→+∞∥un∥2+ 4s
N
= 0 we have that

lim
n→+∞

∫︂
RN

F (un) dx = 0 = lim
n→+∞

∫︂
RN

F̃ (un) dx.

(iii) Let (un)n, (vn)n two bounded sequences in Hs(RN ). If limn→+∞∥vn∥2+ 4s
N
= 0 then

lim
n→+∞

∫︂
RN

f(un)vn dx = 0.

Proof. (i) It suffices to show that there exists δ > 0 such that∫︂
RN
|F (u)| dx ≤ 1

4
[u]2Hs(RN )

whenever u ∈ Bm and [u]Hs(RN ) ≤ δ. In order to show that, we start noticing that (f0),
(f1), and (f2) imply that for every ε > 0 we can find C1 = C1(ε) > 0 such that

|F (u)|≤ ε|t|2+
4s
N +C1|t|

2N
N−2s . (3.3)

Hence, by (3.3), using the interpolation inequality and the fractional Sobolev inequality
(see for instance [41, Theorem 6.5]), we get∫︂

RN
|F (u)| dx ≤ ε

∫︂
RN
|u|2+

4s
N dx+ C1

∫︂
RN
|u|

2N
N−2s dx

≤ εm
2s
N ∥u∥22∗s+C1∥u∥2

∗
s

2∗s

≤ εm
2s
N C1 [u]

2
Hs(RN ) + C2 [u]

2∗s
Hs(RN )

=
[︂
εm

2s
N C1 + C2 [u]

2∗s−2

Hs(RN )

]︂
[u]2Hs(RN ) .

Choosing

ε =
1

8m
2s
N C1

and δ =

(︃
1

C2

)︃ 1
2∗s−2

the assertion is verified.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

(ii) Since (f0), (f1) and (f2) hold, for every ε > 0 there exists C3, C4 > 0 such that

|f(t)t|≤ ε

2
|t|

2N
N−2s+C3|t|2+

4s
N

and

|F (t)|≤ ε

4
|t|

2N
N−2s+C4|t|2+

4s
N ,

which implies
|F̃ (t)|≤ ε|t|

2N
N−2s+(C3 + 2C4) |t|2+

4s
N . (3.4)

By (3.4) we have∫︂
RN
|F̃ (un)| dx ≤ ε

∫︂
RN
|un|

2N
N−2s dx+ (C3 + 2C4)

∫︂
RN
|un|2+

4s
N dx

≤ εC5 [un]
2N

N−2s

Hs(RN )
+ (C3 + 2C4] ∥un∥

2+ 4s
N

2+ 4s
N

≤ εC6 + (C3 + 2C4) ∥un∥
2+ 4s

N

2+ 4s
N

→ 0

as n→ +∞ and ε→ 0. The proof of limn→+∞
∫︁
RN |F (un)| dx = 0 is similar.

(iii). (f0), (f1) and (f2) imply that for every ε > 0 we can find C7 > 0 such that

|f(t)|≤ ε|t|
N+2s
N−2s+C7|t|1+

4s
N . (3.5)

Hence, by (3.5), we obtain that∫︂
RN
|f(un)||vn| dx ≤ ε

∫︂
RN
|un|

N+2s
N−2s |vn| dx+ C7

∫︂
RN
|un|1+

4s
N |vn| dx

≤ ε∥un∥
N+2s
N−2s

2∗s
∥vn∥2∗s+C7∥un∥

N+4s
N

2+ 4s
N

∥vn∥2+ 4s
N

≤ εC8∥un∥
N+2s
N−2s

Hs(RN )
∥vn∥Hs(RN )+C9∥un∥

N+4s
N

Hs(RN )
∥vn∥2+ 4s

N

≤ εC10 + C11∥vn∥2+ 4s
N
→ 0

as n→ +∞ and ε→ 0. This completes the proof of the Lemma.

Remark 3.6. An inspection of the proof of this Lemma shows that the inequality∫︂
RN

F̃ (u) dx ≤ s

N
[u]2Hs(RN )

holds true if u ∈ Bm and [u]Hs(RN ) ≤ δ. It follows that

P (u) ≥ 1

2
[u]2Hs(RN )

for every u ∈ Bm with [u]Hs(RN ) ≤ δ.
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3.1 Preliminary results

In order to prove the next result, we introduce for every u ∈ Hs(RN ) and ρ ∈ R the
scaling map1

(ρ ∗ u)(x) = e
Nρ
2 u(eρx) x ∈ RN .

It is easy to verify that ρ ∗ u ∈ Hs(RN ) and ∥ρ ∗ u∥2= ∥u∥2.

Lemma 3.7. Assuming (f0), (f1), (f2) and (f3), we have:

(i) I(ρ ∗ u)→ 0+ as ρ→ −∞,

(ii) I(ρ ∗ u)→ −∞ as ρ→∞.

Proof. (i) Let us fix m := ∥u∥22. We observe that ρ ∗ u ∈ Sm and after a change of
variables we obtain

[ρ ∗ u]2Hs(RN ) =

∫︂
R2N

eNρ(u(eρx)− u(eρy))2

|x− y|N+2s
dx dy = e2ρs [u]2Hs(RN ) .

By virtue of the previous computation, choosing ρ≪ −1, Lemma 3.5 (i) guarantees the
existence of a δ > 0 such that if [ρ ∗ u]Hs(RN ) ≤ δ then

1

4
e2ρs [u]2Hs(RN ) ≤ I(ρ ∗ u) ≤ e

2ρs [u]2Hs(RN ) ,

thus

lim
ρ→−∞

I(ρ ∗ u) = 0+.

(ii) For every λ ≥ 0 we define the function hλ:R→ R as follows:

hλ(t) =

⎧⎨⎩
F (t)

|t|2+
4s
N

+ λ t ̸= 0

λ t = 0.
(3.6)

It is straightforward to verify that F (t) = hλ(t)|t|2+
4s
N −λ|t|2+

4s
N . Moreover, from (f0)

and (f1) it follows that hλ is continuous, whereas thanks to (f3) we have

hλ(t)→ +∞ as t→ +∞.

Putting together the divergence of the limit above at infinity and (f1), we can find λ > 0
large enough such that hλ(t) ≥ 0 for every t ∈ R. Now, applying the well-known Fatou’s
Lemma, we obtain

lim inf
ρ→∞

∫︂
RN

hλ(e
Nρ
2 u)|u|2+

4s
N dx ≥

∫︂
RN

lim
ρ→∞

hλ(e
Nρ
2 u)|u|2+

4s
N dx =∞.

1The notation ρ ∗ u is standard in the theory of transformation groups, and is not ambiguous since we
never use convolution.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Then, we observe that

I(ρ ∗ u) = 1

2
[ρ ∗ u]2Hs(RN ) + λ

∫︂
RN
|ρ ∗ u|2+

4s
N dx−

∫︂
RN

hλ(ρ ∗ u)|ρ ∗ u|2+
4s
N dx (3.7)

= e2ρs
[︃
1

2
[u]2Hs(RN ) + λ

∫︂
RN
|u|2+

4s
N dx−

∫︂
RN

hλ(e
Nρ
2 u)|u|2+

4s
N dx

]︃
,

from which it follows immediately that

lim
ρ→∞

I(ρ ∗ u) = −∞.

Remark 3.8. Assume f ∈ C(R,R), (f1) and (f4). Then the function g:R→ R defined as

g(t) =

⎧⎨⎩
f(t)t−2F (t)

|t|2+
4s
N

, t ̸= 0

0, t = 0

is continuous, strictly increasing in (0,∞) and strictly decreasing in (−∞, 0).

Lemma 3.9. Assuming f ∈ C(R,R), (f1), (f3) and (f4), we have

(i) F (t) > 0 if t ̸= 0;

(ii) there exist (τ+n )n ⊂ R+ and (τ−n )n ⊂ R−, |τ±n |→ 0 as n→ +∞ such that

f(τ±n )τ±n >

(︃
2 +

4s

N

)︃
F (τ±n )

for any n ̸= 1;

(iii) there exist (σ+n )n ⊂ R+ and (σ−n )n ⊂ R−, |σ±n |→ ∞ as n→ +∞ such that

f(σ±n )σ
±
n >

(︃
2 +

4s

N

)︃
F (σ±n )

for any n ≥ 1.

Proof. (i) By contradiction suppose F (t0) ≤ 0 for some t0 ̸= 0. Because of (f1) and (f3)
the function F (t)/|t|2+4s/N must attain its global minimum in a point τ ̸= 0 such that
F (τ) ≤ 0. It follows that

d

dt

F (t)

|t|2+
4s
N

⃓⃓⃓⃓
⃓
t=τ

=
f(τ)τ −

(︁
2 + 4s

N

)︁
F (τ)

|τ |3+
4s
N sgn(τ)

= 0. (3.8)

From Remark 3.8 it follows that f(t)t > 2F (t) if t ̸= 0. Indeed, were the claim false,
there would exist t such that f(t)t ≤ 2F (t). Choosing without loss of generality t < 0,
we have that g(t) ≤ 0. This and the fact that g(0) = 0 show that g must be strictly
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3.1 Preliminary results

increasing on an interval between t and 0. Finally, we can have a contradiction observing
that

0 < f(τ)τ − 2F (τ) =
4s

N
F (τ) ≤ 0.

(ii) We start with the positive case. By contradiction, we suppose that there is Tα > 0
small enough such that

f(t)t ≤
(︃
2 +

4s

N

)︃
F (t)

for every t ∈ (0, Tα]. Recalling the expression of (3.8) computed in the step (i) we see
that the derivative of F (t)/|t|2+4s/N is non-positive on (0, Tα], then

F (t)

t2+
4s
N

≥ F (Tα)

T
2+ 4s

N
α

> 0 for every t ∈ (0, Tα] ,

that is in contradiction with (f1). The negative case is similar.
(iii) Being the two cases similar, we will prove only the negative one. Again, by

contradiction we suppose there is Tγ > 0 such that

f(t)t ≤
(︃
2 +

4s

N

)︃
F (t) for every t ≤ −Tγ .

Since the derivative of F (t)/|t|2+4s/N is non-negative on (−∞,−Tγ ], we can deduce

F (t)

|t|2+
4s
N

≤ F (−Tγ)

T
2+ 4s

N
γ

for every t ∈ (−∞,−Tγ ] ,

which contradicts (f3).

Lemma 3.10. Assume (f0), (f1), (f3) and (f4). For any t > 0 there results

f(t)t >

(︃
2 +

4s

N

)︃
F (t).

Proof. We start by proving that the inequality holds weakly. By contradiction, we assume

f(t0)t0 <

(︃
2 +

4s

N

)︃
F (t0)

for some t0 ̸= 0 and without loss of generality, we can suppose t0 < 0. By step (ii) and
(iii) of Lemma 3.9 there are τmin, τmax ∈ R, where τmin < t0 < τmax < 0 such that

f(t)t <

(︃
2 +

4s

N

)︃
F (t) for every t ∈ (τmin, τmax) (3.9)
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

and
f(t)t =

(︃
2 +

4s

N

)︃
F (t) for every t ∈ {τmin, τmax}. (3.10)

By (3.9) we have
F (τmin)

|τmin|2+
4s
N

<
F (τmax)

|τmax|2+
4s
N

. (3.11)

Besides, by (3.10) and (f4) must be

F (τmin)

|τmin|2+
4s
N

=
N

4s

F̃ (τmin)

|τmin|2+
4s
N

>
N

4s

F̃ (τmax)

|τmax|2+
4s
N

=
F (τmax)

|τmax|2+
4s
N

, (3.12)

and clearly (3.11) and (3.12) are in contradiction. From what we have just proved,
we have that F (t)/|t|2+4s/N is non-increasing in (−∞, 0) and non-decreasing in (0,∞).
Hence, by virtue of (f4) the function f(t)/|t|1+4s/N must necessarily be strictly increasing
in (−∞, 0) and strictly decreasing in (0,∞). Then(︃

2 +
4s

N

)︃
F (t) =

(︃
2 +

4s

N

)︃∫︂ t

0

f(κ)

|κ|1+
4s
N

|κ|1+
4s
N dκ

<

(︃
2 +

4s

N

)︃
f(t)

|t|1+
4s
N

∫︂ t

0
|κ|1+

4s
N dκ = f(t)t

completes the proof.

Lemma 3.11. Assume (f0)− (f4), u ∈ Hs(RN ) \ {0}. Then the following hold:

(i) There is a unique ρ(u) ∈ R such that P (ρ(u) ∗ u) = 0.

(ii) I(ρ(u) ∗ u) > I(ρ ∗ u) for any ρ ̸= ρ(u). Moreover, I(ρ(u) ∗ u) > 0.

(iii) The map u→ ρ(u) is continuous on Hs(RN ) \ {0}.

(iv) ρ(u) = ρ(−u) and ρ(u(·+ y)) = ρ(u) for all u ∈ Hs(RN ) \ {0} and y ∈ RN .

Proof. (i) Since

I(ρ ∗ u) = 1

2
e2ρs [u]2Hs(RN ) − e

−Nρ
∫︂
RN

F (e
N
2
ρu) dx,

it is easy to check that I(ρ ∗ u) is C1 with respect to ρ. Now, computing

d

dρ
I(ρ ∗ u) = se2ρs [u]2Hs(RN ) −

N

2
e−Nρ

∫︂
RN

F̃
(︂
e

Nρ
2 u
)︂
dx

and observing that

P (ρ ∗ u) = e2ρs [u]2Hs(RN ) −
N

2s
e−Nρ

∫︂
RN

F̃
(︂
e

Nρ
2 u
)︂
dx
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we deduce

d

dρ
I(ρ ∗ u) = sP (ρ ∗ u).

Remembering that by Lemma 3.7

lim
ρ→−∞

I(ρ ∗ u) = 0+ and lim
ρ→∞

I(ρ ∗ u) = −∞

we can conclude that ρ ↦→ I(ρ ∗ u) must reach a global maximum at some point ρ(u);
since

0 =
d

dρ
I(ρ(u) ∗ u) = sP (ρ(u) ∗ u),

we conclude that P (ρ(u) ∗ u) = 0. To check the uniqueness of the point ρ(u), recalling
the function g defined in Remark 3.8, we observe that F̃ (t) = g(t)|t|2+

4s
N for every t ∈ R.

Thus, we obtain

P (ρ ∗ u) = e2ρs [u]2Hs(RN ) −
N

2s
e2ρs

∫︂
RN

g(e
Nρ
2 u)|u|2+

4s
N dx

= e2ρs
[︃
[u]2Hs(RN ) −

N

2s

∫︂
RN

g(e
Nρ
2 u)|u|2+

4s
N dx

]︃
=

1

s

d

dρ
I(ρ ∗ u).

Fixing t ∈ R \{0}, thanks to Remark 3.8 and (f4), we notice that the function

ρ ↦→ g
(︂
e

Nρ
2 t
)︂

is strictly increasing. Thus, by virtue of the previous computations, it follows that ρ(u)
must be unique.
(ii) This follows immediately from (i).
(iii) By step (i) the function u ↦→ ρ(u) is well defined. Let u ∈ Hs(RN ) \ {0} and

(un)n ⊂ Hs(RN ) \ {0} a sequence such that un → u in Hs(RN ) as n → +∞. We set
ρn = ρ(un) for any n ≥ 1. Let us show that, up to a subsequence, we have ρn → ρ(u) as
n→ +∞.

Claim. The sequence (ρn)n is bounded.
We recall that the function hλ defined in (3.6) noticing that by Lemma 3.9 (i) h0(t) ≥ 0

for every t ∈ R. We assume by contradiction that up to a subsequence ρn → +∞. By
Fatou’s Lemma and the fact that un → u a.e. in RN , we have that

lim
n→+∞

∫︂
RN

h0

(︂
e

Nρn
2 un

)︂
|un|2+

4s
N dx =∞.

As a consequence of that, by (3.7) with λ = 0 and step (ii), we obtain

0 ≤ e−2ρnsI(ρn ∗ un) =
1

2
[un]

2
Hs(RN ) −

∫︂
RN

h0

(︂
e

Nρn
2 un

)︂
|un|2+

4s
N dx→ −∞ (3.13)
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

as n→ +∞, which is evidently not possible. Then (ρn)n must be bounded from above.
Now we assume, again by contradiction, that ρn → −∞. By step (ii) we observe that

I(ρn ∗ un) ≥ I(ρ(u) ∗ un),

and since ρ(u) ∗ un → ρ(u) ∗ u in Hs(RN ), it follows that

I(ρ(u) ∗ un) = I(ρ(u) ∗ u) + on(1).

We deduce that
lim inf
n→+∞

I(ρn ∗ un) ≥ I(ρ(u) ∗ u) > 0. (3.14)

Since we have ρn ∗ un ⊂ Bm for m ≫ 1, Lemma 3.5 (i) implies that there exists δ > 0
such that if [ρn ∗ un]Hs(RN ) ≤ δ, we have

1

4
[ρn ∗ un]2Hs(RN ) ≤ I(ρn ∗ un) ≤ [ρn ∗ un]2Hs(RN ) . (3.15)

Since

[ρn ∗ un]Hs = eρns [un]Hs(RN ) ,

(3.15) holds for any n sufficiently large. Therefore, we obtain

lim inf
n→+∞

I(ρn ∗ un) = 0,

in contradiction to (3.14). The claim is proved.
The sequence (ρn)n being bounded, we can assume that, up to a subsequence, ρn → ρ∗

for some ρ∗ in R. Hence, ρn ∗ un → ρ∗ ∗ u in Hs(RN ) and since P (ρn ∗ un) = 0 we have

P (ρ∗ ∗ u) = 0.

By the uniqueness proved at step (ii) we obtain ρ∗ = ρ(u).
(iv) Since f is odd by (f0), the fact that

P (ρ(u) ∗ (−u)) = P (−(ρ(u) ∗ u)) = P (ρ(u) ∗ u) = 0

implies ρ(u) = ρ(−u). Similarly, changing the variables in the integral, we can verify
that ρ is invariant under translation, and it is easy to check that

P (ρ(u) ∗ u(·+ y)) = P (ρ(u) ∗ u) = 0,

thus ρ(u(·+ y)) = ρ(u).

As we are going to see, the functional I constrained on Pm has some crucial properties.

Lemma 3.12. Assuming (f0)− (f4), the following statements are true:

(i) Pm ̸= ∅,
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(ii) infu∈Pm [u]Hs(RN ) > 0,

(iii) infu∈Pm I(u) > 0,

(iv) I is coercive on Pm, i.e. I(un) → ∞ if (un)n ⊂ Pm and ∥un∥Hs(RN )→ ∞ as
n→ +∞.

Proof. Statement (i) follows directly from Lemma 3.11 (i).
(ii) Were the assertion not true, we would be able to take a sequence (un)n ⊂ Pm such

that [un]Hs(RN ) → 0, and so, by Lemma 3.5 (i) we could also find δ > 0 and n so large
that [un]Hs(RN ) ≤ δ for every n ≥ n. By Remark 3.6 we would have

0 = P (un) ≥
1

2
[un]

2
Hs(RN )

which is possible only for a constant un. But this is not admissible since u ∈ Sm. Hence,
the statement must hold.
(iii) For every u ∈ Pm Lemma 3.11 (ii) and (iii) implies that

I(u) = I(0 ∗ u) ≥ I(ρ ∗ u) for every ρ ∈ R .

Let δ > 0 be the number given by Lemma 3.5 (i) and set ρ := 1/s log
(︂
δ/[u]Hs(RN )

)︂
.

Since δ = [ρ ∗ u]Hs(RN ), using again Lemma 3.5 (i) we obtain

I(u) ≥ I(ρ ∗ u) ≥ 1

4
[ρ ∗ u]2Hs(RN ) =

1

4
δ2

proving the statement.
(iv) By contradiction we suppose the existence of (un)n ⊂ Pm such that ∥un∥Hs(RN )→
∞ with supn≥1 I(un) ≤ c for some c ∈ (0,∞). For any n ≥ 1 we set

ρn =
1

s
log
(︂
[un]Hs(RN )

)︂
and vn = (−ρn) ∗ un.

Evidently ρn → +∞, (vn)n ⊂ Sm and [vn]Hs(RN ) = 1. We denote with

α = lim sup
n→+∞

sup
y∈RN

∫︂
B(y,1)

|vn|2 dx

and we distinguish two cases.
Non vanishing: α > 0. Up to a subsequence we can assume the existence of a sequence

(yn)n ⊂ RN and ω ∈ Hs(RN ) \ {0} such that

ωn = vn(·+ yn)⇀ ω in Hs(RN ) and ωn → ω a.e. in RN .

Recalling the definition of the continuous function hλ with λ = 0, remembering that
ρn → +∞ as n→ +∞ and using the Fatou’s Lemma we have

lim
n→+∞

∫︂
RN

h0

(︂
e

Nρn
2 ωn

)︂
|ωn|2+

4s
N dx =∞.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

By step (iii) and (3.8), after changing the variables in the integral, we obtain

0 ≤ e−2ρnsI(un) = e−2ρnsI(ρn ∗ vn) =
1

2
−
∫︂
RN

h0

(︂
e

Nρn
2 vn

)︂
|vn|2+

4s
N dx

=
1

2
−
∫︂
RN

h0

(︂
e

Nρn
2 ω

)︂
|ωn|2+

4s
N dx→ −∞

as n→ +∞.
Vanishing: α = 0. By [102, Lemma II.4], we have that vn → 0 in L2+ 4s

N (RN ) and by
Lemma 3.5 (ii) we see that

lim
n→+∞

eNρ
∫︂
RN

F
(︂
e

Nρ
2 vn

)︂
= 0 for every ρ ∈ R .

Since P (ρn ∗ vn) = P (un) = 0, by Lemma 3.11 (ii) and (iii), we obtain

c ≥ I(un) = I(ρn ∗ vn)

≥ I(ρ ∗ vn) =
1

2
e2ρs − e−Nρ

∫︂
RN

F
(︂
e

Nρ
2 vn

)︂
dx =

1

2
e2ρs − on(1).

We can conclude choosing ρ > log(2c)/2s and letting n→ +∞.

Remark 3.13. Observe that if we assume the validity of (f0)−(f4) and we take a sequence
(un)n ⊂ Hs(RN ) such that

P (un) = 0, sup
n≥1
∥un∥2 < +∞ and sup

n≥1
I(un) < +∞,

then repeating the arguments carried out in the proof of Lemma 3.12 (iv) we get that
(un)n is bounded in Hs(RN ).

We conclude with a splitting result à la Brezis-Lieb. A proof is included for the reader’s
convenience.

Lemma 3.14. Let f :R → R continuous, odd and let (un)n ⊂ Hs(RN ) a bounded se-
quence such that un → u pointwise almost everywhere in RN . If there exists C > 0 such
that

|f(t)|≤ C
(︂
|t|+|t|2∗s−1

)︂
,

then

lim
n→+∞

∫︂
RN
|F (un)− F (un − u)− F (u)| dx = 0
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3.2 Properties of the map m ↦→ Em

Proof. Let a, b ∈ R and ε > 0. We compute

|F (a+ b)− F (a)| =
⃓⃓⃓⃓∫︂ 1

0

d

dτ
F (a+ τb) dτ

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂ 1

0
F ′(a+ τb)b dτ

⃓⃓⃓⃓
≤ C

∫︂ 1

0

(︂
|a+ τb|+|a+ τb|2∗s−1

)︂
|b| dτ

≤ C
(︂
|a|+|b|+22

∗
s−1

(︂
|a|2∗s−1+|b|2∗s−1

)︂)︂
|b|

≤ C
(︂
|a|+|b|+22

∗
s

(︂
|a|2∗s−1+|b|2∗s−1

)︂)︂
|b|

≤ C
(︂
|ab|+b2 + 22

∗
s

(︂
|a|2∗s−1|b|+|b|2∗s

)︂)︂
.

We have used that τ ≤ 1 and the convexity inequality

|a+ b|2∗s−1≤ 22
∗
s−1

(︂
|a|2∗s−1+|b|2∗s−1

)︂
.

Now we use Young’s inequality twice:

|ab| ≤ εa
2

2
+

1

2ε
|b|2

|a|2∗s−1|b| ≤ η
2∗s

2∗s−1
|a|2∗s
2∗s

2∗s−1

+
1

η2∗s

|b|2∗s
2∗s

.

Hence, choosing

η = ε
2∗s−1

2∗s ,

we get

|ab|+b2 + 22
∗
s

(︂
|a|2∗s−1|b|+|b|2∗s

)︂
≤ εa

2

2
+

1

2ε
b2 + b2 + 22

∗
s

(︂
|a|2∗s−1|b|+|b|2∗s

)︂
≤ εC

(︂
a2 + |2a|2∗s

)︂
+ C

[︂(︁
1 + ε−1

)︁
b2 +

(︂
1 + ε1−2∗s

)︂
|2b|2∗s

]︂
= εφ(a) + ψε(b).

Applying [30, Theorem 2] with gn = un − u and f = u we have the assertion.

3.2 Properties of the map m ↦→ Em

Under our standing assumptions (f0)–(f4), for every m > 0 we can define the least level
of energy

Em = inf
u∈Pm

I(u). (3.16)

This section is devoted to the analysis of the quantity Em as a function of m > 0.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Lemma 3.15. If (f0)–(f4) hold true, then m ↦→ Em is continuous.

Proof. Let m > 0 and (mk)k ⊂ R such that mk → m in R. We want to show that
Emk

→ Em as k → +∞. Firstly, we will prove that

lim sup
k→+∞

Emk
≤ Em. (3.17)

For any u ∈ Pm we define

uk :=

√︃
mk

m
u ∈ Smk

, k ∈ N .

It is easy to see that uk → u in Hs(RN ), thus, by Lemma 3.11 (iii) we get
limk→+∞ ρ(uk) = ρ(u) = 0. Therefore,

ρ(uk) ∗ uk → ρ(u) ∗ u = 0 in Hs(RN )

as k → +∞ and as a consequence

lim sup
k→+∞

Emk
≤ lim sup

k→+∞
I(ρ(uk) ∗ uk) = I(u).

Since this holds for any u, we obtain (3.17). The next step consists in proving

lim inf
k→+∞

Emk
≥ Em. (3.18)

From the definition of Emk
, it follows that for every k ∈ N there exists vk ∈ Pmk

such
that

I(vk) ≤ Emk
+

1

k
. (3.19)

We set

tk :=

(︃
m

mk

)︃ 1
N

and ṽk := vk

(︃
·
tk

)︃
∈ Sm.

