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BACKGROUND: The proliferation of genetic profiling has revealed many associations between genetic variations and disease. 
However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants 
currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and 
rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion 
of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, 
we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically 
predictive for the autosomal dominant long QT syndrome.

METHODS: We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian 
methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. 
We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 
871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 
individuals heterozygous for 266 missense or in-frame insertion/deletion variants.

RESULTS: Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. 
Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in 
vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by 
clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations.

CONCLUSIONS: We show how variant-specific features can inform a prior probability of disease for rare variants even in the 
absence of clinically phenotyped heterozygotes.

Key Words:  genetic variation ◼ heterozygotes ◼ ion channel ◼ long QT syndrome ◼ phenotype

Sequencing an individual’s full genome or exome now 
costs less than many routine medical procedures. 
One resulting vision is that our genomes could be 

sequenced early in life for individualized medical advice 
about disease prevention and drug selection. However, 
most discovered variants will never be observed in a 

sufficient number of heterozygotes for a definitive asso-
ciation with disease.1,2 Furthermore, even when a variant 
is strongly associated with disease, the clinical implica-
tions can vary strikingly across individuals.3,4

The American College of Medical Genetics and Genom-
ics put forward an interpretation framework that integrates 
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criteria, such as variant prevalence, function, and computa-
tional predictions, into a single annotation from benign to 
pathogenic.5,6 Each additional satisfied criterion raises or 
lowers the probability the variant is classified pathogenic.6 
However, even definitively annotated pathogenic variants 
have heterogeneous or asymptomatic clinical presenta-
tions,7,8 and variants annotated benign may still increase 
risk (see Discussion). Thus, the predictive value of rare 
variants remains unclear.9,10 Because a positive test for 
most variants cannot be applied to enough heterozygous 
individuals to achieve a definitive association with disease, 
a statistical approach is required to estimate the posttest 
probability of disease and validate those predictions in dif-
ferent groups and cohorts.

The observation of a single (or few) heterozygous 
carrier(s) does not adequately inform the probability of 
disease. Rather, individuals heterozygous for these vari-
ants benefit from a prior probability informed by knowl-
edge about their clinical characteristics or the population 
they are drawn from. This prior, informed without knowl-
edge of the variant, more reasonably reflects the true 
disease probability. In contrast, we propose to construct 
a prior probability of disease conditioned on variant-spe-
cific features and to modify this estimate using obser-
vations of heterozygous carriers. Our analysis yields a 
prior probability conditioned on variant-specific features 
known to be relevant to the association between the 
gene and disease. In practice, disease probability esti-
mates are calibrated largely by how variant features 
associate with disease probability in well-characterized 
variants. Our final estimate is effectively the posttest 
probability of disease given the presence of a variant or 
the positive predictive value of rare genetic variants. We 
use posttest probability interchangeably with penetrance, 
in which the former recapitulates diagnostic thinking and 
reflects the Bayesian framework of this approach.

In past work, we described an algorithm for estimat-
ing the probability of a diagnosis of Brugada syndrome 
given the presence of a variant in the cardiac sodium 
channel gene SCN5A.11 Although we incorporated 
variant-specific covariates (eg, sequence conservation, 
functional perturbation, structural location, etc), Brugada 
syndrome is likely oligogenic and the clinical phenotype 
is sometimes difficult to assess. In this article, we develop 
a similar algorithm for estimating the probability of long 
QT syndrome type 2 (LQT2), a well-characterized and 
monogenic disorder induced by variants in the cardiac 

potassium channel gene KCNH2 (also called the human 
Ether-a-go-go-Related Gene, or hERG).

