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Abstract. We consider Galton–Watson branching processes with countable typeset X . We study
the vectors qpAq “ pqxpAqqxPX recording the conditional probabilities of extinction in subsets of
types A Ď X , given that the type of the initial individual is x. We first investigate the location
of the vectors qpAq in the set of fixed points of the progeny generating vector and prove that
qxptxuq is larger than or equal to the xth entry of any fixed point, whenever it is different from
1. Next, we present equivalent conditions for qxpAq ă qxpBq for any initial type x and A,B Ď X .
Finally, we develop a general framework to characterise all distinct extinction probability vectors,
and thereby to determine whether there are finitely many, countably many, or uncountably many
distinct vectors. We illustrate our results with examples, and conclude with open questions.

Received by the editors January 13th, 2021; accepted August 8th, 2021.
2010 Mathematics Subject Classification. 60J80, 60J10.
Key words and phrases. Infinite-type branching process, extinction probability, generating function, fixed point.
The authors are grateful to the anonymous referee whose comments helped improve the manuscript. Daniela

Bertacchi and Fabio Zucca acknowledge support from INDAM-GNAMPA and PRIN Grant 20155PAWZB. Peter
Braunsteins has conducted part of the work while supported by the Australian Research Council (ARC) Laureate
Fellowship FL130100039 and the Netherlands Organisation for Scientific Research (NWO) through Gravitation-
grant NETWORKS-024.002.003. Sophie Hautphenne would like to thank the Australian Research Council (ARC) for
support through her Discovery Early Career Researcher Award DE150101044 and her Discovery Project DP200101281.
The authors also acknowledge the ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS)
for supporting the research visit of Daniela Bertacchi and Fabio Zucca at The University of Melbourne, during which
this work was initiated.

311

http://alea.impa.br/english/index_v19.htm
https://doi.org/10.30757/ALEA.v19-12


312 D. Bertacchi et al.

1. Introduction

Branching processes are models for populations where independent individuals reproduce and die.
If all individuals have the same reproduction law and live in a single location, then the population
can be modelled with a single-type branching process. If individuals have specific characteris-
tics (i.e. their location, or in general their “type") which impact the evolution of the population,
then multitype branching processes are suitable models. Here we focus on (discrete-time) multi-
type Galton–Watson branching processes (MGWBPs) with countably many types (where countable
includes the finite case as well). These processes arise naturally as stochastic models for various
biological populations (see for instance Kimmel and Axelrod (2002, Chapter 7)). They can alter-
natively be interpreted as branching random walks (BRWs) on an infinite graph where the types
correspond to the vertices of the graph (see for instance Shi (2015) and references therein).

One of the primary quantities of interest in a branching process is the probability that the
population eventually becomes empty or extinct. Extinction in MGWBPs can be of the whole
population (global extinction), in all finite subsets of types (partial extinction), or more generally,
in any fixed subset of types A (local extinction in A). To be precise, let X denote the (countable)
typeset, and let Zn “ pZn,xqxPX , where Zn,x records the number of type-x individuals alive in
generation n ě 0. For A Ď X , let EpAq be the event that the process tZnuně0 becomes extinct in
A, that is, the event that limnÑ8

ř

xPA Zn,x “ 0. Let qpAq “ pqxpAqqxPX be a vector whose xth
entry records the conditional probability of local extinction in A, given that the population starts
with a single type-x individual, that is,

qxpAq :“ PpEpAq |Z0 “ exq,

where ex is the vector with entry x equal to 1 and all other entries equal to 0. In particular, note
that qpHq “ 1. We let q :“ qpX q be the vector containing the conditional probabilities of global
extinction, and we let q̃ “ pq̃xqxPX be the vector containing the conditional probabilities of partial
extinction, where

q̃x :“ P
ˆ

č

A:|A|ă8

EpAq
ˇ

ˇ

ˇ
Z0 “ ex

˙

.

Several authors have studied properties of q and q̃; see for instance Bertacchi and Zucca (2008);
Braunsteins et al. (2019); Gantert and Müller (2006); Spătaru (1989) and most other references
herein.

If the process is irreducible, meaning that an individual of any given type may have a descendant
of any other type, then

‚ when X is finite, q “ qpAq “ q̃ for all non-empty A Ď X , and
‚ when X is countably infinite and A is finite, q̃ “ qpAq (see for instance Braunsteins and
Hautphenne (2020, Corollary 1)).

