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Abstract
In this article, we survey the applications of Three-way decision theory (TWD) in machine 
learning (ML), focusing in particular on four tasks: weakly supervised learning and multi-
source data management, missing data management, uncertainty quantification in classi-
fication, and uncertainty quantification in clustering. For each of these four tasks we pre-
sent the results of a systematic review of the literature, by which we report on the main 
characteristics of the current state of the art, as well as on the quality of reporting and 
reproducibility level of the works found in the literature. To this aim, we discuss the main 
benefits, limitations and issues found in the reviewed articles, and we give clear indica-
tions and directions for quality improvement that are informed by validation, reporting, and 
reproducibility standards, guidelines and best practice that have recently emerged in the 
ML field. Finally, we discuss about the more promising and relevant directions for future 
research in regard to TWD.

Keywords  Three-way decision · Machine learning · Artificial intelligence · Systematic 
literature review

1  Introduction

Three-way decision (TWD) is an emerging conceptual and computational paradigm to 
represent, handle and process uncertainty inspired by rough set theory (Pawlak 1982, 
1991) , which was originally proposed by Yao (2010, 2012) . Intuitively and in its most 
general and abstract form, TWD is based on the idea of approaching computational 
problem-solving from a ternary, rather than binary, perspective. In this setting, binary 
perspective refers to computational processes that are based on the act of discriminating 
the objects of interests into those that satisfy a set of desirable requirements and those 
that do not. Instead, the ternary perspective adopted by TWD grounds on a tripartition 
of the universe of interest, where also a third category is also considered associated with 
objects whose status is uncertain. This ternary perspective is conceptually based on the 
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trisecting-acting-outcome (TAO) model (Yao 2018) : all computational processes that 
are involved in Trisecting have the objective of dividing the universe under investigation 
into three partitions in order to distinguish certain objects from uncertain ones, i.e. to 
employ the above described tripartitioning of the universe of interest; Acting describes 
the computational steps dealing with the three parts identified that specifically make 
explicit how to manage the uncertain objects that have been previously identified; and 
Outcome provides methodology for evaluating the results obtained as well as, by exten-
sion, the methodology employed.

From a theoretical point of view, the above mentioned general ideas can be formal-
ized through a set-theoretic approach. Namely, we assume the existence of a universal 
set U of objects of interest: for example, in the Machine Learning setting (which will be 
our main focus within this article), U can represent the set of all potential instances for a 
given task or problem. The fundamental idea in TWD is the introduction of a trisecting 
function � ∶ U → {P,N,Bnd} that distinguishes elements of U into certain (i.e., ele-
ments in P ∪ N ) and uncertain ones (i.e., elements in Bnd). Such a trisecting function 
can be implemented in many different ways, depending on the considered application. 
The acting and outcome steps described above can, on the other hand, be formalized 
in terms of, respectively, computational procedures (i.e., algorithms) and metrics that 
allow us to process the results of � , and finally evaluate the results of such data process-
ing steps. We will provide additional details on these two steps in the following, when 
we will focus on some specific applications of TWD in Machine Learning.

Among many several applications in the data sciences (Ma 2016; Yang and Hou 
2018; Yao 2022) , the application of TWD as a general-purpose framework to handle 
uncertainty in Machine Learning (ML) has attracted particular interest in the recent 
years. In order to systematize the contributions to the application and development 
of TWD in ML, in a recent narrative survey (Campagner et al. 2020a) we proposed a 
categorization of applications of TWD-based approaches in ML, which distinguishes 
between methods that deal with uncertainty in either the input or the output of 
a Machine Learning pipeline (Hapke and Nelson 2020), as shown in Fig.  1. In both 
cases, the above mentioned conceptual framework underlying TWD can be specified 
by defining the universal set U to be a space of instances, described in terms of some 
feature space X (usually taken to be a n-dimensional real vector space Rn or, more 
generally, a n-dimensional set of symbolic and numerical characteristics), which 
encode relevant information about the instances which is deemed to be useful for their 

Fig. 1   A graphical representation of the framework adopted in this article to classify applications of Three-
way decision in Machine Learning
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categorization or analysis, as well as (at least in classification tasks) a target space Y, 
which encodes the categories relevant for the considered application task.

The term Uncertainty in the input denotes tasks and problems in which the training 
datasets utilized by ML learning algorithms contain explicit instances of uncertainty (Des-
tercke 2022). In these cases, the trisecting function � typically acts as a way to separate 
certain instances (which can be directly manipulated using traditional ML tools) from 
uncertain ones (which, by contrast, require some further processing). Following Campag-
ner et  al. (2020a), we distinguish the uncertainty in the input in two common variants: 
Incomplete data and weak or multi-source supervision. Incomplete data refers to settings in 
which some predictive features’ values in the dataset are missing (Little and Rubin 2019) 
or are otherwise incomplete (Miao et  al. 2018; Williams et  al. 2007) . Formally speak-
ing, this amounts to assuming that, in the above described representation of instances in 
terms of features and targets, some information about the feature space X could be miss-
ing: as an example, if we are given an instance x ∈ X = Rn , then some of the n features 
of x could be unknown. Hence, in this setting, � aims at separating complete instances 
from incomplete data, so that the latter ones can be properly managed through the acting 
step (Emmanuel et al. 2021) : common implementations of this acting step could involve 
discarding the incomplete data, filling in the missing information, or using ML techniques 
that are somehow able to directly use such faulty instances. Weak and multi-source super-
vision, on the other hand, refers to settings in which the incompleteness affects the super-
vision (i.e. the target or decision variable) or the relation between the predictive features 
and the supervision itself, which are then only partially specified. Thus, formally speak-
ing, the case of weak supervision can be seen as the dual of incomplete data, where the 
incompleteness affects the target space Y rather than the feature space X: then, the trisect-
ing, acting and outcome steps could be seen as a more or less direct adaptation of their 
instantiation in the case of incomplete data. While, similarly to the case of incomplete data, 
weak and multi-source supervision can arise in a variety of natural scenarios (Campag-
ner et al. 2021b; Lienen and Hüllermeier 2021; Poyiadzi et al. 2022) , this sort of uncer-
tainty has only recently garnered a growing amount of attention (Poyiadzi et al. 2022; Zhou 
2018) , especially motivated by the data acquisition bottleneck associated with the big data 
requirements for modern ML models and the related growth in multi-rater, multi-source 
and multi-view data acquisition practices.

