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Abstract. In the analysis of most spatial and spatio-temporal processes in environmental studies, 

observations present skewed distributions, with a heavy right or left tail. Usually, a single transformation 

of the data is used to approximate normality, and stationary Gaussian processes are assumed to model the 

transformed data. Spatial interpolation and/or temporal prediction are routinely performed by 

transforming the predictions back to the original scale. The choice of a distribution for the data is key for 

spatial interpolation and temporal prediction. In this talk, I will start discussing the advantages and 

disadvantages of using a single transformation to model such processes. Then I will discuss some recent 

advances in the modeling of non-Gaussian spatial and spatio-temporal processes. 
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Abstract. With the development of data-monitoring techniques in various fields of science, 

multivariate functional data are often observed. Consequently, an increasing number of methods 

have appeared to extend the general summary statistics of multivariate functional data. However, 

trajectory functional data, as an important sub-type, have not been studied very well. We proposes 

two informative exploratory tools, the trajectory functional boxplot, and the modified simplicial band 

depth (MSBD) versus Wiggliness of Directional Outlyingness (WO) plot, to visualize the centrality 

of trajectory functional data. The newly defined WO index effectively measures the shape variation 

of curves and hence serves as a detector for shape outliers; additionally, MSBD provides a center-

outward ranking result and works as a detector for magnitude outliers. Using the two measures, the 

functional boxplot of the trajectory reveals center-outward patterns and potential outliers using the 

raw curves, whereas the MSBD-WO plot illustrates such patterns and outliers in a space spanned by 

MSBD and WO. The proposed methods are validated on hurricane path data and migration trace data 

recorded from two types of birds. 
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The space environment for satellites 

orbiting the earth. 
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Department of Statistics, University of Leeds;E-mail: j.t.kent@leeds.ac.uk 
 

 

 

Abstract. There are currently about 2000 operational satellites orbiting the earth. The subject of 

space situational awareness deals with various hazards to these satellites ranging space weather to 

space debris. There are estimated to be over 30000 pieces of space debris and inactive satellites in 

orbit bigger than a grapefruit, which can be observed from earth.  In this talk I will describe some 

recent work funded by the US Air Force to develop fast and accurate improved statistical methods to 

predict the path of the debris so that it can be avoided by active spacecraft.  The methodology uses 

ideas from Kalman filtering, directional statistics and multivariate analysis. 
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Air quality numerical models. Don’t leave them

alone.

G. Bonafé1,∗, I. Gallai1, A. C. Goglio1,2, D. Giaiotti1, E. Gianesini1, F.

Montanari1, A. Petrini1

1 ARPA-FVG, Agenzia Regionale per la Protezione dell’Ambiente del Friuli Venezia Giulia, via Cairoli 14

- 33057 Palmanova (Italy); giovanni.bonafe@arpa.fvg.it, irene.gallai@arpa.fvg.it, dario.giaiotti@arpa.fvg.it,

elena.gianesini@arpa.fvg.it, francesco.montanari@arpa.fvg.it, alessandra.petrini@arpa.fvg.it,
2 CMCC, Centro Euro-Mediterraneo sui Cambiamenti Climatici, viale C. Berti Pichat 6/2 - 40127 Bologna

(Italy); annachiara.goglio@gmail.com
∗Corresponding author

Keywords. Air Pollution; Universal Kriging; Kalman Filter; Air Quality Numerical Models; Scenario

Analysis.

Air quality management needs different approaches and tools, depending on spatio-temporal scales

and on the specific aim. Usually, air quality numerical models (AQMs) are the basis for such tools.

AQMs simulate emission, dispersion, transport, chemical and microphysical transformations, wet and

dry depositions of gaseous and aerosol species.

Some use cases are described and discussed, covering typical problems we must face in the regional

environmental agencies:

• air quality assessment for the past months or years;

• short-term air quality forecast for the next three to five days;

• scenario analysis to evaluate the benefit of mitigation actions in the next five-ten years.

For each use case, a deterministic AQM alone is not enough to give a satisfactory answer, therefore

some post-processing is needed, and statistical methods may help.

In order to assess air quality at different spatial scales, focusing on a mixed residential-industrial

domain, the output of two different AQMs (one suitable for the regional, the other for the urban spatial

scale) and the data observed by the monitoring networks are combined with an approach based on the

universal kriging technique.

For short term forecast purpose, the output of a regional scale AQM is corrected with a Kalman

filter based on the observed data of the last days. This approach improves the general performance

of the concentrations forecast, but for PM10 daily exceedance forecast, sometimes a simple seasonal

multiplicative correction can work slightly better.

GRASPA-TIES 2019

7 of 127



G. Bonafé et al. Air quality numerical models. Don’t leave them alone.

With the help of an AQM, the effects of a set of emission reduction actions and policies can be eval-

uated, simulating a "what if" scenario. However, since AQMs and their inputs (meteorology, emissions)

are affected by errors, their output is biased as well. Results of some scenario analysis for the Po Valley

are presented. Different approaches for scenario unbiasing are discussed.

Acknowledgments. The maintenance and development of the ARPA-FVG air quality modelling suite

are partially funded by project EU LIFE-PREPAIR (LIFE15 IPE/IT/000013).
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Abstract. A health risk assessment is the scientific evaluation of potential adverse health effects 

resulting from human exposure to a particular hazard. Traditional methods of risk assessment have 

provided good service in support of policies, mainly in relation to standard setting and regulation of 

hazardous chemicals or practices. 

When a population is under risk related to exposure to an environmental hazard, epidemiological 

studies are often required, to better understand the relation between exposure and health effects and 

to increase scientific knowledge to derive ERFs (Exposure-Response functions). Nevertheless, an 

epidemiological study may not provide definite indications, increase uncertainty due to inconclusive 

results, limited power or other methodological weaknesses or, in an extreme way, can be view as an 

instrument to hold over actions that would have direct benefits. 

A quicker tool can be represented by the integrated environmental health impact assessment 

(IEHIA), an activity related both to research and public health that is able to evaluate ex-ante 

scenarios of changes due to harmful interventions or as a result of improvements. 

The main purpose of an IEHIA is to answer policy questions about the likely health impacts of 

planned policies or modifications of exposure scenario.  

Here we present two examples of the application of these methodologies to two different regional 

policies: the air quality plan and the urban solid waste management plan. 

An Evaluation of the Health Impact has been carried out in the context of the Strategic 

Environmental Evaluation belonging to the Regional Air Quality Plan 2014-2020 (PAIR2020) in 

Emilia-Romagna region; the goal was to estimate the health effects related to the concentration of 

PM10 in the whole region, based on different policy actions. 

Starting from a baseline situation evaluated for 2010, in terms of environmental stressors and health 

status, three different scenarios were calculated for year 2020. 

Environmental data used the Emilia-Romagna Regional Emission Inventory and for neighboring 

regions Emilia-Romagna the National Emissions Inventory (ISPRA 2005) taking into account the 

national energy strategy SEN2013 (source GAINS Italy); the selection of optimal emission reduction 

technologies through a cost-benefit analysis were made using the RIAT+ software (an integrated 

assessment software tool, developed in OPERA LIFE+ Project). In this way, it was possible to 

evaluate the evolving scenarios of population exposure to PM10 and related health impacts up to 

2020, resulting from the reduction of the average regional concentration levels of pollutants in air.. 

Three different scenarios were provided: the CLE (Current Legislation), that took into account the 

changes in emissivity due to regional plans and actions already approved or adopted. The Target 
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Scenario plan (TS), with the main goal of respecting the maximum number of daily excesses of PM10 

in almost all the regional territory. The last scenario (Maximum Feasible Reduction scenario –MFR) 

was the result of a theoretical simulation that applied all currently available technologies, without 

considering costs and practical feasibility. 

Using ERFs provided by WHO, IEHIA applied to these 3 scenarios provided an estimation of 

avoidable deaths in each situation. Results were expressed both as attributable cases and gain in 

life-expectancy. The application of the TS plan would provide a gain of about 3 months for the 

population living in Emilia-Romagna region. 

Another Italian experience focalized attention on providing guidelines and methods for HIA of 

population exposed to pollution due to waste management plants.  SESPIR project (REF)  

The SESPIR Project (Epidemiological Surveillance of Health Status of Resident Population Around 

the Waste Treatment Plants) assessed the impact on health of residents nearby incinerators, landfills 

and mechanical biological treatment plants in five Italian regions (Emilia-Romagna, Piedmont, 

Lazio, Campania, and Sicily). The assessment procedure took into account the available knowledge 

on health effects of waste disposal facilities. Within the project, suitable ERFs were calculated, 

reviewing existing literature. Gains in health related to the application of different scenarios were 

expressed by DALYs (Disability Adjusted Life Years); a significant reduction of landfills, as 

indicated by European Legislation, provided the most relevant improvements in health status of 

residents near waste management plants. Simulations on 5 regions demonstrates that the differences 

in DALYs between a baseline scenario (calculated for 2008) and a “green” scenario, that applies 

completely all indications from EU, could reduce up to 90% the impact on health due to landfills. 

In this assessment time and uncertainty represent important aspects to be considered, in order to 

help in deciding when the epidemiological study is to be carried out for the growth of scientific 

knowledge and when for public health purposes. 

The intrinsic probabilistic nature of this approaches involves a load of uncertainty, the nature and 

distribution of which is often difficult to evaluate. The uncertainty of an assessment is related to a 

lack of knowledge about one or more components of the assessment.  

A further relevant aspect is related to the communication of results to different stakeholders. Experts 

cannot always express the uncertainty on their results in statistical terms; when it is only possible for 

them to identify that scientific knowledge is limited in a given area, the potential for surprise is 

therefore large and it is related to the severity of the uncertainty from the viewpoint of the decision 

maker. The inclusion of decision makers and stakeholders since the early stages of the study and 

impact assessment processes could help this aspect. 
 

Keywords. Health Impact  Assessment ;  Air  pol lut ion;  Exposure -response funct ions;  

At t r ibutable cases  
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Abstract.  

Background: Health effects of air pollution, especially particulate matter (PM), have been widely 

investigated. However, most of the studies rely on few monitors located in urban areas for short-term 

assessments, or land-use/dispersion modelling for long-term evaluations, again mostly in cities. 

Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily 

concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated 

high resolution spatio-temporally resolved model of particulate matter. The complex topography and 

the air mixture from both natural and anthropogenic sources are great challenges difficult to be 

addressed. 

 

Materials and Methods: We combined finely resolved data on Aerosol Optical Depth (AOD) from 

the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM10 

measurements, land-use variables and meteorological parameters into a four-stage mixed model 

framework to derive estimates of daily PM10 concentrations at 1-km2 grid over Italy, for the years 

2006-2015. We checked performance of our models by applying 10-fold cross-validation (CV) for 

each year. A similar project is ongoing to estimate daily PM2.5 concentrations nationwide. 

 

Results: PM10 average concentration over the whole country and study period was 30.2 µg/m3, with 

higher values in winter, Northern Italy and in proximity of sites influenced by traffic sources. Air 

pollution levels decreased over the years, from 35 to 28 µg/m3, with similar drops across the 

different macro-areas. Our models displayed good agreement between observed and predicted PM 

concentrations, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed 

PM10 ~ 0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large 

conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting 

concentration maps showed highest average PM10 levels in specific areas (Po river valley, main 

industrial and metropolitan areas) with decreasing trends over time, and a clear seasonality with 

highest concentrations in winter and lowest in summer. 

 

Conclusions: The results of this study will allow us to investigate short-term and long-term health 

effects of PM10 countrywide, even in areas poorly covered by routine monitoring networks, such as 

rural and suburban settings or municipalities influenced by industrial emissions sources. In addition, 

within this project we have built a large geodatabase by characterizing each 1-km2 grid cell of Italy 

and each day in 2006-2012 in terms of many different spatial and temporal predictors with regard to 

GRASPA-TIES 2019

11 of 127

mailto:m.scortichini@deplazio.it
mailto:m.renzi@deplazio.it


 GRASPA 2019 Workshop 

 

 

satellite retrievals, meteorology, land cover characteristics, street and population density, orography, 

industrial emissions. On this regard, this represents a powerful tool on its own, which will be made 

available on request for applications in environmental epidemiology at the local or regional level. We 

are currently following up this study with a similar approach to predict daily concentrations of PM2.5 

for the period 2013-2015. 
 

Keywords. Aerosol optical depth; Machine learning; Particulate matter; Random Forest; Satellite. 
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Change Detection of 4D Spatiotemporal Data Using a

LASSO-Gaussian Process Approach: Preliminary

results

Alessandro Fassó1,∗, Igor Valli1 and Fabio Madonna2
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Abstract. This talk will discuss the Gaussian Process modelling and change detection of temperature

profiles from the Integrated Global Radiosonde Archive (IGRA) which consists of global radiosonde

observations dating back to 1905. Change detection methods developed for radiosonde have a long

history. In this paper, a locally stationary 4D geostatistical model coupled with fused LASSO is used

for identifying changes.

Keywords. Radiosonde data; Integrated Global Radiosonde Archive (IGRA); Climate series harmoni-

sation.
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Abstract. We present nonparametric method for data distributed over complex spatial domains. In

particular, we consider hypothesis testing procedures in the case of spatial regression models with dif-

ferential regularization. We also consider a nonparametric penalized likelihood approach to density

estimation over planar domains with complex geometry. The model formulation is based on a regular-

ization with differential operators and it is made computationally tractable by means of finite element

method. The performances of the proposed methods are presented through extended simulation studies.

Keywords. Regularization; Permutation test; Penalized likelihood; Finite element method.

The analysis of data distributed over complex domains represent a fascinating statistical challenge,

and it has stimulated recent advances in the statistical literature. The complex spatial or spatio-temporal

dependencies and the presence of complicated boundaries make standard inferential tools inappropriate.

A possible solution is to consider spatial regression models with differential regularization, such as [2]

and [1]. Although the linear nature of these estimators allows the derivation of some distributional and

asymptotic properties, the study of inferential procedures is still ongoing. In particular, we address the

problem of hypothesis testing in the presence of covariates through a nonparametric approach based on

the score contributions.

Moreover, analogous spatial models with differential regularization can be used to tackle density esti-

mation problems. We propose a nonparametric penalized likelihood method for density estimation that

can deal with data scattered over complex multidimensional domains, characterized by boundaries or

by non-Euclidean geometries. The proposed methods leverages on advanced numerical analyses tech-

niques, such as finite element analysis. The strong synergy between statistical and numerical approaches

and tools ensures the high flexibility and computational efficiency of the method. Simulation studies are

proposed to illustrate the performance of the estimators with respect to competing methods.
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Ray and Alghamdi Replicated Spatially correlated FDA

Analysis of replicated spatially correlated functional

data

S. Ray1,∗ and S. Alghamdi2
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Abstract. We propose a model for analyzing replicated functional data which are spatially correlated.

Our research, stems from the need for accurate estimation of spatio-temporal fields by summarising

information observed over several replicates. Our framework generalizes the existing framework of

spatio-temporal regression model with partial differential equations regularisation (ST-PDE) approach

proposed by Bernardi et al. (2017) and thus can accommodate spatially dependent functions or time

dependent surfaces embedded in manifolds and irregular boundaries. This need has emerged for a

study on classification of brain signals based on the difference in visual stimulus. Analytically, we

show that the estimators of composite spatio-temporal field is relatively more efficient than existing

estimators. The proposed method is thoroughly compared via simulation studies to existing spatio-

temporal functional techniques and is applied to the analysis of the EEG data on brain signals to

provide a composite temporally varying brain map over several replications.

Keywords. Spatial Correlation; Functional Data; Replicated functional data; Space-time model; Dif-

ferential regularization; Finite elements
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Smooth ANCOVA models for circular regression

Rosa M. Crujeiras1∗, María Alonso-Pena1 and Jose Ameijeiras-Alonso2
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Abstract. Nonparametric ANCOVA methods for regression models involving circular variables (re-

sponse and/or covariates) will be proposed. The finite sample performance of the different approaches

will be explored by simulation. Some illustrative real-data examples will be also provided.

Keywords. Smooth regression; Circular data; ANCOVA model.

1 Introduction

Smooth regression allow to model the relation between random variables without imposing a specific

(and possibly not flexible enough) parametric form for the regression function. Beyond the classical

scenario, where both the response and the explanatory variable are real-valued, regression models are

also required in other settings as those involving circular random variables, which can be considered as

responses and/or covariates.

Circular random variables can be viewed as points in a unit circle, and smooth approaches to regres-

sion modeling involving circular covariates and responses have been proposed by Di Marzio et al. (2009)

and Di Marzio et al. (2013). In this setting, a categorical covariate may be also included in the model.

Anderson-Cook (1999) propose a parametric ANCOVA for circular covariate and linear response, but

there is not a nonparametric alternative. It should be noted that, in the classical real-valued scenario,

Young and Bowman (1995) propose a nonparametric ANCOVA model, allowing for two types of tests:

equality of regression curves among groups and parallelism tests.

In this work, nonparametric ANCOVA regression models involving circular data (as response and/or

covariate) will be introduced. Testing proposals for assessing equality and parallelism of regression

curves will be also provided. Finite sample performance of the tests (analyzing their empirical size and

power) is addressed in a simulation study. In addition, real data illustrations in the different scenarios

will be also provided.

GRASPA-TIES 2019

17 of 127



Rosa M. Crujeiras et al. Smooth circular ANCOVA

2 Some ideas

Let Y and Θ denote two linear and circular variables, and consider ∆ a linear or circular covariate,

depending on the model. Assume that a categorical variable with I groups may influence the response.

With these premises, let us define the following nonparametric regression models:

Yi j = mi(Θi j)+ εi j, i = 1, . . . , I, j = 1, . . . ,ni (1)

Θi j = (mi(∆i j)+ εi j) mod(2π), i = 1, . . . , I, j = 1, . . . ,ni. (2)

Model (1) assumes a linear response and a circular covariate, whereas for a circular response, model (2)

comprises two cases: linear and circular covariates. For the sake of simplicity, we will just show here the

formulation of the equality test for model (1), which can be stated as:

H0 : Yi j = m(Θi j)+ εi j, ∀ i ∈ {1, ..., I},

H1 : Yi j = mi(Θi j)+ εi j, mi 6= mk for some i,k ∈ {1, ..., I}.

Following the ideas of Young and Bowman (1995) for the equality test, the following statistic is proposed:

C1 =
1

σ̂2

I

∑
i=1

ni

∑
j=1

[m̂i(Θi j)− m̂(Θi j)]
2
,

where m̂ and m̂i are, respectively, the nonparametric circular-linear estimators of m and mi proposed by

Di Marzio et al. (2009). The variance estimator σ̂2 is obtained through a new approach that adapts the

estimator proposed by Gasser et al. (1986) to the periodic nature of the predictor. Note that if the errors

are assumed to be iid with a normal distribution, then the distribution of C1 under H0 is approximated to a

a+ cχ2
b distribution with the parameters calculated as a function of the cumulants of the real distribution

(Young and Bowman, 1995). An analogue statistic is proposed for the parallelism test , but estimating

the shift parameter of the model under H0 through a semiparametric approach. The distribution of such

statistic under H0 is also approximated by a shifted and rescaled χ2 distribution. When considering

model (2), the test statistics formulation must be adapted to handle the circular nature of the response,

considering a cosine distance and calibration will be approached by bootstrap methods.

Acknowledgments. This work has been supported by project MTM2016-76969P from the Ministry of

Economy and Competitiveness and they European Regional Development Fund (ERDF).
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Tracking the Magnetic North Pole
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Abstract. We discuss the problem of forecasting the location of the the magnetic north pole. Based on

recent evidence, last movements appear to be not completely explainable by the consolidated knowl-

edge on the subject. Then, it could be desirable to make predictions under very mild assumptions. To

this end, we propose a nonparametric approach based on sphere-sphere regression by providing some

promising experimental evidence.

Keywords. Magnetic north pole; Nonparametric rotations; Sphere-sphere regression.

1 Outline

There have been several recent reports about the movement of the magnetic north pole, and concern

about the recent apparent increase in drift - which have led to an early update of the World Magnetic

Model (WMM). The phenomenon has very recently been treated even in educational magazines like

Nature, see [2]. The location of the north pole at time t can be represented by a point on the 3-d sphere,

i.e. xt ∈ S
2. We consider an AR(1) model of the form x̂t = f (xt−1) with various representations for the

function f — for example, a naive estimator could simply use the identity function. An obvious starting

point might be to consider rotation models, but a rigid rotation would lack the flexibility to capture the

observed wandering nature. So, in this work we focus on nonparametric rotation regression models,

as initially proposed in [1], of the form x̂t = R̂
T
xt
xt−1, where the rotation depends on the location on

the sphere, and uses local information. In nonparametric regression the weighted least squares solution

would usually depend on distances to nearby observations, using a smoothing parameter to trade off bias

against variance. However, in the time series context, we additionally consider tapering weights so they

depend also on time.

Given that the movements of the pole are typically quite small (less than 50 Km per year), we con-

sider an alternative smoothing approach, based on the fact that a rotation matrix can be expressed as the

exponential of a skew symmetric matrix. So, by considering the skew symmetric matrix which corre-

sponds to the great circle rotation of the north pole in consecutive years, we can then similarly obtain

a nonparametric prediction of each component of this matrix, then mapping back to rotation space to

obtain x̂t .
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We use yearly data on the location of the north pole (some of which are raw observations, but mostly

derived from the WMM), which starts from 1590, choosing smoothing parameters by cross-validation

— which can be trained each year — in order to predict the location in the following year. The results

show that, for these data, the approach based on smoothing the skew symmetric matrix generally works

best.
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Classification of directional data through data depth
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Abstract. Nonparametric classification of directional data has received a lot of attention on the last

few years. Directional data arise in many areas where observations are recorded as directions, rota-

tions, clock, axes and are represented as angles relative to a fixed reference point or as unit vectors.

Given that they lie on a non-linear manifold, directional data requires specific methods. Data depth

can be successfully exploited to classify directional data since it provides center-outward ordering of

points in any dimension. This work provides an overview on how data depth can deal with classifi-

cation problems for directional data. Different depth functions and classification procedures will be

investigated.

Keywords. DD plot; Max depth; Distribution depth classifier.

1 Introduction

Non-parametric tools for supervised classification of directional data have been recently investigated

within the literature. For instance, Di Marzio et al. (2019) [2] suggested to adopt a technique based

on kernel density estimators. This approach seems to work properly in many settings. However, results

are somehow dependent on the choice of the bandwidth parameters, and they are limited to the case of

spherical data (i.e., in a low dimensional directional space).

On the other hand, data depth based methods are available for classification purposes as well. They

do not require the choice of any specific parameter, and are suitable for higher dimensional classification

problems. For instance, Pandolfo et al. (2018) [3] investigated the use of the directional max-depth

classifier, while Pandolfo et al. (2018) [4] discussed the use of the DD-plot to classify circular data.

Finally, Demni et al. (2019) [1] suggested a depth based distribution classifier.

However, while some results are already available, a comprehensive analysis is lacking. For this

reason, this work aims at illustrating all the potential of depth based methods when adopted in supervised

classification of directional objects, and at evaluating under which conditions one of the method should

be preferred over the others.
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2 Non-parametric depth based classifiers for directional data

The depth of a point relative to a given data set measures how deep that point lies in the data cloud with

respect to its belonging distribution or multivariate sample. Depth functions have been extensively used

for classification purposes given that they do not assume any particular type of probability distribution

neither consider any specified parametric form for the separating surface.

Here, the main techniques are evaluated within the directional domain: the max depth classifier, the

DD-plot classifier and the depth distribution classifier. The max depth classifier assigns the new data

point to the class with respect to which it attains the highest depth value. In case of two populations, and

with x the new point to be assigned to group j, j = 1,2., the associated classification rule is given by

{

D(x, Ĥ1)> D(x, Ĥ2) =⇒ assign x to population 1

D(x, Ĥ1)< D(x, Ĥ2) =⇒ assign x to population 2,

where D(x, Ĥ j), j = 1,2., is the depth of the point x with respect to the j-th directional sample.

The depth vs. depth (DD) classifier aims to find the best polynomial separating function in a depth

vs depth Euclidean space. Consequently, the generic form of the DD classifier is as follows. Let r(.) be

some real increasing function. Then, the classification rule is defined by

{

D(x, Ĥ1)> r(D(x, Ĥ2)) =⇒ assign x to population 1

D(x, Ĥ1)< r(D(x, Ĥ2)) =⇒ assign x to population 2.

The distribution depth based classifier is based on the cumulative distribution functions of a depth:

FH
D (x) :=P(D(X ,H)≤D(x,H)), where D(x,H) is the depth of the point x with respect to the distribution

H. Accordingly, the directional depth distribution classification rule can be thus given by ([1])

{

F
Ĥ1

D (x)> F
Ĥ2

D (x) =⇒ assign x to population 1

F
Ĥ1

D (x)< F
Ĥ2

D (x) =⇒ assign x to population 2.

In all these methods, in case of equality, the classification rule will randomly assign the observation

to one of the two groups with equal probability. These methods will be evaluated one against the other

through a simulation study and they will be illustrated by means of a real data example.
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Abstract 
 

Highly quality economic and environmental statistics are important inputs into evidence-based policy 

formulation and decision-making.  Policies of conservation of forestry potential and ecological balances, 

or of satisfaction of national demand of timber and non-timber products need accurate information, 

relying on a robust statistical framework, as the SEEA CF, endorsed in 2012 by UNSC as the first UN 

environmental – economic statistical framework.  

The System for Environmental-Economic Accounting for Agriculture Forestry and Fisheries (SEEA AFF) 

applies the environmental economic structures and principles described in the System of National 

Accounts (SNA) and in the System of Environmental Economic Accounting - Central Framework (SEEA-

CF) to the activities of Agriculture, Forestry and Fisheries. It has been endorsed by the UNCEEA in March 

2016 as “Internationally Agreed Methodological Document in support of the SEEA CF”. The SEEA AFF 

includes accounting structure for Land Use, Land Cover, Forest and other wooded Land national and 

international data (FAOSTAT). In particular, it includes Environmentally Extended Supply and Use Table 

on Forestry Products, whose application and implementation in Senegal is main scope of this paper.  

 

The SEEA AFF Physical flow account for wood forestry products records the flows in physical terms of 

wood products (timber) deriving from economic activities (ISIC A 021) and logging activities (ISIC A 022). 

The SEEA AFF expands its analysis to forestry products other than wood such as for instance resins and 

gums, mushrooms, wild honey, edible insects,  which are derived from economic activities classified 

under ISIC A 023 “Gathering of non-wood forest products” (NWFP). This accounting table has been 

selected by the Agence Nationale de La statistique et the la Démographie (ANSD) in the framework of 

the UNECA Phase III of the capacity building on EE-SUTs for national implementation. The objective of 

this phase of the UNECA programme is to provide technical support for those pilot countries to compile 

one account of their selection in the coming six to nine months. This is after completing the first two 

phases (i.e. Phase I in “e-Training” and Phase II in “face-to-face regional seminar”).  

 

The paper aims to measure the forest assets and flows of forest-related services such as timber, 

fuelwood and charcoal provisioning services. It shows physical and monetary information (hectares, m3 

of wood, US$) linked to traditional indicators such as GDP. The information produced can help design 

and monitor strategies for implementing SDG 15 Life on land, (SDG Indicator 15.1.1: Forest area as a 

proportion of total land area and SDG Indicator 15.2.1: Progress towards sustainable forest 

management), SDG 7 affordable and clean energy (sustainable energy from fuelwood) and SDG 13, 

climate action (reduction of climate change threats).  
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Abstract. Forest attributes such as volume or basal area are concentrated at tree locations and are 

absent elsewhere. Therefore, it is more meaningful to consider the amount of forest attributes at a 

pre-fixed spatial grain, within regular plots of pre-fixed size centered at the points of the study area. 

