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1 Introduction

The major success of the first run of the CERN Large Hadron Collider (LHC) was the

discovery of the Higgs boson [1, 2]. Run-I studies of this new resonance established its

mass and quantum numbers, as well as its coupling strengths to many Standard Model

particles [3, 4]. Moreover, measurements of fiducial cross section and distributions have

also been performed [5–8]. The start of the LHC Run II marked the beginning of the

Higgs precision era. Now is the time to study the properties of this new particle in de-

tail so that, nearly fifty years after its proposal, the Brout-Englert-Higgs mechanism for

electroweak symmetry breaking can undergo its final tests. One key element in the LHC

Run-II rich physics program is the measurement of the Higgs production cross section and

differential distributions, and their comparison to state-of-the-art theoretical predictions.

Thus, identifying the different sources of uncertainties and performing more refined calcula-

tions to improve on them is of paramount importance. In this paper we consider inclusive

production of a Higgs boson in hadron-hadron collisions, which is chiefly driven by the

gluon-fusion mechanism. QCD corrections to Higgs production in gluon fusion are known

to be very important, leading to poor convergence properties of the perturbative series.

Indeed, it is known that the next-to-leading (NLO) contribution corrects the Born cross

section by roughly 100%. Moreover, NNLO corrections are also significant. Recently, a

milestone calculation of third-order perturbative coefficient was performed [9–12]. N3LO

corrections appear to be small, indicating that the perturbative series is finally manife-

sting convergence.

– 1 –



J
H
E
P
0
8
(
2
0
1
6
)
1
0
5

Threshold resummation is a reorganization of the perturbative expansion that ac-

counts for logarithmically enhanced contributions to all-orders in the strong coupling αs.

In the same way as fixed-order calculations can be performed at different (NkLO) accu-

racy, resummed calculations can be systematically improved by including nextk-to-leading

logarithmic (NkLL) corrections. Threshold resummation for Higgs production is currently

known to N3LL [13–16]. In this work we update the results of refs. [13], in view of the

recently computed N3LO result [9–12]. We discuss the impact of the resummation on the

central value and we suggest a robust way of estimating the theoretical uncertainty due to

missing higher orders, which goes beyond traditional scale variation.

The paper is organized as follows. We start in section 2 by reviewing the results of

refs. [9–12] and using them to assess the validity of the fixed-order approximation based on

analyticity properties of perturbative coefficient functions of refs. [17, 18]. In section 3, we

then review basic results in threshold resummation as well as describe the improvements

suggested in ref. [13]. Section 4 contains the main results of this study, namely the matched

N3LO+N3LL cross section and a detailed study of the perturbative uncertainty. Finally, in

section 5 we compare our findings to different methods to assess the size of missing higher

orders, namely the Cacciari-Houdeau method [19–21] and the application of convergence

acceleration algorithms to the perturbative series, as suggested by David and Passarino [22].

2 The N3LO cross section

In order to fix the notation, we write the hadron-level cross section for the production of

a Higgs boson with mass mH in hadron-hadron collisions as

σ(τ,m2
H,m

2
t ) = τ

∑
ij

∫ 1

τ

dz

z
Lij

(τ
z
, µ2F

) 1

z
σ̂ij

(
z,m2

H,m
2
t , αs(µ

2
R),

m2
H

µ2F
,
m2

H

µ2R

)
, τ =

m2
H

s
,

(2.1)

where Lij(z, µ
2) is a parton luminosity

Lij(z, µ
2) =

∫ 1

z

dx

x
fi

( z
x
, µ2
)
fj(x, µ

2), (2.2)

and i, j run over all parton flavours. In the dominant gluon-fusion production mechanism,

the Higgs is generated by the fusion of two gluons through a quark loop. For simplicity,

we have only considered a top quark with mass mt running in the loop. Moreover, for ease

of notation, the dependence on factorization scale µF and renormalization scale µR is often

left understood.

The partonic cross section σ̂ij is then related to the dimensionless coefficient function

Cij by

σ̂ij(z,m
2
H,m

2
t , αs) = z σ0(m

2
H,m

2
t )Cij(z,m

2
H,m

2
t , αs). (2.3)

where σ0 is such that the coefficient function has the perturbative expansion in the strong

coupling αs

Cij(z,m
2
H,m

2
t , αs) = δigδjgδ(1− z) + αsC

(1)
ij (z,m2

H,m
2
t ) + α2

s C
(2)
ij (z,m2

H,m
2
t )

+ α3
s C

(3)
ij (z,m2

H,m
2
t ) +O(α4

s). (2.4)
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While the NLO coefficient C
(1)
ij is known exactly [23] and C

(2)
ij is known as an expansion in

m2
H/m

2
t matched to the (full-theory) small-z limit [24–29], the third order coefficient has

been computed only recently in the large-mt effective theory [9–12].

In the large-mt effective field theory (EFT), the heavy top is integrated out and con-

sequently the dependence on the top mass only appears in a Wilson coefficient squared

W . The EFT is usually improved with a rescaling of the cross section by the ratio of

the exact LO over the LO in the EFT, leading to the so-called rescaled effective theory

(rEFT), which is known to be a very good approximation for mH . mt and for not too

high collider energies, essentially because the large-s, i.e. small-z, behaviour of the EFT

coefficient functions is double-logarithmic [30], while the full theory only exhibits single

high-energy logarithms [24]. In the EFT, the coefficient function further factorizes

Cij(z,m
2
H,m

2
t , αs) = W (m2

H,m
2
t ) C̃ij(z, αs), (2.5)

where C̃ij has an expansion analogous to Cij , eq. (2.4), and W = 1 +O (αs). Thus, in the

EFT, the coefficient C
(3)
ij is given by

C
(3)
ij = C̃

(3)
ij +W (1)C̃

(2)
ij +W (2)C̃

(1)
ij +W (3)δigδjg, (2.6)

where W (k) are the coefficients of the expansion of the Wilson coefficient squared W in

powers of αs. The lower order coefficients C̃
(1)
ij and C̃

(2)
ij are fully known, while C̃

(3)
ij is the

recently computed N3LO contribution published in ref. [12].

For its computation, the third order coefficient C̃
(3)
ij has been decomposed into contri-

butions proportional to lnk(1− z) with k = 0, . . . , 5. For k = 3, 4 and 5 the exact result is

known [10], while for lower powers 0, 1 and 2, the result has been expressed in terms of a

soft expansion in 1−z up to order (1−z)37.1 While not included in the result of ref. [10], we

stress that the leading small-z logarithm, 1
z ln5 z, is known from small-z resummation [30]

(see appendix A.1 for details).

The construction of C
(3)
ij , eq. (2.6), has then some degree of arbitrariness. The formal

accuracy is set by the soft expansion of C̃
(3)
ij , so in principle one could take a soft expansion

of all its ingredients, in particular the lower orders C̃
(1)
ij and C̃

(2)
ij . Alternatively, one can

retain as much available information as possible, thereby using the exact expressions for

C̃
(1)
ij and C̃

(2)
ij and adding the leading small-z logarithm. These (and any other intermedi-

ate) options are all perfectly valid and the difference among them could be considered a

measure of the uncertainty related to the soft expansion. We have found that the residual

uncertainty on the soft expansion of C
(3)
ij mostly comes from the small-z logarithms. Thus,

for all phenomenological applications where the small-z logarithms are negligible, the soft

expanded result for C
(3)
ij (in any practical incarnation) is perfectly reliable and accurate,

in full agreement with the analysis of ref. [10]. On the other hand, the uncertainty related

to the soft expansion becomes larger as we increase the centre-of-mass energy, leading

to sizeable effects at energy scales of Future Circular Colliders (FCC),
√
s ' 100 TeV.

1The difference between the exact expression and the soft expansion for the three highest powers of

ln(1 − z) is totally negligible.
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Furthermore, even if we controlled the full z dependence of C
(3)
ij , the EFT result itself

becomes unreliable at very large energies because of the appearance of double logarithmic

contributions, as previously discussed.

Therefore, rather than improving the EFT result with EFT small-z logarithms, one

can try to improve it with finite mt effects. One way to do it is including those mt-

dependent contributions which are predicted by all-order calculations in the threshold

and high-energy limits. As we will see explicitly in section 3, the mt dependence of the

soft logarithms appears in a factorized form, and it is therefore possible to account for

the exact mt dependence of all the logarithmic terms, i.e. all the plus-distributions, that

appear at N3LO. The situation in the opposite, small-z, limit is less satisfying because the

resummation is known strictly speaking only at the first non-trivial order [17, 24], although

a large class of subleading running-coupling corrections can also be resummed [31, 32]. Both

effects have been implemented2 in the code ggHiggs, version 3.1, publicly available from the

webpage [33]. Further details on the ggHiggs implementation are given in appendix A.1.

