
DOCTORAL SCHOOL

UNIVERSITY OF MILANO-BICOCCA

Department of Informatics, Systems and Communication

PhD program in Computer Science

Cycle XXXV

Domain Adaptation in Fine-grained
Entity Typing

Manuel VIMERCATI

Registration number : 793553

Supervisor : Prof. Matteo PALMONARI

Tutor : Prof. Gianluigi CIOCCA

PhD Program Director : Prof. Leonardo MARIANI

ACADEMIC YEAR 2021/22

ii

Contents

1 Introduction 1

2 State of the Art 7

2.1 Preliminaries . 7

2.1.1 Definitions . 7

2.2 Fine-grained Entity Typing . 9

2.2.1 Problem definition . 9

2.2.2 Collecting and cleaning training data 15

2.2.3 Open Problems in FET . 18

2.3 Domain Adaptation in Information Extraction 19

2.3.1 What is a domain? . 19

2.3.2 Domain Adaptation . 20

2.3.3 Domain Adaptation in Name Entity Recognition 21

2.3.4 Domain Adaptation with Language Models 23

2.4 Domain Adaptation in FET: an open problem 26

3 Domain Adaptation in Fine-grained Entity Typing 29

3.1 Formal Definitions: FET and Domain Adaptation in FET 30

3.1.1 Fine-grained Entity Typing 30

3.1.2 Formalization of Domain in Fine-grained Entity Typing . . . 30

3.1.3 Formalization of Entity Typing Model 32

3.2 Categorization of Domain Adaptation in FET 32

3.2.1 Application Use Cases . 33

3.2.2 Domain Adaptation in FET Formalization 36

3.2.3 Completely new domain . 37

3.2.4 Exploiting explicit type relations across domains 37

iii

iv CONTENTS

4 Model Reuse in Partially Overlapping Domains 41
4.1 Research Questions - Model Reuse 42
4.2 Critical Issues of Model Reuse without Training 42
4.3 Datasets, Mappings and FET model 44

4.3.1 Datasets . 44
4.3.2 Define relations between type hierarchies 45
4.3.3 Model Reuse: Domain Adaptation without Additional Training 46
4.3.4 Fine-grained Entity Typing Model 47
4.3.5 Hyperparameters . 48
4.3.6 Metrics . 49

4.4 Model reuse - Results . 51
4.4.1 Performance in Source Domain 51
4.4.2 Performance on the Target Domain 53

4.5 Noisy Annotation and Model Reuse 56
4.5.1 AutoDenoise . 57
4.5.2 Research Question - AutoDenoise and Model reuse 60
4.5.3 Experimental Setup . 61
4.5.4 Performance in Source Domain 61
4.5.5 Performance in Target Domain 62

4.6 Conclusions on Model Reuse . 64

5 Neuro-symbolic Fine-grained Entity Typing for Domain Special-
ization 67
5.1 Knowledge Enhanced Neural Network 67

5.1.1 How does KENN work? . 69
5.2 Encoding a hierarchy for FET . 69
5.3 KENN for FET (in-domain) . 71

5.3.1 Research Questions . 71
5.3.2 Experimental Setup . 72
5.3.3 In-domain FET with KENN - Results 72

5.4 Specialization of a FET model . 74
5.4.1 Research Questions - Specialization of a FET Model 74
5.4.2 Base Specialization Network 75
5.4.3 Experimental Setup . 75
5.4.4 Experimented specialization techniques 76
5.4.5 Results . 77

5.5 Conclusions on the Specialization of FET Models 93

6 NeuroSymbolic Fine-grained Entity Typing for Full-fledged Do-
main Adaptation 95
6.1 Research Questions - Full-fledged Adaptation of a FET model . . . 95

CONTENTS v

6.2 Adapt a FET model . 96
6.2.1 Smart initialization . 96
6.2.2 KENN for full-fledged domain adaptation 96

6.3 Experimental Setup . 97
6.3.1 Experimented domain adaptation approaches 97

6.4 Results . 98
6.4.1 Results with BBN as target domain 98
6.4.2 Results with FIGER as target domain 102
6.4.3 Results with OntoNotes as target domain 106

6.5 Conclusions on the Full-fledged Domain Adaptation in FET Scenario109

7 Conclusions and Future Works 111
7.1 Conclusions . 111
7.2 Future Work . 112

vi CONTENTS

Chapter 1
Introduction

Information extraction [CL96; McC05; Gri15; SGC09] is a complex task aimed
at extracting structured information from text [CL96; Gri15]. This information
is typically structured around entities and represented in statements of a formal
language such as RDF. These statements represent facts about the entities refer-
enced in the text, for example, Barack Obama. The facts can describe the entity’s
class membership, such as Barack Obama being a Politician, the relationships
between entities, such as Barack Obama being born in Honolulu, and properties of
these entities, such as Barack Obama being born in 1961.

A good Information Extraction System (IES) is beneficial for each downstream
task in NLP, such as Question Answering, Entity Linking, and Ontology Population
from Text. An IES is composed of different modules applied in cascade [CL96;
McC05; Gri15]. Although the modules can be implemented independently, they
are highly related because the output of one module is used as the input of the
following module. According to [McC05], an IES can be decomposed into the
following steps: Segmentation, Classification, Association, Normalization, and
Coreference Resolution. The Segmentation step identifies the boundaries of a piece
of information, such as a named entity, a domain string, a verb, or a simple word.
The Classification step groups the segments into classes, which can be semantic,
such as types/hypernyms of named entities (Person, Organization, Location, etc.),
related to the text source (HTML tags), or syntactical, such as Part-of-Speech tags.
The Association step determines relations between segments. The Normalization
step reduces the variance of information by using standard formats depending
on the segment’s class, for example, normalizing dates using the same format
or arranging person’s names in a standard order. Finally, the Coreference step
collapses redundant segments to ensure that the same information is represented
by the same unique segment.

Recognizing and classifying entities in a given document is a fundamental

1

2 CHAPTER 1. INTRODUCTION

capability of an IES. Annotated documents that specify the types of entities can
be used for various downstream applications, such as semantic search in complex
documents [BBH+16] and question answering [Zha+20d], even if more complex
elaborations are not necessary. On the other hand, the extracted entities are typi-
cally used as input for more complex processes, such as relation extraction [Kua+20]
or knowledge base population [Hos+19].

This PhD thesis focuses on a subtask of entity extraction, specifically the
Classification step, which is called Entity Typing (ET). ET involves assigning types
to an entity that has already been identified in a given sentence, selecting types
from a given vocabulary. For instance, if the Segmentation step has identified the
segment ”Joe Biden” in the sentence ”Joe Biden is the current president of the
U.S.A.”, a suitable solution for the task would be to assign types such as Person,
Politician, and President.

Assigning types to entities found in a given sentence has proven to be ben-
eficial in various NLP tasks, such as Question Answering [Han+17], Ontology
Population [Hos+19], Entity Linking [Che+18], and Relation Extraction [Kua+20].
Moreover, different articles [Cho+18; OD20] demonstrate how the diversity and
granularity of such types have an impact on those NLP tasks. Over the last
decade, several ET benchmark datasets have been proposed to assess the ability
of state-of-the-art models to tackle ET. The increasing size and granularity of the
types’ vocabulary have led to the task being named Fine-grained [LW12] and Ultra
Fine-grained Entity Typing [Cho+18] (FET and UFET).

Like all IES, FET models must be applied in different contexts, from news
articles to encyclopedic articles, from blogposts to product descriptions on e-stores.
Type hierarchies are often domain-specific, and the annotation policies for building
training datasets are specifically designed for each application domain. Moreover,
automated annotation methods, often used to annotate large quantities of data,
can be based on various NER and NEL systems to find entities in sentences, as well
as different knowledge bases to extract and annotate the correct types. The various
combinations of these factors in application domains can be seen as instances of a
Variety Space [Pla16], where each application domain can be described as a region
in this space. Note that regions that correspond to different domains can overlap.
Given the usefulness of FET approaches in downstream tasks, it is expected that
FET approaches should be able to recognize all types considered useful in a given
domain. FET approaches are based on machine learning and deep neural networks
and are trained on large datasets, ranging from hundreds of thousands to millions
of examples. These models are data greedy and tend to overfit, which is why big
datasets are needed to learn to classify between highly populated type ontologies.
Although training domains often contain common types like Person, Building,
Location, and Animal, a dedicated dataset is usually necessary to cover all types

3

considered useful in a specific domain. However, building a dataset from scratch is
known to be expensive and time-consuming.

Adapting a trained IES to a new domain is an activity that lies into the Transfer
Learning research field, in particular, transductive transfer learning [PY10]. In
transductive transfer learning, the source and target tasks remain the same, but
the source and target domains differ in their underlying distribution [Rud+19].
The general application scenario of Domain Adaptation (DA) relies on cases where
there is a rich source domain that can be used to perform an initial training of
the IES, and also a low-resource target domain, where labeled data are absent or
scarce [RP20]. Such rich source domains are costly to build and the initial training
on them can be very heavy. Poor target domains instead are very common in
real-case scenarios where very specific information needs to be extracted. Domain
adaptation is largely explored in NER, where multiple techniques are proposed and
challenging scenarios, for example class incremental [Mon+21], are defined. FET
literature is focused instead on the in-domain scenario and domain adaptation is
not covered yet. However, domain adaptation is particularly interesting in FET,
since a foundational concept of this task is the helpfulness of fine-grained types.
Following this concept, developing techniques to adapt a FET model to recognize
new and possible ‘finer’ types is necessary to transfer the abilities learned in rich
source domain to more specific target domain, where new types and ‘finer’ types
can be central. For example, recognizing the typology of various products of an
e-commerce store based on the description is a very specific but fundamental ability
to scale on large database, as well as recognizing different jobs, drugs, organizations,
and weapons in the juridical domain.

Adapting an already trained IES to a new domain is an application of Transfer
Learning, specifically transductive transfer learning [PY10]. In transductive transfer
learning, the source and target tasks remain the same, but the source and target
domains differ in their underlying distribution [Rud+19]. Domain Adaptation
(DA) is a general application scenario that relies on rich source domains for initial
training of the IES and low-resource target domains where labeled data are absent
or scarce [RP20]. Rich source domains are expensive to build and training on
them can be time-consuming, while poor target domains are common in real-world
scenarios where specific information needs to be extracted. DA is widely explored in
NER, where various techniques and challenging scenarios, such as class-incremental
NER, are defined [Mon+21]. However, in the FET literature, domain adaptation is
not yet covered. Nonetheless, it is particularly interesting in FET since the concept
of fine-grained types is fundamental to this task. Developing techniques to adapt a
FET model to recognize new and possibly finer types is necessary to transfer the
abilities learned in rich source domains to more specific target domains where new
and finer types can be central. For instance, recognizing various products in an e-

4 CHAPTER 1. INTRODUCTION

commerce store based on their descriptions is a specific yet crucial ability for scaling
on large databases. Similarly, recognizing different jobs, drugs, organizations, and
weapons in the legal domain is essential.

In my research, I am exploring the problem of domain adaptation in fine-grained
entity typing. The main question that drives my thesis is whether it is possible to
support domain adaptation for entity classification in the challenging scenario of
fine-grained classification, which is a topic that has not been studied extensively.
I am investigating this problem by leveraging novel adaptation techniques that
integrate explicit knowledge representation and deep neural networks. Specifically,
I am studying to what extent models trained on rich source domains can be adapted
to new, typically resource-poor target domains, especially when the source and
target domains partially overlap.

To answer this main question, I have first formalized the problem and defined
three different domain adaptation scenarios. Based on this analysis, I have broken
down the main question into three sub-questions, each of which relates to a specific
scenario, as follows:

• Model reuse. To which extent can we reuse an existing FET model on a
dataset that represents a novel data distribution without additional training?
In the scenario of model reuse, we can observe the effects of domain differences
on the behavior of a FET model. These differences can be expressed in terms
of language distribution (e.g., scientific vs. informal) or the presence of
new entities or words, as well as annotation policies (e.g., pronouns being
considered entity mentions in the target domain but not in the source domain,
indicating that the model was not trained to classify entities denoted by
pronouns). This scenario is relevant because it may be that a user is only
interested in a subset of the entity types considered in an existing model, and
can select those that match their interests in their own textual documents.
Additionally, this scenario represents a more extreme case of distribution
shift [Shi+20], providing valuable insights into the difficulty of the problem.

• Model specialization. In the model specialization scenario, a FET model
that has been trained on a source domain needs to be specialized to recognize
new types in a target domain. The peculiarity of domain specialization is that
we assume each target type is a specialization of one source type, for example,
Athlete is a specialization of Person. The relationships between the known
types and the new specialized types are a central notion to exploit in order to
transfer the classification capabilities from the source to the target domain.
This scenario is relevant because subtypes are often essential information
for a given domain. For example, to obtain a juridical FET model useful
for distinguishing between Advocate, Judge, and Part, a FET model that

5

is already trained to distinguish Person is a more suitable starting point
than a randomly initialized network. However, exploiting explicit hierarchical
relations during training is a challenging task.

• Full-fledged domain adaptation. In the full-fledged domain adaptation
scenario, the objective is to adapt a FET model trained on a source domain
to recognize new types in a target domain where equivalence, specialization,
generalization, and disjunction relations can exist between source and target
types. To achieve this, it is crucial to consider the relationships between
the source and target types and leverage them to transfer and adapt the
knowledge from the source to the target domain.

The original contributions of this Ph.D. thesis are:

• the formal definition of domain adaptation in FET.

• the description of three different scenarios for domain adaptation in FET,
with the analysis of their relevance in real cases.

• the analysis of a model reuse and the analysis of the related issues.

• the extension of a denoising approach proposed in FET literature to alleviate
the problem of noisy annotations and its evaluation in the model reuse
scenario.

• the definition and evaluation of novel techniques to perform specialization low-
resource FET scenarios. Such techniques exploit different hierarchy encoding
strategies with the neuro-symbolic approach Knolwedge Enhanced Neural
Network (KENN) [DS19].

• the definition and the evaluation of techniques to perform the adaptation
to a target domain in low-resource FET scenarios. Such techniques exploit
different relations between source and target types through the usage of
KENN [DS19].

With the above contributions, this thesis presents a comprehensive study of a
novel task: domain adaptation in FET. To the best of my knowledge, the problem
has not been addressed before in FET, since the literature is focused on proposing
sophisticated encoders, classifiers, and denoising methods applied to in-domain
FET. Domain adaptation is generally underinvestigated in information extraction,
even if the described domain adaptation scenarios are common in the design of
real world information extraction systems. Moreover, the approaches proposed to

6 CHAPTER 1. INTRODUCTION

face domain adaptation in FET reflect the first attempt to use a neuro-symbolic
integration technique in FET.

The thesis is organized as follows. The state of the art of FET and domain
adaptation in information extraction is discussed in detail in Chapter 2. The
focus of the thesis then shifts to domain adaptation in FET in Chapter 3, where
a formal definition of tasks and a categorization of domain adaptation in FET is
presented. Chapter 4 explores the concept of model reuse in partially overlapping
domains, investigating the performance of FET models on target domains. The
impact of noisy annotations on model reuse is also examined. Finally, Chapter 5
and 6 respectively present a study of FET model specialization and full-fledged
domain adaptation in FET, both using Neuro-symbolic models. The results and
conclusions of the study are presented in each chapter, providing valuable insights
for future research in the field of domain adaptation FET. Conclusions and Future
work are discussed in Chapter 7.

Chapter 2
State of the Art

In this chapter, the state-of-the-arts of Fine-grained Entity Typing (FET) and
Domain Adaptation (DA) in information extraction are described. Regarding FET,
firstly, the problem itself and its usefulness in downstream tasks are illustrated,
afterwards, a categorization of approaches and techniques to build benchmark
datasets are reported. Regarding domain adaptation in information extraction,
the dedicated section opens with the different definitions of domain and with
the definition of domain adaptation. Thereafter, its application in Named Entity
Recognition and on language models is described.

2.1 Preliminaries

In this section, the notions of Named Entity Recognition, entity mention, type &
type hierarchy, and encoder/encoding are described. These components are crucial
to understand the Fine-grained Entity Typing task (FET), its literature and its
usefulness.

2.1.1 Definitions

Named Entity Recognition (NER). Named entity recognition is the task of
finding entity mentions in a given plain text. NER algorithms return the span, i.e.,
two indexes that indicates the start and the end of the entity mention, and often a
categorization with one or more types. These types are often coarse-grained, such
as Person, Organization, Location, Date, and Miscellaneous.

Entity Mention. In Natural Language Processing sentences are the fundamental
input from which information is extracted. Information can be linguistic, i.e.

7

8 CHAPTER 2. STATE OF THE ART

Figure 2.1: Schematization of the Named Entity Recognition (NER) task: given a
sentence, an encoder is used to produce a dense vector representation of it, then
an automatic NER approach finds entities and coarse types.

regarding the composition of the sentence and its correctness, or semantical, i.e.
linked to the meaning of the sentence as a whole or to the meaning of a sentence
part. A crucial step in the information extraction concerns the finding and the
contextualization of named entities, i.e., part of a text that identifies real-world
object, such as a person, a location, an organization, a product, etc., that can be
denoted with a proper name. For example, in the sentence “Barack Obama was
born in Honolulu” the word sequences “Barack Obama” and “Honolulu” are entity
mentions, since they refer to a Person and to a City.

Type & Type Hierarchies. A type represents a concept and is used to classify
and organize information found in text, or to enrich information while processing
text. Referring to the previous example, the entity mention “Barack Obama”
can be classified as a Person, in the same way “Honolulu” can be classified as
a City; information about both these types is present directly in the sentence.
With additional information more types can be also used to characterize each
entity mention, e.g. Politician, Lawyer for “Barack Obama” and Capital for
“Honolulu”. Types are often organized in hierarchies that model the relations of
superclass and subclass.

Text Encoders and Text Encodings. Different encoding techniques have been
proposed to digest natural language sentences with automatic approaches. The
goal of these techniques is to represent syntactical and semantical similarities and
differences between sentences. In general, NLP techniques are based on a text
encoder that maps the problem input (i.e. a sentence, a set of sentences) to an
encoding, a feature-based representation used as proxy to represent the input during
the information extraction process. The features can be handcrafted, e.g., based on
human defined rules, categorization of the words, and statistics on word occurrences,
or can be sub-symbolic, based on methods that represent words and sentences with
dense vector representations. Sub-symbolic methods are based on the distributional
semantics theory [Har81] and in the last decade impressive goals have been reached,
first with word embeddings techniques (e.g., Word2Vec [Mik+13a; Mik+13b],

2.2. FINE-GRAINED ENTITY TYPING 9

Figure 2.2: Schema of the Fine-grained Entity Typing task and the FET model
training: given a set of documents and a type hierarchy, a training dataset is
obtained by applying NER and the found entities are annotated (both manually
or automatically). Then a FET model is trained on the obtained dataset and is
tested on manually annotated examples from the same document collection.

GloVe [PSM14]) that accounts for global information about words and documents,
then with recurrent networks (RNNs, LSTMs, ELMo [Pet+18]), and architectures
based on attention [Dev+19], designed to extract contextual information exploiting
both word positions and meanings.

2.2 Fine-grained Entity Typing

2.2.1 Problem definition

Fine-grained Entity Typing (FET) [Sun95; CR98; Fle01; LW12] is the task of
assigning to each entity mention (a continuous span of text that refers to a real-
world entity) in a document or a collection of documents a semantic type from a
predefined taxonomy. This taxonomy can be represented with a set of types and
relationships between them, composing a tree or a poset. An example of the FET
task and of the standard setup to train a FET model is shown in Figure 2.2. From
the same figure can be seen that NER is a requisite of FET, since finding the span
of the entity mentions is not considered part of the typing task. In general, NER is
applied to individuate the span of entity mentions and assigning coarse-grained
types like Location, Person, and, Organization. These types are often removed
from FET benchmarks and not considered since their semantics can shift when the
type set increases its depth and size.

FET can be divided into two sub-tasks: mention-level FET and entity-level

10 CHAPTER 2. STATE OF THE ART

Figure 2.3: Inside the orange box an abstraction of FET models is shown, derived
from the most recent FET survey [Wan+22b]. Outside the orange box, input and
output are represented, additional resources (Entity Linking, Type Hierarchy, and
Type Cooccurrence in annotation) and their usage in the Literature is reported.

FET. Mention-level FET involves assigning a semantic type to an entity mention
within a specific context, while entity-level FET involves finding all the possible
semantic types for an entity across all contexts. Entity-level FET is often used for
knowledge base construction and completion.

The main problems related to FET are the high multiplicity of the types
(from dozens to hundreds, often thousands with Ultrafine-grained Entity Typ-
ing [Cho+18]), their hierarchical relationships, and the noise injected by automatic
dataset construction techniques.

A particularity that distinguishes FET from other classification problems is
that it is a multilabel problem, with dozens to hundreds of types organized in a
hierarchy. This is a crucial aspect of the problem, since hierarchy is both an explicit
information source, that can be used to correct automatic predictions with a post
hoc procedure, e.g., by applying transitive closure (i.e. adding to the prediction
all ancestors of the predicted types), and an implicit information source, since it
affects manual and automatic annotations of the input corpus, and during learning
the model can approximate type hierarchy from type cooccurrence.

In 2022, a survey from [Wan+22b] described FET task, FET approaches,
proposed FET benchmark datasets to validate FET approaches, the problem of
noise in input sentences and annotations, and the open problems in FET. An
abstraction of a FET approach can be derived from the survey, shown in Figure 2.3.
The survey classifies FET approaches by describing and categorizing:

2.2. FINE-GRAINED ENTITY TYPING 11

• Feature representation models applied to FET, including:

– hand-crafted features, to represent macro properties of the input

– mention representation with average pretrained word embeddings, to
account for commonsense meaning of single words

– recurrent networks, to account for the order of the input

– char CNN, to have a morphological representation of words

– context representation with recurrent networks, to represent the context
of the mention accounting for word order

– contextualized representation extracted from pretrained language models
based on recurrent neural networks or attention to exploit knowledge
extracted by large language models

• Usage of type embeddings:

– neural classifiers not based on type embeddings learn the link between
input and labels and implicitly learn labels similarities from their
c0ooccurrences

– type embeddings learned during training or imported from other setups
account for label similarity, and are used to create a joint space between
input and labels used to compose the prediction

• Loss functions optimized to train models

• Classification paradigm adopted: unsupervised, semi-supervised, supervised
with flat, local, local per parent note, global classifier, and supervised with
collective or joint models

The articles previously cited consider FET in an in-domain setting [Wan+22b]
(example in Figure 3.1), where the target and source domain are equivalent; thus,
training documents and training types are used to approximate the annotation
function, obtaining a model that is effective when applied on documents from the
same document source to recognize already learned types. Therefore, it is not clear
how previous work can handle use cases described in Section 3.2.1.

In this thesis, an uncovered aspect of FET is explored: the explicit usage of
types relations (equivalence, inclusion, and disjunction) to drive the adaptation of
FET models from their training domain to a new target domain through the use of
a Neuro-Symbolic Integration approach. The adaptation of FET models trained
in a source domain to a real-world target domain with a partially overlapped
taxonomy is a future direction also pointed out by the literature [Wan+22b;
Qia+21]. A fundamental problem to solve in order to handle the differences

12 CHAPTER 2. STATE OF THE ART

between domains, is to manage the differences between types used in different
domains; thus, a categorization of FET approaches, complementary to the one
presented by [Wan+22b], is proposed in this chapter.

In the categorization described in this chapter, FET approaches that proposed
solutions to exploit dependencies between types are organized and described. Type
dependencies can be partitioned in three categories: hierarchy-aware, that use
explicit information like taxonomies or rules, cooccurrence-aware, where type
cooccurrence in annotation is implicitly learned and represented during training, and
link-aware, where additional information are inherited from external resources, for
example from Knowledge Bases through entity linking. Table 2.1 offers an overview
of the approaches described in this section. The usage of these dependencies is
exemplified also in Figure 2.3.

Hierarchy-aware

The hierarchy of target types in a FET task can be used in different ways:

• Classifier design: Multiple approaches [RN10; Yos+12; LHS19; Ren20]
train different classifiers for different layers (or branches), e.g., train a distinct
classifier for each branch of the hierarchy and a classifier to choose the branch
(obtaining 29 classifiers) [RN10], and propose mechanisms to combine them.
Another example can be found in [LHS19; Ren20], where distinct classifiers
are trained to classify for each level of the hierarchy, and each classifier is based
on the output of the previous one. A similar idea is proposed by [CCV20]: a
top-down learning-to-rank approach is used to train a model with inference
thresholds that depend on type depth in the hierarchy. The limitation of
these approaches is that they impose constraints on the composition of
prediction, i.e. only single branch predictions [RN10; CCV20], or always
predictions at each level [LHS19; Ren20]. A different usage of hierarchy to
design the network is proposed by [Li+21]: type representations are computed
by combining each type vector with the vector of its ancestors, in this way
the representations are linked together during the optimization of the model,
and the change in the representation is propagated through its family tree.

• Prediction filtering: Different approaches use the hierarchy to eventually
filter the set of predicted types [YGL15; MCG16; Ren+16a; Ren20], or to
recursively compute the prediction following the hierarchy [RN10; Yos+12;
AAA17], often under the assumption that all the predicted types should
belong to the same branch. This assumption could exclude some annotation
in the test set and it is not respected in most of the training sets. The
single-branch assumptions allow the author to redefine FET as a single-

2.2. FINE-GRAINED ENTITY TYPING 13

H
ie
ra
rc
h
y
-A

w
ar
e

C
o-
o
cc
u
rr
en
ce
-A

w
ar
e

L
in
k
-A

w
ar
e

[R
N
10
]

C
la
ss
ifi
er

d
es
ig
n

-
-

[Y
os
+
12
]

C
la
ss
ifi
er

d
es
ig
n

-
-

[Y
G
L
15
]

P
re
d
ic
ti
on

fi
lt
er
in
g

V
ec
to
r
op

ti
m
iz
at
io
n

-
[M

C
G
16
]

P
re
d
ic
ti
on

fi
lt
er
in
g

-
-

[R
en
+
16
a]

H
ie
ra
rc
h
y
-d
ri
ve
n
lo
ss

V
ec
to
r
op

ti
m
iz
at
io
n

T
y
p
e
si
m
il
ar
it
y

[R
en
+
16
b
]

In
h
er
it
ed

fr
om

ex
te
rn
al

re
so
u
rc
es

V
ec
to
r
op

tm
iz
at
io
n

T
y
p
e
si
m
il
ar
it
y

[A
A
A
17
]

P
re
d
ic
ti
on

fi
lt
er
in
g

In
h
er
it
ed

fr
om

[R
en
+
16
a]

-
[X

B
18
]

H
ie
ra
rc
h
y
-d
ri
ve
n
lo
ss

-
-

[M
u
r+

18
]

In
h
er
it
ed

fr
om

ex
te
rn
al

re
so
u
rc
es

-
K
G
E

[L
H
S
19
]

C
la
ss
ifi
er

d
es
ig
n

B
ox

op
ti
m
iz
at
io
n

-
[L
J
19
]

-
V
ec
to
r
op

ti
m
iz
at
io
n

-
[D

ai
+
19
]

-
V
ec
to
r
op

ti
m
iz
at
io
n

E
n
co
d
er

d
es
ig
n

[S
h
i+

20
]

-
V
ec
to
r
op

ti
m
iz
at
io
n

-
[R
en
20
]

C
la
ss
ifi
er

d
es
ig
n
-
In
fe
re
n
ce

F
il
te
ri
n
g

V
ec
to
r
op

ti
m
iz
at
io
n

-
[C
C
V
20
]

P
re
d
ic
ti
on

F
il
te
ri
n
g

V
ec
to
r
op

ti
m
iz
at
io
n

-
[D

S
L
20
]

-
[D

ai
+
19
]
is
u
se
d
as

b
ac
k
b
on

e
F
E
T

m
o
d
el

E
n
co
d
er

d
es
ig
n

[L
i+

21
]

C
la
ss
ifi
er

&
E
n
co
d
er

d
es
ig
n

V
ec
to
r
op

tm
iz
at
io
n

-
[D

S
W

21
a]

-
[D

ai
+
19
]
is
u
se
d
as

b
ac
k
b
on

e
F
E
T

m
o
d
el

E
n
co
d
er

d
es
ig
n

[Q
ia
+
21
]

-
[L
J
19
]
is
u
se
d
as

b
ac
k
b
on

e
F
E
T

m
o
d
el

-

T
ab

le
2.
1:

O
ve
rv
ie
w

of
en
ti
ty
-t
y
p
in
g
ap

p
ro
ac
h
es

d
es
cr
ib
ed

in
S
ec
ti
on

2.
2
or
ga
n
iz
ed

b
y
th
e
u
se

of
ty
p
e
h
ie
ra
rc
h
y,

ty
p
e

co
-o
cc
u
rr
en
ce
,
an

d
en
ti
ty

li
n
k
in
g

14 CHAPTER 2. STATE OF THE ART

label classification task (i.e., classify with models only the leaves and infer
ancestors); this can lead to confirmation bias, as stated in [Ren20].

• Hierarchy into encoder or hierarchy-driven losses: Some approaches
combine information from the type hierarchy with additional signals. Many
of these methods also propose learning type representations: [Li+21] adds
sentence-level cross-mention type interaction that includes hierarchical rela-
tions; [Ren+16a; Ren+16b] complements information from the hierarchy with
information extracted from a KB to learn type similarities and eventually
weight errors in the training process; loss weighting is also used by [XB18].

• Hierarchy inherited from external resources: Some articles refer to an
external hierarchy instead of the given one: [Ren+16b] uses Wikipedia hierar-
chy to express similarity between types. [Mur+18] uses type representations
derived with knowledge graph embeddings.

Co-occurrence-aware

The multilabel fashion of the FET problem allows researchers to exploit co-
occurrence between labels in the training set. Some methods exploit them by
learning type representations that are expected to represent types that co-occur
more frequently with similar representations. Co-occurrence is useful since it can
give similarity information about different branches in the hierarchy; for example
in the BBN dataset [WB05; Ren+16a], a large amount of entities belongs to both
types BBN.LOCATION and BBN.GPE (Geo-Political Entity), thus these types are often
used in the same annotation.

The basic idea [YGL15] to represent types as embeddings in FET is to introduce
a layer in order to learn type representations by optimizing their representation
during training, and by replacing the classification module with threshold-based
inference. Based on this idea, different approaches [Ren+16a; Ren+16b; AAA17;
LJ19; Shi+20; Ren20; Qia+21] proposed more sophisticated methods to learn
type representations. [Ren20] uses softmax to predict types from a single branch
achieving best performance on FIGER datasets among this family of approaches
that only consider type dependencies.