In this way, also the diversity of attributes within plots can be considered and quantified by suitable 

indexes, giving rise to a diversity surface defined on the continuum of points constituting the area. 

We analyze the estimation of diversity surfaces when a sample of plots is selected by a probabilistic 

sampling scheme and diversity within non-sampled plots is estimated using an inverse distance 

weighting interpolator. We discuss the design-based asymptotic properties of the resulting maps 

when the survey area remains fixed and the number of sampled points increases.  

Because diversity surfaces share suitable mathematical properties, if the schemes adopted to select 

sample points ensure an even coverage of the study areas avoiding large portions of non- sampled 

zones, it can be proven that the estimated maps approach the true maps. 
 

Keywords. diversity maps, inverse distance weighting interpolator, design-based consistency, spatial 

simulation, case study 

 
 

 

 

 

 

1 Introduction 

 
Spatially explicit estimates are needed in many environmental and ecological applications for obtaining 

the spatial distribution of forest attributes within the area of interest [2]. These attributes, such as volume 

and basal area, are concentrated at tree locations and absent elsewhere. Therefore, it is more meaningful to 

consider the amount of forest attributes at a pre-fixed spatial grain, i.e. within regular plots of pre-fixed 

size centered at the points of the study area, rather than to consider the attribute amounts at single points 

[4]. In this way, the diversity of these attributes within plots can be quantified by suitable indexes.  

Any point of the survey area can be considered as the center of a plot of pre-fixed radius, in such a way 

that there exists a diversity index value for any point, giving rise to a diversity surface defined on the 

continuum of points constituting the area. In most cases, the available resources and the continuous nature 

of the survey area render impossible to completely census the entire region. Therefore, the diversity 

indexes are recorded only within those plots centered on a sample of points and an estimation criterion is 

adopted to estimate the index values for those plots centered at non-sampled points, obtaining a wall-to-

wall map depicting the spatial pattern of diversity throughout the whole survey area.  
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2 Design-based prediction 

 
Usually, methods adopted to reconstruct population maps lie in the realm of model-dependent inference, 

i.e. the sampled sites are held fixed (as if they were purposively selected) and the diversity index values at 

these sites are supposed to be random variables generated from a continuous spatial process (super-

population). Under model-dependent approaches, uncertainty stems from the super-population that has 

been supposed to generate the surface, conditional on the sampled sites.  

However, here we follow an alternative criterion proposed by [1] for attempting the diversity map 

reconstruction in a design-based framework, i.e. the diversity surface is viewed as constant and uncertainty 

stems from the probabilistic sampling scheme adopted to select points. It follows that diversity index 

values at single non-sampled points are estimated by means of a spatial interpolation usually referred to as 

inverse distance weighting (IDW). The interpolator adopts a weighted average of diversity values recorded 

at sampled points with weights decreasing with the distance of the sampled points from the point under 

estimation. The estimation criterion is motivated by the Tobler’s first law of geography [3], for which 

points close in space are more similar than those far apart. It should be noticed that the diversity surfaces 

under estimation are piecewise Lipschitz functions almost everywhere, a feature of relevant importance 

for the design-based estimation of these surfaces. Moreover, the asymptotic design-based properties of 

IDW are derived by [1] as the number of sampled points increases, outlining the conditions ensuring 

design-based unbiasedness and consistency.  An easily computable estimator of the mean squared errors at 

any points of the estimated surface is adopted. It is worth noting that if the schemes adopted to select 

sample points ensure an even coverage of the study areas avoiding large portions of non- sampled zones, 

the estimated maps approach the true maps.  

A simulation study on a real population of trees has been performed to estimate the maps of Shannon 

diversity index of tree stem diameter at breast height, whereas an application of the described method for 

estimating the map of the basal area diversity in the forest of the Bonis watershed (Southern Italy) has 

been considered as a case study. 

 

3 Conclusions 

 
Assumptions ensuring design-based asymptotic unbiasedness and consistency of the IDW interpolator of 

diversity surfaces in environmental studies concern the sampling design to allocate plots on the survey 

area, the distance function to be used in the interpolation, and the mathematical features of the true 

diversity surfaces. While the sampling design and the distance function are controllable by the researcher 

to a large extent, the continuity of the surfaces besides set of measure zero is guaranteed by the nature of 

these surfaces themselves.  

The approach as here applied only exploits geographical distances, while model-based approaches, 

especially regression kriging, allow exploiting the information provided by various full cover and 

inexpensive auxiliary variables, usually derived from remote sensing sources. For this reason, our next 

research goal is to include auxiliary variables in the technique, once again avoiding model constraints and 

assumptions.      
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Abstract. Mapping species distribution is a challenging issue in ecology as exhaustive point patterns

are usually unreachable at the survey scale. Our aim is thus to predict the spatial distribution of species

from the knowledge of presence locations and environment relationships, taking into account any spa-

tial interactions between individuals. Namely, we aim to estimate the intensity function of a point

process in windows where it has not been observed, conditionally to its realization in observed win-

dows, as in geostatistics for continuous processes. Spatial interactions are modeled through the pair

correlation function. Our method is illustrated on simulations and used to map the spatial distribution

of Cedar trees in South of France.

Keywords. Intensity function; Prediction; Spatial point process.

1 Motivation

Mapping is a key issue in environmental science. A common example lies in ecology when mapping

species distribution. When the location of individuals is known, we estimate the local density (usually

by kernel smoothing), so-called intensity in point process theory. However, point locations are usually

unreachable at the survey scale, so that sampling methods are used: distance sampling or quadrat sam-

pling approaches to only mention the most common [1]. When no covariate is available, a global density

estimation is then performed. But species distribution spatially varies as it is governed by environmental

data. Several approaches have been developed in that way, for species data formed by reported pres-

ence locations also called occurrence-only records (pure records of locations where a species occurred),

as Species Distribution Models (SDM) including the popular Maxent [3] and Maxlike [4]. However,

point process models offer a natural framework for species distribution modelling and present many ad-

vantages. Because they operate at the individual level, they can incorporate interaction (competition,

cooperation or mixed effects) between individuals and dependence to environmental covariates.

We aim to map the local intensity of a spatial point process accounting for the individual relationships

modeled by the pair correlation function (which is related to the probability to find a second point of the

process at a given distance from a known point of the process) and considering environmental covariates

(and thus that the local intensity of the individual might spatially vary at large scale). The interest of our

method is that it estimates the local intensity outside the observation window, hereafter called prediction.
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2 Method

The prediction of the local intensity λ(·) of a point process Φ is obtained conditionally to the records in

the observation window Wobs. We define a predictor as the best linear unbiased combination of the point

pattern. For xo /∈Wobs,

λ̂(xo|ΦWobs
) = ∑

x∈ΦWobs

w(x;xo)

We show that the weight function w(·) associated to the predictor is the solution of a Fredholm equation

of second kind [2]. Both the kernel and the source term of the Fredholm equation are related to the

second order characteristics of the point process through the pair correlation function g(·).

w(x)+
∫

Wobs

w(y)λ(y)(g(x− y)−1)dy−
1

ν(Wobs)

[∫
Wobs

w(x)dx+
∫

W 2
obs

w(y)λ(y)(g(x− y)−1)dxdy

]

= λ(xo)(g(xo − x)−1)−
λ(xo)

ν(Wobs)

∫
Wobs

(g(xo − x)−1)dx

We obtained similar equations for multitype proceses and/or in the presence of covariates. In order

to obtain practical solutions, we restrict the solution space to that generated by linear combinations of

elementary functions of a finite element basis [2].

3 Illustrations

We illustrate the method both on simulations and real data. Here, we consider a cluster process in [2,8]×
[2,8], with a hardcore process with interaction radius 0.5 for the parent points and normal distribution

of the offspring (σ = 0.1). The simulated pattern is plotted on the left panel of Figure 1. Grey bands

correspond to unobserved windows. The middle panel of Figure 1 shows the empirical and estimated

pair correlation function. The right panel of Figure 1 illustrates the prediction of the local intensity in the

unobserved windows and kernel smoothing in the observed windows.

The method is used to map the spatial distribution of Cedar trees in South of France. The sampled

pattern is plotted on the left panel of Figure 2 over the elevation which is used as covariate. We also

consider the slope and the distance to the introduction site of Cedar trees. The related pair correlation

function is plotted on the right panel of Figure 2. The prediction will be showed during the conference!
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Figure 2: Left: Elevation and locations (dots) of cedar trees. Right: Pair correlation function.
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Abstract. Water-related natural hazards can have tremendous impacts on the well-being of communi-

ties; water levels severely below average can bring periods of drought and water scarcity, while those

severely above average can be connected to floods. These types of hazards are typically spatial in

nature. In the case of rivers, in which flows can only move downstream, the system can be considered

as a network. Learning how river flows evolve throughout a network is beneficial when it comes to

accurately estimating the probability at each location of exceeding some threshold for flooding. We in-

vestigate two approaches to modelling the daily mean flow at each gauging station in a network, both

of which exploit the network structure of rivers. One method exploits the network structure to model the

covariance between stations, making use of conditional independence and directed graphs to map out

these relationships. The other uses the structure in the mean, modelling the directional behaviour of

daily mean flows at each gauging station as a weighted combination of flows from stations immediately

upstream (using rainfall as a predictor for those most upstream stations). An analysis is undertaken

to compare how well these approaches can predict these daily flows at different points on the network.

This in turn will help to estimate how often either one or a cluster of stations within the network will

exceed a certain high or low threshold under different scenarios. The methods discussed will be show-

cased using the network of station in the river Eden catchments in the northwest of England, which has

experienced a series of devastating floods in the last 15 years.

Keywords. Flooding; Bayesian network; Conditional independence; Directional methods.
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Abstract. Windstorms are a primary natural hazard affecting Europe that are commonly linked to sub-

stantial property and infrastructural damage. Extreme winds are typically generated by extratropical

cyclone systems originating in the North Atlantic, which are often characterised by a track of local

vorticity maxima. While there have been numerous statistical studies on modelling extreme winds,

little has been done to model the influence of the extratropical cyclone on the wind speeds that they

generate. By modelling the development of windstorms in a Lagrangian frame of reference, we can

assess the joint risk of severe events occurring at multiple sites.

In this talk, we present a novel approach to modelling windstorms that preserves the physical charac-

teristics linking the windstorm and the cyclone track by exploring the dependence structure of these

characteristics in a Lagrangian frame of reference. We explore a combined copula/spatio-temporal

filtering approach to identify and extract the spatial footprint of extreme windstorm events, before

using a Markov process to propagate the characteristics of the footprint in time relative to the cyclone

track.

Our model allows simulation of synthetic windstorm events, which one can use to quantify the risk

associated with previously unobserved events at different sites, thus representing a useful tool for

practitioners with regard to risk assessment. In particular, we show, for case studies in the northwest

of England and eastern Germany, that the spatial extent of windstorms become more localised as its

magnitude increases, while our model captures the varying degrees of spatial dependence at different

sites.

Keywords. Climate extremes; Extreme value analysis; Spatial dependence; Windstorms
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Extreme weather, ensemble prediction and

postprocessing: from forecast to evaluation
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Abstract. Forecast and verification of ensemble prediction systems for extreme events remain a chal-

lenging question in the numerical weather prediction community. The general public as well as the

media pay particular attention on extreme events and conclude about the global predictive perfor-

mance of ensembles, which are often unskillful when they are needed. In this talk, an overview of the

postprocessing methods implemented by the statistical community for the ensemble forecast of extremes

is presented. Thus, the paradigm of maximizing the sharpness subject to calibration can be associated

with the paradigm of maximizing the value for extreme events subject to a good overall performance.

Keywords. Extremes ; Weather ; Forecast ; Calibration ; Postprocessing.
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Abstract. The geostatistical analysis of complex data has recently received much attention in the lit-

erature, motivated by the increasing availability of massive and heterogenous georeferenced datasets

in varied industrial and environmental contexts. Data fusion plays an important role in these settings,

because of the need to merge and integrate data from diverse sources – possibly associated with dif-

ferent degrees of uncertainty – while accounting for the possible dependence among the data. In this

communication, we consider the problem of fusing the functional responses of a reservoir model, when

these are obtained at different degrees of fidelity (i.e., multi-fidelity modeling) and refer to a range of

input parameters in a given design of experiment (DoE). Here, the proximity among input parameters

in the DoE indeed induces a dependence in the functional responses.

The context of our study is that of kriging meta-modeling. This is a classical scheme for statistical

emulation of numerical models which consists of (i) using statistical DoE on the input space, (ii) em-

ploy the numerical model (high-fidelity) to compute a set of outputs for the DoE, and finally (iii) fit a

statistical model to predict (via kriging) the numerical models output corresponding to a given set of

(new) inputs. In this work, we extend these ideas to perform kriging meta-modeling in the presence of

complex outputs, such as functional solutions. For this purpose, we here follow the approach of Object

Oriented Spatial Statistics (O2S2, [2]), a recent system of ideas and methods that allows the analysis

of complex data when their (spatial) dependence is an important issue. The foundational idea of O2S2

is to interpret the data as objects: the atom of the analysis is the entire object, which is seen as an

indivisible unit rather than a collection of features. In this view, the model outputs are interpreted as

random points within a space of objects – called feature space – whose dimensionality and geometry

should properly represent the data features and their possible constraints.

In this mathematical framework, in [1] we propose a novel object-oriented kriging meta-modeling

method that allows to integrate the complex responses obtained from a high-fidelity model with that

of a low-fidelity model, in a co-kriging setting. The developed emulator exactly reproduces the high-

fidelity training data, but also allows to take advantage of the additional information contained in the

low-fidelity solutions.

Although the presented approach is completely general and in principle allows the analysis of very

general types of objects, for illustrative purposes we will give emphasis to the case of numerical mod-

els with a functional response. We shall describe our developments on an example concerning an

oil-water reservoir model, and test on this case its performances.

Keywords. Object oriented spatial statistics; Statistical meta-modeling; Uncertainty quantification.
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Abstract.  

 

Developments in satellite retrieval algorithms continually extend the extraordinary potential of 

satellite platforms such as the MEdium ReSolution Imaging Spectrometer (MERIS), the Advanced 

Along-Track Scanning Radiometer (AATSR) and the Ocean Land Colour Instrument (OLCI) to 

retrieve information across the Earth at finer spatial resolution. Such instruments now enable water 

quality proxies (such as chlorophyll-a, coloured dissolved organic matter) to be retrieved for lakes 

and rivers at a global scale.  

 

Challenges associated with these new environmental data streams are the large volumes of data in 

space and time, collected as images, missing data and uncertainty induced in the production of the 

water quality proxy measurements.  Functional data analysis provides an attractive approach for 

efficient dimensionality reduction to investigate spatiotemporal images for lake water quality proxies 

and associated reflectance data, and provides a context for data fusion, linking the satellite data to in-

situ monitoring.   

 

The GloboLakes (www.globolakes.ac.uk) project has developed functional clustering methods and 

nonparametric downscaling to investigate temporal coherence globally for water quality parameters, 

and data fusion to enable satellite data to be bias-corrected using in-situ data of differing 

spatiotemporal support.  Recent work extends these methods by investigating the gain in accuracy 

and information by working at the reflectance data level for satellite retrievals and developing 

approaches to attribute functional clustering water quality proxy results to surrounding catchment 

information.  Additionally, functional data analysis of reflectance data will enable the identification 

of the variability and bias induced through using different sensors, so that further development of 

appropriate data fusion approaches to combine outputs from multiple satellite sensors will be needed. 

 

Methods will be illustrated using data from the AATSR, MERIS and OLCI on the European Space 

Agency EnviSat and Sentinel 3A satellite platforms. 
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Abstract. With the increase of multidimensional data availability and modern computing power, sta-

tistical models for spatial or spatio-temporal data are developing at a fast pace. Although some of the

above software packages consider both space and time, to our knowledge at the time of writing, none

of them handles data in a 3D space × time, nor handles profile data indexed in space and time. This

kind of data arises considering, for example, global atmospheric time series, where the information is

related to latitude, longitude and altitude in the atmosphere. For example, temperature atmospheric

profiles are measured by radiosondes which fly from ground level up to the stratosphere. Atmospheric

profile data are also produced by interferometric sensors aboard remote sensing satellites or laser

based methods, e.g. LIDAR.

The software D-STEM (distributed spatiotemporal expectation-maximization) is a statistical tool, im-

plementing three spatial-temporal models: the dynamic coregionalization model (DCM), the hidden

dynamic geostatistic model (HDGM), and the functional hidden dynamic geostatistic model (f-HDGM).

The dynamic coregionalization model (DCM) is introduced by Finazzi and Fassò. Calculli et al. (2015)

propose the hidden dynamic geostatistic model (HDGM) with application to air quality in Apulia, Italy.

The main development in this version is f-HDGM, which fits a four-dimension spatiotemporal model

based on functional data approach.

Exploring atmospheric data from a 3D spherical shell requires understanding from both the spherical

domain and the atmospheric vertical dynamics. Thus, based on the functional representation of atmo-

spheric vertical profiles, the sphere × time statistical model is proposed. To note, 3D × T functional

data is not restricted to the three-dimensional space. In the case study of Ozone data, we show how to

make full use of the software by changing the third dimension - altitude to the domain we are interested.

Therefore, the f-HDGM is applied even with ground level data.

The results of model estimation consist of the estimated parameters, the variance-covariance matrix

and the observed data log-likelihood. Besides, cross-validation can be conducted to assess the ac-

curacy of model prediction. And kriging is used to map the environmental variable over a region or

obtain the atmospheric profile at a certain site if the corresponding covariates are provided.

Keywords. Functional data analysis; 4D data; Climate data; Environmetrics; EM algorithm.
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Abstract. Model based small area estimation relies on mixed effects regression models that link the

small areas and borrow strength from similar domains. The variability of the random effects, while

accounting for lack of fit, affects uncertainty of both point and interval estimators of small area means.

In the presence of good covariates, low variation of the random small area effects is expected, but

when measurement error is present it has been proved that parameter estimates may be dramatically

biased and the variability of the random effects and, consequently, of the small area means significantly

increases. Adopting a fully Bayesian approach, we define a mixture model that allows us, using spike

and slab priors, to infer the presence or not of measurement error in the covariates. We empirically

evaluate the accuracy of the estimates in different simulation scenarios. We also apply the proposed

procedure to the benthic study carried out by the Dutch Institute RIKZ and analyzed in Zuur et al.

(2009) to investigate species richness.

Keywords. Small area models; measurement error; hierarchical models.

Model based small area estimation relies on mixed effects regression models that link the small areas

and borrow strength from similar domains. The variability of the random effects, while accounting for

lack of fit, affects uncertainty of both point and interval estimators of small area means. Random effects

models play an important role in model-based small area estimation; indeed, they account for any lack

of fit of a regression model for the population of small areas on a set of explanatory variables. While

the inclusion of the random effect may improve the adaptivity and flexibility of the Fay-Herriot model, it

also increases the uncertainty of both point and interval estimators of small area means. Because of that,

several tests and variable selection procedures have been developed in order to verify the presence or not

of the random effects in such models. In general, the reliability of model-based small area estimates is

closely related to the availability of good covariates, implying small variation of the random small area

effects. However in practice, one may define a model with poor covariates because they are affected

by measurement error, an ubiquitous problem ([2]) also studied within the small area literature (see [4],

[1]). In the presence of poor covariates, the variability of the random effects increase, with shrinkage

to the sampling component of the small area estimator. Correcting for measurement error reduces the

random effects variability and improves the resulting estimates, provided the induced uncertainty is small

compared to the sampling variation. Working on the model described in [4], we propose a unit-level small

area model with measurement error in auxiliary variables that, borrowing from [3], includes a “spike and

slab” distribution for modelling the inclusion of the covariate measured with error in each area.
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Such model allows us to infer the presence or not of measurement error in the covariates for each

area. We empirically evaluate the accuracy of the estimates in different simulation scenarios, varying the

percentage of areas in which covariates are measured with error. We apply the proposed model to data

from the benthic study, carried out by the Dutch Institute RIKZ and analyzed in [5] to investigate the

benthic species richness. Samples at 45 stations along the coastline were taken and benthic species were

counted. To measure diversity, species richness (the different number of species) per site was calculated.

A possible factor explaining species richness is Normal Amsterdams Peil (NAP), which measures the

height of a site compared to average sea level, and represents a measure of food for birds, fish, and benthic

species. Since NAP is obtained as a combination of several variables, it might be prone to measurement

error and such error might differ from site to site. We estimate the proposed model accounting for the

presence/absence of measurement error and assess the small area mean richness. Comparison with the

standard nested error model is performed.
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Abstract. Some conditional models to deal with circular longitudinal responses are proposed, extend-

ing random effects models to include serial dependence of Markovian form, and hence allowing for

quite general association structures between repeated observations recorded on the same unit. The

presence of both these components implies a form of dependence between them, and so a compli-

cated expression for the resulting likelihood. To handle this problem, we introduce an approximate

conditional mode and a full conditional model, with no assumption about the distribution of the time-

varying random effects. All of the discussed models are estimated by means of an EM algorithm for

nonparametric maximum likelihood.

Keywords. Hidden Markov models; Initial conditions; Finite mixtures; Conditional models.

1 The embedding approach

Let us introduce the random vector Yit , for unit i= 1, . . . , I at time t = 1, . . . ,T , following a d-dimensional

Normal distribution, with mean µit and covariance matrix Σ, i.e. Yit ∼ Nd(µit ,Σ). The random unit

vector

Uit =
Yit

||Yit ||
is said to follow a projected Normal distribution, i.e. Uit ∼ PNd(µit ,Σ); see Wang and Gelfand (2013).

The general version of the projected normal distribution allows asymmetry and bimodality, i.e differ-

ent shapes can be modelled. However, the general projected normal distribution is not identified and

substantially increases the computational burden required in the estimation step. The distribution of Uit

is unchanged if (µit ,Σ) is replaced by (cµit ,c
2
Σ) for any c > 0, but this lack of identifiability can be

addressed imposing constraints on Σ. Wang and Gelfand (2013) suggest to set one of the variances in Σ

to 1 to provide identifiability, resulting in a four-parameter distribution. Other constraints could be also

considered as e.g. restricting the determinant of Σ to equal 1.

The Uit variable can be converted to an angular random variable, say Θit , relative to some direc-

tion treated as 0. Indeed, any Θit can be obtained from the radial projection of the bivariate normal

distribution by using the arctan* function defined by Jammalamadaka and SenGupta (2001; p. 13), i.e.
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Θit = arctan∗
(

Yit2

Yit1

)

= arctan∗
(

Uit2

Uit1

)

. The following explicit relation exists between Yit and the circular

variable Θit

Yit =

[

Yit1

Yit2

]

=

[

Rit cosθit

Rit sinθit

]

= RitUit ,

where Rit = ||Yit ||.

In the following, we will focus exclusively on the case Σ = I and d = 2 (i.e. on circular data). If

in addition, µit = 0, then Uit is uniformly distributed on the circle; otherwise the distribution of Uit is

unimodal and rotationally symmetric about its mean direction µit/||µit ||. Indeed, departure from zero

for the two means, in the case of an identity covariance matrix, creates one mode in the trigonometric

quadrant with the same sign of the means, e.g. if µit1 > 0 and µit2 < 0, where µit = (µit1,µit2), then the

mode is in the quadrant with positive cosine and negative sine.

The joint density f (θit ,rit | µit ,I) can be easily obtained by transforming the bivariate normal dis-

tribution of yit to polar coordinates, i.e. f (θit ,rit | µit ,I) = f (rituit | µit ,I)rit and, thus, f (θit | µit ,I) =∫
f (θit ,rit |µit ,I)drit = φ(µit1,µit2;0,I)+µit1 cosθit +µit2 sinθit , i.e. θit ∼ PN2(µit ,I), with φ(·) denoting

the density function of the bivariate normal distribution.

In empirical applications, the angle θit is usually collected. However, as discussed above, we prefer

to work with its radial projections as the resulting model can be easily dealt with by using standard

regression modelling strategies. In other words, we model Yit and focus our interest upon the parameter

vector µit , which is modelled, in a regression framework, by defining a multivariate linear mixed model,

as defined in the following sections.

2 The random effects model

The temporal evolution of the random effects can be conveniently described by including a vector of

time-varying random effects, say bit = (bit1,bit2). Regarding bit’s distribution, we assume a (hidden)

Markov chain with states bk = (bk1,bk2),k = 1, . . . ,K, initial probabilities πik = Pr(bi1 = bk) = πk and

transition probability matrix Π= {πit,k|h} with πit,k|h = Pr(bit = bk | bit−1 = bh)= πk|h, t > 1, i.e. Markov

chain’s parameters will be assumed independent on any covariates and shared among subjects.

The modelling framework is completed by defining the regression model (see also Maruotti et al.,

2016)

µit j = x′itβ j +bit j, j = 1,2,

where xit =(1,xit1, . . . ,xit p,θit−1), β j =(β0 j,β1 j, . . . ,βp j,βp+1, j) represents the (p+2)-dimensional vec-

tor of regression parameters referred to the j-th projection and bi = (bi1,bi2) denotes a set of subject-

and projection-specific random effects. However, in order to easily implement the estimation steps, the

following multilevel specification can be considered

µit j =
2

∑
j=1

dit j(x
′
itβ j +bit j)

where we use a set of indicator variables dit j, with dit j = 1,∀i = 1, . . . , I; t = 1, . . . ,T, j = 1,2 iff the j-th

projection is to be modelled and 0 otherwise. Using a matrix notation

µit = x∗itβ
∗+b∗

it
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where

µit =

[

µit1

µit2

]

, x∗it = I2 ⊗xit , β∗ = vec(β) =

[

β1

β2

]

, b∗
it = vec(bit) =

[

bit1

bit2

]

.

If the covariates are not the same for both projections, some of the elements of β j would be set equal

to zero.

We would remark that the circular mean direction and concentration, i.e., the circular counterpart

of the mean and precision of a linear random variable, are respectively µ̄it = arctan∗
(

µit2

µit1

)

and cit =

(πγit/2)1/2 exp(−γit)(I0(γit)+ I1(γit)), where γit = ||µit ||2/4 and Iv(γ) is the modified Bessel function of

the first kind of order v, see Wang and Gelfand (2013). Both µ̄it and cit depend on the means of the

projections hence the regression type specification of µit j can adjust for change in mean direction and

concentration due to different levels of covariates.

2.1 Likelihood inference

Inference for the proposed model is based on the log-likelihood

ℓ(λ) =
I

∑
i=1

log

{

∑
bi1

· · ·∑
biT

[

πbi1 ∏
t>1

πbit |bit−1 ∏
t

f (θit | xit ,bit) f (θi0 | xi0,bi0)

]}

with the sum ∑bit
extended to all possible configurations of bit and where λ is a short-hand notation

for all non-redundant parameters. However, inferences can be highly sensitive to misspecification of

f (θi0 | xi0,bi0). Thus, we rewrite the previous expression as

ℓ(λ) =
I

∑
i=1

log

{

∑
bi1

· · ·∑
biT

[

πbi1
(θi0)∏

t>1

πbit |bit−1
(θi0)∏

t

f (θit | xit ,bit) f (θi0 | xi0)

]}

or equivalently

ℓ(λ | θi0) =
I

∑
i=1

log

{

∑
bi1

· · ·∑
biT

[

πbi1
(θi0)∏

t>1

πbit |bit−1
(θi0)∏

t

f (θit | xit ,bit)

]}

resulting in a conditional likelihood, where πbi1
(θi0) and πbit |bit−1

(θi0) allows the random effects distri-

bution to dependent on θi0.
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Abstract.

The aim of this work is to find individual and joint change-points in a large multivariate database of

climate data. We model monthly values of precipitation, minimum and maximum temperature recorded

in 360 stations covering all Italy for 60 years (12 × 60 months). The proposed three variate Gaussian

change-point model exploits the Hierarchical Dirichlet process, allowing for a formalization that lets

us estimate a different change-point model for each station. As stations possibly share some of the

parameters of the trivariate normal emission distribution, this model framework provides an original

definition of the change-points corresponding to changes in any subset of the 9 model parameters.

