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a b s t r a c t 

The current coronavirus pandemic has produced severe consequences on economic and health systems all 

over the world, with the governments being challenged in searching for containment solutions balancing 

virus diffusion and limitations to social and work activities. In this paper, we propose a framework for 

the real-time optimization of restrictions in epidemics, based on the use of a time-varying SIRD model. 

Despite their simplicity, this class of models is able to capture the essential features of the epidemic 

spread, with the inherent parameter variation allowing accurate adaptation to real data. An optimization 

problem is formulated, properly balancing health and economic costs, and is solved parametrically by 

following a receding-horizon approach, resulting in an optimal sequence of social contact restrictions, 

which are assumed to be actuated via governmental containment measures. Numerical simulations based 

on the real data of the Italian COVID-19 emergency highlight the potential of the proposed approach and 

can be possibly helpful for the decision makers in present and future pandemics. 

© 2023 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

At the beginning of 2020 the entire world has been found un- 

repared in facing the unprecedented sanitary emergency of the 

OVID-19 pandemic. The first cases of SARS-CoV-2 disease were 

otified in China, within the region of Wuhan. Due to the glob- 

lization, the infection spread along the Earth surface in less than 

ne year, deeply affecting lives, social habits and the economies 

f all the countries, producing very rapidly the collapse of their 

ealth systems. After 16 months from the first diagnosed case, the 

OVID-19 pandemic caused the death of over 3.8 million people 

nd the infection of more than 175 million of patients (without 

onsidering undiagnosed subjects) [40] . Such a large impact of the 

OVID-19 pandemic motivated a worldwide impressive research ef- 

ort to understand its spread and the effectiveness of containment 

easurements [4,16,19,34] . 

The fast diffusion of COVID-19 pushed the governments of the 

ntire world to rapidly adopt strong measures, like the lock-down 
∗ Corresponding author. 
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nd the limitations of social and economic activities, in addition 

o hygienic norms and face masks, in order to contain the dis- 

ase spread. Such interventions, known as Non-Pharmaceutical In- 

erventions (NPIs), proved to be very efficient to limit the disease 

iffusion and are the only weapons to stop the disease spread until 

pecific drugs (against the virus and its complications) and efficient 

accines are available [15,35] . After 3 years, the epidemic scenario 

as changed but NPIs remain fundamental tools to be used even 

n the presence of vaccines since they have the fundamental role 

f limiting the virus circulation (and then its replication and the 

onsequent mutations). 

Despite this important role played by the NPIs in limiting the 

irus spread, such interventions (especially the limitations of social 

nd economic contacts) have a strong impact on people lives, often 

mplying a heavy economic and psychological burden [8,28,37,39] . 

or this reason, NPIs must be suitably planned and optimized in 

rder to maximize their effects while minimizing their negative 

mpact on the human lives. The planning and optimization of NPIs 

an be efficiently supported by mathematical models which are 

ble to reproduce the infection mechanism and to predict the dy- 

amical evolution of a given disease in the susceptible population. 
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Recently, many papers addressing the mathematical description 

f COVID-19 and extending the basic SIR structure (Susceptible, In- 

ected and Recovered) by McKendrick and Kermack [26] , have been 

ublished. Multi-compartmental epidemic models have been for- 

ulated focusing on the mathematical representation of various 

spects of the COVID-19: the presence of asymptomatic infection 

nd of the incubation-latency period, the problem of the contagion 

racking, the inclusion of quarantine and isolation compartments, 

he different severity levels of the disease etc. [9,12,13,18,20,21] . 

uch detailed representations of the disease have shown to provide 

ealistic long term predictions and interesting quantitative analy- 

es. 

Although complex models show an high degree of accuracy in 

eproducing epidemiological data, most of these models are too 

omplex to be exploited for a model-based feedback design, espe- 

ially for the early stages of the disease spread when few data are 

vailable. Moreover, dealing with simple epidemic models allows 

o identify the parameter values with small confidence intervals 

5,36] . So, a trade-off between simplicity and accuracy is manda- 

ory in the model formulation, especially when the model is used 

or building optimal control policies. 

Several techniques have been proposed for NPIs planning, and 

n particular for the optimal open-loop and closed-loop design 

f lock-down phases. Most of them rely on multi-compartmental 

odels of the epidemic spread, which are extended versions of 

he well-known SIR model; examples of these frameworks are 

IDARTHE, exploited in [25] to design a Model Predictive Control 

MPC) strategy to minimize the deaths for COVID-19, SIRQTHE in 

11] , where a multi-region scenario was adopted to design optimal 

ontrol strategies during post-lockdown phases, SIRASD in [30] , 

here an MPC approach is proposed to cope with COVID-19 conta- 

ion in Brazil, SIRCQTHE in [38] , where a stochastic MPC problem 

s formulated to infer suitable restrictions on the mobility of differ- 

nt socioeconomic categories, and SIHRD in [29] , exploited to guar- 

ntee safety against the spread of infectious diseases by viewing 

pidemiological models as control systems and by considering NPIs 

s control inputs. The drawback in adopting such comprehensive 

odels is that they are difficult to identify, especially in the first 

pidemic spread, where urgent decisions have to be taken. This is 

he main motivation for our choice of a minimal SIRD model to de- 

cribe COVID-19 transmission: it can be rapidly identified accord- 

ng to a short observation interval and, besides, we can benefit of 

he analytical solutions, that can be exploited when designing the 

ptimization policy. 

In a recently published paper [6] , we proposed a technique to 

ptimally design the lock-down in terms of starting and ending 

imes, as well as of the number of isolated people. The proposed 

ptimization approach aimed at containing the outbreak during 

he very first spreading period, on the basis of few and raw epi- 

emiological data. In the present work, we extend the idea pro- 

osed in our previous paper, by addressing a trial-and-error proce- 

ure based on which the adopted restrictions are periodically re- 

ised every two weeks. The formulation of the optimization prob- 

em is based on a time-varying SIRD model which allows to repro- 

uce the dynamic evolution of the disease with a minimal number 

f parameters and to take the continuously changing containment 

easures applied by the Italian government into account. Based 

n the underlying modeling assumptions, our optimal procedure 

s technically sound as long as relatively short intervention peri- 

ds are addressed (i.e., from some months up to a few years). In- 

eed, for the sake of simplicity of the mathematical formulation, 

e intentionally disregard important epidemiological aspects aris- 

ng over long time intervals, as the loss of immunity after healing, 

eople reinfections, vaccinations, virus mutations etc. 

Time-varying models are not a novelty in the COVID-19 mod- 

ling framework: we may cite, among the others, references fo- 
2

used on identification purposes, like [1,9] , where the model pa- 

ameters are given in terms of combinations of basis functions, 

nd [7] , where the identification is performed according to deep- 

earning algorithms; concerning the design of NPI control schemes, 

e mention [32] , where linear state-dependent variations of the 

IRD parameters are assumed and an optimal MPC problem min- 

mizing both number of infections and confinement measures is 

roposed, and [17] , where a SEIRD model with time-varying rel- 

tive infection rate is used to design a control scheme that regu- 

ates the social distancing on the basis of five levels of lock-downs, 

eeking the minimization of the intensive care unit occupancy; re- 

ent SIRD-based MPC problems addressing the optimal planning of 

he social contact restrictions in Brasil are also proposed in [31,33] , 

here the problem is formulated assuming a first order heuristic 

or the dynamical equation of the social distancing ratio. The main 

ifferences of our optimization problem compared to the control 

roblems formulated in [17,31–33] are: (i) we directly minimize 

he total number of dead people at the end of a medium-term 

rediction interval (while in the mentioned works the reduction 

f deaths is an indirect consequence of the proposed objectives, 

asically looking for the infection reduction), (ii) we do not as- 

ume any specific value or explicit state-dependent relation for the 

ontact rate, but its optimal level is directly inferred from the op- 

imization output. We note that minimizing the total number of 

eaths is a less conservative approach than minimizing the current 

umber of infections. However, as shown in the numerical results, 

he proposed optimal policy also reduces the maximal peak of in- 

ected individuals with respect to the real Italian case, thus result- 

ng in a substantial reduced pressure on the local health structures. 

oreover, the choice of making decisions on the present restric- 

ion policy based on the predicted cumulative deaths at the end of 

 forecast interval rather than on the current deaths is a cautious 

tance because of the observed delay between the adopted restric- 

ions and the produced effects on the infection spread. We finally 

ote that, although many interesting assumptions on the contact 

ate can be investigated, for the sake of generality we opt to leave 

ts optimization free from specific modeling hypotheses. 

