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Abstract
The availability of complex-structured data has sparked new research directions in
statistics and machine learning. Bayesian nonparametrics is at the forefront of this
trend thanks to two crucial features: its coherent probabilistic framework, which
naturally leads to principled prediction and uncertainty quantification, and its infinite-
dimensionality, which exempts from parametric restrictions and ensures full modeling
flexibility. In this paper, we provide a concise overview of Bayesian nonparametrics
starting from its foundations and the Dirichlet process, the most popular nonparamet-
ric prior. We describe the use of the Dirichlet process in species discovery, density
estimation, and clustering problems. Among the many generalizations of the Dirichlet
process proposed in the literature, we single out the Pitman–Yor process, and compare
it to the Dirichlet process. Their different features are showcased with real-data illus-
trations. Finally, we consider more complex data structures, which require dependent
versions of these models. One of the most effective strategies to achieve this goal
is represented by hierarchical constructions. We highlight the role of the dependence
structure in the borrowing of information and illustrate its effectiveness on unbalanced
datasets.
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1 Introduction

Statistical learning and predictions are largely based on the tacit assumption of a
correspondence between past and future observations. Whether there is a rational jus-
tification for this induction principle has been a long debated question, which can
be traced back to the work of the renowned philosopher David Hume in the eigh-
teenth century. In the twentieth century, de Finetti (1937) reformulates the problem in
probabilistic terms: the symmetry between past and future can be postulated with an
appropriate probabilistic framework through the concept of exchangeability, which
requires the distribution of the observations to be invariant with respect to their order.
More formally, a sequence (Xn)n≥1 of observations on a Polish space X is said to be
exchangeable if for every N ∈ N, and for every permutation π of {1, . . . , N },

(X1, . . . , X N )
d= (Xπ(1), . . . , Xπ(N )),

where
d=denotes the equality in distribution.Crucially, deFinetti proved that exchange-

ability is equivalent to conditional independence and identity in distribution, through
the following representation theorem which goes under his name.

Theorem 1 (de Finetti Representation Theorem) A sequence (Xn)n≥1 of random
elements on X is exchangeable if and only if there exists a probability law Q on
the space PX of probabilities on X such that, for every N ∈ N and any Borel sets
(A1, . . . , AN ),

P(X1 ∈ A1, . . . , X N ∈ AN ) =
∫
PX

N∏
i=1

P(Ai ) Q(dP).

Q is termed the de Finetti measure of (Xn)n≥1.

The representation theoremwas proved in full generality byHewitt and Savage (1955),
with compelling consequences in terms of both inference and prediction. First of all,
it provides a neat justification of the Bayes–Laplace paradigm, that is, the use of a
prior distribution on the model parameters for Bayesian inference. Indeed, one can
rewrite the representation theorem in hierarchical form, so that for any exchangeable
sequence (Xn)n≥1 one can define a random probability P̃ onPX such that, for every
n ∈ N,

Xi | P̃
iid∼ P̃ i = 1, . . . , n;

P̃ ∼ Q.

From this expression, it is apparent that the de Finetti measure Q may act as prior
distribution, the latent parameter being the distribution of the data. After observing
the values X (n) = (X1, . . . , Xn), one can perform Bayesian inference by finding the
posterior distribution Q( · | X (n)).
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Moreover, de Finetti’s theorem can also be used as a technical tool for assigning
explicit laws to exchangeable sequences and deriving predictive inference, the most
important and fundamental kind of inductive inference according to Carnap (1950).
Indeed, under the exchangeability assumption, the one-step predictions are conve-
niently evaluated as linear functions of the posterior distribution Q( · | X (n)) as
follows:

P(Xn+1 ∈ A | X (n)) =
∫
PX

P(A) Q(dP | X (n)),

and similarly for m-step ahead predictions P((Xn+1, . . . , Xn+m) ∈ Am | X (n)).
Summing up, exchangeability guarantees an elegant and principled framework to

perform inference and prediction on homogeneous observations. As for the flexibility
of these models, it crucially depends on the support of the de Finetti measure Q on the
space of probabilitiesPX. Though de Finetti had laid out the Bayesian framework in
its full generality during the 1930s, for several decades, inference and predictions were
confined to parametric models, that is, for priors Q that degenerate on a subclass of
PX indexed by a finite-dimensional parameter. Still in 1972, Dennis V. Lindley wrote
that it is perhaps worth stopping to remark that the problem is a technical one; the
Bayesian method embraces non-parametric problems but cannot solve them because
the requisite tool is missing (Lindley, 1972). However, the times were ripe: Ferguson
(1973) made the breakthrough with the definition of the Dirichlet process prior, which
paved the way for the development of the field of Bayesian Nonparametrics (BNP).
See also Ferguson (1974). The rest of this paper will outline some of the most notable
uses of the Dirichlet process and highlight some effective generalizations. We start
by introducing the Dirichlet process through its stick-breaking representation (Sethu-
raman, 1994), arguably its simplest construction though perhaps not most suitable to
gain insight into its distributional properties.

Definition 1 A random probability P̃ ∼ DP(θ, P∗) is distributed according to a
Dirichlet process prior with concentration θ > 0 and base probability P∗ ∈ PX

if

P̃
d=

∑
i≥1

p̃iδZi ,

where Zi
iid∼ P∗ are independent of ωi

iid∼ Beta(1, θ), and p̃i = ωi
∏i−1

j=1(1 − ω j ),

with the convention
∏0

j=1(1 − ω j ) = 1.

For simplicity, we will throughout assume that P∗ is non-atomic. Exhaustive accounts
of the field can be found in the monographs (Hjort et al., 2010; Müller et al., 2015;
Ghosal & van der Vaart, 2017).
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2 Species discovery

In species sampling problems, a population of individuals is partitioned into different
“types” or “species”, and each observation is a species label. Given an observed sample
of size n, one of the main goals is predicting the number of new distinct species in
a future sample of size m. There are two key elements of species sampling problems
that make BNP models the natural choice: (i) since the scope of the notion of species
is to group individual observations (according to some criterion of similarity), there
should be a positive probability of ties among the data; (ii) since each new observation
could potentially represent a new species, themodel has to assign a positive probability
to this event or, in other terms, incorporate a positive discovery probability at each
sampling step. This BNP approach to species sampling was first laid out in Lijoi et al.
(2007).

Let X (n) = (X1, . . . , Xn) be a vector of observed species labels. If one believes that
the order with which the species are observed is irrelevant, assuming exchangeability
is the natural choice leading to

X1, . . . , Xn | P̃
iid∼ P̃ . (1)

In this modeling framework, it is quite natural to assume that P̃ is discrete and defined
as P̃ = ∑

i≥1 p̃iδZi , where the p̃ j ’s are the random species proportions in the popu-

lation and the Z j ’s are the corresponding species labels such that Z j
iid∼ P∗ for some

non–atomic base measure P∗. These assumptions imply that ties may be recorded in
X (n) with positive probability, namely P(Xi = X j ) > 0 for any i �= j . Henceforth,
we will denote by Kn the total number of distinct species in the sample X (n), by
X∗
1, . . . , X∗

Kn
the unique values for the species, and by Ni the frequency of the i-th

distinct species in order of appearance.

2.1 Dirichlet process

The task of learning the next species may be rephrased into finding the predictive
distribution P(Xn+1 | X (n)). The species corresponding to the next observation Xn+1
should have a positive probability of coinciding with the already discovered species
but also a positive probability of being new. A natural probabilistic structure achieving
these desiderata is obtained by taking a linear combination of one’s prior guess at the
(marginal) distribution of the species labels P∗ and the empirical measure. This results
in a learning mechanism of the form

P(Xn+1 ∈ · | X (n)) = P(Xn+1 = “new” | X (n)) P∗(·)