Keywords. Change-point model; Hierarchical Dirichlet process; Climate data

Climate elements and regimes, such as temperature, precipitation and their annual cycles, primarily

affect the type and distribution of plants, animals, and soils as well as their combination in complex

ecosystems. The ecological classification of climate represents one of the basic steps for the definition

and mapping of ecoregions, i.e. of broad ecosystems occurring in discrete geographical areas. As a mat-

ter of fact, the large temporal scale of the dataset implies that the time span may subtend several evolving

patterns of the underlying series. From a botanical perspective, bioclimatic time regimes correspond to

abrupt changes in the climatic behavior and support inferences on the potential effects of these changes

on ecosystem composition, functionality, distribution, and dynamics at different time scales ([2]).

To investigate the presence of change-points in thermo-pluviometric historical data over the Italian

peninsula, we consider monthly records of precipitation and min/max temperature at 360 monitoring

stations over 60 years (1951-2010). The data were mostly provided by national institutions (ISPRA,

CRA/CREA, Meteomont and ENEA) and local authorities. Monthly records were obtained considering

monthly cumulative precipitations and monthly averages of daily minimum and maximum air temper-

atures. The full database has 3× 360× 60× 12 entries, though almost all time series are affected by

variable amounts of missing data. Series observed over a very large time span are usually subject to

changes of their structure and features, concerning both the first order (means) and the second order

(variances and correlations) properties. Moreover, seasonality is present and cannot be disregarded.

We consider mixture modeling for model-based clustering, where mixture components act as cluster

generators and classification is equivalent to the model fitting process. In particular, we view the multi-
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variate data as realizations of a Gaussian process with a finite or countably infinite set of vector-valued

parameters. In order to simplify the joint distribution modeling of the climate variables, we standardize

the temperatures and rescale the precipitation with its standard deviation; the latter is then seen as the

realization of a latent variable belonging to the real line (R), where the negative values are associated to

the event “no precipitation” ([3]). Two time-points are clustered (i.e. they belong to the same regime) if

they correspond to realizations from a common member of this set. The stochastic features of the set of

vector-valued parameters are specified in a further level of the hierarchical model by Dirichlet process

modeling ideas ([5]).

In this work we present some preliminary results.The model was implemented on the TeraStat cluster

[1]. The code is written in R/C++, and uses the openMP library [4] to perform parallel computing. Our

proposal allows for a very rich inference on the joint change-point detection. Posterior estimates are

obtained in 6 days, with 40000 iterations per day and 10 GB of ram usage. Initial results are very

encouraging and are partially limited only by computational issues, that we plan to solve in the near

future.
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Abstract. Massive datasets having the form of potentially unbounded data streams are becoming very

common due to the availability of sensor networks which record data at very high rate. We can think

of monitoring environmental variables, electricity consumptions, pollutions. In these real world appli-

cations dataset size grows very quickly and data is expected to evolve over time. Often, data collected

by sensors still depend on the geographic location of each sensing device.

This paper introduces a strategy for measuring the spatial dependence among data streams. Tradi-

tional data mining tools fail to cope with data streams since they require that data is stored for being

processed. Data stream learning should satisfy the following constraints: 1) Time required for pro-

cessing the incoming observations has to be small and constant; 2) Allowed memory resources are

orders of magnitude smaller than the total size of input data; 3) Algorithms cannot perform more than

one scan of the data; 4) Knowledge about data should be available at any point in time or on user

demand.

Thus, data stream mining algorithms should update incrementally and continuously over time the

knowledge about the monitored phenomenon, keeping into account its evolution.

Consistently with the aforementioned setting, we introduce an approach which analyses data streams

arriving from each sensor in parallel, assuming that they are generated by an unknown random process

and that the covariance between observations depends only on the spatial distance among sensors.

We propose to represent each data stream as an unbounded histogram time series that is, a collection

of histograms ordered over time. Such approach allows monitoring data distribution and supports fast

computing as well as low memory occupation. Each histogram time series is the input of a local com-

puting unit which gets a summarization of the stream. The results of this summarization are sent to a

central computing unit which measures the spatial dependence among the streams in a time window

and provides data predictions. The strategy is based on comparing histograms by the L2-Wasserstein

distance for histogram data. Wasserstein distances are metrics between probability distributions which

have been used successfully for the comparison of complex objects since they consider information

about the characteristics of compared distributions, such as location, variability and shape. The spe-

cial case of L2-Wasserstein distance provides also an elegant and intuitive notion of Fréchet mean and

a useful measure of variance for distribution data. This paper uses the L2-Wasserstein distance for

detecting groups of similar histograms over time and for defining a variogram for histogram data, as

a tool for measuring the spatial dependence among data streams

Keywords. Data stream mining; Wasserstein distance; Spatial data.
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Abstract. The environmental radioactivity fluctuations of radon have been of recent interest. In the

analysis, the relevant aspects concern identifying the main time series properties in terms of season-

ality and autocorrelation structure and disentangling the effects of environmental factors that might

control the radon concentrations. In this work, complementary methods are applied for detecting

multi-seasonality, for evaluating the presence of long-range correlation and for describing the effect

of weather variables on radon time series. We analyse radon measurements at different frequencies

recorded in some Italian monitoring sites. The results indicate that there are sub-daily, daily and yearly

persistent periodicities that are common for all the observed time series. However, the influence of the

weather variables is strictly site-specific.

Keywords. radon; seasonality; time series; weather variables

1 Introduction

There are several applications in geosciences based on the environmental radioactivity measurements,

such as the radon (Rn222) that is a gas with a short half-life of 3.8 days. It is often used as a potential

earthquake precursor, as environmental tracer in hydrological settings and to study rock stress in volcanic

and active zones.

The main difficulty of the use of radon as earthquake precursor is that the earthquake-related anomaly

cannot be easily discriminated. As a matter of fact, radon variations are influenced by several factors

such as flux of carrier gases, environmental and climatic variables, characteristics of the ground soil,

tide, solar effect, etc (see [5] and references therein).

Following the explanation in [2], the analysis of radon time series presents several challenges because

these measurements have a complex dynamic structure. Radon time series might present a non-stationary

behaviour, multiple-seasonality, heteroscedasticity and long-range memory.

The soil radon emission is a topic of great concern in Italy where the mean annual concentration has

been estimated to 70Bq/m3, higher with respect the global annual mean of 40Bq/m3. In this work, we

investigate the main properties of 2-hours and daily radon time series of some Italian monitoring sites

[1]. The identification of seasonality variations, both in the long-term and short-term, which are usually

related to the environmental and climatic variables can allow filtering the radon signals and enhance the

anomalies related to the geological processes.
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2 Methods

Complementary methods are used to identify the main properties of the radon time series. First of all, the

different time series are characterised according their underlying long-memory correlation structure. The

presence of long-range memory is assessed estimating the Hurst exponent [4], if it holds the statistical

dependence decays more slowly than an exponential decay. The long-range memory is quantify properly

fitting autoregressive fractionally integrated moving average models, ARFIMA(p,d,q), [3]. This family

of models allows to handle explicitly both the short-term and the long-term correlation structure.

Moreover, we perform a power spectral analysis in time-frequency domains using the continuous wavelet

transformation (CWT) [6] identifying the (local) wavelet power spectrum (WPS). This quantity can be in-

terpret as the local variance of the time series. The cross-wavelet analysis provides appealing information

such as the similarity between the wavelet power spectrum of two series (computing the cross-wavelet

power) and the series synchronicity (estimating the phase differences at certain periods). These quanti-

ties are computed for comparing the radon time series with the available weather variables (such as the

temperature).

3 Main results

The analysed radon time series exhibit transient dynamics and the magnitude of the WPS is not constant

over time fixing a specific frequency. The power spectral density calculated from the sub-daily series

shows a main peak indicating a marked period at 1-day for all the selected sites. In the literature, this

periodicity is mainly ascribed to the effect of the diurnal pressure and temperature cycle. The daily series

shows a main cycle at about 1 year at each station and a subordinate cycle is present at about 180 days.

Depending on the site, the radon concentrations are positive or negative correlated with the temperature

Furthermore, the phase differences in the band between 360 and 370 days show different values and also

the overall in-phase/out-of-phase relationships is site-dependent. This is mainly due to the conditions

resulting from local geological and environmental settings and the installation types of the monitoring

station. For describing the auto-correlation structure, the ARFIMA models are estimated. The results

suggest that there is a statistically significant evidence of long-range memory.
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Abstract. The seismic history of a region is characterized by its earthquake clusters, namely periods

when the occurrence rate of earthquakes is higher than usual. Clustering in space and time is an

essential key to understanding earthquake source mechanisms (fault geometry, rupture dynamics, sta-

tus of the stress field, etc.), and several methodologies for cluster analysis have been proposed so far.

However the definition of clusters is not univocal. Thus, for the identification of earthqauke clusters

we consider two recent data-driven declustering algorithms, one based on nearest-neighbor distance

and the other on a self-exciting point process.

Since different classifications of earthquakes into main and secondary events can be obtained from

different methods, we compare their performance by exploiting tools from Network theory. In partic-

ular, in order to highlight possible classification similarities/dissimilarities, the earthquake clusters

obtained from both algorithms are represented as rooted trees, and their complexity is evaluated and

compared through suitable centrality measures.

Keywords. Earthquake clustering; Centrality measures; Nearest-neighbor distance; Stochastic declus-

tering.

The main purpose of this study is identifying suitable tools for the identification and quantitative

robust characterization of earthquake clusters in a catalog. The data used for this analysis are extracted

from the bulletins compiled at the National Institute of Oceanography and Experimental Geophysics; the

catalog includes all events occurred in North-Eastern Italy and Western Slovenia, in the period between

1994 and 2018 and magnitude above 2.0.

The identification of earthquake clusters is performed by two declustering methods: the nearest-neighbor

(NN) algorithm [2] and the stochastic declustering (SD) algorithm [3]. NN-method is based on the NN-

distance ηi j between two earthquakes, which is a combination of the inter-occurrence time, the fractal

dimension of the hypocenters distribution, and the Gutenberg-Richter law. Each event i is connected

to its nearest-neighbor j = argminkηik; then earthquake clusters are clearly identified by removing all

connections ηi j such that ηi j > η0, for a selected threshold η0 (more details in [1]). SD-method is based

on the space-time epidemic-type aftershock sequence model, a branching point process defined by its in-

tensity function λ(t,x,y | Ht) = µ(x,y)+∑i:ti<t ν(t − ti,x− xi,y− yi | Ht) conditional on past history Ht ,

where the rate µ(x,y) is due to spontaneous events and ν(t− ti,x−xi,y−yi | Ht) is the contribution to the

hazard function due to events triggered by earthquake i. Connections between triggering and triggered

events are established by thinning the point process according to probabilities proportional to µ(x,y) and
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ν(t − ti,x− xi,y− yi | Ht) for all ti < t; so earthquake clusters are immediately identified. Clearly, thin-

ning simulation provides many possible cluster scenarios.

The earthquake clusters obtained from the two declustering algorithms are then compared, so as to iden-

tify classification similarities and differences. The analysis highlights a good agreement in the overall

clusters identification. As an example, we illustrate the case of the cluster dominated by the 1998/04/12

earthquake, magnitude M5.6. Both methods identify the 1998 cluster: NN-cluster includes 720 events,

while SD-cluster has 697 events. We observe that 677 events are consistently assigned to both clusters.

Still, despite the large number of events identified by both methods, the hierarchical structure of the SD-

cluster is more complex than that obtained from NN method. That is apparent from the representation

as rooted trees of NN- and SD-clusters, but also according to some measures which express the way

earthquakes (tree nodes) get organized within the cluster (tree). These measures are known as centrality

measures in Network theory and, hereafter, only closeness centrality is considered. Given a rooted tree

of n earthquakes, closeness centrality of earthquake xi is defined by

close(xi) =
n−1

∑x j
d(xi,x j)

(1)

where d(xi,x j) is the geodesic (shortest path) distance from xi to x j along the tree; if node x j is not

reachable from xi, geodesic distance d(xi,x j) is set equal to n. Closeness centrality ranges in [0,1].
According to closeness centrality, the most central node x∗ is, on average, the closest node to the others.

A global index, named closeness centralization, is defined by

C = ∑
x

[close(x∗)− close(x)]/(n−1) , (2)

which also ranges in [0,1]. High C values indicate simple structures inside the cluster, in which few

nodes dominate others; on the contrary, small C values denote more complex hierarchical structures.

As for the 1998 cluster, closeness centralization is 0.63 for the NN-cluster and 0.19 for the SD-cluster,

confirming that SD-cluster has higher internal complexity than NN-cluster.
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Abstract. In this work, we present an analysis of the prevalence of X. fastidiosa in southern Italy and

mainland Spain using hierarchical Bayesian models. The aim is to present different spatial models to

better understand the epidemiological factors driving disease spread. The integrated nested Laplace

approximation (INLA) was employed to obtain posterior and predictive distributions.

Keywords. INLA; spatial; Xylella fastidiosa

1 Bayesian hierarchical models

In the last years, the use of complex statistical models has increased to improve our knowledge on the

spread of diseases and the distribution of species. The complexity of these models makes the inferential

and predictive processes challenging to perform. Bayesian statistics, which is based on the premise that

both information and uncertainty can be expressed in terms of probability distributions, represents a good

alternative in this context. But moreover, because complexity can be handled via hierarchical Bayesian

models not difficultly. Usually, a Hierarchical Bayesian model can be expressed in three different lev-

els: the likelihood, which represents the information given by the data; the prior distributions for the

parameters and random effects; and the hyperpriors. However, obtaining the posterior distribution of the

parameters governing the models is not straightforward, but, the Integrated Nested Laplace Approxima-

tion methodology (INLA) [2] is a powerful tool which facilitate the posterior distribution computation

for a particular case of Bayesian Hierarchical models: the latent Gaussian models.

2 Xylella fastidiosa

In the last years, numerous epidemiological studies have been carried out to prevent, eradicate or contain

plant disease spread under different scenarios. Here, we focus on diseases caused by the bacterium

Xylella fastidiosa which was recently detected in the Mediterranean Basin. The olive quick decline,
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caused by X. fastidiosa subsp. pauca, has devastated extensive areas in the south east Italy. An outbreak

of almond leaf scorch, caused by X. Fastidiosa was detected in 2017 in Alicante province, eastern Spain.

The introduction and spread of X. fastidiosa in other regions could cause yield losses and costly control

measures not only in olive or almond but also in other economically important crops such as grapes,

citrus, or stone fruits. Presence/absence data of the pathogen was avaliable in Alicante and in Apulia.

Climatic and topographic variables, and geographical coordinates were also avaliable and employed for

the analysis.

3 Spatial hierarchical Bayesian models for Xylella fastidiosa

As the data design was completely different, two different ways were employed to deal with them. With

respect to Alicante, a spatial latent Gaussian model to deal with lattice data was used, meanwhile, in

Apulia, we needed a geostatistical term to find a model that suited the data.

Likelihood

Yi ∼ Binomial(n,πi),

logit(πi) = Xiβ+Vi +Ui,

Latent Gaussian field

β0, . . . ,βM ∼ N(0,104),

Vi ∼ N

(

1

n
∑
i∼ j

Vi,
1

niτV

)

, Ui ∼ N
(

0,τ−1
U

)

,

Hyperparameters

τV ,τU ∼ LogGamma(1,5 ·10−5).

• V is a structured Besag spatial effect. Two

locations are neighbors if the distance be-

tween them is 2.5Km. U is an unstructured

random effect.

Likelihood

Yi ∼ Ber(πi),

logit(πi) = Xiβ+Wi,

Latent Gaussian field

β0, . . . ,βM ∼ N(0,104),

W ∼ N(0,Q−1(r,σW )),

Hyperparameters

log(r) ∼ N(µr,10)

log(σW ) ∼ N(µσW
,10).

• W is a spatial effect with Matérn covariance

function, r is referred to the range of the spa-

tial effect and σW to the standard deviation

of the spatial effect [1].

Results showed that it is as important to have in mind the presence of the spatial autocorrelation as

the covariates, because it can change completely the modelization of a phenomenon. In addition, it was

demonstrated that INLA is an efficient tool to deal with spatial data.
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Abstract. The field of environmental statistics is fast evolving and is exploring continuously more 

sophisticated techniques for a more precise analysis of environmental data. Often however these 

novel solutions are either sought to very specific cases or generalized for a restricted set of similar 

cases. To the disappointment of statisticians striving for the wider uptake of their research, such 

solutions very seldomly are adopted by decision makers for routine use. Rather, environmental 

managers seem to “stubbornly” continue the use of outdated and less efficient approaches instead. 

While this can be a function of a different approach of managers towards knowledge production, it 

need not always be. In my talk I stress the importance of cooperation and dialogue with 

environmental managers for statisticians that seek to have a larger environmental impact. I 

particularly stress the need for statisticians to understand the nature and goals of the current 

managerial system, its history and limitations, as well as the need and willingness to relate 

theoretical concepts also to audiences of non-experts of their field.

Keywords. Novel statistical methods; Methods uptake; Environmental management.
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Abstract. Biodiversity in aquatic ecosystems is affected by stressors including pollution, and urban

and agricultural land cover in their catchments, but also by landscape and hydrological connectivity.

Connectivity here relates to the number or size of hydrological features near each water body, such

as the length of rivers in the catchment. The interaction between connectivity and stressors is not

well understood, though it is hypothesised that greater connectivity leads to healthier water bodies

in the absence of stressors, but that this relationship can reverse for higher levels of stressors. Im-

proved understanding of the effects on biodiversity of connectivity and stressors and their interactions

is vital for conservationists and ecologists to better understand the distributions of aquatic species.

Conservationists and ecologists have long collected data on species occurrence using routine surveys,

citizen science, or more opportunistic visits to sites. Using rich existing data sources, and including

the species groups of interest of dragonflies as well as aquatic plants (macrophytes) observed across

the UK at more than 7,000 water bodies, or on a regular 1km grid, we present a statistical modelling

framework to examine the ecological hypotheses.

We propose a spatial modelling approach adapted to account for species detectability (where ap-

propriate) and highly correlated connectivity and stressor covariates. The approach links ecological

response data with landscape connectivity and stressor data on a national scale for the UK to address

questions related to how multiple stressors (linked to urban or agricultural land use, acidification,)

interact with connectivity to affect biodiversity, and how stress-response relationships are affected by

differing measures of landscape connectivity.

We have adopted a Bayesian hierarchical approach, accounting for detection probability for

hard-to-identify species that are likely to be under-recorded, with the resulting estimated species

occupancy/richness modelled in response to connectivity and stressor metrics. Random forests are

used to select from an extensive set of possible covariates, many of which are highly correlated, with

the spatial data structure accounted for implicitly through including catchment covariates (such as

altitude and spatial location).

Data and expert ecological advice were provided by University of Stirling, Centre for Ecology

and Hydrology and British Trust for Ornithology. This work was funded as part of the NERC

Hydroscape project (NE/N005740/1) (https://hydroscapeblog.wordpress.com/about/).

Keywords. Biodiversity; Occupancy modelling; Hierarchical spatial models; Connectivity.
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An R-based widget for Bayesian disease mapping

Gardini1, Greco1,∗ and Trivisano1

1 Department of Statistical Sciences “P. Fortunati”, University of Bologna; aldo.gardini2@unibo.it,

fedele.greco@unibo.it, carlo.trivisano@unibo.it
∗Corresponding author

Abstract. Disease mapping encompasses a set of methodologies employed to describe the disease risk

distribution over a study region. When the disease under study is rare, counts are heavily affected by

random variability, and the estimates of the relative risk at the small-area level are unstable. The main

aim of disease mapping studies is the identification of the underlying distribution of the risk.

Several approaches have been proposed for modelling unstructured and spatially structured compo-

nents and the Bayesian inferential framework is usually adopted. Among the different proposed models,

the Besag-York and Mollié (BYM) model is one of the most employed in the literature. In the last years,

several works focused on the specification of priors for the random effects variances: in particular,

priors that can account for the structure of the effects are desirable.

We present a novel approach based on the solution of an integral equation that allows the user to

have full control on prior specification, evaluating the prior marginal variance of the effects and their

ratio. From a technical point of view, the equation is solved by means of the Mellin transform of the

distribution of a quadratic form.

Despite the mathematical complexity of the prior specification procedure, to encourage the use of our

methodology by practitioners, we developed an easily interpretable R interface. It allows to estimate

the chosen BYM model through MCMC methods, after an aware prior specification for the variance

components. Moreover, the interface provides tools for studying prior sensitivity and for performing

posterior analyses.

Keywords. Mellin transform, Bayesian hierarchical models, Spatial epidemiology
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Abstract. We introduce a hierarchical spatio-temporal regression model to study the spatial and tem-

poral association existing between health data and air pollution. The model is developed for handling

measurements belonging to the exponential family of distributions and allows the spatial and tempo-

ral components to be modelled conditionally independently via random variables for the (canonical)

transformation of the measurements mean function.

Keywords. distributed lag models; spatio-temporal models; hierarchical models; air pollution

There exists a huge statistical literature about the effect of air pollution on human health. In par-

ticular, The temporal relationship has been studied through time series models, developed in multi-sites

frameworks, for example, in [Peng et al.(2009)].

The health data, which often come as mortality or morbidity rates or counts of hospital admissions

for particular (e.g. respiratory) diseases, are, in general, collected as time series at different locations

and estimating the health risks of air pollution involved considering a spatial relationship. However, the

data analysed are often measured at different resolutions because they come from independent sources:

environmental variables are generally registered at specific locations corresponding to environmental

registration stations, while the health data correspond to areal units (the area associated with the hospital

or the health district).

A simple approach to deal with this problem, often named change of support problem, is to average

the environmental measurements recorded in the same health district; however, this procedure does not

take into account any variability.

In this work, we propose a hierarchical spatio-temporal regression model, which is able to deal with

the change of support problem, by changing the support of air pollution data (regressors) to achieve align-

ment with the health data measured at area level, following [?], in such a way that takes into account for

spatio-temporal variation using a temporal autoregressive variable with spatially correlated innovations

We focus the interest on the effect of air pollution on the number of hospital admissions for respira-

tory diseases in the short period through a regression model that includes lagged exposure variables as

covariates. The hierarchical model is a lag-distributed model, which assumes a general effect which is

observed with variability at each location.
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Abstract. We provide a non-parametric spectral approach to the modeling of correlation functions on 

spheres. The sequence of Schoenberg coecients and their associated covariance functions are treated 

as random rather than assuming a parametric form. We propose a stick-breacking representation for 

the spectrum, and show that such a choicespans the support of the class of geodesically-isotropic 

covariance functions under uniform convergence. Further, we examine the rst order properties of 

such representation, from which geometric properties can be inferred, in terms of H older continuity, 

of the associated Gaussian random eld. The properties of the posterior, in terms of existence, 

uniqueness, and Lipschitz continuity, are then inspected. Our ndings are validated with MCMC 

simulations and illustrated using a global data set on surface temperatures. 
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Abstract. Spatial processes exhibit nonstationarity in many climate and environmental applications. 

Convolution-based approaches are often used to construct nonstationary covariance functions in 

Gaussian processes. Although convolution-based models are flexible, their computation is extremely 

expensive when the data set is large. Most existing methods rely on fitting an anisotropic, but 

stationary model locally, and then reconstructing the spatially varying parameters. In this study, we 

propose a new estimation procedure to approximate a class of non-stationary Matern covariance 

functions by local-polynomial fitting the covariance parameters. The proposed method allows for 

efficient estimation of a richer class of nonstationary covariance functions, with the local stationary 

model as a special case. We also develop an approach for a fast high-resolution simulation with non-

stationary features on a small scale and apply it to precipitation data in climate model outputs. 
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Abstract. This paper analyses the environmentally-induced migration and displacement resulting 

from two earthquakes: Abruzzo (2009) and Emilia Romagna (2012). After a general critical 

overview of the social science literature on this topic, the main changes in the two migration systems 

are analysed looking at the different roots and trajectories of the forced human displacement that 

followed the two earthquakes. Additionally, we look at the long-run effects of earthquakes on 

population density growth across Italian municipalities affected by earthquakes during the period of 

2002–2017.  

Moving from the fact that similar events may occurring in different contexts, may have different 

outcomes according to the specific vulnerability experienced by the territory, we assess the pre- 

disaster context and recovery period with the aim to offer a comparative analysis of the challenges 

related to post earthquake demographic movements and post-disaster resettlement.    

The goal of our paper is twofold: first, we aim to understand how the two migration systems have 

been influenced by the pre-existent vulnerabilities and pre-quake social and institutional 

backgrounds before and after the hazard. Second, we investigate the long-run effects of 

earthquakes on population density growth in Italy applying spatial regression models.  In the 

analyses we will take into account the main economic trends in the earthquake’s area. Relying on 

ISTAT data on the internal migration in Italy, we finally offer a general model of how environmental 

disaster might affect displacement and suggest the main challenges related to the post-disaster 

governance. 

 

Keywords: Environmental Disaster, Migration, Displacement, Population density, Spatial analysis  

 

 
 

 

 

 

1 Introduction  

 
The primary focus in migration research has traditionally been labor migration. However, the relevance of 
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environmentally-induced migration and displacement, including those resulting from disasters and natural 

hazards, have increasingly drawn attention from academia and policy makers [1]. The reasons behind this 

increasing attention are included and not limited to the growing ‘environmentalization’ that has 
characterized both social science and the public debate in the past three decades, a period marked by a 

huge number of environmental global disasters that can be narrow down in three main fields:  

-natural disasters (such as the 2004 South-east Asian tsunami, the 2009 L’Aquila earthquake, the 2012 
Hurricane Sandy in the United States); 

-human induced disasters (such as the 1986 Chernobyl nuclear disaster in the former USSR and the 1984 

Bhopal disaster in India);  

-and mixed disasters (such as the 2005 Hurricane Katrina that resulted in flooding when the levee 

collapsed in New Orleans).  

 

Events like these have entailed a wide range of social, economic and demographic consequences, 

especially as concerns the rising phenomenon of the Environmentally-Induced Displacement, namely, the 

rapid, unforeseen option of last resort for those affected by an environmental hazard. 

Over the last decade, at least ten key disasters had a significant long-term impact on the dynamics of long-

lasting displacement. According to the estimates of international organizations, more than 1,7 million 

people were forced to displace following the Asiatic tsunami of December 2004. In August 2005, as a 

result of the Hurricane “Katrina” over the Gulf of Mexico, over 300,000 people were resettled, while the 
disaster caused losses estimated at over 86 billion dollars. In February 2010 more than 1,5 million people 

have been displaced in the aftermath of destructive 8.8 magnitude earthquake in Chile. 2011’s earthquake 
in Haiti has deprived more than 1 million residents of homes. Furthermore, Japan’s March 2011 
earthquake, with its 9 magnitude and accompanying tsunami wave, had a significant impact on the 

dynamics of internal migration for Japanese nationals. According to the United Nations, a total of 590,000 

were evacuated or displaced as a result of the quake and tsunami disaster, including more than 100,000 

children [2]. 

In the last decade, geographical research into the causation of the disaster-related displacement, began to 

involve multi-scalar analysis with an emphasis on interaction across multiple spatial-temporal scales. This 

particular approach called for a rethinking of disasters from a political economic perspective, based on the 

high correlation between disaster predisposition, low local income and under-development, and leads to 

the conclusion that the root causes of disasters lay more in society than in nature.  

In this theoretical approach the concept of “vulnerability” is crucial because it allows to go in the depth in 
the understanding of disasters, recognizing that disasters are not caused by a single agent but by the 

complex interaction of both environmental and social features and forces.  