The paper is organized as follows: Section 2 introduces the 

ime-varying SIRD model and its parameter identification from 

OVID-19 Italian data. In Section 3 , the optimization problem is 

ormulated and an approximate real-time receding-horizon solu- 

ion is proposed. Section 4 includes numerical simulations based 

n real data. Section 5 offers concluding remarks. 

. Model setting and identification from real data 

.1. Model 

The formulation of the optimization problem is based on a 

lassical mathematical representation of the epidemic dynamics. 

he model exploited is a SIRD ODE system which extends the SIR 

ormulation by McKendrick and Kermack [26] , by explicitly tak- 

ng into account dead and healed among removed people. Since 

he period of interest is characterized by time-varying intervention 

easures adopted by the authorities to contain the disease out- 

reak, but also by an increasing preparedness of the health sys- 

em in facing the emergency and the disease complications, we 

xploited a time-varying model formulation. For the sake of sim- 

licity, we assume the model parameters to be piecewise-constant, 

hanging every � days. 

In particular, we denote by βk , γk , νk ∈ R> 0 the relative infec- 

ion rate, the per capita recovery and mortality rates, respectively, 

hich are kept constant for any time t ∈ [ k �, (k + 1)�) and switch

t the beginning of each time interval t = k �, k = 0 , 1 , . . . , K − 1 ,

here the whole temporal period of interest is supposed to con- 

ist of K intervals. 
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Fig. 1. Best fit on COVID-19 Italian data up to March 19, 2023. Panel A: daily number of infected. Panels B and C: total number of notified recovered and dead patients. Panel 

D: model-based prediction of the reproduction number. Red dots: ISS data [14] . Blue line: model prediction. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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On the basis of these assumptions, we define the following 

ime-varying SIRD model: 

 

 

 

 

 

 

 

Ṡ (t) = −βk 

N 
S(t ) I(t ) , 

İ (t) = βk 

N 
, S(t) I(t) − (γk + νk ) I(t) , 

Ṙ (t) = γk I(t) , 

Ḋ (t) = νk I(t) , 

t ∈ [ k �, (k + 1)�) 

(1) 

here the state variables S(t) , I(t) , R (t) , D (t) represent the num-

er of susceptibles, infectious, recovered and deceased, respec- 

ively, at time t ∈ R≥0 (expressed in days). Note that the total pop- 

lation size S(t) + I(t) + R (t) + D (t) = N is constant for any time t

ccording to the given formulation that is a realistic representation 

ver a short time interval (which allows to neglect possible demo- 

raphic changes). 

Although the main features of the COVID-19 epidemics (like 

he presence of a relatively long period of incubation or the la- 

ency between infection and symptoms onset or the crucial role of 

he asymptomatic carriers on the infection spread) are now well 

nown, we neglect such features opting for a “minimal” model rep- 

esentation (both in terms of compartment and parameter num- 

ers) in order to simplify the formulation of the optimization prob- 

em. However, the time-varying structure adopted in the formula- 

ion above allows the SIRD model to efficiently describe the epi- 

emiological data within short observation intervals, as it can be 

oticed from the fitting curves reported in Fig. 1 . 

Moreover, a further advantage of the adopted model structure 

s that its parameters are well identifiable in each observation in- 

erval on the basis of the few epidemiological data provided by 

he official sources, i.e. the number of (diagnosed) current infec- 

ious and the total number of dead and healed. Indeed, a signifi- 

ant drawback in adopting more accurate model representations is 

hat they may face unidentifiability problems because of the insuf- 

cient information provided by the official data [5,6,36] . 

We finally make the following working assumptions: 
3

• in the first interval ( k = 0 ), no restrictions are applied yet or, at

least, their effect can be reasonably neglected, provided that �

is sufficiently short. This is regarded as open-loop condition; 

• in the following periods ( k > 0 ), governmental restrictions and 

personal containment measurements may only affect the infec- 

tion rate βk , while exogenous modifications only affect γk and 

νk . These include e.g. therapy improvements, seasonal changes, 

virus modifications. 

Model (1) can be shortly restated in state-space form by defin- 

ng the state vector x (t) = [ S(t ) I(t ) R (t ) D (t )]T at all times

 ∈ [0 , K�] . We denote by x (t, x0 , β, γ , ν) as the forward solution

f model (1) at time t assuming constant parameters (β, γ , ν) 

rom time 0 (resulting in a time-invariant system). By a slight 

buse of notation, we will let time t ∈ [0 , + ∞ ) , thereby assum-

ng x (t, x0 , β, γ , ν) as the time evolution over a possibly infinite-

orizon time length, when all three model parameters are sup- 

osed to be fixed. 

We define d�(x, β, γ , ν) as the additional deaths, predicted at 

he end of a time interval �, with respect to those already present 

n state x (i.e. at the beginning of the same interval), computed as 

�(x, β, γ , ν) = C
(
x (�, x, β, γ , ν) − x

)
, (2) 

here C = [0 0 0 1] selects the last component of x . Intuitively,

rom (1) , it readily comes that d�(x, β, γ , ν) is a monotonically in-

reasing function of β when all the other quantities are fixed. Note 

hat, given the initial condition x and the values of the parameters 

, γ , and ν , closed-form expressions are available [6] to compute 

he values attained by the function d�(x, β, γ , ν) . 

.2. Identification from COVID-19 Italian data 

The identification of the SIRD parameters has been performed 

n the horizon [0 , K�], based on the epidemiological data of the 

OVID-19 in Italy provided by the National Institute of Health of 

taly (ISS). The data are published on the data repository GitHub 
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Table 1 

Normalized Akaike Information Criterion ( nAIC ) and Coefficient of Variation (CV) 

related to the ordinary least square data fitting (until March 19, 2023), performed 

for � = 7 , 14 , 21 , 28 days. 

� nAIC CV ( % ) 

7 34.18 9.275 

14 37.85 4.254 

21 40.14 2.681 

28 42.23 2.758 
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14] , edited by the national Civil Protection Department since 

ebruary 24, 2020. The database collects a large amount of Ital- 

an data, as the cumulative number of cases, the number of cur- 

ently infected people, hospitalized or not, the total number of 

ealed and dead patients, the number of swab tests etc., daily up- 

ated and hierarchically organized at national, regional and provin- 

ial levels. For the purpose of SIRD identification we only exploit 

he national data on the number of current infected, total healed 

nd dead people. At the moment of the manuscript editing, the 

ata were updated up to March 19, 2023, covering approximately 

 years of COVID-19 pandemic. 

Based on such data, the identification substantially reflects 

hat happened in Italy according to an increasing awareness of 

he COVID-19 disease (parameters γ and ν) and to the Govern- 

ent restrictions and individual consciousness of social distancing 

parameter β). The estimates of γ and ν will be exploited to build 

p a realistic scenario for the synthesis of the proposed optimal 

estriction policy aiming at modifying parameter β: the underlying 

orking assumption is that parameters γ and ν do not depend on 

, implying that recovery and healing from the COVID-19 disease 

o not depend on the relative infection rate. 

