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Abstract

We show the existence of complex dynamics for a seasonally per-
turbed version of Goodwin growth cycle model, both in its original
formulation and for a modified formulation, encompassing nonlinear
expressions of the real wage bargaining function and of the investment
function. The need to deal with a modified formulation of Goodwin
model is connected with the economically sensible position of orbits,
which have to lie in the unit square, in contrast to what occurs in
the model original formulation. In proving the existence of chaos, we
follow the seminal idea by Goodwin (1990) of studying forced models
in economics. Namely, the original and the modified formulations of
Goodwin model are described by Hamiltonian systems, characterized
by the presence of a nonisochronous center, and the seasonal variation
of the parameter representing the ratio between capital and output,
which is common to both frameworks, is empirically grounded. Hence,
exploiting the periodic dependence on time of that model parameter
we enter the framework of Linked Twist Maps. The topological results
valid in this context allow us to prove that the Poincaré map associ-
ated with the considered systems is chaotic, focusing on sets that lie
in the unit square also when dealing with the original version of Good-
win model. Accordingly, the trademark features of chaos follow, such
as sensitive dependence on initial conditions and positive topological
entropy.

∗E-mail address: marina.pireddu@unimib.it

1



Keywords: Goodwin growth cycle model, nonisochronous center, parameter
seasonal perturbation, linked twist maps, chaotic dynamics.

1 Introduction

In the last years of his research activity, Goodwin in [13] studied, by means
of numerical experiments, what can be obtained by the superimposition of
exogenous cycles to cycles endogenously generated by a model, focusing in
particular on the one by Rössler [33], and concluding that “At this point it
becomes appropriate to consider the relevance, if any, that these forced models
have to economics. The answer is not difficult to find: the economy consists
of a very large number of separate and distinct parts, with the result that
these parts are subject to continual exogenous forces. To begin with there are
the individual national economies increasingly acted on by the movements of
the world economy. Then within the economy there are various markets with
dynamics particular to them. There is the annual solar cycle with its influ-
ence on various markets, for example the agricultural, the touristic, the fuel,
and any number of others” [13, pages 121–123].
Taking inspiration from such considerations, we investigate the effect pro-
duced on the dynamics of both the original version and a modified formu-
lation of his celebrated growth cycle model (see [11, 12])1 by the exogenous
periodic variation in one of the model parameters, whose seasonal oscillation
is empirically grounded.
We recall that the Goodwin model represents, in a “starkly schematized ”
in his own words, yet incisive manner, the involved relationships between
capitalists and workers. The need to deal with a modified formulation of
the growth cycle model comes from the fact that the original formulation
proposed in [11, 12] is not coherent. Indeed, despite the linearity of the
real wage bargaining function and of the investment function, the original
Goodwin model consists of two nonlinear differential equations of the Lotka-
Volterra type, whose variables are wage share in national income and pro-
portion of labor force employed, which by definition cannot exceed unit. On
the other hand, orbits of the Goodwin model can lie everywhere in the first

1The interested reader can find in [37] a survey on the vast literature about the Goodwin
model, concerning possible extensions or modifications of the original setting in [11, 12].
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quadrant, possibly outside the unit square.2 Some contributions, such as
those by Desai et al. [8] and Harvie et al. [14] have been devoted to fix such
issue in an economic sensible manner. Nonetheless, as shown by Madotto
et al. in [18], those works do not solve the problem with the orbit position,
since the assumptions made in those two papers are not sufficient to guar-
antee that orbits lie inside the unit square. Hence, keeping the settings in
[8, 14] as starting point, but taking into consideration the results obtained
in [18], we here deal with a different reformulation of Goodwin growth cycle
model, which in its outcomes is consistent with the meaning of the variables
and, in particular, with their admissible range. In more detail, in our model
revisitation, in regard to the real wage bargaining function we opt for the
nonlinear formulation of the Phillips curve proposed by Phillips in [27], and
considered e.g. in [8], while for the investment function we deal with a sim-
ilar nonlinear formulation, used in the simulative analysis performed in [18]
and satisfying the conditions found in that work, so as to ensure that orbits
lie in the feasible region. We stress that a nonlinear investment function is
grounded also from an economic viewpoint since, according to [9], followed
by [39], it is suitable to encompass the description of a more flexible savings
behavior with respect to its linear counterpart. Moreover, the nonlinear ver-
sion of the Phillips curve [27] was initially considered by Goodwin, too, who
then linearized that expression in its well-known model so as to obtain an
approximation for it “in the interest of lucidity and ease of analysis ” [11,
page 55] (see also [8, page 2666]). Still the economic interpretation requires
the real wage bargaining function to be increasing in the proportion of labor
force employed, while the investment function has to be decreasing in the
wage share in national income.
Since the modified formulation of Goodwin model that we are going to ana-
lyze fulfills the conditions in [18], we know that, like the original framework
in [11, 12], it is still a Hamiltonian system, characterized by the presence of
a global, nonisochronous center. Hence, in order to analytically show what
are the dynamic consequences produced on its periodic orbits by the exoge-
nous periodic variation in one of the model parameters, we are going to use
the Linked Twist Maps (LTMs hereinafter) method, recently employed for

2Goodwin was aware of this fact and indeed in [11, page 57] he wrote “Both u [wage
share in national income] and v [employment proportion] must be positive and v must, by
definition, be less than unity; u normally will be also but may, exceptionally, be greater
than unity (wages and consumption greater than total product by virtue of losses and
disinvestment) ”.
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instance in [28] to show the existence of complex dynamics in two evolution-
ary game theoretic contexts. In particular, we will assume that the chosen
parameter alternates in a periodic fashion between two different values, e.g.
due to a seasonal effect, and this will allow us to prove the existence of
chaotic dynamics. In order to make our choice empirically grounded, we will
focus on the parameter that describes the ratio between capital and output,
since, keeping the capital level constant, production is no doubt influenced
by phenomena that are periodic in nature. We can for instance take into con-
sideration the oscillatory behavior during the solar year of the energy price
in electricity markets in consequence of the varying demand over the months,
as investigated e.g. in [1, 2], or the different supply in the agricultural com-
modity markets in the various seasons. We stress however that the same
assumption about a periodic variation between two different values made on
any other model parameter would produce analogous results in terms of gen-
erated dynamics, since all parameters influence the center position.3

In order to explain what the LTMs technique consists in we need to recall
on the one hand the original setting of linked twist maps, as studied for
instance in [5, 31, 32], with the corresponding assumptions of smoothness,
preservation of Lebesgue measure and monotonicity of the angular speed with
respect to the radial coordinate, and on the other hand the Stretching Along
the Paths (henceforth, SAP) method, developed in the planar case in [21, 22]
and extended to higher dimensional frameworks in [29]. The SAP method
is a topological technique that allows to show the existence of fixed points,
periodic points and chaotic dynamics for continuous maps that expand the
arcs along one direction and that are defined on sets homeomorphic to the
unit cube in Euclidean spaces. The context of LTMs represents a geometrical
framework in which it is possible to employ the SAP method in view of prov-
ing, as done e.g. in [24, 30], the presence of the trademark features of chaos,
such as sensitive dependence on initial conditions and positive topological
entropy. In more detail, by a Linked Twist Map we mean the composition of
two twist maps, acting each on an annulus, with the two annuli being linked
together, i.e., crossing in the two-dimensional case along two (or more) planar

3We remark that this is a sufficient, albeit not necessary, condition in order to apply
the LTMs method anytime we deal with a nonisochronous center, as long as the switch-
ing times between the regimes described by the two different parameter values are large
enough. Namely, as shown e.g. in [26, 28], the LTMs technique can be used even when,
in consequence of the periodic perturbation of one of the model parameters, the center
position does not vary, but the shape of the orbits is modified in a suitable manner.
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sets homeomorphic to the unit square, that we call generalized rectangles.
Since our approach is purely topological, differently from [5, 31, 32], we just
need a twist condition on the boundary of the two linked annuli, similar to
what required in the Poincaré-Birkhoff fixed point theorem.
As explained above, in the present paper we are going to apply the LTMs
method to the original and to the modified formulations of Goodwin model,
that according to the findings in [18] are Hamiltonian systems with a non-
isochronous center, whose position varies when changing the value of one of
the model parameters. In particular, in both frameworks we will act on the
ratio between capital and output, since it is sensible to assume that it alter-
nates, due to a seasonal effect, in a periodic fashion between two different
levels, one of which may be seen as a perturbation of the other. In this man-
ner, starting either from the original or the modified formulation of Goodwin
model, we obtain two conservative systems, the unperturbed and the per-
turbed ones, and for each system we can consider an annulus made of energy
level lines. Under suitable conditions on the orbits the two annuli are linked
together, crossing in two disjoint generalized rectangles. In our settings, the
LTMs technique consists in finding two such linked annuli, whose intersec-
tions contain chaotic sets: their existence will be established by applying the
SAP method to the Poincaré map obtained as composition of the Poincaré
maps associated with the unperturbed system and the perturbed one. This
leads us to work with discrete-time dynamical systems. Like it happened in
other contexts in which the LTMs method was used (see e.g. [28, 30]), also
our results about the existence of complex dynamics are robust with respect
to small changes, in L1 norm, in the coefficients of the considered settings.
We stress that the nonisochronicity of the center plays a crucial role in view
of applying the SAP method, because it implies that the Poincaré maps pro-
duce a twist effect on the linked annuli, since the orbits composing them are
run with a different speed. In this manner, the generalized rectangles where
the annuli meet are increasingly deformed with the passing of time. Hence,
if the regimes governed by the unperturbed system and by the perturbed one
are sufficiently long-lasting, the Poincaré maps transform those generalized
rectangles into spiral-like sets, that intersect many times the same general-
ized rectangles, so that the stretching property required by the SAP method
in order to guarantee the existence of chaotic sets inside the generalized rect-
angles is fulfilled.
Regarding the nonisochronicity of the center in the settings that we are go-
ing to analyze along the manuscript, for the original formulation proposed
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in [11, 12] we can rely on the classical results in [34, 38] about the mono-
tonicity of the period of orbits for the Lotka-Volterra predator-prey model
with respect to the energy level, since Goodwin growth cycle model is a spe-
cial case of that more general framework. For the modified formulation of
Goodwin model that we take into account we will instead make reference to
the findings obtained in [18] about the period of small and large cycles for
a wide class of Hamiltonian systems encompassing the one here considered.
More precisely, although an exhaustive analysis of the period of the orbits
seems not to be easy to perform, as discussed in [18], due to the presence of
singularities in the model, Madotto et al. prove, on the one hand, that the
approximation of the period length of small cycles by means of the period of
the linearized system is valid near the equilibrium point and, on the other
hand, that the period length of large cycles, approaching the boundary of
the feasible set, i.e., the unit square in our context, is arbitrarily high. In
view of illustrating by means of a concrete example our main result about
the existence of complex dynamics for the modified formulation of Goodwin
model, we numerically check that the periods of the orbits coinciding with
the inner and the outer boundaries of the linked annuli considered in our
example do not coincide, finding in particular that the period of the orbits
increases with the energy level, in analogy with the classical results in [34, 38]
for the original formulation of Goodwin model, and in agreement with the
simulative experiments performed in [18] for the same setting that we inves-
tigate. Indeed, using a different notation, the framework that we study has
been essentially proposed in [18, Subsection 5.3] to illustrate the difficulties
which arise when trying to prove that the period map connected with the
general class of Hamiltonian systems analyzed in that paper is increasing,
even if the detailed numerical simulations performed in [18] suggest that the
period monotonicity holds true for the system that we consider.
Hence, our contribution is strongly based, on the one hand, on the results
contained in [18] about the period of cycles of a suitable class of Hamiltonian
systems. On the other hand, our work belongs to the research strand which,
starting from [24, 30], shows how to use the LTMs method to prove the
existence of complex dynamics in various continuous-time settings (see e.g.
[4, 19, 25]). In more detail, the paper that is closest to ours is [30], where the
LTMs method has been applied to investigate the dynamical effects produced
by a periodic harvesting in the predator-prey model. Namely, the original
formulation of Goodwin growth cycle model is a special case of the Lotka-
Volterra predator-prey model. However, our analysis does not coincide with
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that performed in [30] since, led by the above explained economic argument
about the ratio between capital and output, we will perturb in a periodic
fashion a different parameter with respect to [30], and this will produce a
dissimilar effect on the center position. Moreover, orbits were run counter-
clockwise in [30], while they are run clockwise in the present framework, and
also this aspect will affect the proof of our result about LTMs, in which we
need to count the laps completed by suitable paths around the centers.
In addition to the fact that the LTMs method has not been applied to Good-
win model yet, two further reasons led us to deal in our investigation with
its original formulation, too.
The first one is to provide robustness to the results that we shall obtain for
the model modified formulation, which indeed in their general conclusions do
not depend on the particular expression of the equations involved, as long
as we enter the class of Hamiltonian systems considered in [18]. Only the
kind of geometrical configuration for orbits in the phase plane, and thus the
way to use the LTMs method, could vary according to the formulation of the
model equations and on the basis of how they depend on the parameter that
is periodically perturbed. We remark that different nonlinear expressions for
the real wage bargaining function and for the investment function could be
sensible, as well. Nonetheless, we chose two formulations that, in addition to
have been already considered in the existing literature, satisfy the conditions
found in [18] ensuring that the center is nonisochronous and that orbits lie
in the feasible region, i.e., the unit square, since the state variables, being
wage share in national income and proportion of labor force employed, can
neither be negative, nor exceed unity.
The second reason for considering Goodwin original formulation of the growth
cycle model lies in the possibility of showing how to use the LTMs method
to prove the existence of chaotic sets lying inside the unit square, despite
the previously mentioned issue with the orbit position in the original Good-
win setting. Namely, the chaotic sets are contained in the detected pair of
linked annuli, that jointly constitute an invariant set under the action of the
Poincaré map obtained as composition of the Poincaré maps associated with
the unperturbed system and the perturbed one, since each annulus, being
made of periodic orbits, is invariant under the action of the Poincaré map
describing the corresponding regime. Choosing then linked together annuli
contained in the unit square solves the problem. As our illustrative examples
will show, this can be done even when dealing with parameter configurations
analogous to those considered in [8, 14]. We stress that the issue with the

