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Abstract
Purpose As reported in patients treated for androgenetic alopecia with finasteride (i.e., a blocker of the enzyme 5 alpha-
reductase) and in an animal model, side effects affecting sexual, psychiatric, neurological, and physical domains, may occur 
during the treatment and persist with drug suspension. The etiopathogenesis of these side effects has been poorly explored. 
Therefore, we performed a genome-wide analysis of finasteride effects in the brain of adult male rat.
Methods Animals were treated (i.e., for 20 days) with finasteride (1mg/rat/day). 24 h after the last treatment and 1 month 
after drug suspension, RNA sequencing analysis was performed in hypothalamus and hippocampus. Data were analyzed by 
differential expression analysis and Gene-Set Enrichment Analyses (GSEA).
Results Data obtained after finasteride treatment showed that 186 genes (i.e., 171 up- and 15 downregulated) and 19 (i.e., 
17 up- and 2 downregulated) were differentially expressed in the hypothalamus and hippocampus, respectively. Differential 
expression analysis at the drug withdrawal failed to identify dysregulated genes. Several gene-sets were enriched in these 
brain areas at both time points.
Conclusion Some of the genes reported to be differentially expressed (i.e., TTR , DIO2, CLDN1, CLDN2, SLC4A5, KCNE2, 
CROT, HCRT, MARCKSL1, VGF, IRF2BPL) and GSEA, suggest a potential link with specific side effects previously observed 
in patients and in the animal model, such as depression, anxiety, disturbance in memory and attention, and sleep disturbance. 
These data may provide an important background for future experiments aimed at confirming the pathological role of these 
genes.
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Introduction

Finasteride, a blocker of the 5 alpha-reductase (i.e., the 
enzyme converting testosterone into dihydrotestosterone 
and progesterone into dihydroprogesterone) is clinically 
used for benign prostatic hyperplasia and androgenetic alo-
pecia [1]. Even if the efficacy of this drug is well established 
in both disorders, several studies have reported important 
side effects during the treatment, and persistence of them at 
the drug suspension, with the appearance of the so-called 

Post-finasteride syndrome (PFS) [1–8]. In particular, PFS 
patients reported side effects in the sexual domain, such as 
erectile dysfunction, loss of libido and sexual drive, penile 
atrophy, and diminished ejaculatory [9–14]. In addition, 
psychiatric, neurological and physical domains, such as 
depression, anxiety, panic attacks, reduction in self-confi-
dence, disturbance in memory and attention, sleep distur-
bance, peripheral neuropathy, genital numbness and pares-
thesia, muscular atrophy and alteration of fat distribution 
have been reported [4, 6–8, 12, 13]. To date, the biological 
basis of these side effects has been poorly explored. Indeed, 
the observations present in the literature are mainly based 
on symptoms self-reported by the patients and only a few 
papers have deeply investigated these aspects. For instance, 
as demonstrated in PFS patients [13, 15, 16] and in an ani-
mal model [17], finasteride treatment is not only able to 
block the enzyme 5alpha-reductase and consequently the 
metabolism of testosterone and progesterone, but has a broad 
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consequence on the pattern of several other steroids. Indeed, 
it is able to affect the plasma and brain levels of neuroac-
tive steroids (i.e., a family of steroids, including steroid hor-
mones and neurosteroids, which affects nervous functions). 
Interestingly, not only their levels but also alterations in their 
mechanism of action (i.e., via classical and nonclassical ster-
oid receptors) have been reported [17–20]. Accordingly, the 
important role of neuroactive steroids in regulating nervous 
functions [21], human and animal PFS studies have ascer-
tained impaired sexual function, depressive symptomatology 
and alterations in gut microbiota composition and gut–brain 
axis [12, 13, 22–25]. In particular, in the animal model, 
depressive-like behavior was associated with increased hip-
pocampal neuroinflammation, altered neurogenesis, and 
increased reactive astrogliosis [24]. In addition, finasteride is 
not only an inhibitor of the 5 alpha-reductase but as recently 
demonstrated it is also able to block the enzyme phenyletha-
nolamine N-methyltransferase, that it is responsible for the 
conversion of norepinephrine into epinephrine [26]. Thus, 
finasteride may alter per se this important neurotransmitter 
system. Recent observations, obtained in penile skin sam-
ples by microarray, have shown that 1.446 genes and 2.318 
were overexpressed and underexpressed respectively, in 
PFS patients vs healthy controls [27], suggesting that gene 
expression differences may be a potential etiology of side 
effects occurring in these patients. On this basis, by RNA 
sequencing analysis, we have here evaluated the effect of 
finasteride chronic treatment (i.e., for 20 days) and its with-
drawal (i.e., for 1 month) in two important brain areas of 
adult male rats, possibly related to the side effects induced 
by finasteride, such as the hypothalamus and hippocampus.