Denoting by θk = (βk , γk , νk ) the parameter vec- 

or of the k th interval [ k �, (k + 1)�) , and by x (k �) =
S(k �) I(k �) R (k �) D (k �))T the related initial state vec- 

or, the identification procedure addressed the estimation of 

he family { (θ̄k , x̄ (k �)) ∈ R
3 
> 0 

× R
4 
≥0 

, k = 0 , . . . , K − 1 } , where

θ̄k , x̄ (k �)) denotes the best estimate of the pair (θk , x (k �)) for

he k th interval. Note that, in order to make the parameter esti- 

ation of an interval independent of the previous estimates, the 

nitial conditions of each interval have been identified in addition 

o the model parameters thus allowing to neglect the previous 

stimates of the parameters while identifying the ones of the k th 

nterval. 

The fitting procedure has been implemented in MATLAB envi- 

onment, exploiting an Ordinary Least Squares (OLS) approach. The 

odel parameters, with their 99 % confidence intervals, have been 

stimated by means of the functions lscurvefit” and nlparci”. The 

opulation size N has been fixed to 603170 0 0, which is the value 

f Italian population on January 1st, 2020 [24] . 

The length � plays a crucial role in order to identify a trustwor- 

hy model. The smaller the value of � is, the better the data fitting 

s expected, at the cost of an increasing number of model parame- 

ers, with the drawback of possibly obtaining an underdetermined 

ystem and a consequent loss of accuracy in the parameter estima- 

ion (overfitting). To deal with such an issue, we decide to limit our 

nvestigation to four values of �, i.e. 1,2,3,4 weeks. The choice of �

eing multiple of 1 week is made to reduce the effect of random 

ntraweek variations in data consequent to observed variations in 

he number of swab tests (typically occurring at weekends) [14] . 

he limit set to 4 weeks is oriented to make the model adaptive 

o possible mid-term modifications of the pandemic features. The 

dentification interval � has been chosen according to a trade-off

etween the in-sample fitting error and the accuracy of the param- 

ter estimation. 

Concerning the model capability to faithfully reproduce the epi- 

emiological data, we computed the Akaike Information Criterion 

AIC) [2,3] for the aforementioned four different lengths of the ob- 

ervation interval �. The interested reader is referred to [27] for a 

eeper analysis about the Akaike Information Criterion. The anal- 

sis has been carried out according to different versions of AIC 

normalized, raw, sample-size corrected criterion). All these ver- 

ions reveal the same monotonic trend w.r.t. the size of the ob- 

ervation interval, showing an increasing prediction error when �

ncreases. As an example, Table 1 reports the values of the nor- 

alized AIC (nAIC), computed for � = 7 , 14 , 21 , 28 days. The ta-

le shows that setting � = 7 days is the best choice for max- 
4

mizing the capability of the model to reproduce the available 

ata. 

Concerning the accuracy of the parameter estimation, we eval- 

ated the Coefficient of Variation (CV) of the estimated parameters 

or the four candidate � values. Reasonably, the CV computation 

rovides an approximately monotonic decreasing trend w.r.t. � up 

o the value of � = 21 days, as shown by Table 1 . 

In summary, the opposite trends of the AIC and CV criteria pre- 

ent reaching a consensus clearly stating which one of the propos- 

ls is better to choose. In other words, the results in Table 1 show

hat � ∈ { 7 , 14 , 21 } days are all feasible choices (i.e. Pareto efficient

olutions in the multi-objective optimization of model prediction 

rror and parameter estimation accuracy), while � = 28 days is 

ot an optimal choice since it is strictly worse than � = 21 days 

n both the targets (nAIC and CV). Our final choice is the interme- 

iate one, namely � = 14 days, since it produces a strong relative 

mprovement (in terms of CV) with respect to � = 7 days and bet- 

er prediction results (in terms of nAIC) compared to � = 21 days, 

hich makes it the best trade-off between model prediction error 

nd parameter estimation accuracy. 

According to the whole period of data collection we set K = 80 .

Table A.1 in appendix reports the estimated values of the SIRD 

arameters for the 80 identification intervals obtained with � = 14 

ays, while Fig. 1 shows the fitting curves compared with the of- 

cial data. Panel D of Fig. 1 shows also the model-based evalu- 

tion of the effective reproduction number (β̄k / (γ̄k + ν̄k )) S(t) /N, 

 ∈ [ k �, (k + 1)�) , [23] for any estimation interval, which clearly

ighlights the two waves occurred in Italy since the COVID-19 ap- 

earance. 

. The optimization problem 

In a recent research article [6] , we formulated an optimization 

pproach for planning lockdowns, which included the determina- 

ion of the starting and conclusion times for lockdown measures, 

long with the optimal number of individuals to be isolated. In 

hat paper, we achieved prevention of virus transmission by di- 

ectly removing individuals from the susceptible sub-population. 

In contrast, the following problem formulation focuses on sim- 

lating the progressive isolation of individuals due to government- 

mposed restrictions. These measures range from basic regulations 

hat affect economic and social activities to more stringent mea- 

ures that prohibit people from leaving their homes. This is mod- 

led by reducing the contact rate to effectively limit virus trans- 

ission. In other words, we extend the idea proposed in our pre- 

ious paper, by addressing a trial-and-error procedure based on 

hich the adopted restrictions are periodically revised. The formu- 

ation of the optimization problem is based on the time-varying 

IRD model introduced in the previous section, where the infectiv- 

ty rate βk is optimized in each interval of duration �, as we detail 

ext. 

Specifically, we assume a uniform mixing scenario within the 

opulation, denoted as N, and we incorporate the infection mech- 

nism, which is characterized by the force of infection denoted as 

SI/N, so that the constant parameter β related to the interval 
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 k �, (k + 1)�) can be expressed as [23] 

k = ck χ, (3) 

here ck is the per capita contact rate (i.e. the number of con- 

acts that an individual has per time unit) during the same inter- 

al and χ is the contagion probability of an infected-susceptible 

ontact, which is related to the virus aggressiveness and to the effi- 

acy of the hosts’ immune system. Note that, as already mentioned 

n the introduction, the mathematical framework is simplified and, 

or the control purposes, it disregards the effect of possibly impor- 

ant epidemiological aspects arising over long time intervals (e.g. 

irus mutations and massive vaccination). This results in the as- 

umption of a contagion probability approximately constant over 

he whole observation period. 

Therefore, denoting by β0 the relative infectivity of the first �

ays, defined on the basis of the contact rate baseline c0 , β0 = c0 χ
i.e. in the absence of social contact restrictions), the level of peo- 

le isolation Li 
k 

in each time interval can be expressed by the rela- 

ive reduction of social contacts w.r.t. the baseline, that is 

i 
k =

c0 − ck 

c0 

= β0 − βk 

β0 

, (4) 

here (4) clearly belongs to [0 , 1] since βk can be at most equal

o β0 (no restrictions) or at least zero (complete isolation). Since 

ocial contact restrictions heavily impact on people lives, not only 

or the obvious economic implications but also for psychological 

spects, they unavoidably imply a cost JE which grows when the 

ize of isolated people increases (i.e. when ck , βk decrease). For 

nstance, for each time interval such a cost can be evaluated by 

eans of a quadratic term, properly penalizing larger deviations 

rom the open-loop condition: 

β̄0 − βk 

β̄0 

)2 

, (5) 

here β̄0 is the actual relative infectivity estimated for k = 0 . 

ence, the average (quadratic) economic cost over a finite time in- 

erval of duration M� can be modeled as: 