+P(Xn+1 = “old” | X (n))
1

n

Kn∑
i=1

NiδX∗
i
(·). (2)
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Now, if P̃ is distributed according to a Dirichlet process prior (Definition 1), the
corresponding predictive distributions replicate exactly (2) with

P(Xn+1 = “new” | X (n)) = θ

θ + n
; P(Xn+1 = “old” | X (n)) = n

θ + n
. (3)

Moreover, it can be proved (Regazzini, 1978; Lo, 1991) that the predictive distri-
butions associated to an exchangeable sequence are a linear combination of P∗ and
the empirical measure 1

n

∑Kn
i=1 NiδX∗

i
if and only if the underlying P̃ has a Dirichlet

process distribution.
This predictive scheme, framed as a generative model, is known as the Blackwell–

MacQueen generalized Pólya urn (Blackwell & MacQueen, 1973). Moreover, when
focusing on the induced partition distribution, it reduces to the Chinese restaurant
process, whose name originated from the following metaphor, attributed to L. Dubins
and J. Pitman by D. Aldous. A sequence of customers arrives at a restaurant with Xi

denoting the table of customer i . The first customer sits at one of the empty tables.
The second customer sits at the same table (X2 = X1) with probability 1/(θ + 1) and
at a different table (X2 = “new”) with probability 1/(1 + θ), and so on. Thus, tables
and species may be treated in the same way: the key feature they share is that they
both determine a random partition of observations into clusters.

Let �n
k (n1, . . . , nk) be the probability that a given sample X (n) displays k ≤ n

species with cardinalities n1, . . . , nk . Whenever P̃ is an almost surely discrete distri-
bution this can be characterized in terms of the de Finetti measure as

�n
k (n1, . . . , nk) = E

( ∫
X

k∗

k∏
i=1

P̃ni (dxi )

)
, (4)

where X
k∗ = {(x1, . . . , xk) ∈ X

k : xi �= x j for i �= j}, and it is referred to as the
exchangeable partition probability function, a notion introduced by Pitman (1995). If
P̃ is sampled from a Dirichlet process this coincides with a variation of the popular
Ewens sampling formula (Ewens, 1972; Antoniak, 1974), which plays a major role in
population genetics and is given by

�n
k (n1, . . . , nk) = θk

(θ)n

k∏
i=1

(ni − 1)!,

where (θ)n = θ(θ + 1) · · · (θ + n − 1) denotes the n–th ascending factorial of θ and
we set (θ)0 ≡ 1. By summing (4) over all partitions of n elements into k groups, one
obtains the probability of observing k distinct species in a sample of size n. Indeed,

P(Kn = k) = θk

(θ)n
|s(n, k)|,

with |s(n, k)| the signless Stirling number of the first kind. From a modeling perspec-
tive, an important aspect is the growth rate of the number of distinct species Kn as n
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increases: under a Dirichlet process prior, Kn diverges with a logarithmic behavior.
More specifically, as shown in Korwar and Hollander (1973), for n → ∞,

Kn

log n
a.s.−→ θ.

We refer to Pitman (2006), Mano (2018) and Yamato (2020) for further stimulating
accounts.

2.2 Beyond the Dirichlet process

When modeling the probability of discovering a new species, one would expect this
probability to depend explicitly on the number Kn of distinct species in the sample.
More specifically, it is often desirable for the probability of discovering a new species to
bemonotonically increasing in Kn , so that the probability of discovering a new species
is higher if mostly distinct species have been recorded in the past, and vice versa. The
Dirichlet process prior does not accommodate for this feature, as it is apparent from
(3). However, other choices of the de Finetti measure allow for this modeling behavior:
a popular instance is given by the two-parameter Poisson–Dirichlet process (Perman et
al., 1992; Pitman, 1995; Pitman &Yor, 1997), also known as Pitman–Yor process. See
Lijoi and Prünster (2010) and Müller et al. (2018) for reviews of the various classes
of discrete random probability measures that share this property.