The KCNH2 gene encodes an ion channel subunit that 
assembles into the homotetrameric KV11.1 potassium 
channel. This channel produces the rapid delayed-recti-
fier repolarizing current, IKr, which sustains cardiomyocyte 
repolarization throughout the action potential plateau 
phase.12,13 Loss-of-function KCNH2 variants that reduce 
IKr are associated with LQT2, a congenital heart arrhythmia 
defined by a prolongation of the QT interval on an ECG. 
Individuals with this ECG feature are at a greater risk for 
torsades de pointes, a life-threatening arrhythmia. With our 
method, we estimate the probability that an individual het-
erozygous for a missense or in-frame insertion/deletion 
variant in KCNH2 presents with LQT2 (for each variant). 
We validated our approach in an international cohort of 
933 individuals ascertained under suspicion of LQTS, het-
erozygous for 266 unique missense, and in-frame inser-
tion/deletion variants in KCNH2. Our results suggest the 
probability of disease can be estimated accurately before 
knowing the phenotype of a given heterozygous individual. 
Our result is a point estimate and 95% credible interval of 
disease probability for each variant which can be calcu-
lated before observing a single heterozygote. This prior—
conditioned on variant-specific features—can be directly 
combined with observed heterozygotes for a posterior 
probability of disease. In this way, the prior is comparable 
with observations of heterozygotes, we estimate roughly 
10 observations. All data resulting from this study are 
presented in web-accessible format at https://variant-
browser.org/KCNH2/ (Figure I in the Data Supplement).

METHODS
All data and materials are publicly available on GitHub (https://
github.com/kroncke-lab/Bayes_KCNH2_LQT2_Penetrance). 
Additionally, a compiled and curated form of the data presented 
here are available in the KCNH2 Variant Browser (https://vari-
antbrowser.org/KCNH2/; Figure I in the Data Supplement). 
Internal Review Board (no. 191563) was evaluated at Vander-
bilt University Medical Center and found to meet 45 CFR 
46.104 (d) category (4) for Exempt Review. Detailed methods 
are available as Data Supplement.

RESULTS
KCNH2 Variant Heterozygote Datasets
In total, the literature combined with the Genome Aggre-
gation Database (gnomAD) produced 871 unique mis-
sense or insertion/deletion (in-frame insertion/deletion) 
KCNH2 variants; 4810 individuals were heterozygous for 
these variants (<0.001 minor allele frequency), 1041 of 
which were diagnosed with LQT2 according to our clas-
sification criteria (see Materials and Methods for details). 
From 5 arrhythmia centers in France, Italy, and Japan, we 
collected a cohort of patients heterozygous for KCNH2 

Nonstandard Abbreviations and Acronyms

AUC	� area under a receiver operating charac-
teristic curve

LQT2	 long QT syndrome type 2
WT	 wild-type
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variants. From these sites, we identified 266 unique mis-
sense or in-frame insertion/deletion variants in KCNH2, 
933 heterozygote carriers of these variants, 594 of which 
met our criteria for LQT2. From this cohort, the average 
age of diagnosis or ascertainment (if criteria for affected 
status were not met) within the participating sites was 24 
years old (SD of 19 years; available for 744 individuals 
in the cohort dataset). Gender was distributed (744 indi-
viduals in the cohort dataset); 45% were male.

Rates of LQT2, Observed in the Literature and 
Our Cohort, Is Associated With In Vitro and In 
Silico Features
To assess the association between in vitro and in silico 
characteristics of IKr/KV11.1/KCNH2 and the fraction of 
heterozygotes which present with LQT2, we calculated 
nonparametric Spearman rank-order coefficients (Spear-
man ρ) between these features and the observed literature 
(Figure 1, black) or cohort (Figure 1, red) LQT2 probability 
(the fraction of heterozygotes diagnosed with LQT2 over 
total number of heterozygotes). We evaluated common 
in silico predictors, electrophysiological parameters for 
IKr, and a by-residue average observed LQT2 probability 
in a 3-dimensional shell surrounding each residue (LQT2 
probability density, see Materials and Methods for details). 
The variant-specific features LQT2 probability density, 
rare exome variant ensemble learner (REVEL), and heter-
ologous measurement of variant IKr peak tail currents had 
Spearman ρ absolute value point estimates around 0.6 
and 0.7 in the literature and cohort datasets, the highest 
that reached a nominal P value of 0.05.

Two broad in silico variant classifiers, Protein Variation 
Effect Analyzer (PROVEAN) and Polymorphism Phe-
notyping v2 (PolyPhen-2), had lower Spearman ρ point 
estimates than structure and peak tail currents (weighted 
Spearman ρ of 0.39 and −0.59 in the literature dataset 
and 0.33 and −0.46 in the cohort set for PolyPhen-2 and 
PROVEAN, respectively), although still statistically signifi-
cant. Repeating this analysis in the cohort dataset pro-
duced mostly lower coefficients, although many retained 
statistical significance (Figure 1). Several biophysical prop-
erties were not statistically significant in either dataset.