By contrast, uncertainty in the output characterizes the so-called cautious AI. Recently, 
this expression has been proposed   (Campagner et al. 2021; Hüllermeier and Waegeman 
2021) to denote AI applications that expose their uncertainty quantification1 and, according 
to this latter, might reject the user request for a single-value, clear-cut classification of any 
new instance and instead provide a more uncertainty-informed advice about the case. In 
other words, uncertainty quantification mechanisms are aimed at making ML models more 
“robust” by making its (inherent and partly insuppressible) predictive uncertainty more 
explicit and allowing the model to partially abstain. Formally speaking, this means that the 
uncertainty in the tasks (and hence the object of the trisecting function � ) regards not so 
much the universal set U in and by itself, but rather how this is processed and seen through 
the lens of a ML model M: such a model is constructed by applying some learning algo-
rithm A to a subset of data drawn from our universal set U, and is usually intended as a way 
to reconstruct some desired pattern or characteristics of interest from such a finite amount 

1  With uncertainty quantification we here mean both uncertainty representation and estimation.
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of data, in such a manner that this categorization could then be reproduced on new data 
drawn from U. The application of TWD to implement uncertainty quantification methods 
in ML has been one of the main aims of TWD since its origin, both for classification , 
where TWD has been originally applied to spam detection (Yao 2010; Zhou et al. 2010), 
and for clustering , where TWD-based clustering (Yu 2017) emerged as an offspring of 
rough clustering (Lingras and West 2004) and interval set clustering (Yao et  al. 2009) . 
As is the case in both settings , the need for uncertainty quantification arises from the fact 
that a ML model may not be able to separate or discriminate instances, and thus may fail at 
assigning a precise, single label to them. Such a situation may arise for a variety of reasons: 
the considered set of features may not be large or informative enough; the selected ML 
model may not be sufficiently expressive to solve the task of interest; the instances at hand 
may lie on the boundary of the decision space and hence may be “too close” to similar, yet 
differently classified, instances2. Allowing the classifier or clusterer to abstain (Yao 2012), 
even partially, which means discarding some of the potential alternative classifications, 
is the strategy advised by TWD in this setting. In such a process, according to the TAO 
model described above, the focus is on the trisecting function3 � , which involves determin-
ing which instances the machine-learning model M (regardless of whether it is used for 
classification or clustering) should regard as uncertain, and accordingly abstain from mak-
ing predictions. In this sense, the acting step for tasks related to uncertainty in the output 
simply amounts to confirming the results of the trisecting function � : that is, if the instance 
x is deemed to be certain (i.e., �(x) ∉ Bnd ), then the prediction issued by the model M is 
confirmed; otherwise (that is, if x is considered uncertain and hence �(x) ∈ Bnd ), then the 
prediction issued by M is over-ruled causing it to (partially) abstain.4

In this article, based on the above mentioned categorization of applications of TWD 
in ML, we present a systematic survey of the specialized literature that emerged in the 
recent years since the proposal of TWD. Following previous observation summarized by 
Campagner et al. (2020a) , which noted how despite the increasing adoption of and inter-
est toward TWD in ML, a lack of reporting standards and attention towards evaluation 
and reproducibility practices could be observed, we will discuss, in particular, a methodo-
logical analysis of the existing literature, to assess the reproducibility and reporting quality 
of existing studies. In particular, we will be interested in answering the following three 
questions: 

1.	 What are the main characteristics of the TWD in ML literature from a scientometrics 
and analytical point of view. In particular: what is the nature of the studies concerned 
with TWD in ML (i.e., does the research tend mostly toward theoretical or empirical 
work)? Where are the main country hubs for research on TWD in ML?

2  These issues have been widely studied in both RST, as well as in machine learning. In the former, the 
main questions of interest regard the notions of indiscernibility and inconsistency (Pawlak 1991; Pawlak 
and Skowron 2007) , while in the latter one the central notions of interest are that of a decision boundary 
and of inductive bias.
3  One of the articles performed two sets of experiments, one in which cross-validation was applied, and one 
in which bootstrapping was applied.
4  In this respect, we remark that significance evaluation in clustering studies (as opposed to classification 
ones) is particularly complex, due to the risk of double dipping (essentially, the act of using the same data 
to both perform clustering as well as perform statistical testing) which requires the application of selective 
inference approaches (Chen and Witten 2022; Gao et al. 2022) .
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2.	 How does the current state-of-the-art of the research on TWD in ML fare with respect 
to reporting quality and study reproducibility?

3.	 What are the current trends for research on TWD in ML, according to the four above 
mentioned tasks, and which could be some particularly relevant future research direc-
tions emerging from the literature?

In order to answer these questions, the rest of this systematic review article will be struc-
tured as follows. In Sect. 2, we will describe the adopted reviewing methodology, as well 
as, in order to answer research question 2 above, delineate the criteria for the assessment of 
reporting quality of the surveyed studies. In Sect. 3, we will summarize the scientometrics 
and statistical results of our systematic review, in order to provide an answer to research 
question 1 above. In Sect. 4, we will summarize the findings of our results, with particu-
lar reference to our analysis of the reporting quality of the literature (so as to provide an 
answer to research question 2 above): based on these findings, in Sect. 4.5 we will pro-
vide clear indications for improvements as well as delineate potential directions for future 
research. Finally, in Sect. 5 we will summarize our contributions and provide some con-
cluding remarks.

2 � Methods

As mentioned in the Introduction, we conducted a systematic review of the literature 
regarding the application of TWD in ML, grounding on the above categorization of appli-
cation in four different tasks: two related to uncertainty in the input of the ML process 
(i.e. handling of weakly supervised data, and handling of missing data), and two related to 
uncertainty quantification in the output of a ML model (i.e. uncertainty quantification in 
the output of classification algorithms, and uncertainty quantification in the output of clus-
tering algorithms). To this aim, we surveyed the articles indexed by the Elsevier’s Scopus 
database, applying four structured queries, as summarized in Table 1. We decided to focus 
exclusively on the Scopus database since previous research (Mongeon and Paul-Hus 2016; 
Thelwall and Sud 2022) showed it has more extensive coverage than other competing tools.

To discuss the collected articles, as well as for their analysis in terms of adherence to 
reporting and reproducibility standard, we considered a set of criteria extracted from the 
recent guideline proposed by Cabitza and Campagner (2021), especially those criteria that 
could be generalized to applications of ML outside the medical domain (for which that 
checklist was originally intended). In particular, we considered information related to three 
main semantic clusters, namely: general information, information about the experimental 
setting, and information about the model optimization and results.

In regard to the general information, we considered: authors’ affiliation; the considered 
ML task; number of datasets considered in the experiments; application domains for the 
considered datasets; sources (including whether these were private or public sources) for 
the considered datasets; and datasets’ dimensionality (i.e. number of features, instances, 
classes, etc).

