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The electroweak symmetry-breaking sector is one of the most promising and uncharted parts of the
Standard Model (SM); but it seems likely that new electroweak physics may be out of reach of the present
accelerator effort and the hope is to observe small deviations from the SM. Given that, effective field theory
(EFT) becomes the logic method to use, and Standard Model effective field theory (SMEFT) has become
the standard. However, the most general theory with the known particle content is Higgs effective field
theory (HEFT), and whether SMEFT suffices should be investigated in future experimental efforts.
Building on investigations by other groups that established geometric criteria to distinguish SMEFT from
HEFT (useful for theorists examining specific beyond-SM completions), we seek more phenomenological
understanding and present an analogous discussion aimed at a broader audience. We discuss various
aspects of (multi)Higgs boson production from longitudinal electroweak gauge bosonsWLWL → n × h in
the TeV region as the necessary information to characterize the flare function, F ðhÞ, that determines
whether SMEFTor HEFT is needed. We also present tree-level amplitudes including contact and exchange
channels, as well as a short discussion on accessing F from the statistical limit of many bosons. We also
discuss the status of the coefficients of the series expansion of F ðhÞ, its validity, whether its complex-h
extension can be used to predict or not a tell-tale zero, and how they relate to the dimension-six and -eight
SMEFToperators in the electroweak sector. We derive a set of new correlations among beyond the standard
model corrections to the HEFT coefficients that help decide, from experimental data, whether we have a
viable SMEFT. This analysis can be useful for machines beyond the LHC that could address the
challenging final state with several Higgs bosons.
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I. INTRODUCTION

Two effective field theories (EFTs) have come to the fore
in trying to extend the successful Standard Model in the
ignorance of which new physics may be present at a higher
energy (if there is any). There are many aspects of the
Standard Model that can be pursued at accelerators (the
many-parameter flavor structure in both lepton and quark
sectors, the Higgs couplings to the fermions, the CP
violating phases, QCD processes, …) but at the energy
frontier the most important aspects of physics that are being
clarified right now are the nature of the mechanism of
electroweak (EW) symmetry breaking: whether it happens
as the well-known discussion in the Standard Model

paradigm, or whether new particles or interactions influ-
ence the global SUð2Þ × SUð2Þ → SUð2Þ breaking pattern
that is at the crux of electroweak interactions. Several
extended works have dealt with many of these aspects, for
example [1–6].
Throughout most of this paper we will discuss these

theories in a regime where the energies of the scattered
particles are much higher than their masses mh ≪ E ≪ Λ.
A bit surprisingly perhaps for Standard Model practi-
tioners, in such a regime and in the presence of new
physics that would yield derivative couplings with
∂ ∼ E ≫ mh, the much discussed Higgs potential VðhÞ is
actually a correction that does not play the pivotal role it
enjoys in the SM.
For a while, it was often stated that the Standard Model

effective field theory (SMEFT) [7–12] and the Higgs
effective field theory (HEFT) [13–18] must encode similar
physics, just in different coordinates, with HEFT being
perhaps a bit more general because it does not incorporate
the Higgs boson h into an SUð2Þ multiplet.
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However, the work of the San Diego and Oregon groups
[19–22] has sharpened the differences between both for-
mulations. Every Lagrangian in the shape in SMEFT form,
such as that in Eq. (1) below, can be recast in HEFT form.An
example in the relevant energy region is given in Eq. (3).
The converse statement need not always be true. From

the work at San Diego it has become apparent that this can
be achieved only if a certain function F ðhÞ presented
shortly in Eq. (4) has a zero for some real value of the
classical field h, ∃ h� ∈ RjF ðh�Þ ¼ 0. (The precise and
complete conditions as presently understood for this
SMEFT ↔ HEFT equivalence are presented in Sec. II.)
This function controls high-energy processes with multiple
Higgs bosons in the final state: achieving a good control
over it requires measurements with an increasingly large
number of them, which would look in a detector like a flare
of Higgs bosons, whence the name of F .
However, this is quite an obscure geometric requirement

removed from accelerator physics. In recent work [23], an
attempt has been made to bring up a phenomenological
connection between an eventual breaking of unitarity at some
scale and the Lagrangian to be chosen. Aware that such
unitarity failure is a feature of perturbation theory in Taylor-
series form, and that it does not occur if instead one expands
the inverse partial-wave scattering amplitude [24], so that no
information distinguishing the effective Lagrangians can
really be gained that easily, we here continue exploring what
relevant phenomenology there is.
A summary of our present understanding is given by the

following scheme:

�
Valid

SMEFT

�
⇒

0
BB@
Double zero

ofF ðhÞ
at someh�

1
CCA⇒

0
BBBBBB@

Specific correlations

betweenai
coefficients

fromexpandingF ðhÞ
aroundh¼0

1
CCCCCCA

Both aspects, the double zero of F ðhÞ (see Sec. III C, for
example) and the possibility of using correlations between
ai coefficients to distinguish SMEFT from HEFT from
experimental data (see Sec. IVA 2) have been separately
discussed in the past years. We here provide an integrated
discussion with full detail, putting less weight on geometric
aspects and more in field-theory and particle physics ones,
more familiar to the typical reader, and make several new
contributions. Finally, it is also worth commenting that
similar relations exist between the coefficients of the
nonderivative VHEFT potential, since a valid SMEFT
description of V must obey a series of conditions analogous
to those for the flare function F ðhÞ [22]. Assuming
SMEFT’s validity would then also impose important corre-
lations between the coefficients of the potential—trilinear,
quartic, etc.—(see e.g., [25] for a HEFT phenomenological
analysis). This is mostly beyond the scope of this article and

will certainly be studied in futurework, but we present a slim
discussion in Appendix C.
The rest of this article is organized as follows: we

continue with introductory material in Secs. I A and I B,
where some superficial differences between the electro-
weak SMEFT and HEFT theories are studied at the level of
the Lagrangian. Section II is devoted to identifying the
effective operators in SMEFT (of dimension-six and -eight)
with leading TeV-scale contributions and to expressing
them in HEFT coordinates. In so doing we expose the
correlations on the HEFT parameters induced by assuming
SMEFT’s validity. Then, in Sec. III we review the field-
redefinition invariant criteria to distinguish SMEFT from
HEFT. We also present a novel and simple analytic way of
deriving the conditions on the flare function, F ðhÞ,
function that allows for the deployment of SMEFT around
the symmetric point. Continuing, Sec. IV deals with the
generic properties of the flare function F ðhÞ such as its
positivity, the general correlations (and their experimental
bounds) induced on its coefficients by assuming the
existence of a symmetric point [where F ðh�Þ ¼ 0] and
analyticity around it, allowing a continuation to our
physical vacuum. Also, some example functions are pro-
vided as illustration. Section V cursorily discusses how to
experimentally extract the value of the coefficients of the
flare function, presenting the amplitudes of the scattering of
two Goldstone bosons to n Higgs bosons (with n ¼ 1, 2, 3,
4, although an automated amplitude generator for n ∈ N
can be provided on demand). We also observe that to first
nontrivial order, the existence of SMEFT simplifies cross-
section ratios of these processes with the counterterm
Wilson coefficient canceling out, which is not the case
in a generic HEFT. Section VI explores the status of the
symmetric-point knowledge based on current bounds on
HEFT parameters by ATLAS and CMS, and also under
what conditions Schwarz’s lemma can guarantee the
existence of such a point. Finally, Sec. VII takes on a
more speculative road by studying the far-future possibility
of producing a large number of Higgs bosons at nonzero
temperature, hence giving access to an arbitrary expansion
order of the flare function. Our final conclusions are
provided in Sec. VIII and some technical details are
relegated to Appendixes A–D.

A. Key aspects of the SMEFT Lagrangian

The first of those theories is the Standard Model EFT
(SMEFT) electroweak Lagrangian. Its symmetry breaking
sector is expressed in terms of the SUð2Þ doublet H ¼
1ffiffi
2

p ðϕ1þiϕ2

ϕ4þiϕ3
Þ [that can also be collected as an Oð4Þ quartet

ϕ ¼ ðϕ1;ϕ2;ϕ3;ϕ4Þ] and takes the general form

LSMEFT ¼ AðjHj2Þj∂Hj2 þ 1

2
BðjHj2Þð∂ðjHj2ÞÞ2 − VðjHj2Þ

þOð∂4Þ: ð1Þ
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where both functions AðjHj2Þ and BðjHj2Þ are real, and
analytic around jHj2 ¼ 0. The SM is retrieved by choosing
AðjHj2Þ ¼ 1 and BðjHj2Þ ¼ 0. Thus, the organization of
the theory is carried around an electroweak symmetric
vacuum, instead of the energy minimum at hϕ4i ¼ v.
SMEFTarranges the order of usage of operators in terms

of their canonical-dimension counting, so that the leading
corrections to the SM are composed of dimension-six
operators (each multiplied by a Wilson coefficient and
divided by the new physics scale squared, Λ2).
In the TeV region, the derivative terms multiplying B

become much larger than V, and we can neglect this
potential. It will be shown that the piece of most importance
for this article is that function B, which contains the
electroweak symmetry breaking physics in the TeV region
in the presence of new physics, particularly the dimension-
six operator OH□ ¼ jHj2□jHj2.

B. HEFT Lagrangian (for the electroweak symmetry
breaking sector in the TeV region)

What has come to be called the Higgs EFT (HEFT)
Lagrangian (the second to bear that name) is an evolution of
the electroweak chiral Lagrangian. Its degrees of freedom
are built from a Cartesian to spherical-like change of
coordinates,

ϕ ¼ ð1þ h=vÞn; ð2Þ

where n ¼ ðω1;ω2;ω3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − ω2

1 − ω2
2 − ω2

3

p
Þ, so that

n · n ¼ v2. It couples the ωi Goldstone bosons to an
additional low-energy Higgs field singlet, h, which is
not assumed to be part of the SUð2Þ Goldstone triplet.

At leading order in the chiral counting, the scalar sector of
the HEFT Lagrangian [in EW Goldstone spherical coor-
dinates ωi in Eq. (2)] is given by

LLO HEFT ¼ 1

2
F ðhÞ∂μωi

∂
μωj

�
δij þ

ωiωj

v2 − ω2

�
þ 1

2
∂μh∂μh;

ð3Þ

where the function F scales the scattering amplitudes
involving two, four, and generically an even number of
Goldstone bosons. Thus, the flare function F ðhÞ relates the
EW Goldstone processes to amplitudes with an arbitrary
number of Higgs bosons: of the same order in the chiral
counting appropriate for HEFT,

F ðhÞ ¼ 1þ
X∞
n¼1

an

�
h
v

�
n
: ð4Þ

Usually, since only the first terms of the F function are
known, the Lagrangian is expressed [26,27] in terms of
F ðhÞ ≃ ½1þ 2a h

v þ bðhvÞ2�, with a1 ¼ 2a and a2 ¼ b. In
the TeV regime, the leading corrections to this Lagrangian
are not of order mW or mh, both in the 100 GeV range,
but rather derivative couplings. This means that VðhÞ is
irrelevant and electroweak symmetry breaking in the TeV
region is more naturally discussed in terms of the coef-
ficients of the Higgs-flare function F ðhÞ.
At Next to Leading Order (NLO), the Lagrangian

relevant to study unitarity and resonances in the TeV
regime acquires two further derivatives (so that amplitudes
receive terms of order s2) and becomes

LNLO HEFT ¼ 1

2

�
1þ 2a

h
v
þ b

�
h
v

�
2
�
∂μω

i
∂
μωj

�
δij þ

ωiωj

v2 − ω2

�
þ 1

2
∂μh∂μhþ 4α4

v4
∂μω

i
∂νω

i
∂
μωj

∂
νωj

þ 4α5
v4

∂μω
i
∂
μωi

∂νω
j
∂
νωj þ g

v4
ð∂μh∂μhÞ2 þ

2d
v4

∂μh∂μh∂νωi
∂
νωi þ 2e

v4
∂μh∂νh∂μωi

∂νω
i; ð5Þ

which has been extensively studied in earlier work.
Here we will concentrate on the LO Lagrangian (tree-
level amplitudes ∝ s) in Eq. (3) with the Taylor series
of F around the physical vacuum h ¼ 0 (with zero
number of physical Higgs particles, that is, with ϕi ¼
hϕ4iδi4 ¼ vδi4 in terms of the SMEFT coordinates)
given by Eq. (4). The NLO coefficients in Eq. (5) should
eventually encode similar physics to the B function in
Eq. (1), but we will leave exploring this connection for
future work, and here concentrate on the comparison
between AðjHj2Þ, BðjHj2Þ and F ðhÞ.

II. TeV-SCALE RELEVANT EW SMEFT
IN HEFT FORM

We now show the explicit transformation to polar coor-
dinates, and then to HEFT, of the SMEFT electroweak
Lagrangian of Eq. (1) in terms of the SUð2Þ doublet H,
neglecting thegaugecouplings andVðHÞ as is appropriate for
TeV-scale physics E ≫ mh;W;Z, following the discussion in
[22], with LSMEFT ¼ AðjHj2Þj∂Hj2 þ 1

2
BðjHj2Þð∂ðjHj2ÞÞ2.

This is achieved by decomposing the doublet H of the
SMEFT framework in the spherical polar coordinates of
Eq. (2),
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H ¼
�
1þ h

v

�
UðωÞhHi; ð6Þ

where h denotes the radial Higgs-boson field in the SMEFT
framework, hHi is the chosen Higgs doublet vacuum,
commonly taken to be ð 0 v=

ffiffiffi
2

p ÞT ; v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hH†Hi

p
pro-

vides the modulus of the Higgs vacuum expectation value
(VEV), the SUð2Þ matrixUðωÞ contains the EW Goldstone
bosons. The VEV modification due to higher-order correc-
tions can always be later incorporated to the analysis by
considering a shift in the Higgs field1 h → hþ Δ.
Substituting H†H ¼ ðvþ hÞ2=2 in A and B, this yields

Lpolar-SMEFT ¼ 1

2
ðvþ hÞ2AðhÞð∂μn · ∂μnÞ

þ 1

2
ðAðhÞ þ ðvþ hÞ2BðhÞÞð∂hÞ2

¼ 1

4
ðvþ hÞ2AðhÞh∂μU†

∂
μUi

þ 1

2
ðAðhÞ þ ðvþ hÞ2BðhÞÞð∂hÞ2; ð7Þ

with Aððhþ vÞ2=2Þ≡ ÃðhÞ → AðhÞ now a function of h to
avoid cumbersome notation. The SM, with A ¼ 1 and
B ¼ 0, is the first and simplest of the family of SMEFT
Lagrangians in Eq. (7), and in this form it reads

LSM ¼ j∂Hj2 ¼ 1

4
ðvþ hÞ2h∂μU†

∂
μUi þ 1

2
ð∂hÞ2: ð8Þ

In the general case, even though the coordinates of
Eq. (7) are now those of HEFT, the Lagrangian is not yet in
its canonical form because, by convention, the HEFT Higgs
field’s h kinetic term needs to be fixed to its free-wave
standard expression,

LHEFT ¼ v2

4
F ðh1Þh∂μU†

∂
μUi þ 1

2
ð∂h1Þ2; ð9Þ

which requires a further change of the h variable. Finding
an h1 field that absorbs the multiplicative factor in Eq. (7)
and that becomes the Higgs field in the HEFT framework,
implies solving the differential condition [28]

dh1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðhÞ þ ðvþ hÞ2BðhÞ

q
dh; ð10Þ

which will collect all factors of h1 to multiply only the
Goldstone term to the right of Eq. (7), from which the F of
Eq. (3) can be read off,

v2F ðh1Þ ¼ ðvþ hðh1ÞÞ2Aðhðh1ÞÞ; ð11Þ

in terms of h1 ¼ h1½A;B�ðhÞ. In Sec. II Awe will show that
nontrivial A terms are unnecessary, so we can set A ¼ 1 and
employ B alone, which will determine the relation
h1 ¼ h1ðhÞ. Once h has been expressed in terms of h1,
the Lagrangian will have reached its HEFT form and the
subindex in h1 may be dropped.2 With this method, the
coefficients of Eq. (4) expanding the generic HEFT
Lagrangian radial function can be retrieved from the initial
SMEFT.
To complete this discussion wewill quickly digress, in the

next subsection, to show that A ¼ 1 can be consistently
taken, afterwards proceeding to carry out the transformation
h → h1 for the relevant SMEFT pieces for the electroweak
sector in the TeV energy regime where mh ≪ E ∼ ∂ ≪ Λ.

A. AðHÞ is not really necessary for
ffiffi
s

p
≫ mh

We here quickly show that it is possible, and can be more
convenient, to eliminate the nth-power operators (for
n ≥ 1) obtained in an expansion of A, by means of a
partial integration. For this, note that, up to a total
divergence,

ðH†HÞnj∂Hj2 ¼ −
n
2
ðH†HÞn−1ð∂jHj2Þ2

−
1

2
ðH†HÞnðð∂2H†ÞH þH†ð∂2HÞÞ; ð12Þ

obtained by using the relation ∂
2jHj2 ¼ 2j∂Hj2 þ

ð∂2H†ÞH þH†ð∂2HÞ. This teaches us that we can always
convert (by partial integration) any n-power operator of A
type into an (n − 1)-power operator of B type. The price to
pay includes an irrelevant total derivative and a couple of
terms proportional to ∂2H and ∂2H†. However, the classical
equations of motion of H trade the derivative operators for
∂
2H (and its conjugate) by operators without derivatives, up
to correction of higher dimension in 1=Λ2. In this way, the
A type of operators can be removed from the theory and
transformed into B operators at fixed dimension-six, -eight,
etc. Employing this freedom, we will set ΔABSM ¼ 0 and
just keep the leading operator, A ¼ ASM ¼ 1. Hence,
SMEFT can be formulated in polar coordinates ðh;ωaÞ as

Lpolar−SMEFT ¼ v2

4

�
1þ h

v

�
2

h∂μU†
∂
μUi

þ 1

2
ð1þ ðvþ hÞ2BðhÞÞð∂hÞ2; ð13Þ

instead of Eq. (7). The change of variables in the Higgs
field, h ¼ hðh1Þ of Eq. (10), then becomes

1This removes terms linear in h and recenters the Higgs field
expansion around the potential minimum.