Materials and methods

Animals and treatments

Adult male Sprague–Dawley rats (200-225 g at arrival, 
Charles River Laboratories, Italy) were used. All procedures 
were carried out in the animal care facility of the Depart-
ment of Pharmacological and Biomolecular Sciences (DiS-
FeB) at the Università degli Studi di Milano, Italy and were 
approved by the local ethics committee and the Italian Min-
istry of Health (authorization 1083/2015-PR). All manipula-
tions were performed in accordance with national (D.L. No. 
26, March 4, 2014, G.U. No. 61March 14, 2014) and inter-
national laws and policies (EEC Council Directive 2010/63, 
September 22, 2010: Guide for the Care and Use of Labo-
ratory Animals, United States National Research Council, 
2011). Rats (n = 24) were acclimated to the new environment 
for 1 week. Finasteride (1 mg/rat/day; Sigma-Aldrich, Italy) 
was dissolved in a vehicle solution of sesame oil and etha-
nol (5% v/v) and administered subcutaneously for 20 days 

at a volume of 100 μL/day. Finasteride and vehicle-treated 
rats were sacrificed at 24 h (n = 4 for each group) after the 
last injection and 1 month (n = 4 for each group) after drug 
suspension. After sacrifice, hippocampus and hypothalamus 
were dissected and immediately stored at − 80 °C until the 
analysis.

RNA extraction

Total RNA from the hippocampus and the hypothalamus was 
extracted using Trizol (Invitrogen, San Giuliano Milanese, 
Italy). Briefly, tissues were homogenized with the Tissue 
Lyzer instrument (Qiagen, Milan, Italy), and chloroform was 
added to obtain phase separation. RNA was present in the 
upper aqueous phase, and its separation was obtained with 
a Directzol™ RNA MiniPrep kit (Zymo Research, Irvine, 
CA, USA) in accordance with the manufacturer’s protocol 
and as previously reported.

Whole transcriptome sequencing

Total RNA was quantified by NanoDrop™2000 (Ther-
moFisher scientific, Milano, Italy) and its integrity was veri-
fied with the Agilent TapeStation system (Agilent, Santa 
Clara, USA). RNA integrity number (RIN) > 7.5 was consid-
ered sufficient for further analysis. Then, Illumina stranded 
mRNA prep (Illumina, San Diego, USA) was used according 
to the manufacturer’s protocol to prepare libraries that have 
been sequenced into a NextSeq 550 instrument (Illumina, 
San Diego, USA).

Data processing and bioinformatics analysis

Raw sequences were initially tested using FastQC (https:// 
www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/). Sub-
sequently, fastq reads were aligned against the reference Rat-
tus Norvegicus genome using the splice-aware aligner Star 
[28], using the quantMode GeneCounts parameter to per-
form raw counting at gene level. The Bioconductor package 
DESeq2 v. 1.30 [29] was applied to perform the differential 
gene expression analyses. Differential genes were identified 
by selecting a Benjamini–Hochberg adjusted p-value < 0.1. 
Bam alignment files were indexed using Samtools [30] 
generating the bam-associated bai index files. The sorted, 
indexed bam alignment files, together with bai indexes, were 
then manually inspected using the Integrative Genomics 
Viewer [31]. GSEA were carried out using the GSEA tool 
v. 4.2.1 (https:// www. gsea- msigdb. org/ gsea/ downl oads. jsp) 
by applying 1000 permutations at gene_set level. Gene-sets 
with a Benjamini–Hochberg adjusted p value < 0.25 were 
considered statistically significant.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.gsea-msigdb.org/gsea/downloads.jsp
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Results

A correlation analysis done at whole-transcriptome level 
in rat hypothalamus and hippocampus at the two time 
points in presence vs absence of finasteride showed a 
very strong correlation for hypothalamus treated or not 
treated with finasteride after chronic treatment (T0) or at 
withdrawal (T1) (Pearson’s r = 0.995) as well as for hip-
pocampus at T0 vs T1 (Pearson’s r = 0.997), suggesting 
a similar transcriptional effect of finasteride at the two 
different time points (Fig. 1A).