In regard to the experimental setting we considered: type of validation (if any, 
internal validation, external validation, cross-validation, bootstrap, or variations thereof); 
evaluation metrics; information about significance testing and statistical analysis; summary 
of the main characteristics of the adopted TWD methodology; and type of output for the 
considered ML approach. Two main aspects of the experimental setting are particularly 
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Table 1   Queries for the Scopus database

Task Query

Multi-rater, Multi-source, Multi-view and Weakly-
Supervised (weak supervision task)

( TITLE-ABS-KEY ( "three-way decision" OR "three 
way decision" OR "three-way decisions" OR "three 
way decisions" ) AND TITLE-ABS-KEY ( "multi-
rater" OR "multi-source" OR "multi source" OR 
"inter-rater" OR "inter rater" OR "interrater" OR 
"multiple raters" OR "multiple rater" OR "multi-
rater" OR "inter observer" OR "inter-observer" OR 
"interobserver" OR "multiple source" OR "multiple 
sources" OR "multi-view" OR "multi view" OR 
"partial label" OR "semisupervised" OR "semi-
supervised" OR "semi supervised" OR "weakly 
supervised" OR "weak supervision" OR "missing 
label" OR "superset" OR "partially labeled" OR 
"fuzzy label" OR "unlabeled") AND TITLE-ABS-
KEY ( "machine learning" OR "clustering" OR 
"feature selection" OR "feature reduction" OR 
"classification" OR "data analysis" OR "machine 
learning" OR "clustering" OR "feature selection" 
OR "feature reduction" OR "classification" OR 
"data analysis" ) ) AND ( LIMIT-TO ( DOCTYPE , 
"ar" ) OR LIMIT-TO ( DOCTYPE , "cp" ) ) AND ( 
LIMIT-TO ( LANGUAGE , "English" ) )

Missing Data Management (missing data task) ( TITLE-ABS-KEY ( "three-way decision" OR 
"three way decision" OR "three-way decisions" OR 
"three way decisions" ) AND TITLE-ABS-KEY ( 
"missing data" OR "incomplete information" OR 
"data missing" OR "imputation" OR "missing" 
OR "incomplete" OR "interval data" OR "non-
deterministic information" ) AND TITLE-ABS-
KEY ( "machine learning" OR "clustering" OR 
"data analysis" OR "feature selection" OR "feature 
reduction" OR "classification" ) ) AND ( LIMIT-TO 
( DOCTYPE , "ar" ) OR LIMIT-TO ( DOCTYPE 
, "cp" ) )

Uncertainty Quantification in Classification (clas-
sification task)

( TITLE-ABS-KEY ( "three-way decision" OR 
"three way decision" OR "three-way decisions" 
OR "three way decisions" ) AND TITLE-ABS-
KEY ( "machine learning" OR "data analysis" OR 
"learning" ) AND TITLE-ABS-KEY ( "classifica-
tion" OR "supervised learning" OR "supervised" ) 
AND NOT TITLE-ABS-KEY ( "semisupervised" 
OR "semi supervised" OR "semi-supervised" OR 
"incomplete" OR "missing" OR "clustering" OR 
"multi-view" OR "multiview" OR "multi view" 
OR "multisource" OR "multi-source" OR "multi 
source" OR "partial" OR "partially" OR "co-train-
ing" ) ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR 
LIMIT-TO ( DOCTYPE , "cp" ) ) AND ( LIMIT-
TO ( LANGUAGE , "English" ) )
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remarkable and are thus worthy of further remarks. First, the type of validation: in this 
respect, we notice that external validation (in which the training and testing data come from 
two, not necessarily related, distributions) is considered the gold standard of evaluation 
practices for ML models, as it provides more reliable estimates than internal validation 
(in which the training and testing data come from the same distribution) since the latter 
can be subject to bias and overestimation of performance. A further distinction, however, 
should be made between different types of internal validation: “pure” internal validation 
(henceforth simply internal validation), in which training and testing are not clearly 
separated; hold-out validation, when the separation is determined by a single split chosen at 
random; k-fold, repeated and nested cross-validation, where multiple splits are considered 
by selection without replacement; bootstrap validation, which considers multiple splits by 
selection with replacement. Obviously, internal validation represents the least statistically 
sound form of validation, whose use is generally discouraged as compared to hold-out, 
cross-validation or boostrap procedures. Aside from the type of validation, a second 
important factor to consider when determining a result’s quality is whether the statistical 
significance of the result has been evaluated or not, to ensure that the outcome obtained 
is not due to chance. Statistical analysis, using either hypothesis testing or confidence 
interval analysis, is thus necessary to reduce the likelihood that the results are purely due to 
coincidence.

Finally, in regard to model optimization, we considered: information about missing data 
imputation; feature selection and hyper-parameter optimization (for any of them, whether it 
was performed, and using which methods); main hyper-parameters of the proposed meth-
odology; and reported improvements according to the best comparison algorithm consid-
ered in the article. In regard to these aspects, the selected items were chosen to identify 
and report on the main factors influencing data leakage and estimation bias in ML stud-
ies, namely: imputation; feature selection; and hyper-parameter optimization. An imputa-
tion procedure replaces missing data with a single definite value. Since removing missing 
data can lead to a substantial decrease in the size of the dataset, these methods are used 
to allow to fully utilize a dataset without discarding potentially useful information. At the 
same time, if not performed carefully (e.g. by enforcing a strict separation between training 

Table 1   (continued)

Task Query

Uncertainty Quantification in Clustering (cluster-
ing task)

( TITLE-ABS-KEY ( "three-way decision" OR 
"three way decision" OR "three-way decisions" OR 
"three way decisions" ) AND TITLE-ABS-KEY 
( "interval clustering" OR "three-way clustering" 
OR "three way clustering" OR "rough clustering" 
OR "soft clustering" OR "interval-set clustering" 
OR "orthopartition" ) AND TITLE-ABS-KEY 
( "clustering" OR "unsupervised learning" OR 
"unsupervised" OR "cluster" ) AND NOT TITLE-
ABS-KEY ( "classification" OR "supervised" OR 
"active learning" OR "incomplete" OR "missing" 
OR "semisupervised" OR "semi supervised" OR 
"semi-supervised" OR "multi-view" OR "multi 
view" OR "multi source" OR "multi-source" ) ) 
AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT-
TO ( DOCTYPE , "cp" ) ) AND ( LIMIT-TO ( 
LANGUAGE , "English" ) )

228Page 7 of 56 



A. Campagner et al.

data and validation or testing data), imputation can lead to over-estimation of performance: 
thus, determining whether or not imputation was performed and in which manner within 
a given study can provide valuable insight as to its statistical validity. Feature selection, 
by contrast, refers to methods for selecting a subset of relevant attributes for their use in 
model development. Feature selection is of critical importance, because irrelevant or par-
tially relevant attributes can negatively affect model performance by decreasing the accu-
racy of the model. Similarly to imputation, if not done correctly, feature selection can also 
lead to overfitting and overestimation of model performance due to data leakage. Finally, 
in regard to hyper-parameter optimization, we recall that hyper-parameters are parameters 
of a ML algorithm whose values are not directly estimated during the training process, but 
must instead set or selected a priori. Hyper-parameter optimization, then, is the process 
of choosing the optimal hyper-parameters of a learning algorithm so that it can optimally 
solve a machine learning problem. As with imputation and feature selection, this can help 
optimizing a Machine Learning model’s performance, however, if not used carefully, it can 
lead to overfitting and data leaks.

Following the above mentioned criteria, we list the surveyed articles and their 
characteristics in the next sections. The search procedure and the phase of study selection 
are summarized in Fig. 2.