7



orbit position did not occur in [30], since the variables in the original Lotka-
Volterra model, describing the size of the prey and the predator populations,
are not confined to lie in the unit square.
The remainder of the paper is organized as follows. In Section 2 we recall
the original formulation of Goodwin growth cycle model and we explain how
to apply the LTMs method to such context, highlighting the differences with
[30]. In Section 3 we introduce the modified formulation of Goodwin model,
for which we check the existence of chaotic dynamics via the LTMs tech-
nique. In Section 4 we recall the definitions and the results connected with
the LTMs method that have been used in the preceding sections. In Section 5
we conclude. The Appendix contains the mathematical proof of our results,
as well as some related comments.

2 The LTMs method for Goodwin model orig-

inal formulation

Following Goodwin seminal idea in [13] of studying forced models in eco-
nomics, we are going to apply the Linked Twist Maps (henceforth, LTMs)
method, whose main features are described in Section 4, to his celebrated
growth cycle model, in order to show the effects produced on its dynamics
by the exogenous periodic variation in one of the model parameters, whose
seasonal oscillation is empirically grounded.
We start by briefly recalling the model original formulation proposed in
[11, 12].
Denoting by u(t) ∈ [0, 1] the wage share in national income and by v(t) ∈
[0, 1] the employment proportion, Goodwin model reads as

{
u′ = u (−(α + χ) + ρv)

v′ = v
(
−(α + β) + 1−u

σ

) (2.1)

where all parameters are positive and, in particular, α is the exogenous labor
productivity growth rate, β is the exogenous labor force growth rate, σ is
the capital-output ratio, while χ and ρ characterize4 the real wage growth
rate, which is of the form −χ + ρv. The first equation in (2.1) derives from

4We stress that, rather than χ, the symbol γ is generally used in the Goodwin model.
However, we prefer to save γ to denote paths (see e.g. Definition 4.1) in agreement with
the existing literature on the SAP method.
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the Goodwin’s linearized version of the Phillips curve [27] in real wages (see
the first equation in (3.1) for its nonlinear formulation), while we refer the
interested reader to [8] for the derivation of the second equation, based on
the assumptions that capitalists reinvest all profits and workers consume all
wages, and to [8, 14] for further details on the model.
Although state variables, due to their meaning, can neither be negative nor
exceed unity, the latter condition is not guaranteed by (2.1). Namely, those
equations describe a conservative system with closed orbits lying everywhere
in the first quadrant of R2 and surrounding the center

P =

(
1− σ(α + β) ,

α + χ

ρ

)
.

We stress that P lies in the unit square when

σ <
1

α + β
, α + χ < ρ . (2.2)

Also the originO = (0, 0) is an equilibrium, being a saddle. As it is immediate
to check, System (2.1) is a special case of the Lotka-Volterra predator-prey
model (see e.g. [3]) {

x′ = x (a− by)

y′ = y (−c+ dx)
(2.3)

where u(t) corresponds to y(t) and v(t) corresponds to x(t), even if x(t) and
y(t) are not confined to lie in [0, 1], since they are non-negative variables
describing the size of the prey and of the predator populations, respectively.
In particular, like in [30] we focused just on x(t) > 0 and y(t) > 0, being
therein interested in dynamic outcomes characterized by the coexistence be-
tween preys and predators, in what follows we will confine our analysis to
positive values of u(t) and v(t). Namely, System (2.3) describes the twofold,
at one time beneficial and detrimental, nature of the interactions between
predators and preys. Similarly, the Goodwin model schematically represents
the involved relationship between capitalists and workers, with the wage
share in national income being the predator variable and the employment
proportion being the prey.
Both (2.1) and (2.3) describe Hamiltonian systems. In the former case, orbit
equations are given by

E(u, v) =
u

σ
−

(
1

σ
− α− β

)
log(u) + ρv − (α + χ) log(v) = ℓ,
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for some ℓ ≥ ℓ0, where ℓ0 is the minimum energy level attained by E(u, v)
on the open unit square (0, 1)2, i.e., ℓ0 = E(P ). Notice that, under (2.2), the
minimum level attained by E(u, v) on (0, 1)2 coincides with the minimum
level attained on (0,+∞)2, since we are assuming that P ∈ (0, 1)2. More-
over, the period of the orbits of System (2.1) is increasing with the energy
level, due to the possibility of relying on the classical results in [34, 38] on the
monotonicity of the period of the orbits for the Lotka-Volterra predator-prey
model in (2.3). On the other hand, contrary to what happens with System
(2.3), orbits for System (2.1) are run clockwise, as the analysis of the phase
portrait shows. This is due to the fact that, as observed above, comparing
Systems (2.1) and (2.3) we have that u(t) corresponds to y(t) and v(t) cor-
responds to x(t).
While Goodwin investigated by means of numerical experiments in [13] the
dynamic outcomes that can be obtained superimposing exogenous cycles to
cycles endogenously generated by a model, we will analytically show the
effect produced on the periodic orbits of System (2.1) by the exogenous peri-
odic variation in one of the model parameters. In view of making our choice
empirically grounded, we will focus on σ, i.e., the capital-output ratio, since,
keeping the capital level constant, production is certainly influenced by phe-
nomena that are periodic in nature. We can e.g. consider the oscillatory
behavior during the solar year of the energy price in electricity markets in
consequence of the varying demand over the months or the different supply
in the agricultural commodity markets in the various seasons. To fix ideas,
we concentrate on the second phenomenon, since it is clear that north of
the equator, for instance in Europe and in the United States, supply in the
agricultural commodity markets is larger from April to October than during
the remaining part of the year. Hence, for the capital-output ratio σ we
can assume a periodic alternation between a higher value, that we will call
σ(I), referring to fall and winter, and a lower value, which may be seen as
a perturbation of the former, that we will call σ(II), referring to spring and
summer.5 We stress however that a similar assumption about a periodic vari-
ation made on any other model parameter would produce analogous results
in terms of generated dynamics, since all parameters affect, in some way, the
center position.

5In regard to seasonal variations in demand and energy price in electricity markets,
according to [2], which refers to [1], “Cycles and seasonality have for a long time been
observed in electricity markets. There are hourly, daily, weekly, and seasonal fluctuations
in prices and demand ”. See also [17] for a seasonal electricity demand and pricing analysis.
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Supposing then that the capital-output ratio alternates between σ(I), for
t ∈ [0, T (I)), and σ(II), for t ∈ [T (I), T (I) + T (II)), with σ(I) > σ(II), and
that the same alternation between the two regimes recurs with T -periodicity,
where T = T (I) + T (II), we can assume that we are dealing with a system
with periodic coefficients of the form





u′ = u (−(α(t) + χ(t)) + ρ(t)v)

v′ = v
(
−(α(t) + β(t)) + 1−u

σ(t)

) (2.4)

where

k(t) ≡ k, for k ∈ {α, β, χ, ρ}, and σ(t) =

{
σ(I) for t ∈ [0, T (I))

σ(II) for t ∈ [T (I), T )
(2.5)

with

0 < σ(II) < σ(I) <
1

α + β
, α + χ < ρ (2.6)

as a consequence of (2.2). The function σ(t) is supposed to be extended to
the whole real line by T -periodicity.
When the capital-output ratio takes value σ(i), and thus we are in the regime
whose dynamics are governed by the system that we will call (i), the center

coincides with P (i) =
(
1− σ(i)(α + β), α+χ

ρ

)
, for i ∈ {I, II}. Notice that,

passing from P (I) to P (II), the ordinate of the center does not change, while
its abscissa raises. As concerns orbits, they are closed for both Systems (I)
and (II), surrounding P (I) and P (II), respectively, and they are run clockwise.
In the former case, orbits have equation

E(I)(u, v) =
u

σ(I)
−

(
1

σ(I)
− α− β

)
log(u) + ρv − (α + χ) log(v) = ℓ, (2.7)

for some ℓ ≥ ℓ
(I)
0 , while, in the latter case, orbits have equation

E(II)(u, v) =
u

σ(II)
−

(
1

σ(II)
− α− β

)
log(u)+ρv−(α+χ) log(v) = h, (2.8)

for some h ≥ h
(II)
0 , where ℓ

(I)
0 and h

(II)
0 are the minimum energy levels

attained by E(I)(u, v) and E(II)(u, v) on (0, 1)2, respectively, i.e., ℓ
(I)
0 =
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E(I)(P (I)) and h
(II)
0 = E(II)(P (II)).

The sets Γ(I)(ℓ) = {(u, v) ∈ (0,+∞)2 : E(I)(u, v) = ℓ}, for ℓ > ℓ
(I)
0 , are

simple closed curves surrounding P (I), while Γ(II)(h) = {(u, v) ∈ (0,+∞)2 :

E(II)(u, v) = h}, for h > h
(II)
0 , are simple closed curves surrounding P (II).

We call annulus around P (I) for System (I) any set C(I)(ℓ1, ℓ2) = {(u, v) ∈

(0,+∞)2 : ℓ1 ≤ E(I)(u, v) ≤ ℓ2} with ℓ
(I)
0 < ℓ1 < ℓ2, whose inner boundary

coincides with Γ(I)(ℓ1) and whose outer boundary coincides with Γ(I)(ℓ2).
Similarly, we call annulus around P (II) for System (II) any set C(II)(h1, h2) =

{(u, v) ∈ (0,+∞)2 : h1 ≤ E(II)(u, v) ≤ h2} with h
(II)
0 < h1 < h2, whose inner

boundary coincides with Γ(II)(h1) and whose outer boundary coincides with
Γ(II)(h2). In particular, we are interested in annuli for Systems (I) and (II)
contained in (0, 1)2, due to the meaning of variables u and v. This config-
uration will be achieved by choosing annuli whose outer (and consequently,
inner) boundary set lies sufficiently close to the corresponding center, i.e.,

for low enough values of the energy levels ℓ2 > ℓ
(I)
0 and h2 > h

(II)
0 (see e.g.