Although part of the research has been focused mainly on disaster and displacement, it is important to 

keep in mind that disasters do not affect all individuals, households and communities equally, and 

environmental hazard is not faced in the same way everywhere and by everyone [3]. Events that are rooted 

in nature such as earthquakes or tsunami, if they are of identical intensity, can produce diverse outcomes 

according to the characteristics of the communities and of the territory where they take place.  

Differently from the wide literature that analyzes the role played by environmental disasters in shaping 

population movements in under-developed countries, this paper analyses the environmentally-induced 

migration and displacement resulting from two earthquakes occurred in the context of a developed 

country: more specifically, in the Italian regions of Abruzzo (2009) and Emilia Romagna (2012). The 

analysis will be lead at municipalities’ level. After a general critical overview of the social science 

literature on this topic, the main changes in the two migration systems are analysed looking at the different 

roots and trajectories of the forced human displacement that followed the two earthquakes. Additionally, 

we look at the long-run effects of earthquakes on population density growth across Italian municipalities 

affected by earthquakes during the period of 2002–2017. 

Moving from the fact that similar events may occurring in different contexts, may have different outcomes 

according to the specific vulnerability experienced by the territory, we assess the pre-disaster context and 

recovery period with the aim to offer a comparative analysis of the challenges related to post earthquake 

demographic movements and post-disaster resettlement.    

The goal of our paper is twofold: first, we aim to understand how the two migration systems have been 

influenced by the pre-existent vulnerabilities and pre-quake social and institutional backgrounds before 

and after the hazard. Second, we investigate the long-run effects of earthquakes on population density 

growth in Italy applying spatial regression models.  In the analyses we will take into account the main 
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economic trends in the earthquake’s area. Relying on ISTAT data on the internal migration in Italy, we 

finally offer a general model of how environmental disaster might affect displacement and suggest the 

main challenges related to the post-disaster governance. It reviews the main socio-demographic and 

economic tendencies, with the aim to understand how the natural disaster shaped them and their impact on 

population growth and density.  

 

 

2 Data and methods 

 
We use Istat data referred to all the Municipalities which were hit by the earthquakes in Abruzzo and 

Emilia Romagna, respectively in 2009 and 2012. These municipalities are 57 in Abruzzo and 54 in 

Emilia Romagna. The L’Aquila earthquake of April 6 2009 killed 309 people. The earthquake of May 

2012 hit an extensive area of Emilia Romagna.   

For the demographic indicators we use data of Population registers for the period 2002-2017. For every 

year, we consider population at 1.1.t and some structure indicators, such as the proportion of 65 old 

people. Furthermore, we consider the population evolution in each municipality: natural increase and 

international and internal net migration, by distinguishing between Italians and foreigners’ migration. We 
include also Istat data about the economic conditions.  

A descriptive analysis is conducted to observe and describe the trends of demographic dynamics, in 

particular migration, in the territories which experienced the earthquake.  

At a later stage, we exploit a spatial model based on the formulation proposed by Wang [4]. Through this 

model we aim to investigate about the effects of earthquakes on population density growth in these 

territories, by looking at the difference between the periods before and after the earthquake. The 

application of a spatial model permits to take into account the influence that space can have on some not 

observable variables which influence demographic events. Demographic and economic variables are 

inserted in the model as other factors which can affect population distribution beyond a natural disaster 

as the earthquake. Indeed, we hypothesis that demographic, social, economic factors are interrelated with 

change in population distribution before and after the earthquake. Population structure affect 

demographic and social trends. Also pre-existing in-flow and out-flow towards specific territories can 

shape migration movements also after the earthquakes. Regarding migration, we expect also that internal 

migration of Italians and foreigners follow different trajectories and evolution, connected also with 

reconstruction.  

 
 

3 Preliminary results 

 
Italy is one of the most earthquake-prone countries in the world. The L’Aquila earthquake destroyed a 
large part of the built environment, as well as essential infrastructure networks. The earthquake and the 

relief and recovery operations have changed the territories. In this area, the earthquake exhausted 

populations which were already experiencing demographic and economic challenges [6]. The Emilia 

Romagna earthquake hit a densely and wealthy populated area. These municipalities represented one of 

the most productive areas in Italy, contributing in a significant way to regional and national economy.   

The L’Aquila earthquake has changed the demographic distribution across the territories which were hit 

by damages and losses, but these changes are complex and multifaceted. After the L’Aquila earthquake, 
no massive movements occurred across the municipalities. Part of L’Aquila population was resettled in 
other crater’ municipalities, which indeed recorded a positive net migration (both internal and 
international) in the period after the earthquake. However, as outlined by Petrei & Petrei [5], people may 

have chosen to keep their administrative residence in L’Aquila even if they moved to another 
municipality, in order to receive benefits connected with the recovery measures prepared by the Italian 

government. Indeed, aids are allocated to the people on the basis of their administrative residence. The 

recovery period is characterized by a strong increase of out-flows from the analyzed municipalities to 

municipality of other provinces, within the Abruzzo region and outside the Abruzzo region. In the period 

after the disaster, a slight increase of in-flows in some municipalities occurred. 

After the earthquake in Emilia Romagna, movements from hit municipalities toward Lombardy and 
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Veneto regions increase. Movements from municipalities located in Modena province towards 

municipalities located in other provinces (outside and inside Emilia Romagna region) decrease. The 

earthquake has partially affected the population of these municipalities determining few changes and 

challenges connected with change in population distribution.  

The analysis conducted at municipality level show different evolutions according both to the population 

dimensions and the impact of the earthquake. The spatial analysis at this level permits to summarize 

different evolutions and aspects of these changes, pointing out homogenous territorial areas, by 

controlling for the spatial autocorrelation effect.  

Preliminary results outlined that similar events may have different consequences across various spatial 

context. Pre-existing characteristics of the context can affect the consequences of a natural disaster such 

as an earthquake. Indeed, demographic and economic vulnerability of a territorial context may contribute 

to shape different trajectories of displacement following natural disaster.  
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Abstract. 

In this paper we describe a semiautomatic dictionary-based approach to filter tweets talking about 

specific topics. In particular, we are interested in studying the citizen well-being (WB) and, for this 

aim, we select tweets pertaining two WB dimensions such as environment and health. For this purpose, 

we use dictionaries containing keywords selected by analyzing tweets published by some Official 

Social Accounts linked with the two topics. The selected tweets are then processed in order to estimate 

the sentiment of the population with respect to such specific subjects. In this paper, we present some 

preliminary results for Great Britain (GB) using tweet collected on the whole country for the six-weeks 

period from 2019/01/14 to 2019/02/24. The results show that, on the one hand, our dictionary-based 

classification approach reaches good levels of accuracy, sensitivity and specificity; on the other hand, 

we assess the spatial variability across GB of the two dimensions we are studying by means of the 

tweets sentiment analysis. 

 

Keywords. Twitter; sentiment analysis; health; environment; spatial analysis 
 
 

 

 

 

 

1 Introduction  

 

Measuring individual well-being (WB) is extremely challenging due to the multidimensional, country-

specific and latent nature of this concept. Standard approaches for WB evaluation are mainly based on 

large-scale surveys and rely on several multivariate statistical methods. For example, in [2] the Structural 

Equation Modelling (SEM) approach is applied to data collected through the European Social Survey 

(ESS) in order to estimate WB in 16 European countries. In particular, by means of the SEM, the paper 

identifies seven latent dimensions linked to WB: social involvement, country attachment and trust, 

discrimination, income perception, environment, health and work status. These dimensions are then used 

to estimate the WB level of the considered European countries. 

Nowadays, in the era of social networks, a huge quantity of data is available that can potentially be used 

to estimate WB. The collection and the analysis of such data is still an evolving research field that can 

lead to some advantages: data obtained from the Internet are available at lower costs, in shorter times and 

are easier to collect than traditional survey-based data. Nevertheless, the collection of this new kind of 

data is also challenging, from the methodological point of view. Social networks, for example, are used 

for many different purposes and shared posts can be about personal opinions, ideas, goals and events, but 

they can also include a huge amount of advertisements and news. For this reason, the identification and 
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the selection of truly informative data can be a difficult task. 

The purpose of this research is to test a reliable semiautomatic dictionary-based method to filter, by topic, 

posts shared on Twitter, in order to retrieve tweets related to the seven WB dimensions defined in [2]. In 

particular, in this paper, we focus on two dominions: “health” (HEA) and “environment” (ENV). For this 

purpose, we define one specific dictionary for each dimension by using a list of keywords chosen by 

analyzing tweets published by a selected list of Official Social Accounts (OSA).  

In this paper we aim to evaluate the reliability of our semiautomatic method using tweets posted in Great 

Britain (GB). Moreover, since the selected tweets are geolocalized, we are able to study the spatial 

variability across GB of tweets sentiment, which is a proxy of the two selected WB dimensions. 

 

2 Data and methods 

 

Our data include tweets posted in GB from 2019/01/14 to 2019/02/24 and collected through the “circle 
approach” described in [1]. Just 1% of these tweets provides GPS coordinates; nevertheless, the “circle 
approach” allows us to geo-localize all tweets, making it possible to associate each text to one of the 

circles covering GB (see Figure 1). After having preliminary removed bots (i.e. accounts which post 

more than 3 times a day, on average), we analyzed 22,193,719 text messages, an average of 26,233 

tweets for each circle. In cleaning the corpus of the selected tweets we try to keep as much information 

as possible by replacing, with equivalent-meaning expressions, htmls, emoji, slangs, word elongations 

and money symbols; moreover, we keep hashtags and quotations in the tweet text.  

The first objective of our analysis was to define two dictionaries to filter among all the available tweets 

the ones pertaining ENV and HEA. For this purpose, we analyzed several Twitter OSA linked to each 

of the two dimensions and belonging to no-profit associations, news media, research institutes and 

intergovernmental organizations1. In particular, we collected all the available tweets posted up to 

2019/04/04, obtaining 38,604 tweets about ENV and 38,651 about HEA. Our analysis relies on the four 

following steps.  

(1) OSA tweets cleaning. All tweets are cleaned, removing url links, html code, non-ascii and special 

characters. (2) Setting up dictionaries. We select the top trending hashtags used by the selected OSA. 

These hashtags are keywords used in the OSA description (e.g. #UseLessPlastic for the @LessPlasticUK 

account) or created by OSA for particular international events (e.g. #PlasticFreeFriday). Among the top 

trending ones, we selected the most used hashtags: 60 about ENV and 11 for HEA. These thresholds are 

set, by topic, in order to avoid the selection of acronyms and of too general words (such as for example 

#women, #plastic, #brexit, #ue, etc.). The selected hashtags constitute the basis of the dictionaries; we 

then further enrich the list of keywords by analyzing the corpus of the OSA tweets. In particular, we 

include in the dictionaries the most common bigrams and trigrams (excluding the ones containing stop 

words). In order to choose combinations of words widely used, we take into account, for each dictionary, 

bigrams occurred at least 65 times and trigrams occurred at least 35 times. Finally, we manually review 

the selected hashtags, bigrams and trigrams in order to exclude expressions too generic and not related 

to the studied WB dimensions (e.g. “facebook live”, “fake account”, “million people”). The obtained 

ENV dictionary contains 61 hashtags and 53 bigrams/trigrams; the HEA dictionary includes 11 hashtags 

and 62 bigrams/trigrams. (3) Tweets selection. Using the dictionaries obtained at step (2), among the 

22+ millions of tweets collected for GB, we select the ones containing at least one keyword included in 

the dictionaries. We obtained 35,250 tweets about ENV and 50,610 about HEA. (4) Sentiment analysis. 

These selected tweets are processed by using the AFINN and of the BING lexicon-based approaches. In 

                                                           

1 List of selected OSA. For ENV: @climateprogress, @ClimateReality, @friends_earth, @Greenpeace, 

@GreenpeaceUK, @LessPlasticUK, @PlasticPollutes, @UNEnvironment, @UNFCCC, @World_Wildlife, @WWF, 

@WWFScotland. For HEA: @bbchealth, @CDCgov, @goodhealth, @NBCNewsHealth, @NYTHealth, 

@EverydayHealth, @NIHClinicalCntr, @theNCI, @CDC_HIVAIDS, @CDCSTD, @CDC_Cancer, @cdchep. 
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particular, the first method ranks each word with a score included between -5 and +5 (where negative 

and positive scores indicate negative and positive sentiment, respectively). The BING lexicon associates 

-1, 0 and +1 to negative, neutral and positive words, respectively. The total sentiment score of each tweet 

is computed as the sum of the scores linked to all the words included in the tweet. Thus, for each tweet 

we obtain two scores (coming from the AFINN and the BING lexicon, respectively). 

 

3 Results 

 

In order to evaluate the performance of our semiautomatic filtering, we selected randomly 100 tweets for 

each dimension and we manually classify them into two categories: “related” and “non-related” to the 
topic. To compare the dictionary-based classifications with the manual one (our benchmark), we compute 

the following performance indexes: accuracy (A, i.e. the percentage of correctly classified tweets), 

sensitivity (SE, i.e. the percentage of topic related tweets correctly identified by the classifier) and 

specificity (SP, i.e. the percentage of topic non-related tweets correctly not identified by the classifier). For 

ENV we obtained the following values for the performance indexes: A=98, SE=97, SP=99. For HEA the 

observed performance indexes were equal to: A=97.5, SE=95, SP=100. All values denote a very good 

performance of our semiautomatic dictionary-based approach in filtering tweets related to a given topic. 

The sentiment analyses based on AFINN and BING lexicon do not show any significant difference in 

mean; for this reason (and for space concerns) we present here just the results obtained using BING 

lexicon. Figure 1 shows the spatial distribution by quartiles of the standardized average sentiment score 

for ENV (left) and HEA (right). The spatial correlation Moran’s index is equal to 0.06 (p=0.04) for ENV 

and to -0.04 (p=0.90) for HEA, showing absence of relevant spatial correlation between circles. This 

could be caused by the fact that we are averaging sentiment values across the whole time period and some 

circles, located in remote zones, may contain a very small number of tweets. Moreover, we implemented 

a correlation test between sentiment results concerning ENV and HEA, in order to check if the two 

dimensions influence each other: the correlation is very low and nonsignificant (corr. coeff.=0.09; 

p=.013). 

 

    

Figure 1: Standardized average tweets sentiment for ENV (left) and HEA (right) (BING lexicon; spatial 

distribution by quartiles). 
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4 Conclusions 

 

The aim of this paper is twofold. On the one hand, we want to check if the dictionaries set up by means of 

our prototypal methodology (see sect. 2) are able to select tweets linked to two WB dimensions, i.e. ENV 

and HEA. On the other hand, our target is to obtain estimates of the level of two WB dominions over the 

GB. This second step was based on the sentiment analysis of tweets selected by means of our dictionaries 

and on the use of the AFINN/BING lexicon-based approaches (the two methods did not show any 

significant difference in the obtained results). 

For what pertains the first objective, all the classification performance indexes (A, SE and SP) show that 

the both dictionaries perform very well. In fact, they are able to identify posts that have a content actually 

linked with the dimensions of interest and to exclude the ones which have a content linked to different 

topics. Our unsupervised topic-classification method is not still fully automatic because we have to select 

the thresholds, separately for each topic, for the number of hashtags and bigram/trigrams that have to be 

considered (see Sect. 2) in order to remove keywords not concerning the dimensions of interest. As future 

research, we intend to include in the dictionary acronyms and to gradually and continuously increment the 

number of included keywords by periodic analysis of the OSA accounts.  

With respect to the second objective, we are able to predict separately for each GB circle the sentiment of 

the population using tweets about two topics related to WB (ENV and HEA). We expected to find some 

correlation between neighboring circles and between the two topics within circles. Our findings did not 

confirm our initial expectations. Moreover, the time lag we took into consideration is probably too short 

to get a clear picture, that would probably emerge by studying a longer period of analysis (some months 

of tweets). 

Future work will extend the current framework to a different spatial resolution (we will aggregate circles 

at the area level, by using the so-called NUTS statistical regions of UK); moreover, we will take into 

account the distribution of sentiment across time, since tweets distribution can be susceptible to 

daily/weekly events. The final aim of this research is to compare the tweet-based estimation of WB with 

some benchmark estimates provided by large-scale survey projects, such as the ESS. To this regard, we 

will consider not only a longer time interval for tweets collection, but also the full set of seven WB 

dimensions. 
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Abstract. In the literature, various tests for evaluating some characteristics of space-time covariance

functions, such as symmetry and separability, are widely used. Recently, in case of rejection of the

separability hypothesis, innovative tests have been proposed for evaluating the type of non-separability

of space-time covariance functions and testing some well known classes of non-separable positive or

negative covariance function models.

In this paper a study on simulated data is proposed in order to assess the performance of the tests on

the type of non-separability and on the classes of covariance functions.

Keywords. Space-time covariance; Non-separability; Type of non-separability test; Test on class of

covariance function models.

1 Introduction

Apart from various tests for checking some second order properties such as symmetry and separability

(Mitchell et al., 2005, 2006; Li et al., 2007, 2008), a test for the type of non-separability, as well as a

statistical test for some classes of space-time covariance models were proposed in Cappello et al. (2018)

and implemented in the R package covatest, which is available on CRAN (De Iaco et al., 2017). These

tests help researchers in choosing the appropriate class of spatio-temporal covariance function model,

for the spatio-temporal data analyzed.

In this paper a study on simulated data is proposed in order to assess the performance of the test on the

type of non-separability and on some well known classes of covariance functions (i.e., the Gneiting and

product-sum class of covariance functions).

2 Simulation study

In the following simulation study, the reliability of the test statistics defined in Cappello et al. (2018) and

implemented in the R package covatest (De Iaco et al., 2017) is discussed.

Zero-mean simulated space-time realizations have been used to test the null hypotheses formulated on

different types of non-separability and types of class of models. In particular the product-sum model

GRASPA-TIES 2019

70 of 127



C. Cappello et al. On the reliability of some tests...

C(h,u) = k1Cs(h)Ct(u)+ k2Cs(h)+ k3Ct(u), k1 > 0,k2 ≥ 0,k3 ≥ 0, and the Gneiting model C(h,u) =

σ2
(

1
(b|u|2α+1)τ

)

· exp
(

− a||h||2γ

(b|u|2α+1)γβ

)

, β ∈ [0,1],τ ≥ βd/2, have been used to generate simulated space-

time data regularly distributed over a range of grid sizes (spatial grids of dimensions 9×9 and 15×15),

with temporal lengths |Tn|=600 and |Tn|=1000. The product-sum model has exponential marginals

with spatial and temporal effective ranges equal, respectively, to 3 and 20 and parameters (k1,k2,k3) =
(0.5,0.3,0.2). On the other hand the Gneiting model has marginals with linear behaviour near the origin

(with smoothness parameters γ and α equal to 0.5) and (a,b,β,τ,σ2) = (1,0.75,1,1,1) (which corre-

spond to spatial and temporal marginals that decay approximately at 3 and 20, respectively).

These two classes of covariance function models have been considered to produce alternative simula-

tions since they present two different types of non-separability, i.e., the product-sum class is negative

non-separable and the Gneiting class is positive non-separable.

The goodness of the tests have been evaluated through the study of 900 simulations, obtained through

a Gaussian-related program, that is the sequential simulation algorithm, based on the above mentioned

classes of covariance function models.

The simulation study focused on the analysis of the empirical size and power of the tests for different grid

sizes, temporal lengths and classes of models. In particular, for the test on the type of non-separability

• data sets simulated through the product-sum model, which is uniform negative non-separable, have

been considered to compute (a) the empirical size through the frequency of rejecting the uniform

negative non-separability (Fr{R
H

(-)
0
|H (-)

0 }), and (b) the empirical power through the frequency of

rejecting the uniform positive non-separability (Fr{R
H

(+)
0
|H (-)

1 });

• data sets simulated through the Gneiting model, which is uniform positive non-separable, have

been used to compute (a) the empirical size through the frequency of rejecting the uniform positive

non-separability (Fr{R
H

(+)
0
|H (+)

0 }), and (b) the empirical power through the frequency of rejecting

the uniform negative non-separability (Fr{R
H

(-)
0
|H (+)

1 }).

Moreover, an indirect way of approximating the power of the test has been also proposed. It has been

evaluated how large is the p-value for the decision of non-rejection (when the null hypothesis is true),

therefore the frequencies of non-rejecting the null hypotheses with large p-values (greater than 0.9),

denoted with Fr{R̄
H

(+)
0
|H (+)

0 ;p-values > 0.9} and Fr{R̄
H

(-)
0
|H (-)

0 ;p-values > 0.9}, have been computed. For

the tests on the type of class of models the size and power have been also determined. In particular

• Gneiting model-based data have been used to compute (a) the empirical size, through the frequency

of rejecting the same Gneiting model (Fr{RHGn
0
|HGn

0 }) and (b) the empirical power through the

frequency of rejecting the null hypotheses formulated on two different classes, such as the product-

sum model (Fr{RHPS
0
|HGn

1 }) and the integrated product model (Fr{RHIP
0
|HGn

1 }). Note that the power

of the test on the Gneiting class has been analyzed with respect to the product-sum model, which

is negative non-separable and the integrated product model, which is positive non-separable;

• product-sum model-based data have been used to determine (a) the empirical size through the

frequency of rejecting the product-sum model, (Fr{RHPS
0
|HPS

0 }) and (b) the empirical powers, the

frequency of rejecting the null hypotheses formulated on the Gneiting class (Fr{RHGn
0
|HPS

1 }) and

the integrated product class (Fr{RHIP
0
|HPS

1 }), which are positive non-separable.

In addition, the frequencies of non-rejecting the null hypotheses (when it is true) with large p-values

(greater than 0.9) have been computed as an indirect way to approximate the power of the test. These
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frequencies are denoted with Fr{R̄HGn
0
|HGn

0 ;p-values > 0.9} and Fr{R̄HPS
0
|HPS

0 ;p-values > 0.9}.

As stated above, the testing procedure has been applied to the zero-mean simulated data sets, obtained

for different alternatives in terms of grid size, temporal length and class of models; spatial couples and

temporal lags at distances 1 and 2 have been considered for the tests. The results of the test on the type

of non-separability, i.e., the empirical size with respect to the nominal level 0.05 and power are given in

Tab. 1. Looking at the results, it is clear that the size of the test (p1 and p′1) is close to the nominal level

and the power (p3 and p′3) approaches 1 as the grid size and temporal length increase; similarly for the

approximated powers (p2 and p′2), measured in terms of frequencies of non-rejecting the null hypotheses

(when it is true) with large p-values (greater than 0.90). These results confirm the reliability of the test

and that there is strong confidence in rejecting the null hypothesis of negative/positive non-separability

when the alternative hypothesis is valid, as well as in failing to reject the null hypothesis when the null

hypothesis is valid.

Negative non-separable Positive non-separable

model-based simulations model-based simulations

p1 p2 p3 p′1 p′2 p′3

9×9
|Tn|= 600 0.080 0.093 0.747 0.080 0.093 0.693

|Tn|= 1000 0.053 0.107 0.933 0.040 0.107 0.920

15×15
|Tn|= 600 0.067 0.107 0.893 0.067 0.093 0.813

|Tn|= 1000 0.040 0.120 0.987 0.053 0.120 0.973

Table 1: Values of the empirical size and power for the tests on type of non-separability for data simulated through a

uniform negative non-separable model (p1 = Fr{R
H

(-)
0

|H (-)

0 }, p2 = Fr{R̄
H

(-)
0

|H (-)

0 ;p-values > 0.9} and p3 = Fr{R
H

(+)
0

|H (-)

1 })

and through a uniform positive non-separable model (p′1 = Fr{R
H

(+)
0

|H (+)

0 }, p′2 = Fr{R̄
H

(+)
0

|H (+)

0 ;p-values > 0.9} and p′3 =

Fr{R
H

(-)
0

|H (+)

1 }).

The results for the test on the type of class of models are show in Tab. 2. The size (p1 and p′1) is close to

the nominal level for each option, while the empirical power (p3, p4 and p′3, p′4) supports the rejection

decision of the null hypothesis when it is false. The approximated powers (p2 and p′2) are consistent with

respect to the nominal frequency of the non-rejection decision of the null hypothesis (when it is valid)

with p-value greater than 0.9. Note also that the powers and the approximated powers of all alternatives

are nearly equivalent when the temporal length is equal to 1000. Moreover, the tests have greater power

when the underlining data are generated by a covariance model characterized by a different type of non-

separability with respect to the class of model under the null hypothesis (i.e., p3 is greater than p4).

Gneiting model Product-sum

-based simulations -based simulations

p1 p2 p3 p4 p′1 p′2 p′3 p′4

9×9
|Tn|= 600 0.080 0.080 0.827 0.707 0.067 0.080 0.893 0.853

|Tn|= 1000 0.040 0.107 0.973 0.773 0.040 0.107 0.987 0.973

15×15
|Tn|= 600 0.067 0.093 0.947 0.720 0.053 0.107 0.907 0.880

|Tn|= 1000 0.053 0.133 0.987 0.813 0.040 0.120 1.000 0.987

Table 2: Values of the empirical size and power for the tests on type of class of covariance function models for data

simulated through the Gneiting model (p1 = Fr{R
HGn

0
|HGn

0 }, p2 = Fr{R̄
HGn

0
|HGn

0 ;p-values > 0.9}, p3 = Fr{R
HPS

0
|HGn

1 }

and p4 = Fr{R
HIP

0
|HGn

1 }) and through the product-sum model (p′1 = Fr{R
HPS

0
|HPS

0 }, p′2 = Fr{R̄
HPS

0
|HPS

0 ;p-values > 0.9},

p′3 = Fr{R
HGn

0
|HPS

1 } and p′4 = Fr{R
HIP

0
|HPS

1 }).

From the results in Tab. 1 and 2 it is evident that (a) the grid size does not significantly affect the size

of the test, which is around the nominal level even if the series length is equal to 600 and (b) the power
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increases as temporal length increases.

Finally, the product-sum and the Gneiting model-based simulations have been also used to evaluate how

rapidly the empirical distribution function of the test statistic on the type of non-separability and on the

type of class of models converges in distribution to a normal and a Chi-square, respectively, according to

the results of the multivariate delta theorem of Mardia et al. (1979) and Li et al. (2007). In particular, the

temporal length of simulated data increases from 400 up to 1000, with increments of 200 time points for

each step and the Kolomogorov-Smirnov tests have been applied for comparing the observed cumulative

distribution functions of the test statistics with the corresponding theoretical distributions. The empirical

distribution function of the test statistic on the type of non-separability rapidly converges to a normal

distribution, even when the temporal length is greater than 400. The p-values for the Kolomogorov-

Smirnov tests support the non-rejection of the null hypothesis for all options. The same goes for the

empirical distribution function of the test statistic on the class of models. In this case, the p-values,

which support the non-rejection of the null hypothesis for all options, are greater than 0.8 when the

temporal length is greater than 800 and approach 1 when the temporal length is equal to 1000.

3 Conclusions

In this paper the reliability of the statistical tests for checking different forms of non-separability and

some classes of space-time covariance function models was analyzed. The empirical results obtained

through the simulated data confirm the goodness of these tests and can stimulate their use in the applica-

tions.
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Abstract. In this paper we propose a new parametrization of the four-parameters Beta-Singh-Maddala

distribution suitable for the context of hydrologic studies. With this aim, we reparameterize the Beta-

Singh-Maddala distribution to make its parameters directly interpretable in terms of measures much

more relevant for their practical use than the classical shape, location and scale parameters of the

parametric families generally used for modeling hydrologic events. Moreover, in order to evaluate

how climatic or physic characteristics could affect these measures, we will express them as functions

of a set of covariates that could have an effect separately and/or simultaneously.

Keywords. Regional flood frequency; Extreme events; Regression.