3 � Results

In the following sections we review the queries and corresponding results. In particular, 
in Sect. 3.1 we report the results in regard to the weak supervision task; in Sect. 3.2 the 
results for the missing data task; in Sect.  3.3 the results for the classification task; and, 
finally, in Sect. 3.4, the results for the clustering task. Tables 2, 3,  4 summarize the results 

Fig. 2   The search procedure and the phase of study selection in the applied survey methodology
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for the weak supervision task; Tables 5, 6, 7 summarize the results for the missing data 
task; Tables 8, 9, 10 summarize the results for the classification task and, finally, Tables 11, 
12, 13 summarize the results for the clustering task. All tables are in  Appendix.

3.1 � Weak supervision task

As a result of the query, 15 papers were returned. One of the articles was excluded because 
it was a duplicate, two other articles were excluded because they were not relevant to the 
query, and one article was moved to the classification task. In all, we included 11 studies 
whose collected data is presented in Tables 2, 3, 4.

More than half of the papers had authors who were affiliated with Chinese institutes 
(73%), followed by Italian (27%) institutes. Germany, Canada, and Poland were each 
represented by one article (9%). Ten out of eleven papers (91%) included an experimental 
section, while only one (9%) considered a theoretical analysis. Additionally, in the papers, 
the majority regarded classification tasks (73%), whereas clustering tasks were considered 
in 27%. In the reviewed papers, see Fig. 3, exclusively public datasets were utilized in 80%, 

Fig. 3   Statistics about datasets’ usage
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both private and public datasets were utilized in 20%, while no article considered only 
private datasets.

Excluding the unique theoretical paper, 60% of the articles reported having considered 
only datasets which had (at most) between 1000 and 10000 instances, 30% reported 
having considered also datasets with more than 10000 instances, while 10% reported no 
information on the number of instances (see Fig. 4). About 30% of the articles considered 
datasets with a number of features exceeding 100, 30% did not list any information 
concerning the features/attributes, while the remaining 40% of articles only considered 
datasets with less than 100 features (see Fig. 5). There were a majority of articles (50%) 
that did not state the number of classes for the used datasets, while the remaining 50% 
considered only binary tasks (20%) or tasks with less than 10 classes (30%) (see Fig. 6). 
Some of the articles provided additional types of information that we chose not to include 
in the diagrams and statistics (e.g. the number of raters, the number of views, the number 
of clusters).

In the validation experiments, internal validation was adopted more than 50% of 
the times, cross-validation approximately 27% of the times, and bootstrapping by 
approximately 9%, while one article (9%) did not report about the adopted validation 
method (see Fig. 7). On average, 70% of the experiments reported to have used accuracy 

Fig. 4   Statistics about data dimensionality, in terms of number of instances
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as the evaluation metric, followed by 30% percent using NMI and 10% percent using 
Precision, while 40% reported using other metrics. Only 40% of the papers evaluated 
the statistical significance of the results (20% used confidence intervals). However, the 
majority of papers (60%) did not evaluate the significance of the results (see Fig. 8). In 90% 
of experimental designs, no imputation was performed, while 10% did not report whether 
or not it was performed (see Fig. 9). Nine articles (90%) did not perform feature selection, 
while one article (10%) reported having performed PCA (Principal Component Analysis), 
as shown in Fig.  10. Approximately 60% of experiments did not include any form of 
hyperparameter optimization, one article (10%) performed a parameter study, while 30% 
did not mention whether any form of optimization was performed or not (see Fig. 11).

3.2 � Missing data task

As a result of the query, we obtained 21 records. One duplicate result was excluded, two 
other results were excluded from further research because they were not directly relevant to 
the query, and two results were moved to the classification task. Tables 5, 6, 7 show a sum-
mary of the collected data for each of the 16 included records.

Fig. 5   Statistics about data dimensionality, in terms of number of features
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Researchers at Chinese institutions were represented in 75% of the surveyed articles, 
followed by Canadian (25%) and Japanese (25%) ones. Other affiliations counted 
for approximately 31% of the surveyed papers. 63% of the reviewed papers had an 
experimental section. In the papers, missing or incomplete data issues being the main focus 
of the study accounted for the majority (87%), while clustering and classification tasks 
were among the main aims in 44% and 31% respectively. In 91% of the studies, only public 
datasets were used, while only 9% combined public and private data (Fig. 3). 18% of the 
experiments reported having used datasets with more than 10000 instances, 64% datasets 
which had a number of instances between 1000 and 10000, 9% only dataset with less than 
1000 instances, while 9% did not specify the number of instances (Fig. 4). The majority 
of datasets (55%) had features ranging from 10 to 50, while 9% didn’t report enough 
information to determine the number of used features (Fig. 5). In most datasets (46%), there 
were between 2 and 10 classes, while 27% did not report the number of classes (Fig. 6). In 
90% of experiments, only internal validation was performed (Fig. 7). Accuracy (90%) was 
the main evaluation metric, followed by F1-score (20%), coverage (20%) and other metrics 
(20%). A majority of the papers (80%) omitted to evaluate the statistical significance of 
the results. Only 20% of the papers evaluated the statistical significance of the results (of 

Fig. 6   Statistics about data dimensionality, in terms of number of classes
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which 10% used confidence intervals) (Fig. 8). In 60% of experiments, no imputation was 
performed, and 10% of experiments did not report whether imputation was performed. 
The imputation was performed in 30% of experiments (Fig. 9). In no study a selection of 
features was performed (Fig. 10). Approximately half of the experiments did not perform 
hyperparameter optimization, while the other half did not disclose whether it was carried 
out (Fig. 11).

3.3 � Classification task

As a result of the query, we obtained 43 records. Two results were excluded from further 
research due to being duplicates, 18 results were further excluded because they were not 
directly relevant to the query. Three articles were included from queries 1 and 2. Thus, 27 
articles were included in total, whose collected data is reported in Tables 8, 9, 10.

Researchers at Chinese institutions were represented in more than half of the sur-
veyed articles (56%), followed by Canadian (22%) and Italian (15%) institutions. Almost 
all papers (85%) contained an experimental section after describing the content in a 
theoretical manner. In only 15% of the papers, the proposed three-way approach was 

Fig. 7   Statistics about models’ validation
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not subjected to experimental validation, resulting in theoretical articles. The reviewed 
papers used exclusively public datasets in 74% of the articles, exclusively private 
datasets in 7%, 15% both, and 4% did not report the source of the datasets utilized 
(see Fig.  3). More than a third of datasets had more than 10000 instances (35%) or 
had between 1000 and 10000 (44%), while 13% of articles did not report the number 
of instances (see Fig.  4). Datasets with over 100 features were most common (30%), 
while 44% did not report the number of features/attributes (see Fig.  5). Most of the 
datasets (42% of them) considered more than 10 classes, while 29% did not mention 
how many classes they considered (see Fig. 6). As a validation method, cross-validation 
was adopted by 65% of experiments, hold-out validation by 26%, and internal validation 
by just less than 9% (see Fig. ). In terms of evaluation metrics, accuracy was used the 
most (74%), followed by F1 (35%), Recall and Precision (30%), whereas other metrics 
covered 52% of the sample. A total of 43% of the papers analyzed the statistical sig-
nificance of the results (22% used confidence intervals); the remaining 56% of them 
did not analyze the statistical significance of the results (Fig. 8). Moreover, imputation 
was not used by the vast majority of experiments (96%), while about 4.3% reported 

Fig. 8   Statistics about significance testing
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using it (Fig. 9). In Fig. 10, regarding feature selection, 65% did not perform any feature 
selection, 22% of experiments used their proposed method, while the remaining 13% 
used other techniques. In regard to hyper-parameter optimization, 50% of the studies 
did not perform any form of optimization, in 27% of the studies a parameter study was 
performed, in 9% of the studies nested cross-validation was applied, while 9% of the 
studies either applied a new (not better defined) optimization procedure or did not report 
about hyper-parameter optimization (Fig. 11).