E (βk , . . . , βk + M−1 ) =
1 

M 

k + M−1 ∑ 

j= k 

( 

β̄0 − β j 

β̄0 

) 2 

. (6) 

On the other hand, the epidemics implies a severe sanitary cost, 

rimarily due to the number of people dying for the disease. In or- 

er to evaluate the sanitary impact of the interventions that we 

re going to adopt in each time interval, we predict at the begin- 

ing of k th interval [ k �, (k + 1)�) the total number of deceased

hat a new policy (implemented from k � onward) will produce 

t the end of a finite time interval of duration M�. Assuming to 

evise such a policy every � days, the cumulative number of de- 

eased at the end of the prediction period will be given by the sum 

ver the M intervals of the deceased (2) within each interval and 

ill be obviously dependent on the sequence of the infectivities 

j , j = k, . . . , k + M − 1 . The number of deaths within each interval

s minimal when βk = 0 (complete isolation), since further infec- 

ions are prevented and additional deaths can be produced only 

y the decreasing number of residual infected, while it reaches its 

aximal value when βk = β0 . Therefore we can define the average 

quadratic) health cost associated to the choice at t = k � as 

H (x (k �) , βk , . . . , βk + M−1 , γ̄k −1 , ν̄k −1 ) 

= 1 

M 

k + M−1 ∑ 

j= k 

(
d�(x ( j�) , β j , γ̄k −1 , ν̄k −1 ) − d�(x ( j�) , 0 , γ̄k −1 , ν̄k −1 ) 

d�(x ( j�) , β̄0 , γ̄k −1 , ν̄k −1 ) − d�(x ( j�) , 0 , γ̄k −1 , ν̄k −1 ) 

)2 

, (7) 

here x ( j�) is the state at the beginning of the jth interval 

 j�, ( j + 1)�) . 
5

Note that x ( j�) is completely known for j = k , since t = k � is

he current time of evaluation, while it can be predicted for j = 

 + 1 , . . . , k + M − 1 by integrating system (1) over the ( j − 1) th

nterval with the given value of β j−1 . Concerning the death and 

ecovery rates, we keep at constant values the parameters γ j , ν j , 

j = k, . . . , k + M − 1 . Indeed, the estimates γ̄k −1 , ν̄k −1 (related to

he ( k − 1 )th interval) are exploited for the prediction of the long- 

erm deaths (after M intervals) at t = k �. This is a reasonable 

hoice since at t = k � we do not know the death and recovery 

ates of the incoming intervals [ j�, ( j + 1)�) , j = k, . . . , k + M − 1

et. So the best evaluation for γ j , ν j , j = k, . . . , k + M − 1 is given

y the estimation performed in the last time interval of data pro- 

essing. 

eal-time receding-horizon control 

We formulate now a trial-and-error procedure aiming at op- 

imizing the restrictions of social contacts and human activities. 

he procedure searches the best trade-off between health and eco- 

omic costs, and it is revised periodically every � days. Hence, for 

he general k th interval, with k = 1 , 2 , . . . , we solve iteratively the

ollowing problem: 

β∗
k , . . . , β

∗
k + M−1 

)
= arg min 

βk ,... ,βk + M−1 ∈ [0 ,β̄0 ] 
subject to (1) , (2) 

(
αJE (βk , . . . , βk + M−1 ) 

+ (1 − α) JH ( ˜ x (k �) , βk , . . . , βk + M−1 , γ̄k −1 , ν̄k −1 )
)
, (8) 

here ˜ x (k �) is the actual state at the decision time t = k �, af-

ected by all the (possibly optimal) interventions actuated in the 

rst (k − 1) control intervals. 

Once the optimization problem (8) is solved, the first optimal 

nfection rate β∗
k 

is implemented by means of government restric- 

ions aimed at tuning the per capita contact rate ck defined in Eq. 

3) . Such a rate can be tuned, e.g., by imposing restrictions on the 

obility of the population also exploiting publicly available data, 

uch as the Google mobility reports [22] . 

Note also that: 

• at the decision time t = k � the sequence of infectivities β j , j =
k, . . . , k + M − 1 , is computed by solving a M-dimensional op- 

timization problem (since the prediction of the health cost de- 

pends on the next M intervals); however only the first one β∗
k 

= 

βk is actually implemented along the interval [ k �, (k + 1)�) as 

the intervention policy will be revised at t = (k + 1)�; 

• there is no optimization in the first interval k = 0 , i.e. t ∈ [0 , �) ;

• the optimal value β∗
k 

evaluated at the beginning of the k th in- 

terval, i.e. at time t = k �, depends on the number of deceased

predicted at the end of the next M� intervals on the basis of 

the most recent estimation of recovery/mortality rates (i.e. the 

values γ̄k −1 , ν̄k −1 ) that are kept constant along the next M inter- 

vals; this is a basic feature of the well-known Model Predictive 

Control (MPC) method (see e.g. [10] for a survey on this topic); 

• the state ˜ x ((k + 1)�) depends on the implementation of the 

suggested value β∗
k 

but also on the parameters γ̄k , ν̄k (which 

are unknown when β∗
k 

is computed, at t = k �, but completely 

determined at the end of the k th optimization interval, at t = 

(k + 1)�); 

• the coefficient α ∈ [0 , 1] allows for differently weighing the nor- 

malized economic and health costs; in particular, the cost func- 

tion in (8) provides the following limit situations for the ex- 

treme values of α: 

- for α = 0 , only the health cost matters ( J = JH ) and then the

complete isolation strategy β∗
k 

= 0 is optimal; 

- for α = 1 , only the economic cost matters ( J = JE ) and then

the open-loop strategy β∗
k 

= β̄0 leads to the optimality for 

any k . 
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Fig. 2. Cumulative economic and health costs at the end of a long term time horizon ( ̄K = 52 ) for α ∈ [0 , 1] . 
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Fig. 3. Time behaviour of the optimal and real infectivities (top panel) and the re- 

lated reproduction numbers (bottom panel) in [0 , K�] . 
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We propose the following steps for the control procedure: 

1. Interval 0 (“open-loop”), [0 , �) : identify the parameters β̄0 , γ̄0 , 

ν̄0 from the first epidemiological data, until day � (do not per- 

form any optimization); 

2. Iterate the following steps for the interval [ k �, (k + 1)�) , with

k = 1 , 2 , . . . , K − 1 : 

(a) optimal planning: at the initial time t = k � evaluate the 

current state ˜ x (k �) , determined by the policy actually im- 

plemented in interval (k − 1) (uncontrolled, for k = 1 , or 

controlled, for k > 1 ), and compute the optimal solutions 

( β∗
k 
, β∗

k +1 
, . . . , β∗

k + M−1 
) of problem (8) , assuming that the 

mortality and recovery rates are constant, over the en- 

tire prediction period [ k �, (k + M)�) , and equal to γ̄k −1 ,

ν̄k −1 (estimated in interval ( k − 1 )); note that the fu- 

ture states x ( j�) , j = k + 1 , . . . , k + M − 1 , required for the

computation of JH , are predicted as x ( j�) = x(�, x (( j −
1)�) , β j−1 , γ̄k −1 , ν̄k −1 ) , j = k + 1 , . . . , k + M − 1 ; 

(b) implementation and analysis: implement the optimal policy 

β∗
k 

during interval k and, at the end of the period, estimate 

from the epidemiological data the updated values of the re- 

covery and mortality rates γ̄k , ν̄k that are required to solve 

problem (8) for interval (k + 1) . 