Magnitude of LQT2 Probability Varies By 
Residue Location in 3-Dimensional Space
Given the relatively high correlation between LQT2 
probability density and observed LQT2 probability, we 
mapped LQT2 probability density onto the structure of 
KV11.1 (Figure 2, Figures II and III in the Data Supple-
ment). Figure 2 and Figure II in the Data Supplement 
demonstrate LQT2 penetrance is not uniformly distrib-
uted over the major domains in KV11.1 (see Figure II 
in the Data Supplement for specific examples). This 

is in contrast to averaging over variants in sequence 
space as shown in Figure IV in the Data Supplement 
and done previously.14,15 For instance, the transmem-
brane segment in KV11.1 includes the voltage-sensing 
domains and pore domains, each of which has their 
own subdomains with high or low LQT2 penetrance. 
Some of these subregions are very small, localized to 
only a few contacting residues. For example, the volt-
age-sensing domain has a relatively low penetrance 

Figure 1. Weighted Spearman correlations between the 
fraction of heterozygotes diagnosed with long QT syndrome 
type 2 (LQT2) in the literature or cohort and the listed 
features for each variant.
Weighted Spearman correlations between the fraction of 
heterozygotes diagnosed with LQT2 in the literature and listed 
features for each variant. Black and red squares indicate the 
estimate for the weighted Spearman correlation, weighted by  
1–1/(0.01+total heterozygotes), for the literature and cohort dataset,  
respectively. The gray and red lines indicate 95% CIs (obtained by 
bootstrap), respectively. Larger box sizes indicate greater number of 
variants included in calculation. BLAST-PSSM indicates basic local 
alignment search tool position-specific scoring matrix; PAM score, 
point accepted mutation score; PROVEAN, protein variation effect 
analyzer; and REVEL, rare exome variant ensemble learner.
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density in the intracellular half of helices S2 and S3 
(Figure II in the Data Supplement), whereas the most 
highly penetrant residues in this domain are in helices 
S1 and S4, which contact the pore domain near the 
midpoint of the membrane bilayer. Similarly, the pore 
domain shows the highest penetrance density near 
the selectivity filter and decreases towards the intra-
cellular face of the pore. Additionally, the N-terminal 
Per-Arnt-Sim domain and C-terminal cyclic nucleo-
tide-binding homology domain, both having relatively 
high observed LQT2 penetrance overall (Figure II in 
the Data Supplement), are also heterogeneous. The 
most highly penetrant residues in these domains exist 
near the contacting surfaces between and among 
these domains. These trends are more muted in the 
in the observed LQT2 probability from cohort and 
literature data viewed linearly (Figure IV in the Data 
Supplement).

Estimated Posttest Probability of LQTS 
Based on KCNH2 Variants Found in Only One 
Heterozygote Is Predictive
Variants found in only a single known heterozygous indi-
vidual are the largest class of variants in the literature 
and our cohort data. Accordingly, we split the data into 
2 groups: (1) variants with ≥2 heterozygous individuals 
and (2) variants with only one heterozygous individual 
(Figure V in the Data Supplement). We then estimated 
the posttest probabilities of LQTS based on KCNH2 vari-
ants from group 1 (those with at least two heterozygous 
individuals). A Bayesian model was fit using an expecta-
tion-maximization algorithm (see Materials and Methods 