3.4 � Clustering task

The query returned 20 records. Two of the results were excluded from further research 
since they were not directly relevant to the topic of the query. As a result, 18 studies were 
included, whose data is listed in Tables 11, 12, 13.

Almost all of the papers (94%) had at least one author affiliated with a Chinese institu-
tions, while Canada was the second most represented affiliation (33%) A large majority of 
papers (83%) contained an experimental section after describing the content in a theoreti-
cal manner. The proposed three-way approach was not tested experimentally in 17% of the 

Fig. 9   Statistics about missing data imputation
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papers, who only proposed theoretical methodologies. Approximately 75% of the studies 
used only public data, 6% used exclusively private data, and 19% used both private and 
public data (Fig. 3). Most of the studies used datasets with a number of instances greater 
than 10000 or between 1000 and 10000 (both 38% each). However, approximately 6% of 
articles did not report the number of instances (Fig.  4). Most of the studies considered 
datasets with between 10 and 50 or between 50 and 100 features (31% each), whereas 19% 
of papers did not state the number of features (Fig.  5). The number of classes was not 
provided in half of the studies (50%), while in the other half, the number most frequently 
ranged between 2 and 10 (31%), or more than 10 (13%). The remaining 6% reported using 
datasets with only 2 classes (Fig. 6).

There were 93% of experiments which performed validation by using internal 
validation, while approximately 7% used cross-validation (Fig. 7). In the studies, accuracy 
(81%) was the most frequently used evaluation metric, followed by two internal quality 
metrics, i.e. Davies–Bouldin (31%) and Silhouette (31%) indices, and the external quality 
metric NMI (25%). Even though the proposed methods led to some improvements for all 
of the considered papers, no statistical significance procedure was applied in any of the 
experiments (Fig.  8). In all the experiments, no imputation was performed on the data 

Fig. 10   Statistics about feature selection
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(Fig. 9). None of the experiments employed feature selection in any way (Fig. 10). All but 
one of the experiments (94%) did not involve any form of hyper-parameter optimization 
(Fig. 11).

4 � Discussion

In this section we discuss the main findings emerging from our systematic analysis of the 
literature, focusing firstly on the broader observations shared among the four considered 
ML tasks. In general, we observed that the main hubs for research on TWD in ML, for all 
tasks, were associated with Chinese affiliations, followed by Italian and Canadian ones, and 
then Japanese and Polish ones: such a picture is not particularly surprising, since a large 
portion of researchers associated with TWD and RST, including some of those who made 
seminal contributions to TWD research (Yao 2012; Yu 2017) , are affiliated with institu-
tions in these countries. Furthermore, almost all of the surveyed articles largely focused on 
the experimental evaluation of proposed algorithmic approaches, rather than on theoretical 
contributions: this finding reflects an analogous trend in the ML literature, where, since the 
advent of deep learning, research has focused more on the engineering and experimental 
aspects of the discipline, rather than on the theoretical ones (Pugliese et al. 2021) . Inter-
estingly, in the ML literature, there have recently been calls for a more balanced approach 

Fig. 11   Statistics about hyper-parameter optimization
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aimed at bridging theory and practice as a way to enable deeper understanding about the 
functioning of modern ML models, as well as to provide actionable and rigorous advice 
on how to select ML solutions for particular application (Hutson 2018) : in this light, and 
given the above mentioned trend in the TWD literature, the more systematic exploration of 
the theoretical aspects of TWD, and how they interact with ML theory, could be a research 
direction of general interest.

In the following sections, we will explore in greater detail the insights and observations 
relative to the four ML tasks we considered in this survey, as well as, in Sect. 4.5, discuss 
implications for research and future research directions that can be drawn from our analysis 
of the literature.

4.1 � Weak supervision task

We start the discussion of the reported results from the weak supervision task. In this 
regard, we remark that approximately 30% of the studies surveyed in the weak supervision 
task did not report any information regarding data dimensionality, in terms of either num-
ber of instances or features. This is an aspect that may limit the reproducibility of studies 
(McDermott et al. 2021) . Indeed, for public datasets, it is unknown whether all of the orig-
inal dataset contents were utilized or merely a part of them. Even more significantly, we 
note that the majority of studies did not provide any indication on the number of classes, 
leaving it unknown whether all classes or merely sub-tasks have been considered. These 
observations highlight a lack of adoption of reporting and reproducibility standards (Boyd 
2021) for applications of TWD to weak supervision tasks.

Remarkably, only a minority of articles in the weak supervision task encompassed a 
validation based on cross-validation or bootstrap, with the majority of surveyed papers 
only applying an internal validation. This latter finding may have severe consequences as 
it can be a cause of data leakage (Bussola et al. 2019) , undermining the reliability of these 
studies and raising the risk of overly optimistic performance estimates. Furthermore, these 
previously mentioned issues may in turn lead to problems with generalizability as the use 
of internal validation limits the applicability of the reported improvements to other settings 
(Steyerberg and Harrell 2016) . In this regard, no study considered an external (or internal-
external) validation: while this is not a problem per se, it makes evaluating the robustness 
of the proposed methods to data or concept shifts, or similar distributional issues, more dif-
ficult (Cabitza et al. 2021) .

As a further problem, in the weak supervision task, a significant number of articles did 
not report about the execution of hyper-parameter optimization (around 30%): this may sig-
nificantly affect the evaluation of the generalizability of the respective studies, especially 
in light of the fact, as mentioned above, that most studies (and, in particular, all of those 
that did not report about performing hyper-parameter optimization or not) only performed 
internal validation. The above mentioned issues may lead even to reproducibility problems 
(Dodge et al. 2019) , as the hyper-parameters optimization stage would require additional 
information regarding the assumptions made.

In regard to the evaluation of the proposed approaches, most of the surveyed articles 
only considered accuracy, without any information about other metrics such as sensitiv-
ity or specificity (or the Area under the ROC curve, AUC). Especially in light of the fact 
that none of the studies reported whether the considered datasets were imbalanced or not 
(Japkowicz 2013) , this gap may result in a risk of performance overestimation, and it does 
not allow to understand the error patterns of the proposed methods (i.e. whether they favor 
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false positives or false negatives). Moreover, only a minority of the studies applied some 
procedure for significance analysis, making the reported improvement in performance w.r.t. 
to the state of the art dubious (Benavoli et al. 2016; Demšar 2006) .