Figure 1).
In view of providing conditions on the energy levels that ensure that two an-
nuli are linked together, thus crossing in two disjoint generalized rectangles
(see Section 4 for the corresponding definition), let us consider on the straight
line r joining P (I) and P (II), having equation v = (α + χ)/ρ, the ordering
inherited from the horizontal axis, so that given the points R = (uR, v

∗) and
S = (uS, v

∗) belonging to r, hence with v∗ = (α + χ)/ρ, it holds that R ⊳ S
(resp. R E S) if and only if uR < uS (resp. uR ≤ uS). We are now in
position to introduce the following:

Definition 2.1 Given the annulus C(I)(ℓ1, ℓ2) around P (I) and the annulus
C(II)(h1, h2) around P

(II), we say that they are linked together if

P
(I)
2,− ⊳ P

(I)
1,− E P

(II)
2,− ⊳ P

(II)
1,− E P

(I)
1,+ ⊳ P

(I)
2,+ E P

(II)
1,+ ⊳ P

(II)
2,+

where, for j ∈ {1, 2}, P (I)
j,− and P

(I)
j,+ denote the intersection points between

Γ(I)(ℓj) and the straight line r, with P
(I)
j,− ⊳ P (I) ⊳ P

(I)
j,+, and, similarly,

P
(II)
j,− and P

(II)
j,+ denote the intersection points between Γ(II)(hj) and r, with

P
(II)
j,− ⊳ P (II) ⊳ P

(II)
j,+ .

We stress that, for ℓj > ℓ
(I)
0 and hj > h

(II)
0 , j ∈ {1, 2}, the boundary sets

Γ(I)(ℓj) and Γ(II)(hj) intersect the straight line r in exactly two points because

12



(A) (B)

Figure 1: In (A) we draw in green some energy level lines associated with
System (I), surrounding P (I), and in gray some energy level lines associated
with System (II), surrounding P (II), together with the corresponding phase
portrait. In (B), we illustrate Definition 2.1, showing how to obtain two
linked together annuli by suitably choosing two level lines for each system.
In particular, we call C(I)(ℓ1, ℓ2), C

(II)(h1, h2) the two linked annuli, and A
(colored in dark green), B (colored in light green) the two disjoint generalized
rectangles obtained as intersection between the two annuli.

{(u, v) ∈ (0,+∞)2 : E(I)(u, v) ≤ ℓ} and {(u, v) ∈ (0,+∞)2 : E(II)(u, v) ≤
h}, coinciding with the lower contour sets of the convex functions E(I) in (2.7)

and E(II) in (2.8), are star-shaped for all ℓ > ℓ
(I)
0 and for every h > h

(II)
0 ,

respectively. We refer the reader to Figure 1 (B) for a graphical illustration
of Definition 2.1.
We recall that a geometrical configuration analogous to that depicted in
Figure 1 (B), except for the need for orbits to lie in the unit square, was
found in [25] (cf. Figure 2 therein), where the LTMs method was applied to
a periodically forced asymmetric second order ODE. However in that case
the abscissa of the center decreased passing from the unperturbed regime to
the perturbed one and the centers of the systems corresponding to the two
regimes were located on the horizontal axis. Although both dissimilarities
would not require to introduce relevant differences in the statement and proof
of the main result in [25] (cf. Theorem 1.2 therein), in adapting them to our
framework we will provide a slightly more general6 version of [25, Theorem

6In [25, Theorem 1.2] the special case of Proposition 2.1 with m(I) = m ≥ 2 and
m(II) = 1 was considered.
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1.2] in Proposition 2.1, together with a complete proof (contained in the
Appendix) for the reader’s convenience.
To such aim, in addition to exploiting the tools recalled in Section 4 and in
particular the stretching relation in (4.1), we need to introduce the Poincaré
map Ψ of System (2.4), which associates with any initial condition (u0, v0)
belonging to (0,+∞)2 the position at time T of the solution ς( · , (u0, v0)) =
(u( · , (u0, v0)), v( · , (u0, v0))) to (2.4) starting at time t = 0 from (u0, v0). In
symbols, Ψ : (0,+∞)2 → (0,+∞)2, (u0, v0) 7→ ς(T, (u0, v0)). Along the paper
solutions are meant in the Carathéodory sense, being absolutely continuous
and satisfying the corresponding system for almost every t ∈ R. We recall
that a classical method to show the existence of periodic solutions for systems
of first order ODEs with periodic coefficients is based on the search of the
periodic points for the associated Poincaré map, under the assumption of
uniqueness of the solutions for the Cauchy problems (cf. [16]). Notice that
Ψ is a homeomorphism on (0,+∞)2 and that it may be decomposed as
Ψ = Ψ(II) ◦Ψ(I), where Ψ(I) is the Poincaré map associated with System (I)
for t ∈ [0, T (I)] and Ψ(II) is the Poincaré map associated with System (II)
for t ∈ [0, T (II)]. Moreover, since every annulus C(I)(ℓ1, ℓ2) around P (I) is
invariant under the action of the map Ψ(I), being composed of the invariant
orbits Γ(I)(ℓ), for ℓ ∈ [ℓ1, ℓ2], and, similarly, since every annulus C(II)(h1, h2)
around P (II) is invariant under the action of the map Ψ(II), it holds that every
pair of linked together annuli is invariant under the action of the composite
map Ψ. In Proposition 2.1 we will denote by τ (I)(ℓ), for all ℓ > ℓ

(I)
0 , the period

of Γ(I)(ℓ), i.e., the time needed by the solution ς(I)( · , (u0, v0)) to System (I),
starting from any (u0, v0) ∈ Γ(I)(ℓ), to complete one turn around P (I) moving

along Γ(I)(ℓ), and by τ (II)(h), for all h > h
(II)
0 , the period of Γ(II)(h), i.e.,

the time needed by the solution ς(II)( · , (u0, v0)) to System (II), starting
from any (u0, v0) ∈ Γ(II)(h), to complete one turn around P (II) moving along
Γ(II)(h). Orbits surrounding either P (I) or P (II) are run clockwise and τ (I)( · )
and τ (II)( · ) are monotonically increasing with the energy levels, since both
features are fulfilled for System (2.1), as remarked above. Hence, for any
annulus C(I)(ℓ1, ℓ2) around P

(I) it holds that τ (I)(ℓ1) < τ (I)(ℓ2), as well as for
each annulus C(II)(h1, h2) around P

(II) it holds that τ (II)(h1) < τ (II)(h2).
Our result about System (2.4) reads as follows:

Proposition 2.1 For any choice of the positive parameters α, β, χ, ρ, σ(I),
σ(II) satisfying (2.6), given the annulus C(I)(ℓ1, ℓ2) around P (I), for some

ℓ
(I)
0 < ℓ1 < ℓ2, and the annulus C(II)(h1, h2) around P (II), for some h

(II)
0 <
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h1 < h2, assume that they are linked together, calling A and B the con-
nected components of C(I)(ℓ1, ℓ2) ∩ C(II)(h1, h2). Then, for every m(I) ≥ 1
and m(II) ≥ 1 with m = m(I)m(II) ≥ 2 there exist two positive constants
t(I) = t(I)(m(I), τ (I)(ℓ1), τ

(I)(ℓ2)) and t(II) = t(II)(m(II), τ (II)(h1), τ
(II)(h2))

such that if T (i) > t(i), for i ∈ {I, II}, the Poincaré map Ψ = Ψ(II) ◦Ψ(I) of
System (2.4) induces chaotic dynamics on m symbols in A and in B, and all
the properties listed in Theorem 4.1 are fulfilled for Ψ.

According to Proposition 2.1, whenever we have two linked together annuli
related to Systems (I) and (II), if the switching times between the regimes
described by those two systems are large enough, then the Poincaré map
Ψ = Ψ(II) ◦ Ψ(I) induces chaotic dynamics on m ≥ 2 symbols in the sets in
which the two annuli intersect. As it is clear from the proof of Proposition
2.1 (see the Appendix), that chaotic behavior is generated by the twist effect
produced on the linked annuli by the different speeds with which their inner
and outer boundary sets are run. Namely, after a long enough time, this twist
effect suffices to make the image through Ψ(I) and Ψ(II) of the paths joining
the inner and the outer boundary sets of the annuli spiral inside them and
cross many times the intersection sets A and B between the linked annuli.
In this manner, Ψ satisfies the stretching relation described in Theorem 4.1
and thus all properties listed therein hold true for the composite Poincaré
map.
We further notice that, under the assumptions in (2.6), which ensure that
the centers of Systems (I) and (II) belong to the open unit square, when
applying Proposition 2.1 to linked annuli whose inner and outer boundary
sets lie sufficiently close to those centers, i.e., for low enough values of the
energy levels ℓ2 > ℓ1 > ℓ

(I)
0 and h2 > h1 > h

(II)
0 , the chaotic invariant

sets contained in A and in B lie in the open unit square, too. The same
is true not only for the chaotic sets, but for a whole pair of linked annuli
when the outer boundary sets Γ(I)(ℓ2) and Γ(II)(h2) are contained in (0, 1)2,
like it happens for instance in Figure 1 (A), where we fix7 α = 0.02, β =
0.01, χ = 0.6, ρ = 0.7, σ(I) = 3, σ(II) = 2.5, so that P (I) = (0.910, 0.886)
and P (II) = (0.925, 0.886). In particular, as shown in Figure 1 (B), we obtain
two linked together annuli C(I)(ℓ1, ℓ2) and C(II)(h1, h2), contained in (0, 1)2

7We stress that such parameter configuration is analogous to that considered in [14,
page 77], where the parameter values are α = 0.03, β = 0.01, χ = 0.63, ρ = 0.7, σ = 3,
and similar to the one in [8, page 2668], where the authors set α = 0.001, β = 0.001, χ =
0.95, ρ = 1, σ = 3, recalling that in those works the symbol γ was used instead of χ.
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and crossing in the two disjoint generalized rectangles denoted by A and B,
e.g. for ℓ1 = 1.0274, ℓ2 = 1.0276, h1 = 1.0943, h2 = 1.0946.
Indeed, despite the previously recalled issue (see (2.2) and the lines above
it) with the orbit position for the original formulation of the Goodwin model
in (2.1), every annulus around P (i) for System (i), with i ∈ {I, II}, being
made of periodic orbits, is invariant under the action of the Poincaré map
Ψ(i). Consequently, each pair of linked annuli jointly constitutes an invariant
set under the action of the composite Poincaré map Ψ = Ψ(II) ◦Ψ(I), so that,
even for System (2.1), the LTMs method allows to detect complex dynamics
that are consistent from an economic viewpoint.
Nonetheless, in Section 3 we will introduce and analyze a modified formula-
tion of Goodwin growth cycle model (cf. (3.1)), whose orbits are all contained
in the unit square, since the necessary and sufficient conditions found in [18]
are fulfilled.
Before turning to that new framework we stress that, like [25, Theorem 1.2],
also Proposition 2.1 is robust with respect to small changes, in L1 norm, in
the coefficients of System (2.4). Namely, from the proof of Proposition 2.1 it
follows that if T (I) and T (II) satisfy the conditions described in its statement,
then, recalling System (2.4) and the definition of its coefficients in (2.5), there
exists a positive constant ε such that the same conclusions of Proposition 2.1
hold true for the system





u′ = u (−(ᾰ(t) + χ̆(t)) + ρ̆(t)v)

v′ = v
(
−(ᾰ(t) + β̆(t)) + 1−u

σ̆(t)

)

with ᾰ, β̆, χ̆, ρ̆, σ̆ : R → R being T -periodic functions with T = T (I)+T (II),
as long as ∫ T

0

∣∣ k̆(t)− k
∣∣ dt < ε, for k ∈ {α, β, χ, ρ},

and

∫ T

0

∣∣ σ̆(t)− σ(t)
∣∣ dt =

∫ T (I)

0

∣∣ σ̆(t)− σ(I)
∣∣ dt+

∫ T

T (I)

∣∣ σ̆(t)− σ(II)
∣∣ dt < ε.