Link-aware

Entity linking can be used [Ren+16a; Dai+19; DSL20; DSW21a] to add information
about types at the cost of defining a mapping between the FET type hierarchy and
the ontology used in the linking phase. Additionally, an Entity Linking algorithm is
required and as shown in the literature, the performance of the proposed link-aware
models are highly dependent on the Entity Linking algorithm. Moreover, the

2.2. FINE-GRAINED ENTITY TYPING 15

inclusion of such external information requires more complex encoders and training
procedures, however these approaches showed to be the state-of-the-art [Dai+19;
DSL20; DSW21a] for very noisy datasets, such as OntoNotes [Gil+14; Shi+17a]

Entity Linking can be used in different ways:

• Type Similarity: [Ren+16a; Ren+16b] uses a linking process to extract
the KB type similarity and use it to weight errors during the training.

• KGE: [Mur+18] represents each type with a vector learned using knowledge
graph embedding, after mapping types to concepts in a knowledge base.

• Encoder design: The current state-of-the-art approach [DSL20] in different
benchmark datasets is based on using additional information in the encoder.
The principal idea of [Dai+19], the first article to propose entity linking, is
to use an independent entity linking algorithm that uses only the mention
(disregarding the context) and returns a list of types of the entity in a
KB, together with an entity linking score. Types from the KB are then
represented via one-hot encoding and concatenated to the contextualized
entity representation from the encoder, together with the entity linking score.
This architecture is used as backbone network in [DSL20; DSW21a]. Entity
Linking is central in adding out-of-the-box information, independent on the
corpus, on its annotation policies, and on type vocabulary. This is useful both
as denoising, since the entity linking process gives an additional information
able to correct errors in the dataset, and as augmentation, since a KB usually
have a various type vocabulary and can be considered reliable.

In this thesis entity linking is not used since the necessity of a knowledge graph
precludes the usage of such techniques in very specific domains, like the biomedical
one, where new and rare entities are fundamental.

2.2.2 Collecting and cleaning training data

Most existing FET methods are trained on weak labels that are automatically
generated by Distant Supervision (DS) [DSW21b], a technique that automatically
produces annotated data mimicking a manual annotation procedure. With DS,
the semantic tags in the KB are mapped to the type taxonomy; this inevitably
induces label noise in the training data [HWZ21]. Although label noise is the main
problem with DS, there are other issues. One problem related to automatically
generated training data is that on average there are fewer than two labels for
each sample; on the other hand, a human annotated sample has on average 5.4
labels [DSW21b]. Secondly, there is no approach that can create a large number of
training samples for pronouns mentions. Lastly, it is difficult to obtain types that
are highly dependent on the context.

16 CHAPTER 2. STATE OF THE ART

Approach
Assumptions on Noise Countermeasures
Heuristic Mathematical Cleaning Noise-aware training

[Gil+14] Rules - Rules -
[Ren+16a] Single-path - - Loss
[Ren+16b] Single-path - - Loss
[AAA17] Single-path - - Loss
[XB18] Single-path - - Loss
[Zha+18] - Hierarchy - Attention
[Che+19] Single-path - - Clustering
[OD19] Missing labels - Filter and relabel -
[Wu+19] Single-path - - Clustering
[Ren20] Single-path - - Loss
[Shi+20] Single-path - - VAT
[Zha+20a] Single-path - - Statistical
[Ali+20] - Hierarchy - Spatial
[Ali+21] - Hierarchy - Spatial

Table 2.2: Denoising methods categorization

Denoising

Label noise in FET can be classified in two types: (i) Out-of-Context (OOC) noise,
and (ii) Overly Specific (OS) noise [XB18]. The former occurs when an entity is
annotated with correct types, but unrelated to the context; the latter occurs when
the assigned types are not only unrelated to the context, but finer than all types
related to the context.

While approaches trained on noisy datasets built using DS achieve good per-
formances on manually annotated test sets [LW12; Gil+14; Cho+18; Wei+11;
Shi+17b], different authors [Ren+16a; Ren+16b; AAA17; XB18; Zha+18; Zha+20a;
Che+19; Wu+19; Shi+20; Ali+20; Ali+21; Gil+14; OD19] identified the noise in
the training data as the main factor to overcome to achieve better performance in
both benchmark and downstream tasks.

Over years, several authors proposed denoising approaches in FET. Each ap-
proach can be categorized (see Table 2.2) by specifying two attributes [ZW04;
FV14; FK14; Qui86; NOF10]: (i) the presence of assumptions on the nature of
noise or of a mathematical noise model in the design of the denoising approach;
(ii) countermeasures adopted, i.e., cleaning the dataset and producing a denoised
dataset or noise-aware training.

Assumptions on noise

• Heuristic based assumptions: These type of assumptions made on nature
of noise can be further classified in: hierarchy-based assumptions and assump-

2.2. FINE-GRAINED ENTITY TYPING 17

tions based on a contextual definition of noise. Hierarchy-based assumptions
rely on the idea that examples annotated with types that lie on a single path
in the hierarchy are always correct and can be considered as clean examples;
this assumption is also called single-path assumption. Other assumptions
can consider the definition of Out-of-Context (OOC) or Overly Specific (OS)
labels, already mentioned in the previous paragraph.

The single-path assumption can be found in [Ren+16a; Ren+16b; Ren20;
AAA17; Zha+20a; XB18; Che+19; Wu+19; Shi+20], in particular: [XB18]
not only assumes the correctness of single-path annotations, but designs ad
hoc loss functions to face OS and OOC. [Zha+20a] assumes that the correct
types of an entity mention have to lie on a single path but may not be present
in the noisy annotation from DS; furthermore, they represent the labels with
a pseudo-truth label distribution. A slightly different set of heuristics can be
found by inspecting the rules in [Gil+14], where an entity mention cannot
be annotated (i) with sibling types or (ii) with a type that is not equivalent
or a sub-type of the type selected by a coarse-grained NER approach; [OD19]
assumes that missing labels in annotations are a central problem in FET
and designs a training technique to discard too noisy examples, and relabel
the others.

• Mathematical: Some authors do not make explicit assumptions on the
nature of noise, instead they rely on hierarchical knowledge [Zha+18;
Ali+20; Ali+21] and represent it with mathematical models to define noise-
tolerant approaches assuming that hierarchical information implicitly reduces
the impact of label noise. [Zha+18] exploits hierarchy using path-based type
representation with attention to compute the likelihood of each type given
a sentence; [Ali+20; Ali+21] exploit hierarchy using the representation of
hierarchy in euclidean ([Ali+20]) or hyperbolic ([Ali+21]) space to refine
type representations. [Zha+20a] uses a statistical model (pseudolabel
distribution) to represent label distribution and obviate to the noise introduced
by deviant examples.

Countermeasures

• Cleaning: Instead of defining noise-tolerant FET models and train them on
noisy data, [Gil+14; OD19] propose approaches to obtain a denoised dataset,
which will then be used to train a generic FET model. [Gil+14] defines three
rules to detect and remove irrelevant labels from training examples, while
[OD19] proposes a method that produces a clean dataset, by training two
models: a filtering model to discard noisy examples and a relabeling model
to produce a new set of labels given an annotated example.

18 CHAPTER 2. STATE OF THE ART

• Noise-aware training:

The majority of denoising methods in FET are based on model-level noise man-
agement, i.e., they are designed to be noise-tolerant during training [Ren+16a;
Ren+16b; Ren20; AAA17; XB18; Che+19; Wu+19; Shi+20; Zha+20a].
[Ren+16a; Ren+16b; AAA17; XB18] train a FET model using different
losses for single-path and multi-path examples, by encouraging the predic-
tion of one single correct type in both cases. Similarly, [Ren20] incorporates
hierarchy into the loss and tries to mimic human top-down inference of type
labels. Leveraging the hierarchical structure of types, FETHI automatically
denoises the training data, and infers entity type layer by layer in a top-down
manner. [Zha+18] exploits hierarchy by defining path-based attention to
propagate hierarchic dependencies. [Che+19] defines a clustering-based
two-step inference function where (i) given a batch of examples, a FET model
produces a likelihood for each type and (ii) single-path examples propagate
their likelihoods with a Markov model built with spatial clustering to modify
predictions of multi-path examples. Similarly, [Wu+19] uses a graph-based
clustering to predict the most likely type. [Shi+20] splits training examples
into clean and noisy ones and uses Virtual Adversarial Training (VAT) to
regularize the ET model. [Zha+20a] defines a statistical method that
relies both on DS annotations and sentence-based pseudo-truth label distri-
bution to magnify the similarity between sentences instead of sentence-type
relations. [Ali+20; Ali+21] imposes hierarchy-based spatial similarity while
representing the labels of an example using Euclidean or Hyperbolic space.

2.2.3 Open Problems in FET

The last sections of the 2022 FET survey [Wan+22b] point to tail types and new
entities as two of the main problems for FET approaches.

Tail type problem relates to the difficulty of correctly predicting rare types, i.e.
types with a low quantity of annotated examples. New entities problem instead,
relates to the tendency of the encoders to memorize entities during training and
their difficulty to obtain good performance on unseen entities.

As discussed in many FET articles, performance of FET models for a specific
type is highly dependent on the presence of examples of that type in the training
set [NC15]. Moreover, [Cho+18] observed that their model often prefer coarse types
instead of fine or ultrafine ones since coarse types have more examples. Methods
to improve performance on tail types include the usage of pre-trained language
models such as GloVe [PSM14] in [YD18] and in zero-shot approaches [MCG16;
Xio+19; Zha+20c]. Representing types by exploiting annotation cooccurrence with
spatial representation (vectors [YGL15; Ren+16a] or box embeddings [Ono+21]) is

2.3. DOMAIN ADAPTATION IN INFORMATION EXTRACTION 19

a data-driven way to deal with tail types; obtaining an independent representation
from Wikipedia [Obe+19] also helps with tail types. Entity Linking [Dai+19;
DSL20; DSW21a] is another method for dealing with tail types, since additional
information from KB provides data augmentation.

Regarding new entities, the main affected approaches are entity-level ones [Obe+19;
Mur+18; YS17], this is expected since those methods gather information about
each entity from the entire dataset. The sensibility of other approaches on new
entities depends heavily on the encoder and on the usage of contextualized word
embeddings, since it is assumed that the context of new entities for a given type is
similar to the context of already seen ones. Prompting is also a valid way to enrich
the information for new types or new entities [Din+21].

As future directions, the most recent FET survey [Wan+22b] points at joint
models for multitasking where FET is learned together with Entity Linking, NER,
or Relation Extraction to increase the generalization of the information, avoiding
task overfitting and noise overfitting. The addition of document-level information as
done in [DSL20] increases the source of evidence and improves input representation;
more sophisticated encoders are also hypothesized to be useful in this direction.
Another important direction is the research for the adaptation of models to real
case scenarios, as also argued in [Qia+21; Mon+21].

2.3 Domain Adaptation in Information Extrac-

tion

In this section Domain Adaptation in Information Extraction literature is reviewed
to understand the problem, its implications and techniques to face it.

In this section, first different definitions of domain are described and discussed,
then the domain adaptation problem is defined. Then techniques to perform domain
adaptation in NER and domain adaptation of language models are reviewed.

2.3.1 What is a domain?

As reported by [Pla16], in NLP there is no common ground on what constitutes
a domain. Three definitions for what a domain is can be extracted from the
literature [Pla16]: Canonical vs Non-canonical, Dataset-Domain and Variety Space.

The Canonical vs Non-canonical definition partitions all possible domains
in two categories: a canonical domain is typically defined by a well-edited (English)
newswire corpus, a non-canonical domain is typically defined by a corpus which
comes from social media and or is non-well edited. This definition is highly
contrasted by [Pla16] that reports different studies which underline how different
communities can be seen as different domains independently if their documents

20 CHAPTER 2. STATE OF THE ART

come from canonical or non-canonical source, and so the classical domain notion
is ineffective.

Dataset-Domain is not explicit pointed as a definition, it is a suggestion
proposed by [RP20]; since canonical vs non-canonical definition is ineffective, the
authors ask themselves if each dataset defines its own domain, since each dataset
has its sources and its document collection approaches. The authors leave this
suggestion as a question, but they point as Variety Space as a possible answer.

The Variety Space is a theoretical notion introduced by [Pla16]. In the variety
space a corpus is seen as a subregion or a sample of the variety space. A corpus is
a set of instances drawn from the underlying unknown high-dimensional variety
space, whose dimensions (or latent factors) are fuzzy language and annotation
aspects. These latent factors can be related to different attributes, such as genre
(e.g., scientific, newswire, informal), sub-domain (e.g., finance, immunology, politics,
environmental law, molecular biology) and socio-demographic aspects (e.g., gender),
among other unknown factors, as well as stylistic or data sampling impacts (e.g.,
sentence length, annotator bias).

In this thesis, following [RP20] variety space is used to answer to the Dataset-
Domain question: since each dataset can be seen as a sample of the variety space,
each dataset defines its own domain, but this sample is not exclusive and different
datasets can share some regions of the variety space.

2.3.2 Domain Adaptation

After defining what a domain is, we now analyze how domain adaptation is
defined and why it is needed. Domain Adaptation is an instance of a case of
Transfer Learning [PY10] called transductive transfer learning. In transductive
transfer learning, the source and target tasks remain the same, but the source and
target domains differ in their underlying probability distribution [Rud19]. Domain
Adaptation was initially defined [PY10] as a setting in which no labeled data in
the target domain are available, while a lot of labeled data in the source domain
are available. [Rud19] defined supervised domain adaptation, in which a small
amount of annotated examples for target labels is available. Recalling the user
stories in Section 3.2.1, the model reuse lies on the original Domain Adaptation
Definition [PY10], since a partial mapping between source and target types and no
target labeled data are given. Model specialization and full-fledged model adaptation
instead lie on Supervised Domain Adaptation definition [Rud19], since a small
amount of target labeled data is available.

Domain adaptation is deemed important for practical reasons and sustainability:
the initial train (or pre-train) of the model can be costly in terms of required
resources, data, electricity, and time; all these computational and natural resources
cannot be expected to be always available to train a model for a new domain. In

2.3. DOMAIN ADAPTATION IN INFORMATION EXTRACTION 21

particular, [RP20] points to domain adaptation as a solution for labeled data lack
in a domain; [Hed+21] discusses about general NLP approaches in Low-Resource
Scenarios defining a categorization for them: (i) scenarios in which task-specific
labels availability is scarce, (ii) scenarios in which unlabeled language or domain-
specific text availability is scarce, (iii) scenarios in which auxiliary data availability
is scarce

2.3.3 Domain Adaptation in Name Entity Recognition

Domain Adaptation techniques applied in Named Entity Recognition (NER) are
fundamental to understand since NER and FET are highly related task: both refers
to entity mentions contained in a given text and both uses a given taxonomy to clas-
sify the entity. Due to the reduced size of common NER systems, a manual mapping
between source and target type vocabulary can be built and used directly, without
the necessity of training a model on the target domain; a policy is often required
to avoid subjective mappings. Building direct mapping is a useful technique when
one-to-one or many-to-one mappings can be defined while preserving the semantics
of source types after mapping them to target types. Clearly, the performance of
manual mapping approaches on the target domain is strictly dependent on the
performance on source domain, since there is no training on the target domain. A
slightly different solution is presented in [ANC08], where the authors build ad hoc
syntactical and/or semantic rules to extract types of interest and show how these
rules can be adapted to target domain. In this case rules are manually defined
instead of mappings. However, rule-based approaches are time-consuming due to
the necessity of fine-tuning specific rules for each domain.

A specular idea regards the representation of the input, approaches based on
this idea enrich input representation of target domain with examples from other
domains, in order to avoid overfitting on small dataset and often to obtain domain-
agnostic representations. [Liu+20] borrows examples from source dataset to enrich
target dataset (that is assumed to be small) based on examples similarity. Some
articles use co-training to jointly learn NER models for multiple domains: [Li+13]
for english and chinese NER and [Mun+12] for common and bio NER A simple
yet effective general approach that follows this idea is proposed in [Dau07]: the
authors propose to train different models on different domains and to refine their
encoded input representations using a common representation space obtained by the
concatenation of individual encodings. The common representation is then used to
enhance to train a model on a target domain (that can be part or not of the domains
used in the first phase). This approach is applied not only on NER, but also on
POS-tagging. Similarly, [ANC08] trains an encoder based on hierarchical feature
tree using multiple domains at the same time to obtain a domain-independent
representation. [KMC16] exploits linguistics differences between source and target

22 CHAPTER 2. STATE OF THE ART

domains to define an active learning algorithm that is used to substitute word
representation from source domain with domain specific representation. This kind
of approaches is very useful in those cases where a word drastically changes its
meaning when used in different domains (e.g., goal in sport and finance).

Different approaches refine a model trained on a source domain to adapt it to
the target domain: [LDS18] trains a neural network on a source domain and use the
learned parameters or a portion of them to initialize the network to be trained on the
target domain. Similar idea is used in [GB18] for biomedical NER. [Qu+16] trains
a chain-CRF on the source domain and uses its parameters joint with correlations
between source types to enhance training on small target domain. [LL18] adapts a
NER model based on LSTM and CRF trained on a source domain by training an
additional word embeddings encoder (paired with frozen char-based LSTM trained
on source domain) and an additional classification layer before the CRF. [CM19]
trains a network on the target domain and injects in it the last layer activations
generated by the model trained on the source domain. Similarly, [Noz+21] uses a
trained NER model paired with a trainable BERT instance to adapt from a source
to a target domain.

In this thesis the experimented approaches cover different ideas presented in
this section: type mappings are used to partially cover a new target domain with
overlapping types without an additional training, when additional training is used
to cover all the target types and/or to match the target input distribution, the
neurosymbolic integration framework KENN [DS19] is used to express relations
between source and target types. Moreover, domain adaptation is inspected under
the light of ontology specialization, where the new types that have to be learned
are subtypes of already known types.

Class-Incremental NER

Class-Incremental NER [Mon+21] is defined as a particular instance of Continual
Learning [Hu+19] where the task is fixed (NER) and the classes to recognize changes
over time. Since the task is fixed, the NER model has to be able to recognize all
classes learned during each step of the Class-Incremental NER process. The main
difficulties of this task are: avoiding forgetting, since the ability of classes seen in
the first training steps has to be kept, and avoiding overfitting on a specific training
step, since general knowledge could be useful in next steps. [Mon+21] defines
Class-Incremental NER by highlighting its differences with Domain Adaptation
in NER faced by [CM19]: in Domain Adaptation NER a rich domain can be
used as target domain and its labels can be overlapped with the source ones. In
contrast, [Mon+21] defines Class-Incremental NER as a problem where a NER
model has to be trained to recognize new classes using annotated data for the
new classes and maintaining its behavior on already known classes. Moreover, the

2.3. DOMAIN ADAPTATION IN INFORMATION EXTRACTION 23

annotated examples used to learn known classes cannot be used in successive steps.
Class-Incremental NER was firstly faced by [Mon+21] using Knowledge Dis-

tillation paradigm: to learn new types for NER, a new student NER model is
initialized by copying the encoder and the linear classifier from an already trained
teacher NER model. Then the teacher predicts on new examples and the stu-
dent has to both mimic the teacher predictions while minimizing the loss on new
classes. Similarly, [Wan+22a] uses Knowledge Distillation to train a CRF-classifier
(state-of-the-art architecture in NER) under Class-Incremental setup, imposing the
availability of only few shots for the new classes.

As described in Chapter 3, Domain Adaptation in FET, faced in this thesis,
is also related to Class Incremental NER and to the techniques used to face this
task. The idea of copying the parameters of a teacher model is crucial for retaining
knowledge during the incremental phase. In addition, because Fine-grained Entity
Types have a high coverage, exploiting class relationships becomes important in
FET because it is more likely that a new class is a specialization of a previously
known class rather than a completely separate new class. However, in this thesis
both the specialization and the disjunction case are covered by the adoption of
KENN [DS19].

2.3.4 Domain Adaptation with Language Models

Domain adaptation can regards the adaptation of NLP encoders to the language
distribution of the target domain. In this case ad hoc approaches are defined
depending on the encoder, on the task and on the target domain. In this section,
the adaptation of Pretrained Language Models [Dev+19] is described, since these
models reached the state-of-the-art in each NLP task [SLL22].

Fine-tuning on downstream tasks

A straightforward way to use pretrained language models in downstream tasks is
to attach a task-specific module (i.e., classification module for text classification
or language understanding) as described in the original article [Dev+19; RKR20].
This setup is called fine tuning [LKB20; RKR20] and transformer layer’s weights
can be frozen or not. The main advantage of this approach regards the massive
size of pretraining corpus and the quantity and variety of language information
and general knowledge in it; this information are generally not contained in a task
specific dataset, where language and information in examples are biased by the
task. As shown in [Hao+20] during fine-tuning of transformers layer, the attention
in last layer is more involved in the optimization, while after the fine-tuning hidden
representation is more different in middle and last layers. Authors also shown that
first layers are resilient to catastrophic forgetting.

24 CHAPTER 2. STATE OF THE ART

Alternative fine-tuning methods are proposed in literature: in [SC19; KS19]
weighted sum is used to combine different hidden layer representations. [YZ19]
combines hidden and output representation using a dedicated architecture.

Tokenizer Adaptation and Supplementary Language Modeling

Pretrained language models based on transformers often use subword tokenizer
as first module of the encoder architecture, for example bert-base [Dev+19] has
a tokenizer composed of the 32k most common words and subwords in English.
This imposed tokenizer can be limited if a word very important for a domain is
represented by its subwords [RKR20; Hon+21], for example, in the biology domain
there are very long words that are split into multiple subwords (e.g., corticosterone
is split in co ##rti ##cos ##ter ##one tokens [Hon+21]). Moreover, for specific
domains, like the science domain, the language distribution can be very different
from the one extracted during the original pretraining [Dev+19; Gu+21; BLC19;
Lee+20].

Several articles focus on the adaptation of the Tokenizer: [ZDV18; PWS20]
shows how adding tokens that are not present in the tokenizer but are central
for a specific domain/task largely improves performance. [Zha+20b] adds to
the vocabulary a token for each out-of-vocabulary word with frequency above a
threshold. Similarly, [Tai+20] adds 12k wordpieces to a vocabulary and train them
with additional training. [PWS20] doubles the vocabulary of bert-base-cased
(from 29k to 60k) and initialize the new tokens using word2vec [Mik+13a; Mik+13b]
vectors projected to the tokenizer space, no further training is used. [Hon+21]
generalizes this idea by identifying which tokens must be added using fragment
score that ranks tokens based on their coverage when used to tokenize the domain
corpus (number of tokenized words over number of words in the corpus). Then
tokens with higher fragment scores are added to the vocabulary, initialized as the
average of their subtokens, and trained to refine their representation to deal with
both domain and original meaning using a regularized loss.

The idea of further training a language model using corpora specific to a
particular domain or task is discussed in [Als+19; Gur+20; Lee+20; CHM19; HR18;
PFB18; Sun+19; Log+19; HE19], in particular [Gur+20] defines domain-adaptive
pretraining (DAPT) [Als+19; CHM19; Lee+20] as the training of the MLM on the
a specific domain and task-adaptive pretraining (TAPT) [Log+19; HE19; HR18;
PFB18; Sun+19] as the training of the MLM on an unlabeled corpus extracted
from a task datatset; the authors show how matching the domain used in DAPT
and the task to face leads to performance improvement and how do not match
the domains lead to performance decrease, moreover show the differences between
DAPT and TAPT and the evidence that the two pretraining are complementary.

2.3. DOMAIN ADAPTATION IN INFORMATION EXTRACTION 25

Figure 2.4: Schema of Adapters and their position inside transformer layer. Image
from the origin article [Hou+19]

Adapters

Adapters [Hou+19] offer an alternative way to adapt pretrained large language
model based on transformers to a specific task: one [Hou+19] or two [Pfe+20b]
bootleneck adapters are inserted inside each transformer layer, these adapters
compress the hidden representation using a reduction factor and expand back
the representation to the original size. The fundamental idea is that adapters
maintain only the fraction of information useful for the task. A key feature of
adapters is that they are parameter-efficient since only their parameters are trained
and the original pretrained parameters are kept frozen. Another key feature of
adapters is that only their parameters have to be stored, reducing the size of trained
models. In addition, [Pfe+21] shows how multiple adapters can be trained and
their output fused.

Adapter are initialized with 0s, in this way in the first steps of the training
the skip-connection (see Figure 2.4) ensure that the original encodings are used.
Adapters’ parameters are then optimized on the specific task.

Adapters have been used in NER [He+21; Liu+21b; Che+22] to adapt language
models and in low resource scenarios. In this thesis, Adapters are used to adapt a
pretrained BERT encoder to FET domain, preliminary experiments showed how
adapters match the performance of heavier fine-tuning training routine also in FET
dataset, moreover their adoption is useful to face limits in GPU size (fine-tuning

26 CHAPTER 2. STATE OF THE ART

multiple transformers layers has high GPU requisites due to the high number
of gradients to store during the backward) and limits in storage (persisting only
adapters parameters reduced hard disk usage by a factor of 30 in the experiments
of this thesis).

2.4 Domain Adaptation in FET: an open problem

Domain adaptation is explored in different NLP scenarios, but FET literature only
cover in-domain scenario, where the FET model is used on data reflecting language
and type distributions learned during training. This preference of the authors
may be related to the difficulty of the FET task, as can be seen in Section 2.2, a
large fraction of proposed approaches are based on the introduction of innovative
encoders that mix different information; another aspect that is largely covered
is denoising, a central problem in this research field due to the use of distant
supervision algorithms to obtain large annotated datasets. Enhanced encoders
and sophisticated denoising techniques are necessary to develop robust models,
capable of recognizing the correct type for a given entity mention by choosing from
a large type hierarchy. However, sophisticate encoders and in general sophisticated
FET models are often trained on large datasets, with hundreds of thousands or
millions annotated examples. Large annotated datasets are not expected to be
present in all application domains, and the more specific the domain, the more
complex and expensive the annotation process to produce annotated datasets. An
interesting outlier approach in FET is [Obe+19], where a zero-shot FET model is
designed without knowing the type hierarchy but by exploiting the type description
in Wikipedia. However, with only the type description is difficult to model the
differences between language distribution in different domains, or the differences in
annotation policies, or also the handling of new entities, unseen during the initial
encoder training.

Adapting a trained FET model to a specific application scenario is a necessity
highlighted in [Qia+21] and in the most recent FET survey [Wan+22b]. Adapting
a FET model by adding new types or expanding its ability on various documents
and annotation policies is congruent with the idea that more information about
fine-grained types is central to enrich the input of downstream tasks, as argued
in Section 2.2. Moreover, FET can be also used in knowledge base population
pipelines, thus recognizing new entities of known types and recognizing entities
of new types is a central necessity. Moreover, the problem is challenging due to
the common richness of fine-grained hierarchies and the subtle differences between
very fine-grained entities (for example, discerning between advocates and judges
requires a very sensible method). The problem of domain adaptation in FET
can be faced by designing domain-agnostic FET models, suitable for the usage

2.4. DOMAIN ADAPTATION IN FET: AN OPEN PROBLEM 27

in disparate domains, or by designing domain adaptation techniques that exploit
model capabilities on the source domain to favor the learning of new types useful
in the target domain. Exploiting model capabilities on the source domain is central
in low-resource scenarios, where the data scarcity makes training from scratch of
state-of-the-art techniques a difficult task. The richness of types in FET domains
enable the definition of equivalence, specialization, generalization, and disjunction
relations between source an target types. In the next chapters, these relations
are used to characterize different scenarios in domain adaptation in FET and are
injected during the adaptation process with a neuro-symbolic integration approach.

28 CHAPTER 2. STATE OF THE ART

Chapter 3
Domain Adaptation in Fine-grained Entity
Typing

Domain Adaptation in Fine-grained Entity Typing is a central problem when
models trained on benchmark datasets have to be used in real-case FET scenarios
or downstream tasks with specific types. Moreover, [Qia+21] argued that FET
approaches trained on benchmark datasets must be adapted for real-world applica-
tions of FET, since each application scenario relies on specific fine-grained types,
and typically there is no one-to-one mapping from the application ontology to the
benchmark ontology,

The combination of NER, FET and Domain Adaptation in FET is particularly
useful in the Knowledge Base population use case, as stated in [Mon+21] where is
argued that real-world NER systems must be continuously adapted to new classes.
Given an Information Extraction system able to recognize entities as instances of
types from a given vocabulary, if there is the necessity to recognize new classes
(both regarding already represented entities or new ones), developing techniques to
adapt the entire system both keeping its behavior on known classes and extending
its capabilities on new classes by exploiting knowledge about already known classes
is a central way to avoid costly training from scratch and annotation of big portion
of data for each class.

In this chapter, the tasks of FET, the concept of Domain in FET, and FET
model are formalized; additionally, some major problems of DA in FET are depicted.
Then, Domain Adaptation in FET is categorized four categories, one trivial and
three explored in chapters 4, 5, and 6. These categories are also described with
use case scenarios. DA in FET is then formalized and the usefulness of relations
between types in source and target domain is discussed and their exploitation is
formally described.

29

30CHAPTER 3. DOMAIN ADAPTATION IN FINE-GRAINED ENTITY TYPING

3.1 Formal Definitions: FET and Domain Adap-

tation in FET

In this section, Fine-grained entity typing and domain adaptation in fine-grained
entity typing, the two tasks faced in this thesis, are defined in a formal way. This
formalization is useful to highlight the differences between domains in FET and
how type dependencies between source and target domain can be exploited to
favor the adaptation. This formalization is used in following chapters to describe
techniques adopted in the experiments. The formalization is inspired from Variety
Space theory from [Pla16], Entity Typing literature, and Domain Adaptation in
NER, explained in chapter 2.

3.1.1 Fine-grained Entity Typing

Fine-grained Entity Typing (FET) is the task of classifying an entity mention found
in a sentence by assigning types from a given vocabulary composed of dozens to
hundreds types, often organized as a hierarchy. For example, given the sentence
“The former president Barack Obama was born in Honolulu” and knowing that
the word sequence “Barack Obama” identifies an entity, an expected result from a
FET model is the assignment of types like Person, Politician, and President. A
way to obtain this classification is to train a model on the entire vocabulary, another
is to predict only the most fine type (e.g., President) and infer its supertypes using
the given hierarchy (e.g., Politician is a supertype of President and Person is
a supertype of Politician). In the following formalization it is assumed that a
FET dataset always has a hierarchy (tree or poset), i.e. a general type thing is
always present in the given vocabulary and can be considered as an ancestor of
all other types. This assumption allows to include the borderline case where each
type in the vocabulary identifies a root of a hierarchic structure and there are no
hierarchic relations between types. In other words, forests of trees are considered
as linked to the same common ancestor thing.

3.1.2 Formalization of Domain in Fine-grained Entity Typ-
ing

Recalling the Variety Space theory described in Section 2.3.2, this section contains
a formalization of what a domain is in Fine-grained Entity Typing and how it is
related with FET models and datasets proposed to train them.

A domain ∆T = (D,GT , α) can be described by three components:

• A collection of documents D that is a set of sentences drawn from a source. The
source can be described as an instance of a variety space that is characterized

3.1. FORMAL DEFINITIONS: FET AND DOMAIN ADAPTATION IN FET31

with attributes like: the language, the vocabulary (i.e. the set of words in
the corpus), the publishing year, the words distribution, general information
about authors and class of document (news article, scientific paper, novel,
blogpost and so on). Each sentence x of D can be described as a tuple
x = {x| < e, c >} where e is an entity and c is its context. Recalling
Figures 2.1 and 2.3, e is Barack Obama and c is the rest of the sentence.