In regard to the methodologies considered for the implementation of TWD in the weak 
supervision task, interestingly, approaches based on three-way clustering were widely rep-
resented among the surveyed papers, with 50% of the papers applying some kind of cluster-
ing-based approach (including label propagation (Xiaojin and Zoubin 2002) ). While this 
finding is not per se surprising (indeed, clustering-based approaches are used also in many 
approaches not based on TWD (Afyouni et al. 2022; Chao et al. 2017; Shao et al. 2015; 
Zhou 2018) ), we note that the applicability of the assumptions which are typically required 
for clustering-based approaches (namely, manifold regularity or Lipschitz-ness assump-
tions) for this task have been criticized in the specialized literature, due to difficulties in 
ensuring proper generalization in high-dimensional contexts (Assent 2012) . Remarkably, 
in this sense, two of the studies which adopted a clustering-based approach were evaluated 
also on very high-dimensional datasets and reported good results. This results may suggest 
that the application of TWD-based clustering techniques (rather than standard hard cluster-
ing ones) could provide some advantages in regard to robustness to the curse of dimen-
sionality. Nonetheless, due also to the above mentioned issues in regard to reproducibility 
and generalizability of the results reported in the surveyed study, further work should be 
devoted at investigating this purported advantage of TWD.

4.2 � Missing data task

As for the weak supervision task, also for the missing data task a large part of the surveyed 
studies lacked information regarding instances, features, and most significantly, classes. 
Similarly, most studies only performed internal validation and did not report about whether 
hyper-parameter optimization was performed or not, undermining the reliability of the 
reported results.

Interestingly, despite the management of missing data being the main focus of the miss-
ing data task, 60% of the paper did not involve any form of imputation. We believe this lat-
ter observation to be a particularly remarkable as it highlights the fact that the application 
of TWD inspired approaches allows to handle missing data without performing any kind 
of missing value replacement. By contrast, missing value replacement is the most popular 
way (along with missing indicators) to handle this type of data in standard ML pipelines 
(Lenz et al. 2022) : as imputation is one of the main sources of data leakage and overesti-
mation of performance (Kapoor and Narayanan 2022) , if not performed carefully , TWD-
based approaches for missing data management might then offer some benefits for repro-
ducibility and generalizability, since we observed how they generally avoid imputation .

However, similarly to what we previously reported for the weak supervision task, in the 
missing data task the problem with metrics persists, even though in this case two papers 
reported about the F1-score (which is a more balanced account on performance than accu-
racy) and one of them reported also the precision and recall. Furthermore, the problem of 
lack of statistical significance is even more pervasive than for the weak supervision cate-
gory: 80% of the studies did not perform any procedure for the assessment of statistical sig-
nificance. Nonetheless, in the specific situation of the missing data task, our review reveals 
how TWD implementations in ML, despite the limited generalizability and repeatability of 
the studies, eliminate one of the key factors contributing to the overestimation of perfor-
mance, which is represented by imputation.
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4.3 � Classification task

With regard to the classification category, the problem of scarce reporting about the num-
ber of instance, features or classes is even larger than in the two previous tasks, with 
around 40% of the studies which did not report about either the number of features or the 
number of classes. At the same time, the validation practices adopted by studies concerned 
with classification approaches were more robust, with most studies adopting some form of 
cross-validation or hold-out validation (around 80%) and only a minority of them (under 
10%) adopting only internal validation.

In contrast to the two previous tasks, a larger number of works reported some balanced 
performance metrics along with accuracy (around one third), however in most cases only 
accuracy was reported as a measure of error rate. Remarkably, even though the classifica-
tion task regarded the use of three-way decision as a way to implement uncertainty quan-
tification (Hüllermeier and Waegeman 2021; Kompa et al. 2021) through either rejection 
(Hendrickx et al. 2021) or partial abstention (Mortier et al. 2021) , only a small minority 
of studies reported some measure of coverage or efficiency (4 out of 25). Such a lack of 
information makes the evaluation of the reported performances hard to analyze and assess, 
as the reported improvements could be caused largely by a small coverage of the proposed 
methods (Nadeem et  al. 2009) . Indeed, TWD-based ML approaches, similarly to other 
cautious inference methods, aim to strike a trade-off between reduced coverage and higher 
accuracy (Golfarelli et al. 1997; Lars Kai et al. 1997; Nadeem et al. 2009) : without any 
information on the first component of this trade-off, however, it is impossible to evaluate 
whether such methods did really provide any kind of benefit compared to state-of-the-art 
methods. This is a very critical point considering the scope of this review, which is cen-
tered on applications of TWD in ML.

Despite this latter issue, however, compared to the previous two tasks, a larger num-
ber of studies applied some kind of procedure for significance testing, with just less than 
one half of the surveyed articles using either hypothesis testing or confidence intervals. 
Together with the fact that most studies correctly reported about the application of either 
feature selection and hyper-parameter optimization, these observations make the findings 
reported in studies concerned with the classification task the most reliable ones from a 
statistical point of view, even though some improvements (in particular in regard to the 
application of significance testing) should still be achieved.

Among the adopted techniques to implement TWD-based uncertainty quantification in 
the output, the most frequently represented ones were Decision Theoretic Rough Sets or 
other Rough Set-based models. This finding is not particularly surprising, as TWD origi-
nally emerged from the study of Rough Set theory (Yao 2010) . At the same time, this 
finding explains the large percentage of studies in which both classification and feature 
selection approaches were proposed, since Rough Set theory can be applied to both these 
tasks (through reduct search and rule induction, respectively) (Bello and Falcon 2017; 
Pawlak 1991) . Notably, however, this last observation highlights the need to conduct abla-
tion studies (Lipton and Steinhardt 2018) , which were not performed in any of the con-
sidered studies. Ablation studies are of fundamental importance to understand whether the 
reported improvements are solely or largely due to only one part of the proposed approach 
(e.g. only to the feature selection component), and to decompose the contribution of each 
of the respective components.
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4.4 � Clustering task

Clustering was the task in which there were a larger portion of studies which did not per-
form any kind of validation or assessment, as well as the one in which the larger number 
of private datasets were used (more than double, and almost triple, the percentage than 
that of other tasks). As mentioned previously, this may impact on the reproducibility of 
the reported results, which may only be partial and restricted to the public datasets. This is 
especially relevant since more than 1 out of 4 studies used at least one private dataset. The 
problem of lack of reporting about the number of classes (or clusters), instances and fea-
tures was less relevant for the clustering task than for the other ones: only 2 of the consid-
ered studies did not report about this information, chiefly due to the fact that the considered 
datasets were not labeled.