1 Introduction

Nowadays, the occurrence and impact of hydrologic extreme events and their possible relationship with

climate change represents a crucial theme for human life. In this context, the statistics of extremes plays

a fundamental role and represents a strategic tools for the assessment of current and future exposure

to risks. The improvement of models for better exploring observed extremes, with an emphasis on

flood quantiles, are strategic activities for the assessment of current and future exposure to risks and

the development of some appropriate tools for accurately describing some particular phenomena are

crucial. With this aim, Domma and Condino [1] propose the use of two new four-parameters distribution

functions, namely the Beta-Dagum and Beta-Singh-Maddala distributions which seem to possess the

main suitable features to be used for the analysis of extreme events. Furthermore, following Domma

et al. [2], in this paper we consider the reparameterization of the four-parameters Beta-Singh-Maddala

(Beta-SM4) distribution in order to make its parameters directly interpretable in terms of median, return

level and return period. So, the new reformulation allows of making the parameters of the distribution

directly interpretable in terms of measures much more relevant for their practical use than the classical

shape, location and scale parameters of the parametric families used as in modeling hydrologic events.

Moreover, in order to evaluate how climatic or physic characteristics could affect these measures, we will

express them as functions of a set of covariates that could have an effect separately and/or simultaneously.
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2 Reparameterization of the Beta-SM4 distribution

The Beta-SM4 distribution, in its original parameterization, has the following distribution function (df ):

FBeta−SM4(x;ξ) =
[

1− (1+ γ2xγ3)−γ1

]a

(1)

where ξ
′
= (γ1,γ2,γ3,a), with a > 0 and γi > 0 for i = 1,2,3. The probability density function (pdf ) is

given by fBeta−SM4(x;ξ) = a [FSM(x;γ)]a−1
fSM(x;γ). where FSM(x;γ) and fSM(x;γ) are, respectively,

the df and pdf of SM distribution.

Following the proposal of [2], we consider the possibility of reformulate the Beta-SM4(γ1,γ2,γ3,a)
in terms of new parameters, I j, j = 1, ...,4, that are indicators describing some peculiarities of hydrologic

data distribution and such that there exist a one-to-one transformation of the kind I j = g j(γ1,γ2,γ3,a), j =
1, ...,4, in order to have a unique solution in terms of γ1,γ2,γ3 and a:























γ1 = γ1(I1, I2, I3, I4)

γ2 = γ2(I1, I2, I3, I4)

γ3 = γ3(I1, I2, I3, I4)

a = a(I1, I2, I3, I4)

. (2)

Substituting the solution (2) in (1), it is possible to obtain the expressions of the cdf in terms of the

chosen indicators. Analogously to the generalized linear models, the measures I j are related to the set of

covariates, x j,i, by I j,i = h j(x j,i,γ j), where h j(.) are suitable link function.

2.1 Formulation in terms of median and return level

In this paper, the original parameters are substituted by the following one-to-one transformation (γ1,γ2,γ3,a) 7→
(τ,me,x0,a) where τ = 1

γ1
, me is the median of distribution, given by

meBeta−SM4(p) = γ
− 1

γ3

2

[

(1−0.5
1
a )

− 1
γ1 −1

]
1
γ3

and x0 is the return level, corresponding to a pre-fixed return period πx0
, i.e.

x0(πx0
) = γ

− 1
γ3

2







[

1−

(

1−
1

πx0

)
1
a

]− 1
γ1

−1







1
γ3

.

After simple algebra, we obtain











































γ1 =
1
τ

γ2 = [(1−0.51/a)−τ −1] ·me
−

log







[

1−

(

1− 1
πx0

)1/a
]−τ

−1







−log{[1−0.51/a ]−τ−1}
logx0−logme

γ3 =
log

{

[

1−
(

1− 1
πx0

)1/a
]−τ

−1

}

−log{[1−0.51/a]−τ−1}

logx0−logme

a = a

. (3)
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It is immediate, from (1), to obtain the new expression of cdf of Beta-SM4 r.v. in terms of median

and return level.

3 Application

In order to show the usefulness of the proposed model, we consider the data from Hydroclimatic Data

Network of U.S. Geological Survey (USGS). In particular, we focuses our attention on annual peak

flows considered in [3] for basins located in Texas Region. We consider the area of drainage (A, in

km2), the slope of main channel (S, in m/km), the mean elevation of drainage basin over MSL (E, in m)

and the length of main channel from divide to gauge (L, in km), as covariates and a return period of 50

years, as in the cited paper. Therefore, in this example, we investigate the direct effects of the covariates

on the median and the 50-years return level, using the reparametrization in (3) and choosing exp(.) as

the log-link function. We consider no covariate effects on the remaining parameters. Table 1 reports

maximum likelihood estimates (MLEs) of the parameters, the corresponding standard errors, t-tests and

p-values, related to the four indicators I1 = τ, I2 = me, I3 = x0 and I4 = a. As we expected, many of the

considered variables seem to have a significant influence on annual peak flows, in particular with regards

to its median value and 50-years return level. Finally, Figure 1 shows empirical and fitted distribution

obtained inserting the sample mean for covariates in the expressions of me and x0, to simulate the case

of a representative basin which well summarizes the Texas Region peak flows data.

Covariate Estimate SE t p-value

τ = exp(x1,i,γ1)
Intercept -2.118 1.412 -1.500 0.1336

me = exp(x2,i,γ2)
Intercept 8.252 5.260×10−2 156.875 < 0.001

A 1.833×10−5 3.597×10−6 5.097 < 0.001

E −4.111×10−4 3.412×10−5 −12.049 < 0.001

L 4.869×10−3 2.040×10−4 23.865 < 0.001

x0 = exp(x3,i,γ3)
Intercept 10.224 8.468×10−2 120.737 < 0.001

S 1.368×10−2 5.655×10−3 2.419 0.0156

L 3.090×10−3 2.690×10−4 11.486 < 0.001

a = exp(x4,i,γ4)
Intercept 5.00×10−1 4.347×10−1 1.150 0.250

Table 1: MLEs of the parameters (log-likelihood: -29103.63)
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Figure 1: Empirical and fitted Beta-SM4 distribution
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Abstract. Modeling and prediction multivariate geostatistical techniques can be successfully applied

to study the temporal behaviour of several correlated time series. In particular, in the time domain, by

using variogram-based tools the analyst can easily a) identify trend and periodicity which characterize

each time series, b) fit a properly Multivariate Linear Temporal (MLT) model to multiple correlated

time series, c) predict the variable of interest (primary variable) at some time points after the last

available observation, by taking into account the fitted model as well as the auxiliary information

coming from the secondary variables. In this paper the convenience of performing a complete analysis

of multiple correlated time series on the basis of geostatistical tools is illustrated through a case study

concerning three environmental variables. As regards the computational aspects, a new version of the

GSLib Cokb3d routine has been implemented for prediction purposes.

Keywords. Multivariate linear temporal model; Temporal cross-variogram; Temporal cokriging.

1 Introduction

In time series analysis, the methodology developed by Box and Jenkins (1976) is commonly applied to

detect the most suitable model which reasonable might describe the temporal evolution of the analyzed

process. Then, the model is used in the prediction stage. On the basis of the Box-Jenkins approach,

the auto-correlation and the partial auto-correlation functions (ACF and PACF, respectively), as well

as the cross-correlation function (CCF) have a crucial role in the modeling selection, indeed through

the visual inspection of the sample ACF, PACF and CCF, the most appropriate model for the process

under study can be identified. In the multivariate context, several approaches have been proposed in

order to model the joint relationships between multiple time series. Among the different types of mod-

els (Reinsel, 2003), the most common are Vector AutoRegressive, AutoRegressive-MovingAverage or

AutoRegressive-Integreted-MovingAverage models in the presence of exogenous variables, the mod-

els based on a transferring function and the co-integrated models (mainly used in the economic field).

However, for the analysis of multiple correlated time series, multivariate geostatistics could also be a

very useful approach, nevertheless it is widely applied to investigate, through the matrix variogram, the

spatial direct and cross-correlation which characterize the variables of interest and make predictions at

unsampled locations of the spatial phenomena.

In this paper the use of variogram-based multivariate geostatistical techniques have been enlarged to an-

alyze multiple time series, in order to identify trends and periodicity exhibited by the data, model the

temporal evolution of the variables and make temporal predictions for the primary variable using the

auxiliary information coming from the secondary available variables. The computational aspects have
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been tackled by implemented a new version of the GSLib Cokb3d routine (Deutsch and Journel, 1998)

which allows the analyst to use the fitted model in the cokriging system and define appropriate temporal

search neighborhoods for prediction purposes.

2 Variogram-based modeling and prediction for multiple time series

In time series analysis, the measurements of p ≥ 2 correlated variables, at different time points or in-

tervals, can be considered as a finite realization of a real-valued Multivariate Random Process (MRP)

{Z(t), t ∈ T ⊆ R}, with Z(t) = [Z1(t),Z2(t), . . . ,Zp(t)]
T . Under second-order stationarity, the mean vec-

tor of Z exists and does not depend on t, and the (p× p) variogram matrix Γ defined for two MRP, Z(t)
and Z(t ′), exists and depends on the temporal separation h, i.e.:

Γ[Z(t),Z(t ′)] = E
{
[Z(t)−Z(t ′)][Z(t)−Z(t ′)]T

}
= Γ(h) = [γi j(h)],

where h = (t − t ′) and γi j(h), i, j = 1, . . . , p, are the cross-variogram (if i 6= j) between the random

variables Zi(t) and Z j(t + h) and the direct variogram (if i = j) of the i-th random variable. In the

multivariate context, the empirical temporal variogram matrix can be modelled through the most used

model in the spatial multivariate analysis, namely the Linear Coregionalization Model (Wackernagel,

2003). In this case, a Multivariate Linear Temporal (MLT) model Γ(h) =
L

∑
l=1

Bl gl(h), can be developed,

where Bl = [bl
i j], i, j = 1, . . . , p, are (p× p) positive-definite matrices and gl(h), l = 1, . . . ,L, are basic

temporal variograms identified at L ≥ 2 temporal variability scales. Before modeling the temporal direct

and cross-correlation among the variables, the direct and cross-variograms are estimated as follows:

γ̂ii(r)=
1

2 |Ni(r)|
∑

Ni(r)

[Z(t +h)−Z(t)]2 ; γ̂i j(r)=
1

2|Ni j(r)|
∑

Ni j(r)

[(Zi(t +h)−Zi(t)) · (Z j(t +h)−Z j(t))] ,

where Ni(r) = {t, t +h ∈ Hi, i = 1, . . . , p, such that |r−h| < δ}, |Ni(r)| is the cardinality of this last set,

Ni j(r) = {t, t + h ∈ (Hi ∩H j), i, j = 1, . . . , p, i 6= j such that |r− h| < δ}, and |Ni j(h)| is its cardinality,

r is the temporal lag, δ is the tolerance and Hi is the set of the measurements for the i-th time series,

i = 1, . . . , p. As pointed out in De Iaco et al. (2013), the variogram could be efficiently applied in time

series analysis (Haslett, 1997), since it can describe a wide class of stochastic processes (the class of

intrinsic stochastic processes), and also its estimation does not require the knowledge of the expected

value of the associated stochastic process. Moreover, the variogram is a useful tool to identify trend and

periodicity exhibited by data and to make temporal predictions for the variable of interest. For a second-

order stationary MRP Z, a linear prediction of the time series under study at an unsampled time point

t ∈ T , can be obtained by using the well-known cokriging predictor (Wackernagel, 2003). In this case, the

temporal cokriging predictor is expressed as: Ẑ(t) =
N

∑
α=1

Λα(t)Z(tα), where tα ∈ T, α= 1, . . . ,N, are the

sampled points and Λα(t), α = 1, . . . ,N, are the (p× p) matrices of the weights which are determined so

that the above temporal predictor is unbiased and efficient (Journel and Huijbregts, 1981). The ordinary

cokriging requires only the knowledge of the model for the matrix variogram and it is used when the

expected value of the process is constant and unknown.

3 A case study

Two atmospheric variables, i.e. daily Temperature (◦C) and daily Wind Speed (m/sec), as well as PM10

daily concentrations (µg/m3), measured from 2010 to 2013, at one survey station belonging to the en-

vironmental network of the Apulian Protection Agency and located in Brindisi district (South of Italy),
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have been analyzed by multivariate geostatistical tools. The survey station, called “Torchiarolo”, is very

close to the thermoelectric power station “Enel-Federico II”, and all the surrounding area is considered

being at high risk of air pollution, especially during the winter and during long period of low rainfall.

PM10 is strongly influenced by meteorological conditions. In particular, the horizontal transport, disper-

sion and resuspension of PM10 are mainly determined by Wind speed: low values of this meteorological

variable are related to high PM10 concentrations (Harrison et al., 1997; Sayegh et al., 2014). Moreover,

temperature is considered as one of the strongest predictors of PM10 concentrations. High values of

this air pollutant are measured in winter, specially when the difference between maximum and minimum

daily temperature is large (Perez et al., 2002). In the following sections, the advantages and the flexibility

of the multivariate geostatistical techniques to analyze the times series under study will be pointed out.

3.1 Exploratory analysis and modeling

Exploratory data analysis has clearly highlighted that: a) PM10 daily concentrations present an annual

periodicity at 12 months, b) Temperature and Wind Speed are characterized by opposite seasonal behav-

iors: in winter time, Temperature decreases, while Wind Speed increases; on the other hand, in summer

time Temperature increases and Wind Speed decreases, c) over the four-year span (from 2010 to 2013),

the PM10 daily values have exceeded 243 times the threshold value (50 µg/m3) fixed by the national

law for the human health protection; in particular, during the summer, PM10 does not exceed this limit

value, instead, in winter time changes in the lower layer of the troposphere determine PM10 stagnation

and consequently high concentrations of PM10. The sample direct temporal variograms for the analyzed

time series highlight the presence of periodicity for all variables (Fig. 1). These periodic components
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Figure 1: Sample temporal direct variograms of a) PM10, b) Temperature and c) Wind Speed daily averages.

have been factored out from the observed data through moving average and monthly averages tech-

niques. Hence, the residuals have been considered as a realization of a second-order stationary MRP

Z(t) = [Z1(t), Z2(t), Z3(t)]
T , with t ∈ T ⊆ R, and have been used in the following steps of the analysis.

After computed the sample direct and cross temporal variograms of the residuals, two different scales of

temporal variability have been detected through the visual inspection of the sample variograms. Hence,

the following MLT model has been fitted to the sample matrix variogram:

Γ(h) = B1 g1(h)+B2 g2(h), (1)

where g1 is the short-scale temporal component described by an exponential model (Cressie, 1993) with
unit sill and range equal to 30 days, g2 is the long-scale temporal component described by an exponential
model with unit sill and range equal to 365 days and the positive-definite matrices Bl, l = 1,2, are:

B1 =




230 3.07 −3.4
3.07 4.9 −0.025

−3.4 −0.025 0.58


 , B2 =




30 1.2 −1.1
1.2 0.37 −0.016

−1.1 −0.016 0.073


 . (2)

At this point, it is convenient to check if the fitted model (1) can be considered suitable to make predic-

tions of the primary variable, thus a validation procedure has been properly performed.
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3.2 Model validation and temporal prediction

The goodness of model (1) has been checked through the cross-validation technique. In this stage of the

analysis a modified version of the GSLib program Cokb3D (Deutsch and Journel, 1998), named T-Cok,

has been implemented and used to compute temporal predictions of PM10 on the basis of a) the auxiliary

variables, b) the fitted MLT model and c) a properly defined neighborhood, i.e. a subset of time data

which can be considered in the cokriging system. Hence the cross-validation has been performed and

the correlation between PM10 residuals and estimated ones has been measured. The high values of the

linear correlation coefficient (0.780) has confirmed the goodness of the fitted MLT model, which can be

used to predict PM10 daily concentrations in time points after the last available data. In particular, PM10

residuals have been predicted for six time points (1-6 January 2014), by using the new GSLib routine

T-Cok. The deseasonalized PM10 observations, the residuals of the auxiliary variables and the model

(1) are the input information for the T-Cok routine. Then, the diurnal component has been added to the

predicted PM10 residuals in order to obtain predictions of PM10 daily concentrations. By comparing

PM10 daily concentrations measured from the 1st to the 6th of January 2014 and the predicted ones, it

is worth highlighting that the behavior of the predicted values is quite similar to the true PM10 daily

concentrations; moreover, as it is for the true values recorded in the period 1-6 January 2014, some

predicted values are greater than the limit value of 50 µg/m3 and it can represent a hazardous condition

for air quality and human health.

4 Conclusions

In this paper, the time series of PM10 daily concentrations and two meteorological variables (Temper-

ature and Wind Speed), correlated with the pollutant under study, were analyzed through multivariate

geostatistical techniques. The importance and the advantages of using variogram-based procedures were

pointed out during both modeling and prediction stages. The scientific community should consider the

flexibility of the geostatistical tools for the analysis of time series and more theoretical and computational

efforts should be made in order to extend the variogram-based techniques in the time domain.
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Abstract. Prevalence of allergic disease, in the last decades, increases in all countries, as much that 

The World Health Organization consider allergy a non-transmittable disease which is out of control. 

The most common allergies are determined by production of Immunoglobulin E (IgE), that can cause 

different disorders. Diagnosis started at the end of the nineteenth century by in vivo test and during 

the seventies IgE detection in blood had been introduced and it allowed to identify allergenic 

molecules; FABER test combines these two sources of information. The purpose of this study is to 

explore 16 allergens behavior on the province of Rome and to find the most appropriate model to 

define a possible relationship between sensitizations’ occurrences and environmental features. In this 

case of study, we will take into account rainfall and minimum, maximum and average temperature 

recorded by ARPA Lazio.  
 

Keywords. Log-Gaussian processes; Epidemiology; Spatio-temporal models, Bayesian methods. 
 
 

 

 

 

 

1 Introduction 
 

Prevalence of allergic disease, in the last decades, increases in all countries, as much that The World 

Health Organization consider allergy a non-transmittable disease which is out of control. The most 

common allergies are determined by production of Immunoglobulin E (IgE), that can cause different 

disorders. Allergens are protein contained in allergenic sources; sensitization occurs when specific IgE 

are produced by atopic individuals and bind the trigger molecules [1]. Diagnosis started at the end of the 

nineteenth century, with the introduction in medicine of the first clinical allergy basic test: the Skin Test 

(ST), which have some limitation and it is not riskless. During the seventies IgE detection in blood had 

been introduced and it allowed to identify allergenic molecules. FABER test combines these two 

sources of information; first patients are tested with skin prick test that indirectly shows the presence of 

specific IgE, then direct IgE detection is made on serum sample by several in vitro method [2]. The 

purpose of this study is to explore 16 allergens behavior on the province of Rome and to find the most 

appropriate model to define a possible relationship between sensitizations’ occurrences and 
environmental features. We consider eleven allergens belonging to plants, Ambrosia (Amb a 1), 
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Artemisia vulgaris (Art v 1), Betula pendula (Bet v 1), Birch, Hazel and Oak species (Cor a 1), Arizona 

Cypress (Cup a 1), Olea europaea (Ole e 1), Parietaria (Par j 2), Grasses (Phl p 1, Phl p 2 and Phl p 5), 

American Sycamore (Pla a 1), two due to cat (Fel d 1) and dog (Can f 1), two regarding house dust mite 

(Der p 1, Der p 2) and one coming from the Alternaria fungi (Alt a 1).  

 

2 Data 

 

We focus on 5523 clinical tests, collected between 2012 and 2017, from patients who live in the 

province of Rome. IgE values on the continuous scale, as they are recorded by the test, are not 

comparable between different allergens, for this reason, in order to evaluate the impact of each allergen 

on the population, data has been recoded into presence and absence of sensitization. Blood analysis 

reveal that 2032 patients do not show any positive response, 751 subjects recorded one sensitization and 

just one reveals to be affected by every allergic source. The most observed molecules are Cup a 1, Phl p 

1, Der p 2, Fel d 1, the remaining allergens occur in less than 20% of cases, Art v 1, Pla a 1 and Amb a 

1 are detected in less than 5% of the tests. The phenomenon act in a similar way about male and female 

separately, since the number of sensitizations is proportionally similar distributed between sexes.  

Weather data has been collected from ARPA Lazio web portal: we considered available data, recorded 

by 26 meteorological stations, spread all over the province, collected from Spring 2012 to 31th 

December 2017, about minimum, maximum and average temperature and rainfall. Daily time series of 

those variables suggest constant trend and annual seasonality for all temperature’s measurements. 
Precipitations, analyzed on the log-scale, do not show the same seasonal behavior, but again we have a 

constant trend. Moreover, average, minimum and maximum temperatures and rainfall show a stationary 

trend that does not differ much between stations too. Observations have been quarterly summarized by 

seasons, not considering periods where data are partially missing. For each season of each year of 

observation, mean, minimum and maximum value have been displayed, except for rainfall data, for 

which only the average amount has been considered. Dividing the new data into quartiles, the spatial 

behavior of temperature variables can be discussed: despite moderate changes between years of 

observation, the area of Rome and the cost present the higher temperature values, on the other hand, 

Castelli Romani, lake of Bracciano and the Nord - Est area are the coldest one.  

 

3 Methods 

 

Once sensitization and weather have been explored, we can go on studying the relation between them, 

modelling the phenomenon and estimating the parameters of interest with an MCMC algorithm. Having 

the exact place of residence of each patient, the finite pattern of point of positive response is easily 

represented on the entire province of interest: Figure 1 maps positive sensitizations of Fel d 1, Ole e 1 

and Pla a 1, these allergens have been chosen because of their different impact on the observed sample. 

 
Considering these locations as a random realization of a point pattern over a bounded window, fixed 

 

(c) 

Fig. 1: Point Pattern of (a) Fel d 1, (b) Ole e 1, (c) Pla a 1 over the province of Rome.  
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and known, represented by the province of Rome, allergens phenomenon can be treated as a Poisson 

Process [3]. The phenomenon is clearly changing from one municipality to the other and many 

environmental phenomena may influence such occurrences; for this reason, we adopted an 

Inhomogeneous Poisson Process with intensity function varying in space. The class of models we are 

interested in is the Cox Process, in particular we used the log-Gaussian Cox Process [4]. In order to 

interpolate weather information all over the area of the Rome province, the time series needed to be 

predicted on every centroid of each municipality; we choose to model available spots using a 

Generalized Additive Model (GAM) [5]:  𝐸(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = β0 + 𝑓(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) + 𝑓(𝑡𝑖𝑚𝑒) 𝐸(𝑟𝑎𝑖𝑛) = β0 + 𝑓(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) + 𝑡𝑖𝑚𝑒β1 

For the purpose of the study, only prediction of the minimum of the minimum temperatures, the mean 

of the average temperatures and the maximum of the maximum temperatures and annually average 

rainfall have been used. Those have been summarized into one value for each centroid: first the median 

of average seasonal temperatures, minimum of minimum seasonal temperatures and maximum of 

maximum seasonal temperatures have been calculated, then these information have been transformed 

into their principal components. The first two components have been passed to the Cox process as 

covariates. Moreover, rainfall information have been summarized as the mean of the annual means. A 

grid, with square 2.3 X 2.3 km cells, overlaids the observation windows and covariates have been 

interpolated all over the grid by areal weight sum. 

 

4 Results 

 

Diagnostic results of the MCMC algorithm, concerning the considered allergenic, gave very good 

results, furthermore, inferential analysis of the estimated parameters finds out that meteorological 
features influence sensitization depending on molecules. Rain coefficient β is significantly different 
from 0 at 90% confidence interval just for Fel d 1: indeed the mean value of this coefficient shows a 

negative relation between allergens occurrence and rainfall, it means that each unit increase in rainfall 

lead to a reduction in relative risk with a mean of 3.373. Furthermore, the model can not explain any 

possible relation between those allergens that afflict less the population. 

 

5 Further studies 

 

The chosen protocol has several limitations, the main being the overly smoothed covariates added to the 

model. Furthermore, as far as vegetational allergens are concerned it would be of great interest to add 

information on the vegetation present in each municipality. Future developments will include a different 
interpolation of covariates and an ad hoc implementation of the Bayesian log-Gaussian Cox process.  
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Abstract. Multiresolution decomposition is commonly understood as a procedure to capture scale-

dependent features in random signals. Such methods were first established for image processing and

typically rely on raster or regularly gridded data. In this article, we extend a particular multiresolution

decomposition procedure to areal count data, i.e. discrete irregularly gridded data. More specifically,

we incorporate in a new model concept and distributions from the so-called Besag–York–Mollié model

to include a priori demographical knowledge. These adaptions and subsequent changes in the com-

putation schemes are carefully outlined below, whereas the main idea of the original multiresolution

decomposition remains. Finally, we show the extension’s feasibility by applying it to oral cavity cancer

counts in Germany.

Keywords. Spatial scales; Lattice data; Intrinsic GMRF; Besag–York–Mollié model; MCMC.

1 Introduction

Decomposing an observed signal or spatial field into scale-dependent components allows recognizing

its inherent and prominent features. Those features give insight to where local or global phenomena

manifest themselves and assist in understanding the structure of hierarchical information. Holmström et

al. (2011) proposed a procedure in the tradition of image processing that hence is applicable to Gaussian

data distributed on regular grids [7]. We extend this method to count data which is potentially observed

on an irregular grid, often termed ‘areal count data’ [3]. The original multiresolution decomposition

approach can be divided into three individual steps: 1) spatial field resampling based on a Bayesian hi-

erarchical model, 2) smoothing on multiple scales, then calculating differences between these smooths

to specify details for each resampled field separately, and 3) posterior credibility analysis. In the fol-

lowing paragraphs we summarize a) the Bayesian hierarchical model for step 1) and b) how to calculate

differences between smooths in step 2). Those are the relevant parts in the procedure for the proposed

extension, outlined in Section 2. The original multiresolution decomposition assumes that an observed

field y consists of the true field x and additive white noise. Based on these flexible model assumptions

the hierarchical model is constructed.

a) Bayesian hierarchical model: the true field x is presumed to follow a Gaussian distribution, which

implies a selfsame likelihood function. Its positive valued variance is modeled with a scaled–inv–χ2

prior and the spatial component of the field x is captured with an intrinsic Gaussian Markov random
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field (IGMRF) using a precision matrix Q [10]. With those choices, the resulting marginal posterior is

of closed form and corresponds to a multivariate t-distribution [4].

b) Calculate differences between smooths: the proposed penalty smoother is defined as Sλ = (I+
λQ)−1, where λ is the scale or smoothing parameter, such that 0 = λ1 < λ2 < .. . < λL = ∞. The spa-

tial field x is interpreted as random vector, Sλ1
x = x defines the identity mapping and SλL

x = S∞x

the mean field. On the ground of those preliminaries, x can be decomposed as differences of con-

secutive smooths: x = ∑
L−1
l=1

(

Sλl
−Sλl+1

)

x+S∞x. Scale-dependent details are then formalized as

zl =
(

Sλl
−Sλl+1

)

x for l = 1, . . . ,L−1 and zL = S∞x.

Pivotal for a) and b) is the definition of the precision matrix Q:

x⊤Qx= ∑
j

(

∑
i∼ j

xi −4x j

)2

, (1)

where i∼ j denotes neighboring grid locations. To ensure four neighbors at every grid location i, the

boundary values of x are extended across the initial grid. This definition inherently demands the data

allocated to a regular grid but bears the advantage that individual computational steps can be optimized

based on Q’s fast eigendecomposition, such that large dimensional problems can be solved efficiently.

2 Extension

To decompose areal count data, first the resampling pattern described in a) needs modification. Assum-

ing the n observed counts y = (y1, . . . ,yn)
⊤ are realizations from a conditionally independent Poisson

distribution and the expected counts e = (e1, . . . ,en)
⊤ are known for every location in the spatial field.