Due to the similar arguments that are needed in its proof, also Proposition
3.1, i.e. the main result that we shall present in Section 3 about the Goodwin
model modified formulation, is robust with respect to small changes in the
coefficients of System (3.5), in L1 norm.
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We conclude the present section by recalling that in [30] the LTMs method
has been applied to the Lotka-Volterra System (2.3) under the assumption of
a periodic harvesting, that perturbed the center position, causing an alter-
nation for it between two points. However, since in [30] it was supposed that
not only preys, but also predators decrease in number during the harvest-
ing season, then both coordinates of the center change in that framework.
Furthermore, orbits of System (2.3) are run counterclockwise, rather than
clockwise like it happens with the orbits of System (2.1), and thus the defini-
tion of the rotation number used in [30] does not coincide with that employed
in the proof of Proposition 2.1 (cf. (6.3) and (6.4)). Those two differences
between [30] and the above described context pushed us to provide a spe-
cific, complete presentation in the here analyzed setting of the LTMs method
and of its application to (2.1) in Proposition 2.1. Indeed, as recently shown
in [28], the way in which the LTMs method can be used depends on the
meaning attached to the variables and parameters of the considered model.
Moreover, the detailed presentation of the LTMs method provided above is
useful in view of Section 3, too, where it will suffice for us to focus on the main
steps, highlighting the dissimilarities with what we have already explained.

3 The Goodwin model modified formulation

Rather than dealing with the linear expressions for the real wage bargaining
function and for the investment function seen in Section 2, we now consider
a modified formulation of such setting, motivated by the issue with the orbit
position in the original Goodwin model [11].
As concerns the real wage bargaining function, the most natural choice is
given by the Phillips nonlinear specification in [27], even if for real rather
than money wages (cf. the first equation in System (3.1)). This was indeed
what Goodwin initially assumed, before linearizing the Phillips curve so as
to obtain the first equation in (2.1) as an approximation (see [11, page 55]).
We recall that the nonlinear formulation of the Phillips curve in [27] has been
considered e.g. by Desai et al. in [8], too, in their attempt to guarantee that
the orbits of the growth cycle model lie inside the unit square. On the other
hand, as shown by Madotto et al. in [18], the attempt by Desai et al. in
[8] is not successful in fixing the problem with the orbit position because of
their choice of the investment function (cf. equation (10) in [8, page 2667]),
that describes a framework in which capitalists, depending on profitability,
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do not necessarily invest all profits. We stress that in [18] it is proven that
even the modified version of the Goodwin model proposed by Harvie et al. in
[14] does not ensure that orbits lie inside the unit square. In order to avoid
similar issues, for the investment function we consider a nonlinear formulation
(see the second equation in System (3.1)) satisfying the conditions found in
[18] and that we shall recall below, so as to guarantee that orbits lie in the
feasible region. In more detail, for the investment function we deal with the
formulation used in the simulative analysis performed in [18, Subsection 5.3].
We underline that a nonlinear investment function is grounded also from an
economic viewpoint since, according to [9], followed by [39], it is suitable to
describe a more flexible savings behavior. Still the economic interpretation
requires the real wage bargaining function to be increasing in the proportion
of labor force employed, while the investment function has to be decreasing
in the wage share in national income.
Since the modified formulation of the Goodwin model in (3.1) that we are
going to analyze satisfies the conditions in [18], we know that, like the original
framework in [11, 12], it is still a Hamiltonian system characterized by the
presence of a global, nonisochronous center. Hence, in order to analytically
show what are the dynamic consequences produced on its periodic orbits by
an exogenous periodic variation in one of the model parameters, we are going
to use the LTMs method. In particular, in view of making our parameter
choice empirically grounded, due to the same argument explained in Section
2 we will focus on the parameter that describes the ratio between capital
and output, assuming that it alternates in a periodic fashion between two
different values, e.g. due to a seasonal effect. This will allow us to prove the
existence of chaotic dynamics for System (3.5), i.e. the analogue of System
(2.4) obtained from (3.1). Nonetheless, as explained in Section 2, assuming
a periodic variation on any other model parameter would lead to analogous
conclusions about the system dynamic behavior, since the center position is
influenced by all parameters.
In symbols, still denoting by u(t) ∈ [0, 1] the wage share in national income
and by v(t) ∈ [0, 1] the employment proportion, our modified formulation of
the Goodwin model reads as





u′ = u
(
−(χ+ α) + ρ

(1−v)δ

)

v′ = v
(
−(α + β) + 1

σ

(
c− η

(1−u)µ

)) (3.1)
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where all parameters are positive and, in addition to α, β and σ, that still
describe the exogenous labor productivity growth rate, the exogenous labor
force growth rate and the capital-output ratio, respectively, we have that χ, ρ
and δ characterize the real wage growth rate, which, in agreement with [27],
is now of the form −χ+ ρ

(1−v)δ
, while c, η and µ, together with σ, characterize

the output growth rate, now formulated as 1
σ

(
c− η

(1−u)µ

)
. In particular, as

in the model original version in [11, 12], it is assumed that capitalists reinvest
all profits and workers consume all wages.
In addition to the origin O = (0, 0), which is still a saddle, the other equilib-
rium for System (3.1) is given by

P̂ =

(
1−

(
η

c− σ(α + β)

) 1
µ

, 1−

(
ρ

χ+ α

) 1
δ

)
,

that belongs to the open unit square (0, 1)2 when

σ <
c− η

α + β
, ρ < χ+ α , δ ≥ 1, µ ≥ 1. (3.2)

In order to ensure that P̂ is a global center for System (3.1), whose orbits lie
in the square (0, 1)2, which is again the feasible region due to the meaning of
u and v, and in view of applying some results obtained in [18] on the period
of orbits, we need to check that the conditions described on page 778 therein
for the general system {

u′ = u f(u)ψ(v)

v′ = −v g(v)ϕ(u)
(3.3)

are fulfilled with the considered formulations of the real wage bargaining
function and of the investment function, under the parameter assumptions
in (3.2). When adapted to our framework, the conditions in [18] require that
f, g : (0, 1) → (0,+∞) are continuous functions and that ϕ, ψ : (0, 1) → R

are C1 maps with positive derivative on (0, 1), satisfying limu→0+ ϕ(u) ∈
(−∞, 0), limv→0+ ψ(v) ∈ (−∞, 0), limu→1− ϕ(u) > 0, limv→1− ψ(v) > 0. All
this is true in our context since, setting f(u) = 1, ψ(v) = −(χ + α) +

ρ

(1−v)δ
, g(v) = 1, ϕ(u) = (α + β) − 1

σ

(
c− η

(1−u)µ

)
, it holds that f, g are

continuous maps taking positive values only and ϕ, ψ are C1 increasing maps
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on (0, 1), satisfying

limu→0+ ϕ(u) = α + β − 1
σ
(c− η) ∈ (−∞, 0),

limv→0+ ψ(v) = −(χ+ α) + ρ ∈ (−∞, 0),

limu→1− ϕ(u) = +∞, limv→1− ψ(v) = +∞

under (3.2). Moreover, setting

A(u) =

∫
ϕ(u)

uf(u)
du =

∫
1

u

(
(α + β)−

1

σ

(
c−

η

(1− u)µ

))
du

and

B(v) =

∫
ψ(v)

vg(v)
dv =

∫
1

v

(
−(χ+ α) +

ρ

(1− v)δ

)
dv, (3.4)

it holds that

lim
u→0+

A(u) = lim
u→1−

A(u) = lim
v→0+

B(v) = lim
v→1−

B(v) = +∞ ,

as required in [18], too. Hence, System (3.1) admits Ê(u, v) = A(u) + B(v)

as first integral having P̂ as minimum point and, according to [18, Theorem
3.1], its solutions are periodic and describe closed orbits, contained in the unit

square, around P̂ , that is a global center. In symbols, the orbit equations
are then given by Ê(u, v) = ℓ for some ℓ ≥ ℓ̂0, where ℓ̂0 = Ê(P̂ ). Although
an exhaustive analysis of the period of the orbits of System (3.1) seems not
to be easy to perform as discussed in [18] due to the presence of singularities
in the model at u = v = 1, Madotto et al. prove useful results about the
period of small and large orbits for System (3.3). Namely, on the one hand,
they show that the approximation of the period length of small cycles by
means of the period of the linearized system is valid near the equilibrium
point (cf. Corollary 5.2 in [18]) and, on the other hand, they prove that the
period length of large cycles, approaching the boundary of the feasible set,
is arbitrarily high, in the case that f and g are for instance C1 functions on
the open interval (0, 1), that are continuous in 0, too (cf. Theorem 5.3 in
[18]), like it happens in our framework. As previously mentioned, in view
of applying to System (3.1), or more precisely to (3.5) below, the method
of the LTMs in some concrete scenarios (cf. Example 3.1), firstly we per-
turb the center position by supposing that σ alternates in a periodic fashion
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between two different levels, due to a seasonal effect, so as to obtain two
conservative systems, for which we can find two linked together annuli suit-
ably choosing an annulus made of energy level lines for each system. Then,
we will numerically check that the periods of the orbits coinciding with the
inner and the outer boundaries of the considered linked annuli do not co-
incide. Actually, all the numerical simulations that we performed suggest
the increasing monotonicity of the period of the orbits for System (3.1) with
respect to the energy level, in analogy with the classical results in [34, 38] for
the original formulation of the Goodwin model, and in agreement with the
numerical simulations reported in [18], even if, to the best of our knowledge,
a rigorous proof of the period monotonicity for System (3.1) is not available
in the literature. In fact, using a different, more abstract notation, such
system has essentially been proposed in [18, Subsection 5.3] to illustrate the
difficulties which arise when trying to prove that the period map connected
with the general framework analyzed in that paper, described by (3.3), is
increasing. The detailed numerical investigations performed in [18] suggest
that the desired result holds true for the setting we deal with, even if the
period map has a different behavior in the four regions, called quadrants in
[18], in which the feasible set (0, 1)2 is split by the horizontal and vertical

lines passing through the center P̂ . In more detail, Figures 3–7 in [18, Sub-
section 5.3] show that the period is very long and increasing with the energy
level in the third quadrant, where both u and v assume low values, while it
is decreasing in the first quadrant, and it is not monotone in the second and
fourth quadrants.
Let us assume that the capital-output ratio alternates in a T -periodic fashion
between the same two positive values considered in Section 2, i.e., σ(I) > σ(II),
for the time intervals t ∈ [0, T (I)) and t ∈ [T (I), T (I) + T (II)), respectively,8

with T = T (I) + T (II), where σ(II) may be seen as a perturbation of σ(I). We
can then suppose that we are dealing with the following system with periodic

8Indeed, the values of σ(i) and T (i), for i ∈ {I, II}, are determined by the economic
features of the capital-output ratio, rather than by the model formulation. Nonetheless,
considering different values for σ(i) and T (i) with respect to Section 2 would not affect the
way in which the LTMs can be applied and the conclusions that it allows to draw, as long
as 0 < σ(II) < σ(I) and T (I), T (II) are large enough.
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coefficients




u′ = u
(
−(χ(t) + α(t)) + ρ(t)

