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ABSTRACT

The current coronavirus pandemic has produced severe consequences on economic and health systems all
over the world, with the governments being challenged in searching for containment solutions balancing
virus diffusion and limitations to social and work activities. In this paper, we propose a framework for
the real-time optimization of restrictions in epidemics, based on the use of a time-varying SIRD model.
Despite their simplicity, this class of models is able to capture the essential features of the epidemic
spread, with the inherent parameter variation allowing accurate adaptation to real data. An optimization
problem is formulated, properly balancing health and economic costs, and is solved parametrically by
following a receding-horizon approach, resulting in an optimal sequence of social contact restrictions,
which are assumed to be actuated via governmental containment measures. Numerical simulations based
on the real data of the Italian COVID-19 emergency highlight the potential of the proposed approach and
can be possibly helpful for the decision makers in present and future pandemics.

Numerical simulation
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1. Introduction

At the beginning of 2020 the entire world has been found un-
prepared in facing the unprecedented sanitary emergency of the
COVID-19 pandemic. The first cases of SARS-CoV-2 disease were
notified in China, within the region of Wuhan. Due to the glob-
alization, the infection spread along the Earth surface in less than
one year, deeply affecting lives, social habits and the economies
of all the countries, producing very rapidly the collapse of their
health systems. After 16 months from the first diagnosed case, the
COVID-19 pandemic caused the death of over 3.8 million people
and the infection of more than 175 million of patients (without
considering undiagnosed subjects) [40]. Such a large impact of the
COVID-19 pandemic motivated a worldwide impressive research ef-
fort to understand its spread and the effectiveness of containment
measurements [4,16,19,34].

The fast diffusion of COVID-19 pushed the governments of the
entire world to rapidly adopt strong measures, like the lock-down
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and the limitations of social and economic activities, in addition
to hygienic norms and face masks, in order to contain the dis-
ease spread. Such interventions, known as Non-Pharmaceutical In-
terventions (NPIs), proved to be very efficient to limit the disease
diffusion and are the only weapons to stop the disease spread until
specific drugs (against the virus and its complications) and efficient
vaccines are available [15,35]. After 3 years, the epidemic scenario
has changed but NPIs remain fundamental tools to be used even
in the presence of vaccines since they have the fundamental role
of limiting the virus circulation (and then its replication and the
consequent mutations).

Despite this important role played by the NPIs in limiting the
virus spread, such interventions (especially the limitations of social
and economic contacts) have a strong impact on people lives, often
implying a heavy economic and psychological burden [8,28,37,39].
For this reason, NPIs must be suitably planned and optimized in
order to maximize their effects while minimizing their negative
impact on the human lives. The planning and optimization of NPIs
can be efficiently supported by mathematical models which are
able to reproduce the infection mechanism and to predict the dy-
namical evolution of a given disease in the susceptible population.
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Recently, many papers addressing the mathematical description
of COVID-19 and extending the basic SIR structure (Susceptible, In-
fected and Recovered) by McKendrick and Kermack [26], have been
published. Multi-compartmental epidemic models have been for-
mulated focusing on the mathematical representation of various
aspects of the COVID-19: the presence of asymptomatic infection
and of the incubation-latency period, the problem of the contagion
tracking, the inclusion of quarantine and isolation compartments,
the different severity levels of the disease etc. [9,12,13,18,20,21].
Such detailed representations of the disease have shown to provide
realistic long term predictions and interesting quantitative analy-
ses.

Although complex models show an high degree of accuracy in
reproducing epidemiological data, most of these models are too
complex to be exploited for a model-based feedback design, espe-
cially for the early stages of the disease spread when few data are
available. Moreover, dealing with simple epidemic models allows
to identify the parameter values with small confidence intervals
[5,36]. So, a trade-off between simplicity and accuracy is manda-
tory in the model formulation, especially when the model is used
for building optimal control policies.

Several techniques have been proposed for NPIs planning, and
in particular for the optimal open-loop and closed-loop design
of lock-down phases. Most of them rely on multi-compartmental
models of the epidemic spread, which are extended versions of
the well-known SIR model; examples of these frameworks are
SIDARTHE, exploited in [25] to design a Model Predictive Control
(MPC) strategy to minimize the deaths for COVID-19, SIRQTHE in
[11], where a multi-region scenario was adopted to design optimal
control strategies during post-lockdown phases, SIRASD in [30],
where an MPC approach is proposed to cope with COVID-19 conta-
gion in Brazil, SIRCQTHE in [38], where a stochastic MPC problem
is formulated to infer suitable restrictions on the mobility of differ-
ent socioeconomic categories, and SIHRD in [29], exploited to guar-
antee safety against the spread of infectious diseases by viewing
epidemiological models as control systems and by considering NPIs
as control inputs. The drawback in adopting such comprehensive
models is that they are difficult to identify, especially in the first
epidemic spread, where urgent decisions have to be taken. This is
the main motivation for our choice of a minimal SIRD model to de-
scribe COVID-19 transmission: it can be rapidly identified accord-
ing to a short observation interval and, besides, we can benefit of
the analytical solutions, that can be exploited when designing the
optimization policy.