By Lemma 3.11 and (3.19) we get

Em ≤ I(ρ(ṽk) ∗ ṽk) ≤ I(ρ(ṽk) ∗ vk) + |I(ρ(ṽk) ∗ ṽk)− I(ρ(ṽk) ∗ vk)|
≤ I(vk) + |I(ρ(ṽk) ∗ ṽk)− I(ρ(ṽk) ∗ vk)|

≤ Emk
+

1

k
+ |I(ρ(ṽk) ∗ ṽk)− I(ρ(ṽk) ∗ vk)|

=: Emk
+

1

k
+ C(k).
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To prove (3.18) we show that limk→+∞C(k) = 0. Indeed, as a first step, we notice that
ρ ∗
(︁
v
(︁ ·
t

)︁)︁
= (ρ ∗ v)

(︁ ·
t

)︁
, and after a change of variable, we get

C(k) =

⃓⃓⃓⃓
1

2

(︂
tN−2s
k − 1

)︂
[ρ(ṽk) ∗ vk]2Hs(RN ) −

(︁
tNk − 1

)︁ ∫︂
RN

F (ρ(ṽk) ∗ vk) dx
⃓⃓⃓⃓

≤ 1

2

⃓⃓⃓
tN−2s
k − 1

⃓⃓⃓
[ρ(ṽk) ∗ vk]2Hs(RN ) +

⃓⃓
tNk − 1

⃓⃓ ∫︂
RN
|F (ρ(ṽk) ∗ vk)| dx

=:
1

2

⃓⃓⃓
tN−2s
k − 1

⃓⃓⃓
A(k) +

⃓⃓
tNk − 1

⃓⃓
B(k).

Since tk → 1 as k → +∞, it suffices to prove that

lim sup
k→+∞

A(k) <∞, lim sup
k→+∞

B(k) <∞. (3.20)

We divide the proof of (3.20) into three claims.

Claim 1: (vk)k is bounded in Hs(RN ).
Recalling (3.17) and (3.19) we have that

lim sup
k→+∞

I(vk) ≤ Em.

Thus, observing that vk ∈ Pmk
and mk → m, from Remark 3.13 it follows the validity

of the claim.

Claim 2: (ṽk)k is bounded in Hs(RN ), and there are a sequence (yk)k ⊂ R and
v ∈ Hs(RN ) \ {0} such that ṽ(·+ yk)→ v a.e. in RN up to a subsequence.

To see the boundedness of (ṽk)k it suffices to notice that tk → 1 and the statement
follows by claim 1. Now, we set

α = lim sup
k→+∞

sup
y∈RN

∫︂
B(y,1)

|ṽk|2 dx.

If α = 0, by [102, Lemma II.4] we get ṽk → 0 in L2+ 4s
N (RN ). As a consequence of that,

we have ∫︂
RN
|vk|2+

4s
N dx =

∫︂
RN

|ṽk(tk·)|2+
4s
N dx = t−Nk

∫︂
RN
|ṽk|2+

4s
N dx→ 0

as k → +∞, and since P (vk) = 0, by Lemma 3.12 (ii), we deduce that

[vk]
2
Hs(RN ) =

N

2s

∫︂
RN

F̃ (vk) dx→ 0.

In this case, by virtue of Remark 3.6, we see that

0 = P (vk) ≥
1

2
[vk]

2
Hs(RN ) ,

29



3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

which is admissible only if vk in constant. But this is in contradiction with the fact that
vk ∈ Pmk

. Hence α must be strictly positive.

Claim 3: lim supk→+∞ ρ(ṽk) <∞.
By contradiction we assume that up to a subsequence ρ(ṽk) → ∞ as k → +∞. By

Claim 2 we can suppose the existence of a sequence (yk)k ⊂ RN and v ∈ Hs(RN ) \ {0}
such that

ṽk(·+ yk)→ v a.e. in RN . (3.21)

On the other hand, by Lemma 3.11 we get

ρ(ṽk(·+ yk)) = ρ(ṽk)→∞ (3.22)

and
I(ρ(ṽk(·+ yk)) ∗ ṽk(·+ yk)) ≥ 0. (3.23)

Now, taking into account (3.21), (3.22), (3.23) and arguing similarly as we have already
done to prove (3.13) we have a contradiction. The proof concludes by observing that by
Claims 1 and 3

lim sup
k→+∞

∥ρ(ṽk) ∗ vk∥Hs(RN )<∞. (3.24)

Hence, by virtue of (f0)− (f2) and (3.24), (3.20) holds true.

The next result provides a weak monotonicity property for Em.

Lemma 3.16. If (f0)− (f4) hold, then m ↦→ Em is non-increasing in (0,∞).

Proof. It suffices to show that for all ε > 0 and m, m′ > 0 with m > m′ we have

Em ≤ Em′ +
ε

2
. (3.25)

Now, we take χ ∈ C∞
c (RN ) radial such that

χ(x) =

⎧⎪⎨⎪⎩
1 |x|≤ 1

∈ [0, 1] 1 < |x|≤ 2

0 |x|> 2

and u ∈ Pm′ . For every δ > 0 we set uδ(x) = u(x)χ(δx). By a result of Palatucci et al.,
see [95, Lemma 5 of Section 6.1], we know that uδ → u as δ → 0+, and using Lemma
3.11 (iii) we obtain

lim
δ→0+

ρ(uδ) = ρ(u) = 0.

As a consequence of that, we obtain

ρ(uδ) ∗ uδ → ρ(u) ∗ u inHs(RN ) (3.26)
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as δ → 0+. Now, fixing δ > 0 small enough, by virtue of (3.26) we have

I(ρ(uδ) ∗ uδ) ≤ I(u) +
ε

4
. (3.27)

After that, we choose v ∈ C∞
c (RN ) with supp(v) ⊂ B

(︁
0, 1 + 4

δ

)︁
\B

(︁
0, 4δ
)︁

and we set

ṽ =
m− ∥uδ∥22
∥v∥22

v(x)

For every λ ≤ 0 we also define ωλ = uδ+λ∗ ṽ. We observe that choosing λ appropriately
we have supp(uδ) ∩ supp(λ ∗ ṽ) = ∅, thus ωλ ∈ Sm.

Claim: ρ(ωλ) is upper bounded as λ→ −∞.
If the claim does not hold, we observe that by Lemma 3.11 (ii) I(ρ(ωλ) ∗ ωλ) ≥ 0 and

that ωλ → uδ a.e. in RN as λ→ −∞. Hence, arguing as we have already done to obtain
(3.13) we reach a contradiction. Then the claim must hold.

By virtue of the claim

ρ(ωλ) + λ→ −∞ asλ→ −∞,

thus

[(ρ(ωλ) + λ) ∗ ṽ]2Hs(RN ) = e2s(ρ(ωλ)+λ) [ṽ]2Hs(RN ) → 0

implying

∥(ρ(ωλ) + λ) ∗ ṽ∥2+ 4s
N
≤ C∥(ρ(ωλ) + λ) ∗ ṽ∥

2s
N
2 [(ρ(ωλ) + λ) ∗ ṽ]

N−2s
N

Hs(RN )
→ 0.

As a consequence, by Lemma 3.5 (ii), for a suitable λ

I((ρ(ωλ) + λ) ∗ ṽ) ≤ ε

4
. (3.28)

Finally, by Lemma 3.11 and using (3.25), (3.27) and (3.28) it easy to see that

Em ≤ I(ρ(ωλ) ∗ ωλ) = I(ρ(ωλ) ∗ uδ) + I(ρ(ωλ) ∗ (λ ∗ ṽ))
≤ I(ρ(uδ) ∗ uδ) + I((ρ(ωλ) + λ) ∗ ṽ)

≤ I(u) + ε

4
+
ε

4
≤ Em′ + ε

completing the proof.

The strict monotonicity of Em holds true only locally, as we now show.

Lemma 3.17. Assume (f0)− (f4) hold true. Moreover, let u ∈ Sm and µ ∈ R such that

(−∆)s u+ µu = f(u)

and I(u) = Em. Then Em > Em′ for every m′ > m close enough if µ > 0 and for any
m′ < m close enough if µ < 0.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Proof. Let t > 0 and ρ ∈ R. Defining ut,ρ := u(ρ ∗ (tu)) ∈ Smt2 and

α(t, ρ) := I(ut,ρ) =
1

2
t2e2ρs [u]2Hs(RN ) − e

−Nρ
∫︂
RN

F (te
Nρ
2 u) dx,

it is straightforward to verify that

∂

∂t
α(t, ρ) = te2ρs [u]2Hs(RN ) − e

−Nρ
∫︂
RN

f
(︂
te

Nρ
2 u
)︂
e

Nρ
2 u dx

= t−1I ′(ut,ρ) [ut,ρ] .

In the case µ > 0, we observe that ut,ρ → u in Hs(RN ) as (t, ρ)→ (1, 0). Moreover, we
notice that

I ′(u) [u] = −µ∥u∥22= −µm < 0

and so, choosing δ > 0 small enough, we have

∂α

∂t
(t, ρ) < 0 for any (t, ρ) ∈ (1, 1 + δ)× [−δ, δ] .

Using the Mean Value Theorem, there exists ξ ∈ (1, t) such that

∂α

∂t
(ξ, ρ) =

α(t, ρ)− α(1, ρ)
t− 1

whenever (t, ρ) ∈ (1, 1 + δ)× [−δ, δ], hence

α(t, ρ) = α(1, ρ) + (t− 1)
∂

∂t
α(ξ, ρ) < α(1, ρ). (3.29)

Since by Lemma 3.11 (iii) ρ(tu) → ρ(u) = 0 as t → 1+, setting for any m′ > m close
enough to m

t :=

√︃
m′

m
∈ (1, 1 + δ) and ρ := ρ(tu) ∈ [−δ, δ] ,

and using (3.29) together with Lemma 3.11 (ii) we obtain that

Em′ ≤ α(t, ρ(tu)) < α(1, ρ(tu)) = I(ρ(tu) ∗ u) ≤ I(u) = Em.

The proof for µ < 0 is similar, and we omit it.

As a direct consequence of the previous two Lemmas, we have the following result.

Lemma 3.18. Assume (f0) − (f4) hold true. In addition, let u ∈ Sm and µ ∈ R such
that (−∆)su+µu = f(u) with I(u) = Em. Then µ ≥ 0, and if µ > 0 it is Em > Em′ for
any m′ > m > 0.
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3.2 Properties of the map m ↦→ Em

To make a step ahead, we describe the asymptotic behaviour of Em as m → 0+ and
m→ +∞.

Lemma 3.19. Assume (f0)− (f4) hold true, then Em → +∞ as m→ 0+.

Proof. In order to prove the Lemma, we will show that for every sequence (un)n ⊂
Hs(RN ) \ {0} such that

P (un) = 0 and lim
n→+∞

∥un∥2= 0

it must be I(un)→ +∞. We set

ρn :=
1

s
log
(︂
[un]Hs(RN )

)︂
and vn := (−ρn) ∗ un

Trivially [vn]Hs(RN ) = 1 and ∥vn∥2→ 0. Moreover, thanks to these two facts we also have

by interpolation that vn → 0 in L2+ 4s
N (RN ), thus, by Lemma 3.5 (ii) we have

lim
n→+∞

e−Nρ
∫︂
RN

F
(︂
e

Nρ
2 vn

)︂
dx = 0.

Since P (ρn ∗ vn) = P (un) = 0, using Lemma 3.11 (i) and (ii) we obtain that

I(un) = I(ρn ∗ vn) ≥ I(ρ ∗ vn) =
1

2
e2ρs − eNρ

∫︂
RN

F
(︂
e

Nρ
2 vn

)︂
dx

=
1

2
e2ρs + on(1).

Since ρ is arbitrary, we get the statement as ρ→ +∞.

Lemma 3.20. Assume (f0)− (f4) and (f6). Then Em → 0 as m→ +∞.

Proof. We fix u ∈ L∞(RN ) ∩ S1 and we set um =
√
mu ∈ Sm. By Lemma 3.11 (ii) we

can find a unique ρ(m) ∈ R such that ρ(m) ∗ um ∈ Pm. Since by Lemma 3.9 (i) F is
non-negative, we get

0 < Em ≤ I(ρ(m) ∗ um) ≤
1

2
e2ρ(m)s [u]2Hs(RN ) . (3.30)

Thus, by (3.30) it suffices to show that

lim
m→∞

√
meρ(m)s = 0. (3.31)

Using the function g defined in Remark 3.8, and recalling that P (ρ(m) ∗ um) = 0 we get

[u]2Hs(RN ) =
N

2s
m

2s
N

∫︂
RN

g
(︂√

me
Nρ(m)

2 u
)︂
|u|2+

4s
N dx,

which implies
lim
m→∞

√
me

Nρ(m)
2 = 0. (3.32)
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Now, using (f6) and Lemma 3.10, for any ε > 0 we can find δ > 0 such that

F̃ (t) ≥ 4s

N
F (t) ≥ 1

ε
|t|

2N
N−2s

if |t|≤ δ. Hence, taking into account the fact that P (ρ(m) ∗ um) = 0 and (3.32), we get

[u]2Hs(RN ) =
N

2s

1

m
e−(N+2s)ρ(m)

∫︂
RN

F̃
(︂√

me
Nρ(m)

2 u
)︂
dx

≥ N

2s

1

ε

(︂√
meρ(m)s

)︂ 4s
N−2s

∫︂
RN
|u|

2N
N−2s dx

for m large enough. Then (3.31) holds and the proof is complete.

3.3 Ground-states

We introduce the functional

Ψ(u) = I(ρ(u) ∗ u) = 1

2
e2ρ(u)s [u]2Hs(RN ) − e

−Nρ(u)
∫︂
RN

F
(︂
e

Nρ(u)
2 u

)︂
dx.

Throughout this section we will assume that f satisfies (f0)− (f5).

Lemma 3.21. The functional Ψ:Hs(RN ) \ {0} → R is of class C1, and

dΨ(u) [φ] = dI(ρ(u) ∗ u) [ρ(u) ∗ φ]

for every u ∈ Hs(RN ) \ {0} and φ ∈ Hs(RN ).

Proof. A proof appears in [58] for the case s = 1. Only minor adjustments are needed in
the fractional case, so we omit the details.

For m > 0, we consider the constrained functional J :Sm → R defined by J = Ψ|Sm
.

Lemma 3.21 yields the following statement.

Lemma 3.22. The functional J :Sm → R is C1 and

dJ(u) [φ] = dΨ(u) [φ] = dI(ρ(u) ∗ u) [ρ(u) ∗ φ]

for any u ∈ Sm and φ ∈ TuSm, where TuSm is the tangent space at u to the manifold
Sm.

We recall from [50, Definition 3.1] a definition that will be useful to construct a min-
max principle.

Definition 3.23. Let B be a closed subset of a metric space X. We say that a class G
of compact subsets of X is a homotopy stable family with closed boundary B provided
that
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3.3 Ground-states

(i) every set in G contains B,

(ii) for any set A in G and any homotopy η ∈ C ([0, 1]×X,X) that satisfies η(t, u) = u
for all (t, u) ∈ ({0} ×X) ∪ ([0, 1]×B), one has η ({1} ×A) ∈ G.

We remark that B = ∅ is admissible.

Lemma 3.24. Let G be a homotopy stable family of compact subsets (with B = ∅). We
set

Em,G = inf
A∈G

max
u∈A

J(u).

If Em,G > 0, then there exists a Palais-Smale sequence (un)n ∈ Pm for the constrained
functional I|Sm

at level Em,G. In particular, if G is the class of all singletons in Sm, one
has that ∥u−n ∥2→ 0 as n→ +∞.

Proof. Let (An)n ⊂ G be a minimizing sequence of Em,G . We define the map

η: [0, 1]× Sm → Sm

where η(t, u) = (tρ(u)) ∗ u is continuous and well-defined by Lemma 3.11 (i) and (iii).
Noticing η(t, u) = u for every (t, u) ∈ {0} × Sm we obtain that

Dn := η(1, An) = {ρ(u) ∗ u | u ∈ An} ∈ G.

In particular we can see that Dn ⊂ Pm for any n ≥ 1, with m > 0. Since J(ρ(u) ∗ u) =
J(u) for every ρ ∈ R and u ∈ Sm, we can observe that

max
u∈Dn

J(u) = max
u∈An

J(u)→ Em,G

thus, (Dn)n is another minimizing sequence for Em,G . Now, using [50, Theorem 3.2] we
get a Palais-Smale sequence (vn)n ⊂ Sm for J at levelEm,G such that distHs(RN )(vn, Dn)→
0 as n→ +∞. We will denote

ρn := ρ(vn) and un := ρn ∗ vn.

Claim: There exists C > 0 such that e−2ρns ≤ C for any n ∈ N.
We start pointing out that

e−2ρns =
[vn]

2
Hs(RN )

[un]
2
Hs(RN )

.

By virtue of the fact that (un)n ⊂ Pm, using Lemma 3.12 (ii), we obtain that
{︂
[un]Hs(RN )

}︂
n

is bounded from below. Moreover, since Dn ⊂ Pm and that

max
u∈Dn

I = max
u∈Dn

J → Em,G ,
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Lemma 3.12 (iv) implies that Dn is uniformly bounded in Hs(RN ). Finally, from
distHs(RN )(vn, Dn) → 0 we can deduce that supn∈N [vn]Hs(RN ) < ∞. Thus, the claim
holds.

Now, from (un) ⊂ Pm we get

I(un) = J(un) = J(vn)→ Em,G .

On the other hand, for any ψ ∈ TunSm we have∫︂
RN

vn [(−ρn) ∗ ψ] dx =

∫︂
RN

vne
−Nρn

2 ψ
(︁
e−ρnx

)︁
dx =

∫︂
RN

e
Nρn
2 vn (e

ρnx)ψ dx

=

∫︂
RN

(ρn ∗ vn)ψ dx =

∫︂
RN

unψ dx = 0

implying (−ρn ∗ ψ) ∈ TvnSm. Besides, by the claim

∥(−ρn) ∗ vn∥Hs(RN )≤ max{C, 1}∥ψ∥Hs(RN ).

Denoting by ∥·∥u,∗ the dual norm of the space (TuSm)
∗ and using Lemma 3.22 we get

∥dI(un)∥un,∗ = sup
ψ∈TunSm

∥ψ∥
Hs(RN )

≤1

|dI(un) [ψ] |= sup
ψ∈TunSm

∥ψ∥
Hs(RN )

≤1

|dI(ρn ∗ vn) [ρn ∗ ((−ρn) ∗ ψ)] |

= sup
ψ∈TunSm

∥ψ∥
Hs(RN )

≤1

|dJ(vn) [(−ρn) ∗ ψ] |

≤ ∥dJ(vn)∥vn,∗ sup
ψ∈TunSm

∥ψ∥
Hs(RN )

≤1

∥(−ρn) ∗ ψ∥Hs(RN )

≤ max{C, 1} ∥dJ(vn)∥vn,∗→ 0

as n → +∞ remembering that (vn)n is a Palais-Smale sequence for the functional J .
We have just proved (un)n is a Palais-Smale sequence for the functional I|Sm

at level
Em,G with the additional property that (un)n ⊂ Pm. Finally, noticing that the family
of singleton of Sm is a particular homotopy stable family of compact subsets of Sm,
and doing this particular choice as G, arguing similarly as we have just done, we can
obtain a minimizing sequence (Dn)n with the additional property that its elements are
non-negative: we only need to replace the functions with their absolute value. Moreover,
(An)n will inherit this property, and recalling that distHs(RN )(vn, Dn) → 0 as n → +∞
we have

∥u−n ∥2= ∥ρn ∗ v−n ∥2= ∥v−n ∥2→ 0.

This concludes the proof of the Lemma.

Lemma 3.25. We assume (f0) − (f4) hold. Then there exists a Palais-Smale sequence
(un)n ⊂ Pm for the constrained functional I|Sm

at level Em such that ∥u−n ∥2→ 0 as
n→ +∞.
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3.3 Ground-states

Proof. We apply Lemma 3.24 with G the class of all singletons in Sm. Lemma 3.12 imply
that Em > 0, thus the only thing that remains to prove is Em = Em,G . In order to do
that, as a first step, we notice that

Em,G = inf
A∈G

max
u∈A

J(u) = inf
u∈Sm

I(ρ(u) ∗ u).

Since for every u ∈ Sm we have that ρ(u) ∗ u ∈ Pm it must be I(ρ(u) ∗ u) ≥ Em, thus
Em,G ≥ Em. On the other hand, if u ∈ Pm we have ρ(u) = 0 and I(u) ≥ Em,G , that
implies Em ≥ Em,G .

Lemma 3.26. Let (un)n ⊂ Sm be a bounded Palais-Smale sequence for the constrained
functional I|Sm

at level Em > 0 such that P (un) → 0 as n → +∞. Then we have the
existence of u ∈ Sm and µ > 0 such that, up to a subsequence and translations in RN ,
un → u strongly in Hs(RN ) and

(−∆)su+ µu = f(u).

Proof. It is clear that (un)n ⊂ Sm is bounded in Hs(RN ) and is a Palais-Smale se-
quence. Together, these two facts enable us to assume without loss of generality that
limn→+∞ [un]Hs(RN ), limn→+∞

∫︁
RN F (un) dx, and limn→+∞

∫︁
RN f(un)un dx exist. Be-

sides, [21, Lemma 3] implies

(−∆)sun + µnun − f(un)→ 0 in Hs(RN )∗

where we denote

µn =
1

m

(︃∫︂
RN

f(un)un dx− [un]
2
Hs(RN )

)︃
.

By the assumptions made above, we can see that µn → µ for some µ ∈ R and we also
have that for any (yn)n ⊂ RN

(−∆)sun(·+ yn) + µun(·+ yn)− f(un(·+ yn))→ 0 in Hs(RN )∗. (3.33)

Claim: (un)n is non vanishing.
Otherwise, by [102, Lemma II.4] we would get un → 0 in L2+ 4s

N (RN ). Taking into
account that P (un)→ 0 and using Lemma 3.5 (ii) we get

[un]
2
Hs(RN ) = P (un) +

N

2s

∫︂
Rn
F̃ (un) dx→ 0

and as a consequence of that,

Em = lim
n→+∞

I(un) =
1

2
lim

n→+∞
[un]

2
Hs(RN ) − lim

n→+∞

∫︂
RN

F (un) dx = 0

contradicting Em > 0. Then the claim must hold.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Since (un)n in non-vanishing we can find (y1n)n ⊂ RN and ω1 ∈ Bm \ {0} such that
un(·+y1n)⇀ ω1 inHs(RN ), un(·+y1n)→ ω1 in Lploc(R

N ) for p ∈ [1, 2∗s) and un(·+y1n)→ ω
a.e. in RN . Now, we want to apply [20, Theorem A.1] with P (t) = f(t) and Q(t) =
|t|(N+2s)/(N−2s) and notice that

lim
n→+∞

∫︂
RN

⃓⃓[︁
f(un(·+ y1n)− f(ω1)

]︁
φ
⃓⃓
dx

≤ ∥φ∥L∞(RN ) lim
n→+∞

∫︂
supp(φ)

⃓⃓
f(un(·+ y1n)− f(ω1)

⃓⃓
dx (3.34)

for any φ ∈ C∞
c (RN ). Hence, by (3.33) and (3.34) we get

(−∆)sω1 + µω1 = f(ω1) (3.35)

and through the Pohozaev Identity (see for instance [36, Proposition 4.1]) associated to
(3.35) we also have P (ω1) = 0. Now, we set v1n := un − ω1(· − y1n) for every n ∈ N.
Clearly v1n(·+ y1n) = un(·+ y1n)− ω1 ⇀ 0 in Hs(RN ), thus

m = lim
n→+∞

∥un(·+ y1n)∥2= lim
n→+∞

∥v1n∥22+∥ω1∥22. (3.36)

By Lemma 3.14 we also have

lim
n→+∞

∫︂
RN

F (un(·+ y1n)) dx =

∫︂
RN

F (ω1) dx+ lim
n→+∞

∫︂
RN

F (v1n(·+ y1n)) dx

hence

Em = lim
n→+∞

I(un) = lim
n→+∞

I(un(·+ y1n)) = lim
n→+∞

I(v1n(·+ y1n)) + I(ω1) (3.37)

= lim
n→+∞

I(v1n) + I(ω1).

Claim: limn→+∞ I(v1n) ≥ 0.
If the claim does not hold, i.e. limn→+∞ I(v1n) < 0, (v1n)n is non vanishing, then there

exists (y2n)n ⊂ RN such that

lim
n→+∞

∫︂
B(y2n,1)

|v1n|2 dx > 0.

Since v1n(· + y1n) → 0 in L2
loc(R

N ), it must be |y2n − y1n|→ ∞, and up to a subsequence
v1n(·+ y2n)→ ω2 in Hs(RN ) for some ω2 ∈ Bm \ {0}. We notice

un(·+ y2n) = v1n(·+ y2n) + ω1(· − y1n + y2n)⇀ ω2

thus, arguing as before, we get P (ω2) = 0 and I(ω2) > 0. We set

v2n = v1n − ω2(· − y2n) = un −
2∑︂
ℓ=1

ωℓ(· − yℓn)
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3.3 Ground-states

and we observe that

lim
n→+∞

[︁
v2n
]︁2
Hs(RN )

= lim
n→+∞

[︁
v1n
]︁2
Hs(RN )

+ [ω2]
2
Hs(RN ) − 2 lim

n→+∞
⟨v1n, ω2(· − y2n)⟩Hs(RN )

= lim
n→+∞

[︁
v1n
]︁2
Hs(RN )

+ [ω2]
2
Hs(RN ) − 2 lim

n→+∞
⟨v1n(·+ y2n), ω2⟩Hs(RN )

= lim
n→+∞

[un]
2
Hs(RN ) + [ω1]

2
Hs(RN ) − [ω2]

2
Hs(RN )

− 2 lim
n→+∞

⟨un(·+ y1n), ω1⟩Hs(RN )

= lim
n→+∞

[un]
2
Hs(RN ) −

2∑︂
ℓ=1

[ωℓ]
2
Hs(RN )

and

0 > lim
n→+∞

I(v1n) = I(ω2) + lim
n→+∞

I(v2n) > lim
n→+∞

I(v2n).

Iterating, we can build an infinite sequence (ωk) ⊂ Bm \ {0} such that P (ωk) = 0 and

k∑︂
ℓ=1

[ωk]
2
Hs(RN ) ≤ [un]

2
Hs(RN ) <∞

for every k ∈ N. However, this is a contradiction. Indeed, recalling Remark 3.6, for any
ω ∈ Bm \ {0} such that P (ω) = 0, we can find δ > 0 such that [ω]2Hs(RN ) ≥ δ. Therefore,
the claim must be valid and limn→+∞ I(v1n) ≥ 0.

Now, we denote by h := ∥ω1∥22∈ (0,m]. By virtue of the claim, (3.37) and the fact
that ω1 ∈ Ph, we get

Em = I(ω1) + lim
n→+∞

I(v1n) ≥ I(ω1) ≥ Eh

but, recalling that Em in non-increasing by Lemma 3.16, we obtain

I(ω1) = Em = Eh (3.38)

and
lim

n→+∞
I(v1n) = 0. (3.39)

To prove that µ ≥ 0 it suffices to put together (3.35), (3.38) and Lemma 3.18. In-
stead, to see that µ is strictly positive, using (f5), Lemma 3.7 and the Pohozaev identity
corresponding to (3.35), we get

µ =
1

ms

∫︂
RN

(︃
NF (ω1)−

N − 2s

2
f(ω1)ω1

)︃
dx > 0. (3.40)

At this point, we suppose by contradiction that h < m, but taking into account (3.35),
(3.40) and Lemma 3.18 we would have

I(ω1) = Eh > Em
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

which is not compatible with (3.38). Thus h = m. Moreover, by (3.36) v1n → 0 in
L2(RN ). It remains only to prove the strong convergence of (v1n)n in Hs(RN ). To do
that, it is sufficient to notice that by Lemma 3.5 (ii) we have limn→+∞

∫︁
RN F (v1n) dx = 0,

and so we obtain the assertion thanks to (3.39).