In order to illustrate our findings, we now focus on the dominant gg channel, and

consider the “n-th order K-factor” K
(n)
gg , defined as the contribution to the K-factor coming

from C
(n)
gg only, namely

K(n)
gg = L −1

gg (τ)

∫ 1

τ

dz

z
Lgg

(τ
z

)
C(n)
gg (z,m2

H,m
2
t ) (2.7)

such that

Kgg = 1 + αsK
(1)
gg + α2

sK
(2)
gg + α3

sK
(3)
gg + . . . (2.8)

In figure 1 we show the results for the NLO, NNLO and N3LO K-factors as a function of the

collider energy
√
s, for fixed Higgs mass mH = 125 GeV, and top pole mass mt = 172.5 GeV.

We use the PDF4LHC15 nnlo 100 PDF set [34–38]. Results obtained in the large-mt EFT

are shown in dashed blue, while solid black curves also contain finite-mt corrections (we

remind the Reader that the mt dependence is fully accounted for at NLO, while it is treated

as a power expansion at NNLO). In all cases, differences between large-mt and finite-mt

is small, but it increases with
√
s, as expected.

At N3LO, we computed the EFT result using the exact expressions for C̃
(1)
ij and C̃

(2)
ij

in eq. (2.6), while C̃
(3)
ij is soft-expanded.3 The “mt-improved EFT” curve (black solid) is

constructed as described above: in particular, the coefficients of all the large-z logarithms

have the correct mt-dependence, while in the opposite, small-z, limit we have included the

appropriate leading logarithmic term 1
z ln2 z.

In all plots of figure 1 we additionally show the approximate result of ref. [17, 18] in

red, with its uncertainty, in order to assess the validity of that approach. The approxi-

mation is based on a combination of the soft and high-energy behaviours, including finite

mt effects. The soft part of the approximation, which gives the dominant contribution,

2We thank Achilleas Lazopoulos for providing the coefficients of the soft expansion of the N3LO result.
3The effect of soft-expanding the lower order is rather mild, while the effect of including the leading

small-z logarithm is comparable in size to the difference between dashed blue and solid black curves

in figure 1.
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Figure 1. Perturbative K-factors at NLO (top left), NNLO (top right) and N3LO (bottom) as a

function of the collider energy, for mH = 125 GeV.

presents several improvements with respect to standard soft approximations (see e.g. [39]);

in particular, two versions of the soft approximation, denoted soft1 and soft2, have been

considered, and the area between the two has been considered as the uncertainty on the

soft result, using the average as central prediction. This improved soft definition has been

later extended to all orders in ref. [13]; in that work, two of us noticed that soft2 (denoted

A-soft2 there) performed much better than (A-)soft1. Since then, we decided to centre the

approximation on soft2, symmetrizing the difference between soft1 and soft2 about soft2 to

get the uncertainty (which is then twice as large as in the original version). This is how

we now compute the (soft part of the) error in figure 1. This prescription was also used

for the prediction published in ref. [7].

As known from ref. [17], the approximation is very accurate at NLO and NNLO, the

exact result lying well within the uncertainty band, as shown in the first two panels of

figure 1. In the third panel, we show for the first time the approximate prediction of

the N3LO compared with the full EFT result of ref. [12] (in dashed blue) and to the

mt-improved EFT (in solid black).

As expected, at lower collider energies, where the process is closer to threshold, the

approximation is very good and perfectly compatible with the exact result within uncer-

tainties. Note that at these energy scales the missing terms beyond the soft expansion at

N3LO are completely negligible, so the full N3LO result can be regarded as exact. At very

– 5 –
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high (FCC) energies, the comparison between EFT (blue) and approximation (red) is not

significant. Perhaps surprisingly, we also find that our approximation and the mt-improved

EFT prediction differ at very high energy (although they are still compatible within errors)

despite having the same leading logarithmic behaviour. The difference is due to subleading

high-energy terms 1
z ln z and 1

z , which are included in the approximate result because they

are driven by the resummation of the splitting functions [17], but not in the mt-improved

EFT because they are not fully determined. The effect of these subleading terms is rather

large (larger than at NNLO) and a full determination of at least the 1
z ln z contribution is

highly desirable.

Finally, we see that in the intermediate region, relevant for LHC, our approximation

works less well and the full result lies at the lower edge of the uncertainty band of the

approximate result. This seems to suggest that, at N3LO, the contributions which are

neither soft nor high-energy are more important than at previous orders, a fact which

was not taken into account when estimating the uncertainty from these terms in ref. [17].

Nevertheless, in the gg channel considered here, the overall agreement of the approximate

result with the full result remains rather good.

3 Threshold resummation(s)

Soft-gluon resummation is usually performed in Mellin (N) space, where the multiple

gluon emission phase-space factorizes. The cross section eq. (2.1) has a simpler structure

in Mellin space: ∫ 1

0
dτ τN−1

σ(τ,m2
H)

τ
= σ0(m

2
H,m

2
t ) L (N)C (N,αs) , (3.1)

where we have used the same symbols, with different arguments, for a function and its

Mellin transform. Note that threshold resummation only affects the gg channel: we there-

fore suppress the flavour indices and implicitly focus on the gg channel. We will later

comment on the role of the quark channels. The N -space resummed coefficient function

has the form (see [13] and reference therein):

Cres (N,αs) = ḡ0
(
αs, µ

2
F

)
exp S̄(αs, N), (3.2)

S̄(αs, N) =

∫ 1

0
dz

zN−1−1

1−z

∫ m2
H

(1−z)2

z

µ2F

dµ2

µ2
2A
(
αs(µ

2)
)
+D

(
αs([1−z]2m2

H)
) , (3.3)

ḡ0(αs, µ
2
F) = 1+

∞∑
k=1

ḡ0,k(µ
2
F)αks , (3.4)

A(αs) =
∞∑
k=1

Akα
k
s , D(αs) =

∞∑
k=1

Dkα
k
s , (3.5)

where ḡ0(αs, µ
2
F) does not depend on N . We note that in the full theory, all the top-mass

dependence is in ḡ0. Furthermore, under the rEFT assumption, its expression factorizes as

ḡ0(αs, µ
2
F) = W (m2

H,m
2
t , µ

2
F) ˜̄g0(αs, µ

2
F) (3.6)

– 6 –
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where now ˜̄g0(αs, µ
2
F) does not depend on the top mass. Note that we have restored explicit

scale dependence and we have chosen the factorization scale µF as the scale of the running

coupling αs = αs(µ
2
F). The three-loop coefficients of A(αs) and D(αs) have been known for

a while (see for instance refs. [39–41]), while the O
(
α3
s

)
contribution to ˜̄g0 has been recently

computed [9]. The four-loop contribution to A(αs), which is needed to achieve full N3LL

accuracy, is unknown. However, a Padé estimate [40] can suggest the size of its value, and

a numerical analysis shows that its impact in a resummed result is essentially negligible.

The integrals in eq. (3.3) can be computed at any finite logarithmic accuracy by using

the explicit solution of the running coupling, in terms of αs at a given reference scale, which

we can also choose to be µF in first place. At this point we have a result which depends on

a single scale µF, with αs always computed at µF (note that, while the µF dependence of

S̄ is explicit, the one of ḡ0 can be recovered by imposing µF-independence of the full cross

section). In order to write the result in a canonical way, we further evolve αs from µF to

µR using the explicit solution of the running coupling equation at sufficiently high order,

and propagating the resulting logarithms in the various terms at each fixed-order (in ḡ0)

and logarithmic-order (in S̄) accuracy. Then, the final result explicitly depends on both

µR and µF.

The computation of the integrals in eq. (3.3) is rather cumbersome when performed

exactly. The resulting expression was called A-soft in ref. [13]. The computation is much

simpler when performed in the large-N limit, where the result of the integrals is written

as a function of lnN only. We call the result in this limit N -soft. Explicit expressions for

S̄ in the N -soft limit up to N3LL are given in ref. [40]4 with full µF and µR dependence.