In a recently published paper [6], we proposed a technique to
optimally design the lock-down in terms of starting and ending
times, as well as of the number of isolated people. The proposed
optimization approach aimed at containing the outbreak during
the very first spreading period, on the basis of few and raw epi-
demiological data. In the present work, we extend the idea pro-
posed in our previous paper, by addressing a trial-and-error proce-
dure based on which the adopted restrictions are periodically re-
vised every two weeks. The formulation of the optimization prob-
lem is based on a time-varying SIRD model which allows to repro-
duce the dynamic evolution of the disease with a minimal number
of parameters and to take the continuously changing containment
measures applied by the Italian government into account. Based
on the underlying modeling assumptions, our optimal procedure
is technically sound as long as relatively short intervention peri-
ods are addressed (i.e., from some months up to a few years). In-
deed, for the sake of simplicity of the mathematical formulation,
we intentionally disregard important epidemiological aspects aris-
ing over long time intervals, as the loss of immunity after healing,
people reinfections, vaccinations, virus mutations etc.

Time-varying models are not a novelty in the COVID-19 mod-
eling framework: we may cite, among the others, references fo-
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cused on identification purposes, like [1,9], where the model pa-
rameters are given in terms of combinations of basis functions,
and [7], where the identification is performed according to deep-
learning algorithms; concerning the design of NPI control schemes,
we mention [32], where linear state-dependent variations of the
SIRD parameters are assumed and an optimal MPC problem min-
imizing both number of infections and confinement measures is
proposed, and [17], where a SEIRD model with time-varying rel-
ative infection rate is used to design a control scheme that regu-
lates the social distancing on the basis of five levels of lock-downs,
seeking the minimization of the intensive care unit occupancy; re-
cent SIRD-based MPC problems addressing the optimal planning of
the social contact restrictions in Brasil are also proposed in [31,33],
where the problem is formulated assuming a first order heuristic
for the dynamical equation of the social distancing ratio. The main
differences of our optimization problem compared to the control
problems formulated in [17,31-33] are: (i) we directly minimize
the total number of dead people at the end of a medium-term
prediction interval (while in the mentioned works the reduction
of deaths is an indirect consequence of the proposed objectives,
basically looking for the infection reduction), (ii) we do not as-
sume any specific value or explicit state-dependent relation for the
contact rate, but its optimal level is directly inferred from the op-
timization output. We note that minimizing the total number of
deaths is a less conservative approach than minimizing the current
number of infections. However, as shown in the numerical results,
the proposed optimal policy also reduces the maximal peak of in-
fected individuals with respect to the real Italian case, thus result-
ing in a substantial reduced pressure on the local health structures.
Moreover, the choice of making decisions on the present restric-
tion policy based on the predicted cumulative deaths at the end of
a forecast interval rather than on the current deaths is a cautious
stance because of the observed delay between the adopted restric-
tions and the produced effects on the infection spread. We finally
note that, although many interesting assumptions on the contact
rate can be investigated, for the sake of generality we opt to leave
its optimization free from specific modeling hypotheses.

The paper is organized as follows: Section 2 introduces the
time-varying SIRD model and its parameter identification from
COVID-19 Italian data. In Section 3, the optimization problem is
formulated and an approximate real-time receding-horizon solu-
tion is proposed. Section 4 includes numerical simulations based
on real data. Section 5 offers concluding remarks.

2. Model setting and identification from real data
2.1. Model

The formulation of the optimization problem is based on a
classical mathematical representation of the epidemic dynamics.
The model exploited is a SIRD ODE system which extends the SIR
formulation by McKendrick and Kermack [26], by explicitly tak-
ing into account dead and healed among removed people. Since
the period of interest is characterized by time-varying intervention
measures adopted by the authorities to contain the disease out-
break, but also by an increasing preparedness of the health sys-
tem in facing the emergency and the disease complications, we
exploited a time-varying model formulation. For the sake of sim-
plicity, we assume the model parameters to be piecewise-constant,
changing every A days.

In particular, we denote by By, v, vk € R.o the relative infec-
tion rate, the per capita recovery and mortality rates, respectively,
which are kept constant for any time t € [kA, (k+ 1)A) and switch
at the beginning of each time interval t = kA, k=0,1,...,K—-1,
where the whole temporal period of interest is supposed to con-
sist of K intervals.
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Fig. 1. Best fit on COVID-19 Italian data up to March 19, 2023. Panel A: daily number of infected. Panels B and C: total number of notified recovered and dead patients. Panel
D: model-based prediction of the reproduction number. Red dots: ISS data [14]. Blue line: model prediction. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

On the basis of these assumptions, we define the following
time-varying SIRD model:

S(t) = ~RSOI),

I(t) = B SOI) — (e + viI(D).
R(t) = yil (0),

D(t) = wl(0),

t e [kA, (k+1)A)

(1)

where the state variables S(t), I(t), R(t), D(t) represent the num-
ber of susceptibles, infectious, recovered and deceased, respec-
tively, at time t € R, (expressed in days). Note that the total pop-
ulation size S(t) +I(t) + R(t) + D(t) = N is constant for any time ¢t
according to the given formulation that is a realistic representation
over a short time interval (which allows to neglect possible demo-
graphic changes).

Although the main features of the COVID-19 epidemics (like
the presence of a relatively long period of incubation or the la-
tency between infection and symptoms onset or the crucial role of
the asymptomatic carriers on the infection spread) are now well
known, we neglect such features opting for a “minimal” model rep-
resentation (both in terms of compartment and parameter num-
bers) in order to simplify the formulation of the optimization prob-
lem. However, the time-varying structure adopted in the formula-
tion above allows the SIRD model to efficiently describe the epi-
demiological data within short observation intervals, as it can be
noticed from the fitting curves reported in Fig. 1.