Definition 2 A random probability P̃ ∼ PY(σ, θ, P∗) is distributed according to a
Pitman–Yor process prior with discount σ ∈ [0, 1), concentration θ > −σ , and
diffuse base probability P∗ ∈ PX if

P̃
d=

∑
i≥1

p̃iδZi ,

where Zi
iid∼ P∗ are independent ofωi

ind∼ Beta(1−σ, θ + iσ), and p̃i = ωi
∏i−1

j=1(1−
ω j ).

Clearly, the Dirichlet process represents a special case, corresponding to σ = 0.
When P̃ ∼ PY(θ, σ, P∗) is sampled from a Pitman–Yor process, the exchangeable
partition probability function becomes

�n
k (n1, . . . , nk) =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
i=1

(1 − σ)ni −1.

Moreover, the predictive distribution of a Pitman–Yor process satisfies

P(Xn+1 = “new” | X (n)) = θ + σk

θ + n
,
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where k is the number of distinct species in the sample X (n). The complete prediction
scheme is of the form

P(Xn+1 ∈ · | X (n)) = θ + σk

θ + n
P∗(·) + n

θ + n

1

n

k∑
i=1

(Ni − σ)δX∗
i
(·),

which notably features a suitably weighted empirical measure. Depending on the
value of σ , this leads to a markedly different learning scheme, as highlighted in Fig. 1.
Here, we compare the prediction of the number of new unique values K (n)

m in an
additional sample of size m, conditionally on X (n). In particular, we consider the
Bayesian nonparametric estimator for K (n)

m derived in Favaro et al. (2009), that is

E(K (n)
m | X (n)) =

(
k + θ

σ

){
(θ + n + σ)m

(θ + n)m
− 1

}
. (5)

We refer to Lijoi et al. (2007) and Favaro et al. (2009) for details. In the Dirichlet
process case, as shown in Favaro et al. (2011), (5) reduces to

E(K (n)
m | X (n)) =

m∑
i=1

θ

θ + n + i − 1
.

A practical issue to face is the specification of the parameters (σ, θ). A first convenient
approach proposed in Lijoi et al. (2007) is based on empirical Bayes ideas. It consists
in fixing (σ, θ) to maximize the exchangeable partition probability function, so that
in the Pitman–Yor case, we have

(σ̂ , θ̂ ) = argmax
(σ,θ)

{∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
i=1

(1 − σ)ni −1

}
.

An alternative way of specifying (σ, θ) is by placing a prior on it. However, as show-
cased in Lijoi et al. (2008), this often results in negligible differences for the estimates
of K (n)

m compared to the empirical Bayes approach, since in many practical scenarios
the posterior distribution for (σ, θ) is highly concentrated.

In order to illustrate the BNP methodology for species sampling problems we
consider two real-world applications. First, we analyze a dataset of Holst (1981),
which comprises n = 204 coins (obverse side) found in a hoard of ancient coins. They
were classified according to different die types, which are the tools used to produce
them and represent the “species” in this context: k = 141 distinct dies were recorded.
The frequencies are conveniently summarized in terms of the number of “species” of
a given size, i.e., ri represents the number of species with frequency i , and we have
(r1, r2, r3, r4, r5, r6, r7) = (102, 26, 8, 2, 1, 1, 1). The goal is to predict the number
of new dies one may observe in a future hoard of coins. We adopt the BNP estimators
E(K (n)

m | X (n)) with empirical Bayes elicitation of (σ, θ), which yields the parameter
specifications θ̂ = 200.65 for the Dirichlet process and (σ̂ , θ̂ ) = (0.11, 172.48)
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(a) Coins dataset: n = 204 coins made with k = 141 distinct dies.
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(b) Citrus clementina dataset: n = 1593 expressed sequence tags
corresponding to k = 806 distinct genes.