Proof of theorem 3.2. Applying Lemma 3.25 we obtain a Palais-Smale sequence (un)n ⊂
Pm at level Em > 0 for the constrained functional I|Sm

. This sequence is bounded in
Hs(RN ) by Lemma 3.12 and through Lemma 3.26 we get a critical point u ∈ Sm at the
level Em > 0 that results to be a ground-state energy. Finally, since ∥u−n ∥2→ 0 we deduce
that u ≥ 0 and after applying the strong maximum principle we obtain u > 0.

Proof of theorem 3.3. The proof is a direct consequence of Theorem 3.2 and Lemmas
3.12, 3.15, 3.16, 3.19, 3.20.

3.4 Existence of radial solutions

This section is devoted to proving the existence of infinitely many radial solutions to
problem (Pm). Before doing this, we recall some basic definitions and provide some
notation.

Denote by σ:Hs(RN )→ Hs(RN ) the transformation σ(u) = −u and let X ⊂ Hs(RN ).
A set A ⊂ X is called σ-invariant if σ(A) = A. A homotopy η: [0, 1] × X → X is σ-
equivariant if η(t, σ(u)) = σ(η(t, u)) for all (t, u) ∈ [0, 1] ×X. Next definition is in [50,
Definition 7.1].

Definition 3.27. Let B be a closed σ-invariant subset of X ⊂ Hs(RN ). We say that a
class G of compact subsets of X is a σ-homotopy stable family with closed boundary B
provided

(i) every set in G is σ-invariant.

(ii) every set in G contains B,

(iii) for any set A in G and any σ-equivariant homotopy η ∈ C ([0, 1]×X,X) that
satisfies η(t, u) = u for all (t, u) ∈ ({0} ×X)∪([0, 1]×B), one has η ({1} ×A) ∈ G.

We denote with Hs
r (RN ) the space of radially symmetric functions in Hs(RN ) and

recall that Hs
r (RN ) ↪→ Lp(R) compactly for all p ∈ (2, 2∗s) (see [70, Proposition I.1]).

In order to prove the main result of this section, we need to build a sequence of σ-
homotopy stable families of compact subsets of Sm ∩Hs

r (RN ). We point out that in the
above definition, the case in which B = ∅ is not excluded. The idea is borrowed from
[58]. Let (Vk)k be a sequence of finite dimensional linear subspaces of Hs

r (RN ) such that
Vk ⊂ Vk+1, dimVk = k and

⋃︁
k≥1 Vk is dense in Hs

r (RN ). Denote by πk the orthogonal
projection from Hs

r (RN ) onto Vk. We recall to the reader the definition of the genus of
σ-invariant sets introduced by M. A. Krasnoselskii and we refer to [100, Section 7] or [2,
chapter 10] for its basic properties.
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3.4 Existence of radial solutions

Definition 3.28. Let A be a non-empty compact σ-invariant subset of Hs
r (RN ). The

genus γ(A) of A is the least integer k such that there exists ϕ ∈ C(Hs
r (RN ),Rk) such

that ϕ is odd and ϕ(x) ̸= 0 for all x ∈ A. We set γ(A) =∞ if there are no integers with
the above property and γ(∅) = 0.

Let A be the family of closed σ-invariant subsets of Sm∩Hs
r (RN ). For each k ∈ N, set

Gk := {A ∈ A | γ(A) ≥ k}

and

Em,k = inf
A∈Gk

max
u∈A

J(u).

Next, we give a result about the weak convergence of the nonlinearity f .

Lemma 3.29. Assume (f0)−(f2) hold true. Let (un)n ⊂ Hs
r (RN ). If un ⇀ u in Hs

r (RN )
for some u ∈ Hs

r (RN ), then f(un)⇀ f(u) in L
2N

N+2s (RN ).

Proof. We borrow some ideas from [88, Theorem 2.6]. We start exploiting the compact
embedding Hs

r (RN ) ↪→ Lp(RN ) for any p ∈ (2, 2∗s). Hence, up to a subsequence, un → u
in Lp(RN ) and a.e. in RN . From equation (3.5), we get

|f(un)|
2N

N+2s≤ Cε|un|
2N

N−2s+C|un|2
N+4s
N+2s

for some Cε, C > 0. As a consequence of that, recalling the fractional Sobolev inequality
and observing that 2N+4s

N+2s ∈ (2, 2∗s), we obtain that (f(un))n is bounded in L
2N

N+2s (RN ).
Thus, there exists y ∈ L

2N
N+2s (RN ) such that f(un) ⇀ y. At this point, we fix a cover

(Ωj)j of RN made of subsets with finite measure. For any υ > 0, Severini-Egorov’s

Theorem yields the existence of Bj
υ ⊂ Ωj , with measure

⃓⃓⃓
Bj
υ

⃓⃓⃓
< υ, such that un → u

uniformly in Ωj \Bj
υ. Clearly, y = f(u) in Ωj \Bj

υ. Now, we set

Q :=
{︁
x ∈ RN | y ̸= f(u)

}︁
and Qj := {x ∈ Ωj | y ̸= f(u)} .

Since υ is arbitrary and Qj ⊂ Bj
υ, we have that Qj is a set of measure zero. Furthermore,

it is easy to see that Q =
⋃︁∞
j=1Qj , therefore Q has measure zero and the proof is

complete.

From now on, we will always assume (f0)− (f5) hold until the end of the section.

Lemma 3.30. Let G be a σ-homotopy stable family of compact subsets of Sm ∩Hs
r (RN )

(with B = ∅) and set

Em,G := inf
A∈G

max
u∈A

J(u).

If Em,G > 0 then there exists a Palais-Smale sequence (un)n in Pm ∩ Hs
r (RN ) for

I|Sm∩Hs
r (RN ) at level Em,G.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

Proof. It suffices to replace Theorem 3.2 with 7.2 of [50] in the proof of Lemma 3.24.

Lemma 3.31. For any k ∈ N we have

(i) Gk ̸= ∅ and Gk is a σ-homotopy stable family of compact subsets of Sm ∩ Hs
r (RN )

(with B = ∅),

(ii) Em,k+1 ≥ Em,k > 0.

Proof. (i) It suffices to notice that for any k ∈ N one has Sm ∩ Vk ∈ A and that by [2,
Theorem 10.5]

γ(Sm ∩ Vk) = k.

Thus Gk ̸= ∅. The conclusion is a direct consequence of the definition of A.
(ii) By the previous step Em,k is well defined. Furthermore, recalling that ρ(u)∗u ∈ Pm

for all u ∈ A, where A is chosen arbitrarily in G, we have

max
u∈A

J(u) = max
u∈A

I(ρ(u) ∗ u) ≥ inf
v∈Pm

I(v),

hence Em,k > 0. The other part of the statement follows easily from Gk+1 ⊂ Gk.

Lemma 3.32. Let (un)n ⊂ Sm ∩Hs
r (RN ) be a bounded Palais-smale sequence for I|Sm

at an arbitrary level c > 0 satisfying P (un) → 0. Then there exists u ∈ Sm ∩ Hs
r (RN )

and µ > 0 such that, up to a subsequence, un → u strongly in Hs
r (RN ) and

(−∆)su+ µu = f(u).

Proof. By the boundedness of the Palais-Smale sequence we may assume un ⇀ u in
Hs
r (RN ), un → u in Lp(RN ) for any p ∈ (2, 2∗s) and a.e. in RN . Besides, as already seen

in the previous section, using [21, Lemma 3] we get

(−∆)sun + µnun − f(un)→ 0 in (Hs
r (RN ))∗ (3.41)

where

µn :=
1

m

(︃∫︂
RN

f(un)un dx− [un]
2
Hs(RN )

)︃
.

Again, similarly to the proof of Lemma 3.26, we can assume the existence of µ ∈ R such
that µn → µ, from which we derive

(−∆)su+ µu = f(u). (3.42)

Claim: u ̸= 0.
If u = 0, then by the compact embedding un → 0 in L2+ 4s

N (RN ). Hence, using Lemma
3.5 (ii) and the fact that P (un)→ 0, we have

∫︁
RN F (un) dx→ 0 and

[un]
2
Hs(RN ) = P (un) +

N

2s

∫︂
RN

F̃ (un) dx→ 0,
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3.4 Existence of radial solutions

from which

c = lim
n→+∞

I(un) =
1

2
lim

n→+∞
[un]

2
Hs(RN ) − lim

n→+∞

∫︂
RN

F (un) dx = 0,

that contradicts the hypothesis of c > 0. Now, since u ̸= 0, as we obtained ((3.40)), we
get

µ :=
1

ms

∫︂
RN

(︃
NF (u)− N − 2s

2
f(u)u

)︃
dx > 0.

Since un ⇀ u in Hs
r (RN ), by Lemma 3.29∫︂

RN
[f(un)− f(u)]u dx→ 0.

Indeed, the fractional Sobolev inequality implies that u ∈ L
2N

N−2s (RN ), and the multipli-
cation by u turns out to be a continuous linear operator from L

2N
N+2s (RN ) into L1(RN ).

Now, observing that
∫︁
RN f(un)(un − u) dx→ 0 by Lemma 3.5 (iii) we get

lim
n→+∞

∫︂
RN

f(un)un dx =

∫︂
RN

f(u)u dx.

Finally, from (3.41) and (3.42) one has

[u]2Hs(RN ) + µ

∫︂
RN

u2 dx =

∫︂
RN

f(u)u dx

= lim
n→+∞

∫︂
RN

f(un)un dx = lim
n→+∞

[un]
2
Hs(RN ) + µm,

and since µ > 0,

lim
n→+∞

[un]
2
Hs(RN ) = [u]2Hs(RN ) , lim

n→+∞

∫︂
RN

u2n dx = m =

∫︂
RN

u2 dx.

Thus un → u in Hs
r (RN ).

Lemma 3.33. For any c > 0, there exist β = β(c) > 0 and k(c) ∈ N such that for any
k ≥ k(c) and any u ∈ Pm ∩Hs

r (RN )

∥πku∥Hs(RN )≤ β implies I(u) ≥ c.

Proof. By contradiction, we assume that there exists c0 such that for any β > 0 and any
k ∈ N it is possible to find ℓ ≥ k and u ∈ Pm ∩Hs

r (RN ) such that

I(u) < c0 with ∥πℓu∥Hs(RN )≤ β.
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3 Normalized solutions for the fractional NLS with mass supercritical nonlinearity

In view of that, one can find a sequence (kj)j ⊂ N, with kj → ∞ as j → ∞, and a
sequence (uj)j ⊂ Pm ∩Hs

r (RN ) such that

∥πkjuj∥Hs(RN )≤
1

j
and I(uj) < c0 (3.43)

for any j ∈ N. Noticing that by Lemma 3.12 (iv) (uj)j is bounded, up to a subsequence
we have uj ⇀ u in Hs

r (RN ) and L2(RN ).
Claim: u = 0.
Since kj →∞, it follows that πkju→ u in L2(RN ), hence

(πkjuj , u)L2(RN ) = (uj , πkju)L2(RN ) → (u, u)L2(RN )

as j →∞.
On the other hand, using (3.43) we get πkjuj → 0 in L2(RN ), thus the claim must

hold. Now, since ∥uj∥2+ 4s
N
→ 0 by the compact embedding, (uj)j ⊂ Pm ∩Hs

r (RN ), and
Lemma 3.5 (ii), we obtain

[uj ]
2
Hs(RN ) =

N

2s

∫︂
RN

F̃ (uj) dx→ 0

as j →∞, which contradicts Lemma 3.12 (ii).

Lemma 3.34. Em,k →∞ as k → +∞.

Proof. We assume by contradiction that there exists c > 0 such that

lim inf
k→+∞

Em,k < c.

Denote with β(c) and k(c) the numbers given in Lemma 3.33. Up to choosing a bigger
c, we can find k > k(c) such that Em,k < c. Moreover, by definition of Em,k there must
be A ∈ Gk such that

max
u∈A

I(ρ(u) ∗ u) = max
u∈A

J(u) < c.

Now, recalling Lemma 3.11 (iii) and (iv) we get that the map φ : A → Pm ∩ Hs
r (RN )

defined by φ(u) = ρ(u) ∗ u is odd and continuous. Thus, setting A := φ(A) ⊂ Pm ∩
Hs
r (RN ) we have

max
v∈A

I(v) < c

and
γ(A) ≥ γ(A) ≥ k > k(c) (3.44)

by the properties of the genus. On the other hand, Lemma 3.33 implies that

inf
v∈A
∥πk(c)v∥Hs(RN )≥ β(c) > 0,
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3.4 Existence of radial solutions

and after setting

ϕ(v) :=
πk(c)v

∥πk(c)v∥Hs(RN )

for any v ∈ A

we get

γ(A) ≤ γ(ϕ(A)) ≤ k(c)

noticing that ϕ is odd, continuous and that ϕ(A) ⊂ Vk(c). That is against (3.44). There-
fore Em,k →∞ as k → +∞.

Proof of Theorem 3.4. For each k ∈ N, by Lemmas 3.30 and 3.31 one can find a Palais-
Smale sequence (un)n ⊂ Pm∩Hs

r (RN ) of the constrained functional I|Sm∩Hs
r (RN ) at level

Em,k > 0. By Lemma 3.12 (un)n is bounded and by virtue of Lemma 3.32 we deduce
that (Pm) has a radial solution uk such that I(uk) = Em,k. Moreover, using Lemma 3.31
(ii) and Lemma 3.34, we get

I(uk+1) ≥ I(uk) > 0 for any k ≥ 1

and I(uk)→∞.
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4 A perturbed fractional p-Kirchhoff
problem with critical nonlinearity

In this chapter we are concerned in the study of the problem

⎧⎨⎩
(︃
a+ b

∫︂
Q

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)︃
(−∆p)

su = |u|p∗s−2u+ λg(x, u) in Ω

u = 0 in RN \Ω
(P λa,b)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω, Q = R2N \O and
O = Ωc × Ωc, a and b are strictly positive real numbers, s ∈ (0, 1). If 1 < p < 2 we
require N > 2ps while if p > 2 we suppose N > p2s. Here, p∗s := Np/(N − ps) denotes
the critical exponent for the Sobolev embedding of W s,p(RN ) into Lebesgue spaces.

Problem (P λa,b) can be seen as a non-local stationary generalized version of the classical
Kirchhoff equation

ρh ∂2ttu−
(︃
p0 +

Eh
2L

∫︂ L

0
|∂xu|2 dx

)︃
∂2xxu+ δ ∂tu+ g(x, u) = 0 (4.1)

for t ≥ 0 and 0 < x < L, where u = u(t, x) is the lateral displacement at time t and
position x, E is the Young modulus, ρ is the mass density, h is the cross section area,
L the length of the string, p0 is the initial stress tension, δ the resistance modulus and
g the external force. As pointed out by Murthy in [111], Kirchhoff in [60], attempting
to generalize the well known d’Alembert equation of the vibrating string, introduced
this model taking into account not only the transversal displacement. At a later time,
the Kirchhoff equation found application in various fields. Indeed, Alves et al. in [1]
emphasized that the solutions u of the Kirchhoff equation can also describe a process
which depends on the average of itself such as the population density. Moreover, opera-
tors such as the one introduced by Kirchhoff also arise in phase transition phenomena,
continuum mechanics, population dynamics, game theory, nonlinear optic, and minimal
surfaces. The interested reader can consult [9], [32], [33], [34], [79] and the references
therein. The interest in generalizing this kind of problems to the fractional case is not
only for mathematical purposes. In fact, Fiscella and Valdinoci in [48] constructed a
model for the vibrating string in which the tension of the string is related to non-local
measurements of the displacement of the string from its rest position. In recent years,
the fractional quasilinear Kirchhoff case has attracted the attention of many researchers.
For instance, Franzina and Palatucci in [49] and Lindgren and Lindqvist in [69] studied
some properties of the eigenvalues of (−∆p)

s. Furthermore, Brasco and Lindgren in [26],
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

Di Castro et al. in [40] and Iannizzoto et al. in [56] obtained some results regarding
the regularity of solutions involving the fractional p-Laplace operator. Also the attention
to the fractional quasilinear case has grown considerably in the last years. We refer to
[5, 6] for results on existence, multiplicity and concentration of positive solutions for a
singularly perturbed fractional p-Schrödinger equation by means of variational methods
and the Lyusternik-Shnirel’man theory. Pucci et al. in [99] obtained a multiplicity result
for the so-called Kirchhoff-Schr̈odinger equation in RN where a potential was added to
the Kirchhoff operator. Xiang et al. in [112] proved the existence of a non-trivial weak
solution to a problem driven by a non-local operator with a more general kernel than the
one taken into consideration here. Moreover Xiang et al. in [113] proved the existence of
a non-trivial solution for a problem with the fractional p-Laplace operator and a critical
exponent. It is also worth mentioning [81] where the authors obtained the existence of a
sequence of non-trivial solutions by using the symmetric mountain pass theorem under
the assumption that the nonlinear term f satisfies a superlinear growth condition. We
finally cite [7], where the authors investigate fractional p-Kirchhoff type problems in RN
with subcritical, critical and supercritical growth.

The aim of the present chapter is to generalize to the fractional quasilinear case some
results obtained by Appolloni et. al in [12] following the approach proposed in [45].
We point out that to the best of our knowledge these results we are going to prove
are new even for the local case s = 1. The main mathematical difficulty we have to
face in order to study existence of solutions for problem (P λa,b) is the presence of the
term |u|p∗s−2u. Due to the lack of compactness of the embedding W s,p(Ω) ↪→ Lp

∗
s (Ω),

the energy functional associated to problem (P λa,b) is not even weakly sequentially lower
semicontinuous. Moreover, the validity of the Palais-Smale condition is not ensured.
In order to overcome these difficulties, we will invoke the concentration-compactness
principle developed by Lions in [73] and [74] and generalized to the p-fractional case
by Mosconi and Squassina in [90]. Helped by this result and choosing the quantity
a(N−2ps)/ps)b adequately, we will show that the functional associated to the problem is
weakly sequentially lower semicontinuous and satisfies the Palais-Smale condition at any
level. In addition to that, while in the semilinear case p = 2 the minimizers for the
best Sobolev constant are completely characterized, if p ̸= 2 we can only rely on some
asymptotic estimates at infinity. As regards studying the different levels of energy on
which the solutions are, we will use a fiber type approach. Defining appropriately a map
depending on a parameter, we will identify a parameter λ̄s0 that will play a crucial role
in establishing whether the ground state is attained at a negative level. Since we will
assume that the function g has a subcritical growth, for the sake of simplicity at the
beginning we will focus our attention on the auxiliary problem

⎧⎨⎩
(︃
a+ b

∫︂
Q

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)︃
(−∆p)

su = |u|p∗s−2u in Ω

u = 0 in RN \Ω.
(Pa,b)
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Throughout the chapter we will denote with

∥u∥p=
∫︂
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy.

Since the solutions of (P λa,b) must satisfy some kind of boundary condition, we introduce
the space

Xs,p
0 (Ω) :=

{︁
u ∈W s,p(RN ) | u = 0 a.e. in RN \Ω

}︁
.

Remark 4.1. The norm ∥·∥ is equivalent to ∥·∥W s,p(RN ) in Xs,p
0 (Ω).

We define the functional I:Xs,p
0 (Ω)→ R by

I(u) := a

p
∥u∥p+ b

2p
∥u∥2p− 1

p∗s
∥u∥p

∗
s
p∗s
,

whose critical points are weak solutions to (Pa,b). To see a complete summary of the
notation used we refer the reader to the next section and Chapter 2. The chapter is
structured as follows. Section 4.1 is devoted to introducing the notation and to collect
some preliminary lemmas. In Section 4.2 we give the proof of the main results for the
auxiliary problem Pa,b. Finally, in Section 4.3 we investigate the existence of solutions
for problem (P λa,b). To conclude the section, we collect here the main results we are going
to prove along the chapter.

Theorem 4.2. Let

L(N, p, s) := 2ps
(N − 2ps)

N−2ps
ps

N
N−ps

ps S
N
ps
s,p

,

where Ss,p is the best Sobolev constant defined in (4.2) below. The functional I is sequen-

tially weakly lower semicontinuous on Xs,p
0 (Ω) if and only if a

N−2ps
ps b ≥ L(N, p, s).

Theorem 4.3. Define

PS(N, p, s) := ps
(N − 2ps)

N−2ps
ps

(N − ps)
N−ps

ps S
N
ps
s,p

.

If a(N−2ps)/psb > PS(N, p, s), the functional I satisfies the compactness Palais–Smale
condition at any level c ∈ R.

Remark 4.4. We point out that PS(N, p, s) ≥ L(N, p, s) in our setting. Indeed, this
inequality is equivalent to (︃

N

N − ps

)︃N−ps
ps

≥ 2,

or (︃
1 +

ps

N − ps

)︃N−ps
ps

≥ 2.
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

The generalized Bernouilli inequality

(1 + x)r ≥ 1 + rx, r ≥ 1, x ≥ −1

and the assumption that N > 2ps yield(︃
1 +

ps

N − ps

)︃N−ps
ps

≥ 1 +
N − ps
ps

· ps

N − ps
= 2.

We next prove an existence result for ground states of problem (P λa,b).

Theorem 4.5. Let a, b ∈ R+ such that a(N−2ps)/psb ≥ L(N, p, s), and set

ιsλ := inf
{︂
Iλ(u) | u ∈ Xs,p

0 (Ω) \ {0}
}︂

for any λ > 0.

There exists λs0 ≥ 0 such that for any λ > λ
s
0 there exists usλ ∈ X

s,p
0 (Ω) \ {0} satisfying

Iλ(usλ) = ιsλ < 0.

Theorem 4.6. Let λ = λ
s
0. The following statements hold:

(i) if a(N−2ps)/psb > L(N, p, s) then there exists usλ ∈ X
s,p
0 (Ω)\{0} such that ιs

λ
s
0
= Iλ

s
0 =

0;

(ii) if a(N−2ps)/psb = L(N, p, s), then u = 0 in the only minimizer for ιs
λ
s
0
.

The following Theorem states a sort of stability when the quantity a(N−2ps)/psb con-
verges to L(N, p, s).

Theorem 4.7. Let (ak)k, (bk)k be sequences of real positive numbers such that ak → a,
bk → b and a(N−2ps)/ps

k bk ↘ L(N, p, s). Setting λk := λ
s
0(ak, bk) we have that λk → 0 as

k → ∞. Furthermore, if (uk)k ⊂ Xs,p
0 (Ω) \ {0} satisfies λk = λs0(uk) then uk/∥uk∥⇀ 0

and
∥uk∥pp∗s
∥uk∥p

→ Ss,p.

Next statement describes the situations for mountains pass solutions.

Theorem 4.8. If λ ≥ λ
s
0 and a(N−2ps)/psb > PS(N, p, s), then there exists a vsλ ∈

Xs,p
0 (Ω) \ {0} such that Iλ(vsλ) = csλ and

(︁
Iλ
)︁′
(vsλ) = 0 where

csλ := inf
h∈Γs

λ

max
ζ∈[0,1]

Iλ(h(ζ))

and
Γsλ :=

{︂
h ∈ C ([0, 1] , Xs,p

0 (Ω)) | h(0) = 0, h(1) = us
λ
s
0

}︂
.

The last two Theorems analyze what happens to the set of solutions of (P λa,b) when
λ < λ̄

s
0.

50



4.1 Abstract framework and preliminary results

Theorem 4.9. Assume a(N−2ps)/ps)b > PS(N, p, s). There exist δ > 0, r > 0 such that
for any λ ∈ (λ

s
0 − δ, λ

s
0) the value

ι̂sλ := inf
{︂
Iλ(u) | u ∈ Xs,p

0 (Ω), ∥u∥≥ r
}︂

is attained at a function wsλ ∈ X
s,p
0 (Ω) satisfying ∥wsλ∥> r.

Theorem 4.10. Suppose a(N−2ps)/ps)b > PS(N, p, s). For any λ ∈ (λ
s
0 − δ, λ

s
0) there is

vsλ ∈ X
s,p
0 (Ω) \ {0} such that Iλ(vsλ) = csλ and

(︁
Iλ
)︁′
(vsλ) = 0, where

csλ := inf
h∈Γs

λ

max
ζ∈[0,1]

Iλ(h(ζ))

and
Γsλ := {h ∈ C ([0, 1] , Xs,p

0 (Ω)) | h(0) = 0, h(1) = wsλ} .

4.1 Abstract framework and preliminary results

We consider the potential operator Ap associated to the functional u ↦→ ∥u∥p/p on
Xs,p

0 (Ω), i.e. the operator Ap:X
s,p
0 (Ω)→ (Xs,p

0 (Ω))
∗ such that

⟨Ap(u), v⟩ =
∫︂
RN×RN

|u(x)− u(y)|p−2 (u(x)− u(y)) (v(x)− v(y))
|x− y|N+sp

dx dy

for every u, v ∈ Xs,p
0 (Ω). Trivially,

⟨Ap(u), u⟩ = ∥u∥p, |⟨Ap(u), v⟩| ≤ ∥u∥p−1∥v∥ .

Lemma 4.11. If a sequence (un)n converges weakly to u in Xs,p
0 (Ω) and

⟨Ap(un), un − u⟩ → 0,

then ∥un − u∥→ 0.

Proof. We refer to [4] for a proof.

The following Lemma will be particularly useful in the proof of the Palais-Smale con-
dition.

Lemma 4.12. Let q ∈ RN , ε ∈ (0, 1) and u ∈ Lp∗s (RN ). Suppose that either U = B(q, ε)
and V = RN , or U = RN and V = B(q, ε). Then,

lim
ε→0

1

εp

∫︂
U

∫︂
V ∩{|x−y|≤ε}

|u(y)|p

|x− y|N+ps−p dx dy = 0

and
lim
ε→0

∫︂
U

∫︂
V ∩{|x−y|>ε}

|u(y)|p

|x− y|N+ps
dx dy = 0
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

Proof. The verification of the two limits is similar to [48, Proposition 7]. We omit the
details.

Proposition 4.13. Let (un)n ⊂ Xs,p
0 (Ω) be a bounded sequence. Suppose that ϑ ∈

C∞(RN ) is such that 0 ≤ ϑ ≤ 1, ϑ = 1 in B(0, 1) and ϑ = 0 in RN \B(0, 2). For
q ∈ RN , let ϑε(x) = ϑ

(︁x−q
ε

)︁
. Then

lim
ε→0

lim
n→∞

∫︂
R2N
|un(y)|p

|ϑε(x)− ϑε(y)|p

|x− y|N+ps
dx dy = 0.

Proof. The verification of the limit is similar to [48, Theorem 2]. We omit the details.

We conclude this section recalling that the best Sobolev constant is defined as

Ss,p := inf
u∈Xs,p

0 (Ω)\{0}

∥u∥p

∥u∥pp∗s
(4.2)

A natural conjecture is that all the minimizers for Ss,p are of the form V (|· − x0|/ε),
where

V (x) =
1(︂

1 + |x|
p

p−1

)︂N−ps
p

in analogy to the case p = 2 and s = 1 (see for instance [68]). Unfortunately, this problem
is still open and we can only rely on some asymptotic estimates at infinity proved by
Mosconi et al. in [89].