Moreover, a further advantage of the adopted model structure
is that its parameters are well identifiable in each observation in-
terval on the basis of the few epidemiological data provided by
the official sources, i.e. the number of (diagnosed) current infec-
tious and the total number of dead and healed. Indeed, a signifi-
cant drawback in adopting more accurate model representations is
that they may face unidentifiability problems because of the insuf-
ficient information provided by the official data [5,6,36].

We finally make the following working assumptions:

- in the first interval (k = 0), no restrictions are applied yet or, at
least, their effect can be reasonably neglected, provided that A
is sufficiently short. This is regarded as open-loop condition;

- in the following periods (k > 0), governmental restrictions and
personal containment measurements may only affect the infec-
tion rate B, while exogenous modifications only affect y, and
V. These include e.g. therapy improvements, seasonal changes,
virus modifications.

Model (1) can be shortly restated in state-space form by defin-
ing the state vector x(t) =[S(t) I(t) R(t) D(t)]T at all times
t € [0, KA]. We denote by x(t, xq, 8, y, V) as the forward solution
of model (1) at time t assuming constant parameters (8,y,V)
from time O (resulting in a time-invariant system). By a slight
abuse of notation, we will let time ¢ € [0, +o00), thereby assum-
ing x(t,Xg, B, Y, V) as the time evolution over a possibly infinite-
horizon time length, when all three model parameters are sup-
posed to be fixed.

We define da (x, B, v, v) as the additional deaths, predicted at
the end of a time interval A, with respect to those already present
in state x (i.e. at the beginning of the same interval), computed as

da(x.B.y. 1) =C (X(A.x. B.y.v) —X). 2)

whereC=[0 0 0 1] selects the last component of x. Intuitively,
from (1), it readily comes that da (x, 8, ¥, V) is a monotonically in-
creasing function of 8 when all the other quantities are fixed. Note
that, given the initial condition x and the values of the parameters
B, v, and v, closed-form expressions are available [6] to compute
the values attained by the function dx (x, B, ¥, v).

2.2. Identification from COVID-19 Italian data

The identification of the SIRD parameters has been performed
on the horizon [0, KA], based on the epidemiological data of the
COVID-19 in Italy provided by the National Institute of Health of
Italy (ISS). The data are published on the data repository GitHub
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[14], edited by the national Civil Protection Department since
February 24, 2020. The database collects a large amount of Ital-
ian data, as the cumulative number of cases, the number of cur-
rently infected people, hospitalized or not, the total number of
healed and dead patients, the number of swab tests etc., daily up-
dated and hierarchically organized at national, regional and provin-
cial levels. For the purpose of SIRD identification we only exploit
the national data on the number of current infected, total healed
and dead people. At the moment of the manuscript editing, the
data were updated up to March 19, 2023, covering approximately
3 years of COVID-19 pandemic.

Based on such data, the identification substantially reflects
what happened in Italy according to an increasing awareness of
the COVID-19 disease (parameters ¥ and v) and to the Govern-
ment restrictions and individual consciousness of social distancing
(parameter B). The estimates of y and v will be exploited to build
up a realistic scenario for the synthesis of the proposed optimal
restriction policy aiming at modifying parameter 8: the underlying
working assumption is that parameters y and v do not depend on
B, implying that recovery and healing from the COVID-19 disease
do not depend on the relative infection rate.

Denoting by 6O = (Bi vk V) the  parameter  vec-
tor of the kth interval [kA, (k+1)A), and by x(kA)=
(S(kA) I(kA) R(kA) D(kA))T the related initial state vec-
tor, the identification procedure addressed the estimation of
the family {(6.%(kA)) e R3yx R4 k=0,....K—1}, where

(G_k,f(kA)) denotes the best estimate of the pair (6;,x(kA)) for
the kth interval. Note that, in order to make the parameter esti-
mation of an interval independent of the previous estimates, the
initial conditions of each interval have been identified in addition
to the model parameters thus allowing to neglect the previous
estimates of the parameters while identifying the ones of the kth
interval.

The fitting procedure has been implemented in MATLAB envi-
ronment, exploiting an Ordinary Least Squares (OLS) approach. The
model parameters, with their 99% confidence intervals, have been
estimated by means of the functions Iscurvefit” and nlparci”. The
population size N has been fixed to 60317000, which is the value
of Italian population on January 1st, 2020 [24].

The length A plays a crucial role in order to identify a trustwor-
thy model. The smaller the value of A is, the better the data fitting
is expected, at the cost of an increasing number of model parame-
ters, with the drawback of possibly obtaining an underdetermined
system and a consequent loss of accuracy in the parameter estima-
tion (overfitting). To deal with such an issue, we decide to limit our
investigation to four values of A, i.e. 1,2,3,4 weeks. The choice of A
being multiple of 1 week is made to reduce the effect of random
intraweek variations in data consequent to observed variations in
the number of swab tests (typically occurring at weekends) [14].
The limit set to 4 weeks is oriented to make the model adaptive
to possible mid-term modifications of the pandemic features. The
identification interval A has been chosen according to a trade-off
between the in-sample fitting error and the accuracy of the param-
eter estimation.