Fig. 1 Species discovery: Bayesian nonparametric estimatorsE(K (n)
m | X (n)) of the number of new distinct

values K (n)
m in an additional sample of size m, conditionally on the data X (n), for a Dirichlet process (red

line) and a Pitman–Yor process (blue line). The Good–Toulmin estimator (green line) is also displayed for
comparison
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for the Pitman–Yor process. The two BNP estimators are compared to the Good–
Toulmin estimator (Good & Toulmin, 1956; Mao, 2004), which is one of the most
popular frequentist estimators. It is well known that the Good–Toulmin estimator
usually provides reliable predictions for m < n, that is, if the additional sample
over which predictions are made is not larger than the observed sample, whereas for
values m > n it often shows an erratic behavior. All three estimators are depicted in
Fig. 1a. The Dirichlet process and the Pitman–Yor process behave similarly. This is
not surprising since the empirical Bayes estimate favors a low value for the discount
parameter (σ̂ = 0.11), and we recall that the Pitman–Yor process reduces to the
Dirichlet process ifσ = 0.Moreover,wehighlight that they both resemble the behavior
of the Good–Toulmin estimator when m is smaller than the observed sample size. For
larger values of m, the Good–Toulmin estimator becomes erratic, whereas this is not
the case for the BNP estimators since they rely on principled probabilistic models.

Our second application concerns the genomic dataset FlavFr1: it comprises
1593 expressed sequence tags (ESTs) of a cDNA library obtained from the fruits
of citrus clementina. These are categorized into 806 different genes with ri =
561, 148, 37, 18, 6, 5, 12, 1, 1, 3, 1, 2 for i ∈ {1, . . . , 12}, and ri = 3, 2, 1, 1, 1, 1, 1, 1,
for i ∈ {14, 15, 16, 19, 22, 23, 58, 117}. As before, we aim to predict the number of
new genes in a future sample; the empirical Bayes specification yields θ̂ = 651.05 and
(σ̂ , θ̂ ) = (0.63, 110.24) for the Dirichlet and the Pitman–Yor processes, respectively.
The corresponding estimators together with the Good–Toulmin estimator are depicted
in Fig. 1b. In this case, there are striking differences between the estimators obtained
from the Dirichlet and the Pitman–Yor processes. This is due to the data favoring a
large value for the discount parameter (σ̂ = 0.63), setting the Pitman–Yor case far
apart from the Dirichlet process case (σ̂ = 0). This clearly showcases the usefulness
of the additional flexibility of the Pitman–Yor process, which allows for polynomial
growth rates controlled by the parameter σ . Once again, the Good–Toulmin estimator
diverges for large values of m. However, for moderately large values of m it nicely
resembles the predictions of the Pitman–Yor estimator. This further underpins the need
to go beyond the Dirichlet process in species sampling contexts. Further instances of
applications requiring nonparametric priors with polynomial growth rate, or equiva-
lently power law tail behavior, can be found in Hoshino (2001), Teh (2006), Caron
(2012) and Caron and Fox (2017).

3 Mixturemodels

The Dirichlet and Pitman–Yor process priors are laws for almost surely discrete ran-
dom probabilities. This implies that, when used as de Finetti measures, the induced
exchangeable observations (1) will have a positive probability of being equal, i.e.,
P(Xi = X j ) > 0 for every i, j . Thus, different models should be considered when-
ever the data do not display ties. A popular strategy is to model a random density
function through a kernel mixture. Let f be a probability density kernel and P̃ be
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an almost surely discrete random probability. The random probability density is then
defined as

f̃ (y) =
∫
X

f (y | x)P̃(dx).

Using the law Q f of f̃ as de Finetti measure, the law of induced exchangeable obser-
vations (Yi )i≥1 may be equivalently described in hierarchical form as

Yi | Xi , P̃
ind∼ f (· | Xi ) i = 1, . . . , n;

Xi | P̃
iid∼ P̃ i = 1, . . . , n;