In ref. [13] two of us proposed a variant of the N -soft resummation based on the

simple replacement

lnN → ψ0(N), (3.7)

ψ0(N) being the Euler digamma function. This prescription was called ψ-soft. It has the

advantage that it reproduces the function S̄ up to corrections of O(1/N2), while N -soft

reproduces S̄ only up to O(1/N) corrections. Note that this does not mean that ψ-soft

resummation is accurate at next-to-soft (NS) O(1/N) level, because the original expression

eq. (3.2) was not. However, as pointed out in ref. [13], a class of NS terms can be predicted

to all orders by adding a “collinear improvement” to eq. (3.3). This is achieved by recalling

that the function A(αs(µ
2))/(1−z) is nothing but the divergent part (in the z → 1 limit) of

the Altarelli-Parisi splitting function Pgg(z, αs). One can therefore keep more terms in the

soft-expansion of Pgg about z = 1. As shown in ref. [13], by using the LO gluon splitting

function up to order (1 − z)k−1 one accounts for the leading-logarithmic (LL) NkS terms

correctly to all orders.

In ref. [13] two variants of the collinear improvement, AP1 and AP2, were considered,

obtained by expanding the LO Pgg to first and second order in 1 − z, respectively. Since

these corrections correspond to extra powers of z, the effect is to shift the value of N .

4To be precise, the expressions in ref. [40] are for the logarithmic part of the exponent, and not for the

N -independent terms.

– 7 –
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Extending the shifts to the whole S̄ function, we therefore have5

AP1: S̄(αs, N)→ S̄(αs, N + 1) (3.8)

AP2: S̄(αs, N)→ 2S̄(αs, N)− 3S̄(αs, N + 1) + 2S̄(αs, N + 2). (3.9)

We have verified that AP2 leads to more reliable results, in the sense that expanding the

ψ-soft resummed expression with AP2 to fixed-order reproduces to a good accuracy the

exact results (see ref. [17, 42], and discussion in section 2 which extends the validation to

the third order). In fact, comparing AP2 with AP1 also allows to estimate the uncertainty

due to missing 1/N terms, and constructing an uncertainty from the difference between

AP2 and AP1 was indeed successful (see again ref. [17] and section 2).

We finally turn to discussing another source of uncertainty at resummed level coming

from subleading logarithmic terms. The function S̄, eq. (3.3), contains on top of logarithmi-

cally enhanced contributions (terms which grow logarithmically at large N) also constant

(N -independent) terms, analogous to those included in ḡ0. In standard N -soft resumma-

tion (see e.g. refs. [14, 43, 44]) all the constants are usually removed from the exponent

and collected in the function in front,

Cres (N,αs) = g0
(
αs, µ

2
F

)
expS(αs, N), (3.10)

which then changes name to g0 (without bar; consequently also S̄ changes into a new

function S which contains only logarithmic terms). Alternatively, all constants can be

moved into the exponent [13],

Cres (N,αs) = exp
[
ln ḡ0

(
αs, µ

2
F

)
+ S̄(αs, N)

]
, (3.11)

where ln ḡ0 is meant to be expanded to the appropriate order (which is O(α3
s) for N3LL

accuracy).6 Up to the working logarithmic accuracy, the position of the constants does

not make any difference. However, beyond the working logarithmic accuracy, moving

constants produces, by interference, different subleading term. Therefore, one can consider

eq. (3.10) and eq. (3.11) as two opposite options which treat in a maximally different

way these subleading terms, and use them to assign an uncertainty to the default (most

natural) expression eq. (3.2). Note that, since constants are known to play an important

role for Higgs production [45–47], these variations provide a robust way to estimate the

perturbative uncertainty.

4 Threshold resummation at N3LL and its uncertainties

Having described the various prescriptions available for the threshold resummation, we

now move to a description of how we propose to use them to improve the central value and

most importantly the uncertainty from missing higher (fixed- or logarithmic-) orders for

the inclusive Higgs cross section.

5A study of different resummation prescriptions was also performed in ref. [12]. However, the definition

of AP2 (and hence of ψ-soft AP2) used in that study differs from the one employed here, which is based on

ref. [13].
6We recall that sometimes the N3LL accuracy we refer to here is (perhaps more correctly) referred to

as N3LL′.
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First, we discuss how threshold resummation is matched to a fixed-order calculation.

The coefficient function Cres(N,αs) contains all orders in αs but it is accurate only in the

soft limit. Assuming we have available the exact result for the coefficient function up to

O(αks), to maximally use information from both exact fixed order and soft all orders, one

should use the fixed-order result up to (and including) O(αks), and the resummed result for

the remaining terms from αk+1
s onwards. Matching is achieved by simply adding together

the two calculations and subtracting the expansion of the resummation to O(αks), in order

to avoid double counting. We then define

∆kCres(N,αs) = Cres(N,αs)−
k∑
i=0

αisC
(i)
res(N) (4.1)

being C
(j)
res (N) the coefficients of the expansion of Cres(N,αs) in powers of αs. Therefore,

the matched cross section is written as

σNkLO+NjLL = σNkLO + ∆kσNjLL, (4.2)

where

∆kσNjLL = τ σ0(m
2
H,m

2
t )

∫ c+i∞

c−i∞

dN

2πi
τ−N Lgg(N) ∆kCres,NjLL(N,αs) (4.3)

is the inverse Mellin transform of the gluon-gluon luminosity times ∆kCres, eq. (4.1). By

construction, ∆kσNjLL eq. (4.3) only contains higher-order corrections to σNkLO.

The computation of ∆kσNjLL eq. (4.3) is done through the public code TROLL [48],

formerly ResHiggs, which changed name after the inclusion of Drell-Yan and DIS resum-

mation [49]. Some details on the validation of the code are given in appendix A.2. As

the name implies (the meaning of TROLL is TROLL Resums Only Large-x Logarithms),

the code does not compute the fixed order, but only the resummed contribution, eq. (4.3),

so the fixed order has to be supplied by an external code. In this work, we use the code

ggHiggs [33], where we have implemented the new N3LO result [9–12]. We stress that any

other fixed-order code can be used (e.g., future versions of ihixs [50]), provided the same

setting is used in both codes. A new version of TROLL, v3.1, which interfaces directly with

ggHiggs v3.1 is publicly available from the webpage [48].

For simplicity, and for disentangling effects coming from different sources, we work

in the clean environment of the (rescaled) large-mt effective theory (rEFT), using the top

mass mt = 172.5 GeV in the pole scheme. We take the Higgs mass to be mH = 125 GeV,

and use the PDF4LHC15 nnlo 100 PDF set [34–38]. As far as αs is concerned, we take

αs(m
2
Z) = 0.118 from the PDF set and evolve it at four loops to µR. We focus on LHC at√

s = 13 TeV first, and consider different collider energies later.

To show the stability of the resummed result, we consider four options for the central

common factorization and renormalization scale µ0:

µ0 = mH/4, µ0 = mH/2, µ0 = mH, µ0 = 2mH. (4.4)

We then vary the scales µR and µF about µ0 by a factor of 2 up and down, keeping the

ratio µR/µF never larger than 2 or smaller than 1/2: we call this a canonical 7-point scale

variation. This results in a total of 16 different combination of scales. Results at fixed

order for these scales are presented in table 1.
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µF/mH µR/mH LO NLO NNLO N3LO

4 4 10.2 24.1 35.1 41.8

4 2 12.2 28.0 39.1 44.7

2 4 10.0 23.6 34.6 41.4

2 2 11.9 27.5 38.6 44.3

2 1 14.4 32.3 43.0 46.8

1 2 11.4 26.8 38.0 43.9

1 1 13.8 31.6 42.4 46.5

1 1/2 17.0 37.9 47.0 48.2

1/2 1 13.0 30.7 41.8 46.2

1/2 1/2 16.0 36.9 46.5 48.1

1/2 1/4 20.3 45.3 50.7 48.0

1/4 1/2 14.7 35.7 46.1 48.0

1/4 1/4 18.6 44.2 50.7 48.1

1/4 1/8 24.4 56.3 52.6 44.5

1/8 1/4 16.2 42.6 51.0 46.4

1/8 1/8 21.3 55.2 54.1 40.6

Table 1. Fixed-order cross sections (in pb) as a function of the scales µF and µR over a wide range,

for mH = 125 GeV at LHC with
√
s = 13 TeV in the rEFT. The numerical integration error on all

results is below the number of digits shown. The values of αs at the six renormalization scales µR =

{4mH, 2mH,mH,mH/2,mH/4,mH/8} are αs(µR) = {0.0940, 0.1024, 0.1126, 0.1252, 0.1409, 0.1614}.