More generally, for any non-empty A Ď X , it is known that

q ď qpAq ď q̃ ď 1;

in addition, these inequalities may be strict (see for instance Bertacchi and Zucca (2020) and
Braunsteins and Hautphenne (2020)). Thus the vectors qpAq are of independent interest. Other
than the recent work of Hutchcroft (2020) (which focuses on different questions than those considered
here) and references in the remainder of this section, little attention has been paid to properties of
the vectors qpAq.

The vectors tqpAquAĎX are all solutions of a common fixed point equation. More precisely, if
Gpsq :“ pGxpsqqxPX records the probability generating function associated with the reproduction
law of each type (defined in (2.1)), then qpAq belongs to the set

S :“ ts P r0, 1sX : s “ Gpsqu. (1.1)
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In other words, Ext Ď S, where
Ext :“ tqpAq : A Ď X u (1.2)

is the set of extinction probability vectors. In this paper, we focus on the following three main
questions:

(i) Where are the elements of Ext located in S? (Section 3)
(ii) When does qpAq differ from qpBq for two sets A,B Ď X ? (Section 4)
(iii) How many distinct elements does Ext contain and can these elements be identified? (Sec-

tion 5)
While the answers to these questions are well established in the finite-type setting, much less is
known when there are infinitely many types. Below we discuss the background behind each question
and the contributions we make in this paper.
Question (i). It is well known that in the finite-type irreducible setting, the set of fixed points
S contains at most two elements: S “ Ext “ tq,1u; see for instance Harris (1963, Chapter 2).
When there are countably many types, q is the minimal element of S Moyal (1964, Theorem
3.1). More recently, in Braunsteins and Hautphenne (2019) the authors proved that, for a class
of branching processes with countably infinitely many types called lower Hessenberg branching
processes (LHBPs), q̃ is either equal to 1 or to the maximal element of Szt1u. Theorem 3.1 of the
present paper implies that the same result holds for general irreducible MGWBPs. In particular, if
there is strong local survival, that is, if q “ q̃ ă 1, then Theorem 3.1 implies that S “ Ext “ tq,1u,
as in the finite-type setting. In addition, this theorem also applies in the reducible setting as we
show in general that, for any fixed point s P S, if sx ă 1 then sx ď qxptxuq.
Question (ii). Recent work addresses related questions: in Bertacchi and Zucca (2014) and Bertacchi
and Zucca (2020), the authors provide equivalent conditions for qpAq “ q for every non-empty A Ď
X ; in Braunsteins and Hautphenne (2020), the authors give sufficient conditions for qpAq ď qpBq
that apply to any MGWBP and A,B Ď X , as well as sufficient conditions for q ă qpAq ă q̃ that
apply to block LHBPs. In Theorem 4.1 we present a number of necessary and sufficient conditions
for qxpAq ă qxpBq for any initial type x; this is a significant improvement on Bertacchi and Zucca
(2014, Theorem 3.3) and Bertacchi and Zucca (2020, Theorem 2.4) (see Section 4 for details). One
condition in Theorem 4.1 is the existence of an initial type from which, with positive probability,
the process survives in A without ever visiting B; another is the existence of a sequence of types
txnunPN such that

p1´ qxnpBqq{p1´ qxnpAqq Ñ 0 as nÑ8. (1.3)

A consequence of (1.3) is that, for any extinction probability vector qpAq ‰ q, we have
supxPX qxpAq “ 1 (Corollary 4.2). In particular, if all the entries of q̃ are uniformly bounded
away from 1, then there is strong local survival (q “ q̃ ă 1; Corollary 4.4).
Question (iii). When q ă q̃, the set of extinction probability vectors Ext may contain more than
two distinct elements. For instance, in processes that exhibit non-strong local survival (q ă q̃ ă
1 “ qpHq), Ext contains at least three distinct elements; see for instance Bertacchi and Zucca
(2014); Gantert et al. (2010); Menshikov and Volkov (1997); Müller (2008) for examples of such
processes. In recent years, various examples with more than three extinction probabilities have
been constructed: for instance, Braunsteins and Hautphenne (2020) contains examples with four
and five distinct extinction probability vectors. The set Ext can even contain uncountably many
distinct elements, as shown in Bertacchi and Zucca (2020, Section 3.1). In the same paper, the
authors leave open the question of whether Ext can be countably infinite. Up to this point, the
literature has focused primarily on specific examples. Here our goal is to develop a unified theory
to characterise —and thereby count— the distinct elements of Ext.