(1−v)δ(t)

)

v′ = v
(
−(α(t) + β(t)) + 1

σ(t)

(
c(t)− η(t)

(1−u)µ(t)

)) (3.5)

in which κ(t) coincides with κ, for κ ∈ {α, β, χ, c, δ, η, µ, ρ}, σ(t) is as in (2.5),
assuming to have extended it to the whole real line by T -periodicity, and

0 < σ(II) < σ(I) <
c− η

α + β
, ρ < χ+ α, δ ≥ 1, µ ≥ 1 (3.6)

as a consequence of (3.2).
Calling (Mi), whereM stands for “Modified (version of the Goodwin model)”,
the system that we obtain when the capital-output ratio takes value σ(i), for
i ∈ {I, II}, it is conservative, with the center coinciding with

P̂ (i) =

(
1−

(
η

c− σ(i)(α + β)

) 1
µ

, 1−

(
ρ

χ+ α

) 1
δ

)
. (3.7)

Similar to what happened in Section 2, passing from P̂ (I) to P̂ (II) the abscissa
of the center raises, while its ordinate does not change. The orbits of Sys-
tems (MI) and (MII) are closed, surrounding the corresponding center, and
a straightforward analysis of the phase portrait shows that they are run clock-

wise (cf. Figure 2 (A)). SettingA(i)(u) =
∫

1
u

(
(α + β)− 1

σ(i)

(
c− η

(1−u)µ

))
du,

for i ∈ {I, II}, and recalling the definition of B(v) in (3.4), the orbits of

Systems (MI) and (MII) have respectively equation Ê(I)(u, v) = A(I)(u) +

B(v) = ℓ for some ℓ ≥ ℓ̂
(I)
0 = Ê(I)(P̂ (I)) and Ê(II)(u, v) = A(II)(u)+B(v) = h

for some h ≥ ĥ
(II)
0 = Ê(II)(P̂ (II)). The sets Γ̂(I)(ℓ) and Γ̂(II)(h) can then be

defined like in Section 2 for ℓ > ℓ̂
(I)
0 and h > ĥ

(II)
0 , just replacing E(i) with

Ê(i) for i ∈ {I, II}, and they are still simple closed curves surrounding P̂ (I)

and P̂ (II), respectively. We can proceed analogously to Section 2 in defining
the annuli Ĉ(I)(ℓ1, ℓ2) around P̂ (I), with ℓ̂

(I)
0 < ℓ1 < ℓ2, for System (MI)

and Ĉ(II)(h1, h2) around P̂
(II), with ĥ

(II)
0 < h1 < h2, for System (MII), too.

Notice however that, differently from Section 2, we do not need to consider
energy levels close to ℓ̂

(I)
0 and ĥ

(II)
0 to have annuli for Systems (MI) and

(MII) contained in (0, 1)2, thanks to the above recalled results obtained in
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[18] (cf. in particular Theorem 3.1 therein). Due to the similar effect pro-
duced by a variation in σ on the center position for Systems (2.1) and (3.1),
the definition of linked together annuli in the new context is analogous to
that introduced in Definition 2.1 as well, being based on the same ordering
relation ⊳, this time on the straight line r̂ joining P̂ (I) and P̂ (II), which has

equation v = 1 −
(

ρ

χ+α

) 1
δ

. See Figure 2 (B) for a graphical illustration of

two linked annuli Ĉ(I)(ℓ1, ℓ2) and Ĉ(II)(h1, h2) for System (3.5). We stress

that also in the present framework their boundary sets Γ̂(I)(ℓj) and Γ̂(II)(hj),
with j ∈ {1, 2}, intersect the straight line r̂ in exactly two points because the

functions Ê(I) and Ê(II) are convex. Namely, their second derivative is non-
negative under (3.6) because (1 − z)ν > (1 − z(ν + 1)), ∀z ∈ [0, 1], ∀ν > 0,
where in our case z ∈ {u, v} and ν ∈ {µ + 1, δ + 1}, respectively. In view

(A) (B)

Figure 2: In (A) we draw in brown some energy level lines associated with

System (MI), around P̂ (I), and in magenta some energy level lines associated

with System (MII), around P̂ (II), showing also the corresponding phase por-

trait. In (B), we illustrate two linked together annuli, that we call Ĉ(I)(ℓ1, ℓ2)

and Ĉ(II)(h1, h2), obtained by suitably choosing two level lines for each sys-
tem, as well as the two disjoint generalized rectangles D (colored in dark
orange) and E (colored in light orange) where the annuli meet.

of stating our result about System (3.5) (cf. Proposition 3.1 below), for
which we will not provide a proof due to its similarity with the verification
of Proposition 2.1, we introduce the Poincaré map Ψ̂ associated with System
(3.5), that can be decomposed as Ψ̂ = Ψ̂(II) ◦Ψ̂(I), where Ψ̂(I) is the Poincaré

map associated with System (MI) for t ∈ [0, T (I)] and Ψ̂(II) is the Poincaré
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map associated with System (MII) for t ∈ [0, T (II)]. Notice that every pair
of linked together annuli for System (3.5), being made of energy level lines of

Systems (Mi), i ∈ {I, II}, are invariant under the action of Ψ̂.We denote by

τ̂ (I)(ℓ), for all ℓ > ℓ̂
(I)
0 , the period of Γ̂(I)(ℓ), and by τ̂ (II)(h), for all h > ĥ

(II)
0 ,

the period of Γ̂(II)(h), recalling that the period of an orbit is the time needed
by the solution to the considered system, starting from a certain point of the
orbit, to complete one turn around the corresponding center, moving around
the orbit itself. As discussed above, the increasing monotonicity of τ̂ (I)( · )
and τ̂ (II)( · ) with the energy levels is suggested by the many simulative ex-
periments that we performed and by the accurate numerical analysis in [18,
Subsection 5.3], but, to the best of our knowledge, a rigorous proof is not
available in the literature. In the absence of a result showing that the period
of orbits of Systems (MI) and (MII) always increases with energy levels, in
Proposition 3.1 we assume that, given two linked together annuli for System
(3.5), the period of the orbits composing their inner boundary is smaller than
the period of the orbits composing their outer boundary. The main difference
between Propositions 2.1 and 3.1 lies indeed in the necessity to exclude in
the latter that the period remains unchanged between the inner and outer
boundaries of the linked annuli, since a variation in the periods is required
for the Poincaré map to produce a twist effect on the annuli, which in turn
allows to apply the LTMs method. We recall that for System (2.4) such a
variation was granted by the results in [34, 38] on the monotonicity of the
period of orbits for the Lotka-Volterra predator-prey model.

Proposition 3.1 For any choice of the positive parameters α, β, χ, c, δ, η, µ, ρ,
σ̂(I), σ̂(II) satisfying (3.6), given the annulus Ĉ(I)(ℓ1, ℓ2) around P̂

(I), for some

ℓ̂
(I)
0 < ℓ1 < ℓ2, and the annulus Ĉ(II)(h1, h2) around P̂ (II), for some ĥ

(II)
0 <

h1 < h2, assume that they are linked together, calling D and E the con-
nected components of Ĉ(I)(ℓ1, ℓ2) ∩ Ĉ(II)(h1, h2). Then, if τ̂

(I)(ℓ1) < τ̂ (I)(ℓ2),
τ̂ (II)(h1) < τ̂ (II)(h2), it holds that for every m̂(I) ≥ 1 and m̂(II) ≥ 1 with
m̂ = m̂(I)m̂(II) ≥ 2 there exist two positive constants t̂(I) = t̂(I)(m̂(I),
τ̂ (I)(ℓ1), τ̂

(I)(ℓ2)) and t̂
(II) = t̂(II)(m̂(II), τ̂ (II)(h1), τ̂

(II)(h2)) such that if T (i) >

t̂(i), for i ∈ {I, II}, the Poincaré map Ψ̂ = Ψ̂(II) ◦ Ψ̂(I) of System (3.5) in-
duces chaotic dynamics on m̂ symbols in D and in E , and all the properties
listed in Theorem 4.1 are fulfilled for Ψ̂.

We remark that the same conclusions in Proposition 3.1 would hold true also
if the period of the inner boundary were larger (rather than smaller) with
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respect to the period of the outer boundary for at least one of the linked
together annuli.9 In Proposition 3.1 we chose to focus on the framework
in which the period of the inner boundary is smaller than the period of
the outer boundary for both the linked together annuli because this is the
scenario observed in the numerical experiments in [18, Subsection 5.3], as well
as in all the simulations that we performed. We find that same framework
in Example 3.1, too, that concludes the present investigation of the modified
version of the Goodwin model by illustrating a numerical context, in which
Proposition 3.1 can be applied to show the existence of chaotic dynamics.
Notice that the parameter configuration considered in Example 3.1 and in its
illustration in Figure 2 coincides with that used to draw Figure 1 in Section 2,
as well as Figures 3 and 4 in the Appendix, except for the parameters c, δ, η
and µ, which were not present in the model original formulation in (2.1), and
for the parameters χ and ρ, whose values have now been interchanged, in
order to satisfy the second condition in (3.6), i.e., ρ < α + χ, guaranteeing
that the ordinate of the centers for System (3.5) lies in the interval (0, 1).
Namely, such hypothesis is incompatible with the last condition in (2.6),
which played the same role in regard to the ordinate of the centers for System
(2.4). Hence, some differences in the parameter values for the original and
the modified versions of the Goodwin model need to be introduced, but we
will avoid adding unnecessary ones. In regard to the new parameters δ and
µ, we will deal with the same values, i.e. δ = 1 and µ = 1.2, used in the
numerical simulations performed in [18, Subsection 5.3] where, as already
recalled, the authors illustrate the issues which arise when trying to prove
that the period map connected with System (3.1) is increasing, even if they
find numerical evidence of such conjecture for the above values of δ and µ.We
stress that the case δ = 1 was also considered in [8] (cf. page 2668 therein),
although in that framework the parameter µ was not present.

Example 3.1 Taking α = 0.02, β = 0.01, χ = 0.7, ρ = 0.6, σ(I) = 3, σ(II) =
2.5, c = 0.45, η = 0.3, δ = 1, µ = 1.2 and recalling (3.7), System (MI)

has a center in P̂ (I) = (0.141, 0.167) while System (MII) has a center in

P̂ (II) = (0.170, 0.167).

As shown in Figure 2 (B), two linked together annuli Ĉ(I)(e1, e2) and Ĉ(II)(h1,

9Notice that in those cases the position of the boundary periods should be exchanged
on the denominator of the fractions defining t̂(I) and/or t̂(II), which respectively coincide
with those for t(I) and t(II) in the proof of Proposition 2.1 (see the Appendix), when
replacing τ (i) with τ̂ (i), for i ∈ {I, II}.
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h2) can be obtained for e1 = 0.8657, e2 = 0.8696, h1 = 0.9865, h2 = 0.9892,
intersecting in the two disjoint generalized rectangles denoted by D and E .
Software-assisted computations show that τ̂ (I)(e1) ≈ 111 < τ̂ (I)(e2) ≈ 114
and τ̂ (II)(h1) ≈ 89 < τ̂ (II)(h2) ≈ 90. Hence, Proposition 3.1 guarantees the

existence of chaotic dynamics for the Poincaré map Ψ̂ = Ψ̂(II) ◦ Ψ̂(I) associ-
ated with System (3.5) provided that the switching times T̂ (I) and T̂ (II) are
large enough.