Concerning the model capability to faithfully reproduce the epi-
demiological data, we computed the Akaike Information Criterion
(AIC) [2,3] for the aforementioned four different lengths of the ob-
servation interval A. The interested reader is referred to [27] for a
deeper analysis about the Akaike Information Criterion. The anal-
ysis has been carried out according to different versions of AIC
(normalized, raw, sample-size corrected criterion). All these ver-
sions reveal the same monotonic trend w.r.t. the size of the ob-
servation interval, showing an increasing prediction error when A
increases. As an example, Table 1 reports the values of the nor-
malized AIC (nAIC), computed for A = 7,14, 21,28 days. The ta-
ble shows that setting A =7 days is the best choice for max-
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Table 1

Normalized Akaike Information Criterion (nAIC) and Coefficient of Variation (CV)
related to the ordinary least square data fitting (until March 19, 2023), performed
for A =7, 14,21, 28 days.

A nAIC v (%)
7 3418 9.275
14 37.85 4254
21 40.14 2.681
28 4223 2.758

imizing the capability of the model to reproduce the available
data.

Concerning the accuracy of the parameter estimation, we eval-
uated the Coefficient of Variation (CV) of the estimated parameters
for the four candidate A values. Reasonably, the CV computation
provides an approximately monotonic decreasing trend w.r.t. A up
to the value of A =21 days, as shown by Table 1.

In summary, the opposite trends of the AIC and CV criteria pre-
vent reaching a consensus clearly stating which one of the propos-
als is better to choose. In other words, the results in Table 1 show
that A € {7, 14, 21} days are all feasible choices (i.e. Pareto efficient
solutions in the multi-objective optimization of model prediction
error and parameter estimation accuracy), while A =28 days is
not an optimal choice since it is strictly worse than A =21 days
in both the targets (nAIC and CV). Our final choice is the interme-
diate one, namely A = 14 days, since it produces a strong relative
improvement (in terms of CV) with respect to A = 7 days and bet-
ter prediction results (in terms of nAIC) compared to A =21 days,
which makes it the best trade-off between model prediction error
and parameter estimation accuracy.

According to the whole period of data collection we set K = 80.

Table A.1 in appendix reports the estimated values of the SIRD
parameters for the 80 identification intervals obtained with A = 14
days, while Fig. 1 shows the fitting curves compared with the of-
ficial data. Panel D of Fig. 1 shows also the model-based evalu-
ation of the effective reproduction number (B;/ (7 + Vx))S(t)/N,
t e [kA, (k+1)A), [23] for any estimation interval, which clearly
highlights the two waves occurred in Italy since the COVID-19 ap-
pearance.

3. The optimization problem

In a recent research article [6], we formulated an optimization
approach for planning lockdowns, which included the determina-
tion of the starting and conclusion times for lockdown measures,
along with the optimal number of individuals to be isolated. In
that paper, we achieved prevention of virus transmission by di-
rectly removing individuals from the susceptible sub-population.

In contrast, the following problem formulation focuses on sim-
ulating the progressive isolation of individuals due to government-
imposed restrictions. These measures range from basic regulations
that affect economic and social activities to more stringent mea-
sures that prohibit people from leaving their homes. This is mod-
eled by reducing the contact rate to effectively limit virus trans-
mission. In other words, we extend the idea proposed in our pre-
vious paper, by addressing a trial-and-error procedure based on
which the adopted restrictions are periodically revised. The formu-
lation of the optimization problem is based on the time-varying
SIRD model introduced in the previous section, where the infectiv-
ity rate B is optimized in each interval of duration A, as we detail
next.

Specifically, we assume a uniform mixing scenario within the
population, denoted as N, and we incorporate the infection mech-
anism, which is characterized by the force of infection denoted as
BSI/N, so that the constant parameter S related to the interval
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[kA, (k+1)A) can be expressed as [23]
Br = X, (3)

where ¢, is the per capita contact rate (i.e. the number of con-
tacts that an individual has per time unit) during the same inter-
val and x is the contagion probability of an infected-susceptible
contact, which is related to the virus aggressiveness and to the effi-
cacy of the hosts’ immune system. Note that, as already mentioned
in the introduction, the mathematical framework is simplified and,
for the control purposes, it disregards the effect of possibly impor-
tant epidemiological aspects arising over long time intervals (e.g.
virus mutations and massive vaccination). This results in the as-
sumption of a contagion probability approximately constant over
the whole observation period.

Therefore, denoting by Sy the relative infectivity of the first A
days, defined on the basis of the contact rate baseline cy, g = cox
(i.e. in the absence of social contact restrictions), the level of peo-
ple isolation L;'( in each time interval can be expressed by the rela-
tive reduction of social contacts w.r.t. the baseline, that is

Co—Ck _ Po— Pk

Co Bo

where (4) clearly belongs to [0, 1] since B, can be at most equal
to By (no restrictions) or at least zero (complete isolation). Since
social contact restrictions heavily impact on people lives, not only
for the obvious economic implications but also for psychological
aspects, they unavoidably imply a cost Jr which grows when the
size of isolated people increases (i.e. when ¢, B decrease). For
instance, for each time interval such a cost can be evaluated by
means of a quadratic term, properly penalizing larger deviations
from the open-loop condition:

Bo — B ’ 5
( ﬂ) )

where B, is the actual relative infectivity estimated for k= 0.
Hence, the average (quadratic) economic cost over a finite time in-
terval of duration MA can be modeled as:

L= (4)

kM1 [z a\2
Je B B = 2= 3 (P (6)
j=k :80

On the other hand, the epidemics implies a severe sanitary cost,
primarily due to the number of people dying for the disease. In or-
der to evaluate the sanitary impact of the interventions that we
are going to adopt in each time interval, we predict at the begin-
ning of kth interval [kA, (k+ 1)A) the total number of deceased
that a new policy (implemented from kA onward) will produce
at the end of a finite time interval of duration MA. Assuming to
revise such a policy every A days, the cumulative number of de-
ceased at the end of the prediction period will be given by the sum
over the M intervals of the deceased (2) within each interval and
will be obviously dependent on the sequence of the infectivities
Bj» j=k.....k+M —1. The number of deaths within each interval
is minimal when B, =0 (complete isolation), since further infec-
tions are prevented and additional deaths can be produced only
by the decreasing number of residual infected, while it reaches its
maximal value when B, = By. Therefore we can define the average
(quadratic) health cost associated to the choice at t = kA as

Ju(x(kA), B, ..., Brim—1, V-1, Vk-1)

1 (dw«(m), B Tir. Bir) — da (K(GA). 0. 74, ﬁk_l))z o
da(X(A), Bo, Vi1 De1) — da RGA), 0, Py, Drr) )

Jj=k

where x(jA) is the state at the beginning of the jth interval
A, (G+DA).
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Note that x(jA) is completely known for j =k, since t = kA is
the current time of evaluation, while it can be predicted for j =
k+1,...,k+M—1 by integrating system (1) over the (j— 1)th
interval with the given value of 8;_;. Concerning the death and
recovery rates, we keep at constant values the parameters y;, v;,
j=k, ....,k+M—1. Indeed, the estimates y,_;, Vy_; (related to
the (k — 1)th interval) are exploited for the prediction of the long-
term deaths (after M intervals) at t = kA. This is a reasonable
choice since at t = kA we do not know the death and recovery
rates of the incoming intervals [jA, (j+1)A), j=k,....k+ M -1
yet. So the best evaluation for y;, vj, j=k,...,k+M—1 is given
by the estimation performed in the last time interval of data pro-
cessing.

Real-time receding-horizon control

We formulate now a trial-and-error procedure aiming at op-
timizing the restrictions of social contacts and human activities.
The procedure searches the best trade-off between health and eco-
nomic costs, and it is revised periodically every A days. Hence, for
the general kth interval, with k=1,2,..., we solve iteratively the
following problem:

(Bi- - Biomr) = arg min (e (Bes - Brm-1)
Brr--Berm-1€10. o]
subject to (1),(2)

+ (1= a)JuRKA), B, -, Besm—1> Vie1s De-1)), - (8)

where X%(kA) is the actual state at the decision time t = kA, af-
fected by all the (possibly optimal) interventions actuated in the
first (k — 1) control intervals.

Once the optimization problem (8) is solved, the first optimal
infection rate B} is implemented by means of government restric-
tions aimed at tuning the per capita contact rate ¢, defined in Eq.
(3). Such a rate can be tuned, e.g., by imposing restrictions on the
mobility of the population also exploiting publicly available data,
such as the Google mobility reports [22].

Note also that:

« at the decision time ¢ = kA the sequence of infectivities j;, j =
k,....,k+M—1, is computed by solving a M-dimensional op-
timization problem (since the prediction of the health cost de-
pends on the next M intervals); however only the first one 8} =
By is actually implemented along the interval [kA, (k+ 1)A) as
the intervention policy will be revised at t = (k+1)A;
there is no optimization in the first interval k = 0, i.e. t € [0, A);
the optimal value 8} evaluated at the beginning of the kth in-
terval, i.e. at time t = kA, depends on the number of deceased
predicted at the end of the next MA intervals on the basis of
the most recent estimation of recovery/mortality rates (i.e. the
values y,_1, V_1) that are kept constant along the next M inter-
vals; this is a basic feature of the well-known Model Predictive
Control (MPC) method (see e.g. [10] for a survey on this topic);
the state X((k+1)A) depends on the implementation of the
suggested value B; but also on the parameters ¥y, v, (which
are unknown when B} is computed, at t = kA, but completely
determined at the end of the kth optimization interval, at t =
(k+1)A);
the coefficient « € [0, 1] allows for differently weighing the nor-
malized economic and health costs; in particular, the cost func-
tion in (8) provides the following limit situations for the ex-
treme values of o:
- for @ =0, only the health cost matters (J = Jy) and then the
complete isolation strategy B = 0 is optimal;
- for @ =1, only the economic cost matters (J = Jg) and then
the open-loop strategy B = ,30 leads to the optimality for
any k.
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Fig. 2. Cumulative economic and health costs at the end of a long term time horizon (K = 52) for « < [0, 1].

We propose the following steps for the control procedure:

1. Interval 0 (“open-loop”), [0, A): identify the parameters By, 7,
Vg from the first epidemiological data, until day A (do not per-
form any optimization);

2. Iterate the following steps for the interval [kA, (k+ 1)A), with
k=1,2,...,K-1:

(a) optimal planning: at the initial time t = kA evaluate the
current state X(kA), determined by the policy actually im-
plemented in interval (k—1) (uncontrolled, for k=1, or
controlled, for k > 1), and compute the optimal solutions
(B Bqo- ..,5;;+M7]) of problem (8), assuming that the
mortality and recovery rates are constant, over the en-
tire prediction period [kA, (k+M)A), and equal to y_q,
Vp_q (estimated in interval (k—1)); note that the fu-
ture states x(jA), j=k+1,...,k+M —1, required for the
computation of Jy, are predicted as x(jA) = x(A, x((j —
1)A),,3]',], ?k*]’ \jkfl),j:k#—l,...,k-i-M— 1;
implementation and analysis: implement the optimal policy
B; during interval k and, at the end of the period, estimate
from the epidemiological data the updated values of the re-
covery and mortality rates y,, v, that are required to solve
problem (8) for interval (k + 1).