2Note we are dropping here the possible shift h1 → h1 þ Δ,
required if there are modifications to the SM Higgs potential. We
are interested in high-energy effects and ignore nonderivative
operators in LHEFT. This shift can easily be incorporated if
needed.
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dh1 ¼ ð1þ ðvþ hÞ2BðhÞÞ1=2dh: ð14Þ

This change determines F in the form

F ðh1Þ ¼
�
1þ hðh1Þ

v

�
2

; ð15Þ

with h implicitly given [28] by the relation

h1 ¼
Z

h

0

ð1þ ðvþ hÞ2BðhÞÞ1=2dh: ð16Þ

B. Explicit computation with SMEFT’s power
expansion of BðjHj2Þ

1. Order 6 in the SMEFT counting

The SMEFT Lagrangian is an alternative parametrization
of SM deviations, which assumes the SM symmetries and
fields, and particularly assumes the traditional doublet
structure for the Higgs field. The Higgs sector of this
Lagrangian was introduced in Eq. (1), and it can be written
more generally as

LSMEFT ¼ LSM þ
X∞
n¼5

X
i

cðnÞi

Λn−4 O
ðnÞ
i : ð17Þ

At dimension-six, there are three operators of the
SMEFT Warsaw basis [29] that directly distort the
Standard Model’s electroweak symmetry breaking
Lagrangian, which written in terms of the Higgs field
doublet H appropriate for SMEFT are (∂2 ≡□)

OH ¼ ðH†HÞ3; OHD ¼ ðH†DμHÞ�ðH†DμHÞ;
OH□ ¼ ðH†HÞ□ðH†HÞ: ð18Þ

They can of course be reexpressed in terms of the singlet
field for the Higgs boson via ðH†HÞ ¼ ðhþ vÞ2=2 (in polar
coordinates this is manifestly gauge independent). Those
three operators are actually all that is needed for Higgs-
Goldstone boson scattering up to dimension-six in the
SMEFT counting. Moreover, OHD breaks custodial sym-
metry so that it can be counted as higher order due to the
small size of the corrections to Peskin-Takeuchi observ-
ables in the SM at LEP.
We would like to remark that not only at dimension-six

but also at dimension-eight there is an additional operator
with two derivatives acting only on a product of Higgs
doublets. However, these terms violate custodial symmetry
and they actually contribute to an independent type of
HEFT operator, Longhitano’s a0 Lagrangian term [30,31].
Consistently, this a0 operator is related to the experimen-
tally suppressed oblique T parameter. Thus, we will no
longer consider this type of custodial breaking operators in

this article, although a similar study can be worked out if
this kind of corrections needed to be included.
In turn,OH is not a derivative operator, so that it does not

contribute to the flare function that we are pursuing (though
it does affect the Higgs self-coupling, namely the Higgs SM
potential, and the vacuum expectation value, important near
threshold, its impact in the TeV region is much smaller than
that of the derivative operator).
In summary, only the OH□ operator contributes to F ðhÞ

at order OðΛ−2Þ. Moreover, it has been shown in [32], by
geometric arguments, that only one operator is needed at
this order, which is consistent with our discussion. The rest
of the electroweak operators of the Warsaw basis that the
reader may be wondering about,

OW ¼ ϵijkWνi
μ W

ρj
ν W

μk
ρ ; OHW ¼ðH†HÞWi

μνWμνi;

OHB¼ðH†HÞBμνBμν; OHWB ¼ðH†τiHÞWi
μνBμν; ð19Þ

are necessary only if one intends to couple the transverse
electroweak gauge bosons [25,33]), but they are of no
concern for our purposes of studying the TeV-region
electroweak-symmetry breaking Lagrangian that requires
only, by the equivalence theorem [34,35] in the TeV region,
the Goldstone bosons ≃ longitudinal WL, ZL. Further, a
generic basis could also contain an operator of the form
∂μðH†HÞ∂μðH†HÞ, but this is eliminated in the standard
Warsaw treatment because it is equivalent to OH□ in
Eq. (18) up to a total divergence, in analogy to Eq. (12),

ðX2Þ□ðX2Þ ¼ −∂μX2
∂
μX2 þ ∂μðX2

∂
μX2Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

surface term

; ð20Þ

or in terms of the h singlet,

OH□ ¼ ðH†HÞ□ðH†HÞ ¼ −∂μðH†HÞ∂μðH†HÞ þ ∂μð� � �Þ
¼ −ðhþ vÞ2∂μh∂μhþ ∂μð� � �Þ: ð21Þ

Therefore, the only contributing dimension-six operator
of the Warsaw basis that preserves custodial symmetry is

OH□ ¼ ðH†HÞ□ðH†HÞ ¼ −∂μðH†HÞ∂μðH†HÞ; ð22Þ

that in the Lagrangian appears multiplied by the Wilson
coefficient cH□ and is suppressed by two powers of the
high-energy scale Λ respect to the dimension-four
Lagrangian. Comparing with Eq. (1) we read the (constant)
values AðjHj2Þ ¼ 1 and BðjHj2Þ ¼ −2 cH□

Λ2 , which contain
no fields.

2. The role of cH□ in SMEFT and bounds on its size
from experimental data

Because SMEFT has been used for a few years now
to analyze LHC data, there already exist bounds on the
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coefficient cH□ from run 2 of the machine (even if the
associated operator OH□ is quite elusive in LHC fits); we
now recall those bounds.
The best overall constraints on the dimension-six basis

arise from Higgs-sector observables (production and decay)
[36,37], but it is only when combined with other electro-
weak channels that this cH□ coefficient can be well
constrained. The reason for this is the way that OH□ enters
in the B piece of the Lagrangian in Eq. (1). Its effect is to
change the Higgs wave-function normalization

LSMEFT ¼ 1

2

�
1 −

2cH□v2

Λ2

�
∂μh∂μhþ � � � ð23Þ

instead of the Higgs couplings to other particles, which are
not directly affected. Hence, the contribution of this
operator to any on-shell production or decay process of
a single Higgs boson appears as a kinematics-independent
shift, as evident from Eq. (23). In particular, for the
reference value of Λ ¼ 1 TeV used in most analysis, this
overall shift for the several processes considered, whether
decay width or production cross section, becomes

σH;SMEFT

σH;SM
∝
ΓH;SMEFT

ΓH;SM
∝ 1þ2

cH□v2

Λ2
¼ 1þ0.12cH□; ð24Þ

which was already numerically observed by the ATLAS
collaboration and reported, for example in Table 1 of [38].
It is obvious that the numbers there, between 0.115 and
0.125, just reflect the exact 0.12 factor of Eq. (24). This is
true in any process involving only one on-shell Higgs
boson [as will also be the case in our Eq. (91) below]; but
events with two or multiple h particles such as Eq. (92) and
following have different dependences on cH□ and will
allow a cleaner separation within SMEFT. Also, the cross
sections above in σH;SMEFT

σH;SM
are implicitly understood as their

narrow Higgs-width approximation, where one Higgs is
produced on shell and then cascades into the final products.
For off-shell Higgs studies the dependency would be
different.
In consequence, this kinematically not very exciting

OH□ operator is often overlooked and few works actually
constrain it. Still, the works of Ellis et al. [36] and Ethier
et al. [37] offer quite interesting bounds on cH□, that at
95% confidence level, and rounding off to the precision of
the leading digit of the uncertainty, read as follows:

cH□ ≃ −0.3� 0.7 ðindividualÞ ð25Þ

cH□ ≃ −1� 2 ðmarginalizedÞ: ð26Þ

Both are compatible with the Standard Model value
cH□ ¼ 0.

3. Operator of order 8 in the SMEFT counting

Goingone order further in the1=Λ2 power countingmakes
the SMEFT parametrization more interesting [39–42]. In
particular, the full dimension-eight basis in SMEFT was
recently published in [43,44]. To find the dimension-eight
operator that contributes OðΛ−4Þ corrections to the flare
function F ðhÞ we can return to the BðHÞ term in Eq. (1)
remembering that AðHÞ is irrelevant as per Sec. II A,
1
2
BðjHj2Þð∂ðjHj2ÞÞ2, and set BðjHj2Þ ∝ jHj2 instead of 1.

Therefore, at dimension-eight we only find the following
operator:

Oð8Þ
H□ ¼ jHj4□jHj2 ¼ −2jHj2ð∂ðjHj2ÞÞ2

¼ −ðhþ vÞ4∂μh∂μh: ð27Þ
We have chosen this operator’s normalization for conven-

ience and resemblance toOð6Þ
H□ in Eq. (22)when expressed in

terms of the Higgs doublet modulus ðvþ hÞ= ffiffiffi
2

p
. Through

partial integration, it can be easily rewritten in other forms
considered in the bibliography (up to a total derivative):

Oð8Þ
H□ ¼ −2jHj2ð∂ðjHj2ÞÞ2 ¼ jHj4□jHj2

¼ 2jHj4j∂Hj2 þ jHj4ðð□H†ÞH þH†ð□HÞÞ; ð28Þ

with the last contribution jHj4ðð□H†ÞH þH†ð□HÞÞ being
proportional to the Higgs equations of motion (EOM), so
they can be removed from the effective action and trans-
formed into operators including EW Goldstone bosons and

also fermions, and Qð1Þ
H6 ¼ jHj4jDHj2 the operator chosen

for the dimension-eight basis in Ref. [43]. The other

possible two-derivative dimension-eight operator Qð2Þ
H6

breaks custodial symmetry and will not be discussed in
this article.
In the next section, we will first work out the precise

change of Higgs variable h → h1 from SMEFT to HEFT up
to dimension-six. Afterwards, in Sec. II C 2, we will
proceed up to the next order and provide the Next-to-next
to Leading Order (NNLO) modification induced by this
dimension–eight operator.

C. Change of coordinates hSMEFT → hHEFT
1

1. Derivation and result at dimension-six

The first step to put the dimension-six relevant SMEFT
Lagrangian into HEFT form is then to change the variable
as in Eq. (7) yielding

LSMEFT ¼ 1

2

�
1 − 2ðvþ hÞ2 cH□

Λ2

�
ð∂μhÞ2

þ 1

2
ðvþ hÞ2ð∂μn · ∂μnÞ: ð29Þ
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We next have to take the Higgs kinetic energy to canonical form. This requires integrating (10) (t being the integration
variable taking the place of h):

h1 ¼
Z

h

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvþ tÞ2 2cH□

Λ2

r
dt ¼

Z
vþh

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

2cH□

Λ2

r
dt ¼

ffiffiffiffiffiffiffiffiffiffiffi
Λ2

2cH□

s Z
θ1

θ0

jcos θj cos θdθ; ð30Þ

where θ0 ¼ arcsin
ffiffiffiffiffiffiffiffi
2cH□

Λ2

q
v and θ1 ¼ arcsin

ffiffiffiffiffiffiffiffi
2cH□

Λ2

q
ðvþ hÞ. Now, since 0 ≤ θ0 ≤ θ1 ≪ π=2 (because the EFT coefficient is

very small by current bounds [45]) we can assume that the cosine in Eq. (30) is positive and hence find

h1¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
Λ2

2cH□

s �
θþsin2θ

2

�����θ1
θ0

¼1

2

ffiffiffiffiffiffiffiffiffiffiffi
Λ2

2cH□

s 	
θþsinθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2θ

p 
����θ1
θ0

¼1

2

 
ðvþhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2cH□ðhþvÞ2
Λ2

s
−v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2cH□v2

Λ2

s !
þ1

2

ffiffiffiffiffiffiffiffiffiffiffi
Λ2

2cH□

s �
arcsin

ffiffiffiffiffiffiffiffiffiffiffi
2cH□

Λ2

r
ðvþhÞ−arcsin

ffiffiffiffiffiffiffiffiffiffiffi
2cH□

Λ2

r
v

�
: ð31Þ

Such an expression is not particularly useful, especially taking into account that we need to invert it to obtain hðh1Þ, so we
explore it by expanding Eq. (31) to leading order in cH□=Λ2, finding

h1¼ h−
1

3

�
cH□

Λ2

�
ðh3þ3h2vþ3hv2ÞþO

�
c2H□

Λ4

�
; ð32Þ

which can be iteratively inverted, yielding

h¼ h1þ
1

3

�
cH□

Λ2

�
ðh31þ3h21vþ3h1v2ÞþO

�
c2H□

Λ4

�
: ð33Þ

Finally, we can use Eqs. (11) and (33) to obtain F ðh1Þ,

F ðh1Þ¼
�
1þhðh1Þ

v

�
2

¼
�
1þh1

v

�
2

þ2v2cH□

Λ2

�
1þh1

v

��
h31
3v3

þh21
v2

þh1
v

�
þO

�
c2H□

Λ4

�

¼1þ
�
h1
v

��
2þ2

cH□v2

Λ2

�
þ
�
h1
v

�
2
�
1þ4

cH□v2

Λ2

�
þ
�
h1
v

�
3
�
8
cH□v2

3Λ2

�
þ
�
h1
v

�
4
�
2
cH□v2

3Λ2

�
þO

�
c2H□

Λ4

�
; ð34Þ

which expresses the expansion coefficients of F in terms of
the SMEFT Wilson coefficient (in the philosophy of the
appendix of [46]),

a1 ¼ 2a ¼ 2

�
1þ v2

cH□

Λ2

�
; a2 ¼ b ¼ 1þ 4v2

cH□

Λ2
;

a3 ¼
8v2

3

cH□

Λ2
; a4 ¼

2v2

3

cH□

Λ2
: ð35Þ

These relations expose the inclusion of SMEFT into HEFT:
the ai coefficients, independent parameters in the latter, are
correlated in SMEFT up to a given order, as all of the first
four ai are given in terms of only one Wilson coefficient
cH□. This feature has been suggested as a handle to discern,
from upcoming experimental data, whether SMEFTwill be

applicable later on (in the presence of any separation from
the SM values a ¼ b ¼ 1). Measurements of the ωω → nh
scattering process (see Sec. V) would allow the determi-
nation of the ai and can probe the SMEFT-predicted
correlations [47] (or the SM ones [25,48]). In the absence
of such correlations, it is plausible that a HEFT formulation
would be needed.
However, this difference can be put into question in the

presence of unnatural Wilson coefficients. If the dimension-
eight operators contribute at an order similar to that of the
dimension-six operator, because the coefficients are not of
order 1 or because Λ is not large enough to significantly
suppress them, additional SMEFT parameters would
appear in the expressions of Eq. (35), decorrelating the
ai coefficients and voiding the analysis. Therefore, though
perhaps orientative, given that naturalness may have
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already failed as a safe guiding principle in view of the light
Higgs boson mass, more robust criteria that helps system-
atize the correlations to distinguish SMEFT from HEFT
have been provided, and to them we turn in the next section.
At last, the position of the symmetric point h� that

satisfies F ðh�Þ ¼ 0 is always given by hðh1Þ ¼ −v [with
jHj ¼ ðhþ vÞ= ffiffiffi

2
p

], as seen directly from Eq. (15). In turn,
the position of the symmetric point in HEFT coordinates
becomes displaced from its SM value hSM� ¼ −v by an
OðΛ−2Þ SMEFT correction,

h�
v

¼ h1ðhÞ
v

����
h¼−v

¼ −1þ cH□v2

3Λ2
; ð36Þ

where we use the relation h1 ¼ h1ðhÞ in Eq. (32). This
procedure provides the only real root of Fðh1Þ up to
Oð1=Λ2Þ, with F ðh1Þ ¼ Fðh1Þ2 (in addition, there are
two more complex-conjugate roots). However, this
information gets blurred if we instead consider F up to
Oð1=Λ2Þ, which has the real roots h1=v ¼ −1 and h1=v ¼
−1þ 2cH□v2=Λ2 (in addition to a pair of complex-conjugate
rootswhich escape to infinity forΛ → ∞). Notice that, due to

the 1=Λ2 truncation in Eq. (34), none of the four zeros of
Eq. (34), a fourth-order polynomial, seems to be double. This
means that inside a small interval of values of h1 of width
suppressed by 1=Λ2, Eq. (34) can violate positivity (see
Sec. IVA 1 below). Furthermore, we find that F ðh1Þ ¼
Oð1=Λ4Þ for h1=v¼−1þxv2=Λ2∀x∈R (see Appendix D
for further details). Hence, it looks like the perturbative
analysis of F alone does not allow us to extract any
information beyond h� ¼ −vþOð1=Λ2Þ.
We note, however, that Eq. (36) is indeed the correct

solution of hðh1Þ ¼ −v up to order cH=Λ2, even though the
Oð1=Λ2Þ flare function in Eq. (34) fails to recover that
precise expression at that perturbative order. This ambi-
guity will be solved in the Oð1=Λ4Þ analysis in the next
subsection.

2. Result at dimension-eight

We now quote the result of adding the operator of
dimension-eight in Eq. (II B 3); the calculation follows
along the same lines so we only quote the combined result
for the flare function F , which reads

F ðh1Þ ¼
�
1þ hðh1Þ

v

�
2

¼ 1þ
�
h1
v

��
2þ 2

cð6ÞH□v
2

Λ2
þ 3

ðcð6ÞH□Þ2v4
Λ4

þ 2
cð8ÞH□v

4

Λ4

�
þ
�
h1
v

�
2
�
1þ 4

cð6ÞH□v
2

Λ2
þ 12

ðcð6ÞH□Þ2v4
Λ4

þ 6
cð8ÞH□v

4

Λ4

�

þ
�
h1
v

�
3
�
8
cð6ÞH□v

2

3Λ2
þ 56

ðcð6ÞH□Þ2v4
3Λ4

þ 8
cð8ÞH□v

4

Λ4

�
þ
�
h1
v

�
4
�
2
cð6ÞH□v

2

3Λ2
þ 44

ðcð6ÞH□Þ2v4
3Λ4

þ 6
cð8ÞH□v

4

Λ4

�

þ
�
h1
v

�
5
�
88

ðcð6ÞH□Þ2v4
15Λ4

þ 12
cð8ÞH□v

4

5Λ4

�
þ
�
h1
v

�
6
�
44

ðcð6ÞH□Þ2v4
45Λ4

þ 2
cð8ÞH□v

4

5Λ4

�
þOðΛ−6Þ: ð37Þ

Note that the bracket in each line provides the correspond-
ing aj up to OðΛ−4Þ. Also, to make the order manifest

and avoid confusion, we have denoted cH□ by cð6ÞH□ in
this paragraph and below whenever there might be any
confusion.
As for the symmetric point around which SMEFT is

built, Eq. (36) takes a further correction ofOðΛ−4Þ that may
take it away from the Standard Model value. Again,
Eq. (15) shows that the SUð2Þ × SUð2Þ fixed-point point
condition F ðh�Þ ¼ 0 has always the solution h ¼ −v,
which in the HEFT coordinates up to OðΛ−4Þ SMEFT
corrections is given by

h�
v
¼ h1ðhÞ

v

����
h¼−v

¼−1þ cð6ÞH□v
2

3Λ2
þððcð6ÞH□Þ2þ 2cð8ÞH□Þ

v4

10Λ4
;

ð38Þ

where we used the relation between SMEFT and HEFT
coordinates at this order:

h1¼ hþcð6ÞH□

3Λ2
ðv3− ðvþhÞ3Þ

þððcð6ÞH□Þ2þ2cð8ÞH□Þ
10Λ4

ðv5− ðvþhÞ5ÞþO
�

1

Λ6

�
; ð39Þ

which can be iteratively inverted, yielding

h ¼ h1 þ
cð6ÞH□

3Λ2
ððvþ hÞ3 − v3Þ

þ ðcð6ÞH□Þ2
30Λ4

ð13ðvþ h1Þ5 − 10v3ðvþ h1Þ2 − 3v5Þ

þ cð8ÞH□

5Λ4
ððvþ hÞ5 − v5Þ þO

�
1

Λ6

�
: ð40Þ
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The study of the Oð1=Λ4Þ flare function in Eq. (37)
shows that F ðh1Þ ¼ OðΛ−4Þ for h1=v ¼ −1þ xv2=Λ2 for

all x but for h1=v ¼ −1þ cð6ÞH□v
2=3Λ2 where we find

F ðh1Þ ¼ OðΛ−6Þ. Hence, requiring F ðh1Þ ¼ 0 up to
Oð1=Λ4Þ leads to the real solution h1=v ¼ −1þ
cð6ÞH□v

2=3Λ2 þOð1=Λ4Þ, solving the Oð1=Λ2Þ ambiguity
of the previous subsection. However, the perturbative
expression in Eq. (37) is not able to recover the Oð1=Λ4Þ
of the symmetric point (38). In order to fix theOð1=Λ4Þ term
of h� there are two ways to proceed: analyze the flare-
function constraint F ðh1Þ ¼ 0 up to 1=Λ6; or solve the
equation F ¼ 1þ hðh1Þ=v ¼ 0 up to Oð1=Λ4Þ.

III. GEOMETRIC AND ANALYTIC DISTINCTION
BETWEEN HEFT AND SMEFT

This section succinctly exposes the precise theoretical
conditions allowing to discern between SMEFT and HEFT,
compiling the main results of several articles [16,19–22] in
their geometrical aspects and adding an extended analytical
discussion about the function F of our own. Much of the
past confusion between the two EFT formulations arises
from the fact that there are two coordinate systems to
describe the same system of fields; for this, the San Diego
group advocated for employing a geometric perspective to
be able to make coordinate-invariant statements.