• A type graph GT : (T,E), E = < ti, tj >: ti ≺ tj, {ti, tj} ⊆ T that represents
a set of types T and their relations E. In particular the relations E are
order relations that describe hierarchical relations between ti and tj. For
example, if ti is Politician and tj is Person, the relation ti ≺ tj states that
all politicians are also persons.

• An annotation function α that applies a set of annotations policies to a
sentence x ∈ D to identify and classify with T the mention e. Formally,
α(D,GT) = X : {x| < e, c >}, thus the annotation function is fundamental
to obtain the input of a FET problem, i.e., a sentence with a mention.

A dataset designed for supervised training of FET models can be described as
XT = {< x, Y > |x ∈ X, Y ⊆ T}, that is a set of examples x annotated with a
subset of the types in T . XT is often composed of XT

train and XT
test used respectively

to train and test a FET model; XT
train represents the union between the training

set and the validation set. The partitioning between train and test set is often
performed on X and not on XT ; in fact, the train partition can be annotated
using automatic as well as manual annotation strategies, while the test partition is
generally annotated manually.

Hierarchy and Co-occurrence in benchmark datasets: in the most common
benchmark datasets proposed to validate FET approaches, annotations Y respect
the hierarchy, i.e., if ti ≺ tj and ti ∈ Y , then also tj ∈ Y . Another important aspect
is that unrelated types ti, tj can co-occur in the same annotation Y , formally it
can happen that ti ∈ Y , tj ∈ Y , and < ti, tj ≯∈ E, that is ti ̸≺ tj ∧ tj ̸≺ ti.

The annotation function is dependent on types: the extraction of the
entity mention usually strongly depends on the types, since the entities are found
basing to the ontology of interest; the presence or the absence or a type in
T can in fact pose a bias on the annotators. For example, in the benchmark
dataset BBN [WB05; Ren+16a] a type for Body Part is missing, while the bench-
mark datasets FIGER [LW12] and OntoNotes [Gil+14] respectively have types
/other/body part and /body part. Since in BBN the type is missing it is ex-
pected that body parts present in the BBN corpus are not annotated. This fact
justifies the presence of GT as argument of the function alpha.

32CHAPTER 3. DOMAIN ADAPTATION IN FINE-GRAINED ENTITY TYPING

3.1.3 Formalization of Entity Typing Model

An entity typing model M can be interpreted as a function M : X → P(T) that
predicts a set of types Ŷ extracted from T when an example x :< e, c >, x ∈ X is
given in input to it.

A model is parametrized by Θ, parameters Θ are estimated with training the
model on the dataset XT

train, thus the optimized parameters Θ∆T
are dependent on

the domain ∆T represented by the annotated dataset XT
train.

Since types T are fundamental to characterize FET domains ∆T and annotated
datasets for FET XT , from now trained models M with parameters optimized
for domain ∆T will be indicated by the symbol ΘT to simply the notation, thus
MT ≈ ΘT .

Given an annotated dataset XT : {(x, Y)|x ∈ X, Y ⊆ T} composed of a training
dataset XT

train and a test dataset XT
test, a trained model with parameters ΘT is

considered optimized when for the majority of cases it is true that ΘT (x) = Ŷ , Ŷ ≈
Y iff (x, Y) ∈ XT

train. A trained model with parameters ΘT is then validated with
a test set XT

test by verifying that for the majority of cases ΘT (x) = Ŷ , Ŷ ≈ Y iff
(x, Y) ∈ XT

test. Given ΘT (x) = Ŷ , the likelihood for each type ti ∈ T is represented
by ΘT (x)i = Ŷi , i.e., the i-th output value, thus p(ti|ΘT , x) = ΘT (x)i = Ŷi.

3.2 Categorization of Domain Adaptation in FET

In this section, different instances of Domain Adaptation in FET are described in
terms of expected differences in domains, their usefulness in real-case scenarios,
their main problems and possible ways to tackle them.

Domain Adaptation in FET is needed if given a source domain ∆S = (DS, GS, αS)
and target domain ∆T = (DT , GT , αT) the differences between (DS, DT), (GS, GT),
and (αS, αT) precludes the usage of a model with parameters ΘS, on the tar-
get domain ∆T . These differences are also known as domain shift (or dataset
shift [Shi+20]) and are very common in machine learning downstream applications.
In fact, supervised machine learning paradigm often uses different sources or uses
automatic annotation and human annotation respectively for train and test datasets,
thus the annotation function α is different between train and test. Differences in
the source type vocabulary GS and target type vocabulary GT instead are present
only in some instances of transfer learning tasks like Class-incremental Learning or
Curriculum Learning.

Adapting a model M from a known source domain ∆S to a new target domain
∆T implies adapting ΘS to ΘT to approximate: the annotation technique αT , the
language distribution in DT and the types in GT , instead of αS, the language
distribution in DS and types in GS approximated during the initial training on ∆S.

3.2. CATEGORIZATION OF DOMAIN ADAPTATION IN FET 33

Figure 3.1: Schema of in-domain Fine-grained entity typing: a FET model is
trained on a set of documents (as shown in Figure 2.2) to classify entities in a given
hierarchy. The trained model is used on a new set of document to classify entities
in it.

3.2.1 Application Use Cases

In-domain Fine-grained Entity Typing

A user wants to use a fine-grained entity typing algorithm to classify entities found
in sentences using a Named Entity Recognition (NER) approach with types from
a given vocabulary. The user expects that its vocabulary will not change, its
aim may be to enrich a knowledge base with new entities from new or unseen
documents. The user wants to classify entities present in the documents with
coarse-grained types like person, location, or organization and with fine-
grained types like politician, city, or political party. This user story is
schematized in Figure 3.1.

FET Model Reuse

A user wants to use a fine-grained entity typing algorithm to classify entities found
in sentences using a Named Entity Recognition (NER) approach with types from a
given target type hierarchy. The user trusts a given FET model trained on a source
type hierarchy. The source type hierarchy overlaps with its target type hierarchy,
so that all target types are already known by the FET model. The user notices
these relations between all target types and types known by the trained FET model,
thus it constructs mappings to traduce source types into target types. The user

34CHAPTER 3. DOMAIN ADAPTATION IN FINE-GRAINED ENTITY TYPING

Figure 3.2: Schema of model reuse in FET: given a FET model trained on a source
domain (documents + type hierarchy + annotation functions), a mapping is needed
to translate source types use into equivalent target types and use the model in
the target domain (in figure, [PER] stays for Person) into target types (in figure,
[HUM] stays for Human)

feeds the trained model with target documents and traduces the predictions on
source types, obtaining predictions on target types. This user story is schematized
in Figure 3.2.

FET Model Specialization

A user has a trained FET model that classifies entities in some type. The user
is interested in classifying job mentions, but the model only knows Person. The
user needs to specialize the FET model by adding subtypes such as Athlete and
Musician. The user has to teach the model the new types, avoiding forgetting
of already known types and exploiting its ability on Person. This user story is
schematized in Figure 3.3.

Full-fledged FET Domain Adaptation

A user has a trained FET model that classifies entities in some type. The user
is interested in classifying a set of overlapping types that comprises new types,
but also equivalent, generalization, or specialization of the already known types.
The user needs to adapt the FET model by teaching the new types, by avoiding
forgetting of already known types and by exploiting its ability on known types
related to new ones. This user story is schematized in Figure 3.3.

3.2. CATEGORIZATION OF DOMAIN ADAPTATION IN FET 35

Figure 3.3: Schema of model specialization in FET: given a FET model trained on
a source domain (documents + type hierarchy + annotation functions) to use it in
a target domain with more specific types, an adaptation technique is needed to
teach the new types to the model (in figure, [PER] stays for Person, [MUS] stays
for Musician.

Figure 3.4: Schema of full-fledged domain adaptation of a FET model: given a
FET model trained on a source domain (documents + type hierarchy + annotation
functions) to use it in a target domain with overlapping and additional types, an
adaptation technique is needed to teach the new types to the model (in figure,
[PER] stays for Person, [MUS] stays for Musician, [ANI] stays for Animal, and
[DOG] stays for Dog.

36CHAPTER 3. DOMAIN ADAPTATION IN FINE-GRAINED ENTITY TYPING

3.2.2 Domain Adaptation in FET Formalization

Recalling the formalization of a model in Section 3.1.3, a model with parameters Θ
is considered trained on a source domain ∆S when ΘS(x) = Ŷ , Ŷ ≈ Y if and only
if (x, Y) ∈ XS

train, thus the training of the model consists in the estimation of ΘS

given Θ and S.

Given a source domain ∆S, a target domain ∆T and a model with parameters ΘS,
the domain adaptation problem consists in the optimization of ΘT by exploiting the
similarities between ∆S and ∆T , thus estimating a δS,T such that: ΘT = ΘS + δS,T
and verifying that ΘT (x) = Ŷ , Ŷ ≈ Y iff (x, Y) ∈ XT

test, where XT
test is the test

partition of the target domain, often the only partition available. The estimation
of δS,T is a key factor in domain adaptation and it is highly dependent on the
similarities or dissimilarities between ∆S and ∆T .

As discussed in Sections 3.1.2 and 3.1.3, the presence and the absence of types
in GT with respect to GS highly characterizes the similarities of domains in FET.
In the following sections the different instances of domain adaptation in FET
are formally defined and analyzed in term of the estimation of δS,T given some
assumptions on relations between types in the type vocabularies in ∆S and ∆T .

Given source type vocabulary S and target type vocabulary T , and given two
types s ∈ S and t ∈ T four relations can be found between them:

• Specialization ≺: if all entities that belong to t also belongs to s it follows
that t ≺ s. For example, artist ≺ person.

• Generalization ≻: the inverse of ≺. For example, person ≻ artist

• Equivalence ≡: if s ≺ t ∧ t ≺ s, it follows that s ≡ t. For example, person
≡ human.

• Disjunction ̸∩: if no entities that belong to t also belongs to s and vice versa
it follows that t ̸∩ s. For example, person ̸∩ location

Partial relations, i.e., the partial share of entities between types, (some artists
are also athletes) are not included in this list, since if a partial relations holds
between s, t, a more abstract type can be found or created to establish generalization
or specialization relations.

In the rest of the thesis the relations will be descried from source types S to
target types T , The set of relations R is defined as R = {(s, t, r) : s ∈ S, t ∈ T, r ∈
{≡,≺,≻, ̸∩}}.

3.2. CATEGORIZATION OF DOMAIN ADAPTATION IN FET 37

3.2.3 Completely new domain

The most general case where Domain Adaptation is needed is when a model trained
on a source domain ∆S has to be used in a target domain ∆T with a disjoint target
type vocabulary S ∩ T = ∅, i.e., ∀s ∈ S, t ∈ T s ̸∩ t. This case is interesting to
highlight some aspects of Domain Adaptation in FET and the relations between
sources, annotation technique and type vocabulary in a domain. Since the type
vocabularies GS and GT are disjoint, it is expected that the annotation techniques
are also very dissimilar (as said in Sections 3.1.2 and 3.1.3 annotation techniques
depend on types), the differences in sources of the source corpus DS and the target
corpus DT regard the presence of entities of types GT (expected to be present in
each sentence of DT , but only sporadically in DS) and their context terms.

The real-case scenario that lies in this category can be the adaptation of a
model to a specific disjoint domain, for example, the adaptation of a general
NER approach that uses only the most common types Person, Location, and
Organization to a specific task such as biomedical NER [ML18]. However, in FET
this scenario is unlikely to happen, since the basic idea of FET is to have a high
number of types, covering at least a coarse classification for each entity [LW12].

A main problem of this scenario can be the difficulty of recognizing completely
new entities, for example, if the model is heavily anchored to an entity representation
independent from its context. If also the sources of the corpora DS and DT are
very different, their word distributions are probably divergent; thus, the encoder
needs to be heavily adapted to the new language distribution.

Even with many differences between the source domain DS and the destination
domain DT , some transfer learning techniques remain valid: using an already
trained encoder is still a good starting point since if the language matches, general
words maintain their meaning. An interesting opportunity regards exploiting the
notion of “disjunction” between source types GS and target types GT : since they
are assumed to be disjoint sets, their entities are also likely to be disjoint (with
some exceptions). Thus, knowing that a portion of text belongs to a type in GS

can decrease the likelihoods of belonging to types in GT . This intuition is used in
this thesis by defining disjunction clauses using KENN in Chapter 5.

3.2.4 Exploiting explicit type relations across domains

Fine-grained Entity Typing models are designed to recognize an elevated quantity
of types, and the purpose of the task is to cover a high variety of entities [LW12].
It follows that if a benchmark dataset proposed to validate a FET model is used as
source dataset, its type vocabulary GS will probably be overlapped with the target
type vocabulary GT . Even if a common NER system [GS96; Tjo02; NS07] is used
as source Entity Typing model, its coarse-grained types Person, Location, and

38CHAPTER 3. DOMAIN ADAPTATION IN FINE-GRAINED ENTITY TYPING

Organization are so general that it is expected that some target types will share
semantics with them.

Classic transfer learning approaches account for implicit overlap of domains
based on the assumption that sub-symbolic representation of the input can be
used to represent general information considered useful in multiple tasks. This
assumption is validated by the countless transfer learning approaches used in very
different computer science domains, from image recognition to text generation. For
example, pretrained Word2Vec [Mik+13a; Mik+13b] or GloVe [PSM14] word vectors
that contains a general representation of terms meaning are used as input of LSTMs
to solve downstream tasks, or the pretrained VGG16 [SZ14] is used to extract
image sub-symbolic features used to image segmentation. In general, methods
not based on mappings and on explicit modeling of source and destination types
relations are based on classic transfer learning techniques like feature extraction,
fine-tuning or knowledge distillation, and can be used to obtain a model adjusted
for a destination domain starting from a source model.

One idea developed in this thesis is to accounting for explicit type vocabulary
overlap between source and destination domain by explicitly exploiting the knowl-
edge on the source domain to favor the expected behavior on the destination domain.
Knowing that two types s, t, respectively from GS and GT , share semantic meaning
can motivate one to avoid training of t while adapting parameters ΘS on the target
domain. However, as discussed in Section 3.1.2 domain differences not only refer
to types since the same semantic type (i.e. Person) can be annotated in the text
in different ways (e.g., admitting or not the pronouns as valid entities), moreover,
similar types (e.g., FIGER.building and BBN.FACILITY/BUILDING) can express
slightly different semantics (FIGER.building is used to annotate general buildings,
while BBN.FACILITY/BUILDING is more similar to the concept of infrastructure).

These observations can be used as basement to define different approaches to
express the semantical equivalence, generalization, specialization, or disjunction
of types in source and target type vocabulary and to design different solutions to
tackle domain adaptation in FET.

Specialization scenario

A first interesting scenario, described in the user stories in Section 3.2.1, is the
specialization scenario, where the target domain ∆T contains more types than
∆S, but each new target type t ∈ GT is a specialization of a type s ∈ GS, i.e.,
t ≺ s. For simplicity, in this scenario, the source domain is identified by S, while
the target domain, specialization of S, is identified by S+, such that S+ ⊃ S and
∀si ∈ S+ ∃sj ∈ S : si ≺ sj. Formally, given a model MS, parametrized with
ΘS, the domain adaptation problem in the specialization scenario asks to find
parameters ΘS+

= fS→S+(ΘS) that parametrize a model MS+
. The model MS+

3.2. CATEGORIZATION OF DOMAIN ADAPTATION IN FET 39

can be seen as a function MS+
: X → P(S+).

If the specialization relation si ≺ sj with si ∈ S+, sj ∈ S is known before the
estimation of fS→S+ , it can be used to drive the adaptation process by conditioning
the probability of type si ∈ S+ on both likelihoods ΘS+

(x)i, Θ
S(x)j. Formally

p(si|ΘS+
, x,ΘS(x)j) = ΘS+

(x)i. This intuition is used in Chapter 5 to design and
apply specialization techniques to specialize a given FET model, and in Chapter 6
to design and apply domain adaptation techniques. For example, given the source
type Person and the target types Person/Athlete and Person/Politician, the
probability of Person/Athlete has to be conditioned by the probability of Person,
i.e., the higher the probability of the father, the higher the probability of the child
and vice versa.

Full-fledged domain adaptation

Another scenario described in the user stories in Section 3.2.1 is the cross-domain
scenario with overlapping domains where the relations R between source and a
target domain ∆S and ∆T , with type vocabularies S and T , are in the form
(s, t, ρ) ∈ R with s ∈ S, t ∈ T, ρ ∈ {≡,≺,≻}. These relations establish connections
between the source and target domains by explicitly linking pairs of types. Formally,
given a model MS, parametrized with ΘS, the domain adaptation problem in
the cross-domain with overlapping domain scenario asks to find parameters ΘT =
fS→T (Θ

S) that parametrize a model MT . The model MT can be seen as a function
MT : X → P(T).

If the relation (si, tj, ρ) with si ∈ S, tj ∈ T, ρ ∈ {≡,≺,≻} is known before the
estimation of fS→T , it can be used to drive the adaptation process by conditioning
the probability of type t ∈ T on both likelihoods ΘT (x)j, ΘS(x)i. Formally
p(tj|ΘT , x,ΘS(x)i) = ΘT (x)j. This intuition is used in Chapter 6.

Model Reuse Scenario

The last scenario described in user stories in Section 3.2.1 is the model reuse
scenario where the target domain ∆T contains less types than ∆S, but each new
target type t ∈ GT is a generalization of or equivalent to a type s ∈ GS, i.e., t ≻ s
or t ≡ s. For simplicity, in this scenario, the source domain is identified by S,
while the target domain is identified by S−, such that S− ⊆ S and ∀si ∈ S− ∃sj ∈
S : si ≻ sj ∨ si ≡ sj. Formally, given a model MS, parametrized with ΘS, the
domain adaptation problem in the model reuse scenario asks to find parameters
ΘS−

= fS→S−(ΘS) that parametrize a model MS−
. The model MS−

can be seen
as a function MS−

: X → P(S−).
If the differences between documents DS and DS−

and between annotation
functions αS and αS−

are ignored, fS→S− can be used to directly map elements of

40CHAPTER 3. DOMAIN ADAPTATION IN FINE-GRAINED ENTITY TYPING

Figure 3.5: Workflow showing the different adaptation techniques for a trained
FET model depending on mappings availability

S to elements of S−; this scenario is explored in Chapter 4. If fS→S− can be used
instead to modify the whole parameters ΘS, thus accounting for domain differences
between documents DS and DS−

and between annotation functions αS and αS−
,

but also to allow to represent unseen entities. The latter scenario is a special
version of the cross domain with overlapping domains scenario, which is explored
in Chapter 6.

The described adaptation techniques are schematized in the workflow in Fig-
ure 3.5

Chapter 4
Model Reuse in Partially Overlapping
Domains

In Domain Adaptation, similarities between source and target domains allow the
total or partial reuse in the target domain of a model trained on source domain. This
is a basic intuition for designing a transfer learning system, with pretrained models
used to generate representations considered useful as starting point in downstream
tasks. As described in Section 3.2.4, common examples of static transfer learning
are the usage of Word2Vec [Mik+13a; Mik+13b] or GloVe [PSM14] vectors as input
to train LSTMs on downstream tasks, or using VGG16 [SZ14] to extract image
sub-symbolic features used to image segmentation.

In Fine-grained Entity Typing (FET) similarities between source and target type
vocabularies may motivate the reuse of a trained model, in order to exploit its ability
on shared types, avoiding the necessity of training on those types (Section 3.2.4).
To design a system with model reuse, mapping between types are needed, in order
to establish semantical correspondence between source and target types, as argued
in Section 3.2.4 the adoption of equivalence mappings to avoid training on already
learned types its promising when annotation policies and corpora characteristics are
similar between domains, but may brings problems if there are differences in these
domain components or generalization and specialization mappings are exploited
disregarding the representation of types.

In this chapter, model reuse without training solutions are designed to be
applied in FET Domain Adaptation Scenario. The main focuses of this chapter are:
(1) understanding the similarities between the FET domains (under the variety
space definition [Pla16], see Sections 2.3.1, 2.3.2,and 3.2.2) and their effects in
the scenario of model reuse without retraining, and (2) underline critical issues of
model without retraining in FET.

41

42CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Figure 4.1: If transitive closure is used in target domain only person can be
recognized as agents. Without a training, the model will wrongly classify each
Organization, propagating the error also on Agent.

4.1 Research Questions - Model Reuse

Question 1: to what extent do FET models transfer their performance between
partially overlapping domains without additional training data?

Question 2: how approximating a source domain (and may overfitting on it)
impact the reuse of models across target partially overlapping domains?

Question 3: equivalent types from different FET domains are represented by
entities and sentences with different linguistic or semantical characteristics?

4.2 Critical Issues of Model Reuse without Train-

ing

Reuse a model in a target domain trusting the training on source domain and the
equivalent semantics between types mapped with equivalence and generalization
mappings can lead to multiple unexpected behaviors depending on differences in
the domains:

Different representation of an equivalent type. annotation policy differ-
ences between source and target domains can produce annotations with different
characteristics, for example in OntoNotes [Gil+14] entity mentions are longer than
the ones in FIGER [LW12] and BBN [WB05; Ren+16a]. The fact that an encoder

4.2. CRITICAL ISSUES OF MODEL REUSE WITHOUT TRAINING 43

Figure 4.2: An example of mapping that can lead to paradoxical correct classifica-
tion: the model can recognize an organization entity as a person making an error
but correctly predicting Agent in the target domain hiding the error behind good
performance.

is able to produce similar representations for entities of equivalent types that come
from different domains highly depends on the robustness of the encoder and on
the absence of overfitting on the source domain. In a setup without training, the
similarity in encoded representation is a requisite to maintain performance between
original source type and its equivalent target type.

Transitive closure in the target domain. the usage of equivalent mappings
to predict in the target domain without additional training may include a transitive
closure step where the target predicted types are expanded by adding their ancestors
in the target hierarchy. In particular cases, reusing a trained model in a target
domain to predict types that are more abstract than types in the training source
domain may lead to an under-representation of entities and misconception of model
capabilities. Consider the example in Figure 4.1, one can claim that using this
equivalence embedding and transitive closure in the target domain, a model trained
on the source domain can predict the type Agent. The expected behavior of this
“adapted” entity typing model instead is to recognize persons as agents but making
wrong predictions on organizations.

Paradoxical Correct Classification. consider the scenario in Figure 4.2, given
a sentence that contains an entity of type Organization, the model can erroneously
assign the source type Person, that is translated to the target type Agent. Thus,
the model produces a correct prediction based on a wrong evidence (i.e. an
organization recognized as a person). This concatenation of event hides behind
good performance a fallacy of the model.

44CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

4.3 Datasets, Mappings and FET model

To experiment with model reuse in FET, three common FET datasets (BBN [WB05;
Ren+16a], FIGER [LW12] and OntoNotes [Gil+14; Shi+17a]) are paired, obtaining
six source-target pairs. Equivalence, generalization and specialization mappings
between their type vocabularies are manually drawn. A FET model based on recent
encoding approaches (BERT [Dev+19] with Adapters [Hou+19; Pfe+20b]) and flat
classifier is used. More sophisticated models are ignored since in this Chapter the
focus is to answer to research questions, thus the trained model and its behavior
can be seen as a synthesis of types representations in the source domain. Evidences
on results are showed and discussed. Finally a solution for improved adaptation is
discussed and evaluated.

4.3.1 Datasets

Three common benchmark FET datasets are used to experiment the mapping-based
model reuse on target domain scenario. These datasets are used in the majority
of the FET articles and share common characteristics: english language, news or
encyclopedic source documents, various and hierarchic type vocabulary, distant
supervision for training/dev set and manual annotation for test set. The three
datasets are:

FIGER: proposed in [LW12] while explicitly defining Fine-grained Entity Typing
as a task, has a taxonomy originally composed of 112 types extracted from Free-
base [Wan+22b]. Entity mentions are extracted by applying a NER approach and
refined using Wikipedia and Freebase links. Types are extracted from wikipedia
links an filtered based on the taxonomy. [Ren+16a] reconstructed the dataset by
re-applying and refining the annotation method from [LW12] in 2016, obtaining a
version with 128 types. [Ren+16a] version of FIGER dataset is used in this thesis
due to its large use in literature.

OntoNotes: proposed in [Gil+14], this dataset is based on the OntoNotes corpus,
largely used in NER. Its type taxonomy is based on the FIGER taxonomy, with
type merging and corpus based types additions [Wan+22b], obtaining a three
level taxonomy with 89 types. POS tagging and linking to Wikipedia are used
to automatically find and annotate entities in the corpus. Filtering rule-based
approaches are used to deal with overly-specific noise, out-of-context noise and
underrepresented types. [Shi+17a] modified the dataset by collapsing types with
the same semantics (location/geography and location/geograpy) and deleting
from the test set the examples annotated with types not present in the training
set. [Shi+17a] version is used in this thesis due to its large use in literature.

4.3. DATASETS, MAPPINGS AND FET MODEL 45

Dataset #types Hierarchy depth #training examples #dev examples #test examples

BBN 47 2 84,492 1,039 12,349
FIGER 128 2 2,676,846 1,094 563

OntoNotes 87 3 202,689 2,192 8,963

Table 4.1: Statistics of benchmark datasets

BBN: proposed in [WB05], this dataset is extracted from Wall Street journal
articles and annotated by [Ren+16a] using 47 of the original propose 93 types,
since only 47 could be mapped to Freebase types. In this thesis [Ren+16a] version
is used due to its large use in literature.

Statistics about the benchmark datasets are shown in Table 4.1.

4.3.2 Define relations between type hierarchies

To answer the research questions, datasets are paired to define six source-target
scenarios, then equivalence and generalization relations are manually drawn. In this
chapter, the equivalence and generalization relations are grouped under the term
mapping. Mappings are drawn from source to target type vocabulary following two
heuristics:

• Heuristic 1: For each type ts in the source domain, draw an equivalence map-
ping if there exists a unique target type tt that preserves the semantics in the
source domain. Some example mappings are: (BBN.EVENT, FIGER.event, ≡),
(BBN.GPE/CITY, FIGER.location/city, ≡), and (BBN.ANIMAL, OntoNotes.other/living thing/animal,
≡).

• Heuristic 2: For each type in the source domain ts that is not mapped
to any type in target domain, draw a generalization mapping if there ex-
ists a unique target type tt that preserves the semantics in the source
domain. Examples of mappings obtained by the combination of heuris-
tic 1 and 2 are: (BBN.PLANT, OntoNotes.other/living thing, ≺), and
(BBN.LOCATION/RIVER, FIGER.location/body of water, ≺).

In both cases fork mappings are excluded from the process, as in [Noz+21].
In the case that fork mappings can be drawn, no mapping is drawn instead.
Note that this heuristics does not impact the manual defined mappings between
the used datasets. In OntoNotes Shimaoka partition is used, thus only 87 out
of 89 types are included in mapping design, OntoNotes.person/business and
OntoNotes.other/product/camera are excluded.

46CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Scenario Source Target #source types #target types #mappings Covered Target Types

In-Domain BBN BBN 47 47 - -
Cross-Domain Figer BBN 127 47 93 30
Cross-Domain OntoNotes BBN 87 47 76 29

In-Domain Figer Figer 127 127 - -
Cross-Domain BBN Figer 47 127 41 34
Cross-Domain OntoNotes Figer 87 127 81 72

In-Domain OntoNotes OntoNotes 87 87 - -
Cross-Domain BBN OntoNotes 47 87 40 33
Cross-Domain Figer OntoNotes 127 87 111 77

Table 4.2: Statistics of manually defined mappings for the domain adaptation
through model reuse with no training. For each source type, one mapping can be
drawn (fork mappings are heuristically excluded), the same target type can be
involved in multiple mappings, thus the columns #mappings and Covered target

types respectively describe: how much source types are used to predict in the
target domain, and how much target types are covered by these mapping in the
“no training” setup.

4.3.3 Model Reuse: Domain Adaptation without Addi-
tional Training

Given a source domain ∆s and a model trained on it Ms, as described and dis-
cussed in Section 3.2.4, a straightforward way to use Ms on a target domain
∆t is to draw equivalence ≡ and generalization ≻ mappings from source type
vocabulary S to target type vocabulary T and use them to translate predictions.
For example, given the instance x: “Britain , France and Italy pull out of a
proposal to build new NATO frigates ; the U.S. and West Germany have each
withdrawn from missile projects .”, the model MBBN can classify it by predicting
MBBN(x) =[BBN.GPE, BBN.GPE/COUNTRY], if x has to be classified using FIGER

vocabulary instead, using equivalence and generalization mappings, the prediction
can be obtained by applying the mappings as a function fBBN→FIGER(MBBN (x)),
obtaining [FIGER.location/country], then transitive closure can be applied on
the target domain, obtaining the prediction [FIGER.location/country, FIGER.location].

The capabilities of model reuse with mappings not only depends on the model
trained on source domain and on the similarity between source and target domain,
but also on the choices adopted during the usage of mappings to traduce the
predictions from the source to the target vocabulary. A straightforward choice can
be to translate the types and then apply the transitive closure to add abstracter
and unmapped types. Transitive closure is not always a good choice, since false
positives in the source domains may be amplified in the target domain, instead it
can be useful to predict general types in the target domain, decreasing the false
negatives. This choice has to be taken by accounting the precision of the source
model and the desired precision/recall in the target domain.

4.3. DATASETS, MAPPINGS AND FET MODEL 47

Figure 4.3: Architecture of the basic FET model used as classifier in model reuse
(Section 4.3.3), denoising (Section 4.5.1) and as baseline classifier in specialization
and full-fledged domain adaptation (Section 5)

When applying model reuse with partial mappings paradigm, void type set can
be predicted in target domain, since the model may predict source types that are
not mapped to the target domain. This particularity decreases the recall of model
reuse approaches, but increases their precision, since false positives are avoided.
Recall instead depends on the type coverage offered by mappings. Statistics of
manual-defined mappings for model reuse are reported in Table 4.2. The table
reports the scenario (in-domain or cross-domain) to compare the differences in
the available types for predictions: in an in-domain scenario, the source and target
domains are identical, thus the model is trained on the target type vocabulary and
is able to predict each type in it; in a cross-domain scenario without training on
the target domain, a model trained on the source domain is able to predict only
those target types that are involved in at least one mapping drawn from source to
target domain. This information is expressed in Covered target types column.

4.3.4 Fine-grained Entity Typing Model

A simple yet competitive classification model is used to understand the impact of
training domain distribution on performance on target domain with different distri-
bution. The architecture is shown in Figure 4.3. The version of BERT [Dev+19] is

48CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

BERT-Large-cased from huggingface1 and it is used as a pre-trained backbone
language model. Adapters [Hou+19; Pfe+20a] are inserted inside each transformer
layer of BERT-Large-Cased and trained to adapt the encoder to the source domain.
Then the neural classifier is fed with the encoded representation, the classifier is
composed of two fully connected layers, with the last layer matching the vocabulary
size. The model is optimized by minimizing binary cross-entropy (BCE), standard
loss function in multilabel classification problems and in FET.