4 Recalling the Linked Twist Maps method

In the present section we briefly recall the planar results about the Linked
Twist Maps (LTMs) method that we have used in Sections 2 and 3, referring
the interested reader to [24, 30] for further details and to [35] for a three-
dimensional version of it.
Although in the literature different assumptions, connected e.g. with measure
theory and differential calculus, have been made on linked twist maps (see e.g.
[5, 31, 32]), we just rely on topological hypotheses. Indeed, given two annuli
crossing along two (or more) planar sets homeomorphic to the unit square, by
a linked twist map we mean the composition of two twist maps, each acting
on one of the two annuli, which are homeomorphisms and that, similar to
what required in the Poincaré-Birkhoff fixed point theorem, produce a twist
effect on the boundary sets of the two annuli, leaving them invariant. In
the applications of LTMs illustrated in the present paper, we have analyzed
Hamiltonian systems with a nonisochronous center, whose position varies
when modifying a parameter for which it is sensible to assume, due to a
seasonal effect, a periodic alternation between two different values, one of
which may be seen as a perturbation of the other. Thanks to this alternation,
we obtain two conservative systems with a nonisochronous center and for each
of them we can consider an annulus composed of energy level lines. Under
certain conditions on the orbits, the two annuli cross in two generalized
rectangles. The LTMs method consists in proving the presence of chaotic
dynamics for the Poincaré map obtained as composition of the Poincaré
maps associated with the unperturbed system and with the perturbed one,
which are homeomorphisms, by checking that they satisfy suitable stretching
relations (cf. conditions (CF ) and (CG) in Theorem 4.1, as well as (4.1)). We
stress that the nonisochronicity of the centers is crucial in the above described
procedure, because it implies that the orbits composing the linked annuli are
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run with a different speed, so that the Poincaré maps produce a twist effect
on the linked annuli, despite the invariance of closed orbits under the action
of the Poincaré maps.
The stretching relation in (4.1) is the kernel of the Stretching Along the
Paths (henceforth, SAP) method, i.e. the topological technique, developed
in the planar case in [21, 22] and extended to the N -dimensional framework
in [29], that allows to show the existence of fixed points, periodic points
and chaotic dynamics for continuous maps that expand the arcs along one
direction and that are defined on sets homeomorphic to the unit square. We
start by introducing its main aspects, in order to be able to state Theorem
4.1, so that we can then more precisely describe what we mean by chaos.
We call path in R

2 any continuous function γ : [0, 1] → R
2 and we set γ :=

γ([0, 1]). By a generalized rectangle we mean a subset R of R2 homeomorphic
to the unit square [0, 1]2, through a homeomorphism H : R2 ⊇ [0, 1]2 → R ⊆
R

2. We also introduce the left and the right sides of R, defined respectively
as R−

l := H({0} × [0, 1]) and R−
r := H({1} × [0, 1]). We call the pair

R̃ := (R,R−)

an oriented rectangle of R2, where R− := R−
l ∪R−

r .
The stretching along the paths relation for maps between oriented rectangles
can then be defined as follows:

Definition 4.1 Given Ñ := (N ,N−) and Õ := (O,O−) oriented rectangles
of R2, let F : N → R

2 be a function and H ⊆ N be a compact set. We say
that (H, F ) stretches Ñ to Õ along the paths, and write

(H, F ) : Ñ ≎−→Õ, (4.1)

if

- F is continuous on H ;

- for every path γ : [0, 1] → N with γ(0) ∈ N−
l and γ(1) ∈ N−

r or
with γ(0) ∈ N−

r and γ(1) ∈ N−
l there exists [t′, t′′] ⊆ [0, 1] such that

γ([t′, t′′]) ⊆ H, F ◦ γ([t′, t′′]) ⊆ O, with F (γ(t′)) ∈ O−
l and F (γ(t′′)) ∈

O−
r or with F (γ(t′)) ∈ O−

r and F (γ(t′′)) ∈ O−
l .

We stress that to check the stretching relation in (4.1) we may need to con-
sider paths γ : [0, 1] → N with γ(0) ∈ N−

r and γ(1) ∈ N−
l e.g. when dealing
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with the composition of two functions (like in (4.2) where Φ := G ◦F ), since
it can happen that the image through the first map of paths joining the op-
posite sides of a certain oriented rectangle M̃ from left to right connects the
sides of N− from right to left through a path that is the starting point of
the second function. Nonetheless in the proof of Proposition 2.1, contained
in the Appendix, it will suffice for us to focus on paths joining the left and
the right sides of the generalized rectangles where the functions start from,
since we will not directly deal with composite mappings. Namely, thanks
to Theorem 4.1 (cf. in particular (CF ) and (CG) therein), in order to check
the existence of chaotic dynamics for the Poincaré map obtained as compo-
sition of the Poincaré maps associated with the unperturbed Hamiltonian
system and with the perturbed one, we can deal with those two Poincaré
maps separately.

Theorem 4.1 Let F : R
2 ⊇ DF → R

2 and G : R
2 ⊇ DG → R

2 be
continuous maps defined on the sets DF and DG, respectively. Let also
Ñ := (N ,N−) and Õ := (O,O−) be oriented rectangles of R

2. Suppose
that the following conditions are satisfied:

(CF ) there are m̂ ≥ 1 pairwise disjoint compact sets H0 , . . . ,Hm̂−1 ⊆ N∩DF

such that (Hi, F ) : Ñ ≎−→Õ, for i = 0, . . . , m̂− 1 ;

(CG) there are m̆ ≥ 1 pairwise disjoint compact sets K0 , . . . ,Km̆−1 ⊆ O∩DG

such that (Kj, G) : Õ ≎−→Ñ , for j = 0, . . . , m̆− 1 ;

(Cm) m := m̂ · m̆ ≥ 2 ;

(CΦ) the composite map Φ := G ◦ F is injective on

H∗ :=
⋃

i = 0, . . . , m̂− 1

j = 0, . . . , m̆− 1

H′
i,j , with H′

i,j := Hi ∩ F
−1(Kj) .

Then, setting

X∞ :=
∞⋂

n=−∞

Φ−n(H∗),

there exists a nonempty compact set

X ⊆ X∞ ⊆ H∗

on which the following properties are fulfilled:
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(i) X is invariant for Φ (that is, Φ(X) = X);

(ii) Φ ↾X is semi-conjugate to the two-sided Bernoulli shift on m symbols,
i.e., there exists a continuous map π from X onto Σm := {0, . . . ,m −
1}Z, endowed with the distance

d(s′, s′′) :=
∑

i∈Z

|s′i − s′′i |

m|i|+1
,

for s
′ = (s′i)i∈Z and s

′′ = (s′′i )i∈Z ∈ Σm , such that the diagram

X X

Σm Σm

✲
Φ

❄

π

❄

π

✲

σ

commutes, i.e. π ◦Φ = σ ◦π, where σ : Σm → Σm is the Bernoulli shift
defined by σ((si)i) := (si+1)i, ∀i ∈ Z ;

(iii) the set P of the periodic points of Φ ↾X∞
is dense in X and the preimage

π−1(s) ⊆ X of every k-periodic sequence s = (si)i∈Z ∈ Σm contains at
least one k-periodic point.

Furthermore, from conclusion (ii) it follows that:

(iv)
htop(Φ) ≥ htop(Φ ↾X) ≥ htop(σ) = log(m),

where htop is the topological entropy;

(v) there exists a compact invariant set Λ ⊆ X such that Φ|Λ is semi-
conjugate to the two-sided Bernoulli shift on m symbols, topologically
transitive and displays sensitive dependence on initial conditions.

Proof. The crucial step consists in showing that

(H′
i,j ,Φ) : Ñ ≎−→Ñ , i = 0, . . . , m̂− 1, j = 0, . . . , m̆− 1. (4.2)

See Theorem 3.1 in [23] for a verification of this property in more general
spaces for the case m̂ = m ≥ 2, m̆ = 1. The condition in (4.2) is then easy to
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check (cf. Theorem 3.2 in [23] for a result analogous to ours, which follows
as a corollary from Theorem 3.1 therein).
Recalling Definition 2.3 in [23], as a consequence of (4.2) it holds that Φ
induces chaotic dynamics on m symbols in the set N . Conclusions (i)–(v)
follow then by Theorem 2.2 and by Footnote 4 in [20], where however the
case m = 2 is considered.

In the proof of Theorem 4.1, we mentioned the concept of a map inducing
chaotic dynamics on m ≥ 2 symbols on a set according to Definition 2.3 in
[23]. Even if for brevity’s sake we will not go into detail, we just stress that
such notion of chaos for the case m = 2 bears a deep resemblance to the
concept of chaos in the coin-tossing sense discussed in [15], being however
stronger than it. Namely, in addition to the requirement in [15] that every
two-sided sequence of two symbols is realized through the iterates of the
map, jumping between two disjoint compact subsets, Definition 2.3 in [23]
also requires periodic sequences of symbols to be reproduced by periodic
orbits of the map. We refer the interested reader to [20] for a comparison
with other notions of chaos widely considered in the literature.
Notice that, in the light of [23, Definition 2.3], we can rephrase the statement
of Theorem 4.1 above by saying that, when conditions (CF ), (CG), (Cm) and
(CΦ) therein are satisfied, the composite map Φ = G ◦ F induces chaotic
dynamics on m ≥ 2 symbols in N , knowing that from this fact all the
properties listed in Theorem 4.1 hold true for G◦F, in regard to the existence
of periodic points, too. We indeed used such reformulation of Theorem 4.1 in
Sections 2 and 3 (see for instance the statement of Propositions 2.1 and 3.1)
when dealing with the composition of the Poincaré maps associated with the
unperturbed and with the perturbed Hamiltonian systems.

5 Concluding remarks

In the present work, following the seminal idea by Goodwin in [13] of studying
forced models in economics, obtained superimposing exogenous cycles to cy-
cles endogenously generated by a model, we showed the existence of complex
dynamics in both the original version of his celebrated growth cycle model
(see [11, 12]), and for a modified formulation of it, encompassing nonlinear
expressions of the real wage bargaining function and of the investment func-
tion, already considered in the literature. In particular, in regard to the real
wage bargaining function we dealt with the formulation proposed by Phillips
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in [27], while for the investment function we used an expression employed
in [18]. The need to consider a modified formulation of the Goodwin model
was motivated by the observation that its original version does not guarantee
that orbits lie in the unit square, as they should, since the state variables
are wage share in national income and proportion of labor force employed,
which can neither be negative, nor exceed unity. We however underline that a
nonlinear investment function is grounded also from an economic viewpoint
since it encompasses a description of a more flexible savings behavior (cf.
[9, 39]) and that Goodwin initially considered the nonlinear version of the
Phillips curve in [27], then linearizing it so as to obtain an approximation
“in the interest of lucidity and ease of analysis ” [11, page 55].
Exploiting in both the original and the modified settings the periodic depen-
dence on time of one of the model parameters and the Hamiltonian structure,
characterized by the presence of a global nonisochronous center, we proved
the presence of chaos for the Poincaré map associated with the considered
systems by means of the Linked Twist Maps (LTMs) method, used e.g. in
[24, 30]. This led us to work with discrete-time dynamical systems. We
stress that the obtained results, in their general conclusions, do not depend
on the particular expression of the equations involved, as long as we en-
ter e.g. the class of Hamiltonian systems considered in [18], for which it is
therein proven that the center is nonisochronous and that orbits lie in the
unit square. Concerning the needed economic assumptions, we recall that
the real wage bargaining function has to be increasing in the proportion of
labor force employed, while the investment function has to be decreasing in
wage share in national income.
Despite the issue with the orbit position in the original Goodwin model, even
for that formulation we have been able to prove the existence of chaotic sets
lying in the unit square thanks to the features of the LTMs method. Namely,
the chaotic sets are located inside the generalized rectangular regions ob-
tained as intersection of the detected pair of linked annuli, that jointly con-
stitute an invariant set under the action of the composite Poincaré map.
Indeed each annulus, being made of periodic orbits, is invariant under the
action of the Poincaré map describing the corresponding regime. Choosing
then linked together annuli contained in the unit square solves the problem.
As our illustrative examples showed, this can be done even when dealing with
parameter configurations analogous to those considered in [8, 14].
The seminal idea by Goodwin in [13] of studying forced models in economics
has been recently applied to a three-dimensional setting in [7], where the au-
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thors investigate the implications of describing exports as a function of the
capital stock in the framework introduced in [6], which extends the original
Goodwin model in [11] to an open economy setting that includes the balance-
of-payments constraint (BoPC) on growth. In more detail, in agreement with
Goodwin’s insight in [10] that Schumpeterian innovations requiring invest-
ment occur periodically, the authors in [7] add a nonlinear forcing term in
the capital accumulation function and, referring to their Fig. 5 on page 266,
say that “In this way, we obtain a scenario in which a non-linear system with
a “natural” oscillation frequency interacts with an external “force” resulting
in a chaotic attractor as shown in Fig. 5. The interplay between two or
more independent frequencies characterising the dynamics of the system is a
well-known route to more complex behaviour ”. It would then be interesting
to check whether the LTMs method, or more generally the SAP (Stretching
Along the Paths) technique, on which the LTMs method is based, could be
employed in that setting, too, in order to rigorously prove the existence of
complex dynamics.
In regard to three-dimensional applications of the LTMs technique, we re-
call [35] where, dealing with linked together cylindrical sets, the focus is
on a 3D non-Hamiltonian system describing a predator-prey model with
a Beddington-DeAngelis functional response in a periodically varying en-
vironment. Related to this, we also mention the 3D continuous-time non-
Hamiltonian framework representing the Lotka-Volterra model with two preda-
tors and one prey in a periodic environment considered in [36], for which the
presence of chaos has been shown by means of the SAP technique, without
relying on the LTMs geometry. Despite such dissimilarity in the employed
method, the common starting point in the proofs of chaos for the frameworks
analyzed in [35, 36] is given by a study of the properties of the classical pla-
nar Lotka-Volterra system. Since, as we have seen, Goodwin growth cycle
model in [11, 12] is a special case of the predator-prey setting, in view of
proving the existence of chaotic phenomena for its 3D extension proposed in
[7], we could try to apply similar arguments to those used in [35, 36]. We
will investigate this possibility in a future work.