A. Flat SM geometry

The Oð4Þ components in the scalar field of Eq. (2) used
for the SM Higgs sector, ϕ ¼ ðϕ1;ϕ2;ϕ3;ϕ4Þ are taken to
represent coordinates in a (momentarily flat, later in the
next subsection curved) geometric manifoldM. ϕ contains
the Higgs field and the three “eaten” Goldstone bosons and
has a Lagrangian (turning off gauge fields)

LSM ¼ 1

2
∂μϕ · ∂μϕ −

λ

4
ðϕ · ϕ − v2Þ2: ð41Þ

In these Cartesian coordinates the global Oð4Þ transforma-
tions should act linearly:

ϕ → Oϕ; OTO ¼ 1: ð42Þ
The field breaks the global electroweak symmetry Oð4Þ
down to Oð3Þ by acquiring a vacuum expectation value,

hϕ · ϕi ¼ v2;

where v ≃ 246 GeV. Usually, the vacuum expectation
value is chosen to be hϕ4i ¼ v while hϕ1i ¼ hϕ2i ¼
hϕ3i ¼ 0 and the Higgs field h in these Cartesian coor-
dinates is defined through the relation ϕ4 ¼ vþ h.
The alternative coordinate system in which HEFT is

based expresses the SM Higgs sector Lagrangian in polar
form:

ϕ ¼
�
1þ h

v

�
nðωÞ; n · n ¼ v2: ð43Þ

Clearly, the constraint n · n ¼ v2 makes theOð4Þ symmetry
to be realized in a nonlinearway. This comes about because
the four components of n¼ðω1;ω2;ω3;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−ω2

p
Þ rotate

linearly with O in Eq. (42), imposing a nonlinear trans-
formation law on the polar-coordinateGoldstone bosons,wa

(a ¼ 1, 2, 3). In these polar coordinates, theHiggs sector SM
Lagrangian is3

LSM ¼ 1

2

�
1þ h

v

�
2

ð∂μωi
∂μω

jÞ
�
δij þ

ωiωj

v2 − ω2

�

þ 1

2
ð∂μhÞ2 −

λ

4
ðh2 þ 2vhÞ2: ð44Þ

In the SM, we thus see that

F ðh ¼ h1Þ ¼
�
1þ h

v

�
2

: ð45Þ

This exercise enlightens the fact that the SMHiggs sector
Oð4Þ symmetry can be realized both in a linear or a
nonlinear manner. That is why, when studying EFTs that
extend the SM, one should concentrate on objects which
are invariant under field redefinitions [49]. Again, the
important distinction between the SM, SMEFT and
HEFT is not that the realization of the Oð4Þ symmetry
is linear or not, since a field redefinition can turn one into
the other. That is why the key aspect one must look for are
the geometric invariants on the scalar manifold M, which
are by definition invariant under field redefinitions.

B. Beyond SM: Curved ϕ geometry

The kinetic term of the Lagrangian (giving the classical
equations of motion as the geodesics of that manifold) in
Eq. (3) has the form

1

2
gijðϕÞ∂μϕi

∂
μϕj

and can be interpreted in terms of a metric tensor gij that
provides lengths in the geometrical space of the ϕ fields,
gijdϕidϕj in any of the different coordinate choices. This is
the point of contact between physics experiments at
colliders, i.e., production and scattering amplitudes derived
from this Lagrangian, and the field geometry, where the
former are represented in terms of curvature invariants.
We now briefly recall the results presented in [19,22].

3Note the difference with Eq. (2.12) in [19] where the ωiωj
piece is absent. It is unnecessary unless amplitudes with more
than two Goldstone bosons are analyzed, which we leave for
future investigation.
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In the SM, the metric is just a Kronecker delta
gijðϕÞSM ¼ δij, but the SMEFT of Eq. (1) extends it to a
more general form:

gijjSMEFT ¼ A

�
ϕ · ϕ
Λ2

�
δij þ B

�
ϕ · ϕ
Λ2

�
ϕiϕj

Λ2
; ð46Þ

where Λ is the new physics scale. It is always possible to
express the SMEFT metric (and in particular its SM limit)
in HEFT form by changing to polar coordinates followed
by an additional field redefinition to make the kinetic term
of h canonical as in Sec. II. This makes the HEFT metric
take the generic form

gijðh;ωÞHEFT ¼
�
F ðhÞgabðwÞ 0

0 1

�
ð47Þ

where gabðωÞ is the Oð3Þ invariant metric on the scalar
submanifold Oð4Þ=Oð3Þ ¼ S3 described by the Goldstone
bosons in angular coordinates. The SM is the special case
with a flat scalar manifoldM (since its metric is just δij for
all values of the field: there exist global Riemann coor-
dinates). For both SMEFT and HEFT, M has curvature.
But what makes SMEFT different from HEFT?
Equation (47) allows to interpret the functionF ðhÞ in the

manifoldM ∋ ϕ as a scale factor akin to the aðtÞ one in the
Friedmann-Robertson-Walker metric. For each value of h
(in units of v) there is an S3 submanifold (parametrized by
the ωi), away from the origin of M by an amount F ðhÞ,
which acts as a radial distance.
One can in that way always write SMEFT in HEFT form,

but as we will see, the converse is not always true. This
means that

SM ⊂ SMEFT ⊂ HEFT:

This is so because, in order to write a HEFT as a SMEFT,
there must exist an invariant point in M under the Oð4Þ
symmetry. This translates into the condition that the
function F ðhÞ must vanish for some h�, F ðh�Þ ¼ 0.
Hence this h�, an invariant point under the Oð4Þ symmetry,
plays the role of an origin for the Cartesian-like SMEFT
coordinates on M.
This invariant point is a necessity to deploy a linear

representation of the Oð4Þ group around it, just as in
Eq. (42), and hence to write down HEFT as a SMEFT. It
happens that the existence of such zero of F ðhÞ is not a
sufficient condition for SMEFT to be possible. It may
happen that nonanalyticities arise at the fixed point h� or
between that h� and h ¼ 0 (the physical vacuum), spoiling
the possibility of constructing a viable SMEFT around h�
which is applicable in particle physics. This is why we must
require that the metric and thus F ðhÞ be analytic in a
sufficient domain (see [22] for further detail). In a lower
energy regime mh ∼ E where the potential V makes a

relevant contribution, the same considerations also apply
to V.
Instead of obtaining these results by further following

the powerful yet intricate geometric methods just men-
tioned, we will continue with coordinate-dependent field
theory in the spirit of staying close to the phenomenological
formulation that can be brought to bear at accelerator
experiments.

C. Zero and analyticity of F upon passing
from HEFT to SMEFT

We are going to show in this subsection how to proceed
from HEFT to SMEFT and under what condition this is
possible in an analytical manner in terms of the field
coordinates. For this we need to combine the Higgs h1 and
the EWGoldstone bosonsωa appropriate for HEFT into the
complex doublet Φ used in SMEFT. Problems can arise
about whether the resulting Lagrangian will obey minimal
physical requirements from the theoretical (e.g., analytic-
ity) and the phenomenological point of view (e.g., pertur-
bation theory convergence).
The first step to reconstruct the SMEFT form from the

HEFT Lagrangian in Eq. (9) is to define a new Higgs
variable h from the HEFT one, h1 in this subsection, by the
condition

F ðh1ðhÞÞ ¼ F2ðh1ðhÞÞ ¼
�
1þ h

v

�
2

;

Fðh1ðhÞÞ ¼ 1þ h
v
; ð48Þ

implying the inverse relations

h1 ¼ F−1ðð1þ h=vÞ2Þ; h1 ¼ F−1ð1þ h=vÞ: ð49Þ

This change of variable unravels the standard HEFT
normalization of the Higgs kinetic term in Eq. (5), turning
the Lagrangian in the “polar-SMEFT” form,

Lpolar-SMEFT ¼ v2

4

�
1þ h

v

�
2

h∂μU†
∂
μUi

þ 1

2

�
1

v
ðF−1Þ0ð1þ h=vÞ

�
2

ð∂hÞ2: ð50Þ

The second, h-kinetic term can also be expressed in terms of
the square of F, that is, F . To achieve it, we can simply
replace ðF−1Þ0ð1þh=vÞ by 2ð1þ h=vÞðF−1Þ0ðð1þ h=vÞ2Þ.
We note that F−1 andF−1 are the inverse functions of F and
F , respectively, and Fðh1Þ ¼ 1þ hðh1Þ=v.
Up to this point there is no concerning issue; this

polar-coordinate form halfway between HEFT and
SMEFT, which we also find when calculating in the
opposite direction in Eq. (13), is still a valid Lagrangian
(if we postpone for a later moment the discussion on the
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convergence of the perturbative series) totally equivalent
to HEFT.
The possible obstacle to this conversion can however

arise when trying to reconstruct the Higgs-doublet field H
from the EW Goldstone bosons ωa in U and the Higgs
scalar field h, making use [22] of

jHj2 ¼ ðvþ hÞ2
2

;

j∂Hj2 ¼ ðvþ hÞ2
4

h∂μU†
∂
μUi þ 1

2
ð∂hÞ2;

ð∂jHj2Þ2 ¼ ðvþ hÞ2ð∂hÞ2 ¼ 2jHj2ð∂hÞ2: ð51Þ

The inversion of these linear equations to express Eq. (50)
in terms of H brings about a possible jHj−2 singularity in
the SMEFT Lagrangian,

LSMEFT¼j∂Hj2|fflffl{zfflffl}
¼LSM

þ1

2

��
1

v
ðF−1Þ0

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jHj2=v2

q 


2
−1
�ð∂jHj2Þ2

2jHj2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ΔLBSM

:

ð52Þ

Such divergence is incompatible with a power expansion
as needed to deploy the SMEFT counting. The only way
that Eq. (52) can provide an analytical Lagrangian around
jHj ¼ 0 to allow a valid SMEFT expansion in powers of H
is by restricting the F ¼ F2 function of Eq. (3) to fulfill the
condition�

1

v
ðF−1Þ0

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jHj2=v2

q 

− 1

�
¼jHj→0

0þOðjHj2Þ ð53Þ

so that this zero cancels the jHj−2 denominator in Eq. (52).
Furthermore, even if the zero is canceled, the analyticity of
the SMEFT Lagrangian at any order implies that the
OðjHj2Þ remnant must also have an analytic expansion
in integer powers of jHj2 (from the square root). Otherwise
an expansion-breaking nonanalyticity is present and
SMEFT becomes a theory that is not systematically
improvable by furthering the expansion. This remarkable
fact can be traced to Eq. (49), where the change of variables
h → h1 happens at the level of individual singlet particles,
whereas the doublet H employed in SMEFT (and in the
SM) needs to be squared to jHj2 to produce an electroweak
singlet, forcing the square root upon us.
The relation (53) is a differential equation for ðF−1Þ in

the variable z ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jHj2=v2

p
, whose integration leads to

F−1ðzÞ ¼jHj→0
F−1ð0Þ þ vzþOðz3Þ: ð54Þ

The analyticity of the SMEFT Lagrangian at all orders
implies that the Oðz3Þ remainder has an analytic expansion
that only contains odd powers of z. We solve for the z

variable around z ¼ 0 in terms of F−1ðzÞ, and invert to
recover the original function F ¼ ðF−1Þ−1 around the point
h�1 ≡ F−1ð0Þ, remembering from Eq. (49) that F−1 is a
HEFT-Higgs h1 value:

z ¼ Fðh1Þ ¼jHj→0 1

v
ðh1 − h�1Þ þOððh1 − h�1Þ3Þ; ð55Þ

where theOðz2Þ remnant can be put inOððh1 − h�1Þ2Þ form
up to higher orders. In terms of F the relation would be
given by ð1þ h=vÞ2 ¼ 2jHj2=v2 ¼ z2 ¼ Fðh1Þ2 ¼ F ðh1Þ.
Moreover, the analyticity of the SMEFT Lagrangian at all
orders implies that the solution of Eq. (54) for z—shown in
(55)—has an analytical expansion around h1 ¼ h�1 that only
contains odd powers of ðh1 − h�1Þ.
The existence of that zero h�1 ≡ F−1ð0Þ of F—and thus

of its square F—and the analyticity required for a power
series expansion (both of F and the Higgs potential V)
broadly constitute the necessary and sufficient require-
ments for a given HEFT Lagrangian density characterized
by F to be expressible as a SMEFT. Let us summarize and
make these findings, which agree with the ones presented
in [22], somewhat more precise:
(1) Fðh1Þ must have at least a simple zero at some h�1,

i.e., Fðh�1Þ ¼ 0. This implies that the function in
the HEFT Lagrangian density of Eq. (3) [F ðh�1Þ ¼
Fðh�1Þ2 ¼ 0] must have a double zero.

(2) At that point h�1, F must have the slope F0ðh�1Þ ¼ 1
v.

This translates into two conditions over F , namely

F 0ðh�1Þ ¼ 0; F 00ðh�1Þ ¼
2

v2
:

(3) At that point h�1, F must have zero curvature
F00ðh�1Þ ¼ 0, since the first correction must be
Oððh1 − h�1Þ3Þ. From the point of view of F this
translates as the constraint F 000ðh�1Þ ¼ 0.

(4) Finally, it is possible to exploit the analyticity of the
SMEFT Lagrangian at higher orders, if the expan-
sion is to be continued and be systematically
improvable. In general, analyticity as an all-order
requirement forces all even derivatives to vanish at
the symmetric point: FðlÞðh�1Þ ¼ 0 for even l. From
the point of view of F this implies the vanishing of
all odd derivatives, F ð2lþ1Þðh�1Þ ¼ 0.

The first two conditions mean that the HEFT F flare
function must be an upward-bending parabola if an
equivalent SMEFT is to exist. In the next subsection,
Fig. 1 shall expose that current knowledge is compatible
with it, and allows to estimate how intensely one of the
HEFT coefficients needs to separate from the SM or
SMEFT for the latter not to be applicable.
Should Eq. (55) fail, the SMEFT Lagrangian would not

have an analytical expansion in powers of the doublet field
H. Moreover, it is important to remark that in order to avoid
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a singularity, at least at dimension-six, the remnant in (53)
must be at least OðjHj2Þ, or equivalently, the remnant
in (55) must be at least Oððh1 − h�1Þ3Þ.
Various examples will be provided in Sec. IV B. We will

deal with the possibility of experimentally finding such
zeros h�1 in Sec. VI.

IV. GENERIC PROPERTIES OF THE FLARE
FUNCTION F ðhÞ

A. Current knowledge of F ðhÞ
In particle physics language, the appearance of the F ðhÞ

function in Eq. (3) controls the (derivative) coupling of a
pair of ω ≃WL longitudinal gauge bosons to any number of
Higgs bosons.
While this coefficient is the dominant Higgs production

in the TeV region, multiboson processes at the LHC in
the hundred GeV energy regime already constrain,
although not tightly, the coefficients of the F ðh1Þ expan-
sion. Since, for the rest of the main body of the article,

we will be concentrating on HEFT and there can be no
confusion with the SMEFT h field, we will drop the
subindex h1 → h and make it explicit whenever a change
of coordinates between SMEFTand HEFT is used. We give
a graphical representation of the present status of F
in Fig. 1.
At the time of writing there is no significant deviation

from the Standard Model, which is a particular case of
SMEFT, meaning that there is no reason to doubt the
applicability of SMEFT: the uncertainty bands by no means
exclude a zero of F , possibly where the Standard Model
requires it, at h ¼ −v. The SM line, as a particular SMEFT
case, is a parabola with vertex at F ¼ 0, as discussed in
Sec. III C. The reason why we have cut off values F < 0
will become clear in the next comment.

1. Positivity from boundedness of the Hamiltonian

From the LO HEFT Lagrangian in Eq. (3) we can
construct the Hamiltonian of the theory, finding

FIG. 1. Sensitivity of F ðhÞ to typical parameter ranges. The solid parabola (green) is the SM prediction 1þ 2 h
v þ ðhvÞ2. The gray

bands, in the order given, show the uncertainty due to our present knowledge of the ai coefficients that we vary one at a time around the
SM value. Respectively, the coefficients a1 ¼ 2a, a2 ¼ b and a4, couple ωω to h (the best constrained one, a), hh, and in view that a
third order polynomial always has a zero, hhhh with an even number of powers as the next most interesting one (and we ignore a3
by itself).
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HHEFT ¼
Z

d3x
1

2

�
∂0h∂0hþ∇h ·∇h

þF ðhÞð∂0ωi
∂0ω

jþ∇ωi ·∇ωjÞ
�
δijþ

ωiωj

v2−ω2

��
:

ð56Þ

From the condition that the Hamiltonian HHEFT must be
bounded from below for vacuum stability one obtains that
F ðhÞ ≥ 0. This justifies the common usage of the form
F2ðhÞ instead of simply F. While a matter of taste, it is not
clear what in particle physics is the quantity F being
squared (a radial distance in the ωa field space), so we
prefer F for most of the discussion.
One can also often see that, after expanding the function

F ðhÞ around our physical low-energy vacuum h ¼ 0 as in
Eq. (4), the positivity condition on F ðhÞ is forgotten or not
explicitly mentioned, although in those approaches employ-
ing FðhÞ with F ¼ F2ðhÞ it is automatically incorporated.
Therefore we are going to distinguish three cases. First

let us mention that if F requires an infinite expansion, the
information about positiveness is intricately hidden in the
coefficients ai.
The second case that we next address corresponds to

the treatment of experimental data within order by order
EFT; F is truncated to a few terms and the customary
assumption that F ¼ F2 is accepted. However, because the
most general polynomial of degree n cannot be written as a
square [50], we briefly discuss, as a third case, the
possibility that F is well approximated by a polynomial,
but this needs to be decomposed as F ¼ F2

1 þ F2
2 that

holds in all generality (because it corresponds to jFj2, the
modulus square of a complex function). For the sake of

simplicity, we will express h in units of v in the discussion
of this section.
Figure 2 displays, in its left plot, the ða1; a2Þ plane

corresponding to a quadratic F . The positivity-forbidden
region is the lower, shaded area (blue). The white area at the
top respects positivity and supports a HEFT formulation.
The dividing line is that where the Higgs flare function
presents a double zero, so it is of the form F ¼ ð1þ a1

2
hÞ2.

On the right panel of the figure we show a three-
dimensional plot where, additionally to ða1; a2Þ, the value
of h� is represented. There are regions where there is no
zero of F (but HEFT is applicable), a line (along the lower
surface’s fold) where the zero of F is double so SMEFT is
an acceptable description, and regions where there are two
simple real roots of F ¼ 0 that entail a sign change, and
thus a violation of positivity. An example of this is shown
by a vertical line piercing both sheets.

F ¼ F2 is assumed.—In this situation, there are restrictions
among the coefficients ai that guarantee positivity ofF . We
obtain them up to fourth order, by squaring the expansion
of F. If the expansion ended at first order, that is,
normalizing h by v,

FðhÞ¼ 1þαh⇒F ðhÞ¼F2ðhÞ¼ 1þ2αhþh2α2; ð57Þ

we obtain the relation

a2 ¼
a21
4
; ð58Þ

or b ¼ a2 which is exactly the correct one for a and b in the
Standard Model.
If that relation is experimentally found to be broken, then

at least one more order is necessary in the expansion of F.