With this simple setup, it is expected that the encoder will approximate the
language distribution and the classifier will account for the label distribution (in
the sense of similarity between inputs with different labels and similarity between
labels) in the source domain.

4.3.5 Hyperparameters

Encoder:

• Pretrained Language Model: BERT-large-cased

• Input Format: [CLS] mention [SEP] sentence as in [Ono+21]

• Input Encoding: Encoding of the token #0 ([CLS] after 24 transformer layers,
commonest choice in literature)

• Hidden Representation Size: 1024, default hidden size of BERT-large-cased

• Adapter Architecture: Pfeiffer [Pfe+20a], 2 adapters in each transformer layer

• Adapter Reduction Factor: 16, each adapter represent information with
1024
16

= 64 dimensions

Classifier

• Fully Connected Layers: 2

• Fully connected units per layer: 1024 in the first layer, #type in vocabulary
for the second layer

• Activation Function: relu in the first layer, sigmoid in the second layer

1https://huggingface.co/

4.3. DATASETS, MAPPINGS AND FET MODEL 49

Training Hyperparameters

• Batch Size: 64

• Batch per epoch: 160 (each epoch 10k circa examples are seen), this parameter
is necessary to deal with huge training size of datasets (80k, 220k and 2.6M),
during preliminary experiment an overfitting during the steps of first epoch
was observed

• Stopping Criteria: early stopping on validation loss, with patience = 5

• Loss function: Binary Cross Entropy

• Learning Rate: 5e-4, preliminary experiments

• Initialization & random seed for batch sample: 0, 1, or 2; three instances are
trained to compute variance

For each experimental setup, three instances are trained with Initialization

& random seed that ranges from 0 to 2. This choice is a tradeoff between the
necessity of running multiple instances of the same experiment to evaluate the
robustness of the drawn evidences and to the time necessary to train each instance
(to run all experiments 3 months circa were needed).

4.3.6 Metrics

The metrics used to evaluate the trained method are the standard ones in literature,
plus some ad-hoc metrics used and described in Chapter 5.

Fine-grained Entity Typing is a multiclass multilabel problem, thus precision,
recall and f1-score are often used to evaluate and compare trained models. In a
multilabel problem multiple correct classes/types can be used to correctly annotate
each example, thus three kinds of evaluation metrics can be computed:

Metrics macro averaged on examples: Given an example with n correct
types, a FET model can predict m types. For each example, example-level metric
can be computed: example-level precision expresses the fraction of correctly
predicted types on the total predicted types m for a given example, example-level
recall expresses the fraction of correctly predicted types on the total types to predict
n for a given example. Having these metrics for each example in the test set allows
to compute the Macro Averaged on Examples Precision and Recall, the Macro
Averaged on Examples f1-score is simply the harmonic mean between the macro
averaged on examples precision and recall.

50CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Metrics macro averaged on types: Given a dataset with t types, the per-
formance of a FET model on each type can be computed by computing precision
and recall on the single types. Type-level metrics are computed by gathering all
predictions of a given type predicted by a trained model on a test dataset (assuming
m predictions for a given type) and by counting the number of test examples anno-
tated with that type (assuming n). The type-level precision expresses the fraction
of correct predictions over all predictions m for a given type. The type-level recall
expresses the fraction of correct predictions over all annotation n for a given type.
Having these metrics for each type in the test set allows to compute the Macro
Averaged on Types Precision and Recall, the Macro Averaged on Types f1-score
is simply the harmonic mean between the macro averaged on types precision and
recall. In this thesis metrics macro average on types are computed considering only
those types with at least 3 annotated examples in the test set, thus avoiding the
inclusion of types of the vocabulary that are totally absent from the test set, as
well as the presence of extreme values (0 and 1) obtained by computing metrics
only on one or two examples.

Micro averaged metrics: micro average metrics do not consider type-level
or example-level, but consider dataset level. Given all predicted types m and
all annotations m, the micro-average precision expresses the fraction of correct
predictions on all predictions m, the micro-average recall expresses the fraction
of correct predictions on all annotations m. The micro-average f1-score is the
harmonic mean between micro-average precision and micro-average recall.

Metrics usage and sensibility

Macro-averaged on Examples and micro average metrics are used in each article of
FET literature, since the former expresses the ability of recognizing all types for a
given examples and to predict only the correct ones, the latter expresses the ability
of recognizing all types for a given datasets and predicting only the correct ones
for each example. Since these metrics depend on examples and dataset they are
biased by the type distribution used to compute them, i.e., to maximize them the
model has to be able to correctly predicting the most common types. For example,
in Shimaoka’s version of OntoNotes [Shi+17a; Gil+14] (described in Section 4.3.1),
but this consideration is also valid for the original version [Gil+14], the 65.8% of
examples in test set is annotated with the type OntoNotes.other, thus a dummy
model that always predicts OntoNotes.other independently on the input example
obtains a score of .61 both in micro average and macro averaged over examples
f1-score (third decimal place is different). Even if Macro-averaged on Examples
and micro average metrics are biased by type distribution, these metrics are still
useful to evaluate the ability of a model in a real scenario, if the assumption that

4.4. MODEL REUSE - RESULTS 51

dataset type distribution and real-scenario type distribution are similar holds, i.e.,
if the most present types in the dataset are also most present and important types
in the real case scenario.

Due to this sensibility to label distribution in the dataset, in this thesis also
metrics averaged over types are used to evaluate the performance of models, under
the assumption that all types in a vocabulary have similar importance, thus have
to affect the evaluation in the same way.

4.4 Model reuse - Results

In this section, evidences are extracted by comparing the behavior of the FET
model introduced in Section 4.3.4 when it is used in in-domain setup (classic setup
in literature) or in cross-domain setup without additional training (described in
Section 3.2.4 and in the introduction of this Chapter) exploiting the mappings
introduced in Section 4.3.2.

4.4.1 Performance in Source Domain

The performance analyses of the ET model introduced in Section 4.3.4 when it is
used under in-domain setup, where the source and the target domains are the same
domain, i.e., the same benchmark dataset from the literature, are reported in this
subsection. This performance is important to evaluate the general quality of the
model and to have a reference for the following analyses. The results are obtained
by using all data available for each dataset and with BERT tokenizer’s parameter
search on input for each dataset. The trained models are expected to approximate
the input and label distribution in order to solve the FET problem. The same
trained model will be used as starting point for cross-dataset experiments, both
without (section 4.4.2) and with training (Section 6).

In this section, two results are reported: the average results of three instances
of the ET model trained on the entire benchmark datasets (Tables 4.3, 4.4, and
4.5) and the results of the model initialized with seed 0 and trained on the entire
benchmark datasets (Table 4.6).

From Tables 4.3, 4.4, and 4.5 can be seen that the model adopted as a backbone-
model in this thesis suffers from the absence of additional information and by
the absence of denoising technique, thus its performance are good but lower than
the state-of-the-art. This is an expected result, since the model is designed to
reflect the domain language and its label distribution, in order to understand
how these characteristics affect the domain adaptation process. Adding additional
information or denoising results in an increase of the variables to analyze in
the domain adaptation experiments. Moreover, the technique proposed in FET

52CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Macro Averaged over examples
Approaches F1 P R Notes

[Ono+21] .783 - - Hierarchical & co-occurrence dependencies
[CCV20] .797 - - Hierarchical dependencies
[Shi+20] .830 - - Denoising
[Liu+21a] .876 - - Document and type co-occurrence & hierarchy
[Wu+22] .819 - - Denoising + Hierarchy
[DSL20] .914 - - Link-aware (best approach overall)

BERT + Adapters + Classifier .781 ± .004 .729 ± .016 .842 ± .016 No additional external information

Table 4.3: Performance from literature and from three instances of the basic model
introduced in Section 4.3.4 on the benchmark dataset BBN [WB05; Ren+16a].

Macro Averaged over examples
Approaches F1 P R Notes

[XB18] .819 - - Hierarchical dependencies
[CCV20] .826 - - Hierarchical dependencies
[Ono+21] .816 - - Hierarchical & co-occurrence dependencies
[Li+21] .877 - - Document and type co-occurrence & hierarchy
[Pan+22] .822 - - Denoising
[Wu+22] .826 - - Denoising + Hierarchy
[DSL20] .891 - - Link-aware (best approach overall)

BERT + Adapters + Classifier .836 ± .017 .784 ± .030 .897 ± .013 No additional external information

Table 4.4: Performance from literature and from three instances of the basic model
introduced in Section 4.3.4 on the benchmark dataset FIGER [LW12].

Macro Averaged over examples
Approaches F1 P R Notes

[XB18] .764 - - Hierarchical dependencies
[CCV20] .73 - - Hierarchical dependencies
[Ono+21] .773 - - Hierarchical & co-occurrence dependencies
[Liu+21a] .845 - - Document and type co-occurrence & hierarchy
[Wu+22] .732 - - Denoising + Hierarchy
[Shi+20] .891 - - Denoising (best approach overall)

BERT + Adapters + Classifier .697 ± .020 .729 ± .016 .669 ± .026 No additional external information

Table 4.5: Performance from literature and from three instances of the basic model
introduced in Section 4.3.4 on the benchmark dataset OntoNotes [Gil+14; Shi+17a].

4.4. MODEL REUSE - RESULTS 53

Dataset

FIGER BBN OntoNotes

Macro averaged on Examples
precision .785 .743 .692
recall .834 .804 .710
f1 .809 .772 .701

Micro averaged
precision .713 .723 .630
recall .820 .808 .660
f1 .763 .763 .645

Macro averaged on types
precision .231 .444 .199
recall .262 .481 .225
f1 .246 .462 .211

Table 4.6: Performance of the Entity Typing Network introduced in section 4.3.4
trained and tested under in-domain setup, seed 0 is shown for comparison with
cross-domain experiments.

literature are often dataset-specific, thus their analysis and their adoption in a
domain adaptation setup is complex and may be based on wrong premises, since
a model with architecture and optimization overfitted on a specific dataset (and
consequently on its domain) can be more difficult to adapt to another domain.
However in this thesis also a denoising method is used to understand its effect on
domain adaptation without training setup (Section 4.5). This technique is used
only as case study and it is not included by default in the backbone model.

4.4.2 Performance on the Target Domain

Table 4.7 shows the behavior of models trained on common benchmark FET
dataset and used under in-domain setup and under cross-domain with no additional
training setup; metrics on test sets are reported. Figures 4.4, 4.5, and 4.6 show a
Precision/Recall plot where, for each target dataset, performance of in-domain and
cross-domain models on types covered by mappings are reported.

The first evidence is that cross-domain models perform worst than in-domain
models if evaluated with classic metrics (i.e., macro metrics averaged over examples
and micro averaged metrics). The reason of this behavior is already explained
in Section 4.3.6: the value of these metrics is biased by the dataset composition.
Thus, cross-domain models without training on target domain are penalized by
the impossibility to predict the whole target type vocabulary (see Table 4.2 for
reference on coverage lack offered by mappings), as already explained in Chapter 4
and in Section 3.2.4. However, Table 4.7 also offers interesting information: macro
metrics averaged over types show that a model trained on FIGER and used to
classify examples from OntoNotes test set with OntoNotes type vocabulary reach
better performance than the correspective in-domain model (i.e. trained and used
on OntoNotes). This can be due to the high label imbalance in OntoNotes, where
the type OntoNotes.other dominates train, validation and test set. This evidence

54CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Source Domain Target Domain
Macro averaged on Examples Micro Average Macro average over Types
Precision Recall F1 Precision Recall F1 Precision Recall F1

BBN (in-domain) BBN .74 .80 .77 .72 .81 .76 .53 .57 .55
OntoNotes BBN .69 .69 .69 .69 .67 .68 .37 .46 .41
FIGER BBN .73 .73 .73 .67 .72 .70 .39 .39 .39

OntoNotes (in-domain) OntoNotes .69 .71 .70 .63 .66 .64 .33 .34 .33
BBN OntoNotes .32 .24 .28 .36 .29 .32 .21 .22 .21

FIGER OntoNotes .33 .27 .30 .40 .34 .37 .37 .39 .38

FIGER (in-domain) FIGER .78 .83 .81 .71 .82 .76 .65 .65 .65
BBN FIGER .68 .66 .67 .63 .62 .63 .26 .27 .26

OntoNotes FIGER .68 .73 .70 .62 .70 .66 .27 .32 .29

Table 4.7: Mapping-based Cross-Domain performance computed on original test
sets. Note that some types (statistics in Table 4.2) cannot be predicted in this
setup since they are not covered by mappings and the models are not trained on
target domains.

Figure 4.4: Precision/Recall plot of models trained on BBN, FIGER or OntoNotes
and used to predict examples from the test set of BBN, with BBN type vocabulary.
Only types covered by mappings are reported (see Table 4.2). Red dots represent
performance of in-domain model.

4.4. MODEL REUSE - RESULTS 55

Figure 4.5: Precision/Recall plot of models trained on BBN, FIGER or OntoNotes
and used to predict examples from the test set of FIGER, with FIGER type
vocabulary. Only types covered by mappings are reported (see Table 4.2). Green
dots represent performance of in-domain model.

can be extracted by crossing the performance of the two models when evaluated
with macro-averaged over examples and micro-averaged metrics; it can be seen
that cross-domain model trained on FIGER does not perform well on these metrics,
due to the fact that there is no mapping that reaches type OntoNotes.other

since its semantics (miscellaneous) is not present in FIGER and BBN. Another
evidence is that when BBN is the target domain, the precision of the in-domain
and cross-domain models is very similar (rows 1-3 in Table 4.7), while the recall
drops due to the uncovered types (Table 4.2. This fact may indicates that covered
types are represented very similarly in FIGER, OntoNotes and BBN.

Figure 4.4 reports the precision and recall of BBN types covered by at least
one mapping from FIGER or OntoNotes. Figure 4.5 reports the precision and
recall of FIGER types covered by at least one mapping from BBN or OntoNotes.
Figure 4.6 reports the precision and recall of OntoNotes types covered by at least
one mapping from BBN or FIGER. From these figures different interesting evidences
can be highlighted. There are types that benefits from cross-domain, for example
the in-domain model performs worst on BBN.PRODUCT and BBN.WORK OF ART than
both cross-domain models in Figure 1: in-domain approach (red dots) obtain
respectively a Precision/Recall measure of .23/.25 on BBN.PRODUCT and .31/.58
on BBN.WORK OF ART, while cross-domain models obtain respectively .70/.66 and

56CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Figure 4.6: Precision/Recall plot of models trained on BBN, FIGER or OntoNotes
and used to predict examples from the test set of OntoNotes, with OntoNotes type
vocabulary. Only types covered by mappings are reported (see Table 4.2). Blue
dots represent performance of in-domain model.

.72/.34 when trained on FIGER, and .63/.26 and .45/.64 when trained on OntoNotes.
This is probably due to the presence and to the variety of these types in the training
set: in BNN there are 6, 530 examples for BBN.WORK OF ART, while in FIGER there
are 41, 876 examples for FIGER.art, and in Ontonotes there are 14, 471 examples
for OntoNotes.other/art. Similarly, for BBN.PRODUCT there are 1, 396 examples,
while in FIGER there are 41, 078 examples for the type FIGER.product and in
OntoNotes there are 7, 826 examples of the type OntoNotes.other/product. The
quantity of examples seen during training is not the only important aspect, since
similar observations do not hold for FIGER.written work (Figure 4.5), where the
in-domain model performs worst than cross-domain ones even if in BBN there are
less examples of BBN.WORK OF ART/BOOK.

4.5 Noisy Annotation and Model Reuse

A FET model may overfit on language and label distribution in the training domain
and evidences in Section 4.4.2 underlined how the domain affect performance on
types that theoretically have the same semantics. In this section, a denoising
method is used to reduce the sensibility of the model on label distribution. The

4.5. NOISY ANNOTATION AND MODEL REUSE 57

intuition is to apply the denoising technique to obtain denoised version of the
dataset before the training and train on the denoised verison instead of the noisy
one. This approach is largely based on the model proposed in [OD19], since the
same denoising paradigm is used and extended, also the original code was reused
and extended. The main idea is to rely directly on the noisy domain to obtain two
denoising models to apply in cascade. This may sound counterintuitive, but the
performance obtained on manually annotated datasets by literature models trained
on noisy datasets may denotes that the noise is not a major factor in the dataset
and examples that reflect real case language and label distributions are present in
the training set.

4.5.1 AutoDenoise

This section describes the AutoDenoise method and its differences (depicted in
Figure 4.7) with OnoeD [OD19]. In addition a collection of training procedures is
added to OnoeD to face different kinds of noise that are often found in datasets.
Preliminary studies suggested that some of the denoising approaches for FET are
tuned to face a specific noise typology within a certain dataset; thus, a description
of the noise classification is provided, followed by an explanation of which of the
proposed techniques applied on the architecture explained in Section 4.3.4 can face
a specific category of noise.

OnoeD

[OD19]’s denoising approach (OnoeD) was first proposed in 2019 in the UFET
domain [Cho+18]. Their technique aims to denoise distantly supervised data
through a two-step data cleansing framework, which includes a filtering model
trained to discard all excessively noisy examples and a relabeling model trained to
relabel the remaining examples with a more appropriate set of labels (if needed).
Both models share the same ELMo-based encoder architecture and are trained
to recognize the synthetic noise that has been previously injected into a portion
of ground truth data. This method was designed to denoise those datasets that
mainly contain noise caused by missing labels, thus the relabeling model will often
add labels to the examples rather than removing them.

OnoeD’s denoising method was proved to allow ET models to achieve state-of-
the-art performance [OD19]. However, it presents two major drawbacks that may
limit its portability: it needs an additional portion of manually labeled examples,
and it is best suited for denoising those datasets that suffer most from noise caused
by missing labels. Unfortunately, ground truth examples are difficult to obtain
(their generation requires expensive collection processes like crowdsourcing) and
cannot be used to denoise other datasets, as they are annotated using dataset-

58CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Figure 4.7: AutoDenoise’s submodules (filtering and relabeling); the modules’
proposed training routines are suited for the noise category faced.

specific type vocabularies. The authors tried to adapt their approach to another
dataset [Gil+14] by training both filtering and relabeling models with an augmented
dataset (UFET [Cho+18]) representing the ground data; their predictions were then
adjusted on the new dataset (OntoNotes [Gil+14]) by manually building a mapping
between labels. Although this solution performs well and is easily adaptable to
fit other datasets, it will always rely on the dataset which the models have been
trained on, and requires the existence of the mapping between labels. Moreover,
considering that UFET datasets use wider type vocabularies than FET ones, the
construction of such mapping becomes challenging. Finally, once again it is worth
noticing that the learned model is suited only for denoising those datasets that
suffer most from noise caused by missing labels.

Training the Filtering Model The goal of the filtering model is to detect and
discard excessively noisy examples. It consists of a binary classifier that decides
whether each example (m, c, Y) should be discarded or not. The examples that
need to be discarded are not known a priori; thus, the training procedure involves
the creation of a new dataset by injecting synthetic noise into the ground truth
examples. This corruption procedure swaps the ground truth labels of a percentage
q of the clean examples with a set of non-overlapping labels taken from other
examples. More formally, the ground truth labels Y of each selected example
(m, c, Y) are replaced with the labels Y ′ of another randomly chosen example

4.5. NOISY ANNOTATION AND MODEL REUSE 59

(m′, c′, Y ′) such that Y ∩ Y ′ = ∅. Then, the selected examples are grouped to
form the positive examples ((m, c, Y ′), 1) that the model should discard, while the
remaining examples are grouped to form the negative examples ((m, c, Y), 0) that
the model should keep. The model is trained on the examples of the corrupted
dataset using a binary cross-entropy loss.

Training the Relabeling Model The relabeling model repairs those examples
that make it through the filtering model but which still have errors in their labels.
It consists of a function that maps each example (m, c, Y) to a new set of labels Ỹ
such that Ỹ ⊆ Y . This module is used to create the denoised examples (m, c, Ỹ)
that are the output of the denoising procedure. At inference time, an example is
relabeled with labels Ỹ only if the new set contains at least two labels, otherwise it
is discarded.

To train this module, a training set with synthetic noise is created by corrupting
the distant supervision dataset. For each example (m, c, Y) the new set of labels
Ŷ ⊆ Y of a synthetic example (m, c, Ŷ) is built by dropping each element y ∈ Y
with a probability of p. Then the relabeling module is trained using the examples
((m, c, Ŷ), Y) and binary cross-entropy loss as optimization function.

AutoDenoise

AutoDenoise is a denoising approach proposed in this thesis to overcome the
limitations of OnoeD; the main innovations of AutoDenoise are:

• AutoDenoise trains both filtering and relabeling models on distantly-supervised
data, avoiding the need for ground truth data.

• AutoDenoise provides two new alternative training procedures for the relabel-
ing model, allowing the end-user to produce a model that best fits the noise
distribution of the dataset that needs to be denoised.

The first extension assumes that most of the distantly-supervised examples are clean;
this assumption is motivated by the performance achieved by previous approaches
trained on distantly-supervised examples and tested on manually annotated test
datasets. Thus, it is assumed that noisy data can still be used to properly train
both filtering and relabeling models. Clearly, noisy examples may interfere with
training procedures, but assuming that clean data are the majority, this interference
is expected to be negligible. As shown in Figure 4.7, the approach provides a
total of three different procedures that can be used alternatively to produce three
different relabeling models:

60CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Figure 4.8: Schema of the AutoDenoise in-domain validation experiment: starting
from the same noisy FET dataset, a FET model is trained. Different instances
of AutoDenoise are trained using TTA/TTR/TTA+R relabeling technique. The nine
AutoDenoise models are then used to obtain nine denoised datasets on which the
same model, initialized with the same seed, is trained. The whole 10 models are
compared using the original manually annotated test set

Trained-To-Add (TTA): originally developed by [OD19], this relabeling model
can be useful for denoising those datasets that suffer mainly from noise caused by
missing labels.

Trained-To-Remove (TTR): this relabeling model can be useful for denoising
those datasets that suffer mainly from noise caused by irrelevant labels.

Trained-To-Add-and-Remove (TTA+R): this relabeling model can be useful
for denoising those datasets that suffer from equal amounts of noise caused by
irrelevant labels and noise caused by missing labels.

4.5.2 Research Question - AutoDenoise and Model reuse

Question 1: Does a denoising approach based only on a noisy dataset and on
additional synthetic noise injection is useful to create a denoised version of the
dataset?

4.5. NOISY ANNOTATION AND MODEL REUSE 61

Macro averaged on Examples Micro averaged Macro averaged on types
P R F1 P R F1 P R F1

Original FIGER .785 .834 .809 .713 .820 .763 .648 .654 .651

Denoised FIGER
TTA .770 .851 .808 .691 .828 .753 .627 .664 .645
TTR .820 .851 .835 .755 .824 .788 .614 .635 .624

TTA+R .798 .846 .821 .734 .820 .775 .639 .653 .646

Original BBN .743 .804 .772 .723 .808 .763 .532 .569 .550

Denoised BBN
TTA .755 .835 .793 .728 .837 .779 .528 .560 .543
TTR .759 .829 .793 .728 .833 .777 .514 .554 .533

TTA+R .762 .833 .796 .737 .835 .783 .539 .575 .556

Original OntoNotes .692 .710 .701 .630 .660 .645 .325 .341 .333

Denoised OntoNotes
TTA .681 .703 .689 .614 .640 .622 .212 .267 .236
TTR .687 .751 .717 .631 .698 .663 .323 .353 .337

TTA+R .657 .718 .686 .602 .669 634 .279 .330 .303

Table 4.8: In-domain performance of models trained on original datasets or on
denoised datasets. The model trained on original dataset is initialized with seed 0.
The models trained on denoised datasets are initialized with seed 0, three instances
are trained on different datasets denoised with the same relabeling procedure
(TTA/TTR/TTA+R)

Question 2: Removing annotation noise from the source domain with a dedicated
denoising method brings benefit to the model reuse scenario in FET?

4.5.3 Experimental Setup

Starting from the original code, the original ELMo-based filtering model is trained
maintaining the same hyperparameters of [OD19]. Relabeling models instead
are trained using the original TTA procedure, or the proposed TTR or TTA+R
procedures. The training phase is showed in Figure 4.7.

Figure 4.8 shows the steps to obtain models trained on denoised datasets and
compare them with a model trained on the original noisy version. Three seeds (10,
20, and 30) are used to drive random initialization and example batching, obtaining
9 trained models (3 seeds times 3 procedures). These 9 trained AutoDenoise models
are used to obtain 9 denoised datasets, that are used to train the FET model
explained in section 4.3.4.

The nine FET models trained on denoised datasets are then used under in-
domain and cross-domain with model reuse setup, exactly like the ones trained for
previous experiments.

4.5.4 Performance in Source Domain

Table 4.8 reports the comparison of the same FET model trained on the original
dataset or on the denoised ones. Only the model initialized with seed 0 is reported

62CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

since the models trained on denoised datasets are always initialized with seed 0. In
this experiment, robustness is evaluated using multiple denoised datasets obtained
by applying the same relabeling procedure (TTA/TTR/TTA+R) three times. Since
the batch sampling routine and the initialization of both filtering and relabeling
models is driven by the same seed, three different values (10, 20, and 30) are used
to obtain 3 versions of the same AutoDenoise model and consequently nine different
denoised datasets.

Table 4.8, shows the performance of models trained on original datasets (original
FIGER, original BBN, original OntoNotes) or on denoised datasets (Denoised
FIGER, Denoised BBN, Denoised OntoNotes). The performance is measured by
precision (P), recall (R) and F1-score (F1). The results are presented in terms of
macro averaged on examples, micro averaged, and macro averaged on types.

Using macro averaged on examples and micro averaged metrics it can
be seen that the models trained on denoised datasets have better performance in
terms of recall and F1-score, especially for the Denoised FIGER and Denoised BBN
datasets. For example, the model trained on the denoised FIGER obtained with
TTA relabeling procedure has a recall of .851, which is higher than the recall of the
model trained on the original FIGER model (.834). Similarly, the model trained on
denoised BBN obtained using TTA+R relabeling procedure has an F1-score of .796,
which is higher than the F1-score of the model trained on the original BBN (.772).

The results also show that the relabeling procedure used to denoise the datasets
(TTA, TTR or TTA+R) generally has a positive impact on the performance of the
models. The best results are achieved when using TTA+R on the BBN dataset and
using TTR on FIGER and on OntoNotes.

Using macro metrics averaged on types it can be seen that on FIGER
the performance increase do not depends on better performance over all types,
but on better performance over types most present in the test set. On BBN and
OntoNotes instead, a slightly increase of the performance obtained by models
trained on datasets denoised respectively using TTA+R and TTR can be observed,
which indicates that the general performance improvement is reflected by a general
improvement on the single types.

Overall, the Table suggests that denoising the datasets can improve the perfor-
mance of models when use in in-domain setting, although the specific relabeling
procedure used also plays a role in the final results.

4.5.5 Performance in Target Domain

Tables 4.9, 4.10, and 4.11, show the performance under model reuse with mappings
scenario of models trained on original or denoised datasets. The tables report the
performance of in-domain models compared with performance obtained by models
under model reuse with mappings setup. Differently from the in-domain evidences,

4.5. NOISY ANNOTATION AND MODEL REUSE 63

Training Dataset
Relabeling
procedure

Macro averaged on examples Micro averaged Macro averaged on types
P R F1 P R F1 P R F1

FIGER (in-domain) - .785 .834 .809 .713 .820 .763 .648 .654 .651

BBN - .683 .658 .670 .635 .623 .629 .259 .267 .263
BBN TTA .670 .653 .661 .621 .609 .615 .248 .247 .247
BBN TTR .676 .662 .669 .627 .619 .623 .251 .255 .253
BBN TTA+R .688 .669 .679 .635 .623 .629 .238 .249 .243

OntoNotes - .677 .734 .704 .617 .699 .655 .273 .317 .294
OntoNotes TTA .549 .670 .602 .478 .612 .535 .210 .254 .229
OntoNotes TTR .673 .747 .708 .611 .703 .653 .289 .337 .311
OntoNotes TTA+R .619 .741 .674 .550 .692 .613 .259 .322 .286

Table 4.9: Model reuse of FET models when used on test set of FIGER. The
first row reports the performance of the in-domain model. Rows 2-5 reports the
performance of the model reuse for the FET model trained on original BBN (row
2) or on its denoised version (rows 3-5). Rows 6-9 reports the performance of the
model reuse for the FET model trained on original OntoNotes (row 6) or on its
denoised version (rows 7-9). Bold indicates the best performance for a specific
training domain for model-reuse, underlined bold indicates best performance
overall.

Training Dataset
Relabeling
procedure

Macro averaged on examples Micro averaged Macro averaged on types
P R F1 P R F1 P R F1

BBN (in-domain) - .743 .804 .772 .723 .808 .763 .532 .569 .550

FIGER - .726 .735 .730 .675 .719 .696 .369 .457 .408
FIGER TTA .739 .749 .744 .689 .734 .711 .388 .462 .422
FIGER TTR .746 .733 .739 .702 .713 .708 .390 .481 .431
FIGER TTA+R .742 .738 .740 .699 .721 .710 .396 .459 .425

OntoNotes - .693 .687 .690 .689 .665 .677 .391 .387 .389
OntoNotes TTA .656 .611 .630 .651 .582 .609 .252 .288 .269
OntoNotes TTR .722 .724 .723 .713 .710 .711 .340 .383 .360
OntoNotes TTA+R .708 .709 .709 .699 .690 .695 .329 .370 .349

Table 4.10: Model reuse of FET models when used on test set of BBN. The first row
reports the performance of the in-domain model. Rows 2-5 reports the performance
of the model reuse for the FET model trained on original FIGER (row 2) or on its
denoised version (rows 3-5). Rows 6-9 reports the performance of the model reuse
for the FET model trained on original OntoNotes (row 6) or on its denoised version
(rows 7-9). Bold indicates the best performance for a specific training domain for
model-reuse, underlined bold indicates best performance overall.

64CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Training Dataset
Relabeling
procedure

Macro averaged on examples Micro averaged Macro averaged on types
P R F1 P R F1 P R F1

OntoNotes (in-domain) - .692 .710 .701 .630 .660 .645 .325 .341 .333

BBN - .315 .244 .275 .357 .293 .322 .213 .215 .214
BBN TTA .308 .248 .275 .358 .298 .325 .202 .205 .203
BBN TTR .309 .248 .275 .355 .298 .324 .184 .208 .195
BBN TTA+R .314 .250 .278 .360 .300 .327 .192 .222 .205

FIGER - .333 .272 .299 .403 .344 .371 .368 .388 .378
FIGER TTA .321 .269 .293 .401 .343 .370 .391 .373 .382
FIGER TTR .318 .250 .280 .391 .321 .352 .350 .370 .360
FIGER TTA+R .331 .264 .294 .404 .337 .367 .396 .368 .381

Table 4.11: Model reuse of FET models when used on test set of OntoNotes. The
first row reports the performance of the in-domain model. Rows 2-5 reports the
performance of the model reuse for the FET model trained on original BBN (row
2) or on its denoised version (rows 3-5). Rows 6-9 reports the performance of
the model reuse for the FET model trained on original FIGER (row 6) or on its
denoised version (rows 7-9). Bold indicates the best performance for a specific
training domain for model-reuse, underlined bold indicates best performance
overall.

where AutoDenoise shown to be effective in raising in-domain performance, models
trained on datasets denoised with AutoDenoise and used in model reuse with
mappings setup do not robustly overperform the same models trained on original
datasets. This negative evidence can be explained by focusing the macro metrics
averaged over types in Table 4.8. From these metrics can be seen that performance
over single types do not increase by using denoised datasets. When a FET model
is used in model reuse with mappings setup, its performance of single types are
directly transferred on the target domain, i.e., the more the model performs well
on single types, the more the model can recognize the same types in the target
domain.

Some interesting evidences can still be drawn by inspecting table 4.11. In this ta-
ble it can be seen that single types in sentences from OntoNotes are better recognized
from models trained on FIGER than from model trained on OntoNotes. This may
be related with the already discussed vast presence of the type OntoNotes.other
in the train set of OntoNotes, that leads to models biased in recognizing that type.
This evidence was also present in Table 4.7, where the same behavior was observed.

4.6 Conclusions on Model Reuse

In Fine-grained Entity Typing model reuse between domains is motivated by the
high coverage of general purpose types that is an intrinsic property of FET models.

4.6. CONCLUSIONS ON MODEL REUSE 65

Experiments on model reuse between common benchmark datasets proposed in
literature to validate FET models proposed in this chapter show how the coverage
of types in the target domain is a critical requisite to apply this paradigm. However
the precision of models trained on a different source domain is often comparable or
higher than precision of models trained on the target domain, showing that some
types are better represented in some domains and that domain differences in terms
of language distribution and annotation routines have not a major impact on this
scenario.

Answering to research questions depicted in Section 4.1, we can state that models
trained following literature strategies may overfit on source type distributions and
tend to overperform on most represented types, it follows that the expected behavior
on the target domain is linked to the similarity between domains in term of type
distribution. This is not the only evidence observed with these experiments, heavy
performance drop on the same types across source and target domain was observed
on some types, suggesting that the language distribution is also crucial in this
scenario.

A denoising technique found in literature is extended and used to alleviate label
noise in the source domain, a problem that may affect model reuse. Experiments on
the effectiveness of the different denoising procedures in in-domain scenario show
that the denoising techniques can be used to improve performance when measured
with literature standard metrics, this evidence let us to positively answer to the
first research question depicted in Section 4.5.2. However, answering to the seconf
research question about AutoDenoise and Model Reuse, the usage of models trained
on denoised datasets on target different domain (model reuse paradigm) show that
the performance enhancement only regards the capabilities on recognizing more
correct types on the single example, but not in a general ability on all types.

In the next Chapter, the problem of partial type coverage is faced by exploring
two different scenarios, already described in user stories in Section 3.2.1. In the
specialization scenario a model trained on a source domain has to be specialized to
be used in a target domain, this is experimented by setup family-based experiments
in which starting from the knowledge of a type, new subtypes have to be learned.
In the full-fledged adaptation scenario instead, a model trained on a source domain
has to be adapted to be applied in a target domain, with some equivalent or
specialized types, but also with new types. In both these scenarios additional
training is necessary.

66CHAPTER 4. MODEL REUSE IN PARTIALLY OVERLAPPING DOMAINS

Chapter 5
Neuro-symbolic Fine-grained Entity
Typing for Domain Specialization

In this Chapter, Domain Adaptation in Fine-grained Entity Typing is faced with
techniques to exploit knowledge on source domain while extending the type coverage
in target domain (see Section 3.2, in particular subsection 3.2.4). The problem
was already described in user stories (Section 3.2.1) and formalized in Chapter 3.
The main intuition is to exploit relations between type vocabularies from source to
target domain, taking advantage of a FET model trained on a source domain to
extract information on source domain and transfer them on the target using explicit
knowledge expressed through mappings and implemented in different ways. This
intuition differs from the subsymbolic transfer learning approach that transfers
a pretrained encoder between tasks, trusting its ability of extracting important
information across tasks without considering the interpretation of this information,
that are directly used as subsymbolic representations.

In this chapter, first a NeuroSymbolic Integration framework, KENN [DS19],
is introduced and described, then its adoption as explicit knowledge enhancer in
a FET model is detailed. KENN is used to exploit type vocabularies relations in
order to influence the predictions of target types with evidences on source types,
as described in subsection 3.2.4.

5.1 Knowledge Enhanced Neural Network

Knowledge Enhanced Neural Networks (KENN) [DS19], is a NeuroSymbolic Inte-
gration framework that modifies the predictions of a neural network using fuzzy
logic clauses. The main intuition is to define logical rules that involve the classes of
a classification task, relying on external or on human-curated knowledge. KENN

67

68CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.1: (top) The knowledge enhancement module is placed on top of the Entity
Typing Network, KENN exploits each clause Ci producing a variation vector ∆i, ∆s
are summed obtaining the vector ∆ that expresses a variation for each type. ∆ is
then summed to predictions YH , obtaining the enhanced predictions Y ′

H . (bottom)
Each clause is exploited by a Clause Enhancer that: selects the preactivations of
types involved in the clause and invert the sign of preactivations for types negated
in the clause using the function ϕci , computes the enhancement using softmax

to approximate Gödel t-conorm, invert the enhancement value according to the
negation in the clause and adds 0 for the other types using ϕ′

ci

evaluates the satisfaction of these rules during training and modifies the network
predictions to increase the satisfaction of them. This process affects backpropaga-
tion, since knowledge enhanced predictions are involved in the loss computation.
An example of logical rule can be instances that belong to class A, also belong to
class B, that can be traduced with the logical proposition A → B, or the equiva-
lent ¬A ∨B. This proposition is useful to express hierarchical relations between
classes in multilabel problems (e.g., “all actors are persons”), thus can be used in
in-domain FET to include the hierarchy in the training process (e.g., “all instances
of class FIGER.person/actor are also of class FIGER.person”) and cross-domain
FET to express equivalence, generalization, specialization or disjunction mappings
(e.g., “all instances of class FIGER.person are also of class BBN.person”). A more
accurate description is given in Section 5.3.

While NeuroSymbolic approaches [Bad+22; Mar+20; DGS17; DS19; Seo+21]
(including KENN) have been used in similar multilabel classification tasks, they
have not been applied to named entity classification. To apply KENN to FET,
different ways to encode hierarchical structures into clauses are explored, and a
new multi-loss function to improve training is designed.

5.2. ENCODING A HIERARCHY FOR FET 69

5.1.1 How does KENN work?

KENN injects external knowledge expressed as clauses: universally quantified
disjunctions of literals (atomic formulas or their negations). In this thesis, only
clauses composed by unary predicates, that shares one variable are considered. For
brevity,

∨
L denotes the clause

∨
L(x). Formally, the Gödel t-conorm max is used

to represent the observance of a clause; this is approximated by the differentiable
softmax function to allow learning.

In KENN, logical rules are expressed using the equivalence A(x) ⇒ B(x) ≡
¬A(x) ∨ B(x). These disjunctions are interpreted via a Gödel t-conorm which
corresponds to the max operator. The logical knowledge is injected into the
architecture of a neural model as shown in Figure 5.1.

KENN as a composition of Clause enhancers

KENN promotes the adherence to clauses through a set of Clause Enhancers (CE),
one per clause, which are later combined. Figure 5.1 shows an example for the
clause ¬Politician∨Person. For each clause ci, the i-th CE produces a variation
∆ci of the confidence scores Y defined by the equation

∆ci = ϕ′
ci
(wci · softmax(ϕci(Y))). (5.1)

The function ϕci filters out the predicates not involved in ci and changes the signs of
scores of predicates negated in ci; wci is the clause weight expressing the impact of
the CE on the enhanced prediction (a higher weight yields a larger variation). The
value of each wci is initialized before training and can optionally be set as learnable.
The function ϕ′

ci
changes the signs of the variations according to negated predicates

in ci and expands them back to the original dimension of YH filling with 0s the
variations for the predicates not involved in ci. Each clause-specific variation vector
∆ci contributes to the update of the final prediction vector Y ′

H := YH +
∑

ci∈C ∆ci .
Hence, the scores for types in the clause influence each other; this influence works
in both directions (see Figure 5.1).

5.2 Encoding a hierarchy for FET

The type hierarchy of a FET datasets is often a forest-shaped set of types. S ≺ T
expresses that S is direct subclass or subtype of T (instances of S are also instances
of T). The most natural encoding of the relationship S ≺ T as a predicate logic
formula is ∀x(S(x) → T (x)), which corresponds to the clause ¬S(x) ∨ T (x) (from
now on simplified as ¬S ∨ T).

To model the hierarchical relations between types, three encoding techniques
(exemplified in Figure 5.2) are proposed:

70CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.2: Bottom-up, Top-down, Hybrid and Horizontal KBs.

• The Bottom-up strategy is defined based on the open world assumption
and consists in transforming each pairwise relationship S ≺ T into a bottom-
up clause ¬S ∨ T . For example, ¬Politician ∨ Person express that every
instance of Politician is an instance of Person).

• The Top-down strategy is defined based on the close world assumption.
Given a type T (e.g., Person) with n subtypes Si, (e.g., Politician, Actor),
the top-down clause ¬T∨S1∨. . .∨Sn specifies that an instance of T (Person)
must be an instance of at least one of its subtypes Si (Politician, Actor,
etc.).

• The Hybrid strategy is defined as the collection of all the top-down and
bottom-up clauses. Even if it seems redundant, it is interesting assessing
whether combining the signals from both strategies can bring additional
benefits to the learning process.

• The Horizontal strategy is defined by exploiting negative dependencies in
the form S → ¬T , this is traduced in the clause ¬S ∨¬T that is not satisfied
only if both S and T are predicted. This strategy is useful to avoid joint
prediction of disjoint types e.g., avoiding the joint prediction of Person and
Country for the same entity.

Although the top-down and the bottom-up KBs represent the same hierarchical
structure, the latter is more precise than the former. If the model is confident
about a given type, bottom-up clauses propagate this certainty towards the root
of the hierarchy, while top-down clauses only guarantee that one of the subtypes
is appropriate, but do not express which one. The reason, of course, is the tree
structure, where each type has only one parent, but potentially many descendants.

Note that in all KBs (bottom-up, top-down, hybrid and horizontal) the first
term of a clause (i.e. the antecedent in the logic formula) is always negated, thus

5.3. KENN FOR FET (IN-DOMAIN) 71

bottom-up clauses will always lead to negative δ on subtypes, while top-down clauses
will always lead to negative δ on supertypes. The remaining terms always receive
a positive δ. In the horizontal KB, both terms receive a negative δ, this is not a
problem since if types preactivations are unbalanced (i.e., the model prefers a type
instead of the other), one of the δs became 0, due to the usage of the softmax.

Horizontal KB is particularly useful in domain adaptation scenarios, since
horizontal clauses can inject in the target domains the preactivation of disjoint
source type that are not present in the target domain; this can be helpful since
this is an external information to the target domain. For brevity, each strategy is
identified with the KB it produces, and call them Bottom-up KB, Top-down
KB, Hybrid KB, and Horizontal KB.

5.3 KENN for FET (in-domain)

Incorporating the hierarchy in the information used to train a FET model is an
intuition present in FET literature (Section 2.2). Most of the proposed solution
employs an hard-encoding of the hierarchy, with dedicated architecture that predict
on different hierarchical levels or by filtering the predictions according to the
hierarchy and single-path assumptions (a prediction is correct only if all predicted
types lies in the same branch of the hierarchy). With a dedicated architecture,
hierarchical information are often represented with subsymbolic embeddings that
are produced by the model, with a post-hoc filtering the model does not have
a perception of the hierarchy, since it is free to produce wrong prediction that
will be fixed. Methods that do not incorporate hierarchy often approximate the
hierarchical relations between types using cooccurrence in training data as a proxy,
since in most of FET dataset the annotation of a type always implies the annotation
of its ancestors (e.g. an entity annotated with FIGER.person/artist is always
annotated also with FIGER.person).

The intuition of using KENN to explicitly represent the hierarchical relations
between types is to avoid the necessity by the model of learning these relations
during training, having this information from the first epoch can speed up the
training and let the model to extract more sophisticated information useful to solve
the FET task. Moreover, the differentiability of KENN let the encoder to adapt its
behavior to the presence of a hierarchical enhancement, possibly adding a degree
of freedom since the prediction does not rely anymore only on a neural classifier.

5.3.1 Research Questions

The usage of KENN in in-domain FET raise some general questions about the
injection of hierarchy-related information in the FET model:

72CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Question 1: Does the usage of KENN to encode the hierarchy speed up the
training?

Question 2: Does the usage of KENN to encode the hierarchy increase the
performance?

Question 3: How does the different parametrization of KENN (kb encoding,
initial weight, learnable weight, loss function) impact training and the behavior of
the FET model?

5.3.2 Experimental Setup

The entire network (Figure 5.1) consists in a KENN module that implements a KB
on-top of the ET Network described in Section 4.3.4. The encodings exposed in
Section 5.2 are experimented in a classic FET setup where a network is random
initialized and trained with supervised paradigm. The hyperparameters are the
same as in Section 4.3.5, plus the KENN hyperparameters:

• KB encoding: bottom-up, top-down, or hybrid, all encodings are experi-
mented.

• Clause Weight initialization: 0.5, 1, 2, different initial weights are used
in order to measure the impact of a different initialization values and the
evolution of the weights during training.

• Learnable Weight: True or False, clause weight is both fixed or learnable
during training.

• Loss Function: Binary Cross-Entropy or Multiloss setup with Binary Cross-
Entropy, loss evaluated only on the enhanced predictions or both before and
after the enhancement.

5.3.3 In-domain FET with KENN - Results

Preliminary experiments on the usage of KENN in in-domain FET were conducted
to inspect the differences between a FET model without KENN that has to learn
the hierarchical dependencies between types and a FET model with KENN that
knows hierarchical dependencies from the first epoch. For these initial experiments
the horizontal KB was ignored, since it is designed to transfer the disjunction
between source types and target types.

5.3. KENN FOR FET (IN-DOMAIN) 73

(a) Distribution of clause weights at the
end of the training with BCE on enhanced
prediction Y ′

H

(b) Distribution of clause weights at the
end of the training with BCE on prekenn
predictions Y and BCE on enhanced pre-
diction Y ′

H

Figure 5.3: Comparison of final clause weights optimized by minimizing BCE only
on enhanced predictions (left) or both on pre-KENN predictions and on enhanced
predictions (right) with the other hyperparameters set with the same values. The
optimization of both predictions encourage the usage of KENN clauses only if they
are needed to correct a prediction.

To train the ET model with KENN, BCE multiloss is introduced: BCE
multiloss is a variation of the BCE to simultaneously optimize YH and Y ′

H when
clause weights are learnable parameters. During preliminary experiments, the
adoption of this loss favors the optimization of clause weights (see Figure 5.3). This
is because a type t that is correctly predicted in YH , do not need to be enhanced,
thus the weights of the clauses referring to t will decrease. Conversely, if KENN is
needed to correctly predict t, the weights will not be lowered. The final loss is the
average of BCE on YH and Y ′

H .

Preliminary experiments result in a negative evidence, summarized by Fig-
ure 5.4: FET models with KENN have an initial boost in macro F1-score averaged
over examples with respect to models without KENN. This boost is independent on
the KB and is positively correlated with the initial clause weight (in the experiment
it ranges values in {.5, 1, 2}, i.e., the higher the initial weight, the greater the boost.
However, this boost vanishes over epochs, leading to models with the same perfor-
mance. This is probably due to the fact that hierarchical dependencies between
types are intrinsically represented in the training dataset, since all annotations
respect the hierarchy, i.e., if a type is present in an annotation, its ancestors in the
type hierarchy are always present in the annotation; thus during the training even
a FET model without KENN learns these dependencies.

Answering to research questions, this preliminary experiment suggests that
KENN can be useful in scenarios with a limited amount of data, where the observed
initial boost may help the model and speed up the training. Moreover, both the
initial boost and the differences in final clauses’ weights show that KENN is able

74CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.4: Differences in F1 during the training of a FET model with KENN and
the same FET model without KENN. KENN is used with bottom up (green), top
down (yellow) or hybrid KB. Clauses weight is initialized with values .5 (left), 1
(center) and 2 (right). Independently by the KB, KENN based network have an
initial performance boost that depends on the initial clause weight, however the
boost disappear over epochs.

to inject explicit type dependencies in the network. These evidences, found for
each parametrization of KENN with BCE multiloss, are a key feature to handle
the domain differences in a domain adaptation scenario, as explained in Chapter 3.

5.4 Specialization of a FET model

In this section, techniques for model specialization are proposed and compared.
Model specialization is a use case presented in the user stories in Section 3.2.1
where a trained FET model needs to be specialized to recognize subtypes of already
known types and only a limited quantity of annotated data is available to adapt
the FET model. The key intuition is to exploit knowledge about supertypes to
favor the learning of new target subtypes. For example, given a network that can
recognizes locations, how can this ability be used to improve the recognition of
cities and countries?

5.4.1 Research Questions - Specialization of a FET Model

Question 1: How does a FET model can be specialized to recognize subtypes
of already known types by exploiting the hierarchical relations in a low-resource
scenario?

Question 2: Does the injection of explicit hierarchy representation during training
is more effective than hierarchy-driven initialization of a specialized neural classifier?

5.4. SPECIALIZATION OF A FET MODEL 75

5.4.2 Base Specialization Network

Additional classification layer: Given a trained FET model with the architec-
ture shown in Figure 2.3, new classification neurons are needed to learn the new
target types. These neurons are gathered in a single classification layer.

Additional classification layer smart initialization: In the specialization
scenario, the classification layer of the trained FET model can be used to smartly
initialize neurons in the additional classification layer (i.e., the layer used to classify
specialized types). Given a source type s and n specialized types t1, ..., tn such
that ∀i ∈ [1, n] t1 ≺ s, the parameters of the ti’s neuron are initialized with the
neuron’s parameters of s, such that in the first step the predictions on s will match
the predictions on t1, .., tn. This is an intuitive behavior and shown to be a useful
setup both for positive and negative predictions.

Batch composition: Since the added classification layer must be trained to
recognize the presence/absence of each specialization type, each training batch
must be heterogeneous. Batches exclusively composed of examples annotated with
specialization types may lead the model to always predict at least a specialization
type. In addition, each training batch contains an equal number of examples for
each specialization type.

Inference: In the specialization scenario, it is fundamental that predictions about
types in H remain the same before and after the specialization. ThresholdOrMax
is first applied to Y ′

H then specialization types are inferred using a conditioned
ThresholdOrMax : the type with the highest confidence score in Y ′

s is inferred only
if it is also the highest in Y ′.

5.4.3 Experimental Setup

Source domain and trained FET model: To experiment with specialization
scenario it is necessary to define a source and a target domain. Starting from the
FET benchmark datasets presented in Section 4.3.1, types with maximum depth

(2 for FIGER and BBN, 3 for OntoNotes) are collected by their father forming
families (9 for BBN, 22 for FIGER, and 11 for OntoNotes). All types with depth
< maximum depth are considered part of the source domain, so the FET model
trained on source domain will be able to predict them.

Source domain dataset creation: Starting from the source domain types
(explained in the previous paragraph), each example of the original training set is
filtered and only the source domain types are kept.

76CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Transplanted test specialization dataset: Due to the imbalance of types in
the original test sets, new test sets are created by transplanting examples from the
training set in which each type has at least 30 examples.

Few-shot FET model specialization: A common real case is to have low
quantity of available data for very specific types. To mimic this scenario, 5-shots,
10-shot and 20-shot datasets are created for each family: for each type in the family,
k examples are randomly selected from the original training set and are used in
the specialization training set, other randomly selected k examples are used in the
specialization dev set.

5.4.4 Experimented specialization techniques

Different techniques are experimented in this scenario:

Classifier: the base specialization network explained in Section 5.4.2 is imple-
mented with standard classification neurons both for the training in source domain
and for the training in target specialization domain.

Box embedding classifier: Box Embeddings [Das+20; Ono+21] were proposed
in FET literature due to their expected ability to exploit implicitly model hierarchi-
cal relations between coarse and fine grained type. A classifier with box embeddings
optimized during training is trained on the source domain. The initialization heuris-
tics explained in Section 5.4.2 are used to initialize the additional specialization
box embedding based classification layer.

KENN classifier: relying on strategies defined in Section 5.2, hierarchical re-
lations between new specialized types and their father in the source domain are
exploited creating bottom up, top down, and hybrid KBs. Horizontal KB
instead is used to link the new subtypes to all disjoint in the hierarchy types.

KB creation:

• bottom up, top down, and hybrid KBs are automatically created from
the given hierarchy: for each specialization type ti ∈ t1, ..., tn such that
∀i ∈ [1, n] ti ≺ s, a bottom up clause ¬ti ∨ s is created; for each family a
single top down clause ¬s∨ t1∨ ...∨ tn is created, the hybrid KB is the union
of bottom up and top down.

• horizontal KB instead is critical to create, since the disjunction is not
always implied by the hierarchy. For example, in BBN there are the types

5.4. SPECIALIZATION OF A FET MODEL 77

Dataset
Trained
Instances

#Families #Techniques K-Shots #Seeds Specialization Techniques

BBN 486 9 6 5/10/20 3
Bottom Up, Top Down, Hybrid,

Horizontal, Classifier, Box

FIGER 1188 22 6 5/10/20 3
Bottom Up, Top Down, Hybrid,

Horizontal, Classifier, Box

OntoNotes 495 11 5 5/10/20 3
Bottom Up, Top Down,
Hybrid, Classifier, Box

Table 5.1: Details on trained instances for the experiments on specialization
scenario. Due to the high quantity of experiments, results and plots are partitioned
in Section 5.4.5, where general evidences are described, and in Section 5.4.5, where
punctual results on Datasets × K-shots combinations are described.

BBN.LOCATION and BBN.GPE (geo-political entity); due the slight semantic
difference between these types, they often share entities. For this reason,
disjunction is computed on the train set and only those types which never
appear in the same annotation are considered disjoint. Note that in OntoNotes
no types satisfy this condition, thus Horizontal KB is not created with this
dataset.

5.4.5 Results

In this sections results of the experiments on techniques to specialize FET models
are discussed. Due to the massively quantity of trained instances (details in
Table 5.1) this section contains general evidences and observed patterns, while
Section 5.4.5 contains the punctual comments on Datasets × K-Shots combinations.

Plots

Three kinds of plots are used to visualize the behavior of the different experi-
mented specialization techniques: barplots (Figures 5.5, 5.6, and 5.7), histograms
(Figures 5.8, 5.11, and 5.12), and stacked barplots (Figures 5.9, 5.13, 5.10, and
5.14).

Barplots: are used to compactly compare average performance of all techniques.
Each barplot shows the F1-score grouped by K-shot value (5/10/20), family (9 in
BBN, 22 in FIGER, or 11 in OntoNotes) and colored by specialization technique.
This plot is useful to compare the specialization techniques and shows
trends across families and K-shots values.

78CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Stacked Barplots: are used to count on how many types for each family a
KENN-based technique performed better than a non-KENN based technique. Each
barplot shows the count grouped by K-shot value (5/10/20), family (9 in BBN,
22 in FIGER, or 11 in OntoNotes) and colored by specialization technique. An
additional grey bar show the total number of specialized subtypes for a given
family. This plot is useful to visualize the type coverage of the enhancement
obtained by a KENN-based technique. Each bar contains also the average
improvement/worsening percentage by the KENN-based technique with respect to
the non-KENN-based technique.

Histograms: show the distributions of F1-score difference between KENN-based
instances (Bottom up, Top Down, Hybrid, and Horizontal) and non-KENN based
instances (Classifier and Box). Histograms are grouped by K-Shots and KENN
strategy. Each bar in the histogram represents the count of instances for which
a KENN-based instance has a difference of F1-score on a specialization type in
the range expressed by x-axis. While barplots and stacked barplots group types
by family, this type of plot is useful to visualize differences between models’
performance on types level.

General Results

Table 5.2 summarizes performance of the different specialization approaches experi-
mented. The F1-scores computed by averaging performance on specialization types
for each dataset and specialization approach are reported in the table, providing a
general view of the entire specialization experimentation. From the table it can
be seen that independently on the metrics, on the dataset, and on the value of k,
all KENN-based approaches outperform the Box-based specialization approach. In
the same way, except one case (Top Down in 20-shot OntoNotes), all KENN-based
appraches outperform also the Classifier-based specialization approach. This
indicates that KENN effectively propagate the information from type to subtype,
thus being helpful for the specialization process. The high value of STD is related
to the large performance difference between families (observable in the barplots,
Figures 5.5, 5.6, and 5.7).

Barplots (Figures 5.5, 5.6, and 5.7) show that independently of KENN encod-
ing strategy, the usage of KENN to propagate information from known source
types to new target types results in a general performance increment with re-
spect to simple classifier or box; moreover, the less the examples the more
the increment. This evidence can be seen focusing on the first column of Fig-
ures 5.5, 5.6, and 5.7. Besides for 4 families out of 41, in the first column
of the images can be seen the increment of at least one KENN-based tech-
nique with respect to classifier and box, the only families in which this is

5.4. SPECIALIZATION OF A FET MODEL 79

5-shot 10-shot 20-shot
F1 STD F1 STD F1 STD

BBN

Box .337 .213 .388 .243 .413 .258
Classifier .356 .144 .418 .179 .507 .239
Bottom up .588 .194 .622 .188 .654 .173
Top down .5 .199 .534 .21 .565 .179
Hybrid .591 .195 .595 .172 .645 .189

horizontal .581 .183 .64 .173 .64 .166

FIGER

Box .246 .212 .259 .233 .43 .32
Classifier .303 .234 .343 .25 .519 .307
Bottom up .616 .286 .666 .288 .688 .286
Top down .481 .261 .577 .297 .615 .294
Hybrid .572 .285 .65 .29 .672 .284

horizontal .605 .289 .658 .284 .673 .269

OntoNotes

Box .263 .185 .33 .242 .419 .27
Classifier .329 .197 .437 .249 .62 .223
Bottom up .575 .233 .598 .217 .633 .205
Top down .49 .231 .531 .219 .565 .216
Hybrid .565 .248 .6 .231 .626 .222

Table 5.2: Macro-F1 averaged over all types involved in the specialization experi-
ment. For each dataset, the metric computed for 5/10/20-shot sampling is given.
Performance of each specialization technique are reported with standard deviation.
Bold highlights the best specialization technique for a given dataset and a given
k-shot dataset.

80CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

not true are: FIGER.art, FIGER.medicine, FIGER.metropolitan transit, and
OntoNotes.location/transit, note that performance for these types are very low
for all techniques, FIGER.medicine excepted. From histograms it can be observed
that Box is often the worst model, with elevated distances from other models. This
may indicates that a complex model like a classifier based on box embeddings may
need more data than the quantity available in a few shot-setup. A last emergent
pattern is that the Top down KB is often the worst KENN-based technique, this
may indicate that a positive delta divided by all types is not useful since the
prediction of all new types receives a boost and the model still need to learn how
to discriminate between them.

Histograms (Figures 5.8, 5.11, and 5.12) show that the already discussed general
performance increment over families highlighted with barplots is spread between
new types and is not instead due to single types in families on which models
overperforms. Moreover, the average magnitude of the improvement is higher in
5-shot than in 20-shot (Figure 5.8).

Lastly, stacked barplots (Figures 5.9, 5.13, 5.10, and 5.14) organize and quantify
the general improvement on types observed with histograms, from them it can be
seen how for the majority of families, most of subtypes are better recognized by
applying a KENN-based technique than by smartly initializing a neural classifier
or a box embedding classifier.

5.4. SPECIALIZATION OF A FET MODEL 81

Figure 5.5: Barplot showing the F1-scores grouped by K-shot value (5/10/20) and
BBN family, colored by specialization technique. In the majority of the cases, a
KENN-based technique is effective to increase the F1 with respect to Classifier

and Box-based techniques

82CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.6: Barplot showing the F1-scores grouped by K-shot value (5/10/20) and
FIGER family, colored by specialization technique. In the majority of the cases, a
KENN-based technique is effective to increase the F1 with respect to Classifier

and Box-based techniques

5.4. SPECIALIZATION OF A FET MODEL 83

Figure 5.7: Barplot showing the F1-scores grouped by K-shot value (5/10/20) and
OntoNotes family, colored by specialization technique.

84CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.8: Histogram showing the distribution of the differences between F1 of
KENN-based techniques and Classifier-based technique for each type involved
in the specialization averaged by sampling seed used to create k-shot dataset.
k ∈ {5, 20}. All datasets are reported: BBN (top-left), OntoNotes (top-right),
and FIGER (Bottom). Difference is mostly positive, showing that KENN-based
techniques perform better than Classifier-based technique in most of the types.
The less the data used (k = 5), the more the increment caused by KENN-based
techniques.

5.4. SPECIALIZATION OF A FET MODEL 85

Figure 5.9: Stacked barplot showing the count of subtypes in each family for
which a KENN-based technique (colored) perform better than the Classifier-based
technique. The grey box represent the total number of subtypes for a given family.
BBN is showed above, OntoNotes is showed below. In BBN, KENN-based techniques
perform better than Classifier-based technique on the majority of types in each
family.

86CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.10: Stacked barplot showing the count of subtypes in each FIGER family
for which a KENN-based technique (colored) perform better than the Classifier-
based technique. The grey box represent the total number of subtypes for a given
family. In FIGER, KENN-based techniques perform better than Classifier-based
technique on the majority of types in each family.

5.4. SPECIALIZATION OF A FET MODEL 87

Specific Results

In this subsection, the general evidences described in the previous subsection are
analyzed by datasets.

Specialization in BBN. Figures 5.5, 5.8, 5.11, 5.9, and 5.13 describe the
specialization experiment on BBN. In particular:

• from the barplots (Figure 5.5) it can be seen that for all families, KENN-based
specialization approaches outperform Classifier and Box based specializa-
tion approaches in 5-shot experiments; in 10-shot and 20-shot experiments
the best specialization approach is always based on KENN, except for the
family of BBN.SUBSTANCE in 20-shot, where the best specialization approach
is the Classifier-based. Lastly, Top-down KB is often the worst KENN-based
specialization approach.

• from the histograms (Figures 5.8, and 5.11) it can be seen how the F1-score
on single types obtained with KENN-based specialization approaches tends
to be positive in the majority of the cases, and it is less evident with more
data (distributions for 20-shot are more concentrated around the 0). This
phenomenon is less visible in BBN than in other datasets.

• from the stacked barplots (Figure 5.9 and 5.13) it can be seen how KENN-based
specialization techniques outperform Box-based specialization technique on
almost all types involved in the specialization experiments.