(b

—

Since the weighting coefficient o deeply influences the result of
the optimization problem (from complete isolation to open-loop
condition) a suitable a priori tuning of its value is mandatory be-
fore implementing the proposed procedure. A way to reasonably
tune « is to perform at the end of the first observation period (A
days after the epidemic onset) a preliminary prediction evaluating
the total health and economic costs possibly gathered at the end
of a long-term period (for instance after a year). Such a tentative
and raw evaluation can be performed exploiting the only knowl-
edge acquired at t = A, i.e. the estimated parameters ,3_0, Y0, Vo,
identified from the epidemiological data of the first A days of the
epidemic, as well as the current state X(A) (directly measured or
estimated). In particular, denoting by [0, KA) the long-term period
of evaluation, the estimated death/recovery rates y,, Vo are kept
constant along the K intervals. In more detail, the evaluation of «
can be performed by solving the following preliminary optimiza-
tion problem:

arg min
Bel0.Bo]

_ 2 . - 2 70.50) \ 2
a(ﬁu;/s) +- a)( g (R(8). .o o) —dgs (R(A).0.fo:50) ) ’
Bo dip (R(A).Bo.70.00)—dg 5 (R(A).0.70.50)

subject to (1),(2)

(9)

where dg, denotes the additional deaths at the end of the predic-
tion period t = KA.
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Fig. 3. Time behaviour of the optimal and real infectivities (top panel) and the re-
lated reproduction numbers (bottom panel) in [0, KA].

Eq. (9) approximately resembles (8) in the case of constant
ﬂj, j=1,...,M over the first M intervals after the open-loop

one and with M =K. Performing an evaluation of the economic

. 2
cost component (B‘;S;ﬂ) and of the health cost component
0

dgp R(A).Bo. 70, 90)—dg 5 (R(A),0.7, )
mization problem (9) for o ranging in (0,1), we obtain the cost be-
haviour as a function of o reported in Fig. 2. As expected from the
problem formulation (9), the health cost increases (non-strictly)
with «, since its weight in the cost function decreases linearly
with «. As a matter of fact, the resulting behavior is almost dis-
continuous, with a trade-off between economic and health costs
given by o ~ 0.575. This allows to infer that there is a threshold
of the health cost weight (1 —«) (around 1 — 0.575 = 0.425) be-
low which the trade off is not meaningful and the trivial optimal
solution is to impose no restrictions, i.e. 8 = By in (9), hence caus-
ing the maximum number of deaths. The solution 8 = f, obtained
for any o > 0.575 implies, in particular, that the economic cost and
the health cost are constantly equal to 0 and 1, respectively, so ex-
plaining the saturation of both the components of the cost for o
large enough in Fig. 2.
As a consequence of the saturation behavior of the costs with
respect to «, we consider in the following numerical section a
value of o = 0.3, resulting in (1 —«) = 0.7, such that human lives

2
(d'“(X(A)"g'?"’ﬁo)*d’“(X(A)’O%’%)) by solving the simple opti-
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ison between optimal solution (blue circles) and solution fitted to the available data
(red circles). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

are sufficiently weighed to provide a non-trivial balance between
health and economic cost, i.e. sparing a large amount of human
lives, which was our original goal.

We note also that the choice of K is obviously arbitrary since
we do not know when our emergency will end. However prelim-
inary simulations showed that setting KA > 1 year basically pro-
vides the same results for any particular choice of K and A. We
conservatively chose K = 52, corresponding to a 2-year prediction
period.

As the application of the optimal policy in each interval re-
quires to solve the optimization problem (8) defined on a wider
time range, i.e. MA, we need to choose an adequate time horizon

of prediction by suitably tuning M. Preliminary simulations showed
that the choice M =6 is a good compromise between the neces-
sity to cope with the long-term policy effects, the model ability
to make predictions, and the computational cost of determining a
solution to the optimization problem (8).

4. Numerical simulations

In this section we show some results obtained solving the opti-
mization problem (8) with « = 0.3 and M = 6.

We recall that the solution of the optimization problem at the
decision time t = kA depends on the current state X(kA), which in
turn strongly depends on the containment measures actuated up
to time kA. Denoting by B,_; the real infection rate implemented
in the (k—1)th interval, the current state at t = kA can be nu-
merically evaluated as ®(kA) = x(A,X((k—1)A), ka], V1> Vk—1)»
as long as all the features of the (k — 1)th interval are known (i.e.
%((k=1)A), Bi_1» k1, k1) and the SIRD model can be assumed
to be a realistic representation of the real epidemic dynamics. Con-
cerning the real infection rate B,_;, we assume that:

« for k=1, it coincides with the parameter identified from the
non-controlled data of the “open-loop” interval, i.e. ,30 = BO;

« for k> 1, it is given by the optimal value computed for the
controlled interval k —1 multiplied by an implementation er-
ror, i.e. Br_q = Bi_q - &k—1, where the multiplicative noise & _;

is uniformly distributed in the interval [£, £] with constant up-
per and lower bounds & and £.