To isolate the transcriptional programs associated with 
finasteride treatment in the hypothalamus at T0, we ini-
tially performed a differential expression analysis, which 
revealed 186 differentially expressed genes. Among these, 
171 and 15 genes were up- and downregulated, respec-
tively (Supplementary Table 1). In particular, we reported 
altered genes, such as Transthyretin (TTR ), Iodothyronine 
Deiodinase 2 (DIO2), Claudin 2 (CLDN2) and 1 (CLDN1), 
Solute Carrier Family 4 Member 5 (SLC4A5), Potassium 
Voltage-Gated Channel Subfamily E Regulatory Subunit 2 
(KCNE2), carnitine octanoyltransferase (CROT), Hypocre-
tin Neuropeptide Precursor (HCRT ), myristoylated alanin-
rich C-kinase (MARCKSL1), Interferon Regulatory Fac-
tor 2 Binding Protein Like (IRF2BPL), and nerve growth 
factor inducible (VGF), that may be possibly related with 
side effects reported after finasteride treatment (Fig. 1B).

To investigate the transcriptional programs modu-
lated by finasteride in hypothalamus at T0, we carried 
out Gene-Set Enrichment Analyses (GSEA) using the 
classical GSEA hallmarks as reference gene-sets. Using 
this approach we identified the hallmark WNT_BETA_
CATENIN_SIGNALING as significantly enriched in 
finasteride-treated hypothalamus at T0 (Fig. 1 C,D; Nor-
malized Enrichment Score (NES) 1.40; padj = 0.24). Differ-
ential expression analysis performed in the hippocampus 
at T1 failed to identify dysregulated genes (Supplemen-
tary Table 2), which suggests a modest transcriptional 
effect of finasteride at this timepoint. However, GSEA 
performed at T1 revealed a significant positive enrich-
ment (Fig. 1E,F; NES 1.36; padj = 0.23) of the hallmark 
IL6_JAK_STAT3_SIGNALING.

Data obtained in the hippocampus after chronic treat-
ment with the drug showed that 19 genes were signifi-
cantly affected, of them 17 were up and 2 downregulated 
(Supplementary Table 3). GSEA performed at T0 in the 
hippocampus revealed that, like in the case of hypothala-
mus (Fig. 1 C,D), the hallmark WNT_BETA_CATENIN_
SIGNALING was significantly enriched (Fig.  2 A,B; 
NES 1.58; padj = 0.052). On the contrary, others hall-
marks, such as OXIDATIVE_PHOSPHORYLATION 
(NES −1.59; padj = 0.037), MYC_TARGETS_V1 (NES 

−1.43; padj = 0.13), INTERFERON_ALPHA_RESPONSE 
(NES −1.37; padj = 0.088), E2F_TARGETS (NES 
−1.32; padj = 0.10), and FATTY_ACID_METABOLISM 
(NES −1.39; padj = 0.10) were significantly decreased 
(Fig. 2A,B).

Differential expression analysis performed in the hip-
pocampus  at T1 failed to identify dysregulated genes (Sup-
plementary Table 4), however, GSEA revealed a decrease 
in the INTERFERON_ALPHA_RESPONSE (NES -1.73; 
 padj = 0.005) and INTERFERON_GAMMA_RESPONSE 
hallmark (NES −1.57;  padj = 0.028). Notably, MYC_TAR-
GETS_V1 (NES −1.48; padj = 0.028), OXIDATIVE_
PHOSPHORYLATION (NES −1.49; padj = 0.029) and 
FATTY_ACID_METABOLISM (NES −1.38; padj = 0.069) 
hallmarks were also downmodulated not only at T0 
(Fig. 2A,B) but also at T1 (Fig. 3A,B). Interestingly, a sig-
nificant enrichment of the WNT_BETA_CATENIN_SIGN-
ALING hallmark present in this brain area at T0 (Fig. 1C,D) 
was still present at T1 (Supplementary Fig. 1; NES 1.43; 
padj = 0.11). In addition, an enrichment in hallmarks such 
as HP_CENTRAL_SLEEP_APNEA (Fig.  3A,B; NES 
1.74; padj = 0.028), REACTOME_CIRCADIAN_CLOCK 
(Fig. 3A,B; NES 1.62; padj = 0.051) and GOBP_CIRCA-
DIAN_SLEEP_WAKE_CYCLE (Fig. 3A,B; NES 1.22; 
padj = 0.23) was also observed.