By contrast, almost all of the studies performed only an internal validation. However, 
this is a much less critical problem for clustering than for other tasks, since clustering is 
usually adopted in a transductive fashion as a way to perform knowledge discovery (Trivedi 
et al. 2015) . At the same time, the problem of significance of the results is particularly 
critical, as none of the considered studies reported having applied any such procedure. 
This makes it impossible to evaluate the statistical soundness and reliability of the reported 
results, especially in light of the observations above. However, none of the considered stud-
ies applied any form of imputation (because datasets were complete), feature selection or 
hyper-parameter optimization, making the risk of data leakage marginal as compared to 
other tasks.

In regard to metrics, most studies applied both internal and external validation criteria 
(Rendón et al. 2011) : in particular, none of the studies applied only internal criteria, whose 
utility as measures for objective clustering evaluation has been questioned in recent stud-
ies (Arbelaitz et al. 2013; Lei et al. 2017; Ullmann et al. 2022) . Nonetheless, it is to note 
that all of the studies did apply only performance measures for hard clustering algorithms 
(Denoeux et al. 2017) . Indeed, none of the considered studies applied performance meas-
ures that allow to take into account the amount of objects placed in the boundaries of some 
cluster (Campagner and Ciucci 2019) or, more in general, to quantify the uncertainty and 
ambiguity in the output of the corresponding algorithm (Campagner et al. 2023a, b) . This 
is a rather relevant problem, which was already reported in our previous review (Campag-
ner et al. 2020a) and other previous contributions (Denoeux et al. 2017; Hullermeier et al. 
2011) , for two main reasons. On the one hand, such an evaluation does not allow a fair 
comparison between algorithms which belong to different algorithmic families (Campag-
ner et al. 2023a, b) and, especially so, between TWD-based and hard clustering algorithms 
(Campagner and Ciucci 2019) , as these two types of algorithms feature a completely dif-
ferent type of output. On the other hand, because of a lack of clarity about how boundary 
objects are to be treated (are they considered as erroneous in regard to cluster placement? 
or as being correct assignments?) and, more generally, about the semantics assigned to 
these objects (Campagner et  al. 2023a, b) (are they intended to represent some form of 
uncertainty? or rather some degree of overlap among clusters?). Thus, we remark that eval-
uation results reported in the surveyed articles, and especially so in regard to those results 
that compare hard clustering and TWD-based clustering methods, may be highly biased, as 
similarly reported in regard to the classification task. We believe, thus, that more attention 
should be devoted at the investigation of TWD-based clustering approaches through appro-
priate evaluation metrics.
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Interestingly, compared to other tasks, there was a much higher variety of proposed 
methodologies, with no particular approach being significantly more represented than oth-
ers. However, a relevant number of methods were based either on partitional clustering 
(e.g. algorithms in the three-way k-means family (Yu 2017) ) or density-based clustering. 
Interestingly, almost all studies considered approaches based on the three-way clustering 
formalism, formulated by Yu (2017), rather than other competing formalisms for imple-
menting three-way decision in clustering, e.g. rough clustering (Lingras and West 2004) or 
interval-set clustering (Yao et al. 2009) . Compared with these latter formalisms, three-way 
clustering allows to distinguish more clearly between two types of uncertain objects (Cam-
pagner et al. 2022) , i.e. between-cluster objects (objects that are placed in the boundary 
of at least two clusters) and outlier-like objects (objects that are placed in the boundary of 
only a single cluster). While this is an interesting property of three-way clustering for the 
purpose of uncertainty quantification, we remark here that none of the studies did evaluate 
differences in the considered algorithms in regard to possible trade-offs between these two 
forms of uncertainty since, as discussed above, studies only reported measures for hard 
clustering, largely disregarding objects in the boundaries.

4.5 � Implications for research and future directions

In the previous sections, we discussed our main results concerning the analysis of the 
TWD literature in reference to the four considered ML tasks, identifying weak areas as 
well as suggesting potential areas for improvement and directions for future research. In 
this section, we summarize the main general indications that could be helpful to research-
ers in TWD and its applications in ML.

A first indication emerges from the observed lack of reporting standard, both in regard 
to data and model aspects:

–	 A majority of studies failed to comprehensively document the main characteristics of 
the datasets considered for validation, including such basic information as the num-
ber of considered classes. Such lack of information can have a severe impact on the 
reproducibility, and hence credibility, of a study’s results, especially when compounded 
with the use of private datasets (as in the clustering category) where reproducibility 
is impossible, by definition. A possible solution to this problem would be for future 
studies in the TWD literature to adopt and follow reporting checklists, including both 
checklists devoted specifically to data aspects (Boyd 2021) as well as more general 
reporting guidelines;

–	 Many studies (especially so in the weak supervision and missing data categories) 
also failed to provide sufficient details on crucial aspects of the data science pipeline, 
including information about hyper-parameter optimization and related tasks (e.g., fea-
ture selection) which could severely impact on the generalizability and robustness of 
the reported results. As for the previous point, a possible solution to improve the report-
ing standard in the TWD literature would be for future studies to more closely follow 
existing standard reporting guidelines, such as the one we adopted in this article (Cab-
itza and Campagner 2021) or related ones (Crossnohere et al. 2022) . While most of 
these checklists have originally been proposed in the context of medical applications 
(where, indeed, the need for standards that ensure reporting quality and reproducibility 
is particularly critical), general principles can be easily drawn from them.
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Another weak point in the surveyed studies concerned the validation of the proposed meth-
odologies. In this respect, both the adopted validation designs, the selection of validation 
metrics, as well as the statistical analysis of results were found to be lacking:

–	 In regard to validation design, a surprisingly large number of studies only adopted 
internal validation study designs, where training and testing of a ML approach are 
performed on the same set of data. While these validation designs are not wrong by 
themselves (indeed, much of theoretical ML research is devoted to exploring what 
can be said about the generalizability of ML methods using only internal validation 
(Shalev-Shwartz and Ben-David 2014) ), their application may limit the generaliz-
ability and trustworthiness of the results, if the risks of overfitting and data leakage 
are not properly accounted for. The simplest solution to this problem would consists 
in exclusively adopting validation designs that enforce a strict separation of train-
ing and testing data, such as hold-out validation or cross-validation, or also designs 
that employ randomization to correct for the risk of overfitting, e.g. bootstrapping. 
These validation designs are by now commonplace in the ML literature, hence, it 
was surprising they were not extensively adopted in the TWD literature (with the 
exception of the classification task). Notably, however, we note that also these vali-
dation designs are not sufficient to prove the generalizability of ML techniques in 
out-of-distribution or related settings (Cabitza et  al. 2021; Steyerberg and Harrell 
2016) . With this respect, it is relevant to remark that none of the considered studies 
employed external validation or related designs: thus, we believe that exploring the 
robustness of TWD-inspired methods in these settings could be an interesting direc-
tion for future research;