Specialization in FIGER. Figures 5.6, 5.8, 5.11, 5.10, and 5.14 describe the
specialization experiment on FIGER. In particular:

• from the barplots (Figure 5.6) it can be seen that in the majority of the
cases KENN-based specialization approaches favor the specialization, in partic-
ular Bottom up or Horizontal are often the best KBs to inject. Some families
shows to be more difficult, in particular FIGER.art, FIGER.metropolitan transit,
and FIGER.visual art. A particular case is given by FIGER.medicine, where
the classifier and the box-based specialization approaches shown to be
better than KENN-based ones independently of the values of k; this is the only
family on which this happened in the entire specialization experiment. Lastly,
Top-down KB is often the worst KENN-based specialization approaches.

• from the histograms (Figures 5.8, and 5.11 it can be seen how the F1-score
on single types obtained with KENN-based specialization approaches tends
to be positive in the majority of the cases, and it is less evident with more

88CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

data (distributions for 20-shot are more concentrated around the 0). This
phenomenon is more visible in FIGER than in other datasets and it is in
accord with results in Table 5.2, where FIGER was the dataset with the
highest difference between KENN-based and non-KENN-based specialization
approaches.

• from the stacked barplots (Figure 5.10 and 5.14) it can be seen how KENN-based
specialization techniques outperform Classifier and Box-based specializa-
tion approaches on almost all types involved in the specialization experiments.
Again, it can be seen how in FIGER.medicine and FIGER.metropolitan transit

KENN-based specialization techniques were not effective.

Specialization in OntoNotes. Figures 5.7, 5.8, 5.12, 5.9, and 5.13 describe the
specialization experiment on OntoNotes. In particular:

• from the barplots (Figure 5.7) it can be seen that in the majority of the cases
KENN-based specialization approaches favor the specialization.

• from the histograms (Figures 5.8, and 5.12 it can be seen how the F1-score
on single types obtained with KENN-based specialization approaches tends to
be positive in the majority of the cases, and it is less evident with more data
(distributions for 20-shot are more concentrated around the 0).

• from the stacked barplots (Figure 5.9 and 5.13) it can be seen that in many
cases only a portion of the subtypes in a family benefits of the usage of
KENN-based specialization techniques. However when a family benefits from
the application of KENN, its improvement is very high, as can be seen in
Table 5.2 and in barplots.

5.4. SPECIALIZATION OF A FET MODEL 89

Figure 5.11: Histogram showing the distribution of the differences between F1 of
KENN-based techniques and Classifier-based technique (first row) or Box-based
technique (rows 2-4) for each type involved in the specialization averaged by sam-
pling seed used to create k-shot dataset. k = 10 for comparison with Classifier,
k ∈ {5, 10, 20} for comparison with Box. BBN (left), and FIGER (right) are re-
ported. Difference is mostly positive, showing that KENN-based techniques perform
better than Classifier and Box-based technique in most of the types. The less
the data used, the more the increment caused by KENN-based techniques.

90CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.12: Histogram showing the distribution of the differences in OntoNotes
between F1 of KENN-based techniques and Classifier-based technique (top left) or
Box-based technique (top right, bottom) for each type involved in the specialization
averaged by sampling seed used to create k-shot dataset. k = 10 for comparison
with Classifier, k ∈ {5, 10, 20} for comparison with Box. Difference is mostly
positive, showing that KENN-based techniques perform better than Classifier and
Box-based technique in most of the types. The less the data used, the more the
increment caused by KENN-based techniques.

5.4. SPECIALIZATION OF A FET MODEL 91

Figure 5.13: Stacked barplot showing the count of children in each family for which
a KENN-based technique (colored) perform better than the Box-based technique. The
grey box represent the total number of children for a given family. BBN is showed
above, OntoNotes is showed below. Both in BBN and OntoNotes, KENN-based
techniques perform better than Box-based technique on the majority of types in
each family.

92CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Figure 5.14: Stacked barplot showing the count of children in each FIGER family
for which a KENN-based technique (colored) perform better than the Box-based
technique. The grey box represent the total number of children for a given family.
KENN-based techniques perform better than Box-based technique on the majority
of types in each family.

5.5. CONCLUSIONS ON THE SPECIALIZATION OF FET MODELS 93

5.5 Conclusions on the Specialization of FET

Models

The specialization of a FET model is often needed in specific domains, where there
is a special interest in recognizing subtle differences between types (for example
recognizing different jobs or specific kinds of products). This specialization scenario
is particularly tricky when low quantity of annotated data is available, but this
it is also very common situation, since annotations on specific types require more
sophisticated annotation policies and often more qualified annotators. Different
model specialization techniques were proposed and experimented. Answering to
research questions, experiments show that injecting the hierarchy only to smartly
initialize the classification layer of the new types is not as effective as injecting the
hierarchy during training with a neuro-symbolic approach. KENN shown to be
useful in increasing the performance of model on all datasets and on the majority
of the families, showing that exploiting hierarchical type dependencies is crucial for
model specialization.

94CHAPTER 5. NEURO-SYMBOLIC FINE-GRAINED ENTITY TYPING FORDOMAIN SPECIALIZATION

Chapter 6
NeuroSymbolic Fine-grained Entity
Typing for Full-fledged Domain
Adaptation

In this Chapter, techniques for Full-fledged adaptation of a FET model are proposed
and compared. Full-fledged adaptation of a FET model is a use case presented
in the user stories in Section 3.2.1 where a trained FET model has to be used in
a new domain, with some equivalent types, some specializations and some new
types. Like in the specialization experiments, the key intuition is to exploit model
capabilities on source domain ∆S to favor the training in the target domain ∆T .
The expected behaviors based on relations between types in source and target
domain are the following:

• given two equivalent types s ∈ S and t ∈ T such that s ≡ t the prediction
for t matches the prediction for s

• the prediction on τ ≺ t, subtype of t ≡ s, is conditioned by the prediction on
s. The higher the prediction on s, the higher the prediction on τ , the lower
the prediction on s, the lower the prediction on τ ,

6.1 Research Questions - Full-fledged Adaptation

of a FET model

Question 1: How does relations between source types and target types can be
used to favor the adaptation of a FET model to a low-resource target scenario?

95

96CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

Question 2: How does hierarchical relations between target types can be used
to favor the adaptation of a FET model to a low-resource target scenario?

Question 3: How does the quantity and the variety of types in the source domain
impact the adaptation of a FET model to a low-resource target scenario?

6.2 Adapt a FET model

The adaptation of a FET model in a target domain is conditioned by the initial-
ization of the neurons used for the target types and by the techniques adopted to
propagate the information from the source to the target domain during training.

6.2.1 Smart initialization

Like the procedure adopted in the specialization scenario, a smart initialization
can be applied to some types. In particular, given an equivalence relation s ≡ t,
the neuron of t is initialized with parameters from neuron of s. This choice is
more conservative than the one adopted in the specialization scenario, where ≺
relations were exploited. This difference is motivated by experimental results, a
more conservative choice is better in full-fledged domain adaptation scenario. If
linear layers are present between the encoder and the classification layer, these
linear layers are frozen and used also for the additional classification layer. In this
way, the two classifiers will classify from the same embedding space.

6.2.2 KENN for full-fledged domain adaptation

If smart initialization is used, during the first steps of training in the target
domain, the expected behavior of KENN implementing Bottom up, Top Down, or
Hybrid KB is to act in the same way as shown in the specialization scenario, that
is, modifying the prediction by injecting the hierarchy. Since only equivalence
relations are used in the smart initialization, the effect of hierarchy injection is, in
the first steps, to propagate the knowledge from father types in source domain to
their specialization in target domain (due to the initialization); during the training
the hierarchy injection maintains linked the predictions of hierarchy-related types,
helping their joint prediction.

Cross KB instead is used to persist the equivalence from the source domain
to the target domain during training, equivalence relations are used to link source
types to target types, formally s ≡ t.

6.3. EXPERIMENTAL SETUP 97

6.3 Experimental Setup

The same FET benchmark datasets (Section 4.3.1) used in the previous experiments
are paired and used as source-target pairs, obtaining six pairs. For each source-
target pair, few-shot experiments are carried on, to mimic the necessity of a trained
model in a low-resource target domain.

Few-shot dataset creation: Few-shot datasets are built from the original
training datasets by selecting k examples for each type at max depth, k ∈ [5, 10, 20].
For each selected example its annotation is filtered by keeping only one max depth

type and its ancestors. In this way, exactly k examples for each max depth type
are selected, for each non-max depth type exactly k ×#descendant are selected.
The validation set is composed in the same way, the test set instead is the original
test set.

Training on source domain: an instance of the FET model explained in
Section 4.3.4 is trained on each dataset. These three models are used as starting
point to perform the adaptation process.

6.3.1 Experimented domain adaptation approaches

In this section, the trained nine adaptation techniques are proposed to adapt a
trained FET model to a target domain.

Additional classifier: an additional classifier initialized with smart initialization
(explained in Section 6.2), is trained on the k-shot target datasets. This setup
useful to understand the benefits of the source domain both in terms of trained
encoder and smart initialization.

Literature baseline: L2AWE [Noz+21] has shown to be useful in NER domain
adaptation with a limited quantity of types (a dozen circa), this approach was
re-implemented using the FET model trained on source domain. Its encoding
based on BERT and Adapters is paired with predictions on source domain, this
concatenated input is used to fed a linear classifier trained on the k-shot target
datasets.

KENN in target domain: starting from the additional classifier, Bottom up,
Top Down, or Hybrid KB are injected using KENN, as explained in Section 6.2.
These models are useful to understand the effect of using KENN with a smart
initialized classifier.

98CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

Cross KENN: starting from the additional classifier, Cross KB is injected using
KENN, as explained in Section 6.2. This model is useful to understand the effect
of the propagation of predictions from source domain to target domain.

Cross+ KENN: the KBs of the previous setups (KENN in target domain and
Cross KENN) are merged and used while training on the target domain. This
model is useful to understand the effect of combining both KB.

The proposed domain adaptation approaches start from the same FET model
trained on a source domain. During the training on the target domain the encoder
is kept frozen to (i) avoid forgetting of the source domain knowledge, (ii) understand
if the encoder is able to produce encodings that reflect the differences between
entity mentions of types that may be unseen (i.e., types not present in the source
domain), and (iii) maintaining the availability of predictions on source domain types,
necessary for L2AWE, Cross-domain KENN and Cross-vertical KENN. Moreover, a
baseline approach is proposed: a FET model (Section 4.3.4) directly trained on the
k-shot dataset. This baseline is useful to understand the performance obtainable
by the model using only the limited target data.

Summary: for each source-target pair, one in-domain model is trained (case (i)
of Baseline models) and nine cross-domain models (case (i) of Baseline models,
L2AWE, three KENN in target domain, one cross-domain KENN, and three Cross-
domain KENN) are trained. Each model is trained using three different k-shot
sampling, obtaining a total of (1 + 9) ∗ 3 = 30 trained models. Since source-target
pairs are 6, the total trained models are [(9 ∗ 6) ∗ (1 ∗ 3)] ∗ 3 ∗ 3 = 513, i.e. nine
cross domain models for each pair (9 ∗ 6), one in-domain model for each target
domain (1 ∗ 3), three k values (∗3), and three k-shot sampling seeds (∗3).

6.4 Results

Tables 6.1, 6.2,6.3, 6.4, 6.5, 6.6, 6.7 6.8, and 6.9 show the results of k-shot full-
fledged domain adaptation experimentation. Each table resumes the performance
of 18 domain adaptation techniques applied to adapt a FET model to a target
domain using k examples for each target type as training dataset and a different
set of k examples for each target type as validation dataset.

6.4.1 Results with BBN as target domain

Tables 6.1, 6.2,6.3 resume the performance of model trained respectively on the
5-shot, 10-shot, and 20-shot datasets built from the training set of BBN and tested
on the original test set of BBN.

6.4. RESULTS 99

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

BBN - .295 .162 .209 .296 .179 .223 .143 .088 .109

FIGER Additional classifier .698 .579 .633 .687 .58 .629 .513 .547 .53
FIGER L2AWE .567 .379 .454 .593 .415 .488 .474 .397 .432
FIGER KENN bottom up .699 .593 .641 .689 .596 .639 .538 .551 .544
FIGER KENN top down .704 .611 .654 .707 .612 .656 .487 .601 .538
FIGER KENN hybrid .728 .64 .681 .722 .637 .676 .519 .598 .556
FIGER KENN cross .716 .649 .681 .689 .647 .667 .526 .6 .56
FIGER KENN cross bottom up .716 .649 .681 .687 .648 .667 .538 .598 .567
FIGER KENN cross top down .714 .654 .683 .695 .651 .673 .493 .623 .55
FIGER KENN cross hybrid .734 .672 .702 .71 .668 .688 .518 .628 .568

OntoNotes Additional classifier .684 .545 .607 .72 .571 .637 .496 .51 .503
OntoNotes L2AWE .615 .44 .513 .658 .484 .558 .505 .453 .478
OntoNotes KENN bottom up .685 .553 .612 .72 .576 .64 .526 .506 .515
OntoNotes KENN top down .677 .583 .626 .719 .607 .658 .477 .562 .516
OntoNotes KENN hybrid .699 .604 .648 .733 .618 .67 .501 .54 .52
OntoNotes KENN cross .69 .595 .639 .72 .619 .665 .497 .537 .517
OntoNotes KENN cross bottom up .69 .594 .638 .72 .615 .663 .519 .533 .526
OntoNotes KENN cross top down .688 .606 .645 .722 .626 .671 .473 .568 .516
OntoNotes KENN cross hybrid .707 .623 .662 .733 .636 .681 .499 .554 .525

Table 6.1: Results of Full-fledged Domain Adaptation with BBN 5− shot as target
domain. First row reports the in-domain FET model trained directly on the 5-shot
dataset. Rows 2-10 reports different adaptation techniques starting from a model
trained on FIGER. Rows 11-19 reports different adaptation techniques starting
from a model trained on OntoNotes. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

100CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

BBN - .445 .267 .334 .452 .291 .354 .303 .249 .273

FIGER Additional classifier .701 .58 .635 .706 .586 .641 .526 .583 .553
FIGER L2AWE .577 .429 .491 .615 .463 .528 .481 .473 .477
FIGER KENN bottom up .692 .582 .632 .7 .59 .64 .564 .58 .572
FIGER KENN top down .709 .616 .659 .719 .617 .664 .491 .628 .551
FIGER KENN hybrid .704 .615 .656 .713 .614 .66 .513 .621 .562
FIGER KENN cross .722 .648 .683 .711 .649 .678 .527 .617 .569
FIGER KENN cross bottom up .719 .646 .68 .707 .646 .675 .549 .615 .58
FIGER KENN cross top down .725 .653 .687 .717 .65 .682 .484 .648 .554
FIGER KENN cross hybrid .733 .661 .695 .722 .658 .688 .519 .646 .576

OntoNotes Additional classifier .689 .576 .627 .73 .603 .66 .517 .549 .532
OntoNotes L2AWE .634 .508 .563 .684 .551 .61 .5 .514 .507
OntoNotes KENN bottom up .685 .575 .625 .724 .598 .655 .535 .54 .537
OntoNotes KENN top down .68 .603 .639 .723 .626 .671 .47 .592 .524
OntoNotes KENN hybrid .702 .617 .656 .736 .632 .68 .482 .574 .524
OntoNotes KENN cross .697 .619 .655 .732 .644 .685 .508 .576 .54
OntoNotes KENN cross bottom up .697 .616 .654 .732 .637 .681 .526 .563 .544
OntoNotes KENN cross top down .696 .628 .66 .729 .647 .685 .468 .602 .527
OntoNotes KENN cross hybrid .713 .635 .672 .741 .648 .691 .482 .587 .529

Table 6.2: Results of Full-fledged Domain Adaptation with BBN 10−shot as target
domain. First row reports the in-domain FET model trained directly on the 10-shot
dataset. Rows 2-10 reports different adaptation techniques starting from a model
trained on FIGER. Rows 11-19 reports different adaptation techniques starting
from a model trained on OntoNotes. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

6.4. RESULTS 101

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

BBN - .523 .372 .431 .552 .4 .462 .26 .269 .264

FIGER Additional classifier .728 .632 .677 .744 .641 .688 .539 .622 .577
FIGER L2AWE .614 .503 .552 .661 .542 .595 .478 .535 .505
FIGER KENN bottom up .726 .637 .678 .743 .644 .69 .566 .623 .593
FIGER KENN top down .734 .663 .697 .748 .667 .705 .49 .663 .563
FIGER KENN hybrid .743 .672 .706 .756 .673 .712 .518 .663 .582
FIGER KENN cross .741 .689 .714 .743 .695 .718 .531 .649 .584
FIGER KENN cross bottom up .737 .679 .707 .741 .683 .711 .551 .646 .595
FIGER KENN cross top down .745 .695 .719 .748 .698 .722 .492 .68 .571
FIGER KENN cross hybrid .755 .702 .727 .757 .702 .728 .526 .68 .593

OntoNotes Additional classifier .722 .638 .677 .752 .649 .697 .503 .584 .54
OntoNotes L2AWE .689 .614 .649 .729 .644 .684 .493 .567 .527
OntoNotes KENN bottom up .718 .635 .674 .751 .647 .695 .522 .573 .546
OntoNotes KENN top down .724 .672 .696 .752 .679 .714 .475 .619 .537
OntoNotes KENN hybrid .74 .683 .71 .764 .687 .723 .483 .605 .537
OntoNotes KENN cross .728 .679 .703 .749 .69 .718 .49 .608 .543
OntoNotes KENN cross bottom up .726 .671 .697 .75 .681 .714 .51 .594 .549
OntoNotes KENN cross top down .732 .685 .708 .753 .689 .719 .469 .618 .534
OntoNotes KENN cross hybrid .742 .695 .718 .763 .699 .73 .479 .612 .537

Table 6.3: Results of Full-fledged Domain Adaptation with BBN 20−shot as target
domain. First row reports the in-domain FET model trained directly on the 20-shot
dataset. Rows 2-10 reports different adaptation techniques starting from a model
trained on FIGER. Rows 11-19 reports different adaptation techniques starting
from a model trained on OntoNotes. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

102CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

The comparison of the in-domain model (row 1) with all cross-domain models
(rows 2 to 19) shows that adapting a FET model trained in different source domain
(FIGER or OntoNotes) to this domain brings a big improvement in all performance,
when only k examples are available to learn each type. Across all k values, the
best adaptation technique is using KENN to jointly inject Cross and Hybrid KBs
(rows 10 and 19), injecting only the Hybrid KB (row 15) also seem a good choice.
The additional classifier adaptation technique (rows 2 and 11) show that the
trained encoder is able to produce encodings that let to distinguish between the
target types. Furthermore, the addition of KENN in addition to the additional
classifier brings an improvement that ranges from .01 to .06, depending on the
injected KB. Lastly, the performance obtained by L2AWE (rows 3 and 12), compared
to the performance obtained by all KENN-based models, shows that the usage of
all predictions on the types of the source domain does not favor adaptation in the
same way as exploiting explicit relationships between types.

6.4.2 Results with FIGER as target domain

Tables 6.4, 6.5,6.6 resume the performance of the model trained, respectively, on
the 5-shot, 10-shot, and 20-shot datasets built from the FIGER training set and
tested on the original FIGER test set.

The comparison of the in-domain model (row 1) with domain adaptation
techniques to adapt a model trained on BBN (rows 2 to 9) shows that in this
domain the training of the encoder (available only for the in-domain model) may
be more important than exploiting predictions of a model trained on a source
domain. In fact, the in-domain model often has better performance than all domain
adaptation techniques applied to a model trained on BBN. This may be related
to the quantity of unseen types present in FIGER, that is the dataset with more
types (127). With a high number of unseen types, an encoder trained on BBN,
that has only 47 types, may ignore the differences between their entities or collapse
the representation of specialized types, since these differences were not useful in the
source domain (for example, BBN only has the type BBN.person, FIGER instead
has 15 subtypes of FIGER.person. The encoder trained on OntoNotes instead (row
10) seems sensible enough to match the performance obtained by the in-domain
model. The best adaptation model technique when FIGER is the target domain
depends on the metric and on the value of k, in general the adaptation techniques
based on Cross KB brings more benefits than others, L2AWE instead is often the
best adaptation model in terms of Precision.

6.4. RESULTS 103

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

FIGER - .688 .588 .634 .683 .512 .585 .434 .406 .419

BBN Additional classifier .644 .537 .586 .631 .468 .537 .455 .361 .403
BBN L2AWE .681 .56 .615 .672 .485 .563 .414 .382 .397
BBN KENN bottom up .655 .544 .594 .641 .473 .545 .403 .343 .37
BBN KENN top down .593 .497 .541 .58 .437 .498 .482 .393 .433
BBN KENN hybrid .623 .525 .569 .606 .456 .52 .433 .362 .394
BBN KENN cross .644 .557 .597 .62 .49 .548 .476 .388 .427
BBN KENN cross bottom up .652 .552 .598 .628 .485 .547 .449 .369 .405
BBN KENN cross top down .606 .524 .562 .588 .464 .519 .483 .402 .439
BBN KENN cross hybrid .646 .556 .598 .622 .488 .547 .47 .382 .422

OntoNotes Additional classifier .699 .597 .644 .69 .516 .591 .45 .39 .418
OntoNotes L2AWE .731 .603 .661 .717 .513 .598 .38 .364 .372
OntoNotes KENN bottom up .676 .582 .625 .666 .5 .571 .424 .391 .407
OntoNotes KENN top down .661 .587 .622 .647 .512 .571 .481 .428 .453
OntoNotes KENN hybrid .671 .596 .631 .653 .518 .578 .443 .423 .432
OntoNotes KENN cross .714 .626 .667 .698 .554 .618 .503 .419 .457
OntoNotes KENN cross bottom up .71 .618 .661 .694 .543 .609 .499 .417 .454
OntoNotes KENN cross top down .687 .615 .649 .664 .544 .598 .506 .439 .47
OntoNotes KENN cross hybrid .692 .613 .65 .67 .538 .597 .497 .426 .459

Table 6.4: Results of Full-fledged Domain Adaptation with FIGER 5-shot as target
domain. First row reports the in-domain FET model trained directly on the 5-shot
dataset. Rows 2-10 reports different adaptation techniques starting from a model
trained on BBN. Rows 11-19 reports different adaptation techniques starting from
a model trained on OntoNotes. Bold highlights best adaptation model for a given
source domain, underlined bold highlights the best performance overall.

104CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

FIGER - .694 .622 .656 .677 .554 .609 .543 .506 .524

BBN Additional classifier .647 .546 .592 .637 .481 .548 .499 .424 .458
BBN L2AWE .675 .572 .619 .665 .501 .571 .444 .418 .431
BBN KENN bottom up .648 .551 .596 .637 .485 .55 .451 .401 .425
BBN KENN top down .594 .52 .555 .59 .465 .52 .477 .446 .461
BBN KENN hybrid .62 .546 .581 .606 .483 .537 .462 .43 .446
BBN KENN cross .627 .565 .595 .608 .508 .554 .503 .455 .478
BBN KENN cross bottom up .641 .568 .602 .618 .506 .556 .48 .435 .456
BBN KENN cross top down .591 .543 .566 .578 .49 .53 .484 .46 .472
BBN KENN cross hybrid .631 .565 .596 .609 .502 .55 .496 .447 .47

OntoNotes Additional classifier .702 .608 .652 .692 .536 .604 .465 .44 .452
OntoNotes L2AWE .724 .614 .664 .711 .54 .614 .458 .446 .452
OntoNotes KENN bottom up .714 .618 .663 .699 .546 .613 .458 .442 .45
OntoNotes KENN top down .628 .575 .6 .617 .512 .56 .496 .461 .478
OntoNotes KENN hybrid .672 .606 .637 .655 .538 .591 .471 .469 .47
OntoNotes KENN cross .699 .624 .659 .682 .559 .614 .491 .468 .479
OntoNotes KENN cross bottom up .716 .633 .672 .698 .565 .625 .528 .457 .49
OntoNotes KENN cross top down .652 .604 .627 .632 .539 .582 .505 .476 .49
OntoNotes KENN cross hybrid .687 .625 .654 .664 .559 .607 .504 .472 .487

Table 6.5: Results of Full-fledged Domain Adaptation with FIGER 10-shot as
target domain. First row reports the in-domain FET model trained directly on the
10-shot dataset. Rows 2-10 reports different adaptation techniques starting from a
model trained on BBN. Rows 11-19 reports different adaptation techniques starting
from a model trained on OntoNotes. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

6.4. RESULTS 105

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

FIGER - .684 .637 .659 .653 .565 .606 .517 .557 .536

BBN Additional classifier .636 .556 .593 .623 .5 .555 .523 .462 .49
BBN L2AWE .662 .575 .615 .652 .513 .574 .481 .462 .471
BBN KENN bottom up .639 .562 .598 .623 .505 .558 .489 .445 .466
BBN KENN top down .583 .535 .558 .576 .487 .528 .513 .487 .5
BBN KENN hybrid .6 .55 .574 .587 .5 .54 .509 .479 .493
BBN KENN cross .617 .576 .596 .593 .523 .556 .517 .481 .498
BBN KENN cross bottom up .629 .579 .603 .606 .525 .562 .523 .467 .493
BBN KENN cross top down .581 .548 .564 .566 .501 .532 .501 .485 .493
BBN KENN cross hybrid .614 .577 .595 .589 .525 .555 .508 .486 .497

OntoNotes Additional classifier .663 .591 .625 .655 .531 .587 .479 .488 .484
OntoNotes L2AWE .677 .604 .638 .669 .539 .597 .493 .487 .49
OntoNotes KENN bottom up .68 .609 .642 .668 .544 .599 .527 .482 .504
OntoNotes KENN top down .601 .564 .582 .598 .511 .551 .509 .505 .507
OntoNotes KENN hybrid .649 .601 .624 .636 .54 .584 .507 .505 .506
OntoNotes KENN cross .667 .618 .642 .653 .562 .604 .539 .514 .526
OntoNotes KENN cross bottom up .684 .626 .654 .666 .564 .611 .53 .501 .515
OntoNotes KENN cross top down .611 .587 .599 .602 .538 .568 .531 .518 .524
OntoNotes KENN cross hybrid .654 .612 .632 .637 .553 .592 .539 .513 .526

Table 6.6: Results of Full-fledged Domain Adaptation with FIGER 20-shot as
target domain. First row reports the in-domain FET model trained directly on the
20-shot dataset. Rows 2-10 reports different adaptation techniques starting from a
model trained on BBN. Rows 11-19 reports different adaptation techniques starting
from a model trained on OntoNotes. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

106CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

OntoNotes - .626 .521 .569 .619 .43 .508 .067 .043 .053

BBN Additional classifier .689 .622 .654 .666 .545 .599 .338 .217 .264
BBN L2AWE .708 .616 .659 .688 .53 .599 .334 .163 .219
BBN KENN bottom up .68 .633 .656 .653 .556 .601 .343 .219 .268
BBN KENN top down .675 .613 .642 .653 .54 .591 .346 .252 .292
BBN KENN hybrid .673 .624 .647 .649 .55 .596 .358 .241 .288
BBN KENN cross .671 .634 .652 .639 .563 .598 .352 .255 .295
BBN KENN cross bottom up .675 .643 .658 .64 .57 .603 .363 .248 .295
BBN KENN cross top down .652 .607 .629 .627 .542 .581 .344 .272 .303
BBN KENN cross hybrid .668 .629 .648 .638 .559 .596 .352 .265 .302

FIGER Additional classifier .733 .688 .71 .697 .611 .651 .442 .357 .395
FIGER L2AWE .711 .638 .672 .679 .545 .605 .38 .196 .259
FIGER KENN bottom up .734 .707 .721 .691 .625 .656 .459 .328 .383
FIGER KENN top down .718 .673 .695 .685 .6 .64 .423 .394 .408
FIGER KENN hybrid .739 .694 .716 .702 .613 .655 .45 .362 .401
FIGER KENN cross .721 .712 .716 .68 .645 .662 .466 .407 .434
FIGER KENN cross bottom up .729 .724 .727 .683 .65 .666 .467 .375 .416
FIGER KENN cross top down .716 .689 .702 .678 .624 .65 .446 .426 .436
FIGER KENN cross hybrid .732 .708 .72 .69 .636 .662 .459 .402 .428

Table 6.7: Results of Full-fledged Domain Adaptation with OntoNotes 5-shot as
target domain. First row reports the in-domain FET model trained directly on the
5-shot dataset. Rows 2-10 reports different adaptation techniques starting from a
model trained on BBN. Rows 11-19 reports different adaptation techniques starting
from a model trained on FIGER. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

6.4.3 Results with OntoNotes as target domain

Tables 6.7, 6.8,6.9 resume the performance of the model trained, respectively, on
the 5-shot, 10-shot, and 20-shot datasets built from the OntoNotes training set and
tested on the original OntoNotes test set.

This dataset is characterized by the predominance of the type Ontonotes.other
in the test set (and generally also in training set, but with k-shot sampling this
problem is avoided). For this reason, analysis of these experiment focus on Macro
metrics averaged over types (last three columns of the table) to have an unbiased
vision of models behavior.