for details and Kroncke et al11). The predictive ability of 
our posttest LQT2 probability estimates was evaluated 
using the area under a receiver operating characteris-
tic curve (AUC) from group 2, those found in only one 
heterozygous individual (Figure  3 and Figure V in the 
Data Supplement). Additionally, we evaluated models 
fit on the full literature dataset on variants found in the 
cohort dataset (Figure 3, bottom, and Figures V and VI in 
the Data Supplement). In all cases, the estimated AUC 
from our method outperformed other existing algorithms 
(LQT2 probability density, REVEL,  PROVEAN, Poly-
Phen-2, BLAST-PSSM [basic local alignment search 
tool position-specific scoring matrix], and PAM score 
[point accepted mutation score]). For single heterozy-
gotes in the literature, we observed AUCs of 0.87, 0.84, 
and 0.83 for our posttest probability model, REVEL, and 
LQT2 probability density, respectively. PROVEAN and 
PolyPhen-2, with AUCs of 0.74 and 0.73, respectively, 
were lower than our method and REVEL, as expected, 
since REVEL included PROVEAN and PolyPhen-2 as 
predictive covariates during construction.16 For variants 
with single heterozygotes in the cohort dataset (Fig-
ure 3, bottom), AUC point estimates were lower over-
all, 0.78 and 0.77 for our method and LQT2 probability 
density, respectively. Surprisingly, REVEL scores were 
much less predictive in this group of variants, producing 
an AUC of 0.65, compared with 0.84 in the literature 
dataset. These differences in AUCs were also present 
when all variants were included and evaluated at vari-
ous observed probability cutoffs (Figure VI in the Data 
Supplement). Previously published in silico predictors 
PROVEAN and PolyPhen-2 each had an AUC of 0.70, 
similar for the literature and cohort.

Figure 2. Long QT syndrome type 2 (LQT2) probability density mapped on to KV11.1 structure.
LQT2 probability density mapped on to the three-dimensional structure of the KV11.1 channel. Larger and redder segments indicate higher 
LQT2 probability density; smaller and bluer segments indicate lower LQT2 probability density. The model illustrates structural information 
regarding amino acids predicted to increase disease probability. Unlike linear graphical displays identifying pathogenic loci, LQT2 probability 
density provides novel, three-dimensional, insights into the specific structural components of the Per-Arnt-Sim (PAS), C-terminal cyclic 
nucleotide-binding homology domain (CNBhD), voltage-sensing, and pore domains that are associated with increased prevalence of LQT2.
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Posttest LQT2 Probability Estimates Are 
Improved By Including KCNH2 Variant Features
The R2 between our LQT2 probability estimates and the 
cohort observed LQT2 probability is 0.30 when all vari-
ants are included, higher than in silico classifiers or LQT2 

probability density; R2 estimates are higher overall when 
restricting to the set of variants where heterozygously 
collected peak tail current is known (Table and Table I in 
the Data Supplement).

Because probability estimates are generally more reli-
able as the number of phenotyped heterozygous indi-
viduals increases, we calculated R2 at varying cutoffs of 
heterozygote count (Figure 4). As we restrict the analysis 
to variants with higher numbers of heterozygotes, we see 
R2 between our LQT2 posttest probability predictions 
and observed LQT2 probability substantially increase in 
both datasets (Figure 4). This shows that LQT2 probabil-
ity predictions are statistically significant across sources.

gnomAD Data Are Critical to Build the Most 
Robust LQT2 Probability Estimates
When gnomAD heterozygotes are removed from the liter-
ature dataset, the mean weighted probability observed in 
the cohort and the literature sets are closer to each other; 
this is also reflected in empirical probability distributions 
(Figure VII in the Data Supplement). However, rank-order 
correlation between the literature and the cohort was 
reduced: without gnomAD, Spearman ρ between litera-
ture and cohort was 0.26 (95% CI, 0.01–0.50); when 
gnomAD was added to the literature, ρ=0.35 (95% CI, 
0.11–0.58); and when gnomAD was added to the cohort, 
ρ=0.33 (95% CI, 0.09–0.55). In addition, predictive mod-
els trained from the literature without gnomAD resulted in 
lower AUCs and R2s, due in part to the reduced informa-
tion in the LQT2 probability density feature (Table II in 
the Data Supplement and Figures VIII and IX in the Data 
Supplement). These results demonstrate the importance 
of including control variants, such as those from gnomAD, 
in the LQT2 posttest probability estimates.