The Poisson’s rate for a location i, is defined as the product of the expected count ei and the respective

relative risk, denoted as exp(ηi). We construct the hierarchical model, to resample the spatial field, with

the likelihood function

π(y|η1, . . . ,ηn) ∝
n

∏
i=1

exp
(

yiηi − ei exp(ηi)
)

, (2)

which corresponds to the classical Besag–York–Mollié (BYM) model [1]. Whereat η is modeled as the

composition of the true log-relative risk u and a normal zero-mean noise term v, with unknown precision

parameter κv. Analogous to the original model, we use a first order IGMRF process to model the spatial

component with accompanying precision parameter κu, such that

π(u|κu) ∝ κ
n−1

2
u exp

(

−
κu

2
∑
i∼ j

(ui −u j)
2

)

= κ
n−1

2
u exp

(

−
κu

2
u⊤Ru

)

. (3)

Again i∼ j denotes neighboring lattice locations but here in terms of regions sharing a common border.

Assigning Gamma priors for both precision parameters implies a posterior distribution of non-closed

form. Hence, we use a Gibbs sampler with a Metropolis-Hastings (MH) step to resample the log-relative

risks u, the noise components v and parameters [6]. Finally, we exploit that the mean of a Poisson

distribution is equivalent to its rate and reconstruct the spatial field with e ·exp(u+v), for every sampled

field u and v.

We form the scale-dependent details still relying on a penalty smoother. Instead of using the matrix

Q from the original model, we include the precision matrix R of the first order IGMRF [10]. The
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definition of R does not limit the data to be associated with a regular grid and can be constructed based

on adjacency relations of the respective observations. Since we use a different precision matrix, the

optimized implementation relying on Q cannot be employed but we alternatively take advantage of the

precision’s sparse structure and apply tailored algorithms [5].

3 Application

The extension’s feasibility is demonstrated on the German oral cavity cancer dataset [8]. This data

includes cancer counts for 544 districts of Germany over 1986–1990, as well as the expected number

of cases derived demographically. The main bulk of the oral cavity counts range between one and

hundred counts per district but single highly populated districts have up to 500. The data including

additional relevant information is available via the R package spam [5]. Following the multiresolution

decomposition steps, we first resample the areal counts using suitable sampler specifications [6] and

verify the convergence of the MH sampler with common diagnostic tools [2]. Figure 1 shows how well

the reconstructed field corresponds to the original data. Only in northeast Germany, where the field is

less smooth, the differences are larger. Since the BYM model was designed not to be oversensitive to

extreme counts, part of the resampling difference can be explained through its damping effect [11].

Figure 1: Oral cavity cancer data on logarithmic scale. Left: the observed number of cases; middle: the

mean of the reconstructed fields; right: the difference between the left and the middle panels.

In the second step, we choose suitable scales ([9]) λ1 = 0, λ2 = 1 and λ3 = 25 and form scale-

dependent details (Figure 2). Completing the decomposition, we calculate pointwise probability maps [7]

(Figure 3). The detail z1 reflects spatial noise as well as the relatively low or high counts in the data.

This is also supported by its pointwise probability map, where no large red or blue clusters are visible.

z2 catches larger patches of districts and shows local peculiarities. Detail z3 consists of the largest scale

range and shows the east-west or nationwide trend but this trend is less distinct compared to the more

local ones, indicated by the legends of each panel.

Figure 2: Scale dependent details zl = Sλl
log(e · exp(u+v))−Sλl+1log(e · exp(u+v)), summarized

by their posterior means. Left: E(z1|y); middle: E(z2|y); right: E(z3|y).
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Figure 3: Pointwise probability maps. Left: z1; middle: z2; right: z3. The map indicates which features

are jointly credible: blue and red areas indicate jointly credibly negative and positive areas, respectively.

4 Discussion

We extended the multiresolution decomposition approach from Holmström et al. (2011), which origi-

nally processes data coming from a Gaussian distribution on a regular grid, to areal count data. Estab-

lishing an MH sampling model makes it possible to resample count data and use an arbitrary precision

matrix. Employing the BYM model to include prior demographical knowledge, in the form of the known

expected counts, enables us to model the data without being oversensitive to possible outliers. The R

code to reproduce this example is available at https://git.math.uzh.ch/roflur/bymresa.
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Abstract. A quantile regression model is proposed to assess spatio-temporal trends and seasonality in

extreme river flow in Scotland over the period 1st January 1996 to 31st December 2013. The model is

built in a generalized additive model framework that allows inclusion of three-variate smooth functions

to account for space-time interaction effects. The results suggest a clear East/West gradient in the 95th

quantile of river flow that is in agreement with previous studies.

Keywords. Quantile regression; P-splines; PIRLS.

1 Introduction

Recent studies [1, 5] report increases in both frequency and intensity of extreme events such as flooding.

Climate change impacts are expected to vary spatially and to result in changes in river flows, the extremes

of which are critical for flood risk estimation. Identification of patterns in extreme river flow behaviour,

mainly in the form of seasonality and long term trends, is essential for planning purposes so that changes

can be identified and decisions appropriately made to avoid or alleviate any negative impacts.

We introduce a new framework for spatio-temporal quantile regression [3], exploiting the flexibility

of P-splines. The regression model is built as an additive model that includes smooth functions of time

and space, as well as space-time interaction effects, and can be easily extended to incorporate potential

covariates. Model parameters are estimated using a penalized iterative reweighed least squares approach

instead of linear programming methods, classically used in quantile parameter estimation. The model is

illustrated on a data set of daily river flows in 98 rivers across Scotland over the period 1st January 1996

to 31st December 2013.

2 Data

Daily river flow data for 98 gauging stations, shown in Figure 1, were provided by the Scottish Envi-

ronment Protection Agency (SEPA) and the National River Flow Archive (NRFA) over the period 1st

January 1996- 31st December 2013.
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Figure 1: Location of the 98 selected gauging stations.

3 The model

Quantile regression [4] allows estimation of the relationship between response and explanatory variables

at any percentile of the distribution of the response (conditioned on the explanatory variables). As a

result, rates of change in the response variable can be estimated for the whole distribution and not only in

the mean. The conditional quantile can be expressed as QY (τ|X = x) = F−1
Y (τ|X = x), where τ ∈ (0,1),

Y is the response variable with cumulative distribution function FY and X = (X1, . . . ,Xp) is a vector of

explanatory variables [4, 2].

We propose the following model:

Qyi
(τ|ti,di,zi) = s1(ti)+ s2(di)+ s3(zi)+ s4(ti,di)+ s5(ti,zi)+ s6(di,zi), (1)

where s1(t), s2(d) are smooth functions of time and day of the year and s3(z) is a bivariate smooth

function of easting and northing coordinates, accounting for the temporal, seasonal and spatial trends

in river flow. The terms s4(t,d), s5(t,z) and s6(d,z) represent the time-season, space-time and space-

season interactions, respectively. Estimating Model (1) involves minimizing a sum of weighted absolute

deviations, where the weights are asymmetric functions of τ. In the classic quantile regression literature,

linear programming methods are used for doing so [4]. We introduce an alternative approach by approx-

imating the absolute residuals with the squared residuals; this way, model estimation can be done using

the penalized iterative reweighed least squares (PIRLS) approach; see [3] for details.

4 Results and Discussion

We estimate Model (1) with τ= 0.95 and log(daily flow) as the response variable, t=time (1996 to 2013),

d=day within the year (1 to 365) and z=(easting, northing). Each univariate smooth term is re-expressed

as a linear combination of B-spline basis functions, while interaction terms can be built using the tensor

product of the marginal basis functions. We add a penalty term to control the amount of smoothness, and

impose a periodicity constrain on the seasonal component.
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The estimated temporal trend is fairly flat, while the seasonal effect shows lower values during the

summer, as expected. The estimated spatial pattern suggests a slight East-West gradient, with greater

values on the Western side. Regarding the interaction effects, the seasonal effect varies considerably

over space, and in some years is very different from the rest. Overall, the results suggest that trends in

the 95th quantile of river flow are not homogeneous across Scotland; this information might prove useful

in decision making, for example, to provide more accurate flood warnings.
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Abstract. The recent technological developments and the increased interest for public information 

lead to a fast-growing use of microsensors for air quality monitoring. Measurement campaigns are 

conducted to assess the potential of these low-cost instruments by deploying fixed sensors (e.g. on 

top of buildings, street lights or reference stations) and/or mobile sensors (e.g. on top of cars, bikes, 

or carried by citizens). These experiments allow to measure pollutant concentrations at high 

resolution in space and time. The large amount of collected information offers new opportunities of 

developments in air quality modelling and mapping. This work aims to take the best of these sensors 

despite the related measurement uncertainty to produce urban air pollution maps at fine spatial and 

temporal resolution. A geostatistical methodology (data fusion) is presented, which uses sensor 

observations as well as dispersion model outputs. It is applied to PM10 data in the French city of 

Nantes. It involves new challenges such as the consideration of the quick change of the sensor 

location if it is mobile, the temporal variability of the measurements, the analysis of numerous and 

heterogeneous data, the spatial representativeness of the measurements and the measurement 

uncertainties. Also, efforts still need to be done on the sampling design to ensure appropriate spatial 

coverage of the considered domain and get more accurate estimates. 
 

Keywords. Air Quality Mapping; Microsensor; Data Fusion; PM10 

 
 

 

 

 

1 Introduction 

 
Air quality monitoring is conventionally based on a network of stations which allows a continuous 

report of pollutant concentrations. The related measurement uncertainty is constrained by the European 

existing legislation [1, 2] ensuring observation accuracy. Nevertheless, the installation and maintenance 

of such a network are expensive and so the number of stations in each region is limited. The use of 

numerical modelling on various scales (regional, urban, local) has thus increased during the last 15 

years to supplement station observations and support air quality assessment.  

In parallel, the technological progress allowed the development of miniaturized and low-cost 

instruments to measure pollutant concentrations [3]. Many projects of crowdsourcing and citizen 

science are emerging. In addition, field measurement campaigns are conducted to assess the potential of 

these low-cost devices by deploying fixed sensors (on top of buildings, street lights, reference stations) 

and/or mobile sensors (on top of cars, bikes, or carried by citizens) offering higher spatial coverage than 
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reference stations. Because microsensors suffer from metrological weaknesses, a calibration is generally 

applied to the raw data [4, 5].  

The large amount of collected information offers new opportunities of development in air quality 

modelling and mapping at urban scale that are the scope of recent studies. Statistical methodologies are 

broadly used to derive air quality maps from sensor data, in particular the Land Use Regression models 

(LUR), but they generally do not take spatial dependence into account. Geostatistical approaches have 

been less frequently applied to such type of data but provide significant advantages to combine sensor 

measurements and auxiliary information such as dispersion model outputs [6]. 

 

In this paper, data collected from fixed and mobile micro-sensors are used together with urban-scale 

modelling data to map PM10 in the city of Nantes (France).  

 

2 PM10 data 
 

PM10 sensor data were provided by AtmoTrack (https://atmotrack.fr), a French company created in 2015 

in Nantes. PM10 data measured at reference monitoring stations (quarter-hourly mean concentrations) 

and simulation data (ADMS-Urban model) on the city of Nantes were provided by the French air 

quality monitoring association Air Pays de la Loire (http://www.airpl.org/).  

 

2.1 Sampling routes and frequency of measurements 

 
In November 2018, PM10 sensor measurements were collected in Nantes. During this sampling period, 

the company deployed 16 fixed sensors including 3 sensors at the Victor Hugo station (reference station 

for traffic typology) and 3 other sensors at the Bouteillerie station (reference station for urban 

background typology). In addition, 19 mobile sensors were installed on-board of driving school cars to 

measure PM10 concentrations over numerous routes each day of the sampling period. The vehicles 

routes ensure a satisfactory spatial coverage over the entire urban area even if they are totally dependent 

on the driving school car itineraries and on the lesson time (only daytime). 

 

2.2 Measurement accuracy  

 
Considering the measurement uncertainty, the three available datasets (data from the reference stations, 

the fixed sensors and the mobile sensors) can be related to three monitoring networks of respectively 

low (up to 25%), medium (up to 50%) and high (up to 125%) uncertainty (Figure 1).  

 

 

Figure 1: Comparison of the three networks (fixed sensors in blue, mobile sensors in orange and 

reference station in black) at Victor Hugo station for November 2018. Example of PM10. 

 

Microsensors offer a unique spatial and temporal coverage of pollutant concentrations. However, the 

accuracy of the measurements and their meaning, in case of mobile sensors, are real challenges to 

include them in air quality maps. In the following sections, a methodology of data fusion is detailed and 

a first test using fixed and mobile sensor data in Nantes (France) is presented. 
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3 Data fusion 

 
Kriging [7] involves deriving linear combination of the data which ensures minimal estimation variance 

under a non-bias condition. Its strength is to give an information about the uncertainty of the estimated 

map.  

Among the kriging methods, the universal or external drift kriging makes it possible to consider 

auxiliary information to increase the estimation accuracy. The main hypothesis is that the global mean 

is not constant through the domain and relies on explanatory variables, entailing an additional condition 

on the kriging weights. This approach has long been applied to air quality mapping [8, 9, 10, 11] and 

was used in this work to perform data fusion between:  

- the hourly average concentrations measured by the fixed and mobile microsensors (after bias 

correction) as main variable; 

- the 2016 annual average concentrations of the pollutant simulated by the ADMS-Urban dispersion 

model (https://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html) as drift of the 

mean. 

 

In addition, the measurement uncertainty of the sensors was taken into account by defining the variance 

of measurement errors (hereafter VME) as an input of the calculation.  

 

4 Results 

 

4.1 Estimation of PM10 concentration fields 

 
Data fusion was performed for 27/11/2018, the day for which the amount of data was the largest. At 

every measurement position, the hourly mean of the observations is calculated, and external drift 

kriging is applied. The mobile and fixed sensor observations at 5pm and the annual modelled 

concentration field are presented for PM10 in figure 2a). Figure 2b) presents the VME for the same 

sampling routes. In this case, the measurement uncertainty is set to 25%, i.e. to the maximum 

uncertainty of the reference station observations. The uncertainty definition is totally arbitrary here and 

could be considered between 25% to 125%. Note that the fixed station measurements are not included 

in this estimation because they were used to correct and prepare the sensor data before kriging.  
 

 
Figure 2: Data fusion of the sensor data on 27/11/2018 at 5pm: the 2016 annual average concentrations 

simulated by ADMS-Urban and the hourly-averaged sensor data (a), the variance of the measurement 

errors (b), the fused map with 25% uncertainty on measurements (c), and the fused map with 75% 

uncertainty on measurements (d). 
  
As shown by the fused maps (Figure 2c and 2d), the modelled annual average allows to define the 

general patterns of the pollutant fields. Then the sensor observations which are associated with higher 

concentrations (by a factor of two) increase the concentration levels in the estimation domain, with 

some PM10 hotspots where data were collected (Figure 2c). When data fusion is performed with higher 

VME (75%, figure 2d), the hotspots are not represented anymore and the local effects of the sensor data 

is minimized. 
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5 Conclusion 

 
The recent technological developments for miniaturizing the instruments that measure outdoor ambient 

air offer new possibilities for air quality modelling and mapping. The new portable and low-cost 

devices could provide observations of pollutants with higher spatial coverage than the reference 

monitoring networks. As long as several challenges can be dealt with (measurement uncertainty, 

representativeness of the sampling…), they could help to produce more accurate pollution maps. In this 

work, we investigate the potential added value of these data for air quality mapping by applying a data 

fusion technique. The dataset refers to PM pollution in the French city of Nantes. Hourly averaged 

sensor data and the annual mean concentration field simulated by ADMS-Urban model are combined by 

external drift kriging to estimate hourly PM10 concentrations, taking the variance of the measurement 

error into account. Those calculations were performed for one day but the next step of this work will be 

to consider each hour of the whole sampling period (November 2018). Further investigations will be 

carried out to estimate the influence of the amount of data, their position and their related uncertainties 

on the interpolation results. In addition, several ways of improvement have been identified such as the 

consideration of the spatial anisotropy in kriging and the application of spatiotemporal kriging. Besides 

geostatistical methods, machine learning techniques will be tested allowing to learn about historical data 

to improve the current estimate.  
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Abstract. CircSpaceTime is an R package that implements Bayesian models, recently developed, for

spatial and spatio-temporal interpolation of circular data. Such data are often found in applications

where, among the many, wind directions, animal movement directions, and wave directions are in-

volved. To analyze such data we need models for observations at locations s and times t, so-called

geostatistical models, providing structured dependence which is assumed to decay in distance and

time. For example, for wave directions in a body of water, we conceptualize a wave direction at every

location and every time and introduce structured dependence into these angular data. The approach

we take begins with Gaussian processes defined for linear variables over space and time. Then, we use

either wrapping or projection to obtain processes for circular data. The models are cast as hierarchi-

cal, with fitting and inference within a Bayesian framework. Altogether, this package implements work

developed by a series of papers; the most relevant being [9, 25, 16]. All procedures are written using

Rcpp. Estimates are obtained by MCMC allowing parallelized multiple chains runs. As running exam-

ple, for the spatial setting, we use a wave direction dataset while simulated data are used to illustrate

the spatio-temporal models.

Keywords. Directional data; Spatial model; Spatio-temporal model; Rcpp

1 Summary of existing circular packages and what CircSpaceTime is adding

In the last ten years the interest in circular data has increased, with new theoretical results and models

(for an extended review of both theory and applications see [11] or [12]). There exist several R pack-

ages dealing with circular data. The best known are circular [2] and CircStats [13], both implementing

inference for univariate data as described in [8]. Another recent set of functions specifically devoted to

wrapped distributions is Wrapped [18]. The package computes the probability density function, cumu-

lative distribution function, quantile function and many more features for several (about fifty) univariate

wrapped distributions. A very interesting set of functions is implemented in CircSizer [20] where a

non-parametric approach is adopted. Based on scale-space ideas, CircSiZer presents a graphical device

to assess which observed features are statistically significant, both for density and regression analysis.

Also a book on circular data in R has been published [21] with many nice examples and a narrative of the

topic that makes easy to learn how to run inferences on univariate data. In 2013 the first version of the

package isocirc was presented [3], making available functions to perform constrained inference using

isotonic regression for circular data [22, 6]. The CircOutlier [7] collects functions to detect outliers
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in circular-circular regression as proposed in [1]. Bayesian estimation for univariate regression models

is implemented in bpnreg [4] that presents models developed in [19] and [5]. Again in the Bayesian

framework the work in [17] is implemented in circglmbayes. More recent is the Directional [24] pack-

age, mostly linked to the textbook by [14]. A series of wrapper functions to implement the 10 maximum

likelihood models of animal orientation, described by [23], are included in the CircMLE. The proposals

in [26] are presented in circumplex.

Dependent and multivariate circular data are often found in applications (see [12] for recent devel-

opments). To handle them in a likelihood framework we can refer to the package CircNNTSR, that

implements functions to plot, fit by maximum likelihood, and simulate models based on non-negative

trigonometric sums for circular, multivariate circular, and spherical data.

None of the above packages deal with spatial or spatio-temporal interpolation of circular data, that is

the main objective of CircSpaceTime, the package we are proposing. In what follows we are going to

present models that have been developed, starting from 2012 [9]; a summary of these models can also be

found in [10]. CircSpaceTime is available at https://github.com/santoroma/CircSpaceTime.

There are different approaches to specify valid circular distributions, see for example [8], here we

focus on the two methods that allow to built a circular distribution starting from a linear one, namely the

wrapping, and the projection. Both revealed to be useful in the definition of spatial and spatio-temporal

data modeling, see for example [15] and [25]. Under both methods, the resulting distribution has a

complex functional form but introducing suitable latent variables, the joint distribution of observed and

latent variables, in a fully Bayesian framework, are really easy to handle. We are going to show some

examples of implementation to illustrate the package features.

Acknowledgments. This work has been partially developed under the PRIN2015 supported-project En-

vironmental processes and human activities: capturing their interactions via statistical methods (EPHA-

Stat) funded by MIUR (Italian Ministry of Education, University and Scientific Research) (20154X8K23-

SH3). Gianluca Mastrantonio research has been partially supported by MIUR grant Dipartimenti di

Eccellenza 2018 - 2022 (E11G18000350001).

References

[1] A. H. Abuzaid, A. G. Hussin, and I. B. Mohamed. Detection of outliers in simple circular regression models

using the mean circular error statistic. Journal of Statistical Computation and Simulation, 83(2):269–277,

2013.

[2] Claudio Agostinelli and Ulric Lund. R package circular: Circular Statistics (version 0.4-93). CA:

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Venice, Italy. UL:

Department of Statistics, California Polytechnic State University, San Luis Obispo, California, USA, 2017.

[3] Sandra Barragán, Miguel A. Fernández, Cristina Rueda, and Shyamal Das Peddada. isocir: An R package for

constrained inference using isotonic regression for circular data, with an application to cell biology. Journal

of Statistical Software, 54(4):1–17, 2013.

[4] Jolien Cremers. bpnreg: Bayesian Projected Normal Regression Models for Circular Data, 2018. R package

version 1.0.0.

[5] Jolien Cremers, Kees Tim Mulder, and Irene Klugkist. Circular interpretation of regression coefficients.

British Journal of Mathematical and Statistical Psychology, 71:5–95, 2017.

GRASPA 2019 Workshop 2

GRASPA-TIES 2019

98 of 127



Jona Lasinio et al. CircSpaceTima

[6] Miguel A. Fernàndez, Cristina Rueda, and Shyamal D. Peddada. Identification of a core set of signature

cell cycle genes whose relative order of time to peak expression is conserved across species. Nucleic Acids

Research, 40(7):2823–2832, 11 2011.

[7] Azade Ghazanfarihesari and Majid Sarmad-Ferdowsi University Of Mashhad. CircOutlier: Detection of

Outliers in Circular-Circular Regression, 2016. R package version 3.2.3.

[8] S. Rao Jammalamadaka and A. SenGupta. Topics in Circular Statistics. World Scientific, Singapore, 2001.

[9] G. Jona Lasinio, A. E. Gelfand, and M. Jona Lasinio. Spatial analysis of wave direction data using wrapped

Gaussian processes. Annals of Applied Statistics, 6(4):1478–1498, 2012.

[10] Giovanna Jona Lasinio, Gianluca Mastrantonio, and Alan E. Gelfand. Applied Directional Statistics: Modern

Methods and Case Studies, chapter Spatial and Spatio-Temporal Circular Processes with application to Wave

Directions, pages 129–162. Interdisciplinary statistics. Chapman and Hall/CRC, 2019.

[11] Christophe Ley and Thomas Verdebout. Modern Directional Statistics. Interdisciplinary statistics. Chapman

and Hall/CRC, 2017.

[12] Christophe Ley and Thomas Verdebout, editors. Applied Directional Statistics: Modern Methods and Case

Studies. Interdisciplinary statistics. Chapman and Hall/CRC, 2019.

[13] Ulric Lund and Claudio Agostinelli. CircStats: Circular Statistics, from "Topics in Circular Statistics"

(2001), 2018. R package version 0.2-6.

[14] K. V. Mardia and P. E. Jupp. Directional Statistics. John Wiley and Sons, Chichster, 1999.

[15] G. Mastrantonio, A. E. Gelfand, and G. Jona Lasinio. The wrapped skew Gaussian process for analyzing

spatio-temporal data. Stochastic Environmental Research and Risk Assessment, 30(8):2231–2242, 2016.

[16] G. Mastrantonio, G. Jona Lasinio, and A. E. Gelfand. Spatio-temporal circular models with non-separable

covariance structure. TEST, 25:331–350, 2016.

[17] Kees Mulder and Irene Klugkist. Bayesian estimation and hypothesis tests for a circular generalized linear

model. Journal of Mathematical Psychology, 80:4 – 14, 2017.

[18] Saralees Nadarajah and Yuanyuan Zhang. Wrapped: Computes Pdf, Cdf, Quantile, Random Numbers and

Provides Estimation for any Univariate Wrapped Distributions, 2017. R package version 2.0.

[19] G. Nuñez-Antonio and E. Gutiérrez-Peña. A Bayesian model for longitudinal circular data based on the

projected normal distribution. Computational Statistics and Data Analysis, 71(C):506–519, 2014.

[20] María Oliveira, Rosa M. Crujeiras, and Alberto Rodríguez-Casal. Circsizer: an exploratory tool for circular

data. Environmental and Ecological Statistics, 21(1):143–159, Mar 2014.

[21] Arthur Pewsey, Markus Neuh auser, and Graeme D Ruxton. Circular Statistics in R. Oxford University Press,

2013.

[22] Cristina Rueda, Miguel A. Fernández, and Shyamal Das Peddada. Estimation of parameters subject to order

restrictions on a circle with application to estimation of phase angles of cell cycle genes. Journal of the

American Statistical Association, 104(485):338–347, 2009.

[23] Jon T. Schnute and Kees Groot. Statistical analysis of animal orientation data. Animal Behaviour, 43(1):15

– 33, 1992.

[24] Michail T Tsagris, Giorgos Athineou, Anamul Sajib, Eli Amson, and Micah J. Waldstein. Directional:

Directional Statistics, 2018. R package version 3.3.

[25] F. Wang and A. E. Gelfand. Modeling space and space-time directional data using projected Gaussian pro-

cesses. Journal of the American Statistical Association, 109(508):1565–1580, 2014.

[26] Johannes Zimmermann and Aidan G. C. Wright. Beyond description in interpersonal construct validation:

methodological advances in the circumplex structural summary approach. Assessment, 24(1):3–23, 2017.

PMID: 26685192.

GRASPA 2019 Workshop 3

GRASPA-TIES 2019

99 of 127



Goodness of Fit Test For Wrapped Normal

Distribution

Anahita Nodehi

Department of Statistics, Computer Science, Applications (DiSIA), Florence University, Florence, Italy.

Abstract. One of the main difficulties in any statistical method is whether the data could have ac-

tually been drawn from that fitted distribution or not. To extend in circular data, it is necessary to

consider nature feature of this data. The Wrapped Normal and Von Mises are two most important and

famous distributions in circular. Based on the auther’s knowledge, there is no Goodness-of-Fit test for

Wrapped Normal. To enhance this issue, in this paper, we present an appropriate test and compare its

performance based on simulation study.

Keywords. Goodness-of-Fit Test; Wrapped Normal; Von Mises; Circular Data

1 Introduction

Directional data is a type of data that has a wide range of applications in applied sciences. For consid-

reation of value to directions, it is common to specify an angle on a unit circle since an initial direction

and the orientation of the circle have been chosen. Therefore, having such periodic feature makes one to

consider the topological feature of the non-Euclidean space. Accordingly, many methods and statistical

techniques have been developed to analyze and understand this type of data. The popular approaches

have been embedding, wrapping and intrinsic approaches. Based on every approach, great number of

distributions are proposed which are in non-Euclidean space. The Wrapped Normal and the Von Mises

are two important distributions on the circle, which resemble on circle the Normal distribution on Eu-

clidean space. To provide a better sense of this phenomenon, certain overview of the embedding and

intrinsic approaches can be found in Jammalamadaka and SenGupta (2001), Mardia (1972) and Mardia

and Jupp (2000).

One of the fundamental questions that arise in every statistical application is whether the data could

have actually been drawn from that fitted distribution. This is the so-called Goodness-of-Fit problem.

The importance of this problem arises especially in some estimation methods as the first step is to check if

the assumption is hold or not. For example, Nodehi et al (2018) proposed two algorithms which estimate

the parameters of Wrapped Normal distribution. With regard to that, it is necessary to check whether the

data is Wrapped Normal or not.

To do so, in circular data, one should consider the periodic feature of data. The Goodness-of-Fit test-

ing for a Von Mises distribution fitted using maximum likelihood estimation (without bias correction for
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the estimation of κ), were obtained by Lockhart and Stephens (1985). Based on the auther’s knowledge,

there are no contribution to find the same test for Wrapped Normal distribution. In that sense, the main

goal in this paper is to propose a Goodness-of-Fit test based on Wrapped Normal distribution.