–	 In regard to the adopted validation metrics, most studies (especially so in the weak 
supervision and missing data tasks) only focused on accuracy. Despite being widely 
used, accuracy is not well suited for settings affected by label imbalance, where the 
entire confusion matrix (and derived metrics, such as sensitivity, specificity, positive and 
negative predictive values) can be more informative. Furthermore, almost none of the 
surveyed studies considered metrics that go beyond the measurement of discrimination 
power (i.e., error rate), neglecting important performance dimensions such as calibration 
(Francisco M et al. 2023) . As with the previously noted issues related to reporting qual-
ity, also in this respect the adoption of reporting guidelines could help TWD researchers 
in the selection of appropriate validation metrics and related tools (e.g., visualizations);

–	 Finally, in regard to statistical analysis, only a minority of studies assessed the signifi-
cance of the observed results. Statistical analysis is important to provide solid evidence 
concerning the studies’ results and derived conclusions (Demšar 2006) , especially 
when the objective of such a study is to prove that a proposed TWD-based method pro-
vides better performance than the state-of-the-art. To this end, it is recommended that 
future work in TWD research provide more comprehensive statistical analysis of the 
reported results, adopting approaches either based on hypothesis testing (Demšar 2006) 
or confidence intervals (Berrar 2017) : importantly, following recent guidelines on the 
subject, TWD researchers should not only report about the significance of results, but 
instead focus on providing comprehensive discussion of p-values, effect sizes (Green-
land et al. 2016) as well as potential corrections needed to avoid biases and over-esti-
mation of effects, e.g. correction for multiple hypothesis testing (García-Pérez 2023) .

Concluding, we also provide potential suggestions for future directions of research in the 
application of TWD to ML, as emerged from our results:
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–	 Clustering-based TWD approaches for weakly supervised learning seem to improve 
robustness to the curse of dimensionality, especially in comparison with traditional 
clustering-based methods. This hypothesis should be further investigated in future 
research;

–	 TWD-based approaches for missing data management seem to offer a distinct advan-
tage over traditional techniques adopted in the ML literature, in that they do not nec-
essarily require (and usually do not use) imputation, a data processing step that may 
negatively impact the generalizability of ML studies. Future research should be devoted 
at exploring this advantage of TWD-based methods, as well as at comparing them with 
other ML techniques that likewise do not require imputation (e.g., missing indicators);

–	 In regard to the classification task, we noted how original TWD-based approaches 
typically combined a feature selection step with a classification one: this characteristic 
derives from the widespread usage of techniques inspired by rough set-theoretic meth-
ods in the TWD literature. On the one hand, this should drive the literature to conduct 
ablation studies aimed at decoupling the impact on performance of the feature selection 
and classification components: we believe such studies could be especially relevant for 
identifying particularly effective feature selection methods, as well as ways to mix and 
match different components in a more systematic way (e.g., by employing hyper-param-
eter optimization procedure). On the other hand, the extensive focus on techniques 
inspired by RST leaves open the possibility to explore other TWD-based methodologies 
that do not rely on such approaches, with particular reference to synergistic approaches 
that combine TWD with other cautious inference or related approaches, such as confor-
mal prediction or active learning;

–	 In regard to both the classification and clustering tasks, we observed that only a minor-
ity of the surveyed articles properly accounted for the uncertainty quantification prop-
erties of TWD-based approaches. As for the classification task, we believe that future 
research should be focused at better exploring the accuracy-coverage trade-off offered 
by commonly adopted TWD-based methods, both from an empirical point of view 
(indeed, as we noted, only few works reported the coverage of the proposed methods) 
as well as from a theoretical one. As for the clustering task, we believe that future stud-
ies that more accurately and precisely investigate their advantages with respect to hard 
clustering methods are particularly needed;

–	 Finally, in regard to the clustering task, we noted how most of the surveyed studies 
focused on techniques based on generalizing existing partitional (e.g., k-means) and 
density (e.g., DBSCAN) clustering methods to the framework of three-way clustering. 
On the one hand, this suggests that further attention should be focused toward other 
clustering methods’ families, such as hierarchical clustering, which may be better suited 
for specific applications. On the other hand, due to three-way clustering’s ability to 
more comprehensively represent clustering uncertainty (w.r.t. to rough clustering and 
interval set clustering), a particularly interesting direction for future research would be 
the investigation of the trade-offs between these different forms of uncertainty.

5 � Conclusions

In this paper, we comprehensively surveyed and assessed the main contributions regarding 
TWD in the specialized literature. This extends and complements a recent narrative review 
(Campagner et  al. 2020a) , which offered a taxonomy of applications of TWD-based 
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approaches in ML grounding on the distinction between strategies that deal with uncer-
tainty either in the input or output of a ML pipeline. We adopted the above taxonomy and 
performed a systematic review focusing on four tasks: learning from weak supervision and 
missing data management, in regard to the application of TWD that handles uncertainty in 
the input, and uncertainty quantification in classification and clustering for those regarding 
uncertainty in the output.

In general, despite the increasing popularity of TWD and the increasing number of 
related successful studies (even in comparison to more traditional ML approaches), we 
highlighted that the sound application of evaluation best practices and adoption of report-
ing standards are still a rare occurrence. For this reason, we provided clear indications for 
improvement in reporting and reproducibility, which we believe could be useful to improve 
the methodological and conceptual contributions that TWD approaches may offer to the 
ML community and scholarly discipline. Moreover, through our review we highlighted 
some particularly relevant advantages and peculiarities offered by TWD, which we believe 
could be object of, or motivate, future research:

–	 Under the weak supervision category, we highlighted how the implementation of TWD-
based clustering techniques (as opposed to hard clustering ones) could bring some ben-
efits in terms of robustness to the curse of dimensionality. These results should be fur-
ther explored and validated;

–	 In the discussion of the missing data task, we remarked how the application of TWD 
inspired approaches enables the management of missing data without performing any 
form of imputation. Since imputation is one of the primary sources of data leakage and 
overestimation of performance (Kapoor and Narayanan 2022) , if not handled appropri-
ately, this line of inquiry may bring some benefits for the reproducibility and generaliz-
ability of ML studies involving missing data management steps , as TWD approaches 
may limit this source of bias ;

–	 In our review, in regard to the handling of uncertainty in the output of the ML pipeline, 
we focused mainly on the classification and clustering task. However, also other tasks 
exist for which uncertainty quantification can be applied, such as regression or forecast-
ing. However, such tasks have scarcely been considered in the TWD literature: future 
work should thus be devoted to the investigation of applications of TWD to these tasks;

–	 Furthermore, our review revealed that, particularly for output-related tasks, most stud-
ies have so far neglected to address relevant assessment metrics in regard to the type of 
output (classificatory or clustering) under consideration. We believe that this feature, if 
appropriately pursued, would unleash the full potential of TWD techniques in the field 
of ML to be realized;

–	 Finally, we believe that the possibility to provide partial abstentions as a form of output 
could enable the investigation of TWD techniques in the field of human-machine inter-
action, as a way to mitigate the risk of emergence of automation-related biases, as well 
as its study in relation with close sub-fields of ML, such as active learning or machine 
teaching.

Appendix: results of the queries

In this Section, we report the results of the queries, in tabular form
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