Results on the 5-shot experiment (Table 6.7) clearly show how the combination
of a pretrained encoder and predictions on source domain types are key feature
reach good performance on multiple types in this domain. A big difference is also
underlined by performance of models adapted from BBN and the models from
FIGER: models adapted from FIGER have always better performance than models
adapted from BBN, this may indicates that the encoder trained on FIGER is more

6.4. RESULTS 107

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

OntoNotes - .633 .592 .612 .597 .506 .548 .249 .173 .204

BBN Additional classifier .678 .618 .647 .649 .55 .596 .376 .27 .314
BBN L2AWE .695 .617 .654 .668 .543 .599 .373 .234 .288
BBN KENN bottom up .669 .631 .649 .635 .561 .596 .374 .274 .317
BBN KENN top down .654 .604 .628 .628 .542 .582 .326 .307 .316
BBN KENN hybrid .664 .619 .64 .632 .556 .591 .361 .294 .324
BBN KENN cross .654 .625 .639 .616 .563 .588 .353 .3 .324
BBN KENN cross bottom up .658 .629 .643 .621 .568 .593 .354 .292 .32
BBN KENN cross top down .634 .604 .619 .603 .548 .574 .331 .321 .326
BBN KENN cross hybrid .647 .619 .633 .612 .558 .584 .355 .305 .328

FIGER Additional classifier .738 .682 .709 .704 .608 .652 .452 .384 .415
FIGER L2AWE .702 .633 .666 .674 .551 .606 .367 .261 .305
FIGER KENN bottom up .745 .706 .725 .702 .626 .662 .46 .369 .409
FIGER KENN top down .72 .675 .697 .686 .603 .642 .431 .43 .43
FIGER KENN hybrid .738 .698 .718 .696 .622 .657 .442 .398 .419
FIGER KENN cross .73 .71 .72 .691 .646 .668 .463 .438 .45
FIGER KENN cross bottom up .74 .725 .732 .692 .655 .673 .479 .413 .443
FIGER KENN cross top down .717 .692 .704 .677 .629 .652 .43 .46 .444
FIGER KENN cross hybrid .734 .71 .722 .688 .639 .663 .455 .422 .438

Table 6.8: Results of Full-fledged Domain Adaptation with OntoNotes 10-shot as
target domain. First row reports the in-domain FET model trained directly on the
10-shot dataset. Rows 2-10 reports different adaptation techniques starting from a
model trained on BBN. Rows 11-19 reports different adaptation techniques starting
from a model trained on FIGER. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

108CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

Source
Domain

Adaptation
Technique

Macro averaged
on Examples

Micro averaged
Macro averaged

on Types
P R F1 P R F1 P R F1

OntoNotes - .643 .661 .652 .603 .587 .595 .323 .349 .336

BBN Additional classifier .666 .636 .651 .63 .566 .596 .386 .327 .354
BBN L2AWE .68 .632 .655 .644 .56 .599 .408 .293 .341
BBN KENN bottom up .669 .651 .66 .628 .58 .603 .397 .325 .357
BBN KENN top down .631 .62 .625 .598 .555 .576 .334 .362 .347
BBN KENN hybrid .657 .646 .651 .616 .576 .595 .354 .341 .347
BBN KENN cross .652 .649 .651 .607 .585 .596 .372 .36 .366
BBN KENN cross bottom up .659 .657 .658 .613 .59 .601 .384 .331 .356
BBN KENN cross top down .62 .625 .623 .585 .566 .575 .332 .379 .354
BBN KENN cross hybrid .646 .642 .644 .603 .578 .59 .354 .35 .352

FIGER Additional classifier .72 .684 .701 .68 .607 .641 .433 .388 .409
FIGER L2AWE .69 .642 .665 .66 .567 .61 .416 .346 .378
FIGER KENN bottom up .725 .699 .712 .681 .622 .65 .455 .38 .414
FIGER KENN top down .693 .672 .682 .656 .6 .627 .395 .428 .411
FIGER KENN hybrid .717 .695 .706 .674 .62 .646 .431 .409 .42
FIGER KENN cross .716 .71 .713 .672 .642 .657 .427 .423 .425
FIGER KENN cross bottom up .721 .716 .719 .674 .645 .659 .446 .409 .427
FIGER KENN cross top down .692 .685 .689 .653 .621 .637 .399 .45 .423
FIGER KENN cross hybrid .713 .704 .708 .667 .636 .651 .429 .431 .43

Table 6.9: Results of Full-fledged Domain Adaptation with OntoNotes 20-shot as
target domain. First row reports the in-domain FET model trained directly on the
20-shot dataset. Rows 2-10 reports different adaptation techniques starting from a
model trained on BBN. Rows 11-19 reports different adaptation techniques starting
from a model trained on FIGER. Bold highlights best adaptation model for a
given source domain, underlined bold highlights the best performance overall.

6.5. CONCLUSIONS ON THE FULL-FLEDGEDDOMAIN ADAPTATION IN FET SCENARIO109

useful to distinguish between OntoNotes types. Like in the previous experiment,
adaptation techniques that use KENN to inject the Cross KB are the most effective
to adapt a FET model. Lastly, L2AWE is again the model that often obtains the
best Precision, but only when the source domain is BBN.

6.5 Conclusions on the Full-fledged Domain Adap-

tation in FET Scenario

In Fine-grained Entity Typing full-fledged domain adaptation is often necessary
to use a FET model trained on a rich source domain in a target domain, with
only a limited quantity of data available to adapt the model. Different domain
adaptation techniques based on the exploitation of predictions on source domain
types have been proposed and experimented to adapt a trained FET model to
target scenario using only a limited quantity of annotated data for the adaptation
process. Experiments show that the variety of types in the source domain is a key
factor, since the encoder can be trained to extract features useful for representing
the entity mentions with a rich representation, necessary to correctly classify types
from a broad type hierarchy. Moreover, the exploitation of predictions of source
domain types shown to be useful to enhance the learning of new target types.

Answering to the research questions, to inject the explicit knowledge with
a neuro-symbolic integration method (Knowledge Enhanced Neural Network,
KENN [DS19]), different adaptation techniques to inject the explicit knowledge in
a neural architecture were proposed and experimented. In particular, hierarchic
dependencies in target type hierarchy and equivalence cross-domain relations be-
tween source and target types are used enrich the available information in a low
resource scenario. Experiments show that cross-domain relations (injected through
the Cross KB) are often a key information to enhance performance in the target
domain.

As argued along this thesis (Chapters 3 and 4), types highly characterize different
domains in FET, for this reason, this experimentation only covered the adaptation
of the classifier of a FET model exploiting information related to types in source
and target domain. The joint adaptation of the encoder and of the classifier is an
interesting and challenging future direction, since the limited resources available in
the source scenario may cause forgetting of source domain knowledge and also may
be not sufficient to generalize the target language distribution. However, as shown
by the experiment with FIGER as target domain, extracting the correct features
from the input is still important in this task.

110CHAPTER 6. NEUROSYMBOLIC FINE-GRAINED ENTITY TYPING FOR FULL-FLEDGEDDOMAIN ADAPTATION

Chapter 7
Conclusions and Future Works

7.1 Conclusions

This Ph.D. thesis focuses on domain adaptation in fine-grained entity typing
(FET): in the first place, the notion of domain in FET is formalized, thereafter the
domain adaptation problem is described and different scenarios related to FET
are introduced, formalized, and addressed by introducing experimental analyses
(see Chapter 4) or novel solutions (see Chapters 5 and 6). In particular, the model
reuse scenario refers to the problem of using a FET model that has been trained
on a source domain, on a target domain, under the assumption that the target
type hierarchy is a subset of the source type hierarchy; the model specialization
scenario concerns the problem of specializing a FET model to classify entities with
types that are more specific than the ones on which the model has been trained, i.e.
extending its capabilities on a given family of types (i.e., specializing a FET model
that simply recognizes persons to recognize different jobs); finally, the full-fledged
domain adaptation scenario relates to the problem of a FET model that needs to
be adapted in order for it to be used in a target domain partially overlapped with
the source domain, such that relations between types can be defined.

Blending explicit knowledge and latent representation derived from data using
neuro-symbolic integration techniques is becoming increasingly popular in several
Artificial Intelligence fields; the solution proposed as a novel contribution in this
thesis takes advantage of Knowledge Enhanced Neural Network (KENN) to explicitly
represent equivalence, generalization, specialization and disjunction relations and
inject these pieces of knowledge into a model to support its adaptation to a new
domain.

Regarding the model reuse scenario, the addressed research question concern
how performance of a FET model on equivalent types transfer across domains.
Experiments showed that the precision of models trained on a source domain tested

111

112 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

on a target domain can be comparable or even better than the precision of models
trained directly on the target domain, e.g., when the source domain has a rich
type set and comes with clean training data. A denoising technique was also used
to alleviate label noise in the source domain but results show that this kind of
denoising is not effective in this scenario.

In regards to the model specialization scenario, addressed research questions
concern how explicit hierarchical type relations can be exploited to favor the
specialization of a FET model. During the experimentation, a classifier (neural
or box embedding based) with a smart initialization (based on equivalence or
specialization relations) is compared with KENN-based techniques showing that
the usage of a neuro-symbolic approach (KENN) to exploit hierarchical type
relations results in an improvement of performance in low-resource target domain.

Lastly, in the full-fledged domain adaptation scenario, research questions ask
how does explicit type relations can be exploited to favor the domain adaptation of
a FET model. The number of type in the source type hierarchy has shown to be a
central factor, as well as the exploitation of predictions on source domain types, to
enhance the learning of new target types. Injecting explicit knowledge about target
type hierarchy and cross-domain equivalence relations through a neuro-symbolic
integration method (KENN) has also shown to be useful to enhance performance
in the low-resource target domain.

Finally, the problem of domain adaptation in FET, especially when declined to
specialization and full-fledged adaptation, is a central problem to face in order to
enable effective transfer learning approaches between different domains, favoring
the performance on low-resource scenarios. The proposed techniques has proven to
be effective; however, the joint optimization of the encoder and the classifier while
adapting a FET model, maintaining its capabilities on the source domain while
exploiting them on the target domain, remains a challenging problem.

7.2 Future Work

In this thesis, domain adaptation is faced by using a neuro-symbolic integration
approach (Knowledge Enhanced Neural Network) to inject equivalence, special-
ization, generalization, and disjunction relations in order to favor the adaptation
of a FET model to low-resource target domain. The proposed approaches are
compared with models from the literature that seems to be suitable to handle
hierarchical type similarity [Ono+21] and cross-domain types relation [Noz+21],
even if these solutions were proposed respectively for in-domain FET [Ono+21]
and for domain adaptation in NER [Noz+21]. The possibility of plugging KENN
on top of a given network enables for future work focused on KENN used on-top of
different models from literature, resulting in the joint exploit of different explicit

7.2. FUTURE WORK 113

and implicit evidences. For example, by combining L2AWE [Noz+21] and KENN,
explicit and latent type relations can be handled during the adaptation.

Even if KENN-based adaptation techniques has proven to be quite effective in the
low-resource model specialization and low-resource full-fledged domain adaptation
scenarios, KENN relies on explicit knowledge and on the FET predictions. In NLP
literature, a large number of approaches optimize type representation to face a
specific task, or are focused on obtaining task-agnostic dense representations of
types, known to be useful in zero-shot classification or in natural language inference
and understanding tasks. The integration of hidden and type representation inside
KENN will enable the usage of these dense representations during the computation
of the knowledge enhancement; this interesting evolution of this thesis may be
useful to obtain an additional way to mix sub-symbolic and symbolic knowledge.

The inclusion of hidden representation in KENN framework can enable for the
joint usage of the proposed KENN-based techniques with other techniques based
on hidden representation like Contrastive Learning [KAM22], where examples are
paired and the encoder is optimized to minimize a loss function where examples
pairs have to be close (positive pairs) or far (negative pairs). Contrastive Learning
is often used jointly with classification models, since KENN can be placed on top of
a classifier, that is treated as a black-box model, the joint usage of these approaches
is an interesting future work.

In this thesis FET is faced, but the proposed approaches can be applied to
other multilabel classification tasks where external knowledge can be explicitly
modeled with clauses and injected with KENN to facilitate the adaptation problem.
However, type hierarchies are not so present in general multilabel classification
problems, thus to apply the presented techniques in different tasks, the source and
the logical model of the knowledge is a crucial step.

114 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

Bibliography

[AAA17] Abhishek Abhishek, Ashish Anand, and Amit Awekar. “Fine-Grained
Entity Type Classification by Jointly Learning Representations and
Label Embeddings”. In: Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics: Vol-
ume 1, Long Papers. Valencia, Spain: Association for Computational
Linguistics, Apr. 2017, pp. 797–807. url: https://aclanthology.
org/E17-1075.

[Ali+20] Muhammad Asif Ali et al. “Fine-Grained Named Entity Typing over
Distantly Supervised Data Based on Refined Representations”. In:
Proceedings of the AAAI Conference on Artificial Intelligence 34.05
(Apr. 2020), pp. 7391–7398. doi: 10.1609/aaai.v34i05.6234. url:
https://ojs.aaai.org/index.php/AAAI/article/view/6234.

[Ali+21] Muhammad Asif Ali et al. “Fine-Grained Named Entity Typing over
Distantly Supervised Data via Refinement in Hyperbolic Space”. In:
arXiv preprint arXiv:2101.11212 (2021).

[Als+19] Emily Alsentzer et al. “Publicly Available Clinical BERT Embed-
dings”. In: Proceedings of the 2nd Clinical Natural Language Process-
ing Workshop. Minneapolis, Minnesota, USA: Association for Compu-
tational Linguistics, June 2019, pp. 72–78. doi: 10.18653/v1/W19-
1909. url: https://aclanthology.org/W19-1909.

[ANC08] Andrew Arnold, Ramesh Nallapati, and William Cohen. “Exploiting
feature hierarchy for transfer learning in named entity recognition”.
In: Proceedings of ACL-08: HLT. 2008, pp. 245–253.

[Bad+22] Samy Badreddine et al. “Logic Tensor Networks”. In: Artificial In-
telligence 303 (2022), p. 103649. issn: 0004-3702. doi: https :
//doi.org/10.1016/j.artint.2021.103649. url: https://www.
sciencedirect.com/science/article/pii/S0004370221002009.

115

https://aclanthology.org/E17-1075
https://aclanthology.org/E17-1075
https://doi.org/10.1609/aaai.v34i05.6234
https://ojs.aaai.org/index.php/AAAI/article/view/6234
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://aclanthology.org/W19-1909
https://doi.org/https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/https://doi.org/10.1016/j.artint.2021.103649
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009

116 BIBLIOGRAPHY

[BBH+16] Hannah Bast, Björn Buchhold, Elmar Haussmann, et al. “Semantic
search on text and knowledge bases”. In: Foundations and Trends®
in Information Retrieval 10.2-3 (2016), pp. 119–271.

[BLC19] Iz Beltagy, Kyle Lo, and Arman Cohan. “SciBERT: A Pretrained
Language Model for Scientific Text”. In: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China: Association for Computa-
tional Linguistics, Nov. 2019, pp. 3615–3620. doi: 10.18653/v1/D19-
1371. url: https://aclanthology.org/D19-1371.

[CCV20] Tongfei Chen, Yunmo Chen, and Benjamin Van Durme. “Hierarchical
Entity Typing via Multi-level Learning to Rank”. In: Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, 2020,
pp. 8465–8475. doi: 10.18653/v1/2020.acl-main.749. url:
https://aclanthology.org/2020.acl-main.749.

[Che+18] Lihan Chen et al. “Short Text Entity Linking with Fine-Grained
Topics”. In: Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. CIKM ’18. Torino, Italy:
Association for Computing Machinery, 2018, pp. 457–466. isbn:
9781450360142. doi: 10.1145/3269206.3271809. url: https:
//doi.org/10.1145/3269206.3271809.

[Che+19] Bo Chen et al. “Improving Distantly-supervised Entity Typing with
Compact Latent Space Clustering”. In: Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Computa-
tional Linguistics, June 2019, pp. 2862–2872. doi: 10.18653/v1/N19-
1294. url: https://aclanthology.org/N19-1294.

[Che+22] Xiang Chen et al. “LightNER: A Lightweight Tuning Paradigm
for Low-resource NER via Pluggable Prompting”. In: Proceedings
of the 29th International Conference on Computational Linguistics.
Gyeongju, Republic of Korea: International Committee on Com-
putational Linguistics, Oct. 2022, pp. 2374–2387. url: https://
aclanthology.org/2022.coling-1.209.

[CHM19] Tuhin Chakrabarty, Christopher Hidey, and Kathy McKeown. “IMHO
Fine-Tuning Improves Claim Detection”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/D19-1371
https://doi.org/10.18653/v1/2020.acl-main.749
https://aclanthology.org/2020.acl-main.749
https://doi.org/10.1145/3269206.3271809
https://doi.org/10.1145/3269206.3271809
https://doi.org/10.1145/3269206.3271809
https://doi.org/10.18653/v1/N19-1294
https://doi.org/10.18653/v1/N19-1294
https://aclanthology.org/N19-1294
https://aclanthology.org/2022.coling-1.209
https://aclanthology.org/2022.coling-1.209

BIBLIOGRAPHY 117

1 (Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, June 2019, pp. 558–563. doi: 10.18653/
v1/N19-1054. url: https://aclanthology.org/N19-1054.

[Cho+18] Eunsol Choi et al. “Ultra-Fine Entity Typing”. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Melbourne, Australia: Association for Com-
putational Linguistics, July 2018, pp. 87–96. doi: 10.18653/v1/P18-
1009. url: https://aclanthology.org/P18-1009.

[CL96] Jim Cowie and Wendy Lehnert. “Information Extraction”. In: Com-
mun. ACM 39.1 (Jan. 1996), pp. 80–91. issn: 0001-0782. doi:
10.1145/234173.234209. url: https://doi.org/10.1145/
234173.234209.

[CM19] Lingzhen Chen and Alessandro Moschitti. “Transfer learning for
sequence labeling using source model and target data”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019,
pp. 6260–6267.

[CR98] N. Chinchor and P. Robinson. “Appendix E: MUC-7 Named Entity
Task Definition (version 3.5)”. In: Seventh Message Understanding
Conference (MUC-7): Proceedings of a Conference Held in Fairfax,
Virginia, April 29 - May 1, 1998. 1998. url: https://aclanthology.
org/M98-1028.

[Dai+19] Hongliang Dai et al. “Improving Fine-grained Entity Typing with
Entity Linking”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: Association for Computational Linguistics, Nov.
2019, pp. 6210–6215. doi: 10.18653/v1/D19-1643. url: https:
//aclanthology.org/D19-1643.

[Das+20] Shib Dasgupta et al. “Improving local identifiability in probabilistic
box embeddings”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 182–192.

[Dau07] Hal Daumé III. “Frustratingly Easy Domain Adaptation”. In: Proceed-
ings of the 45th Annual Meeting of the Association of Computational
Linguistics. Prague, Czech Republic: Association for Computational
Linguistics, June 2007, pp. 256–263. url: https://aclanthology.
org/P07-1033.

https://doi.org/10.18653/v1/N19-1054
https://doi.org/10.18653/v1/N19-1054
https://aclanthology.org/N19-1054
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.18653/v1/P18-1009
https://aclanthology.org/P18-1009
https://doi.org/10.1145/234173.234209
https://doi.org/10.1145/234173.234209
https://doi.org/10.1145/234173.234209
https://aclanthology.org/M98-1028
https://aclanthology.org/M98-1028
https://doi.org/10.18653/v1/D19-1643
https://aclanthology.org/D19-1643
https://aclanthology.org/D19-1643
https://aclanthology.org/P07-1033
https://aclanthology.org/P07-1033

118 BIBLIOGRAPHY

[Dev+19] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association
for Computational Linguistics, June 2019, pp. 4171–4186. doi: 10.
18653/v1/N19- 1423. url: https://aclanthology.org/N19-
1423.

[DGS17] Michelangelo Diligenti, Marco Gori, and Claudio Sacca. “Semantic-
based regularization for learning and inference”. In: Artificial Intelli-
gence 244 (2017), pp. 143–165.

[Din+21] Ning Ding et al. “Prompt-learning for fine-grained entity typing”. In:
arXiv preprint arXiv:2108.10604 (2021).

[DS19] Alessandro Daniele and Luciano Serafini. “Knowledge enhanced neural
networks”. In: Pacific Rim International Conference on Artificial
Intelligence. Springer. 2019, pp. 542–554.

[DSL20] Hongliang Dai, Yangqiu Song, and Xin Li. “Exploiting Semantic Rela-
tions for Fine-grained Entity Typing”. In: Conference on Automated
Knowledge Base Construction, AKBC 2020, Virtual, June 22-24,
2020. Ed. by Dipanjan Das et al. 2020. doi: 10.24432/C5J017.
url: https://doi.org/10.24432/C5J017.

[DSW21a] Hongliang Dai, Yangqiu Song, and Haixun Wang. “Ultra-Fine Entity
Typing with Weak Supervision from a Masked Language Model”.
In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers).
Online: Association for Computational Linguistics, 2021, pp. 1790–
1799. doi: 10 . 18653 / v1 / 2021 . acl - long . 141. url: https :
//aclanthology.org/2021.acl-long.141.

[DSW21b] Hongliang Dai, Yangqiu Song, and Haixun Wang. “Ultra-Fine Entity
Typing with Weak Supervision from a Masked Language Model”. In:
Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021. Ed. by Chengqing Zong
et al. Association for Computational Linguistics, 2021, pp. 1790–
1799. doi: 10 . 18653 / v1 / 2021 . acl - long . 141. url: https :
//doi.org/10.18653/v1/2021.acl-long.141.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.24432/C5J017
https://doi.org/10.24432/C5J017
https://doi.org/10.18653/v1/2021.acl-long.141
https://aclanthology.org/2021.acl-long.141
https://aclanthology.org/2021.acl-long.141
https://doi.org/10.18653/v1/2021.acl-long.141
https://doi.org/10.18653/v1/2021.acl-long.141
https://doi.org/10.18653/v1/2021.acl-long.141

BIBLIOGRAPHY 119

[FK14] Benôıt Frénay and Ata Kaban. “A Comprehensive Introduction to La-
bel Noise: Proceedings of the 2014 European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learn-
ing (ESANN 2014)”. English. In: Proceedings of the 2014 European
Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN 2014). i6doc.com.publ., 2014.

[Fle01] Michael Fleischman. “Automated Subcategorization of Named Enti-
ties”. In: ACL. 2001.

[FV14] Benoit Frenay and Michel Verleysen. “Classification in the Presence of
Label Noise: A Survey”. In: IEEE Transactions on Neural Networks
and Learning Systems 25.5 (2014), pp. 845–869. doi: 10.1109/
TNNLS.2013.2292894.

[GB18] John M Giorgi and Gary D Bader. “Transfer learning for biomedical
named entity recognition with neural networks”. In: Bioinformatics
34.23 (2018), pp. 4087–4094.

[Gil+14] Dan Gillick et al. Context-Dependent Fine-Grained Entity Type Tag-
ging. 2014. url: http://arxiv.org/abs/1412.1820.

[Gri15] Ralph Grishman. “Information Extraction”. In: IEEE Intelligent
Systems 30.5 (2015), pp. 8–15. doi: 10.1109/MIS.2015.68.

[GS96] Ralph Grishman and Beth Sundheim. “Message Understanding Conference-
6: A Brief History”. In: COLING 1996 Volume 1: The 16th Interna-
tional Conference on Computational Linguistics. 1996. url: https:
//aclanthology.org/C96-1079.

[Gu+21] Yu Gu et al. “Domain-specific language model pretraining for biomed-
ical natural language processing”. In: ACM Transactions on Comput-
ing for Healthcare (HEALTH) 3.1 (2021), pp. 1–23.

[Gur+20] Suchin Gururangan et al. “Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, July 2020, pp. 8342–
8360. doi: 10 . 18653 / v1 / 2020 . acl - main . 740. url: https :
//aclanthology.org/2020.acl-main.740.

[Han+17] Sangdo Han et al. “Answer Ranking Based on Named Entity Types for
Question Answering”. In: Proceedings of the 11th International Con-
ference on Ubiquitous Information Management and Communication.
IMCOM ’17. Beppu, Japan: Association for Computing Machinery,
2017. isbn: 9781450348881. doi: 10.1145/3022227.3022297. url:
https://doi.org/10.1145/3022227.3022297.

https://doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1109/TNNLS.2013.2292894
http://arxiv.org/abs/1412.1820
https://doi.org/10.1109/MIS.2015.68
https://aclanthology.org/C96-1079
https://aclanthology.org/C96-1079
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://doi.org/10.1145/3022227.3022297
https://doi.org/10.1145/3022227.3022297

120 BIBLIOGRAPHY

[Hao+20] Yaru Hao et al. “Investigating Learning Dynamics of BERT Fine-
Tuning”. In: Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the
10th International Joint Conference on Natural Language Processing.
Suzhou, China: Association for Computational Linguistics, Dec. 2020,
pp. 87–92. url: https://aclanthology.org/2020.aacl-main.11.

[Har81] Zellig S. Harris. “Distributional Structure”. In: Papers on Syntax.
Dordrecht: Springer Netherlands, 1981, pp. 3–22. isbn: 978-94-009-
8467-7. doi: 10.1007/978- 94- 009- 8467- 7_1. url: https:
//doi.org/10.1007/978-94-009-8467-7_1.

[He+21] Ruidan He et al. “On the Effectiveness of Adapter-based Tuning for
Pretrained Language Model Adaptation”. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers). Online: Association for Computational
Linguistics, Aug. 2021, pp. 2208–2222. doi: 10.18653/v1/2021.
acl- long.172. url: https://aclanthology.org/2021.acl-
long.172.

[HE19] Xiaochuang Han and Jacob Eisenstein. “Unsupervised Domain Adap-
tation of Contextualized Embeddings for Sequence Labeling”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 4238–4248.
doi: 10.18653/v1/D19-1433. url: https://aclanthology.org/
D19-1433.

[Hed+21] Michael A Hedderich et al. “A Survey on Recent Approaches for Natu-
ral Language Processing in Low-Resource Scenarios”. In: Proceedings
of the 2021 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies.
2021, pp. 2545–2568.

[Hon+21] Jimin Hong et al. “AVocaDo: Strategy for Adapting Vocabulary to
Downstream Domain”. In: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. 2021, pp. 4692–
4700.

[Hos+19] Mohammad Javad Hosseini et al. “Duality of Link Prediction and
Entailment Graph Induction”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence,
Italy: Association for Computational Linguistics, July 2019, pp. 4736–

https://aclanthology.org/2020.aacl-main.11
https://doi.org/10.1007/978-94-009-8467-7_1
https://doi.org/10.1007/978-94-009-8467-7_1
https://doi.org/10.1007/978-94-009-8467-7_1
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://aclanthology.org/2021.acl-long.172
https://aclanthology.org/2021.acl-long.172
https://doi.org/10.18653/v1/D19-1433
https://aclanthology.org/D19-1433
https://aclanthology.org/D19-1433

BIBLIOGRAPHY 121

4746. doi: 10.18653/v1/P19-1468. url: https://aclanthology.
org/P19-1468.

[Hou+19] Neil Houlsby et al. “Parameter-Efficient Transfer Learning for NLP”.
In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA.
Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 2790–
2799. url: http://proceedings.mlr.press/v97/houlsby19a.
html.

[HR18] Jeremy Howard and Sebastian Ruder. “Universal Language Model
Fine-tuning for Text Classification”. In: Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Melbourne, Australia: Association for Compu-
tational Linguistics, July 2018, pp. 328–339. doi: 10.18653/v1/P18-
1031. url: https://aclanthology.org/P18-1031.

[Hu+19] Wenpeng Hu et al. “Overcoming catastrophic forgetting for contin-
ual learning via model adaptation”. In: International conference on
learning representations. 2019.

[HWZ21] Feng Hou, Ruili Wang, and Yi Zhou. “Transfer learning for fine-
grained entity typing”. In: Knowledge and Information Systems 63.4
(Apr. 2021), pp. 845–866. issn: 0219-3116. doi: 10.1007/s10115-
021-01549-5. url: https://doi.org/10.1007/s10115-021-
01549-5.

[KAM22] Adnan Khan, Sarah AlBarri, and Muhammad Arslan Manzoor. “Con-
trastive Self-Supervised Learning: A Survey on Different Architec-
tures”. In: 2022 2nd International Conference on Artificial Intelligence
(ICAI). 2022, pp. 1–6. doi: 10.1109/ICAI55435.2022.9773725.

[KMC16] Vivek Kulkarni, Yashar Mehdad, and Troy Chevalier. “Domain adap-
tation for named entity recognition in online media with word em-
beddings”. In: arXiv preprint arXiv:1612.00148 (2016).

[KS19] Dan Kondratyuk and Milan Straka. “75 Languages, 1 Model: Parsing
Universal Dependencies Universally”. In: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China: Association for Computa-
tional Linguistics, Nov. 2019, pp. 2779–2795. doi: 10.18653/v1/D19-
1279. url: https://aclanthology.org/D19-1279.

https://doi.org/10.18653/v1/P19-1468
https://aclanthology.org/P19-1468
https://aclanthology.org/P19-1468
http://proceedings.mlr.press/v97/houlsby19a.html
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/P18-1031
https://doi.org/10.1007/s10115-021-01549-5
https://doi.org/10.1007/s10115-021-01549-5
https://doi.org/10.1007/s10115-021-01549-5
https://doi.org/10.1007/s10115-021-01549-5
https://doi.org/10.1109/ICAI55435.2022.9773725
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://aclanthology.org/D19-1279

122 BIBLIOGRAPHY

[Kua+20] Jun Kuang et al. “Improving neural relation extraction with implicit
mutual relations”. In: 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE. 2020, pp. 1021–1032.

[LDS18] Ji Young Lee, Franck Dernoncourt, and Peter Szolovits. “Transfer
Learning for Named-Entity Recognition with Neural Networks”. In:
Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018). 2018.

[Lee+20] Jinhyuk Lee et al. “BioBERT: a pre-trained biomedical language
representation model for biomedical text mining”. In: Bioinformatics
36.4 (2020), p. 1234.

[LHS19] Federico López, Benjamin Heinzerling, and Michael Strube. “Fine-
Grained Entity Typing in Hyperbolic Space”. In: Proceedings of
the 4th Workshop on Representation Learning for NLP (RepL4NLP-
2019). Florence, Italy: Association for Computational Linguistics,
Aug. 2019, pp. 169–180. doi: 10.18653/v1/W19-4319. url: https:
//aclanthology.org/W19-4319.

[Li+13] Yegang Li et al. “Named entity recognition based on bilingual co-
training”. In: Workshop on Chinese Lexical Semantics. Springer. 2013,
pp. 480–489.

[Li+21] Jinqing Li et al. “Enhancing Label Representations with Relational
Inductive Bias Constraint for Fine-Grained Entity Typing”. In: Pro-
ceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21. Ed. by Zhi-Hua Zhou. Main Track. Inter-
national Joint Conferences on Artificial Intelligence Organization,
Aug. 2021, pp. 3843–3849. doi: 10.24963/ijcai.2021/529. url:
https://doi.org/10.24963/ijcai.2021/529.

[Liu+20] Chuanbo Liu et al. “An Instance Transfer-Based Approach Using
Enhanced Recurrent Neural Network for Domain Named Entity
Recognition”. In: IEEE Access 8 (2020), pp. 45263–45270. doi:
10.1109/ACCESS.2020.2974022.

[Liu+21a] Qing Liu et al. “Fine-grained Entity Typing via Label Reasoning”. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic:
Association for Computational Linguistics, Nov. 2021, pp. 4611–
4622. doi: 10.18653/v1/2021.emnlp-main.378. url: https:
//aclanthology.org/2021.emnlp-main.378.

https://doi.org/10.18653/v1/W19-4319
https://aclanthology.org/W19-4319
https://aclanthology.org/W19-4319
https://doi.org/10.24963/ijcai.2021/529
https://doi.org/10.24963/ijcai.2021/529
https://doi.org/10.1109/ACCESS.2020.2974022
https://doi.org/10.18653/v1/2021.emnlp-main.378
https://aclanthology.org/2021.emnlp-main.378
https://aclanthology.org/2021.emnlp-main.378

BIBLIOGRAPHY 123

[Liu+21b] Wei Liu et al. “Lexicon Enhanced Chinese Sequence Labeling Using
BERT Adapter”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Online: Association for Computational Linguistics, Aug.
2021, pp. 5847–5858. doi: 10.18653/v1/2021.acl- long.454.
url: https://aclanthology.org/2021.acl-long.454.

[LJ19] Ying Lin and Heng Ji. “An Attentive Fine-Grained Entity Typing
Model with Latent Type Representation”. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP). Hong Kong, China: Association for Computa-
tional Linguistics, Nov. 2019, pp. 6197–6202. doi: 10.18653/v1/D19-
1641. url: https://aclanthology.org/D19-1641.