For each pair of scales, we then compute the resummed contribution with TROLL for

different variants of the resummation. We consider

• standard N -soft, with all constants in g0, eq. (3.10), without collinear improvement;

• ψ-soft with AP2,

– with default choice for the constants, eq. (3.2);

– with all constants in g0, eq. (3.10);

– with all constants in the exponent, eq. (3.11);

• ψ-soft with AP1,

– with default choice for the constants, eq. (3.2);

– with all constants in g0, eq. (3.10);

– with all constants in the exponent, eq. (3.11);

The resummed results at N3LO+N3LL, obtained as the sum of the last column of table 1

and the resummation contribution ∆3σN3LL computed with TROLL, are shown in table 2.
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ψ-soft

default constants in exp constants in g0
µF/mH µR/mH AP2 AP1 AP2 AP1 AP2 AP1 N -soft

4 4 56.8 66.0 56.8 66.0 51.2 58.7 49.4

4 2 55.1 62.3 54.9 62.0 52.2 58.6 50.5

2 4 53.2 57.2 53.7 57.9 48.2 51.4 46.0

2 2 52.9 56.0 52.7 55.8 49.9 52.5 47.9

2 1 51.2 53.0 50.9 52.6 50.5 52.1 48.9

1 2 50.2 50.4 50.6 50.9 47.6 47.7 45.6

1 1 50.1 50.1 49.8 49.8 49.1 49.0 47.5

1 1/2 48.5 48.3 48.3 48.0 49.1 48.8 48.3

1/2 1 48.4 47.4 48.8 47.7 47.6 46.6 46.3

1/2 1/2 48.5 48.0 48.3 47.8 48.6 48.1 48.0

1/2 1/4 47.0 47.1 47.1 47.2 47.7 47.7 47.9

1/4 1/2 47.8 47.4 48.2 47.7 48.0 47.6 47.6

1/4 1/4 47.7 48.0 47.6 47.9 48.0 48.2 48.2

1/4 1/8 44.7 45.1 45.4 45.7 44.6 45.0 44.9

1/8 1/4 45.5 46.1 46.1 46.6 46.2 46.6 46.5

1/8 1/8 41.0 40.9 41.4 41.2 40.9 40.8 40.9

Table 2. Resummed cross sections (in pb) at N3LO+N3LL cross section for the different prescrip-

tions. Scales and settings as in table 1.

It is well known [43] that threshold resummation introduces a dependence on the factor-

ization scale which can be larger than what is obtained in fixed-order perturbation theory.

This is essentially due to the fact that threshold resummation predicts only the (dominant)

gg channel, while factorization scale dependence is compensated among different channels,

as DGLAP evolution mixes quarks and gluons. Moreover, at fixed order the factorization

scale dependence for Higgs production is very mild (and much milder than renormalization

scale dependence, see table 1), so the factorization scale dependence of the resummed result

is visibly larger. The quark channels, of which qg gives the most important contribution,

give rise to logarithmic terms that are suppressed by 1/N , in the large N limit. Including

a prediction of this channel to all orders should compensate most of the factorization scale

dependence. The resummation of the leading logarithms of this class of NS contributions

has been performed in ref. [51]. However, these contributions are not yet implemented in

the current version of TROLL.

We now turn to our proposal for the perturbative uncertainty of our resummed results.

We consider ψ-soft with AP2 and with the natural choice for the constants, eq. (3.2), as our

best option for threshold resummation. However, the other variants of ψ-soft have the same

formal accuracy and allow us to estimate the uncertainty from 1/N terms and subleading

logarithmic terms. We therefore suggest to consider, for each of the central scales µ0 in

eq. (4.4), the envelope of the canonical 7-point scale variations and the 6 variants of ψ-soft

resummation (we exclude N -soft from the computation). This corresponds to a total of
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µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

LO 18.6+5.8
−3.9 16.0+4.3

−3.1 13.8+3.2
−2.4 11.9+2.5

−1.9

NLO 44.2+12.0
−8.5 36.9+8.4

−6.2 31.6+6.3
−4.8 27.5+4.9

−3.9

NNLO 50.7+3.4
−4.6 46.5+4.2

−4.7 42.4+4.6
−4.4 38.6+4.4

−4.0

N3LO 48.1+0.0
−7.5 48.1+0.1

−1.8 46.5+1.6
−2.6 44.3+2.5

−2.9

LO+LL 24.0+8.9
−6.8 20.1+6.2

−5.0 16.9+4.5
−3.7 14.3+3.3

−2.8

NLO+NLL 46.9+15.1
−12.6 46.2+15.0

−13.2 46.7+20.8
−13.8 47.3+26.1

−15.8

NNLO+NNLL 50.2+5.5
−5.3 50.1+3.0

−7.1 51.9+9.6
−8.9 54.9+17.6

−11.5

N3LO+N3LL 47.7+1.0
−6.8 48.5+1.5

−1.9 50.1+5.9
−3.5 52.9+13.1

−5.3

Table 3. Fixed-order results and their scale uncertainty together with resummed results and their

uncertainty (as given by the envelope of prescription and scale variations) for four choices of the

central scale, for mH = 125 GeV at LHC with
√
s = 13 TeV. All cross sections are in pb.

7 · 6 = 42 cross section points,7 from which one takes the highest and the lowest cross

sections as the maximum and minimum of the uncertainty band. As an example, we

highlighted in table 2 those 42 cross sections entering in the error band computation for

the central scale µ0 = mH/2. We conventionally take our default best option (shown in red

in table 2) as the central prediction.

We then report in table 3 the cross section at fixed LO, NLO, NNLO and N3LO

accuracy, and its resummed counterpart at LO+LL, NLO+NLL, NNLO+NNLL and

N3LO+N3LL accuracy, for the four central scale choices of eq. (4.4). The error on the

fixed-order is computed according to the canonical 7-point variation, while at resummed

level we use our 42-point variation. The same results are shown as plots in figure 2.

Let us first comment the fixed-order results. Ignoring the LO which contains too few

information for being predictive, we can investigate the convergence pattern of the fixed-

order perturbative expansion when going from NLO to NNLO and to N3LO, relative to

the scale uncertainty. For “large” central scales, µ0 = mH and µ0 = 2mH, NNLO is a large

correction and its central value is not covered by the NLO uncertainty band. The N3LO is

a smaller correction, a sign that the series is converging (at least asymptotically), but for

µ0 = 2mH its central value is not covered by the NNLO uncertainty band. For µ0 = mH/2,

the convergence pattern is improved, now with the central NNLO contained in the NLO

band, and the central N3LO contained in the NNLO band. However, for instance, the

central N3LO and its band are not contained in the NLO band (they do not even overlap).

At µ0 = mH/4 the convergence pattern seems further improved, however the N3LO error is

very asymmetric and large (same size of the NNLO error). Additionally, the N3LO results

at the four central scales shown in table 3 are barely compatible (if one had chosen µ0 = 4mH

the result would not be compatible with the one at µ0 = mH/2). This analysis shows that

the estimate of the uncertainty from missing higher orders using canonical 7-point scale

7The reader should not be scared by the number of cross section points needed: the code TROLL is very

fast and computes all of them in less than a second.
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Figure 2. Higgs cross section at 13 TeV in the rescaled effective theory (rEFT), for four different

choices of the central scale µF = µR: at the top we show mH/2 and mH, while at the bottom

mH/4 and 2mH. The uncertainty on the fixed-order predictions and on N -soft comes solely from

scale variation, as well as the thick uncertainty on the ψ-soft AP2 results. The thinner bands

correspond to the 7-point scale variation envelope on the ψ-soft AP1 instead, whose central value

is not shown. The light-red rectangles are the envelope of all ψ-soft variants, corresponding to the

42-point uncertainty described in the text.
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variation is not reliable at fixed order. This is perhaps not surprising, as scale variation

provides a very crude estimate of the uncertainty from missing higher orders, since it is

based on arbitrary variation of a (not necessarily significant) subset of known coefficients.