ince the weighting coefficient α deeply influences the result of 

he optimization problem (from complete isolation to open-loop 

ondition) a suitable a priori tuning of its value is mandatory be- 

ore implementing the proposed procedure. A way to reasonably 

une α is to perform at the end of the first observation period ( �

ays after the epidemic onset) a preliminary prediction evaluating 

he total health and economic costs possibly gathered at the end 

f a long-term period (for instance after a year). Such a tentative 

nd raw evaluation can be performed exploiting the only knowl- 

dge acquired at t = �, i.e. the estimated parameters β̄0 , γ̄0 , ν̄0 , 

dentified from the epidemiological data of the first � days of the 

pidemic, as well as the current state ˜ x (�) (directly measured or 

stimated). In particular, denoting by [0 , K̄ �) the long-term period 

f evaluation, the estimated death/recovery rates γ̄0 , ν̄0 are kept 

onstant along the K̄ intervals. In more detail, the evaluation of α
an be performed by solving the following preliminary optimiza- 

ion problem: 

arg min 
β∈ [0 ,β̄0 ] 

subject to (1) , (2) 

(
α
(

β̄0 −β

β̄0 

)2 

+ (1 − α)
(

dK̄ �( ˜ x (�) ,β,γ̄0 ,ν̄0 ) −dK̄ �( ˜ x (�) , 0 ,γ̄0 ,ν̄0 ) 

dK̄ �( ˜ x (�) ,β̄0 ,γ̄0 ,ν̄0 ) −dK̄ �( ˜ x (�) , 0 ,γ̄0 ,ν̄0 ) 

)2 
)

, 

(9) 

here dK̄ � denotes the additional deaths at the end of the predic- 

ion period t = K̄ �. 
6

Eq. (9) approximately resembles (8) in the case of constant 

j , j = 1 , . . . , M over the first M intervals after the open-loop 

ne and with M = K̄ . Performing an evaluation of the economic 

ost component 

(
β̄0 −β

β̄0 

)2 

and of the health cost component 

d
K̄ �

( ˜ x (�) ,β,γ̄0 ,ν̄0 ) −d
K̄ �

( ˜ x (�) , 0 ,γ̄0 ,ν̄0 ) 

d
K̄ �

( ˜ x (�) ,β̄0 ,γ̄0 ,ν̄0 ) −d
K̄ �

( ˜ x (�) , 0 ,γ̄0 ,ν̄0 ) 

)2 

by solving the simple opti- 

ization problem (9) for α ranging in (0,1), we obtain the cost be- 

aviour as a function of α reported in Fig. 2 . As expected from the 

roblem formulation (9) , the health cost increases (non-strictly) 

ith α, since its weight in the cost function decreases linearly 

ith α. As a matter of fact, the resulting behavior is almost dis- 

ontinuous, with a trade-off between economic and health costs 

iven by α ≈ 0 . 575 . This allows to infer that there is a threshold

f the health cost weight (1 − α) (around 1 − 0 . 575 = 0 . 425 ) be-

ow which the trade off is not meaningful and the trivial optimal 

olution is to impose no restrictions, i.e. β = β̄0 in (9) , hence caus- 

ng the maximum number of deaths. The solution β = β̄0 obtained 

or any α > 0 . 575 implies, in particular, that the economic cost and

he health cost are constantly equal to 0 and 1, respectively, so ex- 

laining the saturation of both the components of the cost for α
arge enough in Fig. 2 . 

As a consequence of the saturation behavior of the costs with 

espect to α, we consider in the following numerical section a 

alue of α = 0 . 3 , resulting in (1 − α) = 0 . 7 , such that human lives
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Fig. 4. Time behaviour of the state variables obtained by the integration of system (1) with the optimal infectivities β∗
k 

, k = 0 , 1 , . . . , K − 1 . 

Fig. 5. Average infectious individuals (in semi-logarithmic scale) in each optimiza- 

tion interval [ k �, (k + 1)�) , k = 0 , . . . , K, versus infectivity βk , k = 0 , . . . , K: compar- 

ison between optimal solution (blue circles) and solution fitted to the available data 

(red circles). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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re sufficiently weighed to provide a non-trivial balance between 

ealth and economic cost, i.e. sparing a large amount of human 

ives, which was our original goal. 

We note also that the choice of K̄ is obviously arbitrary since 

e do not know when our emergency will end. However prelim- 

nary simulations showed that setting K̄ � > 1 year basically pro- 

ides the same results for any particular choice of K̄ and �. We 

onservatively chose K̄ = 52 , corresponding to a 2-year prediction 

eriod. 

As the application of the optimal policy in each interval re- 

uires to solve the optimization problem (8) defined on a wider 

ime range, i.e. M�, we need to choose an adequate time horizon 
7

f prediction by suitably tuning M. Preliminary simulations showed 

hat the choice M = 6 is a good compromise between the neces- 

ity to cope with the long-term policy effects, the model ability 

o make predictions, and the computational cost of determining a 

olution to the optimization problem (8) . 

. Numerical simulations 

In this section we show some results obtained solving the opti- 

ization problem (8) with α = 0 . 3 and M = 6 . 

We recall that the solution of the optimization problem at the 

ecision time t = k � depends on the current state ˜ x (k �) , which in

urn strongly depends on the containment measures actuated up 

o time k �. Denoting by ˜ βk −1 the real infection rate implemented 

n the (k − 1) th interval, the current state at t = k � can be nu-

erically evaluated as ˜ x (k �) = x (�, ˜ x ((k − 1)�) , ˜ βk −1 , γ̄k −1 , ν̄k −1 ) , 

s long as all the features of the (k − 1) th interval are known (i.e.

˜  ((k − 1)�) , ˜ βk −1 , γ̄k −1 , ν̄k −1 ) and the SIRD model can be assumed 

o be a realistic representation of the real epidemic dynamics. Con- 

erning the real infection rate ˜ βk −1 , we assume that: 

• for k = 1 , it coincides with the parameter identified from the 

non-controlled data of the “open-loop” interval, i.e. ˜ β0 = β̄0 ; 

• for k > 1 , it is given by the optimal value computed for the

controlled interval k − 1 multiplied by an implementation er- 

ror, i.e. ˜ βk −1 = β∗
k −1 

· ξk −1 , where the multiplicative noise ξk −1 

is uniformly distributed in the interval [ξ , ξ ] with constant up- 

per and lower bounds ξ and ξ . 

Moreover, since we do not have available data resulting from 

he application of our policy to be exploited for the estima- 

ion of γ̄k −1 , ν̄k −1 , we use the corresponding values identified in 

ection 2.2 . Indeed, as we assumed that social contact restrictions 

o not influence these parameters (see Section 2.1 ), we can rea- 

onably presume that they do not substantially change w.r.t. the 

nes identified from the data related to the real Italian policy. Fi- 

ally, the value ˜ x ((k − 1)�) is trivially known since the optimiza- 

ion problem and the identification one have been already solved 

or the interval [( j − 2)�, ( j − 1)�) . 
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Fig. 6. Time behaviour of the optimal (receding-horizon), perturbed, and actual (estimated from the available data) infectivities (top panel) and reproduction numbers 

(bottom panel) in [0 , K�] , assuming for the perturbed infectivities a maximal implementation error in the contact rate equal to 10% . The envelope of the results obtained by 

means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in green). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 7. Time behaviour of the optimal (receding-horizon), perturbed, and actual (estimated from the available data) infectivities (top panel) and reproduction numbers 

(bottom panel) in [0 , K�] , assuming for the perturbed infectivities a maximal implementation error in the contact rate equal to 20% . The envelope of the results obtained by 

means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in green). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Let us assume first to actuate perfectly the optimal restrictions 

uggested by the receding-horizon algorithm, without committing 

ny implementation errors, that is ξk −1 = 1 and then 

˜ βk −1 = β∗
k −1 

, 

 > 1 . 