Example LQT2 Probability Estimates for a 
Segment of KV11.1
The outcome of our analysis is a range of data-driven 
posttest probabilities for each variant, initial probabilities 
conditioned on variant-specific properties, and posterior 
probabilities after heterozygous individuals are added. 
Each estimate is a probability distribution with a 95% 

Figure 3. Receiver operating characteristic curves of features 
sorting variants with only one heterozygote observed.
Receiver operating characteristic curves from predictors against variants 
with only one observation, an individual affected with long QT syndrome 
type 2 (LQT2) or not, in the cohort (Figure V in the Data Supplement). 
The carriers come from either the literature (above) or the cohort 
(below). The estimated posttest probability and LQT2 probability density 
were not exposed to the evaluation variants, those whose heterozygote 
count is equal to one, during training. All cohort data were withheld from 
the  expectation maximization calculation and LQT2 probability density 
during construction (Figure V in the Data Supplement). AUC indicates 
area under the curve; BLAST-PSSM, basic local alignment search tool 
position-specific scoring matrix; PROVEAN, protean variation effect 
analyzer; REVEL, rare exome variant ensemble learner. 

Table.  Weighted R2 Between the Fraction of Heterozygotes 
Diagnosed With LQT2 in the Literature and Cohort With Es-
timates

LQT2 probability estimates Literature (n=706)* Cohort (n=246)*

LQT2 probability density 0.49 [0.39–0.60] 0.23 [0.12–0.34]

REVEL 0.38 [0.31–0.44] 0.21 [0.11–0.33]

Posttest LQT2 probability 0.82 [0.77–0.86] 0.30 [0.19–0.43]

LQT2 indicates long QT syndrome type 2; and REVEL, rare exome variant 
ensemble learner.

*Weighted R2 [95% CI] for the same subset of variants, weighted by  
1-1/(0.01+total heterozygotes), n is the number of unique KCNH2 variants.
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credible interval. We illustrate the outcome of this method 
for variants in a segment within KV11.1 from p.Leu622 
(c.1866) to p.Arg752 (c.2255) in Figure  5. Residues 
towards the extracellular face of KV11.1 have a higher 
prior and posterior estimated probability. The LQT2 prob-
ability prior probabilities conditioned on heterozygously 
collected peak tail current, LQT2 probability density, and 
REVEL score, are near the observed probability (LQT2/
total heterozygotes) for most variants (Figure 5).

Equivalence Between KCNH2 Variant Features 
and Clinically Phenotyped Heterozygotes
The width of initial prior probability intervals conditioned 
on variant features (Figure  5, solid-colored lines) are 
determined by choice of ν in Equation 1 as previously 
described11:

σ
νi

i i=
−

+
µ µ( )1

1
� (1)

where ν represents the number of observations in the 
beta-binomial model, in this case, clinically phenotyped 
individuals heterozygous for variants in KCNH2, σi, is the 
variance in the beta-binomial model and. µi is the mean 
penetrance estimate for the i th variant. As ν grows, the 
prior 95% interval narrows; as ν decreases, prior 95% 
intervals expand. For very large ν, for example, ν=100, 
the posterior estimates of LQT2 posttest probability are 
heavily influenced by the prior such that very many obser-
vations of heterozygotes (1000–10 000) are required to 

significantly change the posterior. At the other extreme 
of very small ν, for example, ν=1, the posterior estimates 
of LQT2 probability are largely independent of the priors. 
Acceptable values of ν would be those where 95% of 
variants have true LQT2 probabilities within the posterior 
95% credible interval. To find values of ν where this was 
the case, we calculated posterior coverage rates by add-
ing hypothetical heterozygotes sampled at the observed 
LQT2 probability to the prior generated with multiple 
values of ν, as described in the Data Supplement and 
shown in Figures X through XII in the Data Supplement. 
This procedure resulted in a range of acceptable ν val-
ues near ν=10. Heuristically, for each variant, the post-
test estimate of LQT2 probability carries the information 
equivalent to clinically phenotyping ≈10 heterozygotes.