The reminder of this paper is organized as follows. In section 2, the review of circular densities is

presented. Afterwards, Section 3 is based on Goodness-of-Fit procedure. Section 4 provides simulation

study while Section 5 gives final comments and remarks.

2 Statistical Modeling

As mentioned in Introduction, there are three approaches to modeling circular data: embedding, wrap-

ping and intrinsic approaches. In the embedding approach the sample space is considered as part of

larger space and the distributions on the SP−1 (the circular sample space) can be obtained by radial pro-

jection of the in line distributions on RP. In general, most of the literature is focused on developing

statistical methods for the projected Normal distribution, which is, the only a significant limitation of the

embedding approach.

In the intrinsic approach, the circle is used as the sample space. The directions are represented as

points on the circle and probability distributions are defined on the circle directly. The main probability

distributions obtained from this approach are the Uniform, Cardioid and Von Mises distributions.

The wrapping approach consists to wrap a known distribution in the real line around a circumference

of a circle with a unit radius. In that sense, the main characteristic of this approach is flexibility. Elaborat-

ing on, it is a rich class of distributions on the circle that can be obtained using the wrapping technique, as

it is possible to wrap any known distribution in the real line onto the circle. Therefore, the most famous

probability distribution based on this approach is Wrapped Normal which resembles Normal distribu-

tion in Euclidean space. Since the main contribution of this paper is to propose a Goodness-of-Fit for

Wrapped Normal, it is necessary to reviwe certain features of this distribution.

Any linear random variable X may be transformed to a circular random variable by reducing its

modulo 2π. i.e.

θ = X(mod 2π)

This operation is equal to taking a line random variable and wrapping around circle of unit radius, accu-

mulating probability over all points X = (θ+2Kπ) where K ∈ Z. If F represents the circular distribution

function and G distribution function of line random variable, we have

F(θ) =
+∞

∑
K=−∞

{G(θ+2Kπ)−G(2Kπ)} , 0 ≤ θ ≤ 2π .

In particular, if θ has a circular density function f and g is density function of X then

f (θ) =
+∞

∑
K=−∞

g(θ+2Kπ) .

A Wrapped Normal distribution is obtained by wrapping a N(µ,σ2) distribution around the circle. Its
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pdf is given by

f (θ) =
+∞

∑
K=−∞

g(θ−µ+2Kπ) =
1√

2πσ2

+∞

∑
K=−∞

exp{−(θ−µ+2Kπ)2

2σ2
}

An alternate and more useful representation of this density using Fourier expansion and properties of

characteristic function can be shown to be

f (θ) =
1

2π
(1+2

+∞

∑
p=1

ρp2

cos p(θ−µ))

where ρ = exp(−σ2

2
) (Jammalamadaka and SenGupta, 2001). In this regard, some properties of Wrapped

Normal are as follows: it is unimodal and symmetric about the value µ, the mean resultant length is

ρ = exp(−σ2

2
), as ρ → 0, the distribution converges to the uniform distribution, as ρ → 1, it tends to a

point distribution at µ, it appears in the central limit theorem and Brownian Motion, the convolution of

two Wrapped Normal variables is also Wrapped Normal, unlike the Von Mises distribution

3 Goodness-of-fit test

According to Pewsay et al (2013), considering the circular analogue of the probability integral transfor-

mation, it follows implicitly that the Goodness-of-Fit of a posited distribution with distribution function

F(θ) that can be tested by calculating the values of 2πF(θ1), . . . ,2πF(θn) and applying any test of cir-

cular uniformity to them. If the data do come from the postulated distribution, then we would expect

circular uniformity not to be rejected. The problem with this approach is that the usual critical values

of the tests for circular uniformity do not apply if the parameters of the distribution have been estimated

from the data. The difference between the correct critical values and those for the usual tests of circular

uniformity should not be great, however, for large sample sizes. Lockhart and Stephens (1985) proposed

a Goodness-of-Fit testing for a Von Mises distribution fitted using maximum likelihood estimation based

on the critical values of Watsons U2 test which is implemented within the function watson.test available

in Rs circular package (Agostinelli and Lund, 2017) if its argument dist is specified as vonmises. Since,

Wrapped Normal and Von Mises have close relationships, it is possible to use the same procedure by cal-

culating the values of 2πF(θ1), . . . ,2πF(θn) and applying any test of circular uniformity to them. In this

regard, it is expected that under some conditions (σ → 0), the two distributions have the same behavior.

4 Simulation study

To compare the performance of the proposed method we consider simulation study. To do so, we consider

sample size n = 50,100, µ0 = 0, σ0 = (π/8,π/4,π/2,π,3/2π,2π), and the number of Monte Carlo

replications 100. As canbe seen in Table 1, the values (within 100 replications) are based on number

of times, the test has been accepted. In other words, we generate the data of Wrapped Normal and Von

Mises distribution and see whether the data could have actually been drawn from that fitted distribution

or not. According to Kent (1978), any Von Mises distribution can be approximated by a Wrapped Normal

distribution when σ is small or κ → ∞; i.e.

fV M(θ,µ,κ)− fWN(θ,µ,A1(κ)) = O(κ
−1
2 )
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Fitted distribution

WN VM

Kuper Watson Kuper Watson

Real Distribution σ n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100
π
8

100 92 99 93 100 92 99 93
π
4

97 96 96 96 98 94 96 92

WN π
2

95 88 98 92 97 95 95 92

π 85 77 78 65 90 96 92 96
3π
2

86 74 85 76 96 92 96 92

2π 81 78 80 69 91 100 94 98
π
8

85 93 83 91 92 99 91 99
π
4

89 86 91 81 94 97 96 96

VM π
2

95 92 96 94 96 92 98 96

π 94 86 93 79 95 97 94 96
3π
2

93 83 92 76 97 96 96 96

2π 94 78 93 73 96 96 97 95

Table 1: Results of the Monte Carlo simulation based on 100 replications.

where fV M and fWN are the densities of the Von Mises (µ,κ) and the Wrapped Normal (µ,A1(κ)) distri-

bution, respectively. Therefore, when σ is sufficiently small, the test cannot distinguish between these

two distribution, as expected. Moreover, by σ → ∞, the both tend to circular Uniform distribution. Thus,

it is better to increase the number of replications and sample sizes and add another distribution with

different features in simulation study to see more distinctions obtained by the test.

5 Conclusion

Based on the auther’s knowledge, there is yet no test for Goodness-of-Fit to Wrapped Normal distribu-

tion. According to periodic feature of circular data and close relationship between Wrapped Normal and

Von Mises distribution, in simulation study, we show the performance of this test.

References

[1] Agostinelli, C. and Lund, U. (2017). R package circular: Circular Statistics (version 0.4-93), https://r-

forge.r-project.org/projects/circular/.

[2] Jammalamadaka, S. R. and SenGupta, A. (2001). Topics in Circular Statistics, World Scientific, Singapore.

[3] Kent, J. T. (1978). Limiting Behaviour of the Von Mises-Fisher Distribution. Math. Proc. Cambridge Phil.

Soc., 84, 531-536.

[4] Lockhart, R. A. and Stephens, M. A. (1985). Tests of Fit for the Von Mises Distribution. Biometrika, 72,

647–52.

[5] Mardia, K. V. (1972). Statistics of Directional Data, Academic Press, London.

[6] Mardia, K. V. and Jupp, P. (2000). Directional Statistics, John Wiley, Chichester.

[7] Nodehi, A., Golalizadeh, M., Maadooliat, M. and Agostinelli, C. (2018). Estimation of Multivariate Wrapped

Models for Data in Torus, arXiv preprint arXiv:1811.06007.

[8] Pewsey, A., Neuhauser, M., and Ruxton, G. D. (2013). Circular Statistics in R. Oxford University Press,

England.

GRASPA 2019 Workshop 4

GRASPA-TIES 2019

103 of 127



Graphical model selection for air quality time series

L. Paci1,∗ and G. Consonni1

1 Department of Statistical Sciences, Università Cattolica del Sacro Cuore; lucia.paci@unicatt.it,

guido.consonni@unicatt.it;
∗Corresponding author

Abstract. We propose an objective Bayes approach based on graphical models for learning depen-

dencies among multiple air quality time series within the framework of Vector Autoregressive (VAR)

models. Using a fractional Bayes factor approach, we obtain the marginal likelihood in closed form

and construct an MCMC algorithm for Bayesian graphical model determination with limited compu-

tational burden. We apply our method to study the interactions between four air pollutants over the

municipality of Milan (Italy).

Keywords. Decomposable graphical model; Fractional Bayes factor; Multiple pollutants.

1 Introduction

Air pollution is a major global environmental risk to human health. Because humans are simultaneously

exposed to a complex mixture of air pollutants, many organizations are moving toward a multi-pollutant

approach to air quality [4]. Key aspects of such approach are the estimation of the health risk of mul-

tiple pollutants, the setting of regulatory standards and the design of compliance strategies for multiple

pollutants. For example, a strategy to reduce levels of one pollutant, say particulate matter, may also

affect the levels of other pollutants, say ozone. To take on these challenges, a better understanding of the

interactions between air pollutants is required.

Pollutant measurements or numerical model estimates usually arise a multivariate time series col-

lected at fixed locations or aggregated over a given spatial domain. Vector Autoregressive (VAR) models

offer a suitable framework for analyzing multiple time series, such as air quality data. VAR models can

be naturally represented by graphs, with directed edges reflecting the autoregressive structure over time

while undirected edges describe the contemporaneous interactions among variables.

In this paper we describe an objective Bayes methodology to learn dynamic and contemporaneous

dependencies among multiple pollutants modeled through a graphical VAR. Using a fractional Bayes

factor approach, we are able to obtain the marginal likelihood in closed form and perform Bayes graph-

ical model selection with limited computational burden because we focus on marginal likelihood, and

disregard inference on model parameters. We apply our method to analyze the time series of four pollu-

tants over the municipality of Milan (Italy). Results offer helpful insights about the relationship between

these pollutants.
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1.1 VAR model

Let yt be a (q×1) vector of observations collected at time t, t = 1, . . . ,T . The reduced form of a stable

VAR of order k, VAR(k), is given by

yt =
k

∑
i=1

Biyt−i +ǫt , t = 1, . . . ,T, (1)

where Bi are (q× q) matrices of coefficients or lag matrices, determining the dynamics of the system

and ǫt is a (q×1) dimensional white noise process, that is ǫt |Σ ∼ Nq(0,Σ), independently over time.

The observation vector at time t depends linearly on the previous k observations, where k is assumed to

be known. The intercept and exogenous variables can be added to the model, leading to straightforward

modifications of the results shown here; for simplicity we omit details. Let zt = (y′t−1, . . . ,y
′
t−k)

′ denote

the (kq×1) vector of lagged observations at time t and B′ = (B1, . . . ,Bk) be the (q×kq) matrix obtained

by collecting together the corresponding coefficient matrices. Let Y = (y1, . . . ,yT )
′
be the (T ×q) matrix

collecting all observations and Z be the (T × kq) matrix containing all the lagged variables, i.e., Z =
(z1, . . . ,zT )

′. Equation (1) can be rewritten in matrix form as

Y = ZB+E, (2)

where E = (ǫ1, . . . ,ǫT )
′
is the (T ×q) matrix of errors following a Matrix Normal distribution with zero

mean, cross-covariance matrix between vector column j and vector column j′ of Y equal to σ j j′IT and

covariance matrix of vector row i equal to Σ, which we write E |Σ∼ NT,q(0,IT ,Σ).

2 Model selection for graphical VAR

Let G = (VT S,E), be a graph with node set VT S =V ×Z, V = {1,2, . . . ,q}, and edge set E, whose edges

have at most k lags and which is invariant under translation. If (Bi)vw is the (v,w)-element of matrix

Bi in (1) and (Ω)vw is the (v,w)-entry of precision matrix Σ
−1, then the VAR model with the following

constraints on the parameters

i) (v, t − i)→ (w, t) ∈ E ⇔ (Bi)vw 6= 0 i = 1, . . . ,k

ii) (v, t) — (w, t) ∈ E ⇔ (Σ−1)vw 6= 0 t = 1, . . . ,T
(3)

represents a VAR(k,G) model [6]. It follows from (3) that nonzero elements in B correspond to directed

edges in the graph reflecting the recursive structure of the time series, while nonzero elements in Σ
−1

correspond to undirected edges that specify conditional independencies at any given time t. In other

words, learning the dynamic structure of a graphical VAR translates into a variable selection problem

while learning the interactions among variables translates into a covariance selection problem.

Let Γ the binary connectivity matrix such that (Γ)vw = 1 ⇔ (B)vw 6= 0. Let Gu = (VT S,E
u) de-

note the undirected graph corresponding to the contemporaneous dependencies. We assume that Σ is

Markov with respect to Gu, i.e., condition ii) is satisfied. We confine our analysis to the class of decom-

posable graphs for all time points, although we provide posterior graph summaries that go beyond this

assumption. Given Γ and Gu, we denote B(Γ) the associated coefficient matrix and Σ
(Gu) the associated

covariance matrix. Then the likelihood of a graphical VAR(k,G) factorizes as

f
(

Y | B(Γ),Σ(Gu)
)

=
∏C∈C f

(

YC | B
(Γ)
C ,Σ

(Gu)
CC

)

∏S∈S f
(

YS | B
(Γ)
S ,Σ

(Gu)
SS

) , (4)
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where C and S denote the set of cliques and separators of the undirected decomposable graph, while B
(Γ)
C

and B
(Γ)
S are the matrices whose columns contain the nonzeros coefficients of the selected responses YC

and YS, respectively. Notice that the set of cliques C and separators S depend on Gu, which is omitted

for simplicity.

In this work, we employ an objective approach for model selection based on the Fractional Bayes

Factor (FBF), originally presented in [2]. The idea of the FBF is to train a noninformative, typically

improper, prior using a small fractional power b of the likelihood, thus converting the noninformative

prior into a proper prior. The latter is then used to compute the marginal likelihood based on the comple-

mentary fractional power (1−b) of the likelihood.

We start with a prior for
(

B(Γ),Σ(Gu)
)

that is a limiting form of a Matrix Normal Hyper-Inverse

Wishart distribution. Combining such prior with a fraction b= T0/T of likelihood (4), we obtain the frac-

tional prior of a VAR(k,G) that is a Matrix Normal Hyper-Inverse Wishart distribution, M N H I W
(

B̂(Γ),C,d,R
)

,

where B̂(Γ) is the ordinary least square estimate of nonzero coefficients, C = T/T0 (Z
′Z)−1

, d = T0 − kq

and R = T0/T Ê′Ê with Ê = Y−ZB̂(Γ). Hence, the fractional prior factorizes as

pF
(

B(Γ),Σ(Gu)
)

=
∏C∈C Nkq,|C|

(

B
(Γ)
C ,C,Σ

(Gu)
CC

)

I W |C| (d + |C|−1,RCC)

∏S∈S Nkq,|S|

(

B
(Γ)
S ,C,Σ

(Gu)
SS

)

I W |S| (d + |S|−1,RSS)
. (5)

Because of conjugacy of prior (5), we can write

mF(Y | Γ,Gu) =
∏C∈C mF (YC | Γ)

∏S∈S mF (YS | Γ)
, (6)

where, mF(YC | Γ) and mF(YS | Γ) can be obtained in closed form using the results in [5].

2.1 Computational details

Posterior inference on the space of decomposable graphs is carried out through Markov Chain Monte

Carlo (MCMC) methods. In particular, at each step of our collapsed Gibbs sampling, we locally modify

Γ and Gu and then update through the following Metropolis-Hasting steps:

• we move from Γ to Γ∗ with acceptance probability r(Γ,Γ∗) = min
{

1, mF (Y |Γ∗,G
u)p(Γ∗)q(Γ|Γ∗)

mF (Y |Γ,Gu)p(Γ)q(Γ∗|Γ)

}

;

• we move from Gu to Gu
∗ with acceptance probability r(Gu,Gu

∗) = min
{

1, mF (Y |Γ,Gu
∗)p(Gu

∗)q(G
u|Gu

∗)
mF (Y |Γ,Gu)p(Gu)q(Gu

∗|G
u)

}

.

We compute mF(Y |Γ∗,G
u) using (6) while a multiplicity-correction prior for both the directed dynamic

graph and the undirected contemporaneous graph is assumed [5]. Finally, q(Γ∗ | Γ) = α when adding an

edge, and q(Γ∗ | Γ) = 1−α when deleting an edge; same proposal is employed for Gu, see [1].

Given the MCMC output we can approximate the posterior inclusion probability of edge (v,w) as

the proportion of MCMC iterations, after the burn-in, wherein the edge (v,w) appears. A variety of

summaries of the MCMC output can be adopted to estimate the data generating graph. Here, we employ

a Bayesian version of the (approximate) expected false discovery rate (FDR; [3]), i.e., we estimate the

graph considering those edges whose posterior probability of inclusion is greater than 1− r, where r is

determined so that the FDR is at most 5%.
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3 Analysis of air quality data

We analyze a 4-dimensional time series of air pollutants from January 2016 to December 2018 over the

municipality of Milan (Italy). Data are provided and aggregated by the air quality system of ARPA (the

regional environmental protection agency of Lombardia). In particular, we study the time series of daily

average of nitrogen dioxide (NO2), daily 8-hour maximum ozone (O3), daily particulate matter (PM10)

and daily fine particulate matter (PM2.5). Left panel of Figure 1 displays such time series, highlighting

the cyclical pattern of the pollutants.

A VAR(1,G) is fitted using the approach described in Section 2. Daily average of temperature and

precipitation over the city are employed as covariates. Preliminary results of the variable selection al-

gorithm applied to these variables show that temperature is a relevant predictor for both NO2 and O3

while precipitation is relevant for particulate matter and nitrogen dioxide. Right panel of Figure 1 shows
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Figure 1: Left panel: daily averages of the pollutants. Right panel: estimated VAR graph.

the estimated VAR graph obtained using the FDR criterion described in Section 2. Some of the links of

the graph can be explained by the chemical and physical transformation of the pollutants, e.g., NO2 is

a precursor to ozone while particulate matter and NO2 are both indicators of urban pollution. However,

interactions between air pollutants are very complex and require further investigations.
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Abstract. In recent years, the interest in natural resources management is increased. In this context,

control charts, developed to monitor and maintain quality in industrial processes, are a useful moni-

toring and decision tool.

In this paper, the behavior of an agro-metereological variable, named evapotranspiration, in an area

of the northern part of Italy during a 25-year span (from 1992 to 2016) is studied through a nonpara-

metric spatio-temporal geostatistical analysis and multiple CUSUM control charts. In particular, the

probability that the variable registers an “out of control” is estimated over the area of interest, for

three decades from the 10th to the 30th of January 2017.

Keywords. Spatio-temporal geostatistics; Indicator kriging; Control charts.

1 Introduction

The sustainable management of natural resources is an increasingly complex issue for environmental

sciences. Hence, monitoring represents an important activity for decision-making procedures. In this

context, the control charts might be useful for natural resources management, although they were devel-

oped as a tool in the Statistical Process Control (SPC) for improving industrial processes. On the basis of

the classical approach, these SPC techniques are a representation of the quality characteristic measured

in a sample or in several samples of an industrial process and allow pointing out if the process is “out of

control” and it should be stopped (Montgomery, 2009).

The convenience of using the control charts approach in different fields such as environmental, eco-

nomics, financial, social and healthcare sciences was discussed in several studies. In particular, the

interest in SPC techniques to analyze environmental phenomena is increasing (Paroissin et al., 2016;

Garthoff and Otto, 2016). On the other hand, few attempts to integrate the control charts with Geostatis-

tics have been made, such as in Grimshaw et al. (2013). However, the geostatistical methods applied in

the above mentioned papers were not used in a joint way in the space and in the time.

In this paper, the Cumulative Sum (CUSUM) charts, introduced by Page (1961), are used to study an

agro-meteorological variable, i.e. evapotranspiration (ET0), in 26 stations of Veneto region, in the period

1992-2016. In particular, the CUSUM charts technique has been integrated with nonparametric spatio-

temporal geostatistical methods in order to predict the probability that the CUSUM chart signals that the

variable is “out of control”. These results could be useful to plan adequate water management strategies,

since the ET0 monitoring plays an important role in irrigation scheduling, watershed level budgeting, as

well as climate and weather models.
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2 CUSUM charts and geostatistical framework

In environmental field, the detection of changes in a phenomenon could represent a useful tool to define

management and controlling plans. Hence, the CUSUM charts, based on the cumulative sums of devia-

tions of the analyzed values from a target value (µ0), might be a convenient technique for monitoring this

variability. Neverthless, it is worth noting that the variables under study are usually nonstationary, so the

residuals must be considered (Montgomery and Mastrangelo, 1991).

The residual values of a spatio-temporal environmental phenomenon, recorded at different time points

and spatial locations, can be considered as a realization of a second-order stationary spatio-temporal ran-

dom function (ST RF), {Y (u),u = (s, t) ∈ D×T}, where D ⊆ R
d and T ⊆ R.

In particular, for each spatial location, the chart is obtained by plotting over the time the cumulative val-

ues CS(s, t) = ∑t
j=1 [Y (s, j)−µ0] = [Y (s, t)−µ0]+CS(s, t −1), where CS(s,0) = 0. On the other hand,

the CUSUM could be expressed in the form of decision-interval, based on the cumulative sums of posi-

tive and negative deviations from the target value µ0 that are greater than a reference value indicated with

K, respectively:

CS+(s, t) = max[0,Y (s, t)− (µ0 +K)+CS+(s, t −1)],

CS−(s, t) = max[0,(µ0 −K)−Y (s, t)+CS−(s, t −1)],

with starting values CS+(s,0) =CS−(s,0) = 0. The CUSUM chart is obtained by plotting these statistics

over the time. In particular, if measurements are above the reference value, the upper CUSUM CS+

shows an upward trend; likewise, the lower CUSUM CS− exhibits a downward trend if the phenomenon

is consistently below the reference value.

Finally, the parameters K and H must be fixed. K is related to the size of the smallest shift in the level of

the reference value that can be detected; while H is the threshold that CS+ and CS− should not exceed in

order to consider the phenomenon “in-control”.

In a nonparametric context, given the fixed threshold z = H and the CS+ and CS− computed from resid-

uals, a spatio-temporal indicator random field (ST IRF),

{I(u,z),u = (s, t) ∈ D×T}

can be defined as follows:

I(u,z) =

{
1 if CS+(u)≥ z or CS−(u)≥ z ,
0 otherwise.

(1)

Under the second-order stationarity, the spatio-temporal indicator variogram, which describes the corre-

lation, depends on the threshold z and the lag vector h, i.e. 2γ
I
(h;z) = Var [I(u+h;z)− I(u;z)], where

h = (hs,ht).
In this context, the empirical spatio-temporal indicator variogram can be modelled through the following

generalized product-sum model (De Iaco et al., 2001), selected among different spatio-temporal models

proposed in literature:

γ
I
(hs,ht ;z) = γ

I
(hs,0;z)+ γ

I
(0,ht ;z)− kγ

I
(hs,0;z)γ

I
(0,ht ;z), (2)

where γ
I
(hs,0;z) and γ

I
(0,ht ;z) are, respectively, spatial and temporal valid bounded marginal vari-

ograms and k ∈]0,1/max{sillγ
I
(hs,0;z),sillγ

I
(0,ht ;z)}] is the parameter of spatio-temporal interaction.

For a second-order stationary ST IRF I, a linear prediction of the probability that the CS+ or CS− is

greater than the threshold z, that means that the phenomenon is “out of control”, can be obtained by us-

ing a linear combination of neighbouring indicator variables, expressed by the spatio-temporal indicator

kriging predictor Î(u;z) = ∑n
α=1 λα(uα;z)I(uα;z), where I(uα;z), α = 1,2, . . . ,n represent the indicator

random variables at the sampled points uα ∈ D×T and λα(uα;z) are the kriging weights, determined by

solving the indicator kriging system (Journel, 1983).
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3 Case study

The control of ET0 levels in a geographic area is an important tool for water management and planning,

since this variable is a very crucial factor in river discharge, irrigation water requirement and soil moisture

contents (Mohan and Arumugam, 1996).

In the present case study, the ET0 levels (expressed in mm) provided by an Italian web system, named

SCIA (Desiato et al., 2007), for 26 agro-meteorological stations located in the northeastern part of Italy

(Veneto Region) have been analyzed. Note that selected data are averaged every ten days and refer to a

25-year span (from 1992 to 2016).

ET0 is characterized by a periodic behavior: high levels registered in autumn and in winter are in contrast

to low measurements in the other seasons. Hence, in order to remove the periodic component exhibited

by the data, the FORTRAN program REMOVEMULT described in De Iaco et al. (2010) has been used;

consequently the residual data have been used in the steps of the analysis.

From residuals, for each spatial location positive (CS+) and negative (CS−) CUSUM have been computed

by fixed the parameters K = 2σ and H = 3σ, where σ is the global standard deviation equals to 0.359.

Hence, by considering the parameter H = 1.077 as the threshold z, a nonparametric analysis has been

conducted on the indicator variable I(u;z), in order to estimate the probability that the CUSUM CS−

exceeds the threshold z and to predict the probability that the ET0 is “out of control” for three future time

points, that is the 10th, 20th and 30th of January 2017.

After computing the sample spatio-temporal indicator variogram (Fig.1), the space-time correlation of

the indicator variable has been modeled through the following product-sum model:

γ
I
(hs,ht ;z) = Ns + cs Exp(‖hs‖;as)+Nt + ct Exp(ht ;at)− k{[Ns + cs Exp(‖hs‖;as)] · [Nt + ct Exp(ht ;at)]}

where Ns and cs are, respectively, the nugget and the sill contribution of the spatial marginal indicator

variogram model which is γ
I
(hs,0;z) = 0.015+ 0.019Exp(‖hs‖;as), while Nt and ct are, respectively,

the nugget and the sill contribution of the temporal indicator variogram model which is γ
I
(0,ht ;z) =

0.012+0.097Exp(ht ;at), with spatial range as equals to 80 km and temporal range at equals to 55 days.

Note that the parameter k, which is equals to 7.104, is such that the admissibility condition is satisfied

and the global sill, equals to 0.117, is fitted.
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Figure 1: a) Sample indicator spatio-temporal variogram surface, b) marginal spatial variogram and fitted

model, c) marginal temporal variogram and fitted model.

The reliability of the fitted spatio-temporal model is evaluated through cross-validation technique and

some fitting indexes. The linear correlation coefficient between the observed values and the estimates
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from cross-validation, equals to 0.8, confirms the goodness of the fitted model. Moreover, the Mean Error

(ME) and the Root Mean Square Error (RMSE) computed on the fitting errors between the empirical

surface and the model, equal to 0.007 and 0.005, respectively, confirm the accuracy of the fitted spatio-

temporal model.

Finally, these models have been applied in order to obtain spatio-temporal indicator kriging predictions

over the area of interest for three decades, from the 10th to the 30th of January 2017, through a modified

GsLib routine (De Iaco et al., 2011). Then, the probability maps of the negative CUSUM CS− exceeding

the fixed threshold have been obtained. The results highlight that, in the analyzed area, there are low

probabilities that the CUSUM exceeds the fixed threshold. Hence, the ET0 behavior will be “in-control”

in these three decades.
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Abstract. In modeling spatial processes, a second-order stationarity assumption is often made. How-

ever, for spatial data observed on a vast domain, the covariance function often varies over space,

leading to a heterogeneous spatial dependence structure, therefore requiring non-stationary modeling.

Spatial deformation is one of the main methods for modeling non-stationary processes, assuming the

non-stationary process has a stationary counterpart in the deformed space. The estimation of the de-

formation function poses severe challenges. Here, we introduce a novel approach for non-stationary

geostatistical modeling, using space deformation, when a single realization of the spatial process is

observed. Our method is based, at a fundamental level, on aligning local variograms, where warping

variability of the distance from each subregion explains the spatial non-stationarity. We propose to use

multi-dimensional scaling to map the warped distances to spatial locations. We asses the performance

of our new method using multiple simulation studies. Additionally, we illustrate our methodology on

soil moisture data to estimate the heterogeneous spatial dependence and to perform spatial predictions.