FIG. 2. ða1; a2Þ plane (left plot) and ða1; a2; h�Þ three-dimensional representation (right plot), showing the regions where HEFT is
valid; those where there is a double zero (that follow, e.g., from the dilaton model discussed in Sec. IV B 2 and SMEFT is deployable);
and the region where there are two simple zeros and a quadratic polynomial F corresponds to no valid theory.
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This then implies that the degree of the flare function F
must be at least 2 orders higher,

FðhÞ ¼ 1þ α1hþ α2h2

⇒ F ðhÞ ¼ 1þ 2α1hþ h2ðα21 þ 2α2Þ þ 2α1α2h3 þ α22h
4;

ð59Þ

implying two correlations:

2a3 ¼ a1

�
a2 −

a21
4

�
; 4a4 ¼

�
a2 −

a21
4

�
2

: ð60Þ

These new correlations (60) would substitute (58), being a
smoking gun of the presence of further beyond the standard
model (BSM) three-Higgs and four-Higgs vertices in the
effective Lagrangian, which could then be measured in
further collider experiments.
Iterating the analysis procedure, any eventual experi-

mental deviations from the relations in Eq. (60) immedi-
ately imply the presence of higher order coefficients in the
function F, and therefore also in the flare function F that
provides the WW → nh effective vertices.
To have enough freedom to accommodate the SMEFT

values of the ai coefficients in Eq. (35) to OðΛ−2Þ,
the expansion of F needs to be run up to fourth order
in h,

FðhÞ ¼ 1þ α1hþ α2h2 þ α3h3 þ α4h4 � � � ; ð61Þ

where theGreek names of the coefficients mimic those of the
expansion ofF . The positivity conditions on the coefficients
ai of F can be obtained from

F ðhÞ ¼ F2ðhÞ
¼ 1þ 2α1hþ h2ðα21 þ 2α2Þ þ h3ð2α1α2 þ 2α3Þ
þ h4ð2α1α3 þ α22 þ 2α4Þ � � � ð62Þ

and essentially leave the first four ai undetermined, while
those with i ¼ 5…8 become dependent of those earlier four.
Once more, an experiment that does not respect the
corresponding correlations points to a higher term in the
expansion of F and so on. There is a tower of positivity
correlations that should be experimentally tested as multi-
Higgs data in the correct kinematic region becomes
available.
Most general non-negative polynomial satisfying F ¼
F2
1 þ F2

2.—In this case, the flare function F ðhÞ is the most
general non-negative polynomial F ðhÞ ≥ 0∀ h ∈ R, and
therefore, of even degree 2d, F ðhÞ ¼P2d

n¼0 anh
n.

We invoke the theorem [50] that states that such
a non-negative polynomial can be decomposed as

F ðhÞ ¼ F2
1ðhÞ þ F2

2ðhÞ in terms of two polynomials4

F1ðhÞ and F2ðhÞ of degree d. The equivalent of
Eq. (59) then becomes

F ðhÞ ¼ 1þ 2ðα1 cos θ þ β1 sin θÞh
þ ðα21 þ β21 þ 2α2 cos θ þ 2β2 sin θÞh2
þ 2ðα1α2 þ β1β2Þh3 þ ðα22 þ β22Þh4; ð63Þ

having expandedF1 up to second order with coefficients αi,
F2 with coefficients βi, and having noted that because
of the normalization of the kinetic term, F ð0Þ¼
F1ð0Þ2þF2ð0Þ2¼1, a practical parametrization is F1ð0Þ ¼
cos θ, F2ð0Þ ¼ sin θ for some angle θ. The number of free
parameters is now high enough (five, θ; α1;2; β1;2, for four
orders that depend on them) so that, in an order by order
expansion of the polynomial, the correlations are weaker
than in the simplified case F ¼ F2 with F real.
Nevertheless, one should note that if, given an exper-

imental situation, the highest given order h2d has a negative
coefficient a2d, then higher orders are necessary. This can
be used in experiment to detect (further) new physics.
Currently, the sign of b ¼ a2 is not known; discerning
whether it is positive or negative is therefore an interesting
experimental analysis exercise that, if it turned out to be
negative, would immediately and of necessity point out to
new coefficients a3 and a4 (and of course, indicate new
physics, since in the Standard Model b ¼ 1).

2. Restrictions on the coefficients ai from the
invertibility guaranteeing a SMEFT

The restrictions over F at the symmetric point h� that
guarantees the existence of a SMEFTat the end of Sec. III C
translate into conditions over the ai at the physical vacuum
h ¼ 0, which are constrained by experiment. Here we will
write down the known ones. Let us express the series
expansion around h ¼ 0 setting a0 ≔ 1, and take h
normalized to v, so that v ¼ 1,

F ðhÞ ¼
Xn
i¼0

aihi: ð64Þ

4To demonstrate it, we will note that the most general form of a
polynomial of order 2d, that isF ðhÞ ¼ an

Q
d
i¼1ðh − h�i Þðh − h̄�i Þ,

can be restricted because positivity and real analyticity demand
that both the real and complex roots must be double,

F ðhÞ ≔ jFðhÞj2 with FðhÞ ¼ ffiffiffiffiffi
an

p Yn
i¼1

ðh − h�i Þ;

the theorem then follows from taking the real and imaginary
parts, F1ðhÞ ¼ Re½FðhÞ� and F2ðhÞ ¼ Im½FðhÞ�. (That the real
roots are double thwarts any sign change near them and
guarantees positivity.)
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Since the conditions over F are taken at h�, we reexpand
around that point, and in terms of a�j ¼ F ðjÞðh�Þ=j!, find

F ðhÞ ¼
Xn
j¼0

a�jðh − h�Þj: ð65Þ

By matching the two expansions around the two different
points it is easy to read off the coefficients a�j (on which the
conditions over F are expressed) in terms of the ai (more
directly accessible to experiment). The relation reads

a�j ¼
X∞
k¼0

akþjhk� · bjk: ð66Þ

The coefficients of this expansion can be recursively
obtained:

b0k ¼ 1 ∀ k; bjk ¼
Xk
l¼0

bj−1l: ð67Þ

The closed formula that solves this recursion,

a�l ¼ Aljaj; ð68Þ
requires the following simple auxiliary matrix:

Alj ¼
�
0 if j < l;

ðjlÞhj−l� if j ≥ l:
ð69Þ

We can now deploy the four straightforward conditions
F ðh�Þ ¼ F 0ðh�Þ ¼ F 000ðh�Þ ¼ 0, F 00ðh�Þ ¼ 2=v2 → 2 as
four linear constraints on the coefficients around the
physical vacuum, namely

X∞
k¼0

hk�ak ·b0k¼a�0¼0;
X∞
k¼0

hk�akþ1 ·b1k¼a�1¼0;

X∞
k¼0

hk�akþ2 ·b2k¼a�2¼1;
X∞
k¼0

hk�akþ3 ·b3k¼a�3¼0: ð70Þ

Square-matrix four-coefficient truncation.—A first pos-
sible truncation of the series is to keep the terms with
the first four ða1; a2; a3; a4Þ coefficients [the zeroth coef-
ficient is identically a0 ¼ F ð0Þ ¼ 1 by construction of the
HEFT formalism so we include it in the inhomogeneous
term together with the ða�1; a�2; a�3; a�4Þ values from the
conditions on F ]. These are the coefficients that collect
dimension-six SMEFT corrections to the SM as shown in
Eq. (34) or (B11), and the linear system becomes

0
BBB@

h� h2� h3� h4�
1 2h� 3h2� 4h3�
0 1 3h� 6h2�
0 0 1 4h�

1
CCCA
0
BBB@

a1
a2
a3
a4

1
CCCA ¼

0
BBB@

−1
0

1

0

1
CCCA: ð71Þ

The matrix has determinant h4�, so that barring the zero at
h� ¼ 0 (the physical vacuum, where the coefficients ai and
a�i coincide), the system has a unique solution for each h�.
Such solution is that of Eq. (34), with the symmetric point

of SMEFT h� ¼ −vþ v
cð6ÞH□v2

3Λ2 that of Eq. (36), as can be
easily checked by substitution. At this order in 1=Λ2, if h�
would take a value different from that one, there would be a
one-parameter family of coefficients that would yield a
valid SMEFT.

Systematic order by order truncation.—Instead of that
truncation, one could be more systematic and count powers
of h on the left and right of Eq. (70), so that the respective
left- and the right-hand sides of Eq. (71) are of the same
order, say N. In that case the system Aa⃗� ¼ a⃗ has N
unknowns but (N þ 1) equations and compatibility
becomes an issue. The criterion of Rouche-Frobenius
guaranteeing an algebraic solution then links possible
values of the h� with the unknown a�2n that can appear
on the right-hand side of the equivalent system.
Taking F ðhÞ as a polynomial of order h4, this compat-

ibility condition is

1 ¼ F ð0Þ ¼ h2�
v2

þ a�4
h4�
v4

: ð72Þ

Without extra work, the vanishing of a�n for odd n ¼
1; 3; 5;… yields the same relation even if F ðhÞ is a
polynomial of order h5. For a flare function F ðhÞ, still
polynomial but now of order h6 (or even h7), the constraint
takes one more term:

1 ¼ F ð0Þ ¼ h2�
v2

þ a�4
h4�
v4

þ a�6
h6�
v6

: ð73Þ

Let us recall that a nonsingular SMEFT Lagrangian
requires a�0¼0, a�2¼1 and a�n¼0 for odd n ¼ 1; 3; 5;…,
as shown earlier in Sec. III C. It is not difficult to check that
SMEFT fulfills these relations (72) and (73) at OðΛ−2Þ and
OðΛ−4Þ, respectively, as that effective theory predicts [see
Eqs. (37) and (38)]:

h�
v

¼ F−1ð0Þ
v

¼ −1þ cð6ÞH□v
2

3Λ2
þ ððcð6ÞH□Þ2 þ 2cð8ÞH□Þ

v4

10Λ4
þOðΛ−6Þ;

a�4 ¼
1

4!
F ð4Þðh�Þ ¼

2cð6ÞH□v
2

3Λ2
þOðΛ−6Þ;

a�6 ¼
1

6!
F ð6Þðh�Þ

¼
�
44ðcð6ÞH□Þ2

45
þ 2cð8ÞH□

5

�
v4

Λ4
þOðΛ−6Þ; ð74Þ
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with all these properties determined by the precise form of
the flare function F .
If we extended the analysis to include a5 and a6, which is

easily done and omitted for briefness, we would have two
more Lagrangian parameters but only one further constraint
over F , namely the vanishing of its fifth derivative. This
means that SMEFTwould have a second parametric degree
of freedom that could take any value. In fact, this is
precisely the case in Eq. (37), which depends on the

additional parameter cð8ÞH□ from the dimension-eight rel-
evant Lagrangian.

Resulting testable correlations.—Table I collects the cor-
relations between the ai coefficients of HEFT that we have
worked out at order Λ−2 and Λ−4 (further correlations are
possible from the higher odd derivatives of F vanishing,
and all become a bit weaker numerically if yet higher orders
in 1=Λ are studied, by the need of introducing further ai
coefficients).
The correlation in the first row, second column of

Table I originates in a quadratic one 2ðΔa2 − 2Δa1Þ −
3
4
ða3 − 4

3
Δa1Þ ¼ ð−3Δa1 þ 5

2
Δa2 − 9

8
a3Þ2 with two solu-

tions for a3, a small and a large one. In keeping near the SM
value a3 ¼ 0 we take this second one and reexpand to
linearize in a3 so that it can be related to a1 and a2 in a
straightforward manner; the difference is more suppressed
than OðΛ−4Þ in the SMEFT expansion.
The remarkable property of these equations is that they

are independent of the SMEFT parameters cðnÞH□, that is,
they are tests of the SMEFT theory framework itself, up to a
given order in 1=Λ, which cannot be rewritten away in
terms of its parameters.
These equations can be experimentally tested looking for

the consistency of SMEFT. Given tight experimental bounds
on a1, these relations (and those from F ≥ 0) can already
predict how the next HEFT coefficients will look like if
SMEFT is valid. This we will delay until Sec. VI A 2.

The 1=Λ2 relations in the first column of Table I, all
hanging from Δa1, are rather constraining given that one-
Higgs production is well known. Those in the second
column, as they depend also on Δa2, which is much less
well measured, are not very useful; but they can be further
tightened by imposing perturbativity of the SMEFT
expansion.

Perturbativity constraints.—Perturbativity can be deployed
by recalling that, at OðΛ−4Þ,

a1 ¼
�
2þ 2

cð6ÞH□v
2

Λ2
þ 3

ðcð6ÞH□Þ2v4
Λ4

þ 2
cð8ÞH□v

4

Λ4

�

a2 ¼
�
1þ 4

cð6ÞH□v
2

Λ2
þ 12

ðcð6ÞH□Þ2v4
Λ4

þ 6
cð8ÞH□v

4

Λ4

�
: ð75Þ

For clarity, let us shorten notation for the rest of the
paragraph, writing

Δa1 ¼ 2xþ 3x2 þ 2y

Δa2
2

¼ 2xþ 6x2 þ 3y ¼ Δa1 þ 3x2 þ y: ð76Þ

In general, there are two free parameters, x and y. What
perturbativity suggests is that each of the terms of the
OðΛ−4Þ should not be larger than the OðΛ−2Þ term (this is
akin to the Cauchy criterion for convergence of a sequence,
but of course there is no guarantee that it will be satisfied at
a fixed order; again, it is only a perturbativity argument,
similar to the one in [41]). Taking this at face value, it must
be that 3x2 ≤ 2jxj (by the way, this means that jxj ≤ 2=3,
which however is of little value as experimental constraints
are much tighter) and that jyj < jxj.
Returning to the first of Eq. (76) and separately analyz-

ing the positive and negative x cases, we find

TABLE I. Correlations between the ai HEFT coefficients necessary for SMEFT to exist, at order Λ−2 and Λ−4.
They are given in terms of Δa1 ≔ a1 − 2 ¼ 2a − 2 and Δa2 ≔ a2 − 1 ¼ b − 1. This way, all the objects in the table
vanish in the Standard Model, with all the equalities becoming 0 ¼ 0. Notice that the rhs of each identity in the
second column shows the OðΛ−4Þ corrections to the relations of the first column. The third one assumes the
perturbativity of the SMEFT expansion.

Correlations
accurate at
order Λ−2

Correlations accurate
at order Λ−4

Λ−4 assuming SMEFT
perturbativity

Δa2 ¼ 2Δa1 jΔa2j ≤ 5jΔa1j
a3 ¼ 4

3
Δa1 ða3 − 4

3
Δa1Þ ¼ 8

3
ðΔa2 − 2Δa1Þ − 1

3
ðΔa1Þ2

a4 ¼ 1
3
Δa1 ða4 − 1

3
Δa1Þ ¼ 5

3
Δa1 − 2Δa2 þ 7

4
a3 Those for a3, a4, a5, a6

¼ 8
3
ðΔa2 − 2Δa1Þ − 7

12
ðΔa1Þ2

a5 ¼ 0 a5 ¼ 8
5
Δa1 − 22

15
Δa2 þ a3 All the same

¼ 6
5
ðΔa2 − 2Δa1Þ − 1

3
ðΔa1Þ2

a6 ¼ 0 a6 ¼ 1
6
a5
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jxj < max

�
jΔa−1 j;

1

2
jΔaþ1 j

�
ð77Þ

and noting that half the upper 95% uncertainty Δaþ1 =2 is
larger than the lower one Δa−1 as discussed around Table II
below, leads us to

jΔa2j ≤ 2jΔa1j þ 2 ·
3

2
jΔaþ1 j ⇒ jΔa2j ≤ 5jΔaþ1 j; ð78Þ

a relation which we elevate to the third column of Table I, in
the understanding that the uncertainty there is the maxi-
mum (þ) of the two asymmetric uncertainties, and where
the absolute value bars have been at last dropped.
In the order in which experimental data can be used, we

note the following:
(i) A nonzero measurement ofΔa2 signals new physics.

SMEFT or HEFT are needed.
(ii) If additionally the stronger correlation Δa2 ¼ 2Δa1

is violated, severe corrections to 1=Λ2 SMEFT are
suggested.

(iii) If the weaker correlation in Eq. (78), Δa2 ≤ 5Δa1 is
violated, those correlations make SMEFT unnatural
and put its perturbative use into question but they do
not necessarily rule it out as discussed in the next
paragraph.

(iv) If the weakest correlation in the second column of
Table I is broken, the first two orders of SMEFT do
not make much sense and the theory is falsified for
all practical purposes.

To close this subsection, we note that the presence of the
zero (and minimum) of F at h� is a distinguishing property
in the TeV region, for near-threshold physics the Higgs
potential VðhÞ is also important. The SMEFT potential
needs to be analytic too so that a power expansion makes
sense. The relevant theory regarding V is briefly discussed
in Appendix C.

3. Unitarity imposes no constraint on the coefficients,
causality may

It has recently been proposed that unitarity violations in
the effective theory could be used to describe the space of
theories that can be characterized as HEFT but that, due to
nonanalyticities, cannot be brought up to SMEFT form
[23]. While this may deserve further study, we are not very
sure about that program.
The reason is that the HEFT Lagrangian yields a

properly Hermitian Hamiltonian, and therefore a unitary
scattering matrix. Truncating an expansion of a partial wave
amplitude in perturbation theory is indeed a procedure that
violates unitarity, but this has nothing to do with the theory
itself, but with the truncation. For example, in the well-
known case of two-body elastic scattering one can, instead
of the partial wave amplitude, expand first the inverse
partial wave amplitude to one loop in the EFT,

1

tIJ
¼ 1

tIJ0 þ tIJ1
; ð79Þ

and then invert back to obtain

tIJ ≃
ðtIJ0 Þ2
tIJ0 − tIJ1

: ð80Þ

This expansion of the inverse amplitude, which can be
carried out order by order, can also be derived from a
dispersion relation, so it satisfies all analyticity properties
expected from an elastic scattering amplitude. Additionally,
elastic unitarity over the physical cut of the amplitude is
exact, no matter how strong the interaction, as long as the
low-energy theory has the structure of HEFT (or chiral
perturbation theory or other similar theories with derivative
couplings). This has been documented at length in the
literature [24,26,54–57] so we will not delve any longer on
the issue here. The point is that the failure (or not) of
unitarity is not really about the theory, whether SMEFT,
HEFT or another, but about the way to treat it to obtain
observables. This is an ancient observation dating at least to
the effective range expansion [58] that needs to be
discussed more often in the context of high-energy physics.
On the other hand, causality does impose limits on the

parameters of an effective Lagrangian, though they have
not been very thoroughly studied and perhaps we will
attempt this in future work. These come about because a
scattered wave packet in the forward direction cannot
precede the incoming wave packet (though this is possible
at wide angles [59]). Perturbatively, Wigner’s bound for the
derivative of the phase shift of any partial wave δJ respect
to the center-of-mass three-momentum k, in terms of the
scatterer’s radius R is a well-known low-energy result [60],

dδJ
dk

≥ −R: ð81Þ

However, what should be used for R in a relativistic
scattering theory is less well understood. Such a set of
bounds on the scattering matrix (one for each of its partial
wave projections) yields one-sided bounds on the ai
coefficients. Employing unitarized methods one can
immediately set constraints by demanding that no poles
of the amplitude lay on the first Riemann sheet [26,55] of s,
which also violate causality. But these poles typically fall
in regions where the uncertainties of the unitarized ampli-
tude [61] are large. In all, we think that this deserves a
separate investigation.

B. Example functions to illustrate
HEFT vs SMEFT differences

Let us illustrate the whole discussion with a few simple
example functions (as opposed to the more ambitious
construction of entire UV completions shown in [22,62]).
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1. Example flare functions F where SMEFT
is applicable

A couple of examples of HEFT flare functions that lead
to regular SMEFT Lagrangians are:

(i) The SM has F ðhÞ ¼ ð1þ h=vÞ2 that of course
is analytic, possesses a zero at h� ¼ −v and trivi-
ally fulfills all correlations in Table I since
Δa1 ¼ 0 ¼ Δa2, ai ¼ 0 ∀ i > 2.

(ii) The minimally composite Higgs model with sym-
metry breaking pattern SOð5Þ=SOð4Þ (Ref. [63]),

with F ðhÞ ¼ f2

v2 sin
2 ðhf þ arcsin v

fÞ, which expanded
to fourth order in h=v and second in v=f yields5

F ðhÞ ¼ 1þ
�
2 −

v2

f2

�
h
v
þ
�
1 −

2v2

f2

�
h2

v2

−
4v2

3f2
h3

v3
−

v2

3f2
h4

v4
: ð82Þ

It is easy to observe that this is a particular case of
the SMEFT flare function at OðΛ−2Þ in Eq. (34)
after the identification cH□ ¼ −Λ2=ð2f2Þ.