DISCUSSION
Spectrum and Example of LQT2 Diagnosis 
Probability Attributable to KCNH2 Variants
Few KCNH2 coding variants have been discovered in 
a sufficiently large population to reliably estimate their 
posttest probability of developing LQT2 as defined in 
the Materials and Methods. However, variants such as 
p.Lys897Thr (c.2690A>C), p.Arg176Trp (c.526C>T), 
p.Val822Met (c.2464G>A), and p.Ala561Val 
(c.1682C>T) have been observed in many clinically 
phenotyped individuals both in the literature and in our 
assembled cohort. These variants span both the spec-
trum of channel defect (measured as heterozygously 
collected peak tail current compared to wild-type [WT]) 
and spectrum of LQT2 disease probability. The most 
common KCNH2 coding variant, p.Lys897Thr, induces a 
very modest channel phenotype (peak tail current 78% 
of WT)17 and is common enough (5%–24% of alleles)18 
to preclude a large influence in LQT2 diagnosis, though 
its presence may modify risk.17 p.Arg176Trp induces 
peak tail current between 50% and 75% of WT19,20 and 
has a well-established LQT2 probability, estimated at 
20%.21 We observe a similar LQT2 probability of 35% in 
the literature and 43% in the cohort, with higher values 
likely reflecting a bias in ascertainment (also discussed 
below). p.Val822Met induces a significant channel 
defect, peak tail current of 44% of WT,22 and we cor-
respondingly observe a higher LQT2 probability from 
the literature (65%)23,24 and cohort (60%). p.Ala561Val 
induces a severe channel defect, peak tail current 
between 0 and 46% of WT with a mean near 20%25–28; 
we observed an LQT2 probability of 91% from the lit-
erature and 88% from the cohort. These variants illus-
trate that molecular defects induced by genetic variants 
in KCNH2 place heterozygotes at higher risk for LQT2.

Our framework allows us to exploit this relationship in 
part by conditioning estimates of disease probability on 
these defects, directly (in vitro data) or indirectly (in silico 

Figure 4. Coefficient of determination determined for long 
QT syndrome type 2 (LQT2) posttest probability predictions 
and fraction of homozygotes diagnosed with LQT2 from the 
cohort or literature.
Coefficient of determination determined between expectation 
maximization LQT2 probability predictions and observed LQT2 
probability from the cohort or literature. There are fewer variants to 
analyze as we restrict to variants with higher heterozygote counts.
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data). Our resulting model is informed largely by variants 
with many classified heterozygotes, like the variants just 
mentioned, but is most useful for variants with few or 
no known heterozygous carriers. Here, we validated our 
method with a diverse, international cohort of clinically 
phenotyped KCNH2 variant heterozygotes curated from 
among five centers; the cohort was withheld during all 
training stages and all potential overlapping individuals 
were removed. We tested how well our prior LQT2 prob-
ability estimates discriminate variants observed once in 
individuals who do or do not meet the criteria for LQT2 
diagnosis (Figure  3) and correlate with the observed 
LQTS probability/penetrance (Figure 4). Lastly, all per-
formance statistics reported for the probability density 
covariate were generated using leave-one-out cross-
validation, that is, the probability density derived for each 
variant was never exposed to the observed LQT2 prob-
ability/penetrance for that variant.

Structure Combined With Previously Described 
Variants Produced the Most Predictive Feature 
of Observed Cohort LQT2 Probability
Variant position in KV11.1 domains, such as transmem-
brane, pore, or intracellular, is associated with differen-
tial risk of events.14,29,30 Expanding on this observation, 
and leveraging the recently determined KV11.1 chan-
nel structure (PDBID: 5VA1),31 we developed a metric 
to quantitate average LQT2 probability in the three-
dimensional space surrounding each residue (Figure 2 
and Figure II in the Data Supplement). The resulting 
metric, LQT2 probability density, was comparable to the 
in silico predictor REVEL in terms of AUC and R2 (Fig-
ure 3 and Table). Alone, LQT2 probability density could 
explain 50% of the variance in LQT2 probability as 
observed in the literature (Table); this reduced to 23% 
in the cohort but was still more predictive than even 

Figure 5. Example probability predictions for segment of KCNH2 including the selectivity filter and S6 helix.
Example probability predictions for segment of KCNH2 including the selectivity filter and S6 helix. Priors were generated from in vitro (when 
available) and in silico covariates. Bars indicate the 95% interval of the prior. The dot and lines reflect the point estimate and 95% credible 
interval of the posterior, after the observations of affected individuals, and those not meeting the threshold for affected status are included. 
Number of heterozygotes follows variant name on the left side of the figure. To the right is a translucent structure of the KV11.1 channel. 
KV11.1 from p.Ser621 (c.1863) to p.Arg752 (c.2255) is represented as a solid cartoon, with 2 segments highlighted in different colors. The 
blue region highlights a segment with higher overall long QT syndrome type 2 (LQT2) probability while the red region highlights a segment with 
lower overall LQT2 probability. CNBhD indicates C-terminal cyclic nucleotide-binding homology domain.
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in vitro heterozygously collected peak tail current data 
(Table I in the Data Supplement). We attribute at least 
part of this decrease to greater ascertainment bias and 
lower heterozygous carrier counts in the cohort data-
set. In addition, the R2 of 0.23 (up to 0.3 when includ-
ing all covariates) is the most pessimistic coefficient of 
determination. When restricting to variants with greater 
heterozygote counts, the R2 improves to around 0.8 and 
so we estimate the generalized R2 is likely closer to a 
clinically meaningful value.