P̃ ∼ Q,

where the latent variable Xi represents the parameter of the probability density from
which Yi is sampled. Kernel mixtures over a Dirichlet process have been introduced in
Lo (1984) and later extended to more general mixing measures, including the Pitman–
Yor process (Ishwaran & James, 2001). See Müller and Quintana (2004), Barrios
et al. (2013) and De Blasi et al. (2015) for reviews. Arguably, kernel mixtures over
discrete random probabilities are the most popular Bayesian nonparametric models.
This is because they allow one to perform two important statistical tasks at once:
(i) flexible density estimation, which avoids parametric constraints and adapts to any
data generating distribution; (ii) model-based clustering, which exempts from fixing
the number of clusters a priori. Indeed, due to the discreteness of P̃ , any sample from
the posterior distribution of the latent variables Xi given Y(n) has Kn ∈ {1, . . . , n}
distinct values. This automatically partitions the n observed data into Kn clusters, with
two observations Yi and Y j belonging to the same cluster if they are sampled from the
same mixture component, i.e., if f (· | Xi ) = f (· | X j ) a posteriori.

Different discrete nonparametric priors induce different distributions for the number
of clusters Kn . Given the important role played by Kn for the probabilistic clustering,
when eliciting the prior this aspect should be taken into account. In the same way,
the posterior distribution of P̃ given the data Y (n) will induce a posterior distribution
L (Kn | Y (n)), providing both point estimates and uncertainty quantification on the
number of clusters in the data. In practice, posterior computations are customarily
carried out using Markov Chain Monte Carlo, an avenue first explored in Escobar and
West (1995). This is a highly non-trivial task, since it entails exploring the partition
space. To address this issue, several computational methods have been proposed over
the years. Another practical concern is the choice of the baseline distribution P∗, which
is known to have a significant impact on L (Kn | Y (n)). See Richardson and Green
(1997). However, this equally affects parametric and nonparametric specifications.

In Fig. 2, we consider synthetic data generated from a finite mixture of normal
distributions with three components, and the estimates resulting from a normal mix-
ture model with Dirichlet and Pitman–Yor process as mixing measures. We consider a
highly miss-specified scenario, where the expected number of clusters a priori is about
34, significantly larger than the true number of mixing components (three). This leads
to consider a Dirichlet process with θ = 10, whereas for the Pitman–Yor process infi-
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(a) Distribution of the number of clusters K300: prior distribution
and posterior update given Y (300). Probability masses correspond-
ing to the same number of clusters are slightly shifted for visualiza-
tion purposes.
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(b) Histogram of Y (300), together with the Monte Carlo approxi-
mations of the posterior means E(f̃(y) | Y (300)), for a grid o values
of y.

Fig. 2 Mixturemodels. Nonparametric density estimation using a synthetic dataset of n = 300 observations
from a mixture of Gaussians 1/4 N(−1, 1/42) + 1/2 N(0, 1/42) + 1/4 N(1, 1/42), under the Dirichlet
process (red lines) and the Pitman–Yor process (blue lines)
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nite combinations of σ and θ are possible: we set σ = 0.6 to highlight the role of σ ,
and this results in θ = 0.026. In particular, the plot displays the prior and posterior dis-
tributions of the number of clusters in Fig. 2a, and the posterior densities in Fig. 2b. For
both models, the posterior distribution moves away from the prior miss-specification.
However, in the Pitman–Yor case, this correction is stronger leading to more accurate
posterior inference on the number of clusters. The robustness of the clustering with
respect to prior miss-specifications represents a highly appealing feature of Pitman–
Yor process mixtures. In contrast, both models lead to highly accurate but essentially
indistinguishable posterior densities. This is due to the lack of identifiability of the
number of mixture components in a mixture density: one can always fit a mixture
density with more components than needed.

4 Borrowing of information

In the previous sections, we focused on exchangeable models, which translate a notion
of homogeneity in the data. Yet, there are many situations where this can be seen
as a restrictive assumption. In de Finetti’s words (de Finetti, 1938) ‘But the case
of exchangeability can only be considered as a limiting case: the case in which
this “analogy" is, in a certain sense, absolute for all events under consideration’.
More specifically, one may wish to generalize exchangeability to the case where
data is collected under different experimental conditions, such that one retains homo-
geneity within each experiment though allowing for heterogeneity across different
experiments. Typical examples include topic modeling, meta-analysis, two-sample
problems, nonparametric regression, time-dependent data, and change point prob-
lems, to mention a few. A natural probabilistic framework that achieves this is partial
exchangeability, as defined below. To simplify the notation, we focus on two groups
of observations, though all the contents of this section may be easily extended to an
arbitrary number of groups.