We start by restricting our attention to a more manageable subset of Ext,

ExtpAq :“ tqpAq : A P ΣpAqu, (1.4)
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where A “ tAiuiPKA is a (finite or infinite) collection of subsets of X and ΣpAq is the smallest σ-
algebra on

Ť

APAA containing A. The idea is to select A carefully so that (1) either Ext ” ExtpAq
or ExtpAq highlights some property of Ext, and (2) A satisfies some minor assumptions, in which
case we call A regular. We show that we can associate a directed graph GA to A, and that if A
is regular, then the analysis of ExtpAq reduces to the analysis of GA. More specifically, in this
graph, the vertices are the elements of KA, and there is a directed edge from i to j if and only if
qpAiq ě qpAjq, where these pairwise relationships can be determined using Theorem 4.1. We show
that there is an injective function from the set of edgeless subgraphs of GA to the distinct elements
of ExtpAq (Theorem 5.4 and Lemma 5.7); furthermore, if GA does not contain a path of infinite
length (i.e. an ascending chain as defined in Definition 5.9), we prove that this function is bijective
(Theorem 5.4 and Proposition 5.10(ii)). If GA contains ascending chains, then we show that the set
of edgeless subgraphs can be extended so as to define a bijection between this extended set and the
distinct elements of ExtpAq (Theorem 5.4 and Proposition 5.10(i)). These results translate problems
about the distinct extinction probability vectors into much simpler problems about the graph GA.
We use this framework to provide necessary and sufficient conditions for ExtpAq to contain finitely
many, countably many, or uncountably many distinct elements (Theorem 5.12). To provide a
rigorous exposition, we introduce an equivalence relation „ on the set 2KA (see Definition 5.3) and
then study properties of the quotient set 2KA{„.

We apply our results to three examples. In Example 1, we consider a specific family of irreducible
branching processes where, by varying a single parameter, we can transition smoothly between
cases where the process has any finite number of extinction probability vectors, a countably infinite
number of extinction probability vectors, and an uncountable number of extinction probability
vectors (Proposition 6.1). This resolves the open question in Bertacchi and Zucca (2020). In
Examples 2 and 3, we use our general framework to list all distinct extinction probability vectors
in two non-trivial examples: in Example 2, the number of distinct elements of ExtpAq is the same
as the number of edgeless subgraphs in GA, while in Example 3, the number of distinct elements of
ExtpAq is strictly larger than the number of edgeless subgraphs in GA.

The paper is structured as follows. In Section 2 we introduce some definitions and notation, as
well as some preliminary results. In Sections 3 and 4 we tackle Questions (i) and (ii), respectively.
In Section 5 we deal with Question (iii); more precisely, in Section 5.1 we introduce the concept
of a regular family A, in Section 5.2 we define the equivalence relation „ on 2KA and establish
the relationship between 2KA{„ and the distinct elements in ExtpAq, in Sections 5.3 we investigate
the structure of the equivalence classes, and in Section 5.4 we provide conditions for the number of
distinct elements in ExtpAq to be finite, countably infinite, or uncountable. In Section 6 we present
our examples, and in Section 7 we discuss open questions. All the proofs, along with some technical
lemmas, can be found in Section 8. In a final appendix, we propose an iterative method to compute
the extinction probability vector qpAq for any A Ď X .

In this paper, we let 1 denote the infinite column vectors of 1s. For any vectors x and y, we write
x ď y if xi ď yi for all i, and x ă y if x ď y with xi ă yi for at least one entry i. Finally, we use
the shorthand notation Pxp¨q :“ Pp¨|Z0 “ exq and Exp¨q :“ Ep¨|Z0 “ exq. We remark that, unless
otherwise explicitly stated, our results hold for any generic, not necessarily irreducible, MGWBP.