Bias in Data Collected From the Literature, 
gnomAD, and Cohort
The clinical environment taxonomizes KCNH2 variants 
disproportionately from patients who present with dis-
orders.32,33 For example, individuals heterozygous for 
KCNH2 p.Arg176Trp (annotated in ClinVar variously as a 
risk factor, Likely Benign, and Variant of Uncertain Signif-
icance) have a mean QTc of 459±40 ms in clinical LQT2 
families, those with at least one proband, but a mean QTc 
of 433±27 ms in a cross-sectional cohort of unselected 
heterozygotes.34 Similarly, we found most variants in the 
cohort have higher LQT2 probabilities than what we 
observed in the literature (Figure 6 and Figure XIII in the 
Data Supplement). Some of these variants have statisti-
cally significant differences in observed LQT2 probability 
between the datasets (Figure 6B). Although all datasets 
have biases, adding heterozygous individuals from gno-
mAD to the available literature yields LQT2 probability 
estimates more consistent with the cohort (Table II and 
Figures VIII and IX in the Data Supplement) and we, 
therefore, suggest the combined datasets produce the 
most accurate, although flawed, estimate of variant-spe-
cific LQT2 probability.

Evidence That Some Variants Classified as 
Benign Increase the Probability of LQT2 to 
Higher Than the General Population Rate
Similar to KCNH2 p.Arg176Trp, variants such as 
p.Pro347Ser (c.1039C>T), p.Arg148Trp (c.442C>T), 
p.Ala913Val (c.2738C>T), and p.Arg328Cys (c.982C>T) 
were previously associated with LQT235–39 but are also 
more common in the general population than is expected 
for highly penetrant variants.18 This trend, observed in 
several variants which also produce a functional pertur-
bation consistent with LQTS, has prompted some to use 
the label LQT-lite.40,41 We also observed these variants in 
affected individuals in the cohort (2 out of 5, 4 out of 19, 
1 out of 4, and 1 out of 2 heterozygotes, respectively). 
The most recent classifications for these variants in Clin-
Var are benign or likely benign. However, we estimate the 
probability of LQTS for heterozygous carriers of these 
variants at around 2% or higher, much greater than the 
≈0.04% in the general population. These data suggest 

Figure 6. Ascertainment bias in long QT syndrome type 2 
(LQT2) probability for KCNH2 variants from the arrhythmia 
center cohort compared to the literature.
A, The 30-residue moving average of LQT2 probability for each amino 
acid over the entire KV11.1 channel for data acquired from the cohort 
(dark gray) and collected from the literature (light gray; see Figure 
IV in the Data Supplement for the distribution of variants used in the 
calculation). Ascertainment bias is evident by the higher overall LQT2 
probability in the cohort dataset compared to the literature (which 
includes the Genome Aggregation Database). B, Observed probability 
(literature and the cohort) for a selected set of KCNH2 variants, P values 
from the Fisher exact test between the observations of heterozygotes in 
the literature and in the cohort. The observed probability for many variants 
from the cohort is significantly higher than that calculated from the 
literature. The number of heterozygous carriers discovered in each group 
is shown directly above the variant names. CNBhD indicates C-terminal 
cyclic nucleotide-binding homology domain; and PAS, Per-Arnt-Sim.
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some variants classified as benign or likely benign are 
truly disease-causing for a small fraction of patients.