On the other hand, resummation allows for a different way of estimating the effect of

missing higher orders, which is not purely based on scale variation. We observe that, for

each choice of the central scale µ0, the uncertainty of the resummed results from NLO+NLL

onwards covers the central value and at least a portion of the band of the next (logarithmic)

order. In fact, with the exception of the choice µ0 = mH/4 (the pathological behaviour

of which seems to be driven by the N3LO contribution), the NNLO+NNLL band is fully

contained in the NLO+NLL band, and the N3LO+N3LL band is fully contained in the

NNLO+NNLL band. We also note a systematic reduction of the scale uncertainty when

going from one logarithmic order to the next.

We also observe that the resummed results at each order are all compatible among the

different choices of the central scale µ0, thereby showing little sensitivity on µ0. It is true

that at extreme choices of µ0 the error bands become very asymmetric and lead to higher

values of the cross section at large µ0 and to lower values of the cross section at small µ0;

nevertheless, a region of overlap always exists.

We note that our observations on the behaviour of the resummed results would still

hold if one considers a less conservative option, namely our default ψ-soft resummation

with AP2 and the natural choice for the constants, eq. (3.2), corresponding to the red dots

and the thick red bands in the plots. In fact, with this option the errors would look more

natural, especially at large µ0 where the AP1 variation (thinner band) increases the size of

the error band dramatically. It is interesting to observe that the different options for the

position of the constants, while giving a large spread at NLO+NLL, is of little importance

at higher orders, especially at N3LO+N3LL. This is particularly true for smaller µ0, while at

larger µ0 the version with all constants in g0, eq. (3.10), gives a slightly smaller cross section.

We finally observe that, in many respects, the choice µ0 = mH/2 seems optimal, in full

agreement with previous analyses, e.g. [12]. The convergence of the fixed-order is already

quite good, and the convergence of the resummed result is very good. The error band

at N3LO+N3LL is smaller than for other central scales, but compatible with the results

computed at different values of µ0. On top of these a posteriori observations, one could

determine a priori an optimal choice for the scale by requiring that the partonic coefficient

functions do not contain large logarithms, such that possible logarithmic enhancements

are minimized. Factorization and renormalization scales typically appear together with

threshold logarithms, in the form (in Mellin space) ln(µ2N2/m2
H). From a saddle point

analysis [52], we know that the Mellin space cross section is dominated by a single value of

N = Nsaddle, leading to an optimal choice for the scales µ0 ' mH/Nsaddle. In the present

case Nsaddle ' 2, so we find that the scale that minimizes the size of the logarithms is

close to µ0 = mH/2. Similar conclusions have been obtained from z-space arguments [53]

and within an effective theory framework [54, 55]. As the process gets closer to threshold,

Nsaddle grows and the optimal scale gets correspondingly smaller: we have indeed verified

that closer to threshold (larger mH or smaller collider energy) the perturbative convergence

is much improved at smaller scales.
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Given that the way of estimating the uncertainty is very conservative, and successful

at previous orders, the uncertainty on the N3LO+N3LL at µ0 = mH/2 seems reasonably

trustful. To be even more conservative, one can symmetrize the error, so rather than

48.5+1.5
−1.9 pb we can quote 48.5 ± 1.9 pb as most reliable prediction for the inclusive Higgs

cross section (in the rEFT setup). Note also that at µ0 = mH/2 the effect of adding the

resummation to the N3LO on the central value is rather small, +0.4 pb, corresponding

to +0.8%, which is not covered by the fixed-order uncertainty. However, we find the

asymmetric error on the N3LO hard to trust. Indeed, this is due to the vicinity of a

stationary point in the scale dependence, which in fact shows that such a scale error is not

reliable. Thus, at the very least, one should symmetrize it, leading to 48.1± 1.8 pb, which

is then compatible with what we obtain from the resummation procedure.

To emphasize the robustness of our method for the estimate of the perturbative un-

certainty, we repeat our analysis for different collider energies:
√
s = 2, 8, 14 and 100 TeV.

We show in figure 3 the analogous of the µ0 = mH/2 plot of figure 2 for the aforementioned

collider energies. We observe the same pattern found at 13 TeV. Note that for a FCC-like

energy of 100 TeV the smaller values of z accessible at that energy will make the correct

inclusion of small-z effects (at fixed-order or resummed levels) very important. We stress

in particular that the rEFT is not able to predict the small-z behaviour correctly, and one

should revert to the full theory for an appropriate description.

5 Other ways to estimate the uncertainty from missing higher orders

In the previous section we have proposed a robust way of estimating the uncertainty from

missing higher orders using scale variation and variation of subleading terms in the all-

order resummation. In this section we want to explore alternative strategies to estimate

the uncertainty from missing higher orders which do not rely on arbitrary variations of the

perturbative ingredients. In particular, we will consider in section 5.1 the Cacciari-Houdeau

method [19–21] for estimating the theory uncertainty using a Bayesian approach to infer

the uncertainty from the progression of the perturbative expansion. Then, in section 5.2,

we will follow the idea of ref. [22] to apply convergence acceleration algorithms to the

perturbative series (either the fixed-order or the resummed one) to estimate the truncation

error. We shall then compare the findings of these methods with our results of section 4.

5.1 The Cacciari-Houdeau method

In ref. [19] Cacciari and Houdeau proposed a statistical model for the interpretation of

theory errors, from which one can compute the uncertainty on the truncated perturbative

series for a given degree of belief (DoB) given the first terms in the expansion. Among

the assumptions of the model, there is the fact that all coefficients ci of the expansion are

bounded by a common value c̄. To account for potential power growth of the coefficients,

the expansion parameter αs is rescaled, giving the expansion

σ = σLO

∞∑
k=0

ck(λ)
(αs
λ

)k
. (5.1)
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Figure 3. Higgs cross section in the rescaled effective theory (rEFT), for four different values of

the collider energy:
√
s = 2, 8, 14, and 100 TeV. The central scale is µF = µR = mH/2.

In eq. (5.1) we have factored out the LO cross section σ0 such that the sum starts from

k = 0, with c0 = 1. The coefficients ck depend on the rescaling factor λ, which should be

determined such that the bound c̄ exists. We come back on the determination of λ later

in this section. This is the original method, denoted CH.

It has been noted [19] that the assumption that all ck are bounded is surely broken by

the presence of known factorial growths in the coefficients, such as those due to renormalons.

However, it was pointed out that the growth will set in at a high order, so for practical

applications at low orders ignoring it is harmless. However, in ref. [21] this factorial growth

is instead included in the definition of the series expansion,

σ = σLO

∞∑
k=0

bk(λ, k0) (k + k0)!
(αs
λ

)k
, (5.2)
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where the new coefficients bk do not contain the factorial growth anymore. This is the

modified Cacciari-Houdeau method, denoted CH. We included an explicit offset k0 in the

factorial: this is useful since different observables will have the factorial growth starting at

different orders.

Note that in the original works [19, 21] there is a distinction between observables

starting at different orders αls. In our case, having factored out the LO, the complications

arising from this distinction go away. Factoring out a power of αs does not change the

error estimate in the original CH method, so our eq. (5.1) gives identical results as those

obtained with the original formulation of ref. [19]. On the other hand, due to the presence

of the factorial, factoring out a power of αs in the modified CH method would make a

difference if the factorial is left unchanged. The inclusion of the offset k0 in the factorial in

eq. (5.2) accounts for this difference and allows to exactly reproduce the results of ref. [21]

for the specific choice k0 = l − 1.

Given the set of NkLO coefficients c0, . . . , ck (or b0, . . . , bk in the modified version) one

can construct the credibility interval [−d(p)k , d
(p)
k ] in which the remainder of the perturbative

series is expected to lie with DoB p. We have [19, 21]

CH: d
(p)
k (λ) = σLO

(αs
λ

)k+1
max(|c0|, . . . , |ck|)F (k, p) (5.3)

CH : d
(p)
k (λ, k0) = σLO

(αs
λ

)k+1
max(|b0|, . . . , |bk|) (k + k0 + 1)!F (k, p) (5.4)

with

F (k, p) =

{
k+2
k+1 p p ≤ k+1

k+2

[(k + 2)(1− p)]−1/(k+1) p > k+1
k+2

. (5.5)

Note that these simple analytic expressions assume that the remainder of the perturbative

series is dominated by the next higher order; this approximation is good if the expansion

parameter αs/λ is small enough, but breaks down for small values of λ. In such cases, one

should use the full result [19], which is not expressible in closed analytic form, or interpret

the resulting uncertainty as arising just from the next order.