Moreover, since we do not have available data resulting from
the application of our policy to be exploited for the estima-
tion of y,_q, Vy_;, we use the corresponding values identified in
Section 2.2. Indeed, as we assumed that social contact restrictions
do not influence these parameters (see Section 2.1), we can rea-
sonably presume that they do not substantially change w.r.t. the
ones identified from the data related to the real Italian policy. Fi-
nally, the value ®((k — 1)A) is trivially known since the optimiza-
tion problem and the identification one have been already solved
for the interval [(j —2)A, (j —1)A).
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Fig. 7. Time behaviour of the optimal (receding-horizon), perturbed, and actual (estimated from the available data) infectivities (top panel) and reproduction numbers
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means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in green). (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Let us assume first to actuate perfectly the optimal restrictions
suggested by the receding-horizon algorithm, without committing
any implementation errors, that is &_; = 1 and then f§,_; = Bi_1»
k>1.

Figs. 3-4 show the comparisons between the optimal policy
and the real containment measures adopted by the Italian gov-
ernment. In particular, Fig. 3 compares the optimal infectivities
Bi k=1,....,(K—-1)A, with respect to the estimation B, k=
1,...,(K—1)A, inferred from the Italian epidemiological data [14].
The figure shows how the optimal policy suggests to suddenly re-
duce the human contacts, as soon as the first observation interval

ends. After the first strong revision of B, the policy suggests to
smoothly change B; during the entire control period. Conversely,
the real containment measures produced an abrupt variation of B;.
Accordingly, the comparison between the optimal value of the
B Skn)

5+t N ) and the observed one
k k

reproduction number R} = (

)-/k + Dk N
ceptibles at t = kA corresponding to the policy (optimal, 8} ,, or
observed, Bk_l) actually implemented in interval (k — 1), shows a

R, = (L M) where S(kA) provides the number of sus-
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Fig. 9. Time behaviour of the state variables obtained by the integration of system (1) with the perturbed infectivities By, k=0,1,...

,K —1, letting the maximal imple-

mentation error be equal to 10%. The envelope of the results obtained by means of 300 Monte Carlo perturbation simulations on the applied control law is also shown (in
green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

more uniform time-behaviour of the optimal policy that progres-
sively drives the reproduction number in a neighbourhood of one,
containing its oscillations, thus managing to mitigate the effects of
the second wave, as it clearly appears in Fig. 3.

The main gain of the optimal policy is shown by Fig. 4 where
the strong reduction of deaths can be inferred by the comparisons
between the cumulative deaths (at t = KA) produced by the opti-
mal policy and the real one. Indeed, the optimal policy allows to
reduce the total number of deaths by 76.71% with respect to the
real containment actions. Such a strong saving of human lives is

also associated to a light reduction of the economic costs (com-
puted by Eq. (6) with M =K) by about 1% compared to the real
interventions.

We finally note that the proposed MPC approach strictly con-
trols the relative infectivity within a narrow variation interval and
produces a substantial reduction of the mean infected during each
control interval w.r.t. the observed case (see Fig. 5). Moreover, as
shown by Fig. 4, the maximal number of current infected people
is substantially lower than the real peaks reached by the two main
epidemic waves occurred in Italy. Indeed, the maximum of infected
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reached in the optimal case is 232 thousand individuals, against
2.855 millions individuals obtained using the real policy, which im-
plies a definitely lower pressure on the hospitals and a higher ca-
pacity of the local health structures in sustaining patients.

Let us assume now to commit an error in implementing the
optimal restrictions. Monte Carlo simulations have been carried
out to evaluate the performance of the proposed control strategies
by either letting [£,&]=[0.9,1.1], [£,£]=[0.8,1.2], or [£,&]=
[0.7,1.3], i.e. by considering implementation errors of the desired
policy up to 10%, 20%, or 30%, respectively. Figs. 6-8 show the com-

10

parisons, in terms of infectivities and reproduction numbers, be-
tween the theoretical optimal policy (without implementation er-
ror), the real containment measures adopted by the Italian gov-
ernment, and the optimal policy actually implemented (obtained
by randomly perturbing the optimal one within relative bounds
[€,&]), for a maximal implementation error equal to 10%, 20%, or
30%, respectively. Figs. 9-11 present analogous comparisons for the
time course of the state variables, along with the envelope of the
results obtained by means of 300 Monte Carlo perturbation simu-
lations on the applied control law.
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As shown by such figures, the proposed method is robust with
respect to variations in the actually implemented control. In fact,
even in the case that the control policy is implemented with the
largest error scenario (up to 30%), the outcome of the receding-
horizon control is similar to the ideal one (reported in Fig. 3) ob-
tained without accounting for the implementation error, producing
at t = KA a reduction of the total number of deaths by at least
50.93% w.r.t. the real case.

We finally note that the value o = 0.3 (used for all the above
numerical results), chosen on the basis of the a priori exploration
of Fig. 2, actually provides a fair trade-off between the two terms
of the cost function. The a posteriori analysis reported in Fig. 12
shows the time behaviour of the ratio Jy/Jg obtained by solving
problem (8) with o = 0.3, with a lower value, i.e. @ = 0.2, and with
a higher value (beyond the threshold 0.575), i.e. « = 0.8. The fig-
ure shows that for & = 0.3 the two costs are quite balanced, while
moving away from this trade-off value one cost can exceed the
other one by some orders of magnitude. Indeed, we have a mean
ratio < Jy/Jg >=2.16 for o = 0.3, while the ratio substantially re-
duces to < Jy/Jg >=6.36-10"2 for o = 0.2 and strongly increases
to < Jy/Jg >=2.91-107 for & = 0.8.
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5. Discussion

A framework based on a time-varying SIRD model has been
proposed for the real-time optimization of non-pharmaceutical in-
terventions during epidemics. Despite its simplicity, such a class
of models has been demonstrated capable of capturing the es-
sential features of an epidemic disease. In fact, allowing for
parametric variations, these models can accurately adapt to real
data.