4.2 Weakly sequentially lower semicontinuity and validity of
the Palais-Smale

Proof of Theorem 4.2. We start assuming

a
N−2ps

ps b ≥ L(N, p, s).

Take a sequence (un)n ⊂ Xs,p
0 (Ω) such that un ⇀ u in Xs,p

0 (Ω). Recalling that the
embedding Xs,p

0 (Ω) ↪→ Lq(Ω) is compact for every q ∈ [1, p∗s) by Proposition 2.3, we
deduce un → u in Lq(Ω) for all q ∈ [1, p∗s) and in particular un(x)→ u(x) a.e. in RN as
n→∞. At this point we use [96, Lemma 3.2] getting

∥un − u∥p= ∥un∥p−∥u∥p+o(1) as n→∞. (4.3)

Furthermore, we observe

∥un∥2p−∥u∥2p = (∥un∥p−∥u∥p) (∥un∥p+∥u∥p)
= (∥un − u∥p+o(1)) (∥un − u∥p+2∥u∥p+o(1)) (4.4)
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where we used (4.3). We also apply the classical Brezis-Lieb Lemma (see [30, Theorem
1]) to get

∥un − u∥p
∗
s
p∗s
= ∥un∥p

∗
s
p∗s
−∥u∥p

∗
s
p∗s
+o(1). (4.5)

Now, we assemble (4.3), (4.4), (4.5) and we compute

I(un)− I(u) =
a

p
(∥un∥p−∥u∥p) +

b

2p

(︁
∥un∥2p−∥u∥2p

)︁
− 1

p∗s

(︂
∥un∥p

∗
s
p∗s
−∥u∥p

∗
s
p∗s

)︂
=
a

p
∥un − u∥p+

b

2p

(︁
∥un − u∥2p+2∥u∥p∥un − u∥p

)︁
− 1

p∗s
∥un − u∥p

∗
s
p∗s
+o(1)

≥ a

p
∥un − u∥p+

b

2p
∥un − u∥2p−

S
− p∗s

p
s,p

p∗s
∥un − u∥p

∗
s+o(1)

= ∥un − u∥p

⎡⎢⎣a
p
+

b

2p
∥un − u∥p−

S
− p∗s

p
s,p

p∗s
∥un − u∥p

∗
s−p

⎤⎥⎦+ o(1) (4.6)

as n → ∞, where we also used the Sobolev inequality given in (4.2). We introduce the
auxiliary function

fs,p(ζ) =
a

p
+

b

2p
ζp − S

− p∗s
p

s,p

p∗s
ζp

∗
s−p, ζ ≥ 0

and we notice that fs,p attains its global minimum at the point

ms,p =

(︄
b

2

p∗s
p∗s − p

S
p∗s
p
s,p

)︄ 1
p∗s−2p

.

Besides, one easily verifies that

a
N−2ps

ps b ≥ L(N, p, s)⇔ fs,p(ms,p) =
1

p

(︂
a− b−

ps
N−2psL(N, p, s)

ps
N−2ps

)︂
≥ 0. (4.7)

From (4.6) and (4.7) it follows that

lim inf
n→∞

(I(un)− I(u)) ≥ lim inf
n→∞

∥un − u∥pfs,p(∥un − u∥) ≥ 0,

proving the sufficiency implication. In order to prove the other part of the theorem.
we argue by contradiction. Under the assumption that I is sequentially weakly lower
semicontinuous we suppose that

a
N−2ps

ps b < L(N, p, s). (4.8)

Consider a minimizing sequence (un)n ⊂ Xs,p
0 (Ω) for (4.2). Since problem (4.2) is ho-

mogeneous, we can assume that the sequence (un)n is bounded on Xs,p
0 (Ω). As a conse-

quence, up to a subsequence, we have un ⇀ u in Xs,p
0 (Ω) for some u ∈ Xs,p

0 (Ω)\{0}. Set
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

L := lim infn→∞∥un∥ and observe that exploiting the sequentially weakly semicontinuity
of the norm, we get 0 < ∥u∥≤ L. Now, there exists a subsequence (unk

)k such that
limk→∞∥unk

∥= L. We have already seen that the function fs,p has a minimum in ms,p

which is global since p > p∗s − p > 0 implies limζ→+∞ fs,p(ζ) = +∞. At this point, we
set c = ms,p/L. On the one hand, also (cunj )j is a minimizing sequence for Ss,p, so

lim inf
n→∞

I(cun) ≤ lim inf
k→∞

I(cunk
)

= lim inf
k→∞

∥cunk
∥pfs,p(∥cunk

∥) = (cL)pfs,p(cL)

= (cL)pfs,p(ms,p) ≤ ∥cu∥pfs,p(ms,p) ≤ ∥cu∥pfs,p(∥cu∥) (4.9)

where in the second to last inequality we used the inequality fs,p(ms,p) < 0, since

a
N−2ps

ps b < L(N, p, s). On the other hand, from the Sobolev inequality it follows

∥cu∥pfs,p(∥cu∥) =
a

p
∥cu∥p+ b

2p
∥cu∥2p−S

− p∗s
p

s,p

p∗s
∥cu∥p∗s

≤ a

p
∥cu∥p+ b

2p
∥cu∥2p− 1

p∗s

∫︂
Ω
|cu|p∗s dx = I(cu). (4.10)

Coupling (4.9) and (4.10) we get

lim inf
n→∞

I(cun) ≤ I(cu). (4.11)

The strict inequality in (4.11) would contradict the weakly sequentially lower sequentially
of the functional I, so in (4.11) the equality must hold. However, this means that cu
would be a minimazer for (4.2), but recalling that u = 0 in RN \Ω, we have a contradiction
with [27, Theorem 1.1] since 0 < ∥u∥≤ L.

Remark 4.14. In the second part of the previous proof, we assert that the weak limit
u of a minimizing sequence (un)n for Ss,p is different from 0. Since the embedding
Xs,p

0 (Ω) ↪→ L2∗s (Ω) is not compact, in general it is not true that u ̸= 0, but it is always
possible to modify (un)n, making it still remain a minimizing sequence for Ss,p, in order
to have the desired property. Since these arguments are standard, we prefer to omit the
details to make the proof more concise.

Proof of Theorem 4.3. Let (un)n ⊂ Xs,p
0 (Ω) be a (PS)c sequence, i.e. I(un) → c, and

I ′(un)→ 0 as n→∞. From (4.2) it follows that

I(u) = a

p
∥u∥p+ b

2p
∥u∥2p− 1

p∗s

∫︂
Ω
|u|p∗s dx ≥ a

p
∥u∥p+ b

2p
∥u∥2p−S

− p∗s
p

s,p

p∗s
∥u∥p∗s .

Recalling 2p > p∗s, we can deduce that the functional I is bounded from below. As a
consequence of that, we have that the sequence (un)n is bounded since I(un) → c as
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4.2 Weakly sequentially lower semicontinuity and validity of the Palais-Smale

n→∞. Thus, we are allowed to suppose

⎧⎪⎨⎪⎩
un ⇀ u inXs,p

0 (Ω)

un → u in Lq(Ω) for all q ∈ [1, p∗s)

un → u a.e in RN .

Exploiting the Hölder inequality, we can deduce the boundedness of the sequence (un)n
also in the space of measures M(Ω). At this point, invoking [90, Theorem 2.5] there
exist two Borel regular measures µ and ν such that

∫︂
RN

|un(x)− un(y)|p

|x− y|N+sp
dy ⇀∗ µ and |un|p

∗
s⇀∗ ν inM(Ω)

where

ν = |u|p∗s+
∑︂
j∈J

νjδxj (4.12)

and

µ ≥
∫︂
RN

|u(x)− u(y)|p

|x− y|N+sp
dy +

∑︂
j∈J

µjδxj (4.13)

with

νj = ν ({xj}) µj = µ ({xj})

and the set J is at most countable. We also have

µj ≥ Ss,pν
p
p∗s
j . (4.14)

We claim that the set J is empty. If the claim were false, there would exist at least an
index j0 ∈ J and a point xj0 with νj0 ̸= 0 associated to it. Pick ε > 0 and consider a
cut-off function such that ⎧⎪⎨⎪⎩

0 ≤ ϑε ≤ 1 inΩ

ϑε = 1 inB(xj0 , ε)

ϑε = 0 inΩ \B(xj0 , 2ε).

We also notice that the sequence (unϑε)n is bounded in Xs,p
0 (Ω), hence

lim
n→∞

I ′(un) [unϑε] = 0.
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

As a consequence of that

o(1) = I ′(un) [unϑε]
= (a+ b∥un∥p)×

×
∫︂
Q

|un(x)− un(y)|p−2 (un(x)− un(y)) (un(x)ϑε(x)− un(y)ϑε(y))
|x− y|N+ps

dx dy

−
∫︂
Ω
|un|p

∗
sϑε dx

= (a+ b∥un∥p)

[︄∫︂
Q
un(y)

|un(x)− un(y)|p−2 (un(x)− un(y))(ϑε(x)− ϑε(y))
|x− y|N+ps

dx dy

+

∫︂
Q
ϑε(x)

|un(x)− un(y)|p

|x− y|N+ps
dx dy

]︃
−
∫︂
Ω
|un|p

∗
sϑε dx. (4.15)

We estimate the first term of I ′(un) [unϑε] with the Hölder inequality, obtaining

(a+ b∥un∥p)
∫︂
Q
un(y)

|un(x)− un(y)|p−2 (un(x)− un(y))(ϑε(x)− ϑε(y))
|x− y|N+ps

dx dy

≤ C
(︃∫︂

Q

|un(x)− un(y)|p

|x− y|N+ps
dx dy

)︃ p−1
p
(︃∫︂

Q
|un(y)|p

|ϑε(x)− ϑε(y)|p

|x− y|N+ps
dx dy

)︃ 1
p

≤ C̃
(︃∫︂

Q
|un(y)|p

|ϑε(x)− ϑε(y)|p

|x− y|N+ps
dx dy

)︃ 1
p

for some constants C > 0, C̃ > 0. Now, Proposition 4.13 yields

lim
ε→0

lim
n→∞

∫︂
R2N
|un(y)|p

|ϑε(x)− ϑε(y)|p

|x− y|N+ps
dx dy = 0,

so that

lim
ε→0

lim
n→∞

(a+ b∥un∥p)×

×
∫︂
Q
un(y)

|un(x)− un(y)|p−2 (un(x)− un(y))(ϑε(x)− ϑε(y))
|x− y|N+ps

dx dy = 0. (4.16)
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4.2 Weakly sequentially lower semicontinuity and validity of the Palais-Smale

Now, exploiting (4.13), we have

lim
n→∞

(a+ b∥un∥p)
∫︂
Q
ϑε(x)

|un(x)− un(y)|p

|x− y|N+ps
dx dy

≥ lim
n→∞

[︄
a

∫︂
R2N \B(xj0 ,2ε)

c×Ωc

ϑε(x)
|un(x)− un(y)|p

|x− y|N+ps
dx dy

+b

(︃∫︂
Q
ϑε(x)

|un(x)− un(y)|p

|x− y|N+ps
dx dy

)︃2
]︄

≥ a
∫︂
R2N \B(xj0 ,2ε)

c×Ωc

ϑε(x)
|u(x)− u(y)|p

|x− y|N+ps
dx dy + aµj0

+ b

(︃∫︂
Q
ϑε(x)

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)︃2

+ bµ2j0 .

Thus

lim
ε→0

lim
n→∞

(a+ b∥un∥p)
∫︂
Q
ϑε(x)

|un(x)− un(y)|p

|x− y|N+ps
dx dy ≥ aµj0 + bµ2j0 . (4.17)

Furthermore, it follows from (4.12) that

lim
ε→0

lim
n→∞

∫︂
Ω
|un|p

∗
sϑε dx = lim

ε→0

∫︂
Ω
|u|p∗sϑε dx+ νj0 = νj0 . (4.18)

At this point, from (4.15), taking into account (4.16), (4.17), (4.18) and using (4.14) we
deduce

0 ≥ aµj0 + bµ2j0 − νj0 ≥ aµj0 + bµ2j0 − S
− p∗s

p
s,p µ

p∗s
p

j0
= µj0

(︄
a+ bµj0 − S

− p∗s
p

s,p µ
p∗s
p
−1

j0

)︄
.

(4.19)

We define

f̃s,p(ζ) = a+ bζ − S
− p∗s

p
s,p ζ

p∗s
p
−1 for ζ ≥ 0.

We observe that the function f̃s,p has a global minimum in

m̃s,p :=

(︄
bS

p∗s
p
s,p

p

p∗s − p

)︄ p
p∗s−2p

and that

a
N−2ps

ps b > PS(N, p, s)⇔ f̃s,p(m̃s,p) = a− b−
ps

N−2psPS(N, p, s)
ps

N−2ps > 0.

Hence

a+ bµj0 − S
− p∗s

2
N,s µ

p∗s
2
−1

j0
> 0.
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

and the only admissible case in (4.19) is µj0 = 0. From this, recalling (4.14), we also
have νj0 = 0 that is absurd. Hence J = ∅, which means

lim
n→∞

∫︂
Ω
|un|p

∗
s dx =

∫︂
Ω
|u|p∗s dx.

This coupled with (4.5) implies

un → u in Lp
∗
s (Ω).

From this and the Hölder inequality it follows that

lim
n→∞

∫︂
Ω
|un|p

∗
s−2un(u− un) dx = 0. (4.20)

Computing the derivative of I(un) along un − u, we get

0 = lim
n→∞

I ′(un) [un − u]

= lim
n→∞

[︁(︁
a+ b∥un∥2

)︁
×

×
∫︂
Q

|un(x)− un(y)|p−2 (un(x)− un(y)) ((un − u)(x)− (un − u)(y))
|x− y|N+ps

dx dy

−
∫︂
Ω
|un|2

∗
s−2un(un − u) dx

]︃
= lim

n→∞

(︁
a+ b∥un∥2

)︁
×

×
∫︂
Q

|un(x)− un(y)|p−2 (un(x)− un(y)) ((un − u)(x)− (un − u)(y))
|x− y|N+ps

dx dy

which implies∫︂
Q

|un(x)− un(y)|p−2 (un(x)− un(y)) ((un − u)(x)− (un − u)(y))
|x− y|N+ps

dx dy → 0 (4.21)

since (un)n is bounded in Xs,p
0 (Ω). Along a subsequence, un converges weakly to u in

Xs,p
0 (Ω), and Lemma 4.11 implies that un → u in Xs,p

0 (Ω) as n→∞.

4.3 The perturbed problem

In this section, applying the result obtained in Theorem 4.2, we investigate the existence
of solutions of different kind of the perturbed problem⎧⎨⎩

(︃
a+ b

∫︂
Q

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)︃
(−∆p)

su = |u|p∗s−2u+ λg(x, u) in Ω

u = 0 in RN \Ω
(P λa,b)

where as before a, b are real positive parameter, Ω is a bounded domain and λ > 0.
As for g, we make the same assumptions present in [12], but adapted to the case of the
fractional p-Laplacian. Namely, we make the following assumptions:
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4.3 The perturbed problem

(H1) g: Ω× R→ R is a Carathéodory function such that g(x, 0) = 0 a.e. in Ω;

(H2) g(x, t) > 0 for every t > 0 and g(x, t) < 0 for every t < 0 a.e. in Ω. In addition,
we require that there is a µ > 0 such that g(x, t) ≥ µ > 0 a.e in Ω and for every
t ∈ I, where I is some open interval of (0,∞);

(H3) there is a constant c > 0 and q ∈ (p, p∗s) such that |g(x, t)|≤ c(1+ |t|q−1) a.e. in Ω;

(H4) limt→0 g(x, t)/|t|p−1= 0 uniformly with respect to x ∈ Ω.

Using a variational approach, we investigate the existence of critical points of the
functional defined on the space Xs

0(Ω)

Iλ(u) := a

p
∥u∥p+ b

2p
∥u∥2p− 1

p∗s
∥u∥p

∗
s
p∗s
−λ
∫︂
Ω
G(x, u) dx

where we denote with G(x, t) =
∫︂ t

0
g(x, τ)dτ . Before starting the analysis of our problem

we need to prove some technical results that will be useful up to the end of the section.

Remark 4.15. For the reader’s convenience, we remember the definitions of the functions

fs,p(ζ) :=
a

p
+

b

2p
ζp − S

− p∗s
p

s,p

p∗s
ζp

∗
s−p

and

f̃s,p(ζ) = a+ bζ − S
− p∗s

p
s,p ζ

p∗s
p
−1

defined in the previous section. We also recall that these functions have a unique local
minimum attained respectively at

ms,p =

[︄
b

2

p∗s
p∗s − p

S
p∗s
p
s,p

]︄ 1
p∗s−2p

,

and

m̃s,p =

[︄
b

p

p∗s − p
S

p∗s
p
s,p

]︄ 1
p∗s−2p

.

Besides, fs,p(ms,p) > 0 if and only if a
N−2ps

ps b > L(N, p, s) and fs,p(ms,p) = 0 when

a
N−2ps

ps b = L(N, p, s). Similarly f̃s,p(m̃s,p) > 0 if and only if a(N−2ps)/psb > PS(N, p, s)

and f̃s,p(m̃s,p) = 0 when a(N−2ps)/psb = PS(N, p, s).

Proposition 4.16. Let u ∈ Xs,p
0 (Ω) \ {0}. We have that:
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

(i) for every ζ > 0 it holds

a

p
∥u∥p+ b

2p
ζp∥u∥2p− 1

p∗s
ζp

∗
s−p∥u∥p

∗
s
p∗s
> fs,p(ζ∥u∥)∥u∥p;

(ii) for every ζ > 0 it holds

a∥u∥p+bζp∥u∥2p−∥u∥p
∗
s
p∗s
ζp

∗
s−p > f̃s,p(ζ∥u∥)∥u∥p.

Proof. We only prove (i), since (ii) follows in a similar way. Considering u = 0 in RN \Ω,
taking into account [27, Theorem 1.1] and the Sobolev inequality, we have

ζp
[︃
a

p
∥u∥p+ b

2p
ζp∥u∥2p− 1

p∗s
ζp

∗
s−p∥u∥p

∗
s
p∗s

]︃
=
a

p
(ζ∥u∥)p + b

2p
(ζ∥u∥)2p −

∥u∥p
∗
s
p∗s

∥u∥p∗s
(ζ∥u∥)p

∗
s

p∗s

>
a

p
(ζ∥u∥)p + b

2p
(ζ∥u∥)2p − S

− p∗s
p

s,p
(ζ∥u∥)p

∗
s

p∗s
. (4.22)

We are now going to prove that the functional Iλ is sequentially lower semi continuous
and satisfies the Palais-Smale condition for a and b large enough.

Lemma 4.17. Let a, b ∈ R+, (uk)k ⊂ Xs,p
0 (Ω) and λk → λ ≥ 0 as k →∞:

(1) if a(N−2ps)/psb ≥ L(N, p, s) and uk ⇀ u in Xs,p
0 (Ω) then

Iλ(u) ≤ lim inf
k→∞

Iλk(uk);

(2) if a(N−2ps)/2sb > PS(N, p, s), Iλ(uk) → c and
(︁
Iλ
)︁′
(uk) → 0 then (uk)k is conver-

gent to some u in Xs,p
0 (Ω) up to subsequence.

Proof. Since the proof is essentially the same of Theorems 4.2 and 4.3 we omit it.

At this point fix λ ≥ 0 and u ∈ Xs
0(Ω). For all ζ > 0 we define the fiber map

J λ,u(ζ) := Iλ(ζu) = a

p
ζp∥u∥p+ b

2p
ζ2p∥u∥2p−ζ

p∗s

p∗s
∥u∥p

∗
s
p∗s
−λ
∫︂
Ω
G(x, ζu) dx.

Proposition 4.18. Let λ ∈ R be non-negative and u ∈ Xs,p
0 (Ω) \ {0}. Then it is

possible to find a neighbourhood Vλ of 0 such that J λ,u(ζ) > 0 for every ζ ∈ Vλ ∩ (0,∞).
Furthermore J λ,u(ζ) → ∞ as ζ → ∞. In particular, the map ζ ↦→ J λ,u(ζ) is bounded
from below.
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4.3 The perturbed problem

Proof. Fix ε > 0 small and L > 0 arbitrary large. Observe that (H3) implies∫︂
Ω∩{|u|≤L}

G(x, ζu)

ζp
dx ≤ ε

∫︂
Ω
|u|p dx (4.23)

for ζ small enough. On the other hand, (H3) and (H4) implies

|G(x, t)|< C(|t|p+|t|q)

for a.e. x ∈ Ω and all t ∈ R. Thus,∫︂
Ω∩{|u|>L}

G(x, ζu)

ζp
dx ≤ C

(︄∫︂
Ω∩{|u|>L}

|u|p dx+ ζq−p
∫︂
Ω
|u|q dx

)︄
≤ ε (4.24)

for L large enough and ζ small enough. Coupling (4.23) and (4.24), keeping in mind that
Ω = {|u|≤ L} ∪ {|u|> L}, we get

J λ,u(ζ) = ζp
[︃
a

p
∥u∥p+ b

2p
ζp∥u∥2p−ζ

p∗s−p

p∗s
∥u∥p

∗
s
p∗s
−λ
∫︂
Ω

G(x, ζu)

ζp
dx

]︃
≥ ζp

[︃
a

p
∥u∥p+ b

2p
ζp∥u∥2p−ζ

p∗s−p

p∗s
∥u∥p

∗
s
p∗s
−λε

(︁
∥u∥pp+1

)︁]︃
.

Applying the Sobolev inequality, selecting ε adequately and taking ζ even smaller if
needed we get the first part of the assertion. To conclude, it is sufficient to notice that
G has subcritical growth and that p < q < p∗s < 2p.

Now we fix u ∈ Xs,p
0 (Ω) and we consider the system⎧⎪⎨⎪⎩

J λ,u(ζ) = 0

(J λ,u)′(ζ) = 0

J λ,u(ζ) = infϱ>0 J λ,u(ϱ)
(4.25)

in the unknowns λ and ζ.

Proposition 4.19. Let a, b ∈ R+ such that a(N−2ps)/psb ≥ L(N, p, s). For any u ∈
Xs,p

0 (Ω) \ {0} there is a unique λ = λs0(u) that solves (4.25).

Proof. The statement follows as in [12, Proposition 4].

Corollary 4.20. Let u ∈ Xs,p
0 (Ω) \ {0}. The number λs0(u) is the only parameter such

that
inf

ζ∈(0,∞)
J λs0(u),u(ζ) = 0.

In addition,

inf
ζ∈(0,∞)

J λ,u(ζ)

{︄
< 0 if λ > λs0(u)

= 0 if 0 ≤ λ ≤ λs0(u).
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

Proof. The assertion comes as an immediate consequence of the proof of Proposition
4.19.

Now we define
λ
s
0 := inf

u∈Xs,p
0 (Ω)\{0}

λs0(u).

We emphasize that λs0 is independent from u. In addition, as we are going to see, λs0 has
a key importance in determining at what level of energy the minimum is attained. The
next Proposition exhibits the relation between λs0 and the parameters a and b.

Proposition 4.21. The following statements hold:

(i) if a(N−2ps)/psb > L(N, p, s) then λ
s
0 > 0;

(ii) if a(N−2ps)/psb = L(N, p, s) then λ
s
0 = 0. Furthermore, if (uk)k ⊂ Xs,p

0 (Ω) \ {0} is a
sequence such that λs0(uk)→ 0 as k →∞, we have that uk/∥uk∥⇀ 0 and

∥uk∥pp
∥uk∥pp∗s

→ Ss,p.

Before giving the proof we need some estimates on the minimizers of (4.2). Consider
the function uε,δ(r) defined on [89, Lemma 2.7]. In particular, the support of uε,δ(r) is
compact and there exists R̃ > 0 such that

uε,δ(r) = Uε(r),

for r ≤ R̃, where

Uε(r) = Uε(x) =
1

ε
N−ps

p

U

(︃
|x|
ε

)︃
and U is a minimizer for (4.2) whose existence is guaranteed by [89, Proposition 2.1].

Now, take the rescaled function

wε(x) :=
(︂
ε

1
p

)︂− N−ps
p(p−1)

u p√ε,δ(x).

We point out that we omitted the dependence of δ since is not relevant for our purposes
and can be fixed arbitrarily. Taking under consideration this rescaling, from [89, Lemma
2.7] it follows

∥wε∥p≤ S
N
ps
s,p ε

− N−ps
p(p−1) +O(1), ∥wε∥p

∗
s
p∗s
≥ S

N
ps
s,p ε

− N
p(p−1) −O(1).

From this, denoting with vε := wε/∥wε∥ the normalized function we get

∥vε∥= 1, ∥vε∥p
∗
s
p∗s
≥ S

− p∗s
p

s,p +O
(︂
ε

N−ps
p(p−1)

)︂
, ∥wε∥≤ S

1
p
s,pε

− N−ps

p2(p−1) +O

(︃
ε

N−ps

p2

)︃
(4.26)

as ε→ 0.
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Proof of Proposition 4.21. (i) We start noticing that the function u→ λs0(u) is well de-
fined and homogeneous of degree zero. Indeed, considering a solution (ζ, λs0(u)) of (4.25)
and α > 0, observing that J λ,αu(ζ) = J λ,u(αζ) and

(︁
J λ,αu

)︁′
(ζ) =

(︁
J λ,u

)︁′
(αζ) we get

that also ( ζα , λ
s
0(u)) solves (4.25) with αu. From the uniqueness of the parameter λs0(αu)

it follows that λs0(αu) = λs0(u). To see the positivity of λs0, we argue by contradiction
supposing λ

s
0 = 0. If so, there would be a sequence (uk)k ⊂ Xs,p

0 (Ω) \ {0} such that
λk := λs0(uk) → 0. Exploiting the homogeneity of the map u → λs0(u), it is not restric-
tive to assume ∥uk∥= 1. Now, Proposition 4.19 implies the existence of ζk > 0 such that
J λk,uk(ζk) = 0, that is

a

p
+

b

2p
ζpk −

1

p∗s
∥uk∥

p∗s
p∗s
ζ
p∗s−p
k − λk

∫︂
Ω

G(x, ζku)

ζpk
dx = 0.

Applying Proposition 4.16, we obtain

fs,p(ζk) <
a

p
+

b

2p
ζpk −

1

p∗s
∥uk∥

p∗s
p∗s
ζ
p∗s−p
k = λk

∫︂
Ω

G(x, ζku)

ζpk
dx. (4.27)

From hypotheses (H3) and (H4) it follows that for any ε > 0 there is a positive constant
c > 0 such that |G(x, t)|< ε

p |t|
p+ c

q |t|
q for a.e. x ∈ Ω and all t ∈ R. As a consequence,

the sequence (ζk)k must be bounded, and up to subsequence it converges to some ζ > 0.
Finally, letting k →∞ and taking into account Remark 4.15, from (4.27) we obtain

0 < fs,p(ζ) = lim
k→∞

λk

∫︂
Ω

G(x, ζkuk)

ζpk
dx = 0

which is impossible.
(ii) Up to a translation, we can suppose that 0 ∈ Ω. In virtue of the estimates in

(4.26), we have

J λ,vε(ζ) = a

p
ζp +

b

2p
ζ2p − ζp

∗
s

p∗s
∥vε∥2

∗
s

2∗s
−λ
∫︂
Ω
G(x, ζvε(|x|)) dx

≤ ζpfs,p(ζ)−
ζp

∗
s

p∗s
O
(︂
ε

N−ps
p(p−1)

)︂
− λ

∫︂
Ω
G(x, ζvε(|x|)) dx.