32



Funding: This research received no external funding.

Acknowledgments: Many thanks to Professor Ahmad Naimzada for help-
ful conversations about the Goodwin model and to Professor Fabio Zanolin
for interesting discussions about the state of the art in applications of the
Linked Twist Maps method.

Conflicts of Interest: The author declares no conflict of interest.

References

[1] J. Alvarez-Ramirez, R. Escarela-Perez, G. Espinosa-Perez and R. Ur-
rea, Dynamics of electricity market correlations, Physica A 388 (2009),
2173–2188.

[2] S. Arango and E. Larsen, Cycles in deregulated electricity markets: Em-
pirical evidence from two decades, Energy Policy 39 (2011), 2457–2466.

[3] M. Braun, “Differential Equations and Their Applications. An introduc-
tion to Applied Mathematics,” 4th ed., Texts in Applied Mathematics,
11. Springer-Verlag, New York, 1993.

[4] L. Burra and F.Zanolin, Chaotic dynamics in a vertically driven planar
pendulum, Nonlinear Anal. 72 (2010), 1462–1476.

[5] R. Burton and R. W. Easton, Ergodicity of linked twist maps, in “Global
Theory of Dynamical Systems,” Proc. Int. Conf., Northwestern Univ.,
Evanston, Ill., 1979, Lecture Notes in Math., 819. Springer, Berlin,
(1980), 35–49.

[6] M. J. Dávila-Fernández and S. Sordi, Distributive cycles and endogenous
technical change in a BoPC growth model, Econ. Model. 77 (2019),
216–233.

[7] M. J. Dávila-Fernández and S. Sordi, Path dependence, distributive cy-
cles and export capacity in a BoPC growth model, Struct. Change Econ.
Dyn. 50 (2019), 258–272.

[8] M. Desai, B. Henry, A. Mosley and M. Pemberton, A clarification of the
Goodwin model of the growth cycle, J. Econ. Dyn. Control 30 (2006),
2661–2670.

33



[9] P. Flaschel, Some stability properties of Goodwin’s growth cycle. A crit-
ical elaboration, Z. Nationalökon. 44 (1984), 63–69.
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[33] O. E. Rössler, An equation for continuous chaos, Phys. Lett. 57A (1976),
397–398.

[34] F. Rothe, The periods of the Volterra-Lotka system, J. Reine Angew.
Math. 355 (1985), 129–138.

[35] A. Ruiz-Herrera and F. Zanolin, An example of chaotic dynamics in 3D
systems via stretching along paths, Ann. Mat. Pura Appl. 193 (2014),
163–185.

[36] A. Ruiz-Herrera and F. Zanolin, Horseshoes in 3D equations with appli-
cations to Lotka-Volterra systems, NoDEA Nonlinear Differ. Equ. Appl.
22 (2015), 877–897.

[37] R. Veneziani and S. Mohun, Structural stability and Goodwin’s growth
cycle, Struct. Change Econ. Dynam. 17 (2006), 437–451.

[38] J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J.
Math. Anal. Appl. 114 (1986), 178–184.

[39] W. Zhang, Cyclical economic growth–re-examining the Goodwin model,
Acta Math. Appl. Sin. 7 (1991), 114–120.

36



6 Appendix: Proof of Proposition 2.1

Proof of Proposition 2.1. Given the linked together annuli C(I)(ℓ1, ℓ2) and

C(II)(h1, h2), we call C(I)
t (ℓ1, ℓ2) (resp. C(I)

b (ℓ1, ℓ2)) the subset of C(I)(ℓ1, ℓ2)
which lies above (resp. below)10 the horizontal line r, joining P (I) and P (II);

analogously, C(II)
t (h1, h2) (resp. C(II)

b (h1, h2)) is the subset of C(II)(h1, h2)
which lies above (resp. below) r. In this manner it holds that C(I)(ℓ1, ℓ2) =

C(I)
t (ℓ1, ℓ2)∪ C(I)

b (ℓ1, ℓ2) and C(II)(h1, h2) = C(II)
t (h1, h2)∪ C(II)

b (h1, h2). More-

over, we introduce the generalized rectangles A := C(I)
t (ℓ1, ℓ2) ∩ C(II)

t (h1, h2)

and B := C(I)
b (ℓ1, ℓ2) ∩ C(II)

b (h1, h2). Let us fix m(I) ≥ 1 and m(II) ≥ 1 such
that m = m(I)m(II) ≥ 2. We are going to show that, if we orientate A
and B e.g. by setting A− = A−

l ∪ A−
r and B− = B−

l ∪ B−
r , with A−

l :=
A ∩ Γ(I)(ℓ1), A

−
r := A ∩ Γ(I)(ℓ2), B

−
l := B ∩ Γ(II)(h2), B

−
r := B ∩ Γ(II)(h1),

then there exist m(I) ≥ 1 pairwise disjoint compact subsets H0, . . . , Hm(I)−1

of A such that

(Hi,Ψ
(I)) : Ã ≎−→B̃, i = 0, . . . ,m(I) − 1 (6.1)

(cf. Figure 3 (A) for a graphical illustration with m(I) = 1), as well as
m(II) ≥ 1 pairwise disjoint compact subsets K0, . . . , Km(II)−1 of B such that

(Kj,Ψ
(II)) : B̃ ≎−→Ã, j = 0, . . . ,m(II) − 1 (6.2)

(see Figure 3 (B) for an illustration with m(II) = 2). Namely, if this is
the case, (CF ) and (CG) in Theorem 4.1 are fulfilled for the oriented rect-

angles Ã := (A,A−) and B̃ := (B,B−) with F = Ψ(I) and G = Ψ(II).
Since m = m(I)m(II) ≥ 2, and (Cm) in Theorem 4.1 holds true, too, the
Poincaré map Ψ = Ψ(II) ◦Ψ(I) of System (2.4) induces chaotic dynamics on
m symbols in A. Recalling that the Poincaré map Ψ is a homeomorphism
on (0,+∞)2, and thus it is injective and continuous in particular on the set

H∗ :=
⋃

i = 0, . . . ,m(I) − 1

j = 0, . . . ,m(II) − 1

Hi∩
(
Ψ(I)

)−1
(Kj) , also condition (CΦ) in Theorem 4.1

is satisfied for Φ = Ψ and it is then possible to apply Theorem 4.1 to conclude
that all the properties listed therein are fulfilled for Ψ.
In view of checking (6.1), we introduce a system of polar coordinates (ρ(I), θ(I))
centered at P (I), so that the solution ς(I)(t, (u0, v0)) = (u(t, (u0, v0)), v(t, (u0, v0)))

10Namely, t stands for “top” and b stands for “bottom”.
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(A) (B)

Figure 3: In (A), given the linked together annuli C(I)(ℓ1, ℓ2) and C(II)(h1, h2),
we draw in orange the straight line r joining the centers P (I), P (II) and
separating the top sets C(I)

t (ℓ1, ℓ2), C
(II)
t (h1, h2), colored respectively in green

and gray, from the bottom sets C(I)
b (ℓ1, ℓ2), C

(II)
b (h1, h2), colored respectively

in light green and light gray. For A := C(I)
t (ℓ1, ℓ2) ∩ C(II)

t (h1, h2) and B :=

C(I)
b (ℓ1, ℓ2) ∩ C(II)

b (h1, h2), suitably oriented by the choice of their left and
right sides, we illustrate in (A) the condition (6.1) with m(I) = 1 and in (B)
the condition (6.2) with m(II) = 2.

to System (I) with initial point in (u0, v0) ∈ (0,+∞)2 can be expressed as
ς(I)(t, (u0, v0)) = ‖ς(I)(t, (u0, v0))−P (I)‖ (cos(θ(I)(t, (u0, v0))), sin(θ

(I)(t, (u0, v0)))).

Moreover, we define the rotation number, describing the normalized angu-
lar displacement during the time interval [0, t] ⊆ [0, T (I)] of the solution
ς(I)(t, (u0, v0)) as

rot(I)(t , (u0, v0)) :=
θ(I)(0, (u0, v0))− θ(I)(t, (u0, v0))

2π
(6.3)

in order to count positive the turns around P (I) in the clockwise sense, since
orbits for System (I) are run clockwise. Recalling the definition of τ (I)(ℓ),

for ℓ > ℓ
(I)
0 , as a consequence of the star-shapedness with respect to P (I) of

the lower contour sets {(u, v) ∈ (0,+∞)2 : E(I) ≤ ℓ}, with E(I) as in (2.7),
we obtain that the following properties

rot(I)(t, (u0, v0)) < n ⇐⇒ t < n τ (I)(ℓ)

rot(I)(t, (u0, v0)) = n ⇐⇒ t = n τ (I)(ℓ)

rot(I)(t, (u0, v0)) > n ⇐⇒ t > n τ (I)(ℓ)
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hold true for every (u0, v0) ∈ Γ(I)(ℓ), t ∈ [0, T (I)] and n ≥ 1. Hence, we have
that rot(I)(t, (u0, v0)) ∈ (n, n+ 1) ⇐⇒ t ∈ (n τ (I)(ℓ), (n+ 1) τ (I)(ℓ)).
To check (6.1), let γ : [0, 1] → A be a generic path with γ(0) ∈ A−

l , γ(1) ∈
A−

r . For every λ ∈ [0, 1], we consider Ψ(I)(γ(λ)), i.e., the position at time T (I)

of the solution ς(I)(t , γ(λ)) to System (I) starting at t = 0 from γ(λ) ∈ A, to-
gether with the corresponding angular coordinate θ(I)(T (I), γ(λ)). We stress
that, due to the continuity of γ and by the continuous dependence of the so-
lutions from the initial data, the function λ 7→ θ(I)(T (I), γ(λ)) is continuous,
too. Moreover, recalling that τ (I)(ℓ1) < τ (I)(ℓ2) and A−

l ⊂ Γ(I)(ℓ1), A
−
r ⊂

Γ(I)(ℓ2), we are going to show that if T (I) > t(I) :=
(
m(I) + 7

2

) τ (I)(ℓ1)τ (I)(ℓ2)

(τ (I)(ℓ2)−τ (I)(ℓ1))

then θ(I)(T (I), γ(1))− θ(I)(T (I), γ(0)) >
(
2m(I) + 1

)
π.