[LKB20] Qi Liu, Matt J Kusner, and Phil Blunsom. “A survey on contextual
embeddings”. In: arXiv preprint arXiv:2003.07278 (2020).

[LL18] Bill Yuchen Lin and Wei Lu. “Neural Adaptation Layers for Cross-
domain Named Entity Recognition”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics, Oct.
2018, pp. 2012–2022. doi: 10.18653/v1/D18-1226. url: https:
//aclanthology.org/D18-1226.

[Log+19] Lajanugen Logeswaran et al. “Zero-Shot Entity Linking by Reading
Entity Descriptions”. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Florence, Italy:
Association for Computational Linguistics, July 2019, pp. 3449–3460.
doi: 10.18653/v1/P19-1335. url: https://aclanthology.org/
P19-1335.

[LW12] Xiao Ling and Daniel S. Weld. “Fine-Grained Entity Recognition”.
In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. Ed. by
Jörg Hoffmann and Bart Selman. AAAI Press, 2012. url: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152.

[Mar+20] Giuseppe Marra et al. “Relational Neural Machines”. In: (2020).

[McC05] Andrew McCallum. “Information extraction: Distilling structured
data from unstructured text”. In: Queue 3.9 (2005), pp. 48–57.

https://doi.org/10.18653/v1/2021.acl-long.454
https://aclanthology.org/2021.acl-long.454
https://doi.org/10.18653/v1/D19-1641
https://doi.org/10.18653/v1/D19-1641
https://aclanthology.org/D19-1641
https://doi.org/10.18653/v1/D18-1226
https://aclanthology.org/D18-1226
https://aclanthology.org/D18-1226
https://doi.org/10.18653/v1/P19-1335
https://aclanthology.org/P19-1335
https://aclanthology.org/P19-1335
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5152

124 BIBLIOGRAPHY

[MCG16] Yukun Ma, Erik Cambria, and Sa Gao. “Label Embedding for Zero-
shot Fine-grained Named Entity Typing”. In: Proceedings of COLING
2016, the 26th International Conference on Computational Linguis-
tics: Technical Papers. Osaka, Japan: The COLING 2016 Organizing
Committee, Dec. 2016, pp. 171–180. url: https://aclanthology.
org/C16-1017.

[Mik+13a] Tomas Mikolov et al. “Distributed Representations of Words and
Phrases and their Compositionality”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by C. J. C. Burges et al. Vol. 26. Curran
Associates, Inc., 2013. url: https://proceedings.neurips.cc/
paper/2013/file/9aa42b31882ec039965f3c4923ce901b- Paper.

pdf.

[Mik+13b] Tomas Mikolov et al. Efficient Estimation of Word Representations
in Vector Space. 2013. url: http://arxiv.org/abs/1301.3781.

[ML18] Sunil Mohan and Donghui Li. “MedMentions: A Large Biomedical
Corpus Annotated with UMLS Concepts”. In: Automated Knowledge
Base Construction (AKBC). 2018.

[Mon+21] Natawut Monaikul et al. “Continual Learning for Named Entity
Recognition”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 35.15 (May 2021), pp. 13570–13577. doi: 10.1609/aaai.
v35i15.17600. url: https://ojs.aaai.org/index.php/AAAI/
article/view/17600.

[Mun+12] Tsendsuren Munkhdalai et al. “Bio Named Entity Recognition Based
on Co-training Algorithm”. In: 2012 26th International Conference
on Advanced Information Networking and Applications Workshops
(2012), pp. 857–862.

[Mur+18] Shikhar Murty et al. “Hierarchical Losses and New Resources for
Fine-grained Entity Typing and Linking”. In: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Melbourne, Australia: Association for Compu-
tational Linguistics, July 2018, pp. 97–109. doi: 10.18653/v1/P18-
1010. url: https://aclanthology.org/P18-1010.

[NC15] Arvind Neelakantan and Ming-Wei Chang. “Inferring Missing Entity
Type Instances for Knowledge Base Completion: New Dataset and
Methods”. In: Proceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies. Denver, Colorado: Association for Computa-
tional Linguistics, May 2015, pp. 515–525. doi: 10.3115/v1/N15-
1054. url: https://aclanthology.org/N15-1054.

https://aclanthology.org/C16-1017
https://aclanthology.org/C16-1017
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://arxiv.org/abs/1301.3781
https://doi.org/10.1609/aaai.v35i15.17600
https://doi.org/10.1609/aaai.v35i15.17600
https://ojs.aaai.org/index.php/AAAI/article/view/17600
https://ojs.aaai.org/index.php/AAAI/article/view/17600
https://doi.org/10.18653/v1/P18-1010
https://doi.org/10.18653/v1/P18-1010
https://aclanthology.org/P18-1010
https://doi.org/10.3115/v1/N15-1054
https://doi.org/10.3115/v1/N15-1054
https://aclanthology.org/N15-1054

BIBLIOGRAPHY 125

[NOF10] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. “A study
of the effect of different types of noise on the precision of supervised
learning techniques”. In: Artificial Intelligence Review 33.4 (Apr.
2010), pp. 275–306. issn: 1573-7462. doi: 10.1007/s10462-010-
9156-z. url: https://doi.org/10.1007/s10462-010-9156-z.

[Noz+21] Debora Nozza et al. “LearningToAdapt with Word Embeddings:
Domain Adaptation of Named Entity Recognition Systems”. In: Inf.
Process. Manage. 58.3 (May 2021). issn: 0306-4573. doi: 10.1016/
j.ipm.2021.102537. url: https://doi.org/10.1016/j.ipm.
2021.102537.

[NS07] David Nadeau and Satoshi Sekine. “A survey of named entity recog-
nition and classification”. In: Lingvisticae Investigationes 30.1 (2007),
pp. 3–26.

[Obe+19] Rasha Obeidat et al. “Description-Based Zero-shot Fine-Grained
Entity Typing”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguistics,
June 2019, pp. 807–814. doi: 10.18653/v1/N19-1087. url: https:
//aclanthology.org/N19-1087.

[OD19] Yasumasa Onoe and Greg Durrett. “Learning to Denoise Distantly-
Labeled Data for Entity Typing”. In: Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Compu-
tational Linguistics, June 2019. doi: 10.18653/v1/N19-1250. url:
https://aclanthology.org/N19-1250.

[OD20] Yasumasa Onoe and Greg Durrett. “Interpretable Entity Representa-
tions through Large-Scale Typing”. In: Findings of the Association
for Computational Linguistics: EMNLP 2020. Online: Association for
Computational Linguistics, Nov. 2020, pp. 612–624. doi: 10.18653/
v1/2020.findings-emnlp.54. url: https://aclanthology.org/
2020.findings-emnlp.54.

[Ono+21] Yasumasa Onoe et al. “Modeling Fine-Grained Entity Types with
Box Embeddings”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Online: Association for Computational Linguistics, Aug.

https://doi.org/10.1007/s10462-010-9156-z
https://doi.org/10.1007/s10462-010-9156-z
https://doi.org/10.1007/s10462-010-9156-z
https://doi.org/10.1016/j.ipm.2021.102537
https://doi.org/10.1016/j.ipm.2021.102537
https://doi.org/10.1016/j.ipm.2021.102537
https://doi.org/10.1016/j.ipm.2021.102537
https://doi.org/10.18653/v1/N19-1087
https://aclanthology.org/N19-1087
https://aclanthology.org/N19-1087
https://doi.org/10.18653/v1/N19-1250
https://aclanthology.org/N19-1250
https://doi.org/10.18653/v1/2020.findings-emnlp.54
https://doi.org/10.18653/v1/2020.findings-emnlp.54
https://aclanthology.org/2020.findings-emnlp.54
https://aclanthology.org/2020.findings-emnlp.54

126 BIBLIOGRAPHY

2021, pp. 2051–2064. doi: 10.18653/v1/2021.acl- long.160.
url: https://aclanthology.org/2021.acl-long.160.

[Pan+22] Kunyuan Pang et al. “Divide and Denoise: Learning from Noisy
Labels in Fine-Grained Entity Typing with Cluster-Wise Loss Correc-
tion”. In: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Dublin, Ire-
land: Association for Computational Linguistics, May 2022, pp. 1997–
2006. doi: 10 . 18653 / v1 / 2022 . acl - long . 141. url: https :
//aclanthology.org/2022.acl-long.141.

[Pet+18] Matthew E. Peters et al. “Deep Contextualized Word Representa-
tions”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, June 2018, pp. 2227–2237.
doi: 10.18653/v1/N18-1202. url: https://aclanthology.org/
N18-1202.

[PFB18] Jason Phang, Thibault Févry, and Samuel R. Bowman. “Sentence En-
coders on STILTs: Supplementary Training on Intermediate Labeled-
data Tasks”. In: CoRR abs/1811.01088 (2018). arXiv: 1811.01088.
url: http://arxiv.org/abs/1811.01088.

[Pfe+20a] Jonas Pfeiffer et al. “AdapterHub: A Framework for Adapting Trans-
formers”. In: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations. Online:
Association for Computational Linguistics, Oct. 2020, pp. 46–54. doi:
10.18653/v1/2020.emnlp-demos.7. url: https://aclanthology.
org/2020.emnlp-demos.7.

[Pfe+20b] Jonas Pfeiffer et al. “MAD-X: An Adapter-Based Framework for
Multi-Task Cross-Lingual Transfer”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics, Nov.
2020, pp. 7654–7673. doi: 10.18653/v1/2020.emnlp-main.617.
url: https://aclanthology.org/2020.emnlp-main.617.

[Pfe+21] Jonas Pfeiffer et al. “AdapterFusion: Non-Destructive Task Composi-
tion for Transfer Learning”. In: Proceedings of the 16th Conference of
the European Chapter of the Association for Computational Linguis-
tics: Main Volume. Online: Association for Computational Linguistics,
Apr. 2021, pp. 487–503. doi: 10.18653/v1/2021.eacl-main.39.
url: https://aclanthology.org/2021.eacl-main.39.

https://doi.org/10.18653/v1/2021.acl-long.160
https://aclanthology.org/2021.acl-long.160
https://doi.org/10.18653/v1/2022.acl-long.141
https://aclanthology.org/2022.acl-long.141
https://aclanthology.org/2022.acl-long.141
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://aclanthology.org/N18-1202
https://arxiv.org/abs/1811.01088
http://arxiv.org/abs/1811.01088
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://aclanthology.org/2020.emnlp-demos.7
https://aclanthology.org/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://aclanthology.org/2020.emnlp-main.617
https://doi.org/10.18653/v1/2021.eacl-main.39
https://aclanthology.org/2021.eacl-main.39

BIBLIOGRAPHY 127

[Pla16] Barbara Plank. “What to do about non-standard (or non-canonical)
language in NLP”. In: arXiv preprint arXiv:1608.07836 (2016).

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe:
Global Vectors for Word Representation”. In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics,
Oct. 2014, pp. 1532–1543. doi: 10.3115/v1/D14- 1162. url:
https://aclanthology.org/D14-1162.

[PWS20] Nina Poerner, Ulli Waltinger, and Hinrich Schütze. “Inexpensive
Domain Adaptation of Pretrained Language Models: Case Studies
on Biomedical NER and Covid-19 QA”. In: Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020. Online: As-
sociation for Computational Linguistics, Nov. 2020, pp. 1482–1490.
doi: 10.18653/v1/2020.findings- emnlp.134. url: https:
//aclanthology.org/2020.findings-emnlp.134.

[PY10] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In:
IEEE Transactions on knowledge and data engineering 22.10 (2010),
pp. 1345–1359.

[Qia+21] Jing Qian et al. “Fine-grained Entity Typing without Knowledge
Base”. In: Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing. Online and Punta Cana, Domini-
can Republic: Association for Computational Linguistics, Nov. 2021,
pp. 5309–5319. doi: 10.18653/v1/2021.emnlp-main.431. url:
https://aclanthology.org/2021.emnlp-main.431.

[Qu+16] Lizhen Qu et al. “Named Entity Recognition for Novel Types by Trans-
fer Learning”. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin, Texas: Associa-
tion for Computational Linguistics, Nov. 2016, pp. 899–905. doi:
10.18653/v1/D16-1087. url: https://aclanthology.org/D16-
1087.

[Qui86] J. R. Quinlan. “Induction of Decision Trees”. In: Mach. Learn.
1.1 (Mar. 1986), pp. 81–106. issn: 0885-6125. doi: 10.1023/A:
1022643204877. url: https://doi.org/10.1023/A:1022643204877.

[Ren+16a] Xiang Ren et al. “AFET: Automatic Fine-Grained Entity Typing by
Hierarchical Partial-Label Embedding”. In: Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing.
Austin, Texas: Association for Computational Linguistics, Nov. 2016,
pp. 1369–1378. doi: 10.18653/v1/D16- 1144. url: https://
aclanthology.org/D16-1144.

https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.18653/v1/2020.findings-emnlp.134
https://aclanthology.org/2020.findings-emnlp.134
https://aclanthology.org/2020.findings-emnlp.134
https://doi.org/10.18653/v1/2021.emnlp-main.431
https://aclanthology.org/2021.emnlp-main.431
https://doi.org/10.18653/v1/D16-1087
https://aclanthology.org/D16-1087
https://aclanthology.org/D16-1087
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.18653/v1/D16-1144
https://aclanthology.org/D16-1144
https://aclanthology.org/D16-1144

128 BIBLIOGRAPHY

[Ren+16b] Xiang Ren et al. “Label Noise Reduction in Entity Typing by Het-
erogeneous Partial-Label Embedding”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. San Francisco, California, USA: As-
sociation for Computing Machinery, 2016, pp. 1825–1834. isbn:
9781450342322. doi: 10.1145/2939672.2939822. url: https:
//doi.org/10.1145/2939672.2939822.

[Ren20] Quan Ren. “Fine-Grained Entity Typing with Hierarchical Inference”.
In: 2020 IEEE 4th Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC). Vol. 1. 2020, pp. 2552–
2558. doi: 10.1109/ITNEC48623.2020.9085112.

[RKR20] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. “A Primer in
BERTology: What We Know About How BERT Works”. In: Trans-
actions of the Association for Computational Linguistics 8 (2020),
pp. 842–866. doi: 10 . 1162 / tacl _ a _ 00349. url: https : / /

aclanthology.org/2020.tacl-1.54.

[RN10] Altaf Rahman and Vincent Ng. “Inducing Fine-Grained Semantic
Classes via Hierarchical and Collective Classification”. In: Proceedings
of the 23rd International Conference on Computational Linguistics
(Coling 2010). Beijing, China: Coling 2010 Organizing Committee,
Aug. 2010, pp. 931–939. url: https://aclanthology.org/C10-
1105.

[RP20] Alan Ramponi and Barbara Plank. “Neural Unsupervised Domain
Adaptation in NLP—A Survey”. In: Proceedings of the 28th Inter-
national Conference on Computational Linguistics. 2020, pp. 6838–
6855.

[Rud+19] Sebastian Ruder et al. “Latent Multi-Task Architecture Learning”. In:
Proceedings of the AAAI Conference on Artificial Intelligence 33.01
(July 2019), pp. 4822–4829. doi: 10.1609/aaai.v33i01.33014822.
url: https://ojs.aaai.org/index.php/AAAI/article/view/
4410.

[Rud19] Sebastian Ruder. “Neural transfer learning for natural language pro-
cessing”. PhD thesis. NUI Galway, 2019.

[SC19] Ta-Chun Su and Hsiang-Chih Cheng. SesameBERT: Attention for
Anywhere. 2019. doi: 10.48550/ARXIV.1910.03176. url: https:
//arxiv.org/abs/1910.03176.

https://doi.org/10.1145/2939672.2939822
https://doi.org/10.1145/2939672.2939822
https://doi.org/10.1145/2939672.2939822
https://doi.org/10.1109/ITNEC48623.2020.9085112
https://doi.org/10.1162/tacl_a_00349
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/2020.tacl-1.54
https://aclanthology.org/C10-1105
https://aclanthology.org/C10-1105
https://doi.org/10.1609/aaai.v33i01.33014822
https://ojs.aaai.org/index.php/AAAI/article/view/4410
https://ojs.aaai.org/index.php/AAAI/article/view/4410
https://doi.org/10.48550/ARXIV.1910.03176
https://arxiv.org/abs/1910.03176
https://arxiv.org/abs/1910.03176

BIBLIOGRAPHY 129

[Seo+21] Sungyong Seo et al. “Controlling Neural Networks with Rule Repre-
sentations”. In: Advances in Neural Information Processing Systems
34 (2021).

[SGC09] Gonçalo Simoes, Helena Galhardas, and Luısa Coheur. “Information
Extraction tasks: a survey”. In: Simpósio de Informática 2009 (2009),
p. 540.

[Shi+17a] Sonse Shimaoka et al. “Neural Architectures for Fine-grained En-
tity Type Classification”. In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers. Valencia, Spain: Association for
Computational Linguistics, 2017, pp. 1271–1280. url: https://
aclanthology.org/E17-1119.

[Shi+17b] Sonse Shimaoka et al. “Neural Architectures for Fine-grained En-
tity Type Classification”. In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers. Valencia, Spain: Association for
Computational Linguistics, Apr. 2017, pp. 1271–1280. url: https:
//aclanthology.org/E17-1119.

[Shi+20] Haochen Shi et al. “Alleviate Dataset Shift Problem in Fine-grained
Entity Typing with Virtual Adversarial Training”. In: Proceedings
of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20. Ed. by Christian Bessiere. Main track. In-
ternational Joint Conferences on Artificial Intelligence Organization,
July 2020, pp. 3898–3904. doi: 10.24963/ijcai.2020/539. url:
https://doi.org/10.24963/ijcai.2020/539.

[SLL22] Kaili Sun, Xudong Luo, and Michael Y. Luo. “A Survey ofnbsp;Pretrained
Language Models”. In: Knowledge Science, Engineering and Manage-
ment: 15th International Conference, KSEM 2022, Singapore, August
6–8, 2022, Proceedings, Part II. Singapore, Singapore: Springer-Verlag,
2022, pp. 442–456. isbn: 978-3-031-10985-0. doi: 10.1007/978-3-
031-10986-7_36. url: https://doi.org/10.1007/978-3-031-
10986-7_36.

[Sun+19] Chi Sun et al. “How to Fine-Tune BERT for Text Classification?”
In: CoRR abs/1905.05583 (2019). arXiv: 1905.05583. url: http:
//arxiv.org/abs/1905.05583.

[Sun95] Beth M. Sundheim. “Overview of Results of the MUC-6 Evaluation”.
In: Sixth Message Understanding Conference (MUC-6): Proceedings
of a Conference Held in Columbia, Maryland, November 6-8, 1995.
1995. url: https://aclanthology.org/M95-1002.

https://aclanthology.org/E17-1119
https://aclanthology.org/E17-1119
https://aclanthology.org/E17-1119
https://aclanthology.org/E17-1119
https://doi.org/10.24963/ijcai.2020/539
https://doi.org/10.24963/ijcai.2020/539
https://doi.org/10.1007/978-3-031-10986-7_36
https://doi.org/10.1007/978-3-031-10986-7_36
https://doi.org/10.1007/978-3-031-10986-7_36
https://doi.org/10.1007/978-3-031-10986-7_36
https://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583
https://aclanthology.org/M95-1002

130 BIBLIOGRAPHY

[SZ14] Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[Tai+20] Wen Tai et al. “exBERT: Extending Pre-trained Models with Domain-
specific Vocabulary Under Constrained Training Resources”. In: Find-
ings of the Association for Computational Linguistics: EMNLP 2020.
Online: Association for Computational Linguistics, Nov. 2020, pp. 1433–
1439. doi: 10.18653/v1/2020.findings-emnlp.129. url: https:
//aclanthology.org/2020.findings-emnlp.129.

[Tjo02] Erik F. Tjong Kim Sang. “Introduction to the CoNLL-2002 Shared
Task: Language-Independent Named Entity Recognition”. In: COLING-
02: The 6th Conference on Natural Language Learning 2002 (CoNLL-
2002). 2002. url: https://aclanthology.org/W02-2024.

[Wan+22a] Rui Wang et al. “Few-Shot Class-Incremental Learning for Named
Entity Recognition”. In: Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long
Papers). Dublin, Ireland: Association for Computational Linguistics,
May 2022, pp. 571–582. doi: 10.18653/v1/2022.acl-long.43.
url: https://aclanthology.org/2022.acl-long.43.

[Wan+22b] Ruili Wang et al. “Fine-Grained Entity Typing with a Type Taxonomy:
a Systematic Review”. In: IEEE Transactions on Knowledge and Data
Engineering (2022), pp. 1–1. doi: 10.1109/TKDE.2022.3148980.

[WB05] Ralph Weischedel and Ada Brunstein. “BBN pronoun coreference and
entity type corpus”. In: Linguistic Data Consortium, Philadelphia
112 (2005).

[Wei+11] Ralph Weischedel et al. “OntoNotes: A large training corpus for
enhanced processing”. In: Handbook of Natural Language Processing
and Machine Translation. Springer 3.3 (2011), pp. 3–4.

[Wu+19] Junshuang Wu et al. “Modeling Noisy Hierarchical Types in Fine-
Grained Entity Typing: A Content-Based Weighting Approach”. In:
Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019. Ed. by Sarit Kraus. ijcai.org, 2019, pp. 5264–5270. doi:
10.24963/ijcai.2019/731. url: https://doi.org/10.24963/
ijcai.2019/731.

https://doi.org/10.18653/v1/2020.findings-emnlp.129
https://aclanthology.org/2020.findings-emnlp.129
https://aclanthology.org/2020.findings-emnlp.129
https://aclanthology.org/W02-2024
https://doi.org/10.18653/v1/2022.acl-long.43
https://aclanthology.org/2022.acl-long.43
https://doi.org/10.1109/TKDE.2022.3148980
https://doi.org/10.24963/ijcai.2019/731
https://doi.org/10.24963/ijcai.2019/731
https://doi.org/10.24963/ijcai.2019/731

BIBLIOGRAPHY 131

[Wu+22] Junshuang Wu et al. “Dealing With Hierarchical Types and Label
Noise in Fine-Grained Entity Typing”. In: IEEE/ACM Transactions
on Audio, Speech, and Language Processing 30 (2022), pp. 1305–1318.
doi: 10.1109/TASLP.2022.3155281.

[XB18] Peng Xu and Denilson Barbosa. “Neural Fine-Grained Entity Type
Classification with Hierarchy-Aware Loss”. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers). New Orleans, Louisiana: Association for Computa-
tional Linguistics, June 2018, pp. 16–25. doi: 10.18653/v1/N18-
1002. url: https://aclanthology.org/N18-1002.

[Xio+19] Wenhan Xiong et al. “Imposing Label-Relational Inductive Bias for
Extremely Fine-Grained Entity Typing”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, June 2019, pp. 773–784. doi: 10.18653/
v1/N19-1084. url: https://aclanthology.org/N19-1084.

[YD18] Zheng Yuan and Doug Downey. “OTyper: A Neural Architecture for
Open Named Entity Typing”. In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innova-
tive Applications of Artificial Intelligence Conference and Eighth
AAAI Symposium on Educational Advances in Artificial Intelligence.
AAAI’18/IAAI’18/EAAI’18. New Orleans, Louisiana, USA: AAAI
Press, 2018. isbn: 978-1-57735-800-8.

[YGL15] Dani Yogatama, Daniel Gillick, and Nevena Lazic. “Embedding Meth-
ods for Fine Grained Entity Type Classification”. In: Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers). Beijing, China: Asso-
ciation for Computational Linguistics, July 2015, pp. 291–296. doi:
10.3115/v1/P15-2048. url: https://aclanthology.org/P15-
2048.

[Yos+12] Mohamed Amir Yosef et al. “HYENA: Hierarchical Type Classifica-
tion for Entity Names”. In: Proceedings of COLING 2012: Posters.
Mumbai, India: The COLING 2012 Organizing Committee, Dec. 2012,
pp. 1361–1370. url: https://www.aclweb.org/anthology/C12-
2133.

https://doi.org/10.1109/TASLP.2022.3155281
https://doi.org/10.18653/v1/N18-1002
https://doi.org/10.18653/v1/N18-1002
https://aclanthology.org/N18-1002
https://doi.org/10.18653/v1/N19-1084
https://doi.org/10.18653/v1/N19-1084
https://aclanthology.org/N19-1084
https://doi.org/10.3115/v1/P15-2048
https://aclanthology.org/P15-2048
https://aclanthology.org/P15-2048
https://www.aclweb.org/anthology/C12-2133
https://www.aclweb.org/anthology/C12-2133

132 BIBLIOGRAPHY

[YS17] Yadollah Yaghoobzadeh and Hinrich Schütze. “Multi-level Represen-
tations for Fine-Grained Typing of Knowledge Base Entities”. In:
Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers.
Valencia, Spain: Association for Computational Linguistics, Apr. 2017,
pp. 578–589. url: https://aclanthology.org/E17-1055.

[YZ19] Junjie Yang and Hai Zhao. “Deepening Hidden Representations from
Pre-trained Language Models”. In: arXiv preprint arXiv:1911.01940
(2019).

[ZDV18] Sheng Zhang, Kevin Duh, and Benjamin Van Durme. “Fine-grained
Entity Typing through Increased Discourse Context and Adaptive
Classification Thresholds”. In: Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics. New Orleans, Louisiana:
Association for Computational Linguistics, June 2018, pp. 173–179.
doi: 10.18653/v1/S18-2022. url: https://aclanthology.org/
S18-2022.

[Zha+18] Denghui Zhang et al. “Path-Based Attention Neural Model for Fine-
Grained Entity Typing”. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018. Ed. by Sheila
A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 8179–
8180. url: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/view/16544.

[Zha+20a] Haoyu Zhang et al. “Learning with Noise: Improving Distantly-
Supervised Fine-grained Entity Typing via Automatic Relabeling”.
In: Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20. Ed. by Christian Bessiere. Main
track. International Joint Conferences on Artificial Intelligence Orga-
nization, July 2020, pp. 3808–3815. doi: 10.24963/ijcai.2020/527.
url: https://doi.org/10.24963/ijcai.2020/527.

[Zha+20b] Rong Zhang et al. “Multi-Stage Pre-training for Low-Resource Do-
main Adaptation”. In: Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Online:
Association for Computational Linguistics, Nov. 2020, pp. 5461–
5468. doi: 10.18653/v1/2020.emnlp-main.440. url: https:
//aclanthology.org/2020.emnlp-main.440.

https://aclanthology.org/E17-1055
https://doi.org/10.18653/v1/S18-2022
https://aclanthology.org/S18-2022
https://aclanthology.org/S18-2022
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16544
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16544
https://doi.org/10.24963/ijcai.2020/527
https://doi.org/10.24963/ijcai.2020/527
https://doi.org/10.18653/v1/2020.emnlp-main.440
https://aclanthology.org/2020.emnlp-main.440
https://aclanthology.org/2020.emnlp-main.440

BIBLIOGRAPHY 133

[Zha+20c] Tao Zhang et al. “MZET: Memory Augmented Zero-Shot Fine-grained
Named Entity Typing”. In: Proceedings of the 28th International
Conference on Computational Linguistics. Barcelona, Spain (Online):
International Committee on Computational Linguistics, Dec. 2020,
pp. 77–87. doi: 10.18653/v1/2020.coling-main.7. url: https:
//aclanthology.org/2020.coling-main.7.

[Zha+20d] Chen Zhao et al. “Complex Factoid Question Answering with a Free-
Text Knowledge Graph”. In: Proceedings of The Web Conference 2020.
WWW ’20. Taipei, Taiwan: Association for Computing Machinery,
2020, pp. 1205–1216. isbn: 9781450370233. doi: 10.1145/3366423.
3380197. url: https://doi.org/10.1145/3366423.3380197.

[ZW04] Xingquan Zhu and Xindong Wu. “Class Noise vs. Attribute Noise:
A Quantitative Study”. In: Artificial Intelligence Review 22.3 (Nov.
2004), pp. 177–210. issn: 1573-7462. doi: 10.1007/s10462-004-
0751-8. url: https://doi.org/10.1007/s10462-004-0751-8.

https://doi.org/10.18653/v1/2020.coling-main.7
https://aclanthology.org/2020.coling-main.7
https://aclanthology.org/2020.coling-main.7
https://doi.org/10.1145/3366423.3380197
https://doi.org/10.1145/3366423.3380197
https://doi.org/10.1145/3366423.3380197
https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1007/s10462-004-0751-8
https://doi.org/10.1007/s10462-004-0751-8

	Introduction
	State of the Art
	Preliminaries
	Definitions

	Fine-grained Entity Typing
	Problem definition
	Collecting and cleaning training data
	Open Problems in FET

	Domain Adaptation in Information Extraction
	What is a domain?
	Domain Adaptation
	Domain Adaptation in Name Entity Recognition
	Domain Adaptation with Language Models

	Domain Adaptation in FET: an open problem

	Domain Adaptation in Fine-grained Entity Typing
	Formal Definitions: FET and Domain Adaptation in FET
	Fine-grained Entity Typing
	Formalization of Domain in Fine-grained Entity Typing
	Formalization of Entity Typing Model

	Categorization of Domain Adaptation in FET
	Application Use Cases
	Domain Adaptation in FET Formalization
	Completely new domain
	Exploiting explicit type relations across domains

	Model Reuse in Partially Overlapping Domains
	Research Questions - Model Reuse
	Critical Issues of Model Reuse without Training
	Datasets, Mappings and FET model
	Datasets
	Define relations between type hierarchies
	Model Reuse: Domain Adaptation without Additional Training
	Fine-grained Entity Typing Model
	Hyperparameters
	Metrics

	Model reuse - Results
	Performance in Source Domain
	Performance on the Target Domain

	Noisy Annotation and Model Reuse
	AutoDenoise
	Research Question - AutoDenoise and Model reuse
	Experimental Setup
	Performance in Source Domain
	Performance in Target Domain

	Conclusions on Model Reuse

	Neuro-symbolic Fine-grained Entity Typing for Domain Specialization
	Knowledge Enhanced Neural Network
	How does KENN work?

	Encoding a hierarchy for FET
	KENN for FET (in-domain)
	Research Questions
	Experimental Setup
	In-domain FET with KENN - Results

	Specialization of a FET model
	Research Questions - Specialization of a FET Model
	Base Specialization Network
	Experimental Setup
	Experimented specialization techniques
	Results

	Conclusions on the Specialization of FET Models

	NeuroSymbolic Fine-grained Entity Typing for Full-fledged Domain Adaptation
	Research Questions - Full-fledged Adaptation of a FET model
	Adapt a FET model
	Smart initialization
	KENN for full-fledged domain adaptation

	Experimental Setup
	Experimented domain adaptation approaches

	Results
	Results with BBN as target domain
	Results with FIGER as target domain
	Results with OntoNotes as target domain

	Conclusions on the Full-fledged Domain Adaptation in FET Scenario

	Conclusions and Future Works
	Conclusions
	Future Work