Selecting as ζ = ms,p we get

J λ,vε(ms,p) ≤ −
m
p∗s
s,p

p∗s
O
(︂
ε

N−ps
p(p−1)

)︂
− λ

∫︂
Ω
G(x,ms,pvε(|x|)) dx. (4.28)

Claim: There exists a constant C1 > 0 such that
∫︁
ΩG(x,mN,suε) dx ≥ C1ε

N
p2 as ε→ 0.

Indeed, hypothesis (H2) asserts the existence of µ > 0 such that g(x, t) ≥ χI where I
is an open interval of (0,∞) and χI is its characteristic function. Hence we can find a
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

β > 0 such that G(x, t) ≥ G̃(t) := µ
∫︁ t
0 χI(τ)dτ ≥ β for any t ≥ α where α := inf I > 0.

At this point, we have∫︂
Ω
G(x,ms,pvε(|x|)) dx ≥

∫︂
|x|≤R

G(x,ms,pvε(|x|)) dx =

∫︂
|x|≤R

G

(︃
x,
ms,p

∥wε∥
wε(|x|)

)︃
dx

≥
∫︂
|x|≤R

G̃

(︃
ms,p

∥wε∥
wε(|x|)

)︃
dx (4.29)

≥
∫︂
|x|≤R

G̃

(︃
ms,p

∥wε∥
ε
− N−ps

p(p−1)U

(︃⃓⃓⃓⃓
x
p
√
ε

⃓⃓⃓⃓)︃)︃
dx

= ωN

∫︂ R

0
G̃

(︃
ms,p

wε(w)

∥wε∥

)︃
wN−1 dw

≥ ωN
∫︂ p√εR

0
G̃

(︃
ms,p

wε(w

∥wε∥

)︃
wN−1 dw.

With the change of variable x = p
√
εy (4.29) becomes∫︂

Ω
G(x,ms,pvε(|x|)) dx ≥ ε

N
p

∫︂
|x|≤Rε−

1
p

G̃

(︃
ms,p

∥wε∥
ε
− N−ps

p(p−1)U (|y|)
)︃
dy

= ωNε
N
p

∫︂ Rε
− 1

p

0
G̃

(︃
ms,p

∥wε∥
ε
− N−ps

p(p−1)U (w)

)︃
wN−1dw

≥ ωNε
N
p

∫︂ Rε
− p−1

p2

0
G̃

(︃
ms,p

∥wε∥
ε
− N−ps

p(p−1)U (w)

)︃
wN−1dw

We point out that if

ms,p

∥wε∥
ε
− N−ps

p(p−1)U (w) ≥ α for w ∈
[︃
0, ε

− p−1

p2 R

]︃
,

then

∫︂ ε
− p−1

p2 R

0
G̃

(︃
ms,p

wε(w)

∥wε∥

)︃
wN−1 dw ≥ β

∫︂ ε
− p−1

p2 R

0
wN−1 dw =

C1

ωN
ε
−N p−1

p2 .

Since w ∈
[︃
0, ε

− p−1

p2 R

]︃
, and recalling that wε is monotone decreasing by [89, Proposition

2.1] and [27, Theorem 1.1], we have

ms,p

∥wε∥
ε
− N−ps

p(p−1)U (w) ≥ ms,p

∥wε∥
ε
− N−ps

p(p−1)U

(︃
ε
− p−1

p2 R

)︃
. (4.30)

Now, applying again [27, Theorem 1.1], for ε small enough we have

1

2
U∞

(︃
ε
− p−1

p2 R

)︃−N−ps
p−1

≤ U
(︃
ε
− p−1

p2 R

)︃
≤ 3

2
U∞

(︃
ε
− p−1

p2 R

)︃−N−ps
p−1
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4.3 The perturbed problem

where U∞ is a constant that can be supposed positive without restrictions. From this,
(4.26) and (4.30) we get

ms,p

∥wε∥
ε
− N−ps

p(p−1)U (w) ≥ U∞
2

ms,p

∥wε∥
ε
− N−ps

p2(p−1)R
−N−ps

p−1

≥ ms,p
U∞
2

R
−N−ps

p−1

S
1
p
s,p +O

(︂
ε

N−ps
p(p−1)

)︂ ≥ α
restricting eventually R, and the claim is proved.

At this point, exploiting the claim, from (4.28) it follows

J λ,vε(ms,p) ≤ ε
N
p2

(︄
−m

p∗s
s,p

p∗s
O

(︃
ε

N−p2s

p2(p−1)

)︃
− λC1

)︄
< 0

for ε sufficiently small. As a consequence, λs0(uε) < λ. Since all arguments above are
independent of the choice of λ, we may let λ → 0 and obtain λ

s
0 = 0. To prove the

remaining part of the Proposition, take a sequence (uk)k ⊂ Xs,p
0 (Ω) \ {0} such that

λk := λs0(uk)→ λ
s
0 = 0. Analogously to part (i), it is not restrictive to assume ∥uk∥= 1,

uk ⇀ u and that there exists ζk > 0 such that

a

p
+

b

2p
ζpk −

ζ
p∗s−p
k

p∗s
∥uk∥

p∗s
p∗s
−λk

∫︂
Ω

G(x, ζkuk)

ζpk
dx = 0. (4.31)

Putting together assumptions (H3), (H4) and (4.31), we can see that, up to subsequence,
ζk → ζ and ∥uk∥

p∗s
p∗s
→ γ as k →∞. Letting k →∞ in (4.31), we get

a

p
+

b

2p
ζ
p − ζ

p∗s−p

p∗s
γ = 0.

Since a(N−2ps)/psb = L(N, p, s) it is easy to see that γ = S
− p∗s

p
s,p , implying that (uk)k is

a minimizing sequence for Ss,p. Finally, suppose by contradiction u ̸= 0. By the lower
semicontinuity of the norm we have ∥u∥≤ 1. From this, taking under consideration
Remark 4.15 and Theorem 4.2, we obtain

0 ≤ a

p
+

b

2p
ζ
p − S

− p∗s
p

s,p

p∗s
ζ
p∗s−p∥u∥p∗s≤ a

p
+

b

2p
ζ
p − ζ

p∗s−p

p∗s
∥u∥p

∗
s
p∗s

≤ lim sup
k→∞

(︄
a

p
+

b

2p
ζpk −

ζ
p∗s
k

p∗s
∥uk∥

p∗s
p∗s
−λk

∫︂
Ω

G(x, ζkuk)

ζpk
dx

)︄
= 0,

which would imply that u is a minimizer for (4.2). However, this is not possible if we
compare [27, Theorem 1.1] and the fact that u = 0 in RN \Ω.
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4 A perturbed fractional p-Kirchhoff problem with critical nonlinearity

Proposition 4.22. If λ ≤ λ
s
0 then infζ>0 J λ,u(ζ) = 0 for any u ∈ Xs,p

0 (Ω) \ {0}. On
the other hand, if λ > λ

s
0 there exists u ∈ Xs,p

0 (Ω) \ {0} such that infζ>0 J λ,u(ζ) < 0.

Proof. The proof follows closely the line of [12, Proposition 6]

We are now ready to prove Theorem 4.5 and Theorem 4.6.

Proof of Theorem 4.5. The thesis comes as in [12, Theorem 2].

Proof of Theorem 4.6. (i) Consider a sequence (λk)k ⊂ R+ such that λk ↘ λ
s
0. In virtue

of Theorem 4.5 we can find a sequence (uk)k ⊂ Xs,p
0 (Ω)\{0} such that ιsλk = Iλk(uk) < 0.

Similarly to what we have done in Proposition 4.22, after choosing ε > 0 we have

|G(x, t)|≤ ε

p
|t|p+ c

q
|t|q (4.32)

for all t ∈ R and a.e. in Ω. As a consequence of that

a

p
∥uk∥p+

b

2p
∥uk∥2p−

1

p∗s
∥uk∥

p∗s
p∗s
< λk

∫︂
Ω
G(x, uk) dx

≤ λk
(︃
ε

p
∥uk∥pp+

c

q
∥uk∥qq

)︃
≤ C̃ (∥uk∥p+∥uk∥q) (4.33)

for some ˜︁C > 0 since Xs,p
0 (Ω) ↪→ Lυ(Ω) continuously for any υ ∈ [1, p∗s]. Since 2p > p∗s

the sequence (∥uk∥)k needs to be bounded and we are allowed to suppose uk ⇀ u in
Xs,p

0 (Ω). Now, on one hand we use Lemma 4.17[(1)] and we get

Iλ
s
0(u) ≤ lim inf

k→∞
Iλk(uk) ≤ 0.

On the other hand, Proposition 4.22 implies that Iλ
s
0(v) ≥ 0 for any v ∈ Xs,p

0 (Ω). Hence,
the only admissible scenario is

ιs
λ
s
0
= Iλ

s
0

a,b(u) = 0. (4.34)

In order to show that u is a non-trivial minimizer, we start noticing that

a

p
∥uk∥p+

b

2p
∥uk∥2p−

S
− p∗s

p
s,p

p∗s
∥uk∥p

∗
s

≤ a

p
∥uk∥p+

b

2p
∥uk∥2p−

1

p∗s
∥uk∥

p∗s
p∗s
< λk

∫︂
Ω
G(x, uk) dx

where we used the fractional Sobolev inequality. Dividing by ∥uk∥p and exploiting (4.32),
we obtain

fs,p(∥uk∥) ≤ λkC̃
(︃
ε

p
+
c

q
∥uk∥q−p

)︃
.
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4.3 The perturbed problem

for some C̃. If u = 0, recalling that Xs,p
0 (Ω) ↪→ Lp(Ω) is compact, we would obtain

fs,p (∥uk∥)→ 0 as k →∞ since ε > 0 is arbitrary. However, Remark 4.15 yields

fs,p (∥uk∥) ≥ fs,p(ms,p) > 0

since a(N−2ps)/psb > L(N, p, s). This contradiction shows that u ̸= 0.
(ii) Proposition 4.21[(ii)] implies λs0 = 0, so

Iλ
s
0(u) =

a

p
∥u∥p+ b

2p
∥u∥2p− 1

p∗s
∥u∥p

∗
s
p∗s
.

At this point, keeping in mind Remark 4.15 and Proposition 4.16, we have

Iλ
s
0(u) > ∥u∥pfs,p(∥u∥) ≥ 0

for all u ∈ Xs,p
0 (Ω) \ {0}. In virtue of the inequality above, recalling that (4.34) still

holds, it is evident that the infimum can be achieved only if u = 0.

Corollary 4.23. If a(N−2ps)/psb > L(N, p, s) and u ∈ Xs,p
0 (Ω) \ {0} is such that ιλs0 =

Iλ
s
0(u) then λ

s
0 = λs0(u).

Proof. Observe that (λ
s
0, u) solves (4.25) and conclude by recalling the uniqueness.

We are now in position to give the proof of Theorem 4.7. We point out that in the
next proof we will highlight the dependence on Iλ and J λ,u from a and b by writing
respectively Iλa,b and J λ,ua,b .

Proof of Theorem 4.7. Up to translations it is not restrictive to assume 0 ∈ Ω. Recall
the function vε considered after the statement of Proposition 4.21 and select ζ > 0. We
have

J λ,vεak,bk
(ζ) =

ak
p
ζp +

bk
2p
ζ2p − ζp

∗
s

p∗s
∥vε∥p

∗
s
p∗s
−λ
∫︂
Ω
G(x, ζvε(|x|)) dx

≤ ζpfks,p(ζ)−
ζp

∗
s

p∗s
O
(︂
ε

N−ps
p(p−1)

)︂
− λ

∫︂
Ω
G(x, ζvε(|x|)) dx

where we denoted with fks,p the map fs,p emphasizing the dependence on the parameters
ak, bk. We choose ζ = mk

s,p where we called mk
s,p the point in which fks,p attains its

minimum, and since mk
s,p → ms,p as k →∞, we get

lim
k→∞

J λ,vεak,bk
(mk

s,p) ≤ −
m
p∗s
s,p

p∗s
O
(︂
ε

N−ps
p(p−1)

)︂
− λ

∫︂
Ω
G(x,ms,pvε(|x|)) dx. (4.35)

At this point, as we did in Proposition 4.21, we estimate∫︂
Ω
G(x,ms,pvε(|x|)) dx ≥ C1ε

N
p2 ,
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and from (4.35) we get

lim
k→∞

J λ,vεak,bk
(mk

s,p) ≤ J λ,vε(ms,p) ≤ ε
N
p2

(︄
−m

p∗s
s,p

p∗s
O

(︃
ε

N−p2s

p2(p−1)

)︃
− λC1

)︄
< 0.

Thus, choosing k big enough and a small ε

J λ,vεak,bk
(mk

s,p) < 0.

Hence, from Corollary 4.20 λk ≤ λs0(vε)(ak, bk) < λ. Now, we point out that no restric-
tions were made on λ so we are free to let λ→ 0 and deduce that λk → 0 as k →∞.

In order to prove the remaining part of the statement, we recall that in Proposition
4.21 we proved that the map u → λs0(u) is homogeneous degree zero. As a consequence
of that, it is not restrictive to suppose ∥uk∥= 1 and uk ⇀ u. Arguing as for (4.31), it is
possible to find ζk > 0 such that

ak
p

+
bk
2p
ζpk −

ζ
p∗s−p
k

p∗s
∥uk∥

p∗s
p∗s
−λk

∫︂
Ω

G(x, ζkuk)

ζpk
dx = 0 (4.36)

Furthermore, combining and (4.32) and (4.36),we can deduce the boundedness of (ζk)k
and suppose up to a subsequence that ζk → ζ > 0 and that ∥uk∥

p∗s
p∗s
→ γ as k → ∞.

Hence, passing to the limit in (4.36) we obtain

a

p
+

b

2p
ζ
p − 1

p∗s
γζ

p∗s−p = 0.

From a(N−2ps)/psb = L(N, p, s) it follows γ = S
−p

∗
s

p
p,s implying that (uk)k is a minimizing

sequence for the optimal Sobolev constant. Finally we can see u = 0. In fact, if we
assume u ̸= 0 we have that ∥u∥≤ 1 exploiting the sequentially lower semicontinuity of
the norm. From this, Lemma 4.17[(1)] and Remark 4.15, we obtain

0 ≤ a

p
+

b

2p
ζ
p − S

− p∗s
p

p,s

p∗s
ζ
p∗s−p∥u∥p∗s≤ a

p
+

b

2p
ζ
p − ζ

p∗s−p

p∗s
∥u∥p

∗
s
p∗s

≤ lim inf
k→∞

(︄
ak
p

+
bk
2p
ζpk −

ζ
p∗s−p
k

p∗s
∥uk∥

p∗s
p∗s
−λk

∫︂
Ω

G(x, ζkuk)

ζpk
dx

)︄
= 0

So, u is a minimizer for Ss,p but this is in not admissible since u = 0 in RN \Ω as shown
in [27, Theorem 1.1].

At this point, we start giving the proofs regarding the existence of mountain pass
solutions. Namely we are going to prove Theorem 4.8.
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4.3 The perturbed problem

Proof of Theorem 4.8. Fix ε > 0. Recalling (4.32) and that Xs,p
0 (Ω) ↪→ Lυ(Ω) continu-

ously for any υ ∈ [1, p∗s] we obtain

Iλ(u) ≥
(︃
a

p
− λCε

)︃
∥u∥p+ b

2p
∥u∥2p−C∥u∥p∗s−λC∥u∥q (4.37)

selecting C > 0 appropriately. At this point, to conclude the proof, it suffices to argue
as in [12, Theorem 5]

After analyzing the situation to the case λ ≥ λ
s
0 we focus to the case λ ≤ λ

s
0. In

particular we are interested in looking for local minimizer or mountain pass critical point
of Iλ.

Proposition 4.24. If λ ≤ λ
s
0 then it is possible to find r = r(s),M = M(s) > 0 such

that
inf
{︂
Iλ(u) | u ∈ Xs,p

0 (Ω), ∥u∥= r
}︂
≥M. (4.38)

Proof. Fix ε > 0. From (4.37) and λ ≤ λs0 it follows

Iλ(u) ≥
(︃
a

p
− λs0Cε

)︃
∥u∥p+ b

2p
∥u∥2p−C∥u∥p∗s−λs0C∥u∥q

for any u ∈ Xs,p
0 (Ω). Choosing ε such that a/p− λs0Cε > 0 we obtain the assertion.

After showed the validity of the previous proposition we can finally prove the remaining
two theorems.

Proof of Theorem 4.9. Consider the number r given by Proposition 4.24, and argue as
in [12, Theorem 6].

Remark 4.25. It is immediate to see that ι̂s0 → 0 as λ → λ
s
0. In fact, take a function

u ∈ Xs,p
0 (Ω) such that λs0 = λs0(u) whose existence was shown in Theorem 4.6) and notice

that
0 ≤ ι̂sλ ≤ Iλ(u)→ 0 as λ→ λ

s
0.

Remark 4.26. The function wsλ obtained in the previous theorem is a critical point for
the functional Iλ, and more precisely it is a local minimizer.

Proof of Theorem 4.10. Observe that max{Iλ(0), Iλ(wsλ)} < M , recall ∥wsλ∥> M and
(4.38). Hence, we have a mountain pass geometry. Furthermore, the Palais-Smale con-
dition holds as showed in Lemma 4.17. At this point, in order to conclude, it suffices to
apply the Mountain Pass Theorem (see [3]).
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5 Schrödinger equation on
Cartan-Hadamard manifolds with
oscillating nonlinearities

Let (M, g) be a d-dimensional homogeneous Cartan-Hadamard Manifold with d ≥ 3.
The aim of this Chapter is to study{︄

−∆gw + w = λα(σ)f(w) inM
w ∈ H1

g (M)
(Pλ)

where −∆g denotes the Laplace-Beltrami operator, α ∈ L1(M) ∩ L∞(M) \ {0} is a.e
positive, f : R→ R is a continuous function and λ > 0 a real parameter.

The stationary nonlinear Schrödinger equation is undoubtedly one of the most attrac-
tive topics in nonlinear analysis. In the last years many researchers studied this equations
under various hypothesis on the nonlinear term and in different setting. Among them,
the study of the nonlinear Schrödinger equation on Riemannian manifold has received a
particular attention recently. Faraci and Farkas in [44] using variational methods proved
a characterization result for existence of solutions for the Schrödinger equation with a
divergent potential in a non-compact Riemannian manifold with asymptotically non-
negative Ricci curvature. In the same setting of this Chapter, Molica Bisci and Secchi in
[86] proved some existence and non-existence results for a similar problem, while Appol-
loni et al. in [10] showed the existence of three critical points for the energy functional
associated to a perturbed problem. Kristály in [61] proved a multiplicity result for the
equation without a potential and with M = Sd. We also quote [87] where Molica Bisci
and Vilasi obtained an existence result regarding positive solutions which are invariant
under the action of a specific family of isometries and [24] where Molica Bisci and Repovš
showed the existence of positive solutions when the nonlinear term is critical in the sense
of Sobolev. It is also worth mentioning [35] where Cencelj et al. by applying the Palais
principle of symmetric criticality and suitable group theoretical arguments are able to
prove the existence of non-trivial weak solutions.

Motived by the great interest in this field, in this Chapter we are going to study
the Schrödinger equation on a non-compact homogeneous Cartan-Hadamard manifold
with a nonlinear term f that oscillates near zero or at infinity. As regards oscillating
nonlinearities there is a wide literature dealing with this kind of problems with numerous
differential operator. To the best of our knowledge, one of the first contribution in
this direction was given in [51] by Habets et al. where the authors exhibit that the
problem they are considering admits an unbounded sequence of solutions with d = 1
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

with a technique based on phase-plane analysis and time-mapping estimates. At a later
time, Omari and Zanolin in [93] were able to show the existence of infinitely many
solutions for a problem with a general operator in divergence form building a sequence of
arbitrarily large negative lower solutions and a sequence of arbitrarily large positive upper
solutions. More recently Anello and Cordaro in [8] proved the existence of a sequence
of critical points converging to zero with respect to the L∞ norm for a problem with a
nonlinear oscillating term at zero. In the same spirit of the previous one, Molica Bisci
and Pizzimenti obtained in [23] similar results for the p-Kirchhoff problem analyzing also
what happens in presence of oscillations at infinity. Finally, Molica Bisci and Rădulescu
in [85] showed the existence of a sequence of invariant solutions tending to zero both in
the Sobolev norm and in the L∞ norm on the Poincaré ball model.

One of the main task we have to face in order to study Problem (Pλ) is the loss
of compactness of the embedding H1

g (M) ↪→ Lq(M) due to the non-compactness of
the manifold M. In order to overcome this difficulty, we will use an embedding result
for a Sobolev space which is invariant under the action of a certain group proved by
Skrzypczak and Tintarev in [105] generalizing the well known fact that the embedding
H1
r (Rd) ↪→ Lq(Rd) is compact for all q ∈ (2, 2∗) for functions invariant under the group

of the rotations. Coupling this fact with the principle of symmetric criticality proved
by Palais in [94] and the continuity of the superposition operator, whose validity is
established in [76] for the Euclidean case and generalized to manifold in [54, Proposition
2.5], we will consider an auxiliary problem with a truncated nonlinearity and we will
show the existence of infinitely many local minima. We emphasize that in dealing with
the case of oscillations near zero we will assume no growth condition on the nonlinear
term f . The Chapter is organised as follows. At the end of this Section we collect
our main results. In Section 5.1 present the abstract framework. In Section 5.2 we
prove Theorem 5.1 showing the existence of infinitely many critical points for the energy
functional associated to (Pλ) and with both L∞ and Sobolev norm going to zero. In
Section 5.3 we address the problem of oscillations at infinity proving Theorem 5.2. More
precisely, given a group G that acts onM we will denote with

FixM(G) := {σ ∈M | φ(σ) = σ for all φ ∈ G} .

the fixed points of G. The following hypothesis will be crucial in the sequel:

(Hσ0G ) G is a compact, connected subgroup of the isometries Isomg(M) of (M, g) such
that

FixM(G) = {σ0}

for some point σ0 ∈M.

To ease notation, since now to the end of the Chapter we will denote by

∥w∥:=
(︃∫︂

M
|g∇w(σ)|2 dvg +

∫︂
M
|w(σ)|2 dvg

)︃ 1
2

.

The main results we are going to prove during the rest of the Chapter are the following.
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Theorem 5.1. Assume that (Hσ0G ) holds and let α ∈ L1(M) ∩ L∞(M) \ {0} be a a.e.
positive map such that α(σ) = α(dg(σ0, σ)). Moreover, let f :R → R be a continuous
function for which

(f0) there exist two sequences (tj)j and (t′j)j with lim
j→+∞

t′j = 0 and 0 ≤ tj < t′j such that

F (tj) = sup
t∈[tj ,t′j]

F (t),

where F (t) :=
∫︂ t

0
f(τ) dτ ;

(f1) there exist a constant K1 > 0 and a sequence (ξj)j ⊂ (0,+∞) with lim
j→+∞

ξj = 0

such that
lim

j→+∞

F (ξj)

ξ2j
= +∞,

and
inf

t∈[0,ξj ]
F (t) ≥ −K1F (ξj).

Then for every λ > 0 it is possible to find a sequence (wj)j ⊂ H1
G(M) of non-negative

and not identically zero solutions of (Pλ) such that

lim
j→+∞

∥wj∥= lim
j→+∞

∥wj∥L∞(M)= 0.

Theorem 5.2. Assume that (Hσ0G ) holds and let α ∈ L1(M) ∩ L∞(M) \ {0} be a a.e.
positive map such that α(σ) = α(dg(σ0, σ)). Moreover, let f :R → R be a continuous
function such that f(0) ≥ 0 for which

(f ′0) there are a constant K2 > 0 and q ∈ (2, 2∗ − 1) such that

|f(t)|≤ K2(1 + |t|q);

(f ′1) there are two sequences (tj)j and (t′j)j with lim
j→+∞

tj = +∞ and 0 ≤ tj < t′j such

that
F (tj) = sup

t∈[tj ,t′j]
F (t);

(f ′2) there is a constant K3 > 0 and a sequence (ξj)j ⊂ (0,+∞) with lim
j→+∞

ξj =∞ such

that
lim

j→+∞

F (ξj)

ξ2j
= +∞,

and
inf

t∈[0,ξj ]
F (t) ≥ −K3F (ξj).

Then for every λ > 0 it is possible to find a sequence (wj)j ⊂ H1
G(M) of non-negative

and not identically zero weak solutions of (Pλ).
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

5.1 Abstract framework

We begin introducing the notion of coerciveness for a group acting continuosly on the
manifold.

Definition 5.3. A group G acting continuously onM is said to be coercive if for every
t > 0 the set

{σ ∈M | diamGσ ≤ t}

is bounded, where
Gσ := {φ · σ | φ ∈ G} .

As we will see later being coercive will play a determining role to have compact embed-
ding for Sobolev spaces invariant under the action of a group G. Despite the coerciveness
of a group G has a clear geometrical meaning, it is a property that in most cases turns
out to be difficult to verify. In order to overcome this problem, we introduce a condition
that is equivalent in a Cartan-Hadamard manifold.

As pointed out in [105, Proposition 3.1] in a simply-connected Riemannian manifold
with non-positive Sectional curvature, a subgroup G of Isomg(M) satisfies (Hσ0G ) if and
only if it is coercive. For the sake of completeness we write down here the Proposition
omitting the proof.

Proposition 5.4. Let M be a simply connected complete Riemannian manifold, and
assume that the Sectional curvature is non-positive. Let G be a compact, connected sub-
group of Isomg(M) that fixes some point σ0 ∈ M. Then G is coercive if and only if G
has no other fixed point but σ0.

There are several examples present in literature of homogeneous Cartan-Hadamard
manifold with a group acting transitively on it, fixing only one point. For instance, Rd
equipped with the Euclidean metric and the special orthogonal group SO(d) or SO(d1)×
...× SO(dh) where

∑︁dh
i=1 di = d with di > 1. Another common example is the Poincaré

model Hd :=
{︁
x ∈ Rd : |x|< 1

}︁
endowed with the metric

gij(x) :=
4

(1− |x|2)2
δij

with the same choices as above for the group. In addition to that, we can also consider
the set P (d,R) of the symmetric positive definite matrices with determinant equal to
one. It turns out that it has a structure of homogeneous Cartan-Hadamard manifold and
that the special orthogonal group O(d) acts transitively on it, fixing the identity matrix
Id. For further detail we suggest the reader to consult [31, Chapter II.10], [46], [62] and
[63, Chapter XII].