Definition 3 An array (X1, X2) = (X1, j , X2, j ) j≥1 is partially exchangeable if for
any N1, N2 ≥ 1, π permutation of {1, . . . , N1}, and φ permutation of {1, . . . , N2},

(X1,1, . . . , X1,N1 , X2,1, . . . , X2,N2 )
d= (X1,π(1), . . . , X1,π(N1), X2,φ(1), . . . , X2,φ(N2)).

Partially exchangeable sequences may be characterized as conditionally inde-
pendent through an extension of de Finetti’s representation theorem. Specifically,
(X1, X2) is partially exchangeable if and only if there exists a probability distribution
Q on PX × PX such that

P(X1,1 ∈ A1, . . . , X1,N1 ∈ AN1 , X2,1 ∈ B1, . . . , X2,N2 ∈ BN2)

= ∫
PX×PX

∏N1
i=1 P1(Ai )

∏N2
j=1 P2(B j ) Q(dP1, dP2).
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Equivalently, there exists a vector of dependent random probabilities (P̃1, P̃2) such
that

(X1,i , X2, j ) | (P̃1, P̃2)
iid∼ P̃1 × P̃2 ∀i, j ≥ 1;

(P̃1, P̃2) ∼ Q.

We observe that the dependence between random probabilities induces dependence
between the sequences X1, X2 of (exchangeable) observations, with two extreme sce-
narios: when P̃1 and P̃2 are independent, so are X1 and X2; when P̃1 = P̃2 = P̃ almost
surely, X1, X2 are (fully) exchangeable, as it is clear by comparing the “degenerate"
form of de Finetti’s representation theorem to the one for exchangeable sequences
(1). Thus, we can interpret partial exchangeability as a dependence assumption on the
observables that ranges from independence to exchangeability.

The use of partially exchangeable sequences for statistical purposes has been pio-
neered by Cifarelli and Regazzini (1978) and MacEachern (1999, 2000). To this
end, one needs to build dependent random probability measures (see Quintana et al.,
2022 for a recent review) with two key features in mind: (i) mathematical tractability,
which corresponds to obtaining manageable representations for the posterior and/or
the marginal structure, i.e., the partition distribution or the prediction rule; (ii) the
ability to control the amount of dependence, since this is directly linked to the bor-
rowing of information between the two groups: the more the dependence, the more
information will be shared across the two groups. This is usually done by expressing
the linear correlation between pairwise set-wise evaluations, Cor(P̃1(A), P̃2(A)) for
any Borel set A, and has been recently extended to an arbitrary number of groups by
relying on the Wasserstein distance (Catalano et al., 2021a, 2021b).

There are many proposals in the literature that share both these features. We divide
them into three categories: hierarchical structures (e.g., Teh, 2006; Teh & Jordan,
2010; Camerlenghi et al., 2017, 2019, 2021), nested structures (e.g., Rodríguez et al.,
2008; Camerlenghi et al., 2019; Lijoi et al., 2023), and multivariate Lévy structures
(e.g., Epifani & Lijoi, 2010; Lijoi et al., 2014a, 2014b; Griffin & Leisen, 2017; Lau &
Cripps, 2022).

Partial exchangeability represents the ideal probabilistic framework in many con-
texts. We showcase this by means of the hierarchical Dirichlet process mixture model
(Teh et al., 2006), which is among the most popular and intuitive ways of introduc-
ing dependence between random probabilities and also enjoys attractive frequentist
asymptotic properties (Catalano et al., 2022). We define (P̃1, P̃2) to be distributed
according to a hierarchical Dirichlet process prior if for α, α∗ > 0 and P∗ a diffuse
probability measure on X such that

(P̃1, P̃2) | P̃0
iid∼ DP(α, P̃0);

P̃0 ∼ DP(α∗, P∗).