2. Example flare functions F where SMEFT is
not applicable

Examples of HEFT Lagrangians that transform to non-
regular SMEFT Lagrangians are given by the models with
F ¼ e2h=v or F ¼ 1þ 1

2
sinð4h=vÞ. Such models fail to

have a zero of F , in such a way that the behavior of its root
function F½h� ¼ ðh − h�Þ=v is fulfilled by no real value of
h� (there is no zero).
However, as seen in Sec. III, there is more than this

condition in order to have an appropriate SMEFT
Lagrangian in terms of H: we illustrate this with the
dilatonic model [64–66], which has a HEFT function F ¼
ð1þ ah=vÞ2 that does present a zero at h� ¼ −v=a.
Nonetheless, the corresponding SMEFT Lagrangian (52)
happens to be singular for a ≠ 1, with a pole at H†H ¼ 0:

LSMEFT ¼ LSM þ 1

2

��
1

v
ðF−1Þ0ð1þ h=vÞ

�
2

− 1

�
ð∂hÞ2

¼ LSM þ 1

2

ð1 − aÞ
a

ð∂hÞ2

¼ LSM þ 1

2

ð1 − aÞ
a

ð∂jHj2Þ2
2jHj2 : ð83Þ

It might be tempting to consider that the divergence of the
second term in the second line in Eq. (83) could be cured and

removed by an appropriate rescaling of h, but this would
disarray the operators in LSM, which would not come
together anymore to conform LSM. In this case, it happens
that there is a zero inFðhÞ ¼ 1þ ah

v at h� ¼ − v
a but the slope

of F is not 1
v but rather F

0ðh�Þ ¼ a
v ≠

1
v for a ≠ 1.

From a completely different approach, based on the
phenomenology of the effective couplings, we could
observe that the dilaton is not compatible with the
SMEFT expansion, since SMEFT—in Eq. (35)—predicts
Δb ¼ 4Δa up to 1=Λ4 NNLO corrections [47,67], while
the dilatonic model predicts that we should be observing
Δb ¼ 2Δa [64–66], with Δa≡ a − 1;Δb≡ b − 1. The
only way SMEFT could be able to reproduce the “dilatonic
data” is through a 100% correction from operators of
dimension-eight and greater, indicating a breakdown of the
1=Λ expansion.

3. Example of potentials V where SMEFT
is applicable

Next, we propose twoHiggs-Higgs self-interaction poten-
tials that lead to regular SMEFT Lagrangians, for example:

(i) The SM potential (with λ;−μ2 both positive) is
given by

VSMðHÞ ¼ μ2H†H þ λðH†HÞ2; ð84Þ

which, in HEFT coordinates, becomes6

VSMðhÞ ¼
m2

h

2

�
h2 þ h3

v
þ h4

4v2

�
; ð85Þ

with v2 ¼ −μ2=λ and m2
h ¼ 2jμj2.

(ii) The typical potential with the correlations obtained
there in Appendix C will need to have an expansion
which, up to OðΛ−2Þ in SMEFT, needs to have the
form

VðhÞ ¼ m2
h

2

�
h2 þ h3

v
ð1þ ϵÞ þ h4

v2

�
1

4
þ 3

2
ϵ

�

þ 3ϵ

4

h5

v3
þ ϵ

8

h6

v4

�
: ð86Þ

It is possible to see that including the custodial-
invariant SMEFT operator without derivatives, OH,
in Eq. (18) one gets the potential

VSMEFTðHÞ ¼ μ2H†H þ λðH†HÞ2 − cH
Λ2

ðH†HÞ3;
ð87Þ5Up toOðv4=f4Þ, the flare function is given by the polynomial

F ðhÞ ¼ 1 þ ð2 − v2

f2 −
v4

f4Þ h
v þ ð1 − 2v2

f2 Þ h2

v2 þ ð− 4v2

3f2 þ 2v4

3f4Þ h3

v3 þ
ð− v2

3f2 þ 2v4

3f4Þ h4

v4 þ ð 4v4

15f4Þ h5

v5
þ ð 2v4

45f4Þ h6

v6
. This result is fully con-

sistent with the OðΛ−4Þ SMEFT flare function in Eq. (37) for the
relations cð6ÞH□ ¼ −Λ2=ð2f2Þ, cð8ÞH□ ¼ −Λ4=ð2f4Þ.

6In this case, the correlations of Table III in Appendix C are
trivially satisfied, because the variables there defined Δv3 ¼
Δv4 ¼ …0 all vanish.

RAQUEL GÓMEZ-AMBROSIO et al. PHYS. REV. D 106, 053004 (2022)

053004-18



which reproduces the structure of the coefficients in
Eq. (86). By expanding H around its minimum,
the SMEFT potential in HEFT coordinates, finally
produces the structure in Eq. (86) with m2

h ¼
−2μ2ð1þ 3ϵ=4Þ and 2hjHj2i ¼ v2 ¼ v20ð1 − 3ϵ=4Þ,
where we made use of the lowest order VEV
v20 ¼ −μ2=λ and the OðΛ−2Þ correction ϵ ¼
−2cHv4=m2

hΛ2 ¼ μ2cH=ðλ2Λ2Þ. Notice that, for sake
of clarity in the illustration, here we have taken
cH□ ¼ 0, so there is no Higgs field renormalization.
(Notice also that treating only terms in the potential,
i.e., nonderivative couplings implies, up to a constant
shift, h ¼ h1.)

4. Example of potentials V where SMEFT is
not applicable

An example of a potential which cannot be written as a
SMEFT is

VðHÞ ¼ VSMðHÞ þ ε

H†H
ð88Þ

with ε a constant small enough so as to avoid unsettling the
potential away from H ¼ 0 by a finite fraction of v. Now
there is no symmetric Oð4Þ point where the function is
analytic, there is a divergence at the origin. Consistently
with the symmetric-point criterion, SMEFT cannot be used:
this model does not reproduce Eq. (86).

V. ww → n × h FOR ALL n IN HEFT AS THE
TELLTALE PROCESS: EXTRACTION OF F ðhÞ

EXPANSION COEFFICIENTS

In this section we will indicate how to extract the
coefficients of the flare function F in a process where n
Higgses are produced in the final state (see Fig. 3).
First we start by noticing that the measurement of the

ωþω− → h total cross section gives us information on the
value of the first nontrivial coefficient of F ðhÞ, a1 ¼ 2a.
The value of a is well constrained and hence we move on to
identify the processes where the subsequent coefficients of
the flare function can be measured.

Generalizing to n > 1 Higgs bosons in the final state, the
contributions to the amplitude will come from the contact
diagram and the t-channel and u-channel diagrams. The
contact diagram will give a contribution of n!san=ð2vnÞ
whereas the t=u-channel will produce a string proportional
to all the coefficients of F ðhÞ, am, for 1 ≤ m ≤ n − 1. So
that, for generic n, the amplitude will take the form

Tωω→n×h ¼
s
vn
XpðnÞ
i¼1

�
ψ iðq1; q2; fpkgÞ

YjIP½n�ij
j¼1

aIP½n�ji

�
; ð89Þ

where ψ iðq1; q2; fpkgÞ are functions depending on all four-
momenta involved in the process (the two Goldstone
bosons having momenta q1 and q2 and the kth Higgs
boson with momentum pk) which will be made explicit
below. These functions contribute to the angular integration
used to obtain the total cross section of the process. The
symbol IP½n� represents the integer partitions of n and it is a
collection of pðnÞ vectors with length jIP½n�ij each, and
components IP½n�ji . For example, for n ¼ 4 [see Eq. (95)
given shortly], IP½4� ¼ ff4g; f3; 1g; f2; 2g; f2; 1; 1g;
f1; 1; 1; 1gg and hence pð4Þ ¼ 5, and the lengths jIP½4�ij ¼
f1; 2; 2; 3; 4g and IP½4�12 ¼ 3. In that case the amplitude
takes the form

Tωω→4×h ¼
s
v4

ð4!a4 þ a3a1ψ2ðq1; q2; fpkgÞ
þ a22ψ3ðq1; q2; fpkgÞ þ a2a21ψ4ðq1; q2; fpkgÞ
þ a41ψ5ðq1; q2; fpkgÞÞ: ð90Þ

The strategy is to fit to data each an with increasing n
starting from the one-Higgs boson production, then fit two-
Higgs boson production, etc. We have developed a small
program for the computation of the amplitudes Tωω→n×h
that can be provided by the authors on request. We present
in the next Sec. VA the amplitudes for the production of
one, two, three and four Higgs bosons.

FIG. 3. Left: the an coefficients of the flare function F control the contact piece of ωω → n × h processes. A large number n of Higgs
bosons in the final state would appear as a flare of them in the detector readout, whence the nickname of the function. Right: t=u-channel
type diagrams also contribute to the ωω → n × h process; they produce terms proportional to a product of ai coefficients with i < n as
explained in the main text.
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A. Amplitudes of ωω → n × h with n= 1, 2, 3, 4

Formally, the amplitude ωω → h with the LO HEFT
Lagrangian in Eq. (3) is given by

Tωω→h ¼ −
a1s
2v

: ð91Þ

There is no on-shell cross section associated to this
amplitude (because of the impossibility to satisfy four-
momentum conservation with three on-shell massless
particles). The amplitude cannot be used off shell because
the Lagrangian of the EFT has been constructed on shell.
Therefore we move on and quote the amplitude with two
Higgs bosons in the final state, that is simply [26]

Tωω→hh ¼
s
v2

ða2 − bÞ ¼ s
v2

�
a21
4
− a2

�
; ð92Þ

but it will be useful to introduce some notation to system-
atize what follows and give it in a more involved way:

Tωω→hh ¼
s
v2

�
a21

ððz1 − 2Þf1 þ ðz2 − 2Þf2 þ 2Þ
4

− a2

�
;

ð93Þ

where we define, in the rest frame, the three-momentum
fractions fi ≡ jjp⃗ijj=

ffiffiffi
s

p
(s ¼ 4jjq⃗1jj2) for each Higgs

boson; the angular functions zi ≡ 2 sin2ðθi=2Þ with θi
being the angle between the ith Higgs boson and the first
ω Goldstone boson momenta, q⃗1 (that is, z1 ¼ 1 − cos θ,
z2 ¼ 1þ cos θ as usual in a two-body problem with t and u
channels). We also define zij ≡ 2 sin2ðθij=2Þ, θij being the
angle between the ith and jth Higgs bosons.
With this notation, the tree-level amplitude with a

larger number of Higgs bosons can be obtained (by
automated means); the one with three Higgs bosons in
the final state is relatively manageable even when given
in full,

Tωω→hhh ¼ −
s
8v3

�
a31

�
4f1f23

�
z23ðf1z23 − 1Þ

f3ðz3 − 2f1z23Þ þ f2z2
þ z13ðf1z13 − 1Þ
f1ðz1 − 2f3z13Þ þ f3z3

�

þ 2f3

�
f1

�
z23 − 2f2z23

−2f1f3z23 þ f2z2 þ f3z3
þ z13 − 2f1z13
−2f1f3z13 þ f1z1 þ f3z3

þ z13 þ z23

�
þ 3ðz3 − 2Þ

�

þ 2f1f2z12ð2f1ðf2z12 − 1Þ − 2f2 þ 1Þ
f1ðz1 − 2f2z12Þ þ f2z2

þ 2f1ðf2z12 þ 3z1 − 6Þ þ 6f2z2 − 12f2 þ 9

�

þ 4a1a2

�
f21ð2z1ð−2f2z12 þ f3ðz13 þ z23Þ − 3Þ − 4f2z12ðf3ðz13 þ z23Þ − 2Þ þ 3z21Þ

2f1f2z12 − f1z1 − f2z2

þ 2f1f2ð−2f2z12ðz2 þ 1Þ þ z2ðf3ðz13 þ z23Þ þ 3z1 − 3Þ þ z12Þ þ 3f22z
2
2

2f1f2z12 − f1z1 − f2z2
þ 6ðf2 þ f3 − 1Þ

−
2f1f3z23ð2f3ðf1z23 − 1Þ − 2f2 þ 1Þ

f3ðz3 − 2f1z23Þ þ f2z2
−
2f1f3z13ð2f1ðf3z13 − 1Þ − 2f3 þ 1Þ

f1ðz1 − 2f3z13Þ þ f3z3
− 3f3z3

�
þ 24a3

�
: ð94Þ

The amplitude with four Higgs bosons in the final state is complicated enough that it is worth quoting only one of the
terms, corresponding to the ordering ðp1; p2; p3; p4Þ of the four hmomenta in the final state, with the other 23 permutations
of these momenta not given. This one term reads

Tωω→hhhh ¼
s

16v4

�
a41

�ð2f1ðz1 − f2z12Þ þ f2z2Þð2f1ð−2f2z12 − f3z13 þ z1Þ þ 2f2ðz2 − f3z23Þ þ f3z3Þ
ðf1ðz1 − 2f2z12Þ þ f2z2Þðf1ðz1 − 2ðf2z12 þ f3z13ÞÞ þ f2ðz2 − 2f3z23Þ þ f3z3Þ

× ðf1ðz1 − 2ð2f2z12 þ 2f3z13 þ f4z14ÞÞ þ f2ð−4f3z23 − 2f4z24 þ z2Þ− 2f3f4z34 þ f3z3 þ 1Þ
�

þ 2a21a2

� ðf1z1 þ f2z2Þð2f1ð−2f2z12 − f3z13 þ z1Þ þ 2f2ðz2 − f3z23Þ þ f3z3Þ
ðf1ðz1 − 2f2z12Þ þ f2z2Þðf1ðz1 − 2ðf2z12 þ f3z13ÞÞ þ f2ðz2 − 2f3z23Þ þ f3z3Þ

× ðf1ðz1 − 2ð2f2z12 þ 2f3z13 þ f4z14ÞÞ þ f2ð−4f3z23 − 2f4z24 þ z2Þ− 2f3f4z34 þ f3z3 þ 1Þ

þ ðf1ðz1 − 2ð2f2z12 þ 2f3z13 þ f4z14ÞÞ þ f2ð−4f3z23 − 2f4z24 þ z2Þ − 2f3f4z34 þ f3z3 þ 1Þ
f1ðz1 − 2ðf2z12 þ f3z13ÞÞ þ f2ðz2 − 2f3z23Þ þ f3z3

× ð2f1ð−f2z12 − f3z13 þ z1Þ þ f2z2 þ f3z3Þ −
ð2f1ðz1 − f2z12Þ þ f2z2Þ
f1ðz1 − 2f2z12Þ þ f2z2

ðf1ðz1 − 2ð2f2z12 þ f3z13 þ f4z14ÞÞ
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þ f2ð−2f3z23 − 2f4z24 þ z2Þ þ 1Þ
�
þ 4a1a3

�
ðf1ðz1 − 2ðf2z12 þ f3z13 þ f4z14ÞÞ þ 1Þ

þ ðf1z1 þ f2z2 þ f3z3Þ
f1ðz1 − 2ðf2z12 þ f3z13ÞÞ þ f2ðz2 − 2f3z23Þ þ f3z3

ðf1ðz1 − 2ð2f2z12 þ 2f3z13 þ f4z14ÞÞ

þ f2ð−4f3z23 − 2f4z24 þ z2Þ − 2f3f4z34 þ f3z3 þ 1Þ
�

þ 4a22
sðf1z1 þ f2z2Þðf1ðz1 − 2ð2f2z12 þ f3z13 þ f4z14ÞÞ þ f2ð−2f3z23 − 2f4z24 þ z2Þ þ 1Þ

f1ðz1 − 2f2z12Þ þ f2z2
− 8a4

�
þ perm: ð95Þ

and the 23 permutations of the four final-state Higgs
momentapi are to be taken in the computer code by invoking
the amplitude with exchanged arguments. Permuting the ith
Higgs with the jth Higgs will interchange zi ↔ zj, fi ↔ fj
and zik ↔ zjk. (The indices of the ai coefficients are of
course not to be permuted, as they correspond to the terms in
the Lagrangian, not the external boson legs.)
A check of these amplitudes is to take the limit to the

Standard Model by setting the ai coefficients to the values
a1 ¼ 2, a2 ¼ 1, a3 ¼ 0, and a4 ¼ 0. Because the SM is
renormalizable and unitary, these derivative terms must
vanish, as indeed our computation reproduces, having
Eqs. (92) and (94) above as well as Eq. (95) satisfy

TSM
ωω→hh ¼ 0; TSM

ωω→hhh ¼ 0; TSM
ωω→hhhh ¼ 0; ð96Þ

where conservation of momentum has been used. For a
more detailed comparison, we refer to Ref. [48], which
provides the physical WW → hh cross section in the SM,
with σ ∼ 102 pb [this cross section gets reduced to σ ∼
OðfbÞ for the actual LHC process pp → hhþ 2 jets
containing this vector boson scattering].

B. Cross sections

Equations (91)–(95) and successive for an increasing
number of Higgs bosons are what is needed for a phe-
nomenological extraction of the ai coefficients in the TeV
region. From single Higgs production, through Eq. (91), a1
is already constrained (see Sec. VI A 2), so current work
focuses on two-Higgs processes which allows to address
a2 ¼ b in Eq. (92). The a1 appears squared (and is known
to 10% precision) and a2 appears linearly, interference in
this latter amplitude is possible and the sign of the
deviations of a2 from the SM value is at hand.
With a1 and a2 already constrained, it would become

feasible to in turn constrain a3 (null in the Standard Model)
with Eq. (94) and so forth for higher coefficients with
higher-point processes with more bosons in the final state.
Since each successive amplitude is linear in the highest
appearing coefficient, their signs can be determined if a
separation from the SM value is found.

An important correlation that allows to ascertain whether
SMEFT is at play comes from the observation that at order
1=Λ2 all the deviations from the SM in a1 through a4 stem
from the same operator [see Eq. (35)]. Note also that the
amplitudes in Sec. VA are the net deviations from the
Standard Model in HEFT, since their SM prediction is zero.
Then, all those amplitudes are necessarily linear in the same
Wilson coefficient:

Tωω→nh ∝
�

s
vn−2Λ2

�
cH□ in SMEFT up toOðΛ−2Þ: ð97Þ

This means that taking ratios of cross sections, the only
parameter that encodes BSM physics in SMEFT in the
relevant TeVenergy region drops out, and what remains is a
pure prediction, independent of the BSM physics scale, but
dependent only on the structure of SMEFT:

σðωω → nhÞ
σðωω → mhÞ ¼ independent of cH□: ð98Þ

The ratios become weakly dependent on the value of the
parameter when order-1=Λ4, dimension-eight terms are
included, as seen in Eq. (37). Additionally, there could be a
contribution from the dimension-six custodial-symmetry
breaking operator in both the SM and the SMEFT operator
in Eq. (18). But if the SMEFT counting is sensible and
custodial symmetry breaking suppressed, as seems to be the
case, this effect should be small and a reasonable prediction
is possible. It will be explored numerically in a follow-up
document. This can be a way of distinguishing whether
SMEFT is applicable or not, from “low” energy data,
without access to the underlying UV completion of any
new physics. To use the equation in practice, one can
compare the predictions from the explicit computation of
Eq. (97) with experimental data, and see whether indeed
there is no room for a discrepancy at order 1=Λ2.
Scattering amplitudes based on Goldstone bosons can be

related to interpreted as scattering amplitudes of longi-
tudinal gauge bosons at the expense of OðmW=

ffiffiffi
s

p Þ
corrections. At WW center-of-mass energy of 800 GeV
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(challenging but not outlandish), this becomes a 1%
expansion parameter, of the size of αEM. It is therefore a
very reasonable starting point for energies well enough
over the threshold. The actual comparison with experi-
mental data still needs to be eventually done with physical
W states. However, the Goldstone couplings discussed in
the article (a1; a2; a3;…) provide the processes with
physical Ws as well. For example, as it happens with
ωþω− → hh, WþW− → hh is also fully determined by
a1 ¼ 2a and a2 ¼ b at LO in HEFT [48,68], even beyond
the naive equivalence theorem [34,35]. Furthermore, a
complete comparison with data needs to take these inter-
mediate gauge bosons into account. This is no problem,
nevertheless, as HEFT’s leading order Lagrangian [17]
already incorporates all possible W interactions, deter-
mined at that order by the same a1; a2;…. Still, the
possibility of separating longitudinal and transverse W
polarizations in data analysis would improve the efficiency
of theory-experiment comparisons. Thus, precise enough
experimental data should be able to recover the flare-
function coefficients that set the amplitudes.