2. Preliminaries

2.1. Definitions. In an MGWBP tZnuně0 with countable typeset X , each individual lives for one
generation and, at death, independently gives birth to a (finite) random number of offspring. For
x P X and j “ pjyqyPX P NX , let pxj denote the probability that an individual of type x gives birth
to jy children of type y, for all y P X . The associated probability generating function is

Gxpsq :“
ÿ

j:|j|ă8

pxjs
j :“

ÿ

j:|j|ă8

pxj
ź

yPX
s
jy
y , s P r0, 1sX , (2.1)
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where |j| :“
ř

yPX jy, and we let Gpsq :“ pGxpsqqxPX . Note that G : r0, 1sX Ñ r0, 1sX is nonde-
creasing and continuous with respect to the pointwise convergence (or product) topology on r0, 1sX .
Let mxy :“ ExrZ1,ys “ pBGxpsq{Bsyq|s“1 be the expected number of offspring of type y born
to a parent of type x, and let pX , EX q be the directed graph with vertex set X and edge set
EX “ tpx, yq P X 2 : mxy ą 0u. We write x Ñ y if there is a path from x to y in pX , EX q, and we
write x Ø y if x Ñ y and y Ñ x. Note that x Ø x because there is always a path of length zero
from x to itself. The equivalence class rxsØ of x with respect to Ø is called the irreducible class of
x.

The MGWBP tZnu is called irreducible if and only if the graph pX , EX q is connected (that is,
there is only one irreducible class), otherwise it is reducible. We say that the process is non-singular
if, in every irreducible class, there is at least one type whose probability of having exactly one child
in that irreducible class is not equal to 1, or, in other words, if for every x, there exists y Ø x such
that Pyp

ř

wØy Z1,w “ 1q ă 1. This assumption is different from the usual one (which is, for every
x there exists y Ø x such that Pyp

ř

wPX Z1,w “ 1q ă 1), but both definitions are equivalent for
irreducible processes.

2.2. Properties of qpAq. For n ě 0 and A Ď X , we define qpnqpAq :“ pq
pnq
x pAqqxPX where

qpnqx pAq “ Px

˜

ÿ

`ěn

ÿ

yPA

Z`,y “ 0

¸

is the probability of extinction in A before generation n, starting with a single type-x individual.
The sequence tqpnqpAquně0 is (pointwise) nondecreasing, and satisfies

$

’

&

’

%

qpnqpAq “ Gpqpn´1qpAqq, @n ě 1,

q
p0q
x pAq “ 0, @x P A,

q
p0q
x pAq “ Gxpq

p0qpAqq @x R A.

(2.2)

In addition, qpnqpAq converges to qpAq as n Ñ 8. This implies that, for every A Ď X , qpAq
belongs to the set of fixed points S defined in (1.1) (note that q̃ also belongs to S). We observe
that qp0qx pAq “ PxpN pAqq, where N pAq is the event that the process never visits A. In principle,
if we knew qp0qpAq, we could iteratively apply Gp¨q and recover qpAq as the limit of the sequence
qpnqpAq. However, qp0qpAq is not uniquely characterised by Equation (2.2). In other words, qp0qpAq
is not necessarily the only element of the set of fixed points

pSpAq :“ ts P r0, 1sX : s “ pGpAqpsqu,

where the function pGpAq : r0, 1sX Ñ r0, 1sX is defined by

pGpAqx psq :“

#

0, if x P A
Gxpsq if x R A.

We point out that the function pGpAqp¨q can be interpreted as the generating function of the defective
process tẐpAqn u obtained by modifying the original process tZnu so that individuals of type x P A
produce an infinite number of children of all types with probability one at each generation. Note
that, if A ‰ H, then 1 R pSpAq. ForB Ď X , we define the probability that the process becomes extinct
in B and never visits A as qpB,Aq :“ pqxpB,AqqxPX , where qxpB,Aq :“ PxpEpBq X N pAqq. The
vectors qpB,Aq belong to pSpAq for all B (by the same arguments as those used to show qpAq P S).
The following result characterizes qp0qpAq.

Proposition 2.1. The vectors qpX , Aq and qp0qpAq ” qpH, Aq are the (componentwise) minimal
and maximal element of pSpAq respectively.
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Observe that qp0qpAq is uniquely identified by Equation (2.2) if and only if pSpAq is a singleton,
which, by Proposition 2.1, occurs if and only if qpX , Aq “ qp0qpAq; conditions for pSpAq to be a
singleton are given in Theorem 4.1. We also point out that, in the irreducible case, qp0qpAq can
be interpreted as the partial extinction probability vector of tẐpAqn u; in practice, qp0qpAq can then
be computed numerically using the method developed in Hautphenne et al. (2013), and qpAq can
be approximated by functional iteration, however it is unclear whether this algorithm converges.
An alternative iterative method to compute the vector qpAq for any A Ď X can be found in the
Appendix.