Application of Bayesian Probability to 
Arrhythmia Genetics Clinics
Bayesian reasoning has long been at the core of clini-
cal diagnosis. Given that the majority of heterozygous 
carriers of KCNH2 variants found in arrhythmia genet-
ics clinics (or elsewhere) carry ultrarare or novel variants, 
we anticipate that this prior, trained on variant-specific 
features will have direct clinical utility to the clinician. The 
addition of 10 equivalent observations for a previously 
unreported or seldomly reported variant can directly 
guide clinical management and establish a threshold of 
intervention with drug treatment or simple clinical obser-
vation. Additionally, this method helps overcome ascer-
tainment bias prevalent in clinically-obtained data since 
the prior is trained on variant-specific features agnostic 
to clinical information (Figures 5 and 6). Although there is 
no intention to replace clinical phenotyping, we do antici-
pate the ability to augment clinical reasoning through a 
more accurate prior when combining clinical and popula-
tion features with variant-specific features.

As an example, p.Pro347Ser, a variant with an 
observed 40% penetrance in the clinical cohort, would 
likely result in treatment intervention if clinically encoun-
tered by a clinician familiar with the variant through 
families seen in their clinic (Figure  6). However, from 
variant-specific features, our analysis generated a prior 
for p.Pro347Ser equivalent to observing only 1 in 10 
heterozygous individuals diagnosed with LQT2. This 
new information could permit a more flexible approach 
to workup if no other information were known. A rela-
tively high number of observations of p.Pro347Ser in 
the literature and gnomAD, which also suggest an LQT2 
probability/penetrance of less than 5% for this variant 
(Figure 6), helps illustrate the calibration of our variant-
informed priors. In this way, joint clinical phenotyping 
and tool utilization can be used in a mutually beneficial 
way for patients heterozygous for rare variants. We have 
developed an online searchable tool, the KCNH2 Vari-
ant Browser (https://variantbrowser.org/KCNH2/), to 
allow rapid access to the estimated penetrance based 
on variant-specific features.

Limitations
One limitation is the bias inherent to each of the data 
sources used. We may be able to observe more carriers 
of these KCNH2 variants as greater numbers of individ-
uals are exome sequenced; however, for many variants, 
we may never observe more carriers and will be under-
powered to estimate LQT2 probability by observation 
of heterozygotes alone. This fact is further motivation 
to establish a framework where experimental data is 

included quantitatively in the estimate of disease prob-
ability. The availability of functional data is also biased 
in that most variants which have these data available 
are from variants discovered in individuals presenting 
with a phenotype (Figure XIV in the Data Supplement); 
however, high-throughput variant functional charac-
terization has the potential to overcome this bias.42 
Additionally, many factors influence the ultimate pre-
sentation of LQT2 in an individual, including genetic and 
environmental factors,4,43,44 although we did not observe 
significant differences in predictive performance across 
nationality (Table III in the Data Supplement). Although 
the largest effect sizes for LQTS-associated variants 
come from rare variants, some of the variability in LQTS 
presentation can be explained by variability in common 
variants. Recently, 2 publications by Lahrouchi et al45 
and Turkowski et al46 concluded polygenic risk scores 
accounted for ≈15% and <2% of the variability in LQTS 
susceptibility. Although in either case, the contribution 
is relatively small, it is possible polygenic risk is poten-
tiated in the rare variant context and could therefore 
explain a greater portion of the variability in disease 
presentation. Lastly, although beyond the scope of 
the present study, we envision this method will enable 
improved prognostication of more severe presentations 
of LQT2 including arrhythmic events. Future work will 
address these exciting possibilities.

Conclusions
We have shown how variant-specific features can inform 
a prior probability of disease for rare variants even in 
the absence of clinically phenotyped heterozygotes. 
We have demonstrated this framework on the classi-
cal Mendelian disease-gene pair, LQT2, and KCNH2. 
We exploit in vitro functional studies, LQT2 probability 
density, and broad in silico predictors to calculate these 
priors. We then combine these estimates with patient 
data to form the posttest probability of disease for each 
variant. We have demonstrated that these in vitro and 
in silico variant features are equivalent to ≈10 clinically 
characterized heterozygotes when used to understand 
KCNH2 variant-specific LQT2 disease probability. Pre-
senting these data in this way allows us to encode both 
the probability of disease and the uncertainty in our esti-
mates: we do not claim to have as much certainty as 
you would have if you phenotyped 100 heterozygotes; 
however, we do claim greater certainty than a single 
observation of a phenotyped heterozygote.
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