Keywords. Functional data registration; distance warping; spatial statistics.
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Abstract. Macroseismic intensity is a measure of the size of an earthquake in terms of the damages

caused to the anthropic and natural environment; it is an ordinal quantity expressed through the twelve

degrees of the macroseismic scale. The set of intensity values recorded in the sites around the epi-

center constitutes the macroseismic field of the event, that is, the damage scenario produced by the

earthquake. Knowing the expected spatial distribution of the effects of a future quake would allow to

carry out prevention actions and to intervene more promptly in the case of disastrous event. At first

we studied a probabilistic model for the intensity at site under the assumption that the attenuation

trend was circular; actually, drawing the isoseismal lines (lines of equal felt seismic intensity) of many

earthquakes we noted that the trend is quite complex and it is influenced by the ground conditions and

the orographic configuration. Therefore, to generalize the shape of the isoseismal lines, we considered

an elliptical trend where the major axis of the first isoseismal line corresponds to the fault. In this work

we extend the previous results by proposing a method to determine location and extremes of the fault

when they are unknown. Examples of the damage scenario estimated for some volcanic and recent

tectonic earthquakes are given.

Keywords. Anisotropy; Beta-binomial probability model; Ellipse; Macroseismic intensity; Bayesian

inference

1 Beta-binomial model and ellipsoid hull

Conditioned on the epicentral intensity I0, and on a fixed epicentral distance, the intensity at a given

site Is is assumed to have a binomial distribution with parameter p. First we assume that the decay is

isotropic, i.e., we assume to have a point source and circular isoseismal lines bounding the points of

equal intensity. In this case we draw J circular bins around the epicentre and suppose that in all of the

sites within each j-th bin, Is - so as ∆I - has the same binomial distribution with parameter p j, i.e.:

Pr(Is = i | I0 = i0, p j) = Pr(∆I = I0 − i | I0 = i0, p j) =

(

i0
i

)

pi
j(1− p j)

i0−i. (1)

In its turn, each p j has a beta distribution with hyperparameters α j and β j that, according to the Bayesian

approach, we assign by exploiting the information drawn from previous databases; then the posterior
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mean of each p j provides the estimate of these paramaters. To extend the value of p at any epicentral-

site distance we approximate the estimates p̂ j by the smoothing inverse power function g(d) = [c1/(c1+
d)]c2 , whose coefficients c1,c2 are estimated by the method of least squares. In this way we are able

to forecast in terms of macroseismic intensity Is at site the damage scenario that a future earthquake of

given intensity I0 could cause by the smoothed binomial probability distribution obtained by replacing

p j with g(d) in Eq. (1) and by using the mode ismooth of this distribution as forecast value of the intensity

Is at any site distant d from the epicentre [2]. Three criteria were used to validate the results: the

logarithmic scoring rule, the ratio between the probability that the fitted model assigns to an observation

and the probability of the forecast value, and the absolute discrepancy between observed and estimated

intensities at site.

Since it has been observed that more rapid decay can be visibly recognizable along the direction

perpendicular to that of the fault, it can be appropriate to use an elliptical shape for the isoseismal lines

when we have information on the fault rupture that caused an earthquake, in particular on the direction

and length of the rupture [1]. The solution we have found to do that, consists in a plane transformation

that turns the ellipse of major axis equal to the fault rupture into the circle of radius equal to the width

of the first bin; we repeat the estimation procedure in the transformed plane and then we associate the

estimated probability distribution of the intensity Is that will be felt at a site to the original position of

that site [3].

The problem arises when we do not have information on the causative fault, e.g. when the fault does

not appear on the surface, being completely hidden underneath surface rock layers (blind fault). Taking

into account that the shape of the area of highest intensity is generally elongate along the direction of

the active fault plane, we propose to deduce the fault dimensions from those of the ellipsoid hull that

includes all the sites with I0 − Is ≤ 1, i.e. the ellipsoid of minimal area such that all given points lie just

inside or on the boundary of the ellipsoid. The method has been tested on some volcanic earthquakes of

Etna area for which the fault is known and on L’Aquila earthquake with a blind fault.
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Abstract. This study presents the mass concentration PM1(aerosol particles with an aerodynamic 

diameter below 1m) together with sixteen related trace elements (i.e. Al, Ca, Cd, Cr, Cu, Fe, K, Li, 

Mg, Mn, Na, Ni, Pb, S, Ti, Zn) measured during Summer and Winter periods in a characteristic 

anthropized area. Soil, Sulfate, total-metal-oxide (TMO) and the carbonaceous material (CM) masses 

were evaluated and considered as the main components of PM1. All variables were log transformed to 

smooth extreme recording influence. A linear parametric model was estimated to asses components 

influence on the log PM1 and to evaluate the possible differential effect of observation periods on the 

components contribution. Results showed that CM, Sulfate, Soil and TMO explained about 44.32%, 

33.56%, 11.4% and 0.2% of the total variance of PM1, respectively. The contributions of CM, Sulfate 

and Soil to PM1 were significative with an error of 5%. The contribution of TMO to PM1 was 

significative with an error of 10%. CM, Soil and TMO contributed to PM1 with a significant 

difference between Summer and Winter, whereas Sulfate contributed to PM1 with non significant 

difference between Summer and Winter. Therefore, the CM, Sulfate and TMO components which were 

mainly related to anthropogenic origin explained about 78% of the PM1 total variance, whereas the 

Soil component which was mainly related to natural origin explained about 11.4% of the PM1 total 

variance. CM, Soil and TMO components contributed differently to PM1 in Summer and Winter. This 

result suggested possible seasonal sources activities for these components. 
 

Keywords.PM1; Linear parametric model; Seasonal sources. 

 
 

 

 

1 Introduction 

Human activities and natural processes contribute to the formation and emission in the air of aerosol 

particles, which are also known as particulate matter (PM). These particles have different sizes, shapes 

and masses and they are made of many chemical compounds some of which potentially harmful. The 

size of particle is an important physical parameter because it provides relevant information on particles 

origin, their formation process and harmful effects. Particles with an aerodynamic diameter smaller 

that 10 m (thoracic particles) are of special interest because they can penetrate and be deposited in 

specific thoracic regions of the lung. It has been reported that PM toxicity increases with the 

aerodynamic diameter decrease, as particles with smaller aerodynamic diameter can easily reach deep 

regions of the lung and can vehicle potentially toxic substances. Indeed, physiological and 
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toxicological considerations have suggested that fine particles (i.e. aerosol particles with an 

aerodynamic diameter smaller that 2.5 m) can play the largest role in affecting human health [1]. 

Fine particles have mainly an anthropogenic origin and they are mostly formed through the processes 

of combustion and relating condensation/reaction and gas-to-particle conversion of materials 

containing potentially toxic elements. PM1 (i.e. aerosol particles with an aerodynamic diameter smaller 

that 1 m) is a PM fraction that better represents the contribution of PM anthropogenic sources. The 

identification of the possible emission sources of PM1 is a starting point to evaluate and plan actions 

aimed at mitigating the levels of PM to protect the public health and the environment. This preliminary 

study  aims to evaluate the main components of PM1 relating to natural and anthropogenic emission 

sources and to evaluate their seasonal variations using a linear parametric model. 

 

2 Methods 

The mass concentration of PM1 measured during Summer and Winter periods in a characteristic 

anthropized area was determined and sixteen related trace elements (i.e. Al, Ca, Cd, Cr, Cu, Fe, K, Li, 

Mg, Mn, Na, Ni, Pb, S, Ti, Zn) were analyzed. The area was characterized from natural emission 

sources and from diverse anthropogenic emission sources relating to several activities (i.e. industrial, 

agricultural, domestic heating and traffic). 

 
2.1 PM1 main components 

The main components of PM1 such as Soil mass, Sulfate mass and total metal oxide (TMO) mass were 

evaluated as follows: 

                 MgNaMnTiCaFeAlSiSoil 67.135.129.167.195.142..289.114.2    (1) 

   SSulfate 063.3           (2) 

                 KPbZnCuCrNiCdLiTMO 21.108.124.125.131.127.114.115.2    (3) 

with  
32

89.1 OAlAl   and  
232

3 SiOOAl   [2-3]. An estimate of the carbonaceous material mass was 

determined evaluating the PM1 missing mass (MM) using the reconstructed mass approach as: 

       MMTMOSulfateSoilPM 
1

        (4) 

Thus, it is expected that the missing mass was largely made of carbonaceous material (CM) [4]. 

 
2.2 Linear parametric model 

It was originally demonstrated that air pollutants follow a lognormal distribution starting from the “law 
of proportionate effect” [5]. Davies [6] reported that aerosol atmospheric particles have a distribution 
that can be represented by lognormal distribution. Thus all considered variables were log transformed 

to smooth extreme recording influence. The following linear parametric model was estimated:  

Yi=0s+kksXki     (5) 
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Where Yi is the i
th
 observation of log-transformed PM1,  ks(k=0,1,2,4, s=1,2) are standard regression 

coefficients changing with the season s and Xki denotes the log-transformed i
th
 value of Soil, TMO, MM 

and Sulfate. Model’s components where evaluated with the usual ANOVA table and the percentage of 
total variation for each component computed.  

This model was used to estimate and asses the  role of PM1 main components and to evaluate the 

possible differential effect of observation periods on the components contribution [7]. 

 

3 Results 

 

Figure 1 shows the measured PM1 mass fraction versus the fitted PM1 mass fraction using the 

parametric linear model (see Equation 5). In this model CM, Sulfate, Soil and TMO explained about 

44.32%, 33.56%, 11.4% and 0.2% of the total variance of PM1, respectively (see Table1). The 

contributions of CM, Sulfate and Soil to PM1 were significative with an error of 5%.  

 

 

Figure1: Observed PM1 vs. fitted PM1 according to model (5). The correlation between 

fitted and observed is r=0.95, the line is bisector (y=x) 

 

The contribution of TMO to PM1 was significative with an error of 10%. Carbonaceous material, Soil and 

TMO contributed to PM1 with a significant difference between the two considered seasons. Sulfate 

contributed to PM1 with non significant difference between Summer and Winter. 

 

 Df Sum Sq Mean Sq F value Pr(>F) % variance 
MM 1 10.2835 10.283 738.228 0.000 40.320 

Season 1 0.6292 0.629 45.167 0.000 2.470 

Sulfate 1 8.5578 8.558 614.341 0.000 33.560 

TMO 1 0.0490 0.049 3.519 0.062 0.200 

Soil 1 2.9083 2.908 208.782 0.000 11.400 

MM:Season 1 0.4127 0.413 29.623 0.000 1.620 

Sulfate:Season 1 0.0003 0.0003 0.019 0.889 0.001 

TMO:Season 1 0.1372 0.137 9.847 0.002 0.540 

Soil:Season 1 0.1014 0.101 7.279 0.007 0.400 

Residuals 174 2.4238 0.0140    

  25.5032     
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Table1: ANOVA table from model (5). 

The Carbonaceous material component and the Sulfate component which were mainly related to 

combustion of fossil fuels, industrial activities and inorganic aerosol formation (anthropogenic 

emission sources) explained about 78% of the PM1 total variance. The Soil component which was 

mainly related to possible African dust and to the re-suspension from fields or bare lands of crustal 

material (natural emission sources) explained about 11.4% of the PM1 total variance. The TMO which 

was also related to possible fuels-oils combustion and to traffic related activities explained about 0.2% 

of the PM1 total variance. The carbonaceous material component, Soil component and TMO 

component contributed differently to PM1 in Summer and Winter (see Table1). In Summer period the 

processes of resuspension of Soil can be facilitated from dry weather conditions which can involve  

significative variations of the emissions of crustal material in to the air. Whereas, during Winter the 

combustion of fossil fuels and firewood due to domestic heating come in to play determining a 

significative variations of the emissions of carbonaceous material and chemical elements in to the air. 

As such the observed seasonality for Soil, TMO and CM components. The Sulfate component 

contributed to PM1 with non significant difference in the two seasons. This result indicates that the 

emission sources of Sulfate and the relating anthropogenic activities remain unchanged in the two 

considered seasons. 

Eventually residuals analysis was elaborated showing a heavy tail for larger observations, omoschedastic 

behavior and negligible autocorrelation  

 

4 Conclusions 

The parametric linear model allows for the assessment of the main components of PM1 and the 

evaluation of their seasonal variations. In the studied area the anthropogenic emission sources were 

responsible for about 78% of the PM1 total variance, while natural emission sources explained about 

11.4% of the PM1 total variance. Significative differential effect of the observation periods on the CM, 

Soil and TMO components were observed. This suggests that the studied area is characterized from 

possible anthropogenic as well as natural emission sources with seasonal characteristics. 
 

References 
 

[1]Pope III, C. A., and Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that 

connect. Journal of the air & waste management association, 56(6), 709-742. 

[2] Trippetta, S., Sabia, S., Caggiano, R. (2016). Fine aerosol particles (PM 1): natural and anthropogenic 

contributions and health risk assessment. Air Quality, Atmosphere & Health, 9(6), 621-629. 

[3] Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., & Cahill, T. A. (1994). Spatial and seasonal trends 

in particle concentration and optical extinction in the United States. Journal of Geophysical Research: 

Atmospheres, 99(D1), 1347-1370. 

[4] Prakash, J., Lohia, T., Mandariya, A. K., Habib, G., Gupta, T., Gupta, S. K. (2018). Chemical 

characterization and quantitativ e assessment of source-specific health risk of trace metals in PM 1.0 at a road 

site of Delhi, India. Environmental Science and Pollution Research, 25(9), 8747-8764. 

[5]Aitchison, J., and Brown, J. (1957). The lognormal distribution with special reference to its uses in 

economics. New York, NY: Cambridge University Press. 

[6]Davies, C. N. (1974). Size distribution of atmospheric particles. Journal of Aerosol Science, 5(3), 293-300. 

[7]R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation 

GRASPA-TIES 2019

118 of 127



A. Speranza et al. PM1 components and their seasonal variation 
sing a linear parametric 

GRASPA2019Workshop 

 

 

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

GRASPA-TIES 2019

119 of 127



Induced earthquakes and the ETAS model

Z. Varty1,∗, J. Tawn 1, and S. Bierman2

1 Lancaster University, Lancaster, UK; z.varty@lancs.ac.uk, j.tawn@lancs.ac.uk
2 Shell Technology Centre, Amsterdam, NL; Stijn.Bierman@shell.com
∗Corresponding author

Abstract. The epidemic type aftershock sequence (ETAS) model is widely used in the modelling of

earthquake catalogues that include aftershocks. The model has be used successfully in describing

tectonic seismicity where the usable catalogue sizes are large. The model is more difficult to apply to

induced earthquakes, where catalogue sizes are typically much smaller and the seeding rate of main

shocks cannot be assumed to be constant. In both cases, the parameters of the ETAS model are highly

correlated under the conventional parameterisation and the resulting log-likelihood function has many

flat regions, which can make inference difficult.

We will introduce issues that arise when modelling induced seismicity caused by gas extraction and

put forward an alternative parameterisation for the aftershock component of the ETAS model. The

standard ETAS model is nested within our alternative but the correlation of aftershock parameters is

greatly reduced. This means that that inference can be made on a broader class of models and more

effectively, allowing more model uncertainty to be propagated into earthquake forecasts and simplified

parameter interpretation.

Keywords. Seismic risk; Point processes; Extreme value theory; Spatio-temporal modelling.

1 Introduction

The Groningen region of the Netherlands does not experience tectonic seismicity. It does, however,

contain the largest field of natural gas in Europe. This gas field supplies homes and industries in the

Netherlands, Belgium, Germany and France, where gas-powered appliances are specialised to the gas

from this field. Despite the Groningen region not being tectonically active, seismic events have been

recorded there since the early 1990s. Gas extraction induces these events but there are still questions on

the form of the relationship between the two. Figure 1 shows the relationship between one feature of gas

extraction and the density of induced events. Understanding these links is critical to informed decision

making about future extraction from the Groningen field, based on the associated seismic hazard.

There has been substantial investment into the investigation of this relationship, including improve-

ments to the network of geophones that cover the gas field. It is important to be able to detect and model

events with small magnitudes because the gas field is only 3km below surface level and so small magni-

tude events are still capable of causing damage. The investment has funded a dense monitoring network

across the gas field, which can now reliably detect all events down to 1.1 Mw. This value, known as the

GRASPA-TIES 2019

120 of 127



Z. Varty et al. Induced earthquakes and the ETAS model

Figure 1: Cumulative compaction caused by gas extraction with event density contours overlaid.

magnitude of completion, has decreased over time but this is not usually accommodated into the model

fitting process. The increased ability to detect small magnitude earthquakes is apparent in Figure 2.
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Figure 2: Magnitudes of recorded events and field-wide magnitude of completion.

Modelling seismicity in the Groningen field has additional challenges and opportunities as compared

to the usual tectonic setting, these include:

• Covariates such as the cumulative compaction of the gas field in Figure 1 are available but the best

way to incorporate these is unclear;

• The variable rate of induced events makes potential aftershock activity difficult to identify;

• The magnitude of completion is decreasing with time but also varies spatially;

• The usable catalogue is small, containing only a few hundred events.

Models that exploit these opportunities and address these challenges could improve our ability to predict
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induced seismicity, which is the first step in evaluating future seismic hazard and comparing production

scenarios.

2 The ETAS model

The epidemic type aftershock sequence (ETAS) model is currently the standard statistical approach to

incorporating aftershock activity. This model is a special case of the Hawkes point process, the class of

point process models in which the intensity function λ is dependent on the history of the process, Ht .

In particular, the ETAS model locally augments a background intensity function, µ, with an increase in

intensity after each earthquake. The size of this increase is determined according to the magnitude of

each earthquake and reduces with time and distance from the epicentre. Figure 3 shows an example of

such an intensity function for a temporal ETAS point process.
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Figure 3: Simulated temporal ETAS catalogue and the associated intensity function.

It is simple to extend the ETAS model to incorporate covariates within the background intensity and

to generalise to a spatio-temporal setting, as in Equation (1) . Selecting an appropriate parametric or

semi-parametric form for µ(x,y, t|X ,θ) provides a way of linking gas extraction covariates X and the

level of induced seismicity. The functions κ, g and h then describe the aftershock activity by respectively

controlling the expected number of aftershocks, their lag and their displacement from the triggering

earthquake.

λ(x,y, t|X ,Ht ,θ) = µ(x,y, t|X ,θ)+ ∑
i:ti<t

κ(mi|θ)g(t − ti|θ)h(x− xi,y− yi|θ). (1)

3 Reparameterisation

It is well known that the ETAS model is difficult to fit, particularly to small earthquake catalogues like

that of Groningen. This is partly because the model was developed in the tectonic setting, where much

larger catalogues are available and a temporally constant background rate may be assumed. There are
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also issues with the conventional choices for the functions κ, g and h, which are motivated by empir-

ical relationships seen in the tectonic setting. The conventional choice is for κ to be an exponentially

increasing function above some threshold M0. The functions g and h are conventionally described by the

modified-Omori law, a heavy tailed power-law distribution, in ∆t and r2 = ∆x2 +∆y2 respectively. This

choice of aftershock functions results in a log-likelihood function that is almost flat in many regions of

the parameter space and parameters which are strongly correlated [1]. These issues make both frequentist

and Bayesian approaches to inference on the ETAS model difficult.

We suggest alternative forms for the aftershock terms in the ETAS model, within which the cur-

rent standard choices are nested. The reparameterisation centres the effect of magnitude on aftershock

productivity and uses a generalised Pareto distribution rather than the modified-Omori law to describe

aftershock lags and displacements. The resulting version of the ETAS model is more flexible than the

current approach and is able to describe short-tailed delay and displacement distributions. By using the

alternative forms the parameter dependence is greatly reduced, and is negligible within the range of mod-

els covered by the conventional parameterisation. The reduction in parameter dependence can be seen in

Figure 4.
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Figure 4: Posterior samples & correlations for a simulated ETAS catalogue using the conventional after-

shock parameterisation (left) and the centred generalised Pareto parameterisation (right).

The resulting model allows for more effective inference to be performed, simplifies parameter inter-

pretation and carries uncertainty in the shape of the delay distributions into earthquake forecasts. This

is particularly important for application of the model to small catalogues of induced earthquakes such as

that of the Groningen gas field.
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Abstract. In community ecology studies the goal is to evaluate the effect of environmental covariates

on a response variable while investigating the nature unobserved heterogeneity. We focus on one-

factor mixed models in a Bayesian setting and introduce an intuitive Penalized Complexity (PC) prior

to balance the variance components of the model. We start with the simple one-way anova and discuss

extension to spatially structured residuals, following a Matern exponential covariance.

Keywords. Bayesian mixed models; Group model; Intra-class correlation; One-way anova; PC prior.

1 Mixed models in community ecology

When modelling ecological data several authors report high levels of unexplained variation after con-

sidering the effect of environmental covariates [1]. In this cases, the linear regression framework is

abandoned in favour of linear mixed models. From a statistician’s point of view, accounting for lack of

independence in the residuals is required to “adjust” estimates of the regression coefficients. From an

ecologist’s perspective, investigating the type of residual structure is important in itself to improve under-

standing of, or generating hypothesis on, the underlying ecological community. For instance, residuals

that are correlated within some pre-specified groups/clusters of observational units can be associated to

interactions between members of the community, including negative (like competition, predation and

parasitism) and positive interactions (like mutualism and commensalism).

We analyze macroinvertebrate community data collected in 6 sampling campaigns carried out in

three streams tributaries of the Po River (Northern Italy): Nure Stream, Parma Stream and Enza Stream.

For each river a sampling area was sampled twice (in summer and winter), the spatial design including

fifty random points aligned along several transects (in total, there are 38 transects). At each point, abun-

dance of macroinvertebrates (response) and environmental covariates such as flow velocity, water depth,

substrate composition and benthic organic matter were recorded. The main goals are 1) to investigate

the role of the environmental covariates and 2) to assess the presence of small scale interactions within

macroinvertebrate communities.

The questions above could be addressed by applying the mixed model framework. In mixed models

the effect of the observed covariates and unobserved processes can be neatly separated. Assuming a
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Gaussian response Y and covariates X the general formulation of a mixed model is

Y =Xβ+Zb+ǫ, ; b∼ N (0,Σb) ; ǫ∼ N (0,σ2
eI)

where β are the fixed effects and b the random effects. The common interpretation in ecology is that

the β’s account for variability explained by observed abiotic factors, while the b’s account for variability

driven by unobserved abiotic or biotic factors [4]. Matriz Z incorporates information about the grouping

factors under consideration. In our case study, it is expected that observations tend to be similar within

the same sampling campaign or the same transect, thus grouping factors to be considered in the following

analysis will be campaign (a factors with 6 levels) and transect (a factor with 38 levels).

1.1 Exchangeable case: one-way anova

Assume data are grouped according to the levels of a certain grouping factor, with yi j being the response

at unit i = 1, . . . ,m j within group j = 1, . . . ,n. The simplest mixed model case is one-way anova,

yi j = α+xT

i jβ+b j + εi j i = 1, . . . ,m j j = 1, . . . ,n (1)

b j ∼ N (0,σ2
b)

εi j ∼ N (0,σ2
ε)

where b j’s are random effects quantifying group-specific deviations from the intercept α and εi j are i.i.d.

noise terms. It is important to note that introducing the group-specific random effects induces correlation

among the residuals (yi j − (α+xT

i jβ)). For this reason, we refer to model (1) as to the exchangeable

case.

We note that the b j’s and εi j’s compete to capture the variance unexplained by environmental co-

variates. The balance between the two components is regulated by the hyper-parameters σ2
b and σ2

ε . In

particular, when σ2
b = 0 model (1) corresponds to the linear regression yi j =α+xT

i jβ+εi j; the ecological

conclusion would be that only environmental covariates matter and the rest is i.i.d. variation. Instead, if

σ2
b > 0 there is a certain amount of unexplained variability in the data; the interpretation would be that

covariates matters but residuals are not independent, investigating the structure in there can give useful

insights on the behaviour of the ecological community.

2 Prior specification in one-factor mixed models

Because the estimates of the variance components σ2
b, σ2

ε drive most of the ecological interpretations

on the behaviour of underlying communities, the choice of priors for the hyper-parameters σ2
b, σ2

ε is an

important aspect of model specification. [3] address this issue in a general class of one-factor Bayesian

mixed models: their proposal is to tackle the choice of priors for the variance components jointly, by

specifying a prior on the intraclass correlation (ICC) parameter, ρ = σ2
b/(σ

2
b +σ2

ε). This prior is derived

under the Penalized Complexity (PC) prior framework [2]. By definition, a PC prior is an exponential

distribution with rate parameter λ defined on a distance scale, d. Such distance d quantifies the increased

complexity of the model under consideration w.r.t. to its base model, in our case the base model being the

linear regression yi j = α+xT

i jβ+ εi j. Thus λ is a scaling parameter controlling the degree of shrinkage

to the base model and needs to be specified by the expert user/ecologist. Once the PC prior has been

scaled according to a given λ, the prior on the original parameter, ρ, can be computed by the change of
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variable rule. For a detailed discussion of the principles underpinning the construction of PC priors and

their properties see [2].

In [3] group models assuming different correlation structures for the within group residuals are pre-

sented and the prior for the associated correlation parameter (e.g., ρ in the exchangeable case) is always

derived under the same principles. There are several practical advantages for the user/ecologist. First,

the PC prior ensures proper shrinkage to the base model, thus avoiding overfitting. Second, in the ex-

changeable case, the scaling parameter λ can be elicited upon a prior statement on the ICC, i.e. the

proportion of total variance explained by the grouping factor; for instance, one may compute λ such that

P(ρ < 0.5) = 0.5. Third, the prior for ρ is actually defined on an underlying distance scale, which is

common to all group models (e.g. exchangeable residuals within transects, serially correlated residuals

within transect, they both are extension of the same base model). Thus, the intuitive choice of λ based

on eliciting the ICC, is one that can be applied in general for any group model.

2.1 Spatially correlated case

In the present work we extend to the case of spatially correlated residuals, according to a Matern expo-

nential covariance. The spatially correlated group model is

yi j = α+xT

i jβ+θi j i = 1, . . . ,m j j = 1, . . . ,n

(θi j, . . . ,θm j)
T

∼ N (0,σ2R j(φ))

where the correlation matrix depends on a range parameter φ > 0,

R j(φ) =



















1 exp(−u1,2/φ) · · · · · · exp(−u1,m/φ)

exp(−u2,1/φ) 1
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 exp(−um−1,m/φ)

exp(−um,1/φ) · · · · · · exp(−um,m−1/φ) 1



















. (2)

Notation ui,h in matrix (2) indicates the euclidean distance between spatial units i and h. We note that the

base model is achieved at φ = 0, in which case we are back to i.i.d. residual case. The PC prior for φ can

be derived numerically.

3 Concluding remarks

We emphasize that a very intuitive aspect of the proposed PC prior on φ is that the scaling parameter

λ can be chosen according to a prior statement on the ICC, like in the exchangeable case. We believe

this intuitive way to define λ provides an easy-to-elicit prior. The user is then able to balance variance

components in an intuitive manner, even in complex models where the variance parameters are difficult

to interpret.

The poster presentation will focus in particular n the benefits of using PC priors for residual correla-

tion parameters in a model comparison setting. We will discuss comparison of two different one-factor
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mixed models, having different residual structures: exchangeable residuals within campaign versus spa-

tially correlated residuals within campaign. This comparison would provide insights into the strength of

spatial correlation in the residuals, as a preliminary answer to the main questions under study in our mo-

tivating example, the one about the presence of possible interactions between members of the ecological

community.
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