An optimization problem over a receding horizon has been for-
mulated to determine the optimal sequence of infection rates that
balances health and economic costs. Such infection rates have been
assumed to be actuated via government containment measures.
The effectiveness of such an approach has been validated via nu-
merical simulations based on the real data of the Italian COVID-
19 emergency. The results of such simulations highlighted the po-
tential of the proposed approach that may allow to decrease both
the economic and health costs by suitably designing the “ideal”
infectivity rate to be guaranteed in each time interval and con-
sequently planning the corresponding restrictions of the human
contacts. The simulations highlight that the “ideal” implementa-
tion of the optimal policy (i.e. without errors compared with the
theoretical computation) is able to reduce the total number of
deaths by 76.71% with respect to the real case, producing also a
mild reduction of the economic cost. As a further advantage, the
proposed technique with “ideal” implementation substantially re-
duces also the maximal number of concomitant infected individu-
als, producing a 91.88% of decrease with respect to the real case,
thus resulting in a reduced pressure on the local health struc-
tures. Moreover, the results show that even in the worst-case sce-
nario in which the optimal policy is implemented with an er-
ror up to 30% with respect to the theoretical computation, a sig-
nificant reduction of deaths by about 50.93% compared to the
real case is obtained, confirming the robustness of the proposed
approach.
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Appendix A. Tables of estimates and confidence intervals for
the SIRD model parameters

Cl,

Cly,

Table A1

Estimates and 99% confidence intervals of the SIRD parameters for the 80 considered intervals of A = 14 days.
Interval Br Vi Vg Clg,
1 2.58e-01 2.59e-02 1.18e-02 [2.47e-01, 2.69e-01]
2 1.67e-01 2.09e-02 1.65e-02 [1.60e-01, 1.73e-01]
3 6.81e-02 1.57e-02 1.07e-02 [6.33e-02, 7.28e-02]
4 3.55e-02 1.78e-02 5.45e-03 [3.41e-02, 3.70e-02]
5 2.16e-02 2.42e-02 3.44e-03 [2.00e-02, 2.31e-02]
6 1.26e-02 3.78e-02 2.57e-03 [9.24e-03, 1.60e-02]
7 1.04e-02 4.19e-02 1.89e-03 [6.57e-03, 1.43e-02]
8 8.93e-03 3.93e-02 2.00e-03 [4.77e-03, 1.31e-02]
9 1.14e-02 4.36e-02 1.33e-03 [8.25e-03, 1.45e-02]
10 1.40e-02 2.86e-02 1.12e-03 [1.09e-02, 1.71e-02]
11 1.80e-02 2.00e-02 8.66e-04 [1.53e-02, 2.06e-02]
12 2.53e-02 2.12e-02 5.76e-04 [2.25e-02, 2.80e-02]
13 4.10e-02 1.63e-02 1.35e-03 [3.70e-02, 4.50e-02]
14 5.23e-02 1.24e-02 2.87e-04 [5.04e-02, 5.43e-02]
15 3.81e-02 1.59e-02 2.90e-04 [3.70e-02, 3.92e-02]

1

[2.04e-02, 3.14e-02]
[1.76e-02, 2.42e-02]
[1.30e-02, 1.84e-02]
[1.69e-02, 1.86e-02]
[2.33e-02, 2.51e-02]
[3.58-02, 3.97e-02]
[3.97e-02, 4.42e-02]
[3.68e-02, 4.17e-02]
[4.18e-02, 4.55e-02]
[2.68e-02, 3.04e-02]
[1.85e-02, 2.15e-02]
[1.96e-02, 2.27e-02]
[1.40e-02, 1.86e-02]
[1.13e-02, 1.35e-02]
[1.53e-02, 1.65e-02]

[6.41e-03, 1.73e-02]
[1.32e-02, 1.98e-02]
[8.00e-03, 1.34e-02]
[4.60e-03, 6.30e-03]
[2.54e-03, 4.33e-03]
[6.42e-04, 4.51e-03]
[—3.33e-04, 4.12¢-03]
[~4.01e-04, 4.40e-03]
[~4.75e-04, 3.14e-03]
[~6.69¢-04, 2.91e-03]
[~6.56e-04, 2.39e-03]
[~1.01e-03, 2.17e-03]
[~9.35e-04, 3.63e-03]
[~8.19¢-04, 1.39¢-03]
[~3.46e-04, 9.27¢-04]

(continued on next page)
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Interval Br Yk Vg Clg, Cly, Cly,

16 3.91e-02 2.05e-02 4.04e-04 [3.75e-02, 4.08e-02] [1.95e-02, 2.14e-02] [-5.44e-04, 1.35e-03]
17 7.92e-02 1.67e-02 4.88e-04 [7.53e-02, 8.30e-02] [1.45e-02, 1.89e-02] [-1.69e-03, 2.67e-03]
18 9.44e-02 1.28e-02 7.28e-04 [9.31e-02, 9.57e-02] [1.21e-02, 1.36e-02] [—8.13e-06, 1.46e-03]
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