3. The second largest fixed point

It is well known that q is the componentwise minimal element of S while, clearly, 1 is the maximal.
The next theorem gives an upper bound, namely qxptxuq, for the xth component of any fixed point,
whenever it is different from 1. In the irreducible case, we then have that q̃ is either the largest or
second largest element of S: the largest when q̃ “ 1, and the second largest when q̃ ă 1 (indeed,
by Braunsteins and Hautphenne (2020, Corollary 4.1), q̃x “ qxptxuq).

Theorem 3.1. Suppose tZnuně0 is a non-singular MGWBP. If s ď Gpsq, then
(i) for all x P X , either sx “ 1 or sx ď qxptxuq;
(ii) if sx ă 1, then sy ď qyptyuq for all y P X such that y Ñ x;
(iii) if the process is irreducible and s ‰ 1, then s ď q̃.

The following corollary gives further insights into the set of fixed points S when qxptxuq “ qx for
all x; note that qxptxuq “ qx ă 1 is usually called strong local survival in x.

Corollary 3.2. Suppose tZnuně0 is non-singular and let s P S.
(1) If qxptxuq “ qx for all x then, for every x P X , either sx “ 1 or sx “ qxptxuq. In this case,

any fixed point is an extinction probability vector, that is, Ext “ S.
(2) If tZnuně0 is irreducible and s ‰ 1, then s ď q̃. In particular, if q̃ “ q, then S “ tq,1u.

4. When is qpAq ‰ qpBq?

In order for two extinction probability vectors qpAq and qpBq to be different, it is necessary for the
process to have a positive chance of survival in the symmetric difference of the sets A and B. More
formally, letting SpAq :“ EpAqc denote the event that the process survives in A, if PxpEpA4Bqq “ 1
then PxpSpAqq “ PxpSpAXBqq “ PxpSpBqq, that is,

qpAq ‰ qpBq ñ Dx P X s.t. PxpEpA4Bqq ă 1.

A more powerful characterization of qpAq ‰ qpBq is given in the following theorem, which is
a significant improvement over Bertacchi and Zucca (2014, Theorem 3.3), where the equivalence
between (i) and (v) was proved with A “ X .

Theorem 4.1. For any MGWBP and A,B Ď X , the following statements are equivalent:
(i) there exists x P X such that qxpAq ă qxpBq
(ii) there exists x P X such that qxpAzBq ă qxpBq

(iii) there exists x P X such that qxpAq ă q
p0q
x pBq

(iv) there exists x P X such that, starting from x there is a positive chance of survival in A without
ever visiting B

(v) there exists x P X such that, starting from x there is a positive chance of survival in A and
extinction in B
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(vi)

inf
xPX : qxpAqă1

1´ qxpBq

1´ qxpAq
“ 0.

Moreover, if A “ X then each of the above conditions is equivalent to
(vii) ŜpBq is not a singleton.

Note that the equivalence between (i) and (iii) was proved in Bertacchi and Zucca (2020, Theo-
rem 2.4).

Corollary 4.2. For any MGWBP, every extinction probability vector qpAq ‰ q, satisfies

sup
xPX

qxpAq “ 1.

Remark 4.3. In Moyal (1964, Lemma 3.3), the author showed that, if an MGWBP is irreducible,
then all fixed points s ‰ q with infxPX sx ą 0 satisfy supxPX sx “ 1. However, the condition
‘infxPX sx ą 0’ was described as unsatisfactory. Corollary 4.2 proves that all extinction probabilities
qpAq ‰ q satisfy supxPX qxpAq “ 1 under no assumptions (not even irreducibility).

In the irreducible case, Corollary 4.2 easily implies the following result.

Corollary 4.4. Suppose that tZnu is irreducible. If supxPX q̃x ă 1 then q̃ “ q and S “ tq,1u.

Corollary 4.4 applies to irreducible quasi-transitive MGWBPs (see for instance Bertacchi and
Zucca (2014, Section 2.4) for the definition) where q̃ ă 1, extending Bertacchi and Zucca (2014,
Corollary 3.2); indeed, in that case the coordinates of q̃ take their value in a finite set and they
are all different from 1. It also applies to MGWBPs with an absorbing barrier (see Biggins et al.
(1991)) with q̃ ă 1, for which X “ N and q̃x is decreasing in x.