Now we fix a point σ0 ∈M and a group G satisfying (Hσ0G ). We consider the Sobolev
space

H1
G(M) =

{︁
w ∈ H1

g (M) | φ⊛ w = w for all φ ∈ G
}︁

where
φ⊛ w := w(φ−1 · σ) for a.e. σ ∈M.
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5.2 Oscillation at the origin

In virtue of the previous Remark, we are able to state the following compactness result.

Lemma 5.5. If G satisfies (Hσ0G ), then the embedding

H1
G(M) ↪→ Lν(M)

is compact for all ν ∈ (2, 2∗) where 2∗ := 2d/(d− 2).

Proof. According to [54, Lemma 8.1 and Theorem 8.3] or [55] the embedding H1
G(M) ↪→

Lν(M) is continuous for all ν ∈ [2, 2∗] and co-compact for [109, Chapter 9]. At this
point, taking into account Proposition 5.4 we can apply [105, Theorem 1.3] to complete
the proof.

5.2 Oscillation at the origin

In this Section, we investigate the existence of solutions for problem (Pλ){︄
−∆gw + w = λα(σ)f(w) inM
w ∈ H1

g (M)

where f represents a continuous function that oscillates near 0. More precisely, since now
till the end of the Section the function f satisfies hypothesis (f0) and (f1) of Theorem
5.1. As an immediate consequence of these hypothesis we have the following Lemma.

Lemma 5.6. If f :R→ R is continuous and satisfies (f0) and (f1), then f(0) = 0.

Proof. We first notice that

f(tj) = lim
h→0+

∫︂ tj+h

tj

f(τ) dτ

h
= lim

h→0+

F (tj + h)− F (tj)
h

≤ 0

by (f0). Thus, exploiting the continuity of f we have

f(0) = lim
j→+∞

f(tj) ≤ 0.

On the other hand, suppose by contradiction that f(0) < 0. Then, again the continuity
of f implies that f(t) < 0 for all t ∈ [0, δ) for some δ > 0. Then, we would have

lim
j→+∞

F (ξj)

ξ2j
≤ 0,

in contradiction with (f1).

The relation α(σ) = α(dg(σ0, σ)) is a symmetry condition which replaces the radial
symmetry of α is Rd.
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

Proof of Theorem 5.1. Let λ > 0. Since tj → 0 and ξj → 0 as j → +∞, we may
assume that 0 ≤ tj ≤ t0 and 0 ≤ ξj ≤ t0 for some t0 > 0 and for every j. Let
κ = max {|f(t)|| t ∈ [0, t0]}. In view of Lemma 5.6, we define the continuous truncated
function

h(t) :=

⎧⎪⎨⎪⎩
f(t0) if t > t0

f(t) if 0 ≤ t ≤ t0
0 if t < 0

and we consider the auxiliary problem{︄
−∆gw + w = λα(σ)h(w) inM
w ∈ H1

G(M).
(P0)

We also set the energy functional associated to Problem (P0)

JG,λ(w) :=
1

2
∥w∥2−λ

∫︂
M
α(σ)

(︄∫︂ w(σ)

0
h(τ) dτ

)︄
dvg

and we emphasize that JG,λ ∈ C1(H1
G(M),R) thanks to Lemma 5.5 and that is is

sequentially lower semicontinuous. Now, for all j ∈ N we define the set

EGj :=
{︁
w ∈ H1

G(M) | 0 ≤ w(σ) ≤ t′j a.e inM
}︁
.

We divide the remaining part of the proof in 6 steps.
Step 1: the functional JG,λ in bounded from below on EGj and attains its infimum on

EGj at a function uGj ∈ EGj . Clearly for all w ∈ EGj∫︂
M
α(σ)

(︄∫︂ w(σ)

0
h(τ) dτ

)︄
dvg ≤

∫︂
M
α(σ)

⃓⃓⃓⃓
⃓
∫︂ w(σ)

0
h(τ) dτ

⃓⃓⃓⃓
⃓ dvg

≤ κ
∫︂
M
α(σ)w(σ) dvg ≤ κ∥α∥L1(M)t

′
j

and so
JG,λ(w) ≥ −κ∥α∥L1(M)t

′
j . (5.1)

At this point set
ιGj := inf

w∈EG
j

JG,λ(w).

From the definition of infimum, for all k ∈ N we can find wk ∈ EGj such that

ιGj ≤ JG,λ(wk) ≤ ιGj +
1

k
.

From this it follows

∥wk∥2 = JG,λ(wk) + λ

∫︂
M
α(σ)

(︄∫︂ wk(σ)

0
h(τ) dτ

)︄
dvg

≤ κ∥α∥L1(M)t
′
j + ιGj + 1
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5.2 Oscillation at the origin

which implies that (wk)k must be bounded in H1
G(M). Then, up to a subsequence, we

can assume wk ⇀ uGj for some uGj ∈ H1
G(M). In order to prove that uGj ∈ EGj it sufficient

to notice that the set EGj is closed and convex, thus weakly closed. Now, exploiting the
sequentially lower semicontinuity of JG,λ we get

ιGj ≤ JG,λ(uGj ) ≤ lim inf
k→∞

JG,λ(wk) ≤ ιGj

hence
ιGj = JG,λ(u

G
j ).

Step 2: for all j ∈ N one has that 0 ≤ uGj (σ) ≤ tj a.e. inM.
In order to show that, we set the Lipschitz continuous function ϱj :R→ R

ϱj(t) :=

⎧⎪⎨⎪⎩
tj if t > tj

t if 0 ≤ t ≤ tj
0 if t < 0

we can consider the superposition operator Tj :H1
g (M)→ H1

g (M) defined as

Tjw(σ) := ϱj(w(σ)) a.e. inM.

From [54, Proposition 2.5] it follows that Tj is a continuous operator. Furthermore, if
we restrict Tj to the G-invariant functions we have Tj :H1

G(M)→ H1
G(M). In fact, one

can readily see that

φ⊛ Tjw(σ) = Tjw(φ
−1 · σ) = (ϱj ◦ w)(φ−1 · σ)

= ϱj(w(φ
−1 · σ)) = ϱj(w(σ)) = (ϱj ◦ w)(σ)

= Tjw(σ) a.e. inM

for all w ∈ H1
G(M) and φ ∈ G. In addition, from its definition, it is clear that Tjw ∈ EGj

for all j ∈ N. At this point we set v⋆G,j := Tju
G
j and

XG
j :=

{︁
σ ∈M | tj < uGj (σ) ≤ t′j

}︁
.

Observe that for all σ ∈ XG
j one has

v⋆G,j(σ) = Tju
G
j (σ) = tj .

Now, exploiting (f0) we get∫︂ uGj (σ)

0
h(τ) dτ ≤ sup

t∈[tj ,t′j]

∫︂ t

0
h(τ) dτ =

∫︂ tj

0
h(τ) dτ =

∫︂ v⋆G,j(σ)

0
h(τ) dτ,

thus ∫︂ v⋆G,j(σ)

uGj (σ)
h(τ) dτ ≥ 0 (5.2)
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

for all σ ∈ XG
j . Moreover, taking into account the fact that |g∇v⋆G,j(σ)|= 0 a.e. in XG

j ,
we obtain

∥v⋆G,j∥2−∥uGj ∥2 =
∫︂
M

(︁
|g∇v⋆G,j(σ)|2−|g∇uGj (σ)|2

)︁
dvg

+

∫︂
M

(︁
|v⋆G,j(σ)|2−|uGj (σ)|2

)︁
dvg

= −
∫︂
XG

j

|g∇uGj (σ)|2 dvg +
∫︂
XG

j

(︁
t2j − |uGj (σ)|2

)︁
dvg (5.3)

≤ −
∫︂
XG

j

|g∇v⋆G,j(σ)− g∇uGj (σ)|2 dvg −
∫︂
XG

j

⃓⃓
uGj (σ)− tj

⃓⃓2
dvg

= −
∫︂
M
|g∇v⋆G,j(σ)− g∇uGj (σ)|2 dvg −

∫︂
M

⃓⃓
uGj (σ)− v⋆G,j(σ)

⃓⃓2
dvg

= −∥v⋆G,j − uGj ∥2.

At this point, in virtue of (5.2) and (5.3), recalling v⋆G,j ∈ EGj we have

0 ≤ JG,λ(v⋆G,j)− JG,λ(uGj ) =
∥v⋆G,j∥2−∥uGj ∥2

2
− λ

∫︂
M
α(σ)

(︄∫︂ v⋆G,j(σ)

uGj (σ)
h(τ) dτ

)︄
dvg

≤ −1

2
∥v⋆G,j − uGj ∥2−λ

∫︂
XG

j

α(σ)

(︄∫︂ v⋆G,j(σ)

uGj (σ)
h(τ) dτ

)︄
dvg

≤ −1

2
∥v⋆G,j − uGj ∥2.

From this, we can deduce
∥v⋆G,j − uGj ∥2= 0.

Since v⋆G,j ̸= uGj except on XG
j , we deduce that Volg(X

G
j ) = 0 as desired.

Step 3: the function uGj is a local minimum for JG,λ in the Sobolev space H1
G(M) for

all j ∈ N.
In order to do that, we select w ∈ H1

G(M) and we set

ZGj := {σ ∈M | w(σ) /∈ [0, tj ]}

for every j ∈ N. Recalling the superposition operator defined in step 2 we set

v⋆j (σ) := Tjw(σ) =

⎧⎪⎨⎪⎩
tj if w(σ) > tj

w(σ) if 0 ≤ w(σ) ≤ tj
0 if w(σ) < 0.

Now, on the one hand one can easily see that∫︂ w(σ)

v⋆j (σ)
h(τ) dτ = 0

for every σ ∈M \ ZGj . On the other hand, if σ ∈ ZGj only three alternatives can occur
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5.2 Oscillation at the origin

1. If w(σ) ≤ 0 it is immediate to see∫︂ w(σ)

v⋆j (σ)
h(τ) dτ =

∫︂ w(σ)

0
h(τ) dτ = 0.

2. If tj < w(σ) ≤ t′j we have∫︂ w(σ)

v⋆j (σ)
h(τ) dτ =

∫︂ w(σ)

0
h(τ) dτ −

∫︂ v⋆j (σ)

0
h(τ) dτ

=

∫︂ w(σ)

0
h(τ) dτ −

∫︂ tj

0
h(τ) dτ

≤
∫︂ w(σ)

0
h(τ) dτ − sup

t∈[tj ,t′j]

∫︂ t

0
h(τ) dτ ≤ 0.

3. If w(σ) > t′j we obtain∫︂ w(σ)

v⋆j (σ)
|h(τ)| dτ =

∫︂ w(σ)

tj

|h(τ)| dτ ≤ κ(w(σ)− tj). (5.4)

At this point set

C := κ∥α∥L∞(M)sup
t≥t′j

t− tj
(t− tj)ν

where ν ∈ (2, 2∗). From this and from (5.4) we have∫︂
M
α(σ)

(︄∫︂ w(σ)

v⋆j (σ)
h(τ) dτ

)︄
dvg ≤

∫︂
{w>t′j}

α(σ)

(︄∫︂ w(σ)

v⋆j (σ)
h(τ) dτ

)︄
dvg

≤
∫︂
{w>t′j}

α(σ)

(︄∫︂ w(σ)

v⋆j (σ)
|h(τ)| dτ

)︄
dvg

≤ ∥α∥L∞(M)

∫︂
{w>t′j}

(︄∫︂ w(σ)

v⋆j (σ)
h(τ) dτ

)︄
dvg (5.5)

≤ C
∫︂
M
(w(σ)− tj)ν dvg

≤ C
∫︂
M
|w(σ)− tj |ν dvg.

Denote with

γ := sup
w∈H1

G(M)\{0}

∥w∥Lν(M)

∥w∥

and observe that is finite by Lemma 5.5. From (5.5) we deduce∫︂
M
α(σ)

(︄∫︂ w(σ)

v⋆j (σ)
h(τ) dτ

)︄
dvg ≤ Cγν∥w − v⋆j ∥ν . (5.6)
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

Now, we compute

∥w∥2−∥v⋆j ∥2 =
∫︂
M

(︁
|g∇w(σ)|2−|g∇v⋆j (σ)|2

)︁
dvg +

∫︂
M

(︁
|w(σ)|2−|v⋆j |2

)︁
dvg

≥
∫︂
ZG
j

|g∇w(σ)|2 dvg +
∫︂
ZG,−
j

|w(σ)|2 dvg +
∫︂
ZG,+
j

|w(σ)− tj |2 dvg

=

∫︂
ZG
j

|g∇w(σ)− g∇v⋆j (σ)|2 dvg +
∫︂
ZG,−
j

|w(σ)− v⋆j (σ)|2 dvg (5.7)

+

∫︂
ZG,+
j

|w(σ)− tj |2 dvg

= ∥w − v⋆j ∥2

where

ZG,+j :=
{︁
σ ∈ ZGj | w(σ) > 0

}︁
and ZG,−j :=

{︁
σ ∈ ZGj | w(σ) < 0

}︁
.

Coupling (5.6) and (5.7) we get

JG,λ(w)− JG,λ(v⋆j ) =
∥w∥2−∥v⋆j ∥2

2
− λ

∫︂
M
α(σ)

(︄∫︂ w(σ)

v⋆j (σ)
h(τ) dτ

)︄
dvg

≥ 1

2
∥w − v⋆j ∥2−λCγν∥w − v⋆j ∥ν .

In view of that, recalling JG,λ(v⋆j ) ≥ JG,λ(uGj ) since v⋆j ∈ EGj , we obtain

JG,λ(w) ≥ JG,λ(uGj ) + ∥w − v⋆j ∥2
(︃
1

2
− λCγν∥w − v⋆j ∥ν−2

)︃
(5.8)

At this point, we notice that

∥w − v⋆j ∥≤ ∥w − uGj ∥+∥uGj − v⋆j ∥= ∥w − uGj ∥+∥TjuGj − v∗j ∥

thus, exploiting the continuity of the superposition operator, it is possible to find a δ > 0
such that

∥w − v⋆j ∥ν−2≤ 1

4λCγν

if ∥w − uGj ∥≤ δ. Hence, from (5.8) we get

JG,λ(w) ≥ JG,λ(uGj )

that means uGj is a local minimizer.
Step 4: If

ιGj := inf
w∈EG

j

JG,λ(w).
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5.2 Oscillation at the origin

then
lim
j→∞

ιGj = lim
j→∞
∥uGj ∥= 0.

Recalling that uGj ∈ EGj and that ιGj = JG,λ(u
G
j ) we have

∫︂
M
|g∇uGj (σ)|2 dvg +

∫︂
M
|uGj (σ)|2 dvg = JG,λ(u

G
j ) + λ

∫︂
M
α(σ)

(︄∫︂ uGj (σ)

0
h(τ) dτ

)︄
dvg

= ιGj + λ

∫︂
M
α(σ)

(︄∫︂ uGj (σ)

0
h(τ) dτ

)︄
dvg (5.9)

≤ ιGj + λκ∥α∥L1(M)t
′
j

At this point, we notice that the function w0 = 0 belongs to EGj and so

ιGj = inf
w∈EG

j

JG,λ(w) ≤ 0.

From this and (5.9) we can deduce

lim
j→∞
∥uGj ∥= 0

since t′j → 0 as j →∞. Furthermore, recalling (5.1) we obtain

−κ∥α∥L1(M)t
′
j ≤ ιGj ≤ 0

which implies
lim
j→∞

ιGj = 0.

Step 5: for all j ∈ N we have
ιGj < 0.

In order to do that, we select j ∈ N and 0 < a < b such that

ess inf
σ∈Ab

a

α(σ) ≥ α0 > 0 (5.10)

where
Aba = Bσ0(a+ b) \Bσ0(b− a)

and, after fixing ε ∈ (0, 1) we define the function

ϑεa,b(σ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if σ ∈M \Aba
1 if σ ∈ Abεa
a− |dg(σ0, σ)− b|

(1− ε)a
if σ ∈ Aba \Abεa.
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

It is straightforward to verify that ϑεa,b ∈ H1
G(M) since at each point its value depends

only on the distance from σ0. Moreover, one can easily verify that supp(ϑεa,b) ⊂ Aba and
∥ϑεa,b∥L∞(M)≤ 1. At this point we define the map µg: (0, 1)→ R where

µg(ε) =

∫︂
Ab

εa

α(σ) dvg∫︂
Ab

a\Ab
εa

α(σ) dvg

and we notice that
lim
ε→0+

µg(ε) = 0, lim
ε→1−

µg(ε) = +∞.

In view of that, it is possible to find ε0 ∈ (0, 1) such that∫︂
Ab

εa

α(σ) dvg∫︂
Ab

a\Ab
εa

α(σ) dvg

= K1 + 1

where K1 > 0 is the constant given in hypothesis (f1). From (f1) we also have the
existence of an index k0, with ξk0 ≤ t′j such that for every k ≥ k0∫︂ ξk

0
h(τ) dτ

ξ2k
>

1

2λ

⎛⎜⎜⎜⎝
∫︂
Ab

a\Ab
ε0a

α(σ) dvg

∥ϑε0a,b∥2

⎞⎟⎟⎟⎠
−1

.

From this, (f1) and (5.10) it follows

∫︂
Ab

a

α(σ)

(︄∫︂ ξkϑ
ε0
a,b(σ)

0
h(τ) dτ

)︄
dvg

∥ξkϑε0a,b∥2
=

=

∫︂
Ab

ε0a

α(σ)

(︃∫︂ ξk

0
h(τ) dτ

)︃
dvg

ξ2k∥ϑ
ε0
a,b∥2

+

∫︂
Ab

a\Ab
ε0a

α(σ)

(︄∫︂ ξkϑ
ε0
a,b(σ)

0
h(τ) dτ

)︄
dvg

ξ2k∥ϑ
ε0
a,b∥2

≥

∫︂
Ab

ε0a

α(σ)

(︃∫︂ ξk

0
h(τ) dτ

)︃
dvg

ξ2k∥ϑ
ε0
a,b∥2

+

∫︂
Ab

a\Ab
ε0a

α(σ)

(︃
inf

t∈[0,ξk]

∫︂ t

0
h(τ) dτ

)︃
dvg

ξ2k∥ϑ
ε0
a,b∥2

≥

∫︂
Ab

ε0a

α(σ)

(︃∫︂ ξk

0
h(τ) dτ

)︃
dvg

ξ2k∥ϑ
ε0
a,b∥2

−K1

∫︂
Ab

a\Ab
ε0a

α(σ)

(︃∫︂ ξk

0
h(τ) dτ

)︃
dvg

ξ2k∥ϑ
ε0
a,b∥2
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5.2 Oscillation at the origin

=

∫︂
Ab

a\Ab
ε0a

α(σ) dvg

∥ϑε0a,b∥2

∫︂ ξk

0
h(τ) dτ

ξ2k
>

1

2λ

for all k ≥ k0. Now, from the definition of ξkϑεa,b it is clear that ξkϑε0a,b ∈ EGj . Hence
JG,λ(ξkϑ

ε0
a,b) < 0 and as a consequence of that ιGj < 0 as desired.

Step 6: the function uGj is a local minimum for the functional JG,λ in the Sobolev
space H1

g (M) for all j ∈ N.
Since ∥uGj ∥L∞(M)→ 0 as j →∞, up to relabel the indexes, we can assume the existence

of a sequence (uGj )j ⊂ H1
g (M) such that

∥uGj ∥L∞(M)≤ t0. (5.11)

At this point, in virtue of the Principle of Symmetric Criticality of Palais (see [94] for
details), to conclude the proof, it is sufficient to show that JG,λ is invariant under the
action of G. Consider first ∥·∥. For all φ ∈ G and w ∈ H1

g (M) we have

∥φ⊛ w∥2 =
∫︂
M
|g∇(φ⊛ w)(σ)|2 dvg +

∫︂
M
|(φ⊛ w)(σ)|2 dvg

=

∫︂
M
|g∇(w(φ−1 · σ))|2 dvg +

∫︂
M
|w(φ−1 · σ)|2 dvg

=

∫︂
M
⟨Dφφ−1·σ

g∇w(φ−1 · σ), Dφφ−1·σ
g∇w(φ−1 · σ)⟩σ dvg

+

∫︂
M
|w(φ−1 · σ)|2 dvg

=

∫︂
M
⟨g∇w(φ−1 · σ), g∇w(φ−1 · σ)⟩φ−1·σ dvg +

∫︂
M
|w(φ−1 · σ)|2 dvg (5.12)

=

∫︂
M
⟨g∇w(σ̃), g∇w(σ̃)⟩σ̃ dv(φ−1)∗g +

∫︂
M
|w(σ̃)|2 dv(φ−1)∗g

=

∫︂
M
⟨g∇w(σ̃), g∇w(σ̃)⟩σ̃ dvg +

∫︂
M
|w(σ̃)|2 dvg = ∥w∥2

since φ is an isometry and preserves scalar products. Furthermore

α(φ−1 · σ) = α(dg(σ0, φ
−1σ)) = α(dg(φ

−1 · σ0, φ−1σ)) = α(dg(σ0, σ)) = α(σ)

which implies∫︂
M
α(σ)

(︄∫︂ w(φ−1·σ)

0
h(τ) dτ

)︄
dvg =

∫︂
M
α(φ−1 · σ)

(︄∫︂ w(φ−1·σ)

0
h(τ) dτ

)︄
dvg

=

∫︂
M
α(σ̃)

(︄∫︂ w(σ̃)

0
h(τ) dτ

)︄
dv(φ−1)∗g (5.13)
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

=

∫︂
M
α(σ̃)

(︄∫︂ w(σ̃)

0
h(τ) dτ

)︄
dvg.

Putting together (5.12) and (5.13) we obtain

JG,λ(φ⊛ w) = JG,λ(w)

hence, applying the Principle of Symmetric Criticality of Palais, we have that each ele-
ment of the sequence uGj is a critical point of the functional JG,λ and a weak solution of
(P0). Furthermore, recalling Step 2 and (5.11) we also have that uGj is a solution of our
original problem (Pλ).

Example 5.7. Let f :R→ R be defined by

f(t) :=

⎧⎨⎩9
√
t sin

(︃
1
3
√
t

)︃
− 2

6
√
t cos

(︃
1
3
√
t

)︃
if t ≥ 0

0 if t < 0,

whose primitive is

F (t) =

∫︂ t

0
f(s) ds =

⎧⎨⎩6t3/2 sin

(︃
1
3
√
t

)︃
if t ≥ 0

0 if t < 0.

As in [8] one can check that conditions (f0) and (f1) are satisfied.

5.3 Oscillations at infinity

In this Section we investigate the solutions of problem (Pλ){︄
−∆gw + w = λα(σ)f(w) inM
w ∈ H1

g (M)

where f :R→ R is a continuous function that oscillates at infinity. Preferring a variational
approach, we define the energy functional Jλ:H1

g (M) → R associated to problem (Pλ)
where

Jλ(w) :=
1

2
∥w∥2−λ

∫︂
M
α(σ)F (w(σ)) dvg,

and F (t) :=
∫︂ t

0
f(τ) dτ . As regard the right hand side of (Pλ), we make on the nonlinear

term f the hypothesis (f ′0)-(f ′2) of Theorem 5.2 till the end of the Section. As we already
did in the previous Section we will fist look for solutions for a truncated problem and
then we will show that they also solves (Pλ). In order to do that, we start defining the
function

h(t) :=

{︄
f(t) if t ≥ 0

f(0) if t < 0
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5.3 Oscillations at infinity

and considering the auxiliary problem{︄
−∆gw + w = λα(σ)h(w) inM
w ∈ H1

G(M).
(P∞)

We associate to problem (P∞) the functional

JG,λ(w) :=
1

2
∥w∥2−λ

∫︂
M
α(σ)

(︄∫︂ w(σ)

0
h(τ) dτ

)︄
dvg

and we point out that JG,λ ∈ C1(H1
G(M),R) and again thanks to Lemma 5.5 that is

sequentially lower semicontinuous. We emphasize that non-negative critical points of
JG,λ(w) are also critical point for the functional Jλ.

Proof of Theorem 5.2. Since some arguments of the proof are very similar to the ones
described in Theorem 5.1 we will omit them. Fix λ > 0. We start for every j ∈ N setting

EGj :=
{︁
w ∈ H1

G(M) | 0 ≤ w(σ) ≤ t′j a.e inM
}︁
.

Step 1: the functional JG,λ in bounded from below on EGj and attains its infimum on
EGj at a function wGj ∈ EGj .

From hypothesis (f ′0) we obtain

∫︂ w(σ)

0
h(τ) dτ ≤ K2

⎛⎜⎝t′j +
(︂
t′j

)︂q+1

q + 1

⎞⎟⎠ .

As a consequence of that

JG,λ(w) ≥ −λK2∥α∥L1(M)

⎛⎜⎝t′j +
(︂
t′j

)︂q+1

q + 1

⎞⎟⎠
which implies that JG,λ is bounded from below on EGj for every j ∈ N. At this point, by
following the line of Step 1 in Theorem 5.1 we can find uGj such that

ιGj := inf
w∈EG

j

JG,λ(w) = JG,λ(u
G
j ).

Step 2: for all j ∈ N one has that 0 ≤ uGj (σ) ≤ tj a.e. inM.
The statement follows following closely the line of the proof of Step 2 on Theorem 5.1.

Step 3: the function uGj is a local minimum for JG,λ in the Sobolev space H1
G(M) for

all j ∈ N
To show this, we choose w ∈ H1

G(M) and we set

ZGj := {σ ∈M | w(σ) /∈ [0, tj ]}
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

for every j ∈ N. Recalling the superposition operator defined in step 2 of Theorem 5.1
we set

v⋆j (σ) := Tjw(σ) =

⎧⎪⎨⎪⎩
tj if w(σ) > tj

w(σ) if 0 ≤ w(σ) ≤ tj
0 if w(σ) < 0.

Now, on one hand one can easily see that∫︂ w(σ)

v⋆j (σ)
h(τ) dτ = 0

for every σ ∈M\ZGj . On the other hand, if σ ∈ ZGj we analyze the situation according
to the three different possible alternatives.

1. If w(σ) ≤ 0 it is immediate to see∫︂ w(σ)

v⋆j (σ)
h(τ) dτ =

∫︂ w(σ)

0
f(0) dτ ≤ 0.

2. If tj < w(σ) ≤ t′j we can show ∫︂ w(σ)

v⋆j (σ)
h(τ) dτ ≤ 0.

arguing similarly to Step 3 in Theorem 5.1.

3. If w(σ) > t′j we obtain∫︂ w(σ)

v⋆j (σ)
|h(τ)| dτ =

∫︂ w(σ)

tj

|h(τ)| dτ (5.14)

≤
∫︂ w(σ)

tj

h(τ) dτ ≤ K2

[︃
(w(σ)− tj) +

1

q + 1
(w(σ)q+1 − tq+1

j )

]︃
At this point set

C̃ :=
K2∥α∥L∞(M)

q + 1
sup
t≥t′j

(q + 1)(t− tj) + (tq+1 − tq+1
j )

(t− tj)q+1
.