Discussion

Data here obtained by RNA sequencing showed that chronic 
treatment (i.e., for 20 days) with finasteride affects the 
expression of hypothalamic and hippocampal rat genes. As 
we reported, the most affected brain area is the hypothala-
mus, with 15 genes downregulated and 171 genes upregu-
lated. Among the downregulated genes, we will here dis-
cuss those that, based on the literature available, could be 
associated with the side effects reported by the patients dur-
ing the treatment and observed in the experimental model. 
For instance, TTR  encodes for a carrier protein involved in 
the transport of thyroxine (T4) and retinol. Besides its role 
as a carrier protein, downregulation of this gene induces 
learning and memory impairment, aggressive behavior, and 
neurodegeneration [32–35]. In the context of the effects of 
thyroid hormones in the nervous system, it is important to 
highlight that we also observed a significant decrease in the 
gene DIO2. This gene encodes for the enzyme responsible 
for the conversion of prohormone T4 into the biologically 
active thyroid hormone, triiodothyronine (T3). Therefore, 
impairment in this enzymatic conversion may affect the 
important role exerted by T3 in brain functionality (e.g., on 
synaptic plasticity, oxidative stress, inflammation, mood, and 
neurotransmitter regulation) by genomic and nongenomic 
mechanisms [36–41]. Indeed, as demonstrated in adult mice 
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Fig. 1  A Pearson correlation analysis of whole-transcriptome case/
control  Log2-FoldChange ratios in Hypothalamus (upper panel) at 
T0 (x axis) vs T1 (y axis) and in Hippocampus (lower panel) at T0 
(x axis) vs T1 (y axis). B Volcano plot showing the whole-transcrip-
tome case/control  Log2-FoldChange ratios (x axis) and the associated 
 Colog10 transformed p value in Hypothalamus at T0. Grey dots high-
light genes non-significant and with absolute  Log2-FoldChange ≤ 1; 
green dots genes with absolute  Log2-FoldChange > 1 and -Log10 

p-value < 1; blue dots genes with absolute  Log2-FoldChange < 1 
and -Log10 p-value > 1; red dots genes with absolute 
 Log2-FoldChange > 1 and -Log10 p-value > 1. C GSEA plot of the 
WNT-beta-catenin and D associated heatmap in Hypothalamus at T0 
in control and Finasteride-treated rats. E GSEA plot of the IL6-JAK-
STAT3 signaling and F associated heatmap in Hypothalamus at T1 in 
control and Finasteride-treated rats.n = 4 for each experimental group
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lacking DIO2, reduced expression of several target genes of 
tyroid hormones [42, 43], altered motor ability [44], emo-
tional alteration with increased anxiety-like behavior as well 
as enhanced fear memory was observed [45].

Other genes downregulated in the hypothalamus of 
rats chronically treated with finasteride are CLDN2 and 
CLDN1. Claudin proteins are functional and structural 
components of tight junctions [46] that in the nervous 
system, apart from maintaining blood–brain barriers, also 
play important roles in maintaining the synaptic and neu-
ronal structure and function. In line with these observa-
tions, alteration of these genes is related to neuropatholog-
ical events [47]. Other genes downregulated are SLC4A5 
and KCNE2, also known to exert key roles in the nerv-
ous system. For instance, SLC4A5 encodes Na+/HCO3- 
cotransporter 4, a membrane protein that plays a critical 
role in maintaining pH and ion balance in cells by trans-
porting sodium and bicarbonate ions [48, 49]. Multiple 
defects were observed in the nervous system of SLC4A5 
deficient mice, such as decreased volume of lateral brain 

ventricles, decreased intracranial pressure, changes in the 
choroid plexus epithelium cell morphology and changes 
in cerebrospinal fluid composition [50]. Mice lacking 
KCNE2 showed increased behavioral responsiveness to 
stress and seizure susceptibility [51]. CROT is also down-
regulated by finasteride treatment in the hypothalamus. 
The encoded protein converts 4,8-dimethylnonanoyl-CoA 
to its corresponding carnitine ester. This transesterification 
occurs in the peroxisome and is necessary for transport of 
medium- and long-chain acyl-CoA molecules out of the 
peroxisome to the cytosol and mitochondria [52]. There-
fore, the protein plays a role in lipid metabolism and fatty 
acid beta-oxidation. As demonstrated, at least in a model 
of hepatic cells, knockdown of CROT has an important 
impact on fatty acid profile, with increase in the amount 
of medium chain saturated fatty acid and unsaturated 
C24 [52]. Therefore these data may suggest a role for this 
gene in regulating the peroxisomal oxidative pathway. In 
the brain, peroxisomes are mainly located in astrocytes 
and oligodendrocytes [53]. Dysfunction of peroxisomal 

Fig. 2  A GSEA plots showing positive and negative enrichment of 
specific gene-sets in Hippocampus at T0. B Heatmap reporting the 
leading genes associated with the GSEA shown in panel A sets in 

Hippocampus at T0 in control and Finasteride-treated rats. n = 4 for 
each experimental group
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mechanisms has been linked to alterations in the nervous 
system, such as demyelination, oxidative stress, and neu-
roinflammation [54].