Figs. 3 –4 show the comparisons between the optimal policy 

nd the real containment measures adopted by the Italian gov- 

rnment. In particular, Fig. 3 compares the optimal infectivities 
∗
k 

, k = 1 , . . . , (K − 1)�, with respect to the estimation β̄k , k =
 , . . . , (K − 1)�, inferred from the Italian epidemiological data [14] . 

he figure shows how the optimal policy suggests to suddenly re- 

uce the human contacts, as soon as the first observation interval 
8

nds. After the first strong revision of β∗
1 , the policy suggests to 

moothly change β∗
k 

during the entire control period. Conversely, 

he real containment measures produced an abrupt variation of β̄k . 

Accordingly, the comparison between the optimal value of the 

eproduction number R∗
k 

=
(

β∗
k 

γ̄k + ν̄k 

˜ S (k �) 

N 

)
and the observed one 

¯
k =

(
β̄k 

γ̄k + ν̄k 

˜ S (k �) 

N 

)
, where ˜ S (k �) provides the number of sus- 

eptibles at t = k � corresponding to the policy (optimal, β∗
k −1 

, or 

bserved, β̄k −1 ) actually implemented in interval (k − 1) , shows a 
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Fig. 8. Time behaviour of the optimal (receding-horizon), perturbed, and actual (estimated from the available data) infectivities (top panel) and reproduction numbers 

(bottom panel) in [0 , K�] , assuming for the perturbed infectivities a maximal implementation error in the contact rate equal to 30% . The envelope of the results obtained by 

means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in green). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 9. Time behaviour of the state variables obtained by the integration of system (1) with the perturbed infectivities ˜ βk , k = 0 , 1 , . . . , K − 1 , letting the maximal imple- 

mentation error be equal to 10% . The envelope of the results obtained by means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in 

green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ore uniform time-behaviour of the optimal policy that progres- 

ively drives the reproduction number in a neighbourhood of one, 

ontaining its oscillations, thus managing to mitigate the effects of 

he second wave, as it clearly appears in Fig. 3 . 

The main gain of the optimal policy is shown by Fig. 4 where 

he strong reduction of deaths can be inferred by the comparisons 

etween the cumulative deaths (at t = K�) produced by the opti- 

al policy and the real one. Indeed, the optimal policy allows to 

educe the total number of deaths by 76 . 71% with respect to the

eal containment actions. Such a strong saving of human lives is 
9

lso associated to a light reduction of the economic costs (com- 

uted by Eq. (6) with M = K) by about 1% compared to the real

nterventions. 

We finally note that the proposed MPC approach strictly con- 

rols the relative infectivity within a narrow variation interval and 

roduces a substantial reduction of the mean infected during each 

ontrol interval w.r.t. the observed case (see Fig. 5 ). Moreover, as 

hown by Fig. 4 , the maximal number of current infected people 

s substantially lower than the real peaks reached by the two main 

pidemic waves occurred in Italy. Indeed, the maximum of infected 
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Fig. 10. Time behaviour of the state variables obtained by the integration of system (1) with the perturbed infectivities ˜ βk , k = 0 , 1 , . . . , K − 1 , letting the maximal imple- 

mentation error be equal to 20% . The envelope of the results obtained by means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in 

green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Time behaviour of the state variables obtained by the integration of system (1) with the perturbed infectivities ˜ βk , k = 0 , 1 , . . . , K − 1 , letting the maximal imple- 

mentation error be equal to 30% . The envelope of the results obtained by means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in 

green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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eached in the optimal case is 232 thousand individuals, against 

.855 millions individuals obtained using the real policy, which im- 

lies a definitely lower pressure on the hospitals and a higher ca- 

acity of the local health structures in sustaining patients. 

Let us assume now to commit an error in implementing the 

ptimal restrictions. Monte Carlo simulations have been carried 

ut to evaluate the performance of the proposed control strategies 

y either letting [ξ , ξ ] = [0 . 9 , 1 . 1] , [ξ , ξ ] = [0 . 8 , 1 . 2] , or [ξ , ξ ] =
0 . 7 , 1 . 3] , i.e. by considering implementation errors of the desired

olicy up to 10% , 20% , or 30% , respectively. Figs. 6–8 show the com-
10
arisons, in terms of infectivities and reproduction numbers, be- 

ween the theoretical optimal policy (without implementation er- 

or), the real containment measures adopted by the Italian gov- 

rnment, and the optimal policy actually implemented (obtained 

y randomly perturbing the optimal one within relative bounds 

ξ , ξ ] ), for a maximal implementation error equal to 10% , 20% , or

0% , respectively. Figs. 9–11 present analogous comparisons for the 

ime course of the state variables, along with the envelope of the 

esults obtained by means of 300 Monte Carlo perturbation simu- 

ations on the applied control law. 
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Fig. 12. Time behaviour (in semi-logarithmic scale) of the ratio JH /JE for the choices 

of α = 0 . 2 (blue line), α = 0 . 3 (red line), α = 0 . 8 (yellow line). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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As shown by such figures, the proposed method is robust with 

espect to variations in the actually implemented control. In fact, 

ven in the case that the control policy is implemented with the 

argest error scenario (up to 30% ), the outcome of the receding- 

orizon control is similar to the ideal one (reported in Fig. 3 ) ob-

ained without accounting for the implementation error, producing 

t t = K� a reduction of the total number of deaths by at least 

0 . 93% w.r.t. the real case. 

We finally note that the value α = 0 . 3 (used for all the above

umerical results), chosen on the basis of the a priori exploration 

f Fig. 2 , actually provides a fair trade-off between the two terms 

f the cost function. The a posteriori analysis reported in Fig. 12 

hows the time behaviour of the ratio JH /JE obtained by solving 

roblem (8) with α = 0 . 3 , with a lower value, i.e. α = 0 . 2 , and with

 higher value (beyond the threshold 0.575), i.e. α = 0 . 8 . The fig-

re shows that for α = 0 . 3 the two costs are quite balanced, while

oving away from this trade-off value one cost can exceed the 

ther one by some orders of magnitude. Indeed, we have a mean 

atio < JH /JE > = 2 . 16 for α = 0 . 3 , while the ratio substantially re-

uces to < JH /JE > = 6 . 36 · 10−2 for α = 0 . 2 and strongly increases

o < JH /JE > = 2 . 91 · 107 for α = 0 . 8 . 
able A.1 

stimates and 99 % confidence intervals of the SIRD parameters for the 80 considered inte

Interval βk γk νk CIβk 

1 2.58e-01 2.59e-02 1.18e-02 [2.47e-

2 1.67e-01 2.09e-02 1.65e-02 [1.60e-

3 6.81e-02 1.57e-02 1.07e-02 [6.33e-

4 3.55e-02 1.78e-02 5.45e-03 [3.41e-

5 2.16e-02 2.42e-02 3.44e-03 [2.00e-

6 1.26e-02 3.78e-02 2.57e-03 [9.24e-

7 1.04e-02 4.19e-02 1.89e-03 [6.57e-

8 8.93e-03 3.93e-02 2.00e-03 [4.77e-

9 1.14e-02 4.36e-02 1.33e-03 [8.25e-

10 1.40e-02 2.86e-02 1.12e-03 [1.09e-

11 1.80e-02 2.00e-02 8.66e-04 [1.53e-

12 2.53e-02 2.12e-02 5.76e-04 [2.25e-

13 4.10e-02 1.63e-02 1.35e-03 [3.70e-

14 5.23e-02 1.24e-02 2.87e-04 [5.04e-

15 3.81e-02 1.59e-02 2.90e-04 [3.70e-

11
. Discussion 

A framework based on a time-varying SIRD model has been 

roposed for the real-time optimization of non-pharmaceutical in- 

erventions during epidemics. Despite its simplicity, such a class 

f models has been demonstrated capable of capturing the es- 

ential features of an epidemic disease. In fact, allowing for 

arametric variations, these models can accurately adapt to real 

ata. 