VI. FINDING OUT WHETHER THE F ðhÞ
FUNCTION HAS A ZERO

Among the precise conditions that allow to express a
HEFT as a SMEFT, thoroughly studied in [22], the first
necessary requirement among those spelled out in Sec. III C
is the existence of an Oð4Þ symmetric point h ¼ h�.
This requires a zero, which recalling the Taylor expansion
in Eq. (4) yields the relation

F ðh�Þ ¼ 1þ
X∞
n¼1

an
hn�
vn

¼ 0:

In this section we will try to address what can be done,
empirically and assuming that any UV physics is not
known or understood (bottom-up approach) to improve
the knowledge of whether such zero h� could be present.

A. Finding the Oð4Þ fixed point candidate by looking
at the polynomial approximation of F ðhÞ

1. From one or two Higgs production

Knowledge of the ai coefficients is rapidly evolving, as
they directly correspond to the κi scaling cross sections
with respect to the Standard Model ones. A data-driven
constraint for a1 based on LHC run I data can be found in
[69]; at 2σ, those authors conclude that a ∈ ½0.7; 1.23�.
A bound on b was originally obtained by examining the
absence of a resonance inWLWL scattering below 700 GeV
[70] (according to [61], the dispersive methods used for
obtaining these bounds have a 10%–20% uncertainty on the
position of the resonance). Direct ATLAS and CMS work
has improved those earlier limits, and the latest bounds

on the first two ai coefficients are discussed next in
Sec. VI A 2; those coefficients a1 ¼ 2a and a2 ¼ b remain
the only ones with current experimental constraints.
In Fig. 4, a straight line shows the SMEFT correlation

obtained in the first column of Table I. The rest of the plane
corresponds at most to HEFT theory. The SM is the point in
the center of the figure. Finally the 95% confidence bands
for the a1 and a2 parameters are presented as dashed lines
with the numbers taken from the caption of Table II.

FIG. 4. SMEFT at order 1=Λ2 predicts the correlation a2 ¼
2a1 − 3 from the first column in Table I, which is plotted against
the current 95% confidence intervals for these two HEFT
parameters [51,53].

TABLE II. We input the 95% confidence-level experimental
bounds a1=2 ¼ a ∈ ½0.97; 1.09� [51] and, for the middle column,
a2 ¼ b ¼ κ2V ∈ ½−0.43; 2.56� [52] (see the second erratum), by
the ATLAS collaboration (top row) or the CMS collaboration
(bottom row) interval of a2 ¼ b ¼ κ2V ∈ ½−0.1; 2.2� [53]. With
them we have calculated and show here the expected correspond-
ing 95% confidence limits (C.L.) intervals for several WLWL ∼
ωω → nh coupling, an, employing the relations of Table I.
Violations of the intervals in the first column would sow doubt
on the SMEFT adequacy at OðΛ−2Þ; surpassing any in the third
column, on its perturbativity; and those of the middle column
would void SMEFTof much significance as an EFT. They can be
further tightened with improved experimental data for κ2V.

Consistent SMEFT
range at order Λ−2

Consistent SMEFT
range at order Λ−4

Perturbativity
of Λ−4 SMEFT

Δa2 ∈ ½−0.12; 0.36� ATLAS ATLAS
a3 ∈ ½−0.08; 0.24� a3 ∈ ½−4.1; 4.0� a3 ∈ ½−3.1; 1.7�
a4 ∈ ½−0.02; 0.06� a4 ∈ ½−4.2; 3.9� a4 ∈ ½−3.3; 1.5�
a5 ¼ 0 a5 ∈ ½−1.9; 1.8� a5 ∈ ½−1.5; 0.6�
a6 ¼ 0 a6 ¼ a5 a6 ¼ a5

CMS CMS
a3 ∈ ½−3.2; 3.0� a3 ∈ ½−3.1; 1.7�
a4 ∈ ½−3.3; 3.0� a4 ∈ ½−3.3; 1.5�
a5 ∈ ½−1.5; 1.3� a5 ∈ ½−1.5; 0.6�

a6 ¼ a5 a6 ¼ a5
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2. Multiple Higgs production: Testing the
SMEFT-induced correlations over the HEFT

function F coefficients

We employ the correlations found earlier in Table I, in
conjunction with current direct experimental bounds on
deviations of a1 and a2 from their Standard Model values,
to propagate the information to other coefficients of F that
are presently unconstrained provided SMEFT holds.
These are then quoted in Table II, an interesting new

contribution of this article to the phenomenology of HEFT.
If, for example, a3 is measured to be different from zero,
this would immediately establish new physics (which is
known); but additionally, if it exceeds the bounds given in
the Table, it would mean that SMEFT correlations are being
violated and the EFT has to be extended into HEFT.
The constrains in the first column assume the validity of

SMEFT up to order 1=Λ2, OðΛ−2Þ; because of the tight
experimental bounds on the WW → h coupling a1 ¼ 2a,
the remaining an couplings are strongly limited. If SMEFT
is considered up to 1=Λ4, OðΛ−4Þ (as we do in the second
column), the WW → hh coupling a2 ¼ b becomes inde-
pendent, as seen in Table I; its experimental bounds are
then also an input. Being poorly measured so far, it
introduces a large uncertainty in the higher correlations.
Thus, the bounds in the second column of Table II are much
looser. Those large uncertainties can be much reduced by
improving the experimental knowledge of a2: a decrease of
its uncertainty by an order of magnitude scales almost
linearly and makes these errors roughly a factor 10 smaller.
Notice that the values in the third column in Table II are

similar for ATLAS and CMS. The reason is that when
the experimental uncertainty of Δa2 is very large, at
the practical level, its only limitation comes from the
constraint jΔa2j≤5jΔa1j; this is minð5a−1 ;−5aþ1 Þ ≤ Δa2 ≤
maxð−5a−1 ; 5aþ1 Þ. Since effectively the bounds just depend
on the allowed values for a1 we are obtaining the same
outcomes for ATLAS and CMS in the third column.

B. When Schwarz’s lemma guarantees a function’s zero

In this subsection we examine and adapt a known result
from complex-variable analysis that guarantees the exist-
ence of a zero of a complex function: in the case of F ðhÞ
this would be an Oð4Þ fixed point candidate around which
SMEFT could be built.
The information that we would eventually need to have

at hand to exploit the theorem would be a number of
coefficients of the Taylor series, depending on any future
accelerators energy reach (Sec. V). To avoid too large a
mathematical digression, Schwarz’s lemma and two of its
corollaries are detailed in Appendix A. What can guarantee
a zero of F is the second corollary. The needed hypotheses
are as follows:

(i) First, the function F ðhÞ (extended to be a complex
function of a complex h argument, in units of v

throughout this whole section) needs to be analytic
inside a disk of radius jhj ¼ R around the vacuum
h ¼ 0. This disk has to be large enough to reach
the possible symmetric point (i.e., h ¼ h� or, in
SMEFT, jHj ¼ 0) from the observed vacuum (i.e.,
hjHji ¼ 1=

ffiffiffi
2

p
, or in HEFT hhi ¼ 0), where one

constructs the flare function F ðhÞ.
(ii) Second, the image of that disk (the set of possible

values of F ) has to be contained inside another disk
of radius M (the maximum value of jF j) centered at
F ð0Þ ¼ 1. Finally, the derivative of the function is
assumed to have been measured, so that F 0ð0Þ ¼ a1
is known.

The second corollary then guarantees that a disk of
radius Rmin ≔ R2a21=γM centered at F ¼ 1 is completely
contained in the image of F . Here γ is

γ ¼ ð ffiffiffi
2

p þ 2Þð ffiffiffi
2

p þ 1Þffiffiffi
2

p ≃ 5.83: ð99Þ

Therefore, a zero of F ðhÞ is ensured if that radius Rmin is
greater than 1 (so that F ¼ 0 can be reached from F ¼ 1),

R2a21=γM > 1 ⇒ ∃ h�jF ðh�Þ ¼ 0: ð100Þ

Depending on how large the ai coefficients end up being,
this lemma could provide a tool to extract a scale at which
one is sure that there exists an Oð4Þ fixed point candidate.
To use that second corollary in Appendix A, notice that

by construction we have that F ð0Þ ¼ 1 and hence we can
employ the auxiliary gðhÞ≡ F ðhÞ − 1 satisfying gð0Þ ¼ 0
and g0ð0Þ ¼ F 0ð0Þ ¼ a1, which is the g to which the
corollary applies. This means that, if the function F ðhÞ
is analytic in the open disk of radius R, denoted asDð0; RÞ,
then we will have that the condition for the existence of at
least one (complex) value of the Higgs field h� ∈ Dð0; RÞ
such that F ðh�Þ ¼ 0 is [see Eq. (A8) below]

R2 >
γM
a21

; ð101Þ

where M is the maximum value that jF ðhÞj takes for
h ∈ Dð0; RÞ. For clarification see Fig. 5. Regrettably, the
application of the lemma will give a definite positive
answer to the existence of a zero if MðRÞ is at most R2,
which means that we can only profit from the lemma for
polynomials of order up to 2 (due to analyticity). This still
leaves room for some cases that we explore below, saliently
including the variations around the SM that are conceivable
in the near future, with F up to order 4.
Experimentally, the full F ðhÞ cannot be measured. It is

only its Taylor expansion that can be accessed in practice
(unless the SM UV completion is directly observed, of
course). Hence, we must follow the logic:
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(1) First we must assume that F ðhÞ is analytic in a
neighborhood of the h ¼ 0 physical vacuum (and
hence its Taylor expansion, and thus HEFT, makes
sense). This region can be taken as the open
disk Dð0; RÞ.

(2) Suppose we measure k coefficients of the Taylor
expansion of the function F ðhÞ such that, for h in
units of v,

F ðhÞ ¼ 1þ
Xk
i¼1

aihi þ RkðhÞ;

where of course we trust the expansion up to an
energy scale such that we know that, for h ∈ Dð0; RÞ,
F ðhÞ is analytic.7 Here RkðhÞ is the remainder
of the Taylor expansion. We must neglect this
Taylor remainder since, although it is bounded by
fmaxjhj¼R jF ðhÞjgβkþ1=ð1 − βÞ for β ∈ ½jhj=R; 1Þ, it
cannot be experimentally accessed.

(3) Assign

M ¼ max
jhj¼R

����Xk
i¼1

aihi
����:

The zeroth order coefficient is omitted because we
must use the maximum of gðhÞ≡ F ðhÞ − 1, as
described in the Appendix A. Notice that the maxi-
mum modulus of

P
k
i¼1 aih

i
1 is reached at the boun-

dary of its domain thanks to the maximum modulus
principle.

(4) Using the second corollary we will have that we can
assure the presence of an Oð4Þ fixed point if we
reach a field intensity such that

jhj2 ¼ R2 >
γM
a21

: ð102Þ

1. Standard Model case

This discussion has been quite abstract, so let us try to
apply Eq. (100) in practice. The first obvious example is the
Standard Model.
We can apply Schwarz’s lemma to either the FðhÞ

function, in the SM FðhÞ ¼ 1þ h, or its square F , the
flare function. In the first case we see that FðhÞ is analytic
for all h ∈ C, and hence we can take R as big as we want. It
is immediate to see that M ¼ R so that we can assure the
presence of a zero of FðhÞ whenever

R2 > γR; ð103Þ
which can be met for R ¼ jhj > γ (in units of v).
If instead we apply Schwarz’s lemma directly to the flare

function F ðhÞ ¼ F2ðhÞ, we find no useful information, as
can be understood from the result in the next example.

2. Generic second-order polynomial

Taking F ðhÞ ¼ 1þ a1hþ a2h2, the condition to assure
the presence of a fixed-point candidate becomes

R2 >
γ

a21
ðja1jRþ ja2jR2Þ ≥ γ

a21
max
jhj¼R

ðja1hþ a2h2jÞ: ð104Þ

So that for R sufficiently large, the condition will be met if
1 > γja2j

a2
1

, i.e., a21=a2 > γ assures the presence of a fixed-

point candidate. For the known a1 ¼ 2 central value we
obtain that

FIG. 5. Left-hand side: the disk of radius R, Dð0; RÞ (orange), is the region where the Taylor approximation of the F ðhÞ function is
supposedly trusted, which can only be experimentally assessed. Right-hand side: the grayish outer region is the image of Dð0; RÞ,
namely F ðDð0; RÞÞ, and M is the maximum distance of F ðDð0; RÞÞ to 1 (thus, the maximum value of jF − 1j for jhj ≤ R). Under the

conditions of applicability for Schwarz’s lemma, we can assure that the disk on the right (bluish),Dð1; R2c2
1

γM Þ, is contained inF ðDð0; RÞÞ,
i.e., Dð1; R2a2

1

γM Þ ⊂ F ðDð0; RÞÞ. When it happens that R
2c2

1

γM > 1, the radius of the disk in the image F plane around F ðh ¼ 0Þ ¼ 1, we are
assured that F ðhÞ has a zero for some h� ∈ Dð0; RÞ.

7The difficulty here is that, unlike in analyticity in Mandelstam
s that ultimately follows from causality via Titchmarsh’s theorem
[59], it is hard to find a guiding principle in h space that justifies
assuming analyticity. At least we are exposing the necessary
hypothesis, which is often taken for granted when writing down a
SMEFT.
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4

γ
> ja2j ⇒ if a2 ∈ ð−0.68; 0.68Þ ⇒ zero of F assured:

ð105Þ

This result is in agreement with the condition of positivity

on the discriminant of the polynomial which gives a2
1

4
> a2

(SMEFT region in Fig. 4) and hence guarantees a zero of
F ðh�Þ ¼ 0 for h� ∈ R.
Comparing to the interval for a2 given by experiment and

quoted in Table II, we see that for negative a2, the
experimental bound is already inside the Schwarz’s lemma
limit; if the upper experimental limit also drops into the
0.68 boundary (which is not unthinkable, only a factor 3
better than the current LHC extraction), then Schwarz’s
lemma will tell us that a zero of F is at hand unless new
discoveries of higher ai coefficients require further scru-
tiny. Because a third-order polynomial always has a real
zero, this takes us to a fourth order one, discussed in the
next paragraph.

3. Perfect-square, fourth-order polynomial

Taking now a quadratic FðhÞ ¼ 1þ αhþ βh2 entails a
quartic flare function

F ðhÞ ¼ 1þ 2αhþ ðα2 þ 2βÞh2 þ 2αβh3 þ β2h4: ð106Þ

In this case, the condition of Eq. (102) that guarantees the
presence of a symmetric point candidate h� becomes

α2

γ
> β:

Squaring the above relation, for the central value a1 ¼ 2,
we get the bound on the fourth order coefficient:

a41
4γ2

> a4 ⇒ if a4 ∈ ð−0.118;0.118Þ⇒ zero of F assured:

Notice of course that if a4 is measured to be negative,
higher order terms will be needed in the expansion of F
(see Sec. IVA 1) to guarantee its positivity.

VII. FAR FUTURE: MULTIPLE HIGGS
PRODUCTION IN EXTREME-T COLLISIONS
TO ACCESS THE SM SYMMETRIC POINT

The pion was first discovered in 1947 [71,72] when
precious few events from cosmic rays were obtained in
photographic emulsions taken at high altitudes; nowadays,
they are routinely produced by the thousands per event in
central heavy-ion collisions at the LHC [73]. Whereas
currently multiple Higgs-boson events (or for that matter,
multiple longitudinal gauge-boson ones) are not possible,
one day they might come within reach. At that point, the
entire F ðhÞ function (or at least, to a very large order in the
Taylor expansion) may become part of potential observ-
ables. We wish to illustrate the possibility of accessing it
with such future work in this subsection.
The idea of a large number of Higgs bosons (which

inspires the title of this article) has been put forward before
[74–76] although in a different context, in a proposal to
solve the hierarchy problem. Here, we notice that the
appearance of F ðhÞ in Eq. (3) makes it that, in a thermal
medium with temperatures of order the hundreds of GeV
(over 2 orders of magnitude beyond what is possible today,
but not an arbitrarily large scale, and within the validity of
the EFT), the process X → n × hþm ×WL=ZL with a
thermal distribution becomes possible. In the next lines we
propose a very schematic analysis chain that proceeds
according to the following flow diagram:

�
Measure

pT

�
⇒

0
B@ Fit to it

T and

Ek

1
CA⇒

�
Obtain F ðh1Þ

from Ek

�
⇒

0
BBB@

Measure volume

V

using HBT

interferometry

1
CCCA⇒

0
BBBBBB@

Use

V; T

Ek

to predit

N

1
CCCCCCA⇒

0
BBBBBB@

Compare

to

measure

N

as check

1
CCCCCCA

A. Transverse-momentum distribution

As pioneered by Hagedorn [77,78], an observable
revealing the statistical distribution is the pT distribution
of the bosons produced.
In the case of a free-boson gas with Lagrangian

1
2
ðð∂hÞ2 þ ð∂ωiÞ2Þ this is given [79] by

d2N
2πpTdpTdη

����
0

¼ mT
gV

ð2πÞ3 e
μ−E
T : ð107Þ

While μ is the chemical potential associated to a conserved
particle number (which can be left out if events with a
different number of bosons are considered), V is the volume
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of the source and g ¼ 1, 3 or 4 depending on what is
measured (h, VL or both), we want to call attention to the
transverse masslike quantity mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

T

p
≃ pT.

Integrating Eq. (107) over the longitudinal momentum
(or rapidity) then yields a typical pT distribution:

fBoseðpTÞdpT ¼ constant×pTdpT

Z
∞

0

dpx
1

e
1
T

ffiffiffiffiffiffiffiffiffiffiffi
p2
xþm2

T

p
−1

:

ð108Þ

In the simplest free gas described by Eq. (107),
fBoseðpTÞ falls off as a simple exponential. This
Boltzmann-like dependence is obtained from mean occu-
pation numbers

n̄αðkÞ ¼ XαðkÞ
∂ logZ
∂XαðkÞ

ð109Þ

with XαðkÞ ¼ expð−EαðkÞ=TÞ and the partition function
expressed [77] as

Z ¼
X
n

Y
αk

XαðkÞn̄αðkÞ: ð110Þ

Here k ¼ 0; 1; 2;…∞ as corresponds to a boson occupa-
tion number. The momentum distribution can then be
obtained from the density of states V

2π2
d3p.