If this is true, there exists n∗ ∈ N such that [−2(n∗ + i)π− π,−2(n∗ + i)π] is
contained in the interval {θ(I)(T (I), γ(λ)) : λ ∈ [0, 1]} for i ∈ {0, . . . ,m(I) −
1}. Thus, by Bolzano theorem, there are m(I)pairwise disjoint maximal in-
tervals [λ′i, λ

′′
i ] of [0, 1] such that for i ∈ {0, . . . ,m(I) − 1} it holds that

{θ(I)(T (I), γ(λ)) : λ ∈ [λ′i, λ
′′
i ]} ⊆ [−2(n∗ + i)π − π,−2(n∗ + i)π], with

θ(I)(T (I), γ(λ′i)) = −2(n∗ + i)π − π and θ(I)(T (I), γ(λ′′i )) = −2(n∗ + i)π. In
order to have the stretching relation (6.1) satisfied, we can then set Hi :=
{(u0, v0) ∈ A : θ(I)(T (I), (u0, v0)) ∈ [−2(n∗ + i)π − π,−2(n∗ + i)π]} for i ∈
{0, . . . ,m(I)−1}. Indeed, for i ∈ {0, . . . ,m(I)−1},Hi is a compact set contain-
ing {γ(λ)) : λ ∈ [λ′i, λ

′′
i ]}. Moreover, for i ∈ {0, . . . ,m(I)−1} and λ ∈ [λ′i, λ

′′
i ],

it holds that γ(λ) ∈ Hi, Ψ
(I)(γ(λ)) ∈ C(I)

b (ℓ1, ℓ2) and E(II)(Ψ(II)(γ(λ′i))) ≥
h2, E

(II)(Ψ(II)(γ(λ′′i ))) ≤ h1. Hence, there exists an interval [λ∗i , λ
∗∗
i ] ⊆ [λ′i, λ

′′
i ]

such that Ψ(I)(γ(λ)) ∈ B for every λ ∈ [λ∗i , λ
∗∗
i ], and E(II)(Ψ(I)(γ(λ∗i ))) =

h2, E
(II)(Ψ(I)(γ(λ∗∗i ))) = h1. Since B−

l = B ∩ Γ(II)(h2), B
−
r = B ∩ Γ(II)(h1),

this means that Ψ(I)(γ(λ∗i )) ∈ B−
l and Ψ(I)(γ(λ∗∗i )) ∈ B−

r , concluding the
verification of (6.1).
We then have to check that, for any path γ : [0, 1] → A with γ(0) ∈ A−

l =
A ∩ Γ(I)(ℓ1) and γ(1) ∈ A−

r = A ∩ Γ(I)(ℓ2), if it holds that T (I) > t(I)

then θ(I)(T (I), γ(1))− θ(I)(T (I), γ(0)) >
(
2m(I) + 1

)
π. Since rot(I)(t, γ(0)) ≥

⌊t/τ (I)(ℓ1)⌋ and rot(I)(t, γ(1)) ≤ ⌈t/τ (I)(ℓ2)⌉ for every t > 0, it follows that

rot(I)(t, γ(0))−rot(I)(t, γ(1)) ≥ ⌊t/τ (I)(ℓ1)⌋−⌈t/τ (I)(ℓ2)⌉ > t τ (I)(ℓ2)−τ (I)(ℓ1)

τ (I)(ℓ1) τ (I)(ℓ2)
−2

for every t > 0. Hence, for T (I) > t(I) it holds that

rot(I)(T (I), γ(0))− rot(I)(T (I), γ(1))> T (I) τ (I)(ℓ2)−τ (I)(ℓ1)

τ (I)(ℓ1) τ (I)(ℓ2)
− 2

> m(I) + 7
2
− 2 = m(I) + 3

2
> m(I) + 1.

39



As a consequence, recalling the definition of rot(I) given in (6.3), we have
that θ(I)(T (I), γ(1))− θ(I)(T (I), γ(0)) > 2(m(I)+1)π+ θ(I)(0, γ(1))− θ(I)(0, γ(0)).

Since γ([0, 1]) ⊂ A := C(I)
t (ℓ1, ℓ2)∩C

(II)
t (h1, h2), it holds that both θ

(I)(0, γ(0))
and θ(I)(0, γ(1)) belong to [0, π], and thus θ(I)(0, γ(1)) − θ(I)(0, γ(0)) > −π,
from which it follows that θ(I)(T (I), γ(1))− θ(I)(T (I), γ(0)) > (2m(I)+1)π, as
needed.
Let us now turn to the proof of the stretching relation in (6.2). Due to its sim-
ilarity with the verification of (6.1), we will sketch just the main steps. In this
case we consider the image through Ψ(II) of any path ω : [0, 1] → B joining
B−
l with B−

r and check that it completely crosses A, from A−
l to A−

r , at least

m(II) times when T (II) > t(II) :=
(
m(II) + 7

2

)
τ (II)(h1)τ (II)(h2)

(τ (II)(h2)−τ (II)(h1))
, recalling that

also orbits for System (II) are run clockwise and that τ (II)(h1) < τ (II)(h2)
(see Figure 3 (B) for the case m(II) = 2). Introducing a system of polar
coordinates (ρ(II), θ(II)) centered at P (II), we can define the rotation number
as

rot(II)(t , (u0, v0)) :=
θ(II)(0, (u0, v0))− θ(II)(t, (u0, v0))

2π
(6.4)

describing the normalized angular displacement during the time interval
[0, t] ⊆ [0, T (II)] of the solution ς(II)(t , (u0, v0)) to System (II) with initial
point in (u0, v0) ∈ (0,+∞)2. Like it happened with the proof of (6.1), the key
step in the verification of (6.2) consists in showing that if T (II) > t(II) then
θ(II)(T (II), ω(1))− θ(II)(T (II), ω(0)) >

(
2m(II) + 1

)
π. Indeed, using Bolzano

Theorem, this allows to conclude that there exist m(II) ≥ 1 pairwise disjoint
compact subsets K0, . . . , Km(II)−1 of B which satisfy (6.2).
Once that the validity of (6.1) and (6.2) is verified, it follows that Ψ =
Ψ(II) ◦ Ψ(I) induces chaotic dynamics on m symbols in A by Theorem 4.1,
together with all the properties listed therein.
This concludes the first half of our proof, that will be complete just when
we will show that Ψ induces chaotic dynamics on m = m(I)m(II) ≥ 2
symbols in B, as well. To such aim, we can e.g. orientate A by setting
A−− = A−−

l ∪A−−
r , with A−−

l := A∩Γ(II)(h1), A
−−
r := A∩Γ(II)(h2), and B

by setting B−− = B−−
l ∪B−−

r , with B−−
l := B ∩Γ(I)(ℓ1), B

−−
r := B ∩Γ(I)(ℓ2),

and we verify that the image through Ψ(I) of any path joining in B the
sides B−−

l and B−−
r crosses A, from A−−

l to A−−
r , at least m(I) times when

T (I) > t(I), and then check that the image through Ψ(II) of any path in A
joining A−−

l with A−−
r crosses B, from B−−

l to B−−
r , at least m(II) times when

T (II) > t(II). Namely, this amounts to show that there existm(I) ≥ 1 pairwise
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disjoint compact subsets H′
0, . . . , H

′
m(I)−1

of B such that

(H′
i,Ψ

(I)) :
˜̃
B ≎−→

˜̃
A, i = 0, . . . ,m(I) − 1, (6.5)

as well as m(II) ≥ 1 pairwise disjoint compact subsets K′
0, . . . , K

′
m(II)−1

of A
such that

(K′
j,Ψ

(II)) :
˜̃
A ≎−→

˜̃
B, j = 0, . . . ,m(II) − 1, (6.6)

where we set
˜̃
B := (B,B−−) and

˜̃
A := (A,A−−) (see Figure 4). In such case,

(CF ) and (CG) in Theorem 4.1 are fulfilled for the newly introduced oriented

rectangles
˜̃
B := (B,B−−),

˜̃
A := (A,A−−) and with F = Ψ(I), G = Ψ(II). Since

m = m(I)m(II) ≥ 2, it is then possible to apply Theorem 4.1 to conclude that
the Poincaré map Ψ = Ψ(II) ◦Ψ(I) of System (2.4) induces chaotic dynamics
onm symbols in B, as well. Moreover, Ψ has all the features listed in Theorem
4.1 because (CΦ) therein holds true, too, as Φ = Ψ is injective and continuous

in particular on the set H′∗ :=
⋃

i = 0, . . . ,m(I) − 1

j = 0, . . . ,m(II) − 1

H′
i ∩
(
Ψ(I)

)−1
(K′

j) .

Due to their resemblance to (6.1) and (6.2), we leave to the reader the details
in the verification of (6.5) and (6.6), that allow to complete the proof.

(A) (B)

Figure 4: For the setsA and B introduced in Figure 3, which we now orientate
in a different manner by suitably choosing the left and the right sides, we
illustrate in (A) the stretching relation (6.5) with m(I) = 1 and in (B) the
condition (6.6) with m(II) = 2.

Focusing on the first half of the proof of Proposition 2.1, in which we show
that Ψ induces chaotic dynamics in A, in Figure 3 (A) we provide a qualita-
tive representation of what happens when the stretching relation in (6.1) is
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fulfilled with m(I) = 1 and in Figure 3 (B) we illustrate the condition (6.2)
with m(II) = 2. To have (6.1) satisfied with m(I) = 1 we need to verify that
the image through Ψ(I) of any path γ (in cyan) joining in A its left and right
sides crosses B once from left to right when T (I) is sufficiently large. This is
true in Figure 3 (A) since, calling H0 the compact subset of A in pale blue
and setting γ := γ([0, 1]), it holds that γ ∩ H0 (in blue) is transformed by
Ψ(I) into a path (in blue) connecting B−

l and B−
r in B. To check (6.2) with

m(II) = 2 we need to verify that the image through Ψ(II) of any path ω (in
blue) joining in B its left and right sides crosses A twice from left to right
when T (II) is large enough. This is true in Figure 3 (B) due to the existence
of the pairwise disjoint compact subsets K0 ,K1 of B (in yellow) with the
property that Ψ(II)(ω ∩ Ki) (in dark blue) connects A−

l and A−
r in A, for

i ∈ {1, 2}.
Similarly, in regard to the second half of the proof of Proposition 2.1, in
which we show that Ψ induces chaotic dynamics in B, we illustrate in Figure
4 (A) condition (6.5) with m(I) = 1 and in Figure 4 (B) condition (6.6) with
m(II) = 2. Notice that A and B need now to be oriented in a different manner
with respect to Figure 3 to have the stretching relations in (6.5) and (6.6)
satisfied. Indeed, in Figure 4 (A) we draw (in lilac) the compact subset H′

0 of
B with the property that the restriction to it (represented in orange) of any
path γ (in light orange) joining B−−

l and B−−
r in B is transformed by Ψ(I)

into a path (in orange) connecting A−−
l and A−−

r in A. In (B) we draw (in
beige) the two disjoint compact subsets K′

0, K
′
1 of A such that the restriction

to them (represented in dark orange) of any path ω (in orange) joining A−−
l

and A−−
r in A is transformed by Ψ(II) into paths (in dark orange) connecting

B−−
l and B−−

r in B.
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