From this and (5.14) we have∫︂
M
α(σ)

(︄∫︂ w(σ)

v⋆j (σ)
h(τ) dτ

)︄
dvg ≤ ∥α∥L∞(M)

∫︂
M

(︄∫︂ w(σ)

v⋆j (σ)
|h(τ)| dτ

)︄
dvg (5.15)

≤ C̃
∫︂
M
(w(σ)− v⋆j )q+1 dvg.
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5.3 Oscillations at infinity

Denote

γ̃ := sup
w∈H1

G(M)\{0}

∥w∥Lq+1(M)

∥w∥

and observe that is finite by Lemma 5.5. From (5.15) we deduce∫︂
M
α(σ)

(︄∫︂ w(σ)

v⋆j (σ)
h(τ) dτ

)︄
dvg ≤ C̃γ̃q+1∥w − v⋆j ∥q+1. (5.16)

At this point, the conclusion is achieved as in Step 3 of Theorem 5.1.
Step 4 We have that

lim inf
j→∞

ιGj = −∞.

Replacing (f1) with (f ′2) and repeating the calculations done in Step 5 of Theorem 5.1
we can find a constant κ̃ > 0 and a divergent sequence (ξk)k such that

JG,λ(ξkϑ
ε0
a,b) < −κ̃∥ξkϑ

ε0
a,b∥

2

for k ≥ k0 (see the proof of Theorem 5.1 for the definition of ϑεa,b). At this point, we
notice that we can find a subsequence (tj′k)k so that tj′k ≥ ξk and ξkϑε0a,b ∈ EGjk . Then

lim
k→∞

ιGjk ≤ lim
k→∞

JG,λ(ξkϑ
ε0
a,b) < − lim

k→∞
κ̃∥ξkϑε0a,b∥

2= −∞.

From this, we can conclude using the definition of inferior limit getting

lim inf
j→∞

ιGj = −∞.

To conclude the proof, it is sufficient to argue as in Step 6 of Theorem 5.1 proving that
JG,λ is invariant under the action of the group G and applying the Principle of Symmetric
Criticality of Palais.

To conclude we exhibit an example of a nonlinearity that satisfies hypothesis (f ′0)-(f ′2).

Example 5.8. Consider the function

f(t) :=

⎧⎨⎩
2(d− 1)

d− 2
t

d
d−2 sin

(︂
3
√
t
)︂
+

1

3
t
2(2d−1)
3(d−2) cos

(︂
3
√
t
)︂

if t ≥ 0

0 if t < 0

whose primitive is

F (t) =

{︄
t2

d−1
d−2 sin

(︂
3
√
t
)︂

t ≥ 0

0 t < 0.

Hypothesis (f ′0) is trivially satisfied since the trigonometric functions are bounded and

d

d− 2
< 2∗ − 1 and

2(2d− 1)

3(d− 2)
< 2∗ − 1.
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5 Schrödinger equation on Cartan-Hadamard manifolds with oscillating nonlinearities

In order to see the validity of (f ′1) one can choose for instance

tj :=
[︂π
2
(1 + 4j)

]︂3
and t′j :=

[︂π
2
(3 + 4j)

]︂3
.

It is easy to check that F is decreasing in the interval [tj , t′j ], hence

F (tj) = sup
t∈[tj ,t′j ]

F (t).

To prove that f satisfies (f ′2), we choose ξj = tj → +∞, so that

lim
j→+∞

F (ξj)

ξ2j
= lim

j→+∞

ξ
2 d−1
d−2

j

ξ2j
= lim

j→+∞
ξ

2
d−2

j = +∞.

Moreover,

inf
t∈[0,ξj ]

F (t) = F
(︁
t′j−1

)︁
= −

(︁
t′j−1

)︁2 d−1
d−2 ≥ − (ξj)

2 d−1
d−2 = −F (ξj),

which shows that (f ′2) is verified with K3 = 1.
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6 Multiple solutions for Schrödinger
equations on Riemannian manifolds via
∇-theorems

The study of existence and multiplicity of solutions to semilinear partial differential equa-
tions of Schrödinger type is by far one of the richest fields in Nonlinear Analysis, where
Variational Methods and Critical Point Theory provide a powerful setting for existence
results. The occurrence of more than one solution to such equations is guaranteed, at
a basic level, by some symmetry condition together with the use of topological indices
such as the genus or the relative category as we already saw in Chapter 3 and 5. We
refer to the classical monograph [107] for a survey.

Semilinear elliptic equations of Schrödinger type are typically set in the whole Eu-
clidean space Rd, d ≥ 3, which has a rather poor geometric structure. Multiplicity
results may then appear as a consequence of the presence of potential functions with
suitable properties. The situation is much different if Rd is replaced by a more general
Riemannian manifoldM, since the geometry ofM may influence the existence of one or
more solutions to the equation. Analysis on Manifolds and Geometric Analysis become
the necessary language to work with these problems: we refer to [15, 53, 54, 65, 83] and
to the references therein for an introduction. For the sake of brevity, we will assume that
the reader is familiar with the basic definitions of Riemannian Geometry, and we refer
to Chapter 2.

In this chapter, we will consider a d-dimensional smooth complete non-compact Rie-
mannian manifold (M, g) with d ≥ 3. The aim of this chapter is to study the existence
of solutions for problem{︄

−∆gw + V (σ)w = α(σ)f(w) + λw inM
w(σ)→ 0 as dg(σ0, σ)→∞,

(Pλ)

where α ∈ L1(M)∩L∞(M), α > 0 a.e. inM, f :R→ R is a continuous function, λ ∈ R
is a real parameter. We assume that V :M→ R is a continuous function such that

(V1) υ0 := infσ∈M V (σ) > 0;

(V2) there exists σ0 ∈M such that

lim
dg(σ0,σ)→∞

V (σ) = +∞.

The nonlinearity f :R→ R is a continuous function that satisfies
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(f1)

lim
t→0

f(t)

|t|
= 0;

(f2) there results

lim
t→+∞

f(t)

|t|r−1
<∞

where r ∈
(︃
2,

2d

d− 2

)︃
;

(f3) 0 < rF (t) < f(t)t for all t ∈ R \{0} where F (t) :=
∫︂ t

0
f(τ) dτ .

To introduce the main assumptions on the manifold (M, d), we suppose that there
exists a function H: [0,∞)→ R of class C1 such that∫︂ ∞

0
tH(t) dt <∞

and

(Ric) for some σ̄0 ∈M there results

Ric(M,g)(σ) ≥ (1− d)H(dg(σ̄0, σ)).

Moreover, we will assume throughout the chapter that

inf
σ∈M

Volg (Bσ(1)) > 0

where
Bσ(1) := {ξ ∈M | dist(ξ, σ) < 1} .

Since we want to prove a multiplicity result for (Pλ), a natural approach could be based
on Morse Theory, see [37, 78]. Unfortunately, Morse Theory requires in general more
regularity of the Euler functional associated to the variational problem, and this would
require a more regular nonlinearity f in (Pλ).

We propose here a different approach via ∇-Theorems, a family of variational tools
which were introduced by Marino and Saccon in [77] to study the multiplicity of solu-
tions of some asymptotically non-symmetric semilinear elliptic problems with jumping
nonlinearities. More precisely, we will make use of the sphere-torus linking Theorem
with mixed type assumptions (see [77, Theorem 2.10]). The main condition of this the-
orem can be roughly summarized in these terms: the Euler functional constrained on a
closed subspace must not have critical values in a certain prescribed range with “some
uniformity”. A rigorous definition is as follows.
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Definition 6.1. Let H be a Hilbert space and I:H → R a C1 functional. Let also X
be a closed subspace of H, a, b ∈ R∪{−∞,∞}; we say that I satisfies the condition
(∇) (I,X , a, b) if there exists γ > 0 such that

inf {∥PX∇I(w)∥| a ≤ I(w) ≤ b, dist(w,X ) ≤ γ} > 0

where PX :H → X denotes the standard orthogonal projection. In the following, we will
refer to it as (∇)-condition for short.

In order to make the chapter self-contained, we also write the statement of the ∇-
theorem.

Theorem 6.2. Let H be a Hilbert space and Xi, i = 1, 2, 3 three subspaces of H such
that H = X1 ⊕ X2 ⊕ X3 and dimXi < ∞ for i = 1, 2. Denote with PXi :H → Xi the
standard orthogonal projection. Let I:H → R a C1,1 functional. Let ρ, ρ′, ρ′′, ρ1 be such
that ρ1 > 0, 0 ≤ ρ′ < ρ < ρ′′ and define

∆ =
{︁
w ∈ X1 ⊕X2 | ρ′ ≤ ∥PX2w∥≤ ρ′′, ∥PX1w∥≤ ρ1

}︁
and T = ∂X1⊕X2∆,

S23 = {w ∈ X2 ⊕X3 | ∥w∥= ρ} and B23 = {w ∈ X2 ⊕X3 | ∥w∥≤ ρ} .

Assume that
a′ = sup I(T ) < inf I(S23) = a′′.

Let a and b such that a′ < a < a′′ and b > sup I(∆). Assume (∇) (I,X1 ⊕X3, a, b) holds
and that (PS)c is verified for all c ∈ [a, b]. Then I has at least two critical points in
I−1 ([a, b]). Moreover, if a1 < inf I(B23) > −∞ and (PS)c holds for all c ∈ [a1, b], then
I has another critical level in [a1, a

′].

We define the Sobolev space

H1
V (M) := {w ∈ H1

g (M) | ∥w∥2<∞}

where throughout the chapter we denote by

∥w∥:=
(︃∫︂

M
|g∇w(σ)|2 dvg +

∫︂
M
V (σ) |w(σ)|2 dvg

)︃1/2

the norm induced by the scalar product

⟨w1, w2⟩ :=
∫︂
M
⟨g∇w1(σ),

g∇w2(σ)⟩g dvg +
∫︂
M
V (σ)w1(σ)w2(σ) dvg.

We recall that under the assumptions we made on the potential and the manifold, the
embedding H1

V (M) ↪→ Lq(M) is continuous for any q ∈ [2, 2∗]. Furthermore, as a result
of the Hypothesis (V1) and (V2) we also have the following Lemma, whose proof can be
found in [44, Lemma 2.1].
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X1

X2

X3

X1 ⊕X2

X2
⊕X

3

B23
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∆
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Figure 6.1: The topological situation described in Theorem 6.2

92



Lemma 6.3. Let M be a complete, non-compact d-dimensional Riemannian manifold
satisfying the curvature condition (Ric) and infσ∈MVolg (Bσ(1)) > 0. If V satisfies (V1)
and (V2) the embedding H1

V (M) ↪→ Lq(M) is compact for all q ∈ [2, 2∗).

∇-Theorems turned out to be a powerful tool when one is interested in studying the
multiplicity of solutions for nonlinear equations. In particular, in [97] Pistoia proved
the existence of four solutions for a superlinear elliptic problem on a bounded domain
of Rd. At a later time, in the same spirit of the paper of Pistoia, Mugnai proved in
[91] the existence of three solutions for a superlinear boundary problem with a more
general nonlinearity. ∇-Theorems are useful also when one deal with problems with
higher order operators, as showed in [80] by Micheletti, Pistoia and Saccon. It is also
worth mentioning [82] where Molica Bisci, Mugnai and Servadei showed the existence of
three solutions for an equation driven by the fractional Laplacian on a bounded domain
of Rd with Dirichlet condition and a general nonlinearity. When one draws his attentions
to problems settled in unbounded domains, the situation is completely different. Indeed,
in order to apply the sphere-torus linking Theorem it is necessary to split the space on
which is defined the functional in three linear subspaces, two of them finite dimensional,
while the third infinite dimensional. When Ω is a bounded domain of Rd it is well known
that the embedding H1(Ω) ↪→ L2(Ω) is compact. As a consequence of that, the resolvent
of the Schrödinger operator or the Laplacian is compact and with standard arguments
it is possible to prove that the spectrum of these operators is discrete and that the
eigenfunctions are dense in the space under considerations. So, a common approach to
select the three subspaces is to consider the whole space as a direct sum of eigenspaces.
Unfortunately, this strategy fails in the case of unbounded domains, since the spectrum of
the Schrödinger operator or the Laplacian is not even discrete in general. A contribution
in this direction was given by Tehrani in [108] where the existence of two solution for
the Nonlinear Schrödinger equation in Rd. Following the characterization of the essential
spectrum of a Schrödinger operator present in [22], they are able to decompose the space
and apply the theorem. The drawback of their approach is that they don’t give sufficient
conditions on the potential to ensure the existence of eigenvalues subsequent to the first
one. A recent result was also obtained by Mugnai in [92] proving the existence of at least
two solutions for an equation in which the nonlinearity is allowed to have an exponential
growth in R2.

In the present chapter, we want to extend the results quoted previously in two di-
rections. The first one is to give sufficient condition that will enable us to completely
characterize the spectrum of the operator taken into account. Secondly, the problem we
want to investigate is settled in a non compact Riemannian manifold and, as far as we
know, results as the one we are going to prove are not present in literature. One of the
first contribution for the Nonlinear Schrödinger equation on Riemannian manifolds was
given in [44], where Faraci and Farkas established a necessary and sufficient condition for
the existence of non-trivial solutions with hypothesis on the manifold equal to the ones
we will assume. More recently, Molica Bisci and Secchi in [86] showed the existence of
at least two solutions for (Pλ) requiring λ large enough under our assumptions on f .
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The main result of the chapter is a multiplicity result for problem (Pλ) whenever λ is
sufficiently close to an eigenvalue of −∆g.

Theorem 6.4. Assume f :R → R and V :M → R are continuous functions that verify
respectively (f1) – (f3) and (V1) – (V2). For every eigenvalue λk of −∆g, there exists
µ > 0 such that if λk − µ < λ < λk, then problem (Pλ) admits at least three non-trivial
and sign-changing weak solutions w1, w2 and w3. Furthermore, these solutions belong to
L∞(M) and for each i ∈ {1, 2, 3} there results

lim
dg(σ,σ0)→+∞

wi(σ) = 0. (6.1)

The proof of the previous Theorem is based on a precise description of the spectral
properties of the operator −∆g + V which governs (Pλ). In Section 6.2 we list in detail
these properties, since they seem to be new in the setting of a non-compact manifoldM.

Remark 6.5. The boundedness of our solutions and their decay at infinity (6.1) follow
from [44, Theorem 3.1]. This Remark applies to the eigenfunctions considered in Theorem
6.11 as well.

To the best of our knowledge, our results are new even in the Euclidean caseM = Rd,
d ≥ 3. In this case, our assumptions on V can be relaxed, and we can rely on some
conditions introduced in [19] which ensure both the discreteness of the spectrum of the
operator −∆+V and the necessary compact embedding of the Sobolev space H1

V (Rd). In
our setting, the compactness of the embedding of H1

V (M) into Lp(M) for all p ∈ [2, 2∗)
follows from [44, Lemma 2.1]. As a concrete example, we propose the following result.

Theorem 6.6. Assume V :Rd → R is a function in L∞
loc(Rd) which verifies V (x) ≥ V0 >

0 for almost every x ∈ Rd and

lim
|x|→+∞

∫︂
B1(x)

dy

V (y)
= 0.

Then the same conclusions as in Theorem 6.4 hold for⎧⎨⎩−∆w + V (x)w =
1

(1 + |x|d)2
|w|r−2w + λw in Rd

w(x)→ 0 as |x|→ ∞,

where r ∈
(︃
2,

2d

d− 2

)︃
.

6.1 A setting for (Pλ)

Let us consider{︄
−∆gw + V (σ)w = α(σ)f(w) + λw inM
w(σ)→ 0 as dg(σ0, σ)→∞,
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6.1 A setting for (Pλ)

where α ∈ L1(M)∩L∞(M) \ {0} is a non-negative function and f satisfies assumptions
(f1) – (f3).

In order to find solutions for problem (Pλ) we introduce the energy functional associ-
ated to the problem. Namely, let Jλ:H1

V (M)→ R be such that

Jλ(w) =
1

2
∥w∥2−λ

2
∥w∥2L2(M)−

∫︂
M
α(σ)F (w(σ)) dvg.

By virtue of the embedding results presented in the previous sections, this functional is
well-defined, and it is standard to prove that it is of class C1. Moreover, as is well known,
critical points of Jλ correspond to weak solutions of problem (Pλ), i.e.

⟨w,φ⟩ = λ⟨w,φ⟩L2(M) +

∫︂
M
α(σ)f(w(σ))φ(σ) dvg

for any φ ∈ H1
V (M). More in general, one can show that the derivative of the functional

Jλ along a function v ∈ H1
V (M) is

J ′
λ(w) [w] = ⟨w, v⟩ − λ⟨w, v⟩L2(M) −

∫︂
M
α(σ)f(w(σ))v(σ) dvg. (6.2)

Now, take s ∈ [2, 2∗) and consider its conjugate exponent s′ such that 1/s + 1/s′ = 1.
We select a function h ∈ Ls′(M) and we focus on the equation

SV w = h σ ∈M. (6.3)

where SV := −∆g + V .
By applying the classical Riesz or Lax-Milgram Theorem, one can easily show that the

problem above has a unique weak solution. In virtue of that, we are able to define

S−1
V :Ls

′
(M) → H1

V (M)

h ↦→ w = S−1
V h

where ∆−1
g h is the only weak solution of (6.3), which means

⟨S−1
V h, φ⟩ = ⟨h, φ⟩L2(M). (6.4)

Remark 6.7. We emphasize that the operator S−1
V is compact. Indeed, it is possible to

write it by the composition of two maps

Ls
′
(M)

(︁
H1
V (M)

)︁∗
H1
V (M)

j S−1
V

where the first is compact, recalling that H1
V (M) ↪→ Ls(M) is compact and applying

[28, Theorem 6.4]. Since H1
V (M) is a Hilbert space, there is a unique element called the

gradient of Jλ and denoted ∇Jλ such that

⟨∇Jλ(w), v⟩ = J ′
λ(u) [v] . (6.5)
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It is also possible to verify that the gradient of Jλ can be written as

∇Jλ(w) = w − S−1
V (λw + αf(w)) . (6.6)

We begin our analysis by proving a technical lemma that will provide some useful
estimates we will use throughout the chapter.

Lemma 6.8. If f :R → R is a function that satisfies (f1) – (f3), then we have the
following estimates:

(i) for any ε > 0 there exists a constant Aε1 > 0 such that

|f(t)| ≤ 2ε |t|+ rAε1 |t|
r−1 (6.7)

and
F (t) ≤ εt2 +Aε1 |t|

r (6.8)

for every t ∈ R;

(ii) for any ε > 0 there exist A2, A
ε̃
2 > 0 such that

|f(t)| ≤ A2 +Aε2 |t|
r−1 (6.9)

for every t ∈ R;

(iii) there exists A3, A4 > 0 such that

F (t) ≥ A3 |t|r −A4 (6.10)

for every t ∈ R .

Proof. The verification of the three inequalities is standard, and we omit the details.

We end this section by proving that the functional Jλ satisfies a good compactness
condition in Critical Point Theory.

Definition 6.9. We say that a sequence (wj)j ⊂ H1
V (M) is a Palais-Smale sequence at

level c ∈ R, (PS)c sequence for short, if Jλ(wj)→ c in R and J ′
λ(wj)→ 0 in

(︁
H1
V (M)

)︁∗
as j →∞. Furthermore, the functional Jλ is said to satisfy the (PS)c condition if every
(PS)c sequence for Jλ admits a strongly convergent subsequence in H1

V (M).

Proposition 6.10. Let f be a map that satisfies (f1)–(f3) and λ > 0 a real parameter.
Then, (PS)c condition holds for every c ∈ R for functional Jλ.

Proof. Let (wj)j ⊂ H1
V (M) a (PS)c sequence for functional Jλ, i.e.

Jλ(wj)→ c in R (6.11)
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6.1 A setting for (Pλ)

and
J ′
λ(wj)→ 0 in H1

V (M) (6.12)

as j →∞. We first prove that (wj)j is bounded in H1
V (M), adapting the ideas of [116,

Proof of Theorem 6.1]. We proceed by contradiction, assuming without loss of generality
that ρj = ∥wj∥→ +∞ as j → +∞. Let us set vj = wj/ρj , so that we may assume that
vj ⇀ v in H1

V (M) and vj → v strongly in L2(M).
Now,

c+ o(1) = Jλ(wj) =
1

2
∥wj∥2−

λ

2
∥wj∥22−

∫︂
M
α(σ)F (wj(σ)) dvg,

hence
o(1) =

1

2
− λ

2
∥vj∥22−

∫︂
M
α(σ)

F (wj(σ))

ρ2j
dvg,

and
lim

j→+∞

∫︂
M
α(σ)

F (wj(σ))

ρ2j
dvg =

1

2
− λ

2
∥v∥22. (6.13)

We consider
M0 = {σ ∈M | v(σ) ̸= 0} ,

and we notice that wj(σ)→ +∞ when σ ∈M0. From Lemma 6.8 (iii) it is straightfor-
ward to verify

lim
t→∞

F (t)

t2
=∞

thus, applying the Fatou’s Lemma, we get

lim
j→∞

∫︂
M0

α(σ)
F (wj(σ))

∥wj∥2
dvg =∞.

This obviously implies that

lim
j→+∞

∫︂
M
α(σ)

F (wj(σ))

ρ2j
dvg = +∞. (6.14)

Comparing (6.13) and (6.14) we must conclude that Volg(M0) = 0, which means that
v = 0 a.e. onM and in particular vj → 0 strongly in L2(M). From

C∥wj∥≥ ⟨∇Jλ(wj), wj⟩ = ∥wj∥2−λ∥wj∥22−
∫︂
M
α(σ)f(wj(σ))wj(σ) dvg

we see that
lim

j→+∞

∫︂
M
α(σ)

f(wj(σ))wj(σ)

ρ2j
dvg = 1− λ∥v∥22= 1.

Therefore

lim
j→+∞

∫︂
M
α(σ)

rF (wj(σ))− f(wj(σ))wj(σ)
ρ2j

dvg =
r

2
− λr

2
∥v∥22−1 + λ∥v∥22=

r

2
− 1.
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Coupling this with assumption (f3), we conclude that r
2 ≤ 1, against the assumption

that r > 2. This contradiction implies that (wj)j is a bounded sequence in H1
V (M).

We can now use (6.6) and Remark 6.7 (see also [107, Proposition 2.2] for a general
approach) to conclude the proof.

6.2 Geometry of the ∇-Theorem

As mentioned at the beginning of the chapter, our aim is to prove an existence result
through the so-called ∇-Theorem. In order to apply this tool, it is necessary to split the
space in three closed subspaces, two of finite dimension and one of infinite dimension.
Furthermore, the functional is required to have a precise geometrical structure. A stan-
dard decomposition of H1

V (M) into three subspaces can be made through an adequate
selection of some eigenspaces associated to the operator SV . The following theorem char-
acterizes completely the spectrum of the resolvent of the Schrödinger operator under the
assumptions that guarantees the compact embedding H1

V (M) ↪→ Ls(M) for s ∈ [2, 2∗).

Theorem 6.11. The following statements hold true:

(a) the smallest eigenvalue of problem (6.19) is positive, and it can be characterized as

λ1 := min
w∈H1

V (M)
∥w∥L2(M)=1

∥w∥2 (6.15)

or analogously

λ1 := min
w∈H1

V (M)\{0}

∥w∥2

∥w∥2
L2(M)

;

(b) there is a non-negative eigenfunction e1 ∈ H1
V (M) that is an associated eigenfunc-

tion to λ1 where the minimum in (6.15) is attained. Moreover, ∥e1∥L2(M)= 1 and
λ1 = ∥e1∥2;

(c) the eigenvalue λ1 is simple, i.e. if w ∈ H1
V (M) is such that∫︂

M
⟨g∇w(σ), g∇φ(σ)⟩g dvg +

∫︂
M
V (σ)w(σ)φ(σ) dvg = λ1

∫︂
M
w(σ)φ(σ) dvg

for any φ ∈ H1
V (M) then there exists ξ ∈ R such that w = ξe1;

(d) the set of eigenvalues of problem (6.19) can be arranged into a sequence (λk)k such
that

λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ λk+1 ≤ ...

where limk→∞ λk = +∞. Moreover, every eigenvalue can be characterized as

λk+1 := min
w∈E⊥

k
∥w∥L2(M)=1

∥w∥ (6.16)
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or equivalently

λk+1 := min
w∈E⊥

k

∥w∥2

∥w∥2
L2(M)

where
Ek := span{e1, . . . , ek};

(e) for any k ∈ N there is an eigenfunction ek ∈ E⊥
k−1 associated to the eigenvalue λk

such that the minimum in (6.16) is attained, i.e. ∥ek∥L2(M)= 1 and

λk = ∥ek∥2; (6.17)

(f) the eigenfunctions (ek)k are an orthonormal basis for L2(M) and an orthogonal
basis for H1

V (M);

(g) each eigenvalue has finite multiplicity. Namely, if λk is such that

λk−1 < λk = . . . = λk+h < λk+h+1 (6.18)

for some h ∈ N0, then span{ek, . . . , ek+h} is the eigenspace associated to λk.

Proof. All these results are a byproduct of the classical theorems of functional analysis
on the basic properties of compact self-adjoint operators defined on Hilbert spaces. As a
consequence of that, we will omit the proof, and we remind the interested reader to [84]
where an elementary proof is presented that can be easily adapted to our new setting.

We point out that the previous Theorem completely describes the set of solutions of
the eigenvalues problem{︄

−∆gw + V (σ)w = λw inM
w(σ)→ 0 as dg(σ0, σ)→∞.

(6.19)

The condition w(σ)→ 0 as dg(σ, σ0)→ +∞ follows from Remark 6.5.
In this section, we are going to show that the functional Jλ associated to problem

(Pλ) possesses the geometrical structure required by (∇)-Theorem under the assumption
we made on the nonlinearity f and the potential V . Before doing that, for the sake
of simplicity, we fix some notation. Henceforth, k positive and h non-negative will be
integers such that

λk−1 < λk = . . . = λk+h < λk+h+1.

We define
X1 := Ek−1, X2 := span{ek, . . . ek+h}, X3 := E⊥

k+h.

We point out that the existence of such integers h and k is guaranteed by Theorem 6.11.
Next Lemma generalize the Poincaré inequality to the case in which the functions

belong to eigenspaces or its orthogonal.
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Lemma 6.12. Let k ∈ N. The following inequalities hold:

(a) if w ∈ E⊥
k then

∥w∥2≥ λk+1∥w∥2L2(M); (6.20)

(b) if w ∈ Ek then
∥w∥2≤ λk∥w∥2L2(M). (6.21)

Proof. We start with the case (a). Since w ∈ E⊥
k we can write

w =

∞∑︂
j=k+1

αjej

for some coefficients αj ∈ R. Thus, we compute

∥w∥2= ⟨w,w⟩ =
∞∑︂

j=k+1

α2
jλj ≥ λk+1∥w∥2L2(M)

where we used Theorem 6.11 (f), (6.17) and the Bessel-Parseval’s identity (see for in-
stance [28, Theorem 5.9]). On the other hand, when w ∈ Ek we have

w =

k∑︂
j=1

αjej .

As a consequence, similarly as we did above we get

∥w∥2=
k∑︂
j=1

α2
jλj ≤ λk∥w∥2L2(M).