The pT dependence of Eq. (108) is modified in
the interacting theory: this is what gives access to the
function F ðhÞ.
In case there is an interacting Hamiltonian, containing

the F ðhÞ function, it is possible, through the statistical
distribution of bosons to access it almost completely or at
least to a very high degree in the ai expansion. Such
statistical distribution [80] [see Eq. (26.6) in page 251
there, though in a nonrelativistic treatment) will amount to

dN
d3k

¼ −gV
ð2πÞ3 T

X
n∈Z

1

iωn −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k þ Σðk; iωnÞ

q ; ð111Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, the summation is carried over

Matsubara frequencies ωn ¼ 2πnT, and Σðk; k0Þ is the
self-energy of the (Higgs or Goldstone) bosons defined
through

½Gðk; k0Þ�−1 ¼ ½½G0ðk; k0Þ�−1 − Σðk; k0Þ�−1: ð112Þ

The propagator Gðk; iωnÞ (see [81,82] for a detailed
discussion on analytic continuation of propagators) can be
computed from the Euclidean partition function, which has
a path-integral representation,

Z ¼
Z

DhDω exp

�
−
Z

β

0

dτ
Z

d3x

�
1

2
F ðhÞ∂μωi

∂μω
j

�
δij þ

ωiωj

v2 − ω2

�
þ 1

2
∂μh∂μh

��
; ð113Þ

where summation in the Euclidean μ indices is assumed. We then directly see how the F ðhÞ function affects the statistical
distribution of bosons through their self-energy. The coordinate-space representation of this propagator for Higgs bosons
will simply amount to

Gðx; τÞ ¼
Z

DhDωhðx; τÞhð0; 0Þ exp
�
−
Z

β

0

dτ
Z

d3x

�
1

2
F ðhÞ∂μωi

∂μω
j

�
δij þ

ωiωj

v2 − ω2

�
þ 1

2
∂μh∂μh

��
: ð114Þ

Once this path integration has been estimated on the lattice
or by other means, the self-energy from Eq. (112) can be
extracted, and substituting it into Eq. (111), a pT spectrum
directly comparable with experiment can be obtained as a
functional of F .

B. Number of Higgs bosons

Additionally, we can try to get an idea of what is the
number of Higgs bosons that should be produced in an
experiment in order to access the SMOð4Þ symmetric point
h� ¼ −v. The SM Higgs potential is

VSMðϕÞ ¼
1

2
μ2ϕ · ϕþ 1

4
λðϕ · ϕÞ2; ð115Þ

where −μ2; λ > 0 and ϕ · ϕ ¼ ϕ2
1 þ ϕ2

2 þ ϕ2
3 þ ϕ2

4.
Choosing the unitary gauge, the SM vacuum sits at ϕ1 ¼
ϕ2 ¼ ϕ3 ¼ 0 and ϕ4 ¼ v and ϕ ¼ ϕ4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−μ2=λ

p
. After

redefining ϕ4 ¼ vþ h the physical Higgs mass amounts to
mh ¼

ffiffiffiffiffiffiffiffiffi
2λv2

p
, which using mh ¼ 125.3 GeV and v ¼

246 GeV gives λ ≃ 0.13.
The invariant point under Oð4Þ in field space is the

origin ϕ ¼ 0. The difference of potential energy density
between the SM vacuum and the SM Oð4Þ invariant
point is

ΔV ¼ Vð0Þ − VðvÞ ¼ 1

4
λv4 ≃ 1.19 × 108 GeV4

¼ 1.49 × 1010 GeV=fm3:
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Now we wish to translate this energy density into a
temperature, for doing so we look for T such that

εðTÞ≡ 1

ð2πÞ3
Z

d3k
Ek

eEk=kBT − 1
¼ ΔV; ð116Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ℏ2k2 þm2c4

p
is the relativistic energy of a

boson with three-momentum k. This gives a temperature of
kBT ¼ 140 GeV (which matches the EW second order
phase transition critical temperature [83]). Using this
temperature we are ready to compute the number density
of Higgs bosons at a temperature where the SM symmetric
point is reached:

nðTÞ ¼ N
V

¼ 1

ð2πÞ3
Z

d3k
1

eEk=kBT − 1

¼ 258 Higgs bosons=ð0.1 fmÞ3: ð117Þ

This is certainly a daunting concentration of energy and
particle number that is not expected in the foreseeable
future. But when/if it is achieved, the absolute number can
serve as cross-check of the pT spectrum line shape to
extract a temperature (hopefully the same) if the volume of
the hot source, addressed next, is known.

C. Obtaining the volume of a multi-Higgs source

It remains to guess what would be the hot source volume
that a future multi-Higgs factory (i.e., a collider capable of

producing statistically significant numbers of Higgs
bosons) could achieve. This type of machine would allow
us to explore the existence of such a symmetric point by
directly heating the electroweak sector to populate it, and to
explore the properties of the EW phase transition.
With the data in hand, the volume could be obtained by

using Hanbury-Brown-Twiss (HBT) or its particle physics
analog Goldhaber-Goldhaber-Lee-Pais (GGLP) interfer-
ometry: the Higgs bosons exiting the collision would retain
memory (by interference) of the radius of the source that
emitted them. The technique is routinely used in astro-
physics to establish the size of astrophysical objects from
the emitted photons, and in nuclear collisions by analyzing
pions. That future electroweak collider could likewise
obtain the radius of a hot electroweak ball from the
Goldstone and Higgs bosons emitted.
Let us state schematically how this interferometry works

(a comprehensive review can be found in [84]). Suppose
that a source has emission points continuously distributed
in a space-time volume V4 with an emission probability
amplitude, Πðr; kÞ, of emitting a particle with momentum k
[on the mass shell with plane-wave wave function
ψkðrÞ ∝ eik·r] at the space-time point r. Hence, the total
probability of observing the emission of one particle with
momentum k from the source is PðkÞ ¼ RV4

d4rjΠðr; kÞj2.
Likewise, the total probability of measuring two particles

with momenta k1 and k2, assuming the two emissions are
uncorrelated, i.e., Πðr1; r2; k1; k2Þ ¼ Πðr1; k1ÞΠðr2; k2Þ,
amounts to

Pðk1; k2Þ ¼
Z
V4

d4r1d4r2

����ψk1ðr1Þψk2ðr2Þ þ ψk1ðr2Þψk2ðr1Þffiffiffi
2

p
����2jΠðr1; k1Þj2jΠðr2; k2Þj2

¼ Pðk1ÞPðk2Þ þ
Z
V4

d4r1d4r2 cos ½ðr1 − r2Þ · ðk1 − k2Þ�jΠðr1; k1Þj2jΠðr2; k2Þj2: ð118Þ

The GGLP experiment could be adapted to measuring, at two detection points d1 and d2, two Higgs bosons with precise
momentum k1 and k2 respectively (see Fig. 6). The correlation function among the two momenta is

Cðk1; k2Þ ≔
Pðk1; k2Þ
Pðk1ÞPðk2Þ

¼ 1þ
R
V4
d4r1d4r2 cos ½ðr1 − r2Þ · ðk1 − k2Þ�jΠðr1; k1Þj2jΠðr2; k2Þj2

Pðk1ÞPðk2Þ
: ð119Þ

Under the assumptions explained thoroughly in [85] [neglection of higher order symmetrization, smoothness and equal time
approximations, useful for large (RHIC-like) sources] the correlation function in Eq. (119) simplifies to

Cðk1; k2Þ − 1 ¼
Z

d3r0SKðr0Þ cos ½ðr1 − r2Þ · ðk1 − k2Þ�

SKðr0Þ ≔
R
V4
d4r1d4r2jΠðr1; k1Þj2jΠðr2; k2Þj2δðr0 − r1 þ r2Þ

Pðk1ÞPðk2Þ
; ð120Þ
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where K ¼ k2 þ k1 is the total momentum of the pair of
outgoing particles. The function SKðr0Þ encodes “the
distribution of relative positions of particles with identical
velocities and total momentum K” [85] and it gives
information about the size of the region of homogeneity
of a source (i.e., the region where the equilibrium assump-
tions can be taken). The curvature of Cðk1; k2Þ at q ≔
k1 − k2 ¼ 0 is related to the mean-square separation of the
three-dimensional quadrupolar moments [85]

−
Cðk1; k2Þ
dqidqj

����
q¼0

¼
Z

d3rSKðrÞrirj: ð121Þ

In this way we can obtain the volume of the region
where the source can be considered homogeneous and
the equilibrium conditions apply.

VIII. CONCLUSIONS

In this article we have bridged between the SMEFT and
HEFT formalisms following the work of other groups [19–
23]. We have focused on the Higgs-flare function F that
controls the derivative couplings of two Goldstone bosons
ωi to any number of Higgs bosons. We have exhaustively
studied this flare function F and particularly addressed the
existence of its key zero at a symmetric point in the ðωi; hÞ
field space. In what follows we summarize the novel results
presented here.
Saliently, we have provided a simple derivation of the

previously known conditions on the flare function F ðhÞ
and its derivatives around the EW symmetric point. By
comparing the Taylor expansions between the symmetric
point and our vacuum, the correlations induced by
SMEFT’s validity on HEFT coefficients are exposed at
fixed order in the EFT expansion. We believe that this will
extend the understandability of the criteria for SMEFT to
exist, so far mostly discussed in geometric terms.
We extend previous results concerning the expression of

a few coefficients of this function in terms of the cH□
Wilson coefficient of SMEFT in Sec. II; in our work we
have addressed a larger number of such coefficients, we
have employed the Warsaw basis, in contrast with earlier
analyses, and we have proceeded to the next order (1=Λ4)

in the SMEFT expansion. We have identified the relevant
TeV-scale SMEFT operators at dimensions-six and -eight;
we have then employed the correlations that we here report,
together with ATLAS and CMS constraints in order to
identify the HEFT coefficient space where SMEFTat either
dimension-six or dimension-eight can be deployed.
With the latest ATLAS and CMS bounds on the a1 (also

known as 2κV) and a2 (known as κ2V) coefficients we have
explicitly given 95% confidence intervals for a few ai, i > 2
ones, that if exceeded would automatically rule out SMEFT,
at least to the orders here considered, and point out the need
of extending the SMEFT framework.
Further, we have completely eliminated the Wilson

coefficients and obtained correlations that are solely
expressed in terms of the HEFT parameters and can be
used to falsify SMEFT itself from within the wrapping
theory (Secs. III and IV). These correlations provide simple
tests that analysts following upcoming and future exper-
imental data can employ to test the framework of SMEFT.
This is the thrust of a companion paper submitted together
with this manuscript [86] that provides some additional
discussion.
It may be useful for those analyses to have explicit

expressions of the ωω → nh amplitudes in HEFT and
therefore we explicitly provide in Sec. VA the leading
order in perturbation theory of those with lowest Higgs
number n ¼ 1, 2, 3, 4. An automated program applicable to
generic n can be provided on demand.We have also noticed
that, to leading order in the SMEFT counting and in the
TeV scale, ratios of cross sections are pure numbers whose
value is intrinsic to the structure of SMEFT and indepen-
dent of the order-six Wilson coefficient. In future work, we
additionally plan to address such cross sections with the
physical experimental cuts so that the parameter space can
directly be compared with data.
Finally, a few additional original contributions of this

work are listed here: Section IV provides a thorough study
of the flare function F ðhÞ and its properties such as
positivity from the boundedness from below of the
HEFT Hamiltonian; Sec. VI studies what can be said
about a possible zero of this function combining Schwarz’s
lemmas of complex analysis and the current knowledge of
the first two coefficients; and Sec. VII discusses how far-
future colliders could access the full function by producing
Higgs bosons at finite temperature. While ωω → nh
processes allow one to access F order by order, a future
collider that could substantially increase the temperature of
the collision environment would open the entire function
via the pT spectrum of the emitted Higgs bosons.
In Appendix C and also in the companion paper [86] we

have given similar correlations that we have extracted
among the coefficients of the VðhÞ nonderivative Higgs
potential. This is attractive because it does not require the
equivalence theorem [the process ωω → nh needs to be
extracted from WLWL → nh data and corrections are

FIG. 6. HBT/GGLP interferometry: Detecting two particles
with momenta k1 and k2 at the respective detection points d1 and
d2 and studying their correlation gives information about the
dimensions of the homogeneity region of source in bluish.
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needed at low energy, while VðhÞ does not involve the
Goldstone bosons] and is already accessible at LHC
energies. Interestingly, it is affected by the properties of
F since it is this function which controls the change of
variable between HEFT and SMEFT, h1 → h. The same
reasoning applies to the Yukawa fermion-Higgs couplings
which is another interesting alley of investigation for future
works where activity is ongoing [87].
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APPENDIX A: SCHWARZ’S LEMMA IN
COMPLEX ANALYSIS AND ITS COROLLARIES

This brief Appendix provides a short overview of
Schwarz’s lemma, which we quickly use to demonstrate
the corollary of interest for Sec. VI B. Again, the idea is
whether the image set underF includes or not a disk around
F ¼ 1 large enough to encompass the origin F ¼ 0. The
second corollary below gives a sufficient condition for this
to be true. The point h� which is the preimage of F ¼ 0 is
the symmetric point around which the SMEFT expansion
can be constructed. If the conditions of the second corollary
are met, we know that F will be analytic in a region broad
enough to guarantee the power expansion.
To start, take a disk Dzð0; 1Þ around the origin in the

preimage complex space (in our application, the extension
h → z of the singlet Higgs field to be a complex variable).
Second,Dfð0; 1Þ is a disk in the image complex space (also
extending F → f ∈ C), both disks having radius 1 and
being centered around 0 as the notation indicates. We can
then state the lemma [88] as follows.

1. Schwarz’s lemma

Let f∶Dzð0;1Þ→Dfð0;1Þ be holomorphic with fð0Þ¼0.
Then jfðzÞj ≤ jzj and jf0ð0Þj ≤ 1. Furthermore, if jfðz0Þj ¼
jz0j for some z0 ∈ Dzð0; 1Þ, then jfðzÞj ¼ 1∀ z ∈ Dð0; 1Þ.

a. Proof

Given those fð0Þ and f0ð0Þ, write fðzÞ ¼
zgðzÞ: g is also holomorphic. Take r < 1, if jzj ¼ r we
have that jgðzÞj ¼ jfðzÞj

r and hence jgðzÞj ¼ jfðzÞj
r ≤ 1

r [since
the image of f is Dfð0; 1Þ]. The inequality jgðzÞj ≤ 1

r is
satisfied for all z ∈ D̄ð0; rÞ thanks to the maximum

modulus principle (if f is a holomorphic function, then
the modulus jfj cannot exhibit a strict local maximum that
is in the interior of the domain of f). This means that if
gðz0Þ ¼ 1=r, that is, it reaches its maximum for some z0
satisfying jz0j < r, then the function g must be a constant
(and the maximum is reached at the boundary anyway).
Now, taking the limit r→1 from the left we obtain jgðzÞj≤1
and consequently jfðzÞj ≤ jzj for all z ∈ Dzð0; 1Þ.
Noticing that f0ðzÞ ¼ gðzÞ þ zg0ðzÞ it is immediate to

prove that jf0ð0Þj ≤ 1.

2. Corollaries

a. First Corollary

Let f∶Dzð0; 1Þ → Dfð0;MÞ analytic such that fð0Þ ¼ 0
and jf0ð0Þj ¼ 1. Then we will have that M ≥ 1 and

Dfð0;
ffiffi
2

p
ð ffiffi2p þ1Þð ffiffi2p þ2ÞMÞ⊂fðDzð0;1ÞÞ (the open disk of radiusffiffi
2

p
ð ffiffi2p þ1Þð ffiffi2p þ2ÞM is contained in the image through f of the

open unit disk).

b. Proof

Thanks to Schwarz’s lemma we know that M ≥ 1 since
otherwise jf0ð0Þj < 1. We can then write f as

fðzÞ ≔ zþ
X∞
n¼2

anzn: ðA1Þ

The triangular inequality of the complex norm yields

jzj ¼ jfðzÞ −
X∞
n¼2

anznj ≤ jfðzÞj þ j
X∞
n¼2

anznj: ðA2Þ

Choosing to evaluate with jzMj ≔ 1
αM with α > 1, we find

jfðzMÞj ≥ jzMj−
����X∞
n¼2

anznM

���� ≥ jzMj −
X∞
n¼2

janjjzMjn

¼ 1

αM
−
X∞
n¼2

janj
ðαMÞn : ðA3Þ

Thanks to Cauchy’s estimates (canceling factorials) we
know that for all r < 1, janj ≤ M

rn and hence janj ≤ M; we
may take the worst bound with r → 1. Then,

jfðzMÞj ≥
1

αM
−M

X∞
n¼2

1

ðαMÞn ¼
1

αM
−

M
ðαMÞ2

1

1 − 1
αM

¼ 1

αM

�
1 −

M
αM − 1

�
ðA4Þ

(having reconstructed the geometric series). Now, since
M ≥ 1 and we have taken α > 1 we have that

1

αM

�
1−

1

α−1=M

�
≥

1

αM

�
1−

1

α−1

�
¼ 1

M

�
α−2

α2−α

�
; ðA5Þ
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giving the highest lower bound for α ¼ 2þ ffiffiffi
2

p
. Hence,

taking jzMj ¼ 1

ð2þ ffiffi
2

p ÞM, we have

jfðzMÞj ≥
ffiffiffi
2

p

ð ffiffiffi
2

p þ 1Þð ffiffiffi
2

p þ 2ÞM : ðA6Þ

We now proceed to prove that the image of the disk in the
Higgs field fðDzð0; 1ÞÞ contains the disk of the F function,

namely Dfð0;
ffiffi
2

p
ð ffiffi2p þ1Þð ffiffi2p þ2ÞMÞ.

Use for this an auxiliary wf ∈ Dfð0;
ffiffi
2

p
ð ffiffi2p þ1Þð ffiffi2p þ2ÞMÞ, that

is, jwfj ≤ jfðz0Þj; the function gðzÞ ¼ wf − fðzÞ verifies
then

jfðzMÞþgðzMÞj¼ jwj<
ffiffiffi
2

p

ð ffiffiffi
2

p þ1Þð ffiffiffi
2

p þ2ÞM
≤ jfðzMÞj for jzMj¼

1

ð2þ ffiffiffi
2

p ÞM: ðA7Þ

Now we make use of Rouché’s theorem to state that f and g
have the same number of zeros in Dð0; 1

ð2þ ffiffi
2

p ÞMÞ, i.e., at
least one by definition [because by hypothesis fð0Þ ¼ 0].
As a consequence there exists z0 ∈ Dð0; 1Þ such
that fðz0Þ ¼ wf, in other words fðDzð0; 1ÞÞ contains

Dfð0;
ffiffi
2

p
ð ffiffi2p þ1Þð ffiffi2p þ2ÞMÞ.

c. Second Corollary

Let g∶Dð0; RÞ → Dgð0;MÞ analytic, such that gð0Þ ¼ 0
and jg0ð0Þj ¼ μ > 0. Then gðDð0; RÞÞ contains another
disk where g is analytic,

gðDð0; RÞÞ ⊃ Dg

�
0;

ffiffiffi
2

p
R2μ2

ð ffiffiffi
2

p þ 1Þð ffiffiffi
2

p þ 2ÞM

�
: ðA8Þ

The R appearing there is what can be tested to guarantee
that the image includes a disk that in turn includes 0 [and
therefore, ∃ h�jF ðh�Þ ¼ 0], and the function is analytic
between the vacuum and that symmetric point.

d. Proof

It follows in a relatively straightforward manner by
applying the first corollary to the auxiliary function:

fðzÞ ≔ 1

Rg0ð0Þ gðRzÞ for jzj < 1: ðA9Þ

APPENDIX B: FROM SMEFT TO HEFT

In this Appendix we show the two alternative (comple-
mentary) procedures employed to obtain the effective
Lagrangian simplifications discussed along the article: first
by means of Higgs field redefinitions; in a second sub-
section, we show how to get this same simplifications of the

effective action by means of partial integration and the use
of the field equation of motion for the classical fields.
These two approaches for the simplifications of the

effective theory are but two sides of the same coin: field
redefinitions in the integration of the generating functional
modifies the classical action in the exponential eiS, intro-
ducing new operators that are proportional to the classical
EOM (this is, through an appropriate field redefinition one
can remove operators in S that are proportional to the EOM,
while keeping the same generating functional); on the other
hand, at tree level the effective action Γ coincides with the
classical action S evaluated in the (quantum) classical field,
where, by construction, any operator in Γ proportional to
the EOM is deemed to vanish. Further details can be found,
e.g., in Appendix B in Ref. [28], Appendix A in Refs. [89],
and [90].