It now remains to determine the values of k0 and λ. Regarding k0, in ref. [21] it is

argued that for a series starting at order αls the proper value is k0 = l − 1. This follows

from the observation that for weak processes starting at order α0
s the renormalon factorial

growth behaves as αks(k − 1)!. Therefore, for Higgs production which starts at order α2
s

the suggested value is k0 = 1. However, we point out that what matters here is where

the perturbative corrections to gluon propagators start rather than the power of αs at LO.

Indeed, for processes like Drell-Yan, the gluon appears first at NLO, and the correction to

the gluon propagator only at NNLO, so indeed the factorial growth is delayed by one order

and k0 = −1. However, for Higgs production, there are gluons already at LO, so the first

correction appears at NLO, from which one can conclude that k0 = 0. We adopt here the

latter choice (k0 = 0) rather than the default option of ref. [21] (k0 = 1).

We now turn to the determination of λ. This parameter is in principle a free parameter,

but it must be such that there exists a bound for the coefficients of the expansion. In

ref. [21] λ is determined from a survey over several processes, giving λ = 0.6. However,
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µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

CH 48.1± 0.7(1.2) 48.1± 0.6(1.0) 46.5± 2.1(3.5) 44.3± 3.5(5.8)

CH 48.1± 1.2(1.9) 48.1± 1.2(2.0) 46.5± 4.2(7.0) 44.3± 6.9(11.5)

Table 4. N3LO results (in pb) and their CH and CH uncertainties at 68% DoB (95% DoB in

brackets) for mH = 125 GeV at LHC with
√
s = 13 TeV.

different perturbative expansions can behave in very different ways, and in particular the

perturbative expansion for Higgs production in gluon fusion is badly behaved, so a separate

treatment is to be preferred. Ideally, the value of λ should be determined according to

the asymptotic behaviour of the perturbative coefficients. Since this is unfortunately not

known, we follow the proposal of ref. [20], where the value of λ is fitted such that the

perturbative coefficients (in absolute values) are all of the same size. In fact, as we also

confirmed, it is convenient to exclude the first coefficient from the fit, on the ground that

the LO result is not in line with the next orders (it is much smaller), and the fact that this

fit aims at guessing the asymptotic behaviour of the coefficients. In the results that follow,

we will then use for each method (CH and CH) and for each central scale the value of λ

obtained by such fit. As we have observed, however, this determination of λ risks being ad

hoc and therefore may result in a somewhat biased error.

In figure 4 we show the four results at LO, NLO, NNLO and N3LO for the four

scales µF = µR = mH/4,mH/2,mH, 2mH, each with the two versions (CH and CH) of the

Cacciari-Houdeau uncertainty. We observe that the CH uncertainty is larger than the CH

one at LO and NLO, but is smaller at NNLO and N3LO: this effect originates from the

factorial contribution, which changes the relative weight of the individual orders in the

determination of the uncertainty. In this respect, the CH uncertainty at N3LO is more

conservative than the CH one. We also note that the 68% DoB uncertainty (thicker band)

is able to cover the next order only at NNLO, while for lower orders only the 95% DoB

uncertainty (thinner band) works (except at LO for CH). We also see that for small scales

µF = µR = mH/4,mH/2 the uncertainty shrinks considerably as the perturbative order

increases, an indication that the series is converging. For larger scales, µF = µR = mH, 2mH,

the observed pattern is much worse and, as a consequence, the uncertainty band of the

N3LO is still large.

In table 4 we report the value of N3LO cross section together with its uncertainty as

obtained with CH and CH, for four different choices of the central scale. We indicate both

68% and 95% DoBs (the latter in brackets). If we focus on the default choice mH/2, we note

that the estimate of the uncertainty due to missing higher orders as obtained combining

scale and resummation uncertainties (see N3LL+N3LO in table 3) is in agreement with the

CH uncertainty estimate at 95% DoB (while CH provides with a smaller uncertainty). In

contrast, as previously noted, scale variation on its own (e.g. N3LO in table 3) provides

us with highly asymmetric error, which appears to underestimate the upper portion of the

uncertainty band.

– 18 –



J
H
E
P
0
8
(
2
0
1
6
)
1
0
5

L
O

N
L

O

N
N

L
O

N
3
L

O

L
O

N
L

O

N
N

L
O

N
3
L

O

L
O

N
L

O

N
N

L
O

N
3
L

O

L
O

N
L

O

N
N

L
O

N
3
L

O

0

15

30

45

60

σ
[p

b
]

mH = 125 GeV

LHC 13 TeV

µ0=mH/4 µ0=mH/2 µ0=mH µ0=2mH

thick: p = 0.68
thin: p = 0.95

Higgs cross section: gluon fusion

CH

CH

Figure 4. The CH (red) and CH (blue) errors on the LO, NLO, NNLO and N3LO cross sections

for the four scales µF = µR = mH/4,mH/2,mH, 2mH (from left to right). For the four values of the

scales, the fitted values of λ are respectively 0.44, 0.46, 0.24, 0.17 for CH and 1.08, 1.14, 0.58, 0.41 for

CH. Thicker bands correspond to 68% DoB, while thinner bands correspond to 95% DoB.

5.2 Convergence acceleration algorithms

In this last section we want to explore another method to gain information on the un-

certainty from missing higher orders by estimating the sum of the perturbative series.

Our strategy is based on convergence acceleration algorithms: given a sequence which

converges to some limit there exist several algorithms which transform the sequence into

new ones with possibly faster convergence. Non-linear sequence transformations usually

provide faster convergence than linear transformations. We follow an idea by David and

Passarino [22] and we apply some of these methods to the sequence of partial sums of the

perturbative expansion of the cross section.

Following ref. [56], we consider the following sequence transformation:

G(n)k (qm, sn, ωn) =

k∑
j=0

(−1)j
(
k

j

) k−1∏
m=1

n+ j + qm
n+ k + qm

sn+j
ωn+j

k∑
j=0

(−1)j
(
k

j

) k−1∏
m=1

n+ j + qm
n+ k + qm

1

ωn+j

, (5.6)

where sn =
∑n

i=0 ai is the n-th partial sum, and ai the series coefficients. For k > 0,

it provides a non-trivial transformation of the original sequence. The non-linear trans-

formation eq. (5.6) depends on the function qm, and for particular forms of it reduces

to transformations widely studied in the literature [56], e.g. qm = β > 0 gives a Levin

transformation L(n)k (β, sn, ωn), qm = β +m− 1 gives a Sidi transformation S(n)k (β, sn, ωn),

qm = β −m+ 1 (β > 0) gives a M(n)
k (β, sn, ωn) transformation, and qm = β + (m− 1)/α

gives a transformation C(n)k (α, β, sn, ωn) which interpolates between L and S depending on
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the value of α.8 These transformations further depend on the function ωn, which is related

to the remainder estimate of the truncated sequence. In our case we make no assump-

tions about the asymptotic behaviour of the perturbative series of the Higgs cross section,

mainly because the knowledge of only the first 4 terms is not sufficient to guarantee that

the asymptotic behaviour has set in. Therefore, we consider various forms of the remain-

der estimate, leading to a number of variants of the aforementioned methods [56]: u-type

variant given by ωn = (β + n)an (with an overall minus sign for the M transformation),

t-type variant given by ωn = an, d-type variant given by ωn = an+1, and v-type variant

given by ωn = anan+1/(an − an+1).

For u- and t-type variants, the transformation G(n)k requires the knowledge of k+n+ 1

terms in the sequence, while for d- and v-type variants k+n+2 terms are needed. At such

low orders, several transformations turn out to be redundant; after removing equivalent

transformations, the non-trivial remaining ones are uL(2)1 , uL(1)2 , uL(0)3 , uS(0)3 , uM(0)
3 , uC(0)3 ,

tL(2)1 , tL(1)2 , tL(0)3 , tS(0)3 , tM(0)
3 , tC(0)3 and dL

(0)
2 , where we wrote the variants as a left index.

For comparison, the two methods retained in ref. [22] correspond to tS(1)2 (= tL(1)2 =

tM(1)
2 = tC(1)2 ), known as Levin τ transformation, and dS

(0)
2 (= dL

(0)
2 = dM

(0)
2 = dC

(0)
2 ),

known as Weniger δ transformation. We recall that each of these variants further depends

on the variable β, and the C transformations also depend on α.