An optimization problem over a receding horizon has been for- 

ulated to determine the optimal sequence of infection rates that 

alances health and economic costs. Such infection rates have been 

ssumed to be actuated via government containment measures. 

he effectiveness of such an approach has been validated via nu- 

erical simulations based on the real data of the Italian COVID- 

9 emergency. The results of such simulations highlighted the po- 

ential of the proposed approach that may allow to decrease both 

he economic and health costs by suitably designing the “ideal”

nfectivity rate to be guaranteed in each time interval and con- 

equently planning the corresponding restrictions of the human 

ontacts. The simulations highlight that the “ideal” implementa- 

ion of the optimal policy (i.e. without errors compared with the 

heoretical computation) is able to reduce the total number of 

eaths by 76 . 71% with respect to the real case, producing also a 

ild reduction of the economic cost. As a further advantage, the 

roposed technique with “ideal” implementation substantially re- 

uces also the maximal number of concomitant infected individu- 

ls, producing a 91 . 88% of decrease with respect to the real case, 

hus resulting in a reduced pressure on the local health struc- 

ures. Moreover, the results show that even in the worst-case sce- 

ario in which the optimal policy is implemented with an er- 

or up to 30 % with respect to the theoretical computation, a sig- 

ificant reduction of deaths by about 50 . 93% compared to the 

eal case is obtained, confirming the robustness of the proposed 

pproach. 
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ppendix A. Tables of estimates and confidence intervals for 

he SIRD model parameters 
rvals of � = 14 days. 

CIγk 
CIνk 

01, 2.69e-01] [2.04e-02, 3.14e-02] [6.41e-03, 1.73e-02] 

01, 1.73e-01] [1.76e-02, 2.42e-02] [1.32e-02, 1.98e-02] 

02, 7.28e-02] [1.30e-02, 1.84e-02] [8.00e-03, 1.34e-02] 

02, 3.70e-02] [1.69e-02, 1.86e-02] [4.60e-03, 6.30e-03] 

02, 2.31e-02] [2.33e-02, 2.51e-02] [2.54e-03, 4.33e-03] 

03, 1.60e-02] [3.58e-02, 3.97e-02] [6.42e-04, 4.51e-03] 

03, 1.43e-02] [3.97e-02, 4.42e-02] [ −3.33e-04, 4.12e-03] 

03, 1.31e-02] [3.68e-02, 4.17e-02] [ −4.01e-04, 4.40e-03] 

03, 1.45e-02] [4.18e-02, 4.55e-02] [ −4.75e-04, 3.14e-03] 

02, 1.71e-02] [2.68e-02, 3.04e-02] [ −6.69e-04, 2.91e-03] 

02, 2.06e-02] [1.85e-02, 2.15e-02] [ −6.56e-04, 2.39e-03] 

02, 2.80e-02] [1.96e-02, 2.27e-02] [ −1.01e-03, 2.17e-03] 

02, 4.50e-02] [1.40e-02, 1.86e-02] [ −9.35e-04, 3.63e-03] 

02, 5.43e-02] [1.13e-02, 1.35e-02] [ −8.19e-04, 1.39e-03] 

02, 3.92e-02] [1.53e-02, 1.65e-02] [ −3.46e-04, 9.27e-04] 

( continued on next page ) 
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Table A.1 ( continued ) 

Interval βk γk νk CIβk 
CIγk 

CIνk 

16 3.91e-02 2.05e-02 4.04e-04 [3.75e-02, 4.08e-02] [1.95e-02, 2.14e-02] [ −5.44e-04, 1.35e-03] 

17 7.92e-02 1.67e-02 4.88e-04 [7.53e-02, 8.30e-02] [1.45e-02, 1.89e-02] [ −1.69e-03, 2.67e-03] 

18 9.44e-02 1.28e-02 7.28e-04 [9.31e-02, 9.57e-02] [1.21e-02, 1.36e-02] [ −8.13e-06, 1.46e-03] 

19 6.28e-02 1.81e-02 8.72e-04 [5.96e-02, 6.61e-02] [1.63e-02, 1.99e-02] [ −9.52e-04, 2.70e-03] 

20 3.84e-02 2.99e-02 9.22e-04 [3.49e-02, 4.19e-02] [2.79e-02, 3.19e-02] [ −1.04e-03, 2.88e-03] 

21 2.56e-02 3.50e-02 9.28e-04 [2.32e-02, 2.80e-02] [3.37e-02, 3.64e-02] [ −3.94e-04, 2.25e-03] 

22 2.49e-02 3.48e-02 8.53e-04 [2.26e-02, 2.72e-02] [3.35e-02, 3.61e-02] [ −4.05e-04, 2.11e-03] 

23 3.04e-02 2.81e-02 8.39e-04 [2.92e-02, 3.17e-02] [2.74e-02, 2.88e-02] [1.40e-04, 1.54e-03] 

24 2.62e-02 3.59e-02 8.93e-04 [2.39e-02, 2.85e-02] [3.46e-02, 3.72e-02] [ −3.77e-04, 2.16e-03] 

25 2.81e-02 3.80e-02 9.09e-04 [2.67e-02, 2.95e-02] [3.72e-02, 3.88e-02] [1.37e-04, 1.68e-03] 

26 3.25e-02 3.70e-02 7.91e-04 [3.08e-02, 3.43e-02] [3.60e-02, 3.80e-02] [ −1.64e-04, 1.75e-03] 

27 4.74e-02 2.80e-02 6.83e-04 [4.59e-02, 4.88e-02] [2.72e-02, 2.88e-02] [ −1.21e-04, 1.49e-03] 

28 4.58e-02 2.83e-02 7.20e-04 [4.43e-02, 4.72e-02] [2.75e-02, 2.92e-02] [ −7.96e-05, 1.52e-03] 

29 3.86e-02 3.51e-02 7.75e-04 [3.74e-02, 3.97e-02] [3.45e-02, 3.58e-02] [1.69e-04, 1.38e-03] 

30 3.04e-02 3.69e-02 8.23e-04 [2.91e-02, 3.18e-02] [3.61e-02, 3.76e-02] [8.44e-05, 1.56e-03] 

31 2.99e-02 3.77e-02 6.73e-04 [2.86e-02, 3.13e-02] [3.69e-02, 3.84e-02] [ −4.99e-05, 1.40e-03] 

32 2.39e-02 4.18e-02 5.64e-04 [2.24e-02, 2.54e-02] [4.10e-02, 4.26e-02] [ −2.51e-04, 1.38e-03] 

33 1.58e-02 3.79e-02 4.91e-04 [1.43e-02, 1.72e-02] [3.71e-02, 3.87e-02] [ −2.99e-04, 1.28e-03] 

34 1.15e-02 3.94e-02 3.63e-04 [7.89e-03, 1.50e-02] [3.74e-02, 4.13e-02] [ −1.56e-03, 2.28e-03] 

35 7.94e-03 8.22e-02 3.65e-04 [ −1.67e-02, 3.26e-02] [6.82e-02, 9.62e-02] [ −1.29e-02, 1.37e-02] 

36 2.19e-02 4.40e-02 4.61e-04 [1.75e-02, 2.63e-02] [4.16e-02, 4.64e-02] [ −1.91e-03, 2.83e-03] 

37 7.77e-02 3.06e-02 2.40e-04 [7.08e-02, 8.46e-02] [2.69e-02, 3.43e-02] [ −3.42e-03, 3.90e-03] 

38 6.93e-02 2.73e-02 2.15e-04 [6.59e-02, 7.27e-02] [2.55e-02, 2.92e-02] [ −1.60e-03, 2.03e-03] 

39 5.47e-02 3.89e-02 3.23e-04 [5.22e-02, 5.73e-02] [3.75e-02, 4.03e-02] [ −1.03e-03, 1.68e-03] 