We will use the notation (P̃1, P̃2) ∼ HDP(α, α∗, P∗).
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(a) Histograms of the two groups of data Y1,1, . . . , Y1,15 (left panel)
and Y2,1, . . . , Y2,200 (right panel).

Group:  1 Group:  2

-1 0 1 -1 0 1

0.0

0.5

1.0

0.0

0.5

1.0

y

D
en

si
ty

(b) Low correlation structure (0.09): solid lines are Monte Carlo
approximations of the mean posterior densities, shaded areas are
95% pointwise credible intervals.
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(c) High correlation structure (0.91): solid lines are Monte Carlo
approximations of the mean posterior densities, shaded areas are
95% pointwise credible intervals.

Fig. 3 Borrowing of information: nonparametric density estimation using a Hierarchical Dirichlet process
for two groups of synthetic observations with 15 and 200 data points, respectively
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Different levels of dependence may be achieved by tuning the concentration hyper-
parameters α, α∗ > 0 of the HDP. The corresponding correlation structure is

Cor(P̃1(A), P̃2(A)) = α + 1

α + 1 + α∗ ,

which remarkably does not depend on the set A nor on the base probability P∗. Starting
from a hierarchical Dirichlet process, one can use it to induce dependence between
mixture densities in a natural way, that is,

(Y1,i , Y2, j ) | (X1,i , X2, j , P̃1, P̃2)
ind∼ f (· | X1,i ) × f (· | X2, j ) ∀i, j ≥ 1;

(X1,i , X2, j ) | (P̃1, P̃2)
iid∼ P̃1 × P̃2 ∀i, j ≥ 1;

(P̃1, P̃2) ∼ HDP(α, α∗, P∗).

To test the performance of the HDP in terms of borrowing of information we
consider synthetic data generated from mixtures of three normal distributions. More
specifically, the first group of n1 = 15 synthetic observations are iid from the mix-
ture 0.6 N(−0.8, 0.22) + 0.3 N(0, 0.22) + 0.1 N(0.8, 0.22), whereas the second
group of n2 = 200 observations are iid from the mixture 0.575 N(−0.8, 0.22) +
0.275N(0, 0.22)+ 0.15N(0.8, 0.22). In other words, the two mixtures have the same
scale and location parameters, but different probability weights. Moreover, the two
groups of observations have markedly different sample sizes. As for the HDP model,
we compare two different scenarios.We tune the parameters to achieve different values
for the correlation, namely 0.09 and 0.91, corresponding to, respectively, weakly and
highly dependent specifications. Among the infinite choices for α and α∗ that induce
the aforementioned values for the correlation, in both cases we select those that lead
to an overall prior expected number of clusters among the two groups approximately
equal to 7.5. This allows for a fair comparison of the twomodels. The resulting param-
eters are α = 1 and α∗ = 20 for the weakly and α = 19 and α∗ = 2 highly dependent
HPD. In Fig. 3 we display the corresponding mean posterior densities

E

(∫
X

f (y | x)P̃j (dx)

∣∣∣∣ Y1,1, . . . , Y1,15, Y2,1, . . . , Y2,200

)
.

As in the exchangeable case, posterior computations are based on Markov Chain
Monte Carlo, leveraging specialized algorithms such as Lijoi et al. (2020).

The plots in Fig. 3 highlight the crucial role of the specification of the dependence
structure. In the case of an HDP with weak dependence (Fig. 3b), the data of the first
group (left panel) are not sufficiently informative to discover the existence of a third
mixture component. Conversely, when we impose a stronger dependence (Fig. 3c), the
data of the first group can effectively borrow strength from the second, whose sample
size is much larger and therefore contains more information. As a result, the correct
number of mixture components is recovered, despite the limited sample size of the
first group. Moreover, the borrowing of information is also apparent from the credible
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intervals: a larger borrowing of information greatly reduces the uncertainty around the
point estimator for the first group.
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