In this study, we use all the non-equivalent transformations listed above and scan for

various values of β and α. Our idea is that, given the unknown higher-order behaviour of the

perturbative series, it is impossible to choose a particular algorithm over the other ones or

tune the parameters of the transformations. Indeed, non-linear sequence transformations

are in general not guaranteed to work in all cases, and privileging a specific algorithm

would require the knowledge of the asymptotic behaviour of the series, which we have

not. However, having at hand several different acceleration algorithms, we can judge a

posteriori how stable the estimate of the sum of the series is by comparing among the

different predictions: when most results cluster around the same value, we can expect it to

be a reliable estimate of the real sum.

As previously mentioned, there are contributions to the perturbative expansion (at

parton level) which grow factorially (due e.g. to renormalons). Even though some of the

aforementioned sequence transformations proved to be effective also in case of factorially

divergent series, we also consider here a more standard method based on Borel summation,

where the sum of the divergent perturbative series is defined as

∞∑
i=0

ai =

∫ ∞
0

dw e−w
∞∑
i=0

ai
i!
wi. (5.7)

When a finite number of coefficients is known, the Borel sum eq. (5.7) becomes an identity.

To all orders, the left-hand side series can diverge due to renormalons, while the sum on

the right-hand side is typically convergent, due to the factorial that cures the growth.

8We refer the Reader to ref. [56] for an exhaustive explanation of the notation and an extensive list

of references.
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µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

Fixed-order expansion 48.7± 1.0 48.7± 1.2 46.3± 4.6 44.6± 9.3

Resummed expansion 48.9± 0.5 48.9± 0.6 50.2± 1.0 52.6± 1.6

Table 5. Mean and standard deviation of the estimates of the all-order sum (in pb) of the fixed-

order (first row) and resummed (second row) expansions, based on the set of convergence accelera-

tion algorithms described in the text, for mH = 125 GeV at LHC with
√
s = 13 TeV.

The integral can then be computed: if the integral is finite,9 then the right-hand side of

eq. (5.7) can be used to define the (Borel) sum of the divergent series. In our case, we

can benefit from the Borel summation by applying a convergence acceleration algorithm

to compute the all-order sum on the right-hand side, thereby curing possible divergences

of the original series. Hence, for each of the methods listed above, we can produce a Borel

variant, doubling the available options.

Having implemented all these variants, we apply them to the fixed-order and

resummed10 expansions for each of the previously considered central scales µ0 =

mH/4,mH/2,mH, 2mH. For each method, we compute the results for several values of

β; applying these methods to a number of known series we identified β = 0.01, 1, 2, 5 as a

sensible set. For the C transformations we also scan over α = 0.5, 2, 10, 100: this is moti-

vated by the fact that a value of α between 1 and +∞ interpolates between the S and L
transformations, and we also considered a value outside this range. Note that uL(2)1 and

tL(1)2 do not depend on β, so these are counted only once. We collect the results for the

estimated sum of the fixed-order and resummed series in the form of histograms in figure 5.

We immediately observe that the distribution of results is narrower for resummed

results than for fixed-order ones. This can be expected since the resummed expansion

is much better behaved than the fixed-order one, as commented extensively in section 4.

Additionally, we observe that the distributions for µ0 = mH/4 and µ0 = mH/2 are narrower

than those at higher scales, a fact which is especially true for the fixed-order expansion.

This confirms the faster convergence of the perturbative series at µ0 = mH/2 (and also

µ0 = mH/4) observed in previous sections and discussed in the literature. The fact that for

µ0 = mH and µ0 = 2mH the spread of the results is rather wide shows that the algorithms

considered here are sufficiently different among each other. This is important because it

validates the set of algorithms we have chosen, which in turn validates the rather precise

results obtained at lower scales.

To make the discussion more quantitative, we report in table 5 the mean and standard

deviation for each histogram of figure 5. We warn the Reader that the statistical inter-

pretation of these results is not solid: in particular, the standard deviations are likely to

depend on the set of convergence acceleration algorithms considered.

9In general, the integrand on the right-hand side of eq. (5.7) can have poles on the integration range.

This problem can be solved by modifying the integration contour and avoiding the singularity from above

or below, leading to a well-known renormalon ambiguity. In our case, the ambiguity is always very small,

so we ignore it.
10For the resummation we use ψ-soft AP2, with default option for the constants.
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Figure 5. Distributions of the Higgs cross section at 13 TeV as obtained using the various con-

vergence acceleration algorithms described in the text. Both the fixed-order (orange) and the

resummed (blue) expansions are shown, for the four scales µR = µF = mH/2 (top left), mH (top

right), mH/4 (bottom left) and 2mH (bottom right).

All the numbers in table 5 come from estimates of the all-order sum of the series, which

should be then the same for all scales and for both the fixed-order and the resummed ex-

pansions. They are indeed all compatible within the quoted errors, except the resummed

result at µ0 = 2mH which is higher than most of the other results: this is just a consequence

of the limited statistical meaning of the error estimates, which does not take into account

the shape of the distribution of the results, which is rather asymmetric in this case. The

smaller standard deviation on the resummed results shows once again that the resummed

series converges faster, as well as the smaller standard deviation on the results at lower

scales indicates that using µ0 = mH/2 or µ0 = mH/4 leads to a faster convergence, in

agreement with the findings of our previous sections. It is interesting to observe that at

both scales µ0 = mH/2 or µ0 = mH/4 and for both fixed-order and resummed expansions

the estimate of the sum is basically the same (48.7 from fixed-order and 48.9 from resum-

mation), both with a small standard deviation (of the order of 1 pb). Keeping in mind the

limitation of this analysis, we are tempted to consider this result as a good candidate for

the all-order sum of the series. Interestingly, this result is perfectly compatible with (and

very close to) our best N3LO+N3LL result at µ0 = mH/2 well within its ±1.9 pb uncer-

tainty. This provides another valuable validation of our proposal for estimating missing

higher-order uncertainty from resummation. On the other hand, it is not compatible with
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the N3LO result within its asymmetric scale-variation band, while it is considering a CH

error already at 68% DoB (see table 4).

6 Conclusions

We have presented threshold-resummed results for the inclusive Higgs cross section in gluon

fusion at N3LL, matched to an implementation of the recent N3LO result [9–12]. We have

considered several variants of the resummation as a portal to carefully estimate subleading

effects at higher orders. We have proposed a conservative estimate of the uncertainty from

missing higher orders based on the envelope of the resummed predictions obtained using

the various resummation variants, as well as canonical scale-variation. We have demon-

strated that resummed results with this conservative error manifest a good perturbative

convergence, as opposed to the fixed-order expansion, the convergence of which is very

poor relative to the uncertainty coming from a canonical 7-point scale variation.

Despite the conservativeness of our method, we find that the Higgs cross section at

13 TeV, for the central scale µR = µF = mH/2, has a small (yet reliable) uncertainty of

±1.9 pb, which corresponds to ±4%. We stress that all choices of central scales considered

in this work (mH/4, mH/2, mH and 2mH) yield results which are compatible within the

quoted uncertainty. The shift in the central value and the uncertainty, though computed

within the framework of the (rescaled) large-mt effective theory, are likely to remain un-

changed after inclusion of quark mass effects and Electro-Weak corrections. For the most

reliable predictions the inclusion of quark mass effects is important, and can be performed

straightforwardly at resummed level [13, 16] with TROLL. Moreover, a fully consistent re-

summed result would require the use threshold-improved parton distribution functions,

which have recently become available [49].

We have compared our proposal with different methods for estimating the uncertainty

from missing higher orders. Our findings are summarized in the following table, which

refers to the central scale µR = µF = mH/2:

order σ [pb]

N3LO 48.1+0.1
−1.8 scale variation

N3LO 48.1± 2.0 CH at 95% DoB

N3LO+N3LL 48.5± 1.9 scale+resummation variations

all-order estimate 48.7 from accelerated fixed-order series

all-order estimate 48.9 from accelerated resummed series

First, we have considered the Cacciari-Houdeau Bayesian approach, which employs the

known perturbative orders to construct a probability distribution for the subsequent un-

known order. In its modified incarnation (CH), the method gives an uncertainty of ±2 pb

at 95% degree of belief, fully compatible with the estimate obtained from resummation, and

similar to the fixed-order scale variation uncertainty if the latter is symmetrized. Second,

we have considered several algorithms to accelerate the convergence of the perturbative

series, based on non-linear sequence transformations. By performing a survey of different
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algorithms, we found that both the fixed-order and resummed series exhibit good conver-

gence properties at mH/2 (and also at mH/4). Noticeably, the mean of each distribution is

very close to the N3LO+N3LL prediction. In conclusion, these tests provide a solid support

to our method, and let us conclude to a high degree of belief that the all-order Higgs cross

section in the rEFT lies within the quoted uncertainty of our N3LO+N3LL result.
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A Details on numerical implementations

A.1 N3LO implementation in ggHiggs

We report in this appendix some technical details on the implementation of the recent N3LO

result [12] in the public code ggHiggs [33]. In the EFT, the cross section factorizes as in

eq. (2.5). The new N3LO contribution published in ref. [12] is the third order coefficient

C̃
(3)
ij . We have coded in ggHiggs the coefficient C̃

(3)
ij for µF = µR = mH as given above.