1. Simplification of the action by field redefinitions

We will take the SMEFT Lagrangian as our starting
point, which written in the modulus-phase form has the
structure

LSMEFT ¼ v2

4

�
1þ h

v

�
2

hDμU†DμUi

þ 1

2
ð1þ ðvþ hÞ2BðhÞÞð∂μhÞ2

− VSMðhÞ − ΔVdim -6ðhÞ; ðB1Þ

which, up to OðΛ−2Þ, is given by BðhÞ ¼ − 2cH□

Λ2 .
We want to make the Higgs kinetic term canonical, as it

is customary in the HEFT Lagrangian. Thus, one has that
the relation between the SMEFT Higgs modulus field h and
the HEFT Higgs singlet h1 is provided by

ð1þ ðvþ hÞ2BðhÞÞ1=2∂μh ¼ ∂μh1

⇒ ð1þ ðvþ hÞ2BðhÞÞ1=2 dh
dh1

¼ 1; ðB2Þ

which leads to

dh1 ¼ ð1þ ðvþ hÞ2BðhÞÞ1=2dh

⇒ h1 ¼
Z

h

0

ð1þ ðvþ hÞ2BðhÞÞ1=2dh:

With this integration range prescription, one recovers the
LO result h1 ¼ h.8 If we go up to NLO in 1=Λ2 we can
compute this redefinition in a perturbative way: first, use
the perturbative expansion of the integrand in Eq. (B3),

8Here we are not performing the necessary Higgs field shift
required to take into account that the potential minimum of
VHEFTðhÞ is not the same as the minimum for the tree-level SM
potential (hhi ¼ 0). This can be always preformed in a second
field redefinition afterwards if needed.
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e.g., ð1þ ðvþ hÞ2BðhÞÞ1=2 ¼ 1 − cH□ðvþ hÞ2=Λ2 up to
NLO in SMEFT; second, trivially integrate each term up to
the considered perturbative order. These two steps lead to
the h1 ¼ h1ðhÞ relation up to the desired perturbative order
where, e.g., Eq. (33) in the text provides the expression up
to OðΛ−2Þ in the SMEFT expansion.
Finally, through an iterative perturbative procedure, it is

possible to invert this relation and extract the relation
h ¼ hðh1Þ as an expansion in powers of 1=Λ2, as it was
shown in Eq. (33) for SMEFT at NLO.
Under this field redefinition the SMEFT Lagrangian then

becomes

LSMEFT ¼ v2

4

�
1þ hðh1Þ

v

�
2

hDμU†DμUi

þ 1

2
ð∂μh1Þ2 − VSMðhðh1ÞÞ − ΔVdim -6ðhðh1ÞÞ

¼ v2

4
F ðh1ÞhDμU†DμUi þ 1

2
ð∂μh1Þ2 − VHEFTðh1Þ:

ðB3Þ
with the flare function F ðh1Þ provided in Eq. (4).

2. Alternative route: Partial integration
and equations of motion on the field h

The previous transformations to cast a SMEFT
Lagrangian into a HEFT, particularly Eq. (12) for the partial
integration in terms of H fields and Eq. (30) changing the
variable from h (SMEFT’s) to h1 (HEFT’s), lay a path that
can be traded for a different one.We can easily start with the
quantum effective action Γ in terms of h, then apply partial
integration (Green’s theorem) and finally use the classical
Higgs EOM of h. The resulting effective action is then valid
only up to a given order, and the field appearing therein
should be interpreted as h1. This will allow us to transform
and remove any operator with only Higgs fields and two
derivatives on the same field, for example to expressOm

2 ≔
hm∂2h in terms of On

1 ¼ hnð∂μhÞ2. First, we will show that
the former ones can always be converted in the second ones
up to a total derivative. For this, wewill oncemore use partial
integration (Leibniz’s rule) to rewrite a Lagrangian term of
this form as

On
1 ¼ −nOn

1 −Onþ1
2 þ ∂

μðhnþ1
∂μhÞ; ðB4Þ

which, as n > 0 entails n ≠ −1, and up to the now omitted
total divergence, can be recast in the form

On
1 ¼ hnð∂μhÞ2 ¼−

1

nþ1
Onþ1

2 ¼−
1

nþ1
hnþ1

∂
2h: ðB5Þ

Thus, we find that all the possible On
1 operators of our

Lagrangian (n ≥ 0) can be always rewritten in theOm
2 form

(up to a total derivative) and vice versa. Specifically, up to a
total derivative,

ðhþ vÞm∂μh∂μh ¼ −
½ðvþ hÞmþ1 − vmþ1�

mþ 1
∂
2h: ðB6Þ

This is equivalent to Eq. (22) but written in terms of the
singlet and now for operators with arbitrarily large n
powers of h; we can use it to rewrite more general
SMEFT operators in the HEFT form.9

Moving on, we transform and remove this second type of
operators including ∂

2h that are generated in SMEFT; we
will make use of the EOM of the Higgs field, which causes
a difference that is pushed to higher orders in the expansion
that are not included anyway, so that at fixed order they are
equivalent. The EOM (within the electroweak sector alone)
reads [19,21,90,91]

∂
2h ¼ ðvþ hÞ

2
hDμU†DμUi − V 0ðhÞ; ðB7Þ

with Higgs potential (ignorable at high s) given by VðhÞ ¼
VSMðhÞ ¼ m2

hð− v2
8
þ h2

2
þ h3

2v þ h4

8v2Þ at lowest order in the
1=Λ2 SMEFT expansion, i.e., the tree-level SM potential,
and V 0

0ðhÞ ¼ m2
hðhþ 3h2

2v þ h3

2v2Þ. For further detail, see
Eqs. (3) and (10) in [90], where one can indeed see that we
also get additional fermion operators whose discussion is
beyond the scope of this article. Thus, we can make
use of the EOM of the classical Higgs field to simplify
the operators in the quantum effective action Γ (which
amounts to appropriate field redefinitions in the generating
functional).
The construction derived from a OH□-type operator can

then be transformed as, up to a total derivative,

ðvþhÞnð∂μhÞ2¼−
1

nþ1
½ðvþhÞnþ1−vnþ1�∂2h

¼−
ðvþh1Þ½ðvþh1Þnþ1−vnþ1�

2ðnþ1Þ hDμU†DμUi

þ 1

nþ1
½ðvþh1Þnþ1−vnþ1�V 0ðh1Þ; ðB8Þ

with h1 now understood as the HEFT field. In the simplest
nontrivial case, n ¼ 2, the term ΔL ¼ cH□OH□ yields, up
to a total derivative,

9Another useful relation for this type of partial integration
simplifications is given by the identity: ΔL ¼ A∂μB∂μC ¼
1
2
ðð∂2AÞBC − Að∂2BÞC − ABð∂2CÞÞ þ ∂μχ

μ, with the irrelevant
total derivative term given by χμ ¼ ðð∂μAÞBC − Að∂μBÞC−
ABð∂μCÞÞ=2. This relation is essentially the position-space
representation of the relation pBpC ¼ 1

2
ðp2

A − p2
B − p2

CÞ, which
is the square of the momentum conservation equation with all
pA;B;C incoming, pB þ pC ¼ −pA. By means of it one also can
rewrite the On

1 Lagrangian terms into Om
2 operators up to a total

derivative (although it is a little less efficient than the simplifi-
cations in the main text).
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ΔL ¼ cH□

Λ2
OH□ ¼ −

cH□

Λ2
ðvþ hÞ2ð∂μhÞ2

¼ cH□ðvþ hÞ
6Λ2

½ðvþ hÞ3 − v3�hDμU†DμUi

−
cH□

3Λ2
½ðvþ hÞ3 − v3�V 0ðhÞ: ðB9Þ

With this, the SMEFT Lagrangian up to dimension-six
can be rewritten in the form

LSMEFT ¼ v2

4

�
1þ h1

v

�
2

hDμU†DμUi

þ 1

2

�
1 −

2cH□ðh1 þ vÞ2
Λ2

�
ð∂μh1Þ2 − Vðh1Þ

¼ v2

4
F ðh1ÞhDμU†DμUi þ 1

2
ð∂μh1Þ2

− VðhÞ − cH□½ðvþ h1Þ3 − v3�
3Λ2

V 0ðh1Þ; ðB10Þ

with F the flare function shown in the main text, given at
this order by

F ðh1Þ ¼ 1þ 2h1
v

�
1þ cH□v2

Λ2

�
þ h21

v2

�
1þ 4cH□v2

Λ2

�

þ h31
v3

�
8cH□v2

3Λ2

�
þ h41

v4

�
2cH□v2

3Λ2

�
: ðB11Þ

Satisfactorily, this result is in agreement with earlier
investigations [47,67], although now we are extending
the relation up to Oðh41Þ. Terms of Oðh51Þ in F ðh1Þ and
higher start at OðΛ−4Þ or above, and they are suppressed in
the SMEFT counting.

APPENDIX C: RESTRICTIONS ON THE
COEFFICIENTS OF THE HEFT POTENTIAL

Vðh1Þ REQUIRED FOR VALID SMEFT

Though a full phenomenological analysis will be left for
other work (see [92] for a precis), we here want to call
attention to restrictions over the coefficients of the generic
HEFT Higgs potential VðhÞ that are required for SMEFT to
be applicable, and are thus of interest to falsify it too,
beyond those for F that we have concentrated on for most
of the manuscript. These relations may be interesting at
lower E < 0.5 TeV which appears to make them more
attractive; but overall, the physics is more contrived due to
the important corrections that the equivalence theorem
takes, so that distinguishing ω and WL becomes necessary.
A full standard model analysis of the relations is needed,
which we will not address now. In contrast, the equivalence
theorem allows a much cleaner analysis of F in the TeV
region (at the prize of exacting experimental conditions).
Again, as in Sec. IVA 2, a proper expansion of the

SMEFT Lagrangian that is analytic, and may thus be

approximated by a polynomial of the quadratic singlet
H†H, requires to avoid any singularities in passing to it
from HEFT. After the transformation to SMEFT coordi-
nates as in Eq. (51), we must recover a SMEFT potential
usable in Eq. (1),

VSMEFT ¼ const × ðH†HÞ þ const0 × ðH†HÞ2
þ const00 × ðH†HÞ3 þ � � � : ðC1Þ

In a nutshell, when the change of variable from HEFT to
SMEFT is attempted, making the Higgs kinetic term
canonical involves F intruding in the relation between
the potentials as per Eq. (49),

VSMEFTðH†HÞ ¼ VHEFTðh1ðzÞÞ ¼ VHEFTðF−1ðzÞÞ; ðC2Þ

with z ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H†H=v2

p
as in Eq. (54).

Given a generic VHEFT and any coordinate transforma-
tion F, odd powers of z appear in VSMEFT upon expanding
in this variable around z ≃ 0. But, as such odd-power terms
are nonanalytic (odd powers of the squared root

ffiffiffiffiffiffiffiffiffiffi
H†H

p
)

and cannot appear in SMEFT, which is a Taylor expansion,
we need to demand that they vanish.
Thus, for SMEFT to be valid, the expansion of

VHEFTðh1Þ can only contain even terms in its ðh1 − h�Þn
expansion. This mimicks our discussion of F , and thus the
nonderivative potential density VHEFTðh1Þ must be an even
function when expanded around the symmetric point h�;
ignoring the potential’s zero-point value, that expansion
starts at order two, namely

VHEFTðh1Þ ¼
m2

hv
2

2

�
v�2
v2

ðh1 − h�Þ2 þ
v�4
v4

ðh1 − h�Þ4

þ v�6
v6

ðh1 − h�Þ6 þ � � �
�
: ðC3Þ

This is completely analogous to the properties of F found
in Sec. III C, which upon expanding around the symmetric
point where F ðh�Þ ¼ 0 needed to have an expansion with
only even powers of h1 − h�:

F ðh1Þ ¼
1

v2
ðh1 − h�Þ2 þ

a�4
v4

ðh1 − h�Þ4

þ a�6
v6

ðh1 − h�Þ6 þ � � � : ðC4Þ

The global factor 1
2
m2

hv
2 that has been extracted in Eq. (C3)

helps us make a direct comparison between correlations
constraining the potential constants and the very same
correlations that we find for the ai coefficients of the flare
function F .
That is, the trilinear, quadrilinear, pentalinear … coef-

ficients of the potential expanded around the physical
vacuum,
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VHEFT ¼ m2
hv

2

2

��
h1
v

�
2

þ v3

�
h1
v

�
3

þ v4

�
h1
v

�
4

þ…

�
ðC5Þ

are determined by the v�4, v
�
6…, coefficients around the

symmetric vacuum, in analogy to Eq. (70) where the ai
were determined by the a�i .
One difference among the two discussions is that, while

F in the Standard Model Eq. (45) (and hence, the zeroth
order SMEFT) is only of order h2, the SM potential V
reaches order h4. Likewise, SMEFTat one more order takes
F up to Oðh4Þ while the potential V reaches Oðh6Þ and so
on. Translated in terms of the expansion coefficients
of F , the SM limit implies a�2 ≠ 0 while a�4; a

�
6 � � � ¼ 0;

but those of VHEFTðh1Þ are one higher order, v�2; v
�
4 ≠ 0

with v�6; v
�
8 � � � ¼ 0,

Truncating both series around the symmetric and the
physical vacua to order h61 we can solve for the first three
coefficients around the physical vacuum, yielding (where
h�=v → h� absorbs the normalization for visibility)

0
B@ v�2

v�4
v�6

1
CA ¼ −

1

8h4�

0
B@

15
2
h3� 7h4� 3h5�

5
2
h� 5h2� 3h3�

1
2
h−1� 1 h�

1
CA
0
B@ v1

v2
v3

1
CA; ðC6Þ

with v1 ¼ 0 and v2 ¼ 1 at the potential minimum. This can
then be employed to solve the relation, at the same order,
for v4, v5, v6 that then yields

0
B@ v4

v5
v6

1
CA ¼ 1

4h4�

0
BB@

− 5
2
h� −5h2� −6h3�

3
2

3h� 3h2�

− 1
4
h−1� − 1

2
− h�

2

1
CCA
0
B@ v1

v2
v3

1
CA: ðC7Þ

These relations allow expressing v4, v5, and v6 in terms of
v1 ¼ 0, v2 ¼ 1, the trilinear coupling v3 and the symmetric
point position h�.

In SMEFT the symmetric point is always set atffiffiffi
2

p jHj ¼ ðhþ vÞ ¼ 0. In the absence of derivative oper-

ators of the cðjÞH□ type, the SMEFT radial coordinateffiffiffi
2

p jHj ¼ ðhþ vÞ coincides with the HEFT field combi-
nation ðh1 þ vÞ. Thus, h ¼ h1 ¼ 0 at the potential mini-
mum jHj ¼ v=

ffiffiffi
2

p
and h ¼ h1 ¼ h� ¼ −v at the symmetric

point H ¼ 0. Note that v is given by the minimum of the V
potential at the given SMEFT order [see Eq. (87) and
below]. Setting h�=v ¼ −1 we have the three correlations
in Table III.
If we take the particular value v3 → 1, we recover v4 ¼ 1

4
and v5 ¼ 0 ¼ v6 that imply no new physics.
This result can be easily generalized to the case with

SMEFT operators of the form cð6ÞH□, c
ð8Þ
H□, etc. One must

simply substitute the expression for h� at OðΛ−2Þ [at
OðΛ−4Þ] in Eq. (36) [in Eq. (38)], instead of the value h� ¼
−v employed in Table III.

APPENDIX D: ZEROS OF THE FLARE
FUNCTION IN SMEFT

The flare function to order 1=Λ2 is

F ðh1Þ ¼ 1þ 2
h1
v

�
1þ cH□v2

Λ2

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

a

þ
�
h1
v

�
2
�
1þ 4cH□v2

Λ2

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

b

þ
�
h1
v

�
3
�
8cH□v2

3Λ2

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

c

þ
�
h1
v

�
4
�
2cH□v2

3Λ2

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

d

¼
�
1þ h1

v

�
2

þ
�
h1
v

��
2cH□v2

Λ2

�
þ
�
h1
v

�
2
�
4cH□v2

Λ2

�
þ
�
h1
v

�
3
�
8cH□v2

3Λ2

�
þ
�
h1
v

�
4
�
2cH□v2

3Λ2

�

¼
�
1þ h1

v

�
2

þ
�
cH□v2

Λ2

��
2

�
h1
v

�
þ 4

�
h1
v

�
2

þ 8

3

�
h1
v

�
3

þ 2

3

�
h1
v

�
4
�
: ðD1Þ

We can see that, at this order inΛ, h1=v ¼ −1 is a solution ofF ðh1Þ ¼ 0 [notice that also h1=v ¼ −1þ 2cH□=ð3Λ2Þ is also
an exact root]. Moreover, we can see that, up to higher order corrections, h1 ¼ −vþ x=Λ2 is also a zero:

TABLE III. Correlations among the HEFT Higgs potential VðhÞ
around the physical vacuum (thus, directly tree-level observables)
derived from assuming that the flare function F ðhÞ has a zero at
h� ¼ −v; the field is normalizedwith the physical v corresponding
to the observation and not the bare Lagrangian parameter, addi-
tionally, cH□ ¼ 0. If these correlations are violated, SMEFT needs
to be extended to a more general HEFT. In the last column we
introduce the SMEFT-allowed bounds on v4, v5 and v6 from the
CMS bound v3 ∈ ½−2.5; 5.7� [53].
v4 ¼ 1

4
ð−5þ 6v3Þ Δv4 ¼ 3

2
Δv3 v4 ∈ ½−5.0; 7.3�

v5 ¼ 3
4
ðv3 − 1Þ Δv5 ¼ 3

4
Δv3 v5 ∈ ½2.6; 3.5�

v6 ¼ 1
8
ðv3 − 1Þ Δv6 ¼ 1

8
Δv3 v6 ∈ ½−0.4; 0.6�
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F ð−vþ x=Λ2Þ ¼
�

x
Λ2

�
2

þ
�
cH□v2

Λ2

��
−2þ 4 − 8=3þ 2=3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þO
�

x
Λ2

��
¼ OðΛ−4Þ: ðD2Þ

The coefficients in front of cH□ conspire to make the fixed point of F ðh1Þ be the one of the SM (up to higher order
corrections). That is, this cancellation would not hold if a, b, c, and d would not be related the way they are in Eq. (D1), as
ð−2; 4;−8=3; 2=3Þ.
Using the SMEFT basis, it is only at quadratic level in cH□=Λ2 that a shift is allowed. Observing the contribution from

the dimension-six operator OH□ to the flare function up to Oðc2H□=Λ4Þ [see Eq. (37) ignoring cð8ÞH□], we can test again the
solution h1 → −v:

F ð−vÞ ¼ ð−1Þ
�
2

�
cH□v2

Λ2
þ 3c2H□v

4

2Λ4

�
−
�
4cH□v2

Λ2
þ 12c2H□v

4Þ
Λ4

�
þ
�
8cH□v2

3Λ2
þ 56c2H□v

4

3Λ4

�

−
�
2cH□v2

3Λ2
þ 44c2H□v

4

3Λ4

�
þ
�
88c2H□v

4

15Λ4

�
−
�
44c2H□v

4

45Λ4

��

¼
�
−
cH□v2

Λ2

��
2 − 4þ 8

3
−
2

3

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

−
�
cH□v2

Λ2

�
2
�
3

2
− 12þ 56

3
−
44

3
þ 88

15
−
44

45

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼−1=9

: ðD3Þ

In this case we can see that h1 ¼ −v is no longer a root, as F ð−vÞ ¼ ðcH□v2

3Λ2 Þ2 ≠ 0 and an Oð1=Λ4Þ remainder survives. A

similar thing happens for h1=v ¼ −1þ 2cH□=ð3Λ2Þ. The sixth-order polynomial Eq. (37) (ignoring cð8ÞH□) has no calculable
solutions. However, it is simple to prove that h1=v ¼ −1þ cH□v2=ð3Λ2Þ [given in Eq. (36)] is an approximate root of
F ðh1Þ that makes it vanish up to OðΛ−6Þ corrections.
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