40 4.98e-02 4.51e-02 4.05e-04 [4.73e-02, 5.23e-02] [4.37e-02, 4.64e-02] [ −9.34e-04, 1.74e-03] 

41 4.09e-02 5.21e-02 4.63e-04 [3.84e-02, 4.34e-02] [5.07e-02, 5.34e-02] [ −8.64e-04, 1.79e-03] 

42 3.53e-02 4.70e-02 5.22e-04 [3.29e-02, 3.78e-02] [4.57e-02, 4.84e-02] [ −7.86e-04, 1.83e-03] 

43 3.35e-02 4.36e-02 4.41e-04 [3.16e-02, 3.53e-02] [4.26e-02, 4.46e-02] [ −5.40e-04, 1.42e-03] 

44 5.73e-02 4.60e-02 5.10e-04 [5.34e-02, 6.13e-02] [4.39e-02, 4.82e-02] [ −1.59e-03, 2.61e-03] 

45 7.39e-02 3.93e-02 5.12e-04 [7.15e-02, 7.63e-02] [3.80e-02, 4.05e-02] [ −7.47e-04, 1.77e-03] 

46 7.90e-02 3.89e-02 4.37e-04 [7.72e-02, 8.08e-02] [3.79e-02, 3.99e-02] [ −5.19e-04, 1.39e-03] 

47 7.41e-02 3.71e-02 3.56e-04 [7.23e-02, 7.58e-02] [3.61e-02, 3.80e-02] [ −5.69e-04, 1.28e-03] 

48 9.21e-02 3.70e-02 3.37e-04 [8.72e-02, 9.70e-02] [3.45e-02, 3.96e-02] [ −2.19e-03, 2.86e-03] 

49 1.31e-01 2.30e-02 2.12e-04 [1.25e-01, 1.37e-01] [1.98e-02, 2.61e-02] [ −2.91e-03, 3.33e-03] 

50 8.56e-02 5.16e-02 2.10e-04 [8.04e-02, 9.08e-02] [4.90e-02, 5.42e-02] [ −2.32e-03, 2.74e-03] 

51 6.00e-02 6.84e-02 2.20e-04 [5.28e-02, 6.73e-02] [6.48e-02, 7.20e-02] [ −3.22e-03, 3.66e-03] 

52 4.56e-02 6.79e-02 1.79e-04 [4.32e-02, 4.79e-02] [6.68e-02, 6.90e-02] [ −9.10e-04, 1.27e-03] 

53 4.33e-02 5.54e-02 1.70e-04 [3.86e-02, 4.81e-02] [5.32e-02, 5.76e-02] [ −1.99e-03, 2.33e-03] 

54 7.66e-02 4.66e-02 9.53e-05 [6.97e-02, 8.36e-02] [4.35e-02, 4.98e-02] [ −3.01e-03, 3.20e-03] 

55 7.55e-02 5.19e-02 1.25e-04 [7.28e-02, 7.81e-02] [5.07e-02, 5.31e-02] [ −1.04e-03, 1.28e-03] 

56 6.73e-02 5.39e-02 1.03e-04 [6.47e-02, 6.99e-02] [5.28e-02, 5.51e-02] [ −1.02e-03, 1.22e-03] 

57 6.67e-02 4.70e-02 1.20e-04 [6.33e-02, 7.01e-02] [4.55e-02, 4.85e-02] [ −1.32e-03, 1.56e-03] 

58 5.06e-02 5.27e-02 1.08e-04 [4.74e-02, 5.39e-02] [5.14e-02, 5.41e-02] [ −1.25e-03, 1.47e-03] 

59 3.90e-02 5.34e-02 1.11e-04 [3.47e-02, 4.34e-02] [5.15e-02, 5.52e-02] [ −1.68e-03, 1.90e-03] 

60 4.21e-02 3.82e-02 8.73e-05 [3.87e-02, 4.55e-02] [3.68e-02, 3.96e-02] [ −1.30e-03, 1.47e-03] 

61 9.85e-02 5.51e-02 3.77e-05 [8.55e-02, 1.11e-01] [4.97e-02, 6.04e-02] [ −5.18e-03, 5.26e-03] 

62 1.29e-01 4.57e-02 9.89e-05 [1.24e-01, 1.33e-01] [4.38e-02, 4.75e-02] [ −1.70e-03, 1.90e-03] 

63 8.97e-02 5.44e-02 1.30e-04 [8.43e-02, 9.52e-02] [5.22e-02, 5.65e-02] [ −1.95e-03, 2.21e-03] 

64 5.70e-02 5.71e-02 1.34e-04 [5.39e-02, 6.02e-02] [5.59e-02, 5.83e-02] [ −1.04e-03, 1.31e-03] 

65 4.04e-02 4.91e-02 1.16e-04 [3.37e-02, 4.72e-02] [4.65e-02, 5.17e-02] [ −2.40e-03, 2.63e-03] 

66 4.81e-02 4.89e-02 1.14e-04 [4.44e-02, 5.17e-02] [4.75e-02, 5.03e-02] [ −1.23e-03, 1.46e-03] 

67 5.14e-02 5.96e-02 1.02e-04 [4.32e-02, 5.96e-02] [5.65e-02, 6.27e-02] [ −2.89e-03, 3.09e-03] 

68 1.01e-01 5.29e-02 8.95e-05 [9.08e-02, 1.11e-01] [4.93e-02, 5.66e-02] [ −3.46e-03, 3.64e-03] 

69 1.31e-01 7.15e-02 1.19e-04 [1.24e-01, 1.38e-01] [6.90e-02, 7.41e-02] [ −2.30e-03, 2.54e-03] 

70 1.04e-01 7.71e-02 1.68e-04 [9.97e-02, 1.09e-01] [7.55e-02, 7.88e-02] [ −1.44e-03, 1.78e-03] 

71 1.01e-01 6.57e-02 1.69e-04 [9.48e-02, 1.08e-01] [6.33e-02, 6.80e-02] [ −2.11e-03, 2.45e-03] 

72 1.18e-01 5.89e-02 1.83e-04 [1.14e-01, 1.22e-01] [5.74e-02, 6.03e-02] [ −1.19e-03, 1.55e-03] 

73 1.02e-01 5.75e-02 1.98e-04 [9.78e-02, 1.06e-01] [5.60e-02, 5.90e-02] [ −1.26e-03, 1.66e-03] 

74 7.65e-02 5.85e-02 2.46e-04 [7.23e-02, 8.08e-02] [5.70e-02, 5.99e-02] [ −1.18e-03, 1.68e-03] 

75 7.85e-02 5.14e-02 2.67e-04 [7.05e-02, 8.65e-02] [4.87e-02, 5.42e-02] [ −2.41e-03, 2.94e-03] 

76 4.18e-02 4.62e-02 2.21e-04 [3.77e-02, 4.59e-02] [4.48e-02, 4.76e-02] [ −1.14e-03, 1.59e-03] 

77 3.51e-02 4.02e-02 2.37e-04 [2.87e-02, 4.14e-02] [3.81e-02, 4.24e-02] [ −1.89e-03, 2.37e-03] 

78 3.71e-02 3.25e-02 2.13e-04 [2.98e-02, 4.45e-02] [3.01e-02, 3.50e-02] [ −2.23e-03, 2.66e-03] 

79 4.17e-02 4.32e-02 2.12e-04 [3.18e-02, 5.15e-02] [3.98e-02, 4.65e-02] [ −3.07e-03, 3.50e-03] 

80 4.18e-02 2.55e-02 2.06e-04 [3.97e-02, 4.38e-02] [2.49e-02, 2.62e-02] [ −4.74e-04, 8.86e-04] 
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