We observed in section 2 that the leading small-z logarithm is known from high en-

ergy resummation. This term can be added to the soft expansion, after subtracting the

appropriate double counting. For the gg channel we have explicitly

[
C̃(3)
gg (z)

]
soft-exp+ln5 z

=
[
C̃(3)
gg (z)

]
soft-exp

+
(2CA)3

5!

[
1

z
ln5 1

z
−

37∑
k=0

ak(1− z)k

]
, (A.1)

where ak are the expansion coefficients of 1
z ln5 1

z in powers of 1− z, and we assumed that

all the known terms in the soft expansion of C̃
(3)
gg (z) are used. The last sum in eq. (A.1)

removes the doubly counted contributions. Analogously, the leading small-z logarithm in

the full theory, 1
z ln2 z, can be added to the soft expansion of the full coefficient C

(3)
ij (z)

subtracting the appropriate double counting.

The requirement of scale invariance enables us to recover the scale-dependent loga-

rithmic terms to be added to the result at central scale. We compute the scale depen-

dent contributions in N space, thus we need the DGLAP anomalous dimensions up to

NNLO [57, 58] as well as the Mellin moments of the NLO and NNLO coefficient functions.

While the exact expression for the NLO coefficient (in the EFT) is easy to compute, a

formulation of the NNLO Mellin-space coefficient which is valid in the whole complex N

plane is much more challenging [59]. In the latest version of ggHiggs, v3.1, we use an

implementation in terms of Harmonic sums up to weight four whose analytic continuation

for non integer values has been implemented in C++ following the method of refs. [59–61].
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Note that in a recent version of ggHiggs, v3.0, the scale-dependent contributions were

computed as a soft expansion matched to the exact small-z behaviour. We do not report

the details of this (now obsolete) implementation, but we stress that it was very accurate,

with an error on the cross sections of table 1 always less than 0.03 pb. The numbers

obtained with ggHiggs v3.1 are in good agreement (within the numerical errors) with

those of ref. [12].

A.2 Matching and scale dependence of the resummed result

In this section we show how we tested the correct implementation of the matching to fixed

order of our resummed result. To perform a correct matching it is necessary to subtract

from the resummed result its fixed-order expansion, eq. (4.1). It is therefore important

to verify that the fixed-order expansion, which has been computed analytically, is indeed

correct. To do so, we compared the analytic fixed-order expansion of the resummation

to a numerical expansion of the resummation itself. We report here the results of this

comparison.

Recalling eq. (4.1) we have that the resummed expression can be expanded in powers

of αs as

Cres(N,αs) = 1 +

∞∑
i=1

αisC
(i)
res(N). (A.2)

For matching to N3LO the expansion coefficients C
(1)
res (N), C

(2)
res (N) and C

(3)
res (N) are needed,

and they have been computed analytically and coded in TROLL. Each coefficient can be also

extracted numerically according to the formula

αks C
(k)
res (N) = lim

ε→0

[
ε−k

(
Cres(N,αsε)−

k−1∑
i=0

(αsε)
i C(i)

res(N)

)]
. (A.3)

The expression in squared brackets is of O(αksε
0) and contains corrections which starts at

O(αk+1
s ε): therefore, the ε → 0 limit suppresses higher-order corrections and isolates the

O(αks) term. In figure 6 we show the analytic results for the cross section contributions

corresponding to αks C
(k)
res (N) for k = 1, 2, 3 together with the numerical expression eq. (A.3)

as a function of ε. We see that at small ε the numerical expansion reproduces the analytic

result for several non-trivial combinations of the scales µR and µF. This represents a strong

check of the implementation of the matching to fixed-order for any µF and µR. In particular,

it ensures that the contribution from the resummation is always one order higher than the

fixed order we are matching to.

In order to cross check the scale dependence of the resummed result, we now verify

the explicit scale dependence of the expansion of the resummation to fixed order, which, as

we have just verified, is consistent with the all-order expression. To do so, we compare the

results obtained from the internal implementation of the scale dependence with an external

implementation. To be precise, we compare the contributions to the cross section

σ(k) ≡ αk+2
s (µ2R)

∫ c+i∞

c−i∞

dN

2πi
τ−N Lgg(N,µ

2
F)C(k)

res (N,µ2F, µ
2
R) (A.4)
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Figure 6. Contributions to the cross section (normalised to the LO) from the analytic expansion

of the resummation (default ψ-soft at N3LL) to orders αs (red), α2
s (purple) and α3

s (blue) (dashed

lines). The numerical expansion, as a function of ε, eq. (A.3), is also shown as solid lines.

(where for simplicity we removed overall factors from the definition of σ(k)) to the analogous

computed with µF = µR = mH plus scale dependent terms

σ(k) ≡ αk+2
s (µ2R)

∫ c+i∞

c−i∞

dN

2πi
τ−N Lgg(N,µ

2
F)C(k)

res (N,m2
H,m

2
H) + ∆σ

(k)
scale

(
µ2F, µ

2
R

)
. (A.5)

In this way, in the second expression eq. (A.5) all the explicit logs of µR and µF in the

partonic coefficients are set to zero, and the scale dependent terms are provided with the

additional contribution ∆σ
(k)
scale which we now construct and which provides a strong cross

check of the scale dependence as derived from the resummed expression. To find ∆σ
(k)
scale

we impose scale independence of the cross section up to O(α3
s) in the soft limit. Defining

the partonic coefficient ∆C
(k)
scale such that

∆σ
(k)
scale

(
µ2F, µ

2
R

)
= αk+2

s (µ2R)

∫ c+i∞

c−i∞

dN

2πi
τ−N Lgg(N,µ

2
F) ∆C

(k)
scale

(
N,µ2F, µ

2
R

)
(A.6)

we have

∆C
(1)
scale

(
N,µ2F, µ

2
R

)
= 2γ(0)gg `F + 2β0`R (A.7a)

∆C
(2)
scale

(
N,µ2F, µ

2
R

)
= 2

(
γ(1)gg + γ(0)gg C

(1)
res

)
`F +

(
2β1 + 3β0C

(1)
res

)
`R

+ γ(0)gg

(
2γ(0)gg + β0

)
`2F + 3β20`

2
R + 6β0γ

(0)
gg `F `R (A.7b)
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∆C
(3)
scale

(
N,µ2F, µ

2
R

)
= 2

(
γ(2)gg + γ(1)gg C

(1)
res + γ(0)gg C

(2)
res

)
`F +

(
2β2 + 3β1C

(1)
res + 4β0C

(2)
res

)
`R

+
[
2γ(1)gg

(
γ(0)gg + β0

)
+ γ(0)gg

(
2γ(1)gg + 2γ(0)gg C

(1)
res + C(1)

resβ0 + β1

)]
`2F

+
[
7β0β1 + 6β20C

(1)
res

]
`2R +

[
6β1γ

(0)
gg + 8β0

(
γ(1)gg + γ(0)gg C

(1)
res

)]
`F `R

+
2

3
γ(0)gg

[
γ(0)gg

(
2γ(0)gg + β0

)
+ 2γ(0)gg β0 + β20

]
`3F + 4β30`

3
R

+ 4β0γ
(0)
gg

(
2γ(0)gg + β0

)
`2F `R + 12β20γ

(0)
gg `F `

2
R, (A.7c)

where C
(1)
res and C

(2)
res are computed at µR = µF = mH,

`F = ln
m2

H

µ2F
, `R = ln

µ2R
m2

H

, (A.8)

and γ
(k)
gg are the O(αk+1

s ) anomalous dimensions in the soft limit (explicit expressions are

given in ref. [57]). We have verified that the two expressions eq. (A.4) and eq. (A.5) give

identical results for any combination of µR and µF at orders k = 1, 2, 3. This represents an

independent cross-check of the scale dependence of the resummed expression.
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