Next Proposition will show the functional Jλ verifies the desired geometrical property
we need to apply the ∇-Theorem.

Proposition 6.13. If assumptions (f1) – (f3) hold and λ ∈ (λk−1, λk), then there are
ρ,R,R′ ∈ R, with R′ > R > ρ > 0 such that

sup
{w∈X1 | ∥w∥≤R}∪{w∈X1⊕X2 | ∥w∥=ς}

Jλ < inf
{w∈X2⊕X3 | ∥w∥=ρ}

Jλ

for all ς ∈ [R,R′]

Proof. We start showing
inf

{w∈X2⊕X3 | ∥w∥=ρ}
Jλ > 0
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choosing ρ adequately and observing that X2 ⊕X3 = E⊥
k−1. Applying twice the Hölder

inequality, we get ∫︂
M
α(σ)|w(σ)|2 dvg ≤ ∥α∥

L
2∗

2∗−2 (M)
∥w∥2

L2∗ (M)
(6.22)

and ∫︂
M
α(σ)|w(σ)|r dvg ≤ ∥α∥

L
2∗

2∗−r (M)
∥w∥r

L2∗ (M)
. (6.23)

From Lemma 6.8 (i), (6.22) and (6.23) we obtain

Jλ(w) ≥
1

2
∥w∥2−λ

2
∥w∥2L2(M)−ε

∫︂
M
α(σ)|w(σ)|2 dvg −Aε1

∫︂
M
α(σ)|w(σ)|r dvg

≥ 1

2
∥w∥2−λ

2
∥w∥2L2(M)−ε∥α∥

L
2∗

2∗−2 (M)
∥w∥2

L2∗ (M)
−Aε1∥α∥

L
2∗

2∗−r (M)
∥w∥r

L2∗ (M)
.

Now, recalling H1
V (M) ↪→ Ls(M) for every s ∈ [2, 2∗] continuously, it is possible to find

C > 0 such that

Jλ(w) ≥
1

2
∥w∥2−λ

2
∥w∥2L2(M)−εC∥α∥

L
2∗

2∗−2 (M)
∥w∥2−Aε1C∥α∥

L
2∗

2∗−r (M)
∥w∥r.

Finally, Lemma 6.12 yields

Jλ(w) ≥
[︃
1

2

(︃
1− λ

λk

)︃
− εC∥α∥

L
2∗

2∗−2 (M)

]︃
∥w∥2−Aε1C∥α∥

L
2∗

2∗−r (M)
∥w∥r.

At this point, choosing ε > 0 such that

1

2

(︃
1− λ

λk

)︃
− εC∥α∥

L
2∗

2∗−2 (M)
> 0

and ρ sufficiently small, the desired assertion is proved. On the other hand, it is possible
to prove

sup
{w∈X1 | ∥w∥≤R}∪{w∈X1⊕X2 | ∥w∥=R}

Jλ ≤ 0.

Indeed, in the case w ∈ X1, from Lemma 6.12 and (f3), recalling α ≥ 0 for a.e. σ ∈ M,
it follows that

Jλ(w) ≤
λk−1 − λ

2
∥w∥2L2(M)≤ 0.

Instead, when w ∈ X1 ⊕X2 it suffices to use Lemma 6.8 (iii) to obtain

Jλ(w) ≤
1

2
∥w∥2−A3

∫︂
M
α(σ)|w(σ)|r dvg +A4∥α∥L1(M).

Since X1 ⊕ X2 has finite dimension all norms are equivalent, then choosing R > 0 big
enough it is straightforward to see that r > 2 implies Jλ(w) ≤ 0.
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6.3 Validity of the (∇)-condition

This section is devoted to showing the validity of the (∇)-condition introduced in Def-
inition 6.1. Before proving the main result of this section, we need two preliminary
Lemmas.

Proposition 6.14. Assume Hypotheses (f1) – (f3) hold. Then for every ϱ > 0 there
exists δϱ > 0 such that for each λ ∈ [λk−1 + ϱ, λk+h+1 − ϱ] the only critical point u of Jλ
constrained on X1 ⊕X3 with Jλ(u) ∈ [−δϱ, δϱ] is the trivial one.

Proof. By contradiction, we suppose the statement false. So, we assume the existence
of ϱ̃ > 0, a sequence µj ⊂ [λk−1 + ϱ̃, λk+h+1 − ϱ̃] and a sequence (wj)j ⊂ X1 ⊕ X3 of
non-trivial critical points, i.e.

⟨∇Jµj (wj), φ⟩ = 0 for any φ ∈ X1 ⊕X3 (6.24)

such that
lim

j→+∞
Jµj (wj) = 0. (6.25)

Since (wj)j ⊂ X1 ⊕X3, we can choose φ = wj in (6.24). As a consequence we have

0 = ∥wj∥2−µj∥wj∥2L2(M)−
∫︂
M
α(σ)f(wj(σ))wj(σ) dvg. (6.26)

Then, we notice that (6.26) can be rewritten as

0 = 2Jµj (wj) + 2

∫︂
M
α(σ)F (wj(σ)) dvg −

∫︂
M
α(σ)f(wj(σ))wj(σ) dvg.

Exploiting (f3) in (6.26) we obtain

0 ≤ 2Jµj (wj) + (2− r)
∫︂
M
α(σ)F (wj(σ)) dvg. (6.27)

Reordering the terms in (6.27) we get

0 ≤ (r − 2)

∫︂
M
α(σ)F (wj(σ)) dvg ≤ 2Jµj (wj). (6.28)

Putting together (6.25) and (6.28) we obtain

lim
j→∞

∫︂
M
α(σ)F (wj(σ)) dvg = 0. (6.29)

Now, recalling wj ∈ X1 ⊕X3 for all j ∈ N, we are able to find w1,j ∈ X1 and w3,j ∈ X3

such that wj = w1,j + w3,j . At this point, on the one hand, we test (6.24) with φ =
w1,j − w3,j and exploiting the properties of orthogonality of w1,j and w3,j we have

0 = ⟨∇Jµj (wj), w1,j − w3,j⟩
= ∥w1,j∥2−∥w3,j∥2−µj∥w1,j∥2L2(M)+µj∥w3,j∥2L2(M) (6.30)

−
∫︂
M
α(σ)f(wj(σ))(w1,j(σ)− w3,j(σ)) dvg.
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Rearranging (6.30) and applying Lemma 6.12 we get∫︂
M
α(σ)f(wj(σ))(w1,j(σ)− w3,j(σ)) dvg = ∥w1,j∥2−∥w3,j∥2−µj∥w1,j∥2L2(M)

+ µj∥w3,j∥2L2(M)

≤ ∥w1,j∥2−∥w3,j∥2−
µj
λk−1

∥w1,j∥2

+
µj

λk+h+1
∥w3,j∥2 (6.31)

=
λk−1 − µj
λk−1

∥w1,j∥2+
µj − λk+h+1

λk+h+1
∥w3,j∥3

< − ϱ̃

λk−1
∥w1,j∥2−

ϱ̃

λk+h+1
∥w3,j∥2

< − 2ϱ̃

λk+h+1
∥wj∥2. (6.32)

On the other hand, thanks to Hölder and the continuous embedding H1
V (M) ↪→ Lr(M),

we have⃓⃓⃓⃓∫︂
M
α(σ)f(wj(σ))(w1,j(σ)− w3,j(σ)) dvg

⃓⃓⃓⃓
≤ ∥αf(wj)∥Lr′ (M)∥w1,j − w3,j∥Lr(M)

≤ C∥αf(wj)∥Lr′ (M)∥wj∥ (6.33)

for some C > 0, where we used

⟨w1,j − w3,j , w1,j − w3,j⟩ = ∥w1,j∥2−∥w3,j∥2= ∥wj∥2.

Coupling (6.31) and (6.33) we have

−C∥αf(wj)∥Lr′ (M)∥wj∥≤ −
2ϱ̃

λk+h+1
∥wj∥2

from which it follows that
2ϱ̃

λk+h+1
∥wj∥≤ C∥αf(wj)∥Lr′ (M). (6.34)

Then, we use Lemma 6.8 (ii) and we obtain∫︂
M
|α(σ)f(wj(σ))|r

′
dvg ≤

∫︂
M

[︁
α(σ)

(︁
A2 +Aε2|wj |r−1

)︁]︁ r
r−1 . (6.35)

Recalling that for any a, b ≥ 0 we have

(a+ b)r
′ ≤ 2r

′
(ar

′
+ br

′
),

it follows from (6.35) that∫︂
M
|α(σ)f(wj(σ))|r

′
dvg ≤

(︂
2A2∥α∥Lr′ (M)

)︂r′
+ (2Aε2)

r′
∫︂
M

(α(σ))r
′
|wj |r dvg. (6.36)
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Finally, we exploit Lemma 6.8 in (6.36) and we obtain∫︂
M
|α(σ)f(wj(σ))|r

′
dvg ≤

(︂
2A2∥α∥Lr′ (M)

)︂r′
+
A4

A3
(2Aε2)

r′ ∥α∥r′
Lr′ (M)

+ (2Aε2)
r′ A4

A3
∥α∥r′−1

L∞(M)

∫︂
M
α(σ)F (wj(σ)) dvg. (6.37)

From (6.29), (6.34) and (6.37), we can deduce that (wj)j is bounded in H1
V (M). Hence,

up to a subsequence
wj ⇀ w∞ in H1

V (M).

Furthermore, recalling that H1
V (M) ↪→ Lr(M) is compact, we have

wj → w∞ in Lr(M),

wj(σ)→ w∞(σ) for a.e. σ ∈M

as j →∞. Now, from (6.34), Lemma 6.8 (i) and the Minkowski inequality it follows

0 <
2ϱ̃

Cλk+h+1
≤
∥αf(wj)∥Lr′ (M)

∥wj∥

≤

(︃∫︂
M

[︁
α(σ)

(︁
2ε|wj |+rAε1|wj |r−1

)︁]︁ r
r−1 dvg

)︃ r−1
r

∥wj∥
(6.38)

≤
4ε
(︂∫︁

M α(σ)
r

r−1 |wj |
r

r−1 dvg

)︂ r−1
r

+ 2rAε1

(︂∫︁
M α(σ)

r
r−1 |wj |r dvg

)︂ r−1
r

∥wj∥
.

Recalling that the embedding H1
V (M) ↪→ Ls(M) is continuous for every s ∈ [2, 2∗] we

deduce from (6.38) that

0 <
2ϱ̃

Cλk+h+1
≤ C̃

(︁
2ε+ rAε1∥wj∥r−2

)︁
(6.39)

for some optimal C̃ > 0. With similar estimates, it is straightforward to check that

|α(σ)f(wj(σ))|
r

r−1 ≤ Cε1 |α(σ)|
r

r−1+Cε2 |wj(σ)|r

and
|α(σ)F (wj(σ))|≤ Cε3 |wj(σ)|2+Cε4 |wj(σ)|r

choosing adequately Cε1 , Cε2 , Cε3 , Cε4 > 0. Hence, the general Lebesgue dominated conver-
gence Theorem [101, Section 4.4, Theorem 19] implies

lim
j→∞

∫︂
M
α(σ)F (wj(σ)) dvg =

∫︂
M
α(σ)F (w∞(σ)) dvg (6.40)
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and
lim
j→∞

∫︂
M
|α(σ)f(wj(σ))|

r
r−1 dvg =

∫︂
M
|α(σ)f(w∞(σ))|

r
r−1 dvg. (6.41)

Coupling (6.29) and (6.40), keeping into account (f3), we see that w∞ = 0 is the only
admissible case. At this point, only two possible scenarios are possible. The first one is
that wj → 0 in H1

V (M), but if that were true, letting j → ∞, utilizing (6.39), then we
would have

0 <
2ϱ̃

Cλk+h+1
≤ 2εC̃

which is impossible since ε > 0 is arbitrary. The second one is that there exist η > 0
such that ∥wj∥≥ η for each j ∈ N. In this case, firstly we notice that from w∞ = 0 and
f(0) = 0 it follows

lim
j→∞

∫︂
M
|α(σ)f(wj(σ))|

r
r−1 dvg = 0. (6.42)

Then, thanks to (6.42), (6.34) becomes

0 <
2ϱη̃

λk+h+1
≤ 0,

which is clearly a contradiction.

In the sequel, given a closed subspace Y of H1
V (M) we will denote with PY :H1

V (M)→
Y the usual orthogonal projection.

Proposition 6.15. Suppose f satisfies (f1) – (f3), λ ∈ R and let (wj)j ⊂ H1
V (M) be a

sequence such that
(Jλ(wj))j is bounded (6.43)

PX2wj → 0 in H1
V (M) (6.44)

PX1⊕X3∇Jλ(wj)→ 0 in H1
V (M). (6.45)

Then (wj)j is bounded in H1
V (M).

Proof. We argue by contradiction, and we suppose that

∥wj∥→ ∞ (6.46)

as j →∞. Normalizing we assume up to a subsequence

wj
∥wj∥

⇀ w∞ in H1
V (M)

and
wj
∥wj∥

→ w∞ in Ls(M) (6.47)

as j →∞ for all s ∈ [2, 2∗).
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Clearly, we can write
wj = PX2wj + PX1⊕X3wj (6.48)

with PX2wj → 0. Recalling (6.5), (6.6) and (6.48) we have

⟨PX1⊕X3∇Jλ(wj), wj⟩ = ⟨∇Jλ(wj), wj⟩ − ⟨PX2∇Jλ(wj), wj⟩

= ∥wj∥2−λ∥wj∥2L2(M)−
∫︂
M
α(σ)f(wj(σ))wj(σ) dvg (6.49)

− ⟨PX2

(︁
wj − S−1

V (λwj + αf(wj))
)︁
, wj⟩

By orthogonality we get

⟨PX2w, v⟩ = ⟨PX2w,PX1⊕X3v + PX2v⟩ = ⟨PX2w,PX2v⟩

and
⟨w,PX2v⟩ = ⟨PX1⊕X3w + PX2w,PX2v⟩ = ⟨PX2w,PX2v⟩

for every w, v ∈ H1
V (M), which means that PX2 is a symmetric operator. In virtue of

that, we have

⟨PX2

(︁
wj − S−1

V (λwj + αf(wj))
)︁
, wj⟩ = ∥PX2wj∥2−λ⟨S−1

V wj , PX2wj⟩
− ⟨S−1

V (αf(wj)) , PX2wj⟩. (6.50)

Recalling (6.4) we get

λ⟨PX2wj ,S
−1
V wj⟩+ ⟨PX2wj ,S

−1
V (αf(wj))⟩

= λ∥PX2wj∥2L2(M)+

∫︂
M
α(σ)f(wj(σ))PX2wj(σ) dvg (6.51)

Inserting (6.50) and (6.51) in (6.49) we obtain

⟨PX1⊕X3∇Jλ(wj), wj⟩ = 2Jλ(wj) + 2

∫︂
M
α(σ)F (wj(σ)) dvg

− ∥PX2wj∥2+λ∥PX2wj∥2L2(M)−
∫︂
M
α(σ)f(wj(σ))wj(σ) dvg

+

∫︂
M
α(σ)f(wj(σ))PX2wj(σ) dvg. (6.52)

Reordering the terms in (6.52) and using (6.43), (6.44), (6.45) and (6.46) we get

1

∥wj∥r

(︃
2

∫︂
M
α(σ)F (wj(σ)) dvg −

∫︂
M
α(σ)f(wj(σ))wj(σ) dvg

+

∫︂
M
α(σ)f(wj(σ))PX2wj dvg

)︃
→ 0 (6.53)

as j →∞.
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Claim: w∞ = 0
We first need to show ∫︂

M
α(σ)f(wj(σ))PX2wj dvg

∥wj∥r
→ 0 (6.54)

as j →∞. As a first step, observe that all eigenfunctions are bounded by [44, Theorem
3.1]. Moreover, having X2 finite dimension, all norms are equivalent. Therefore, from
(6.44) it follows that

∥PX2wj∥L∞(M)→ 0

as j →∞. Then, from Lemma 6.8 (i)⃓⃓⃓⃓
⃓⃓⃓⃓
∫︂
M
α(σ)f(wj(σ))PX2wj(σ) dvg

∥wj∥r

⃓⃓⃓⃓
⃓⃓⃓⃓

≤
2ε

∫︂
M
α(σ)wj(σ) dvg + rAε1∥PX2wj∥L∞(M)

∫︂
M
α(σ)|wj(σ)|r−1 dvg

∥wj∥r
.

Applying the Hölder inequality twice and recalling H1
V (M) ↪→ L2(M) it follows⃓⃓⃓⃓

⃓⃓⃓⃓
∫︂
M
α(σ)f(wj(σ))PX2wj(σ) dvg

∥wj∥r

⃓⃓⃓⃓
⃓⃓⃓⃓

≤
2εC∥α∥L2(M)

∥wj∥r−2
+

rAε1∥PX2wj∥L∞(M)∥α∥rLr(M)

⃦⃦⃦
wj

∥wj∥

⃦⃦⃦r−1

Lr(M)

∥wj∥

for some C > 0. Now, the validity of (6.54) follows from the boundedness of the sequence
wj/∥wj∥ in Lr(M). In virtue of (6.54), combining (6.43) with (f3), we obtain

o(1) =

2

∫︂
M
α(σ)F (wj(σ)) dvg −

∫︂
M
α(σ)f(wj(σ))wj(σ) dvg

∥wj∥r

≤
(2− r)

∫︂
M
α(σ)F (wj(σ)) dvg

∥wj∥r
≤ 0 (6.55)

from which we deduce

lim
j→∞

∫︂
M
α(σ)F (wj(σ)) dvg

∥wj∥r
= 0. (6.56)
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At this point, Lemma 6.8 (iii) implies∫︂
M
α(σ)|wj |r dvg

∥wj∥r
≤
A4∥α∥L1(M)

A3∥wj∥r
+

1

A3∥wj∥r

∫︂
M
α(σ)F (wj(σ)) dvg.

Combining this with (6.56) we get that α(σ)|wj(σ)|r→ 0 a.e. inM as j →∞, but then
the claim follows because of the positivity a.e of α. Now, we observe that

0← Jλ(wj)

∥wj∥2
=

1

2
− λ

2

⃦⃦⃦⃦
⃦ wj
∥wj∥

⃦⃦⃦⃦
⃦
2

L2(M)

− 1

∥wj∥2

∫︂
M
α(σ)F (wj(σ)) dvg.

Recalling wj/∥wj∥→ 0 in L2(M) we obtain

1

∥wj∥2

∫︂
M
α(σ)F (wj(σ)) dvg →

1

2
(6.57)

as j →∞. Furthermore, from Lemma 6.8 (iii) it follows

1

∥wj∥2

∫︂
M
α(σ)|wj(σ)|r dvg ≤

A4∥α∥L1(M)

A3∥wj∥2
+

1

A3∥wj∥2

∫︂
M
α(σ)F (wj(σ)) dvg. (6.58)

Because of (6.57), the second member of (6.58) is bounded and so there exist a C̃ > 0
such that ∫︂

M
α(σ)|wj(σ)|r dvg ≤ C̃∥wj∥2. (6.59)

At this point, applying Lemma 6.8 (ii), the Hölder inequality and (6.59), we notice∫︂
M
|α(σ)f(wj(σ))PX2wj(σ)| dvg

∥wj∥2

≤
∥PX2wj∥L∞(M)

∥wj∥2

(︃
A2∥α∥L1(M)+A

ε
2

∫︂
M
|α(σ)|

1
r |α(σ)|

r−1
r |wj(σ)|r−1

)︃

≤ ∥PX2wj∥L∞

⎡⎢⎢⎢⎣A2∥α∥L1(M)

∥wj∥2
+
Aε2∥α∥

1
r

L1(M)

∥wj∥
2
r

⎛⎜⎜⎝
∫︂
M
α(σ)|wj(σ)|r dvg

∥wj∥2

⎞⎟⎟⎠
r−1
r

⎤⎥⎥⎥⎦
≤ ∥PX2wj∥L∞

⎡⎣A2∥α∥L1(M)

∥wj∥2
+
Aε2C̃

1− 1
r ∥α∥

1
r

L1(M)

∥wj∥
2
r

⎤⎦ ,
which implies

lim
j→∞

∫︂
M
|α(σ)f(wj(σ))PX2wj(σ)| dvg

∥wj∥2
= 0. (6.60)
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Dividing (6.52) by ∥wj∥2 and using (6.43), (6.44), (6.45) and (6.60) we get

1

∥wj∥2

(︃∫︂
M
α(σ)F (wj(σ)) dvg −

∫︂
M
α(σ)f(wj(σ))wj(σ) dvg

)︃
→ 0

as j →∞. To conclude the proof, we argue as did in (6.55) to obtain

lim
j→∞

1

2

∫︂
M
α(σ)F (wj(σ)) dvg = 0. (6.61)

Clearly, (6.57) and (6.61) are not compatible.

Proposition 6.16. Assume f satisfies (f1) – (f3). For any ϱ > 0 there exists ηϱ > 0
such that for any η′, η′′ ∈ (0, ηϱ), with η′ < η′′ we have that ∇ (Jλ, X1 ⊕X3, η

′, η′′) is
verified for all λ ∈ (λk−1 + ϱ, λk+h+1 − ϱ).

Proof. By contradiction, we suppose that there is ϱ̃ > 0 such that for any ηϱ̃ > 0 we can
find λ̃ ∈ [λk−1 + ϱ̃, λk+h+1 − ϱ̃) and η′ < η′′ such that

(∇)
(︁
Jλ̃, X1 ⊕X3, η

′, η′′
)︁

does not hold. If so, it is possible to find a sequence (wj)j ⊂ H1
V (M) such that

Jλ̃(wj) ∈
[︁
η′, η′′

]︁
dist(wj , X1 ⊕X3)→ 0 as j →∞ (6.62)

PX1⊕X3∇Jλ̃(wj)→ 0 as j →∞. (6.63)

Because of that, Proposition 6.15 can be applied, thus (wj)j is bounded in H1
V (M).

Hence, up to a subsequence,

wj ⇀ w∞ in H1
V (M) (6.64)

wj → w∞ in Ls(M) for all s ∈ [2, 2∗) (6.65)

wj(σ)→ w∞(σ) a.e inM

as j →∞. Now, arguing as we did to obtain (6.36), we can find Ã
ε
1, Ã

ε
2 > 0 such that∫︂

M
|α(σ)f(wj(σ))|

r
r−1 dvg ≤ Ã

ε
1 + Ã

ε
2

∫︂
M
|wj(σ)|r dvg.

Since wj → w∞ in Lr(M) there is C̃ > 0 such that∫︂
M
|α(σ)f(wj(σ))|

r
r−1 dvg ≤ C̃.

Then, recalling that S−1
V is a compact operator,

PX1⊕X3S
−1
V

(︂
λ̃wj + αf(wj)

)︂
→ PX1⊕X3S

−1
V

(︂
λ̃w∞ + αf(w∞)

)︂
. (6.66)
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Recalling (6.6), we have

PX1⊕X3∇Jλ(wj) = wj − PX2wj − PX1⊕X3S
−1
V

(︂
λ̃wj + αf(wj)

)︂
.

Since that, (6.66), (6.62) and (6.63) we deduce

wj → PX1⊕X3S
−1
V

(︂
λ̃w∞ + αf(w∞)

)︂
in H1

V (M) as j →∞. Now, on the one hand, from (6.5) and (6.63) it follows

⟨∇Jλ̃(wj), φ⟩ = ⟨wj , φ⟩ − λ̃⟨wj , φ⟩L2(M) −
∫︂
M
α(σ)f(wj(σ))φ(σ) dvg → 0 (6.67)

for any φ ∈ X1 ⊕X3 as j →∞.

On the other hand, from (6.64) and (6.65) we also have

⟨∇Jλ̃(wj), φ⟩ → ⟨w∞, φ⟩ − λ̃⟨w∞, φ⟩L2(M) −
∫︂
M
α(σ)f(wj(σ))φ(σ) dvg (6.68)

for any φ ∈ X1 ⊕X3. Coupling (6.67) and (6.68) we get that w∞ is a critical point for
Jλ̃ constrained on X1 ⊕ X3. Then, we can apply Proposition 6.14 to obtain w∞ = 0.
But, since Jλ̃(wj) ≥ η′, wj → w∞ in H1

V (M), exploiting the continuity of Jλ̃ we obtain
Jλ̃(w∞) > 0. This is a contradiction, as Jλ̃(0) = 0.

6.4 Proof of Theorem 6.4

We begin with a technical result.

Lemma 6.17. If f verifies (f1)–(f3) then

lim
λ→λk

sup
w∈Ek+h

Jλ(w) = 0

Proof. We start noticing that from Lemma 6.8 (iii) it follows

lim
ξ→±∞

Jλ(ξw) = −∞

for all w ∈ Ek+h, thus
sup

w∈Ek+h

Jλ(w) is achieved.

Now, by contradiction we suppose there is a sequence τj → λk as j →∞ and a sequence
(wj)j ⊂ Ek+h such that

Jτj (wj) = sup
w∈Ek+h

Jλ(w) > γ (6.69)

for some γ > 0. We split the proof analyzing separately the case (wj)j bounded and
unbounded. In the first one, since the weak and the strong topology coincide, we can
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suppose wj → w∞ in Ek+h. In order to reach a contradiction, keeping into account (6.69)
and letting j →∞, it suffices to apply Lemma 6.12 to obtain

γ ≤ Jλk(w∞) = (λk+h − λk)−
∫︂
M
α(σ)F (w∞(σ)) dvg ≤ 0.

Instead, if (wj)j is unbounded, we can assume ∥wj∥→ ∞ as j → ∞. From Lemma 6.8
(iii) it follows

0 < γ ≤ Jτj (wj) ≤
1

2
∥wj∥2−

τj
2
∥wj∥2L2(M)−A3∥wj∥rLr(M)+A4∥α∥L1(M).

Exploiting again the fact that on the finite-dimensional subspace Eh+k all norms are
equivalent, the right-hand side of the above inequality goes to −∞ concluding the proof.

Proof of Theorem 6.4. We want to apply [77, Theorem 2.10]. We start choosing ϱ > 0.
In correspondence of that, thanks to Proposition 6.16 there are ηϱ, η

′, η′′ > 0, with
η′ < η′′ < ηϱ such that ∇ (Jλ, X1 ⊕X3, η

′, η′′) is verified for all λ ∈ (λk−1+ϱ, λk+h+1−ϱ).
Exploiting Lemma 6.17 we also have the existence of ϱ > 0, with ϱ ≤ ϱ such that

sup
w∈Ek+h

Jλ(w) ≤ η′

for λ ∈ (λk − ϱ, λk). At this point, recalling Propositions 6.10 and 6.13, all hypothesis of
Theorem 2.10 in [77] are satisfied, and we have the existence of two non-trivial critical
points w1 and w2 such that

Jλ(wi) ∈
[︁
η′, η′′

]︁
(i = 1, 2).

The third critical point w3 is a consequence of the classical Linking Theorem. Further-
more, from Lemma 6.17, choosing λ sufficiently close to λk, we can see that

Jλ(wi) < sup
w∈Ek+h

Jλ(w) ≤ Jλ(w3), (i = 1, 2)

proving that w1, w2, w3 are distinct.
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