Notably, upregulated genes were also identified upon 
treatment with finasteride. Among these, it is interesting 
to discuss HCRT . This gene encodes a hypothalamic neu-
ropeptide precursor protein that gives rise to two mature 
neuropeptides, orexin A and orexin B. These two molecules 
play a significant role in the regulation of sleep-wakefulness 
[55]. Indeed, orexin system deficiency is associated with 
narcolepsy in animal models [56, 57] and in human [58–60]. 
Accordingly, treatment with orexin caused wakefulness and 
suppressed sleep in animal models [61–63]. In addition, 
alteration in orexin system is also associated with psychi-
atric disorders. For instance, hyperactivity of the system is 

related to acute stress reactions, depression, and anxiety-like 
behavior [55]. In this context, we also reported upregula-
tion of myristoylated alanin-rich C-kinase (MARCKSL1). 
As demonstrated in transgenic mice, overexpression of this 
gene is associated with anxiety-like behavior [64]. In addi-
tion, other genes upregulated after finasteride treatment in 
the hypothalamus, like VGF and IRF2BPL, are associated 
with neurological disorders. The protein encoded by VGF 
is exclusively synthesized in neuronal and neuroendocrine 
cells [65, 66]. Mice overexpressing VGF showed behavioral 
abnormalities, such as hyperactivity, memory impairment, 
lower sociality, and higher depressive state, as well as mor-
phological alterations, like smaller brain weight, expansion 
of the lateral ventricle, striatal morphological abnormalities 
[67]. Alterations in IRF2BPL levels has been associated with 

Fig. 3  A GSEA plots showing positive and negative enrichment of 
specific gene-sets in Hippocampus at T1. B Heatmap reporting the 
leading genes associated with the GSEA shown in panel A sets in 

Hippocampus at T1 in control and Finasteride-treated rats. n = 4 for 
each experimental group
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neurological phenotypes [68, 69] and with major depres-
sive disorder [70]. Altogether, these data indicate that genes 
modulated by treatment with finasteride in the rat brain are 
potentially linked to some of the side effects observed in 
patients during the drug treatment. In particular, the closer 
relationship seem to be with psychiatric and neurological 
domains (i.e., depression, anxiety, disturbance in memory 
and attention, sleep disturbance). This is further confirmed 
by the GSEA we performed in the hypothalamus and hip-
pocampus. As reported here, the WNT_BETA_CATENIN_
SIGNALING hallmark is significantly enriched by the finas-
teride treatment in both brain areas considered. An increase 
in WNT/β-catenin signaling has been reported to be associ-
ated with disturbance in circadian rhythms and sleep [71]. 
Moreover, in the hippocampus, after finasteride treatment 
we also observed a significant decrease in GSEA hallmarks, 
such as the OXIDATIVE_PHOSPHORYLATION, MYC_
TARGETS_V1, INTERFERON_ALPHA_RESPONSE, 
E2F_TARGETS, and FATTY_ACID_METABOLISM, 
suggesting mitochondrial dysfunction, oxidative stress, 
neuroinflammation and impairment in synaptic plastic-
ity that are important features of neurodegeneration and 
mood disorders [72–75]. Interestingly, a decrease in the 
hallmarks OXIDATIVE_PHOSPHORYLATION, MYC_
TARGETS_V1, INTERFERON_ALPHA_RESPONSE, 
and FATTY_ACID_METABOLISM was still present at 
finasteride withdrawal, suggesting persistence of the side 
effects induced by the drug. Dysregulated neuroinflamma-
tion, impaired synaptic plasticity, as well as altered micro-
glial activation, may be also suggested by a decrease in the 
INTERFERON_GAMMA_RESPONSE hallmark that was 
observed in the hippocampus upon withdrawal of finasteride 
[76–79]. Interestingly, in this brain area we also reported an 
enrichment in HP_CENTRAL_SLEEP_APNEA, REAC-
TOME_CIRCADIAN_CLOCK, and GOBP_CIRCADIAN_
SLEEP_WAKE_CYCLE hallmarks further suggesting a 
dysregulation of gene networks involved in sleep and mood 
disorders, as well as in cognitive processes [80, 81].

In conclusion, the data obtained here suggest interesting 
gene targets that could be related to some of the side effects 
observed during finasteride treatment and withdrawal. 
Therefore, these data may provide an interesting background 
for future experiments addressed to confirm the pathological 
role of these genes in this experimental model, exploring the 
impact in their signaling pathways, and evaluating possible 
therapeutic strategy able to counteract their pathological 
effects.
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