There are special cases where qpAq depends only on the cardinality of A. For instance, in an
irreducible lower Hessenberg branching process there are (at most) three distinct vectors: q, q̃, and
1 (see Braunsteins and Hautphenne (2020, Section 4.1)). Indeed, if A ‰ H, then qpAq “ q̃ when A
is finite, whereas qpAq “ q when A is infinite. In this simple case, we can completely describe the
set Ext.

5. The set of extinction probability vectors

We now turn our attention to the set Ext of extinction probability vectors. Our analysis builds
upon an important consequence of Theorem 4.1 (which we state in Corollary 5.1). We start by
defining relations between subsets A,B Ď X in a given MGWBP: we write

‚ Añ B if survival inA implies survival inB from every starting point (i.e., PxpSpBq |SpAqq “
1 for all x P X ),

‚ Aœ B if there is a positive chance of survival in A and extinction in B from some starting
points (that is, PxpSpBq |SpAqq ă 1) for some x P X ),

‚ Aô B if survival in A implies survival in B and vice-versa from every starting point,
‚ Aø B if there is a positive chance of survival in B and extinction in A from some starting
points and vice-versa.

Note that A ô A for all A Ď X . The next corollary is a straightforward consequence of the
equivalence between (i) and (v) in Theorem 4.1.

Corollary 5.1. Let A,B Ď X .
(1) Añ B if and only if qpAq ě qpBq.
(2) Aô B if and only if qpAq “ qpBq.
(3) Aø B if and only if there is no order relation between qpAq and qpBq.

We point out that any of the six equivalent conditions in Theorem 4.1 can be used to establish
the relation between the pair A,B Ď X .
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5.1. Regular families of subsets. We will use the pairwise relations between subsets of X to study
Ext. Rather than considering all subsets of X , it is often sufficient to restrict our attention to a
particular family of subsets. More precisely, we focus on

ExtpAq :“ tqpAq : A P ΣpAqu,
where A “ tA1, A2, . . . , AκAu, with κA ď 8, Ai Ď X for all i P KA :“ t1, . . . , κAu, and ΣpAq is the
smallest σ-algebra on

Ť

iPKA
Ai containing all Ai. The idea is to select a suitable family A so that

either Ext ” ExtpAq as in the examples in Section 6, and in Bertacchi and Zucca (2020, Section 3.2)
and Braunsteins and Hautphenne (2020, Example 1), or so that ExtpAq highlights some property
of Ext as in Bertacchi and Zucca (2020, Section 3.1). Below we show that the analysis of ExtpAq is
substantially simpler under some minor regularity conditions on A and the associated MGWBP.

Definition 5.2. We call A regular if
(C1) for any i ‰ j P KA, we have Ai XAj “ H;
(C2) for any i P KA, we have qpAiq ă 1;
(C3) there does not exist i ‰ j P KA such that Ai ô Aj ;
(C4) if A P ΣpAq and IA :“ ti P KA : Ai ñ Au ‰ H then

Ť

iPIA
Ai ñ A;

(C5) if i P KA and Ji :“ tj P KA : Ai œ Aju ‰ H then Ai œ
Ť

jPJi
Aj .

Condition (C1) allows an easy description of ΣpAq in terms of unions of sets in A; in particular,
under this condition, I ÞÑ

Ť

iPI Ai is a surjective map from 2KA onto ΣpAq. If in addition (C2)
holds, then Ai ‰ H for all i P KA and the map is also injective. Conditions (C2) and (C3)
can be viewed as a preprocessing step which removes elements from A that lead to non-distinct
extinction probability vectors. In particular we observe that (C3) “almost implies” (C2), meaning
that, if (C3) holds then qpAiq “ 1 for at most one i P KA (by Corollary 5.1). Thus, (C2) implies
that q

`
Ť

iPI Ai
˘

“ 1 if and only if I “ H, in particular H R A. Conditions (C4) and (C5) are
minor regularity assumptions that we use to compare the number of distinct elements in ExtpAq
and the cardinality of the quotient set of 2KA with respect to a suitable equivalence relation (see
Definition 5.3). On the other hand, (C2) and (C3) allow us to study the cardinality of a particular
subset of this quotient set (see Definition 5.6 and Equation (5.1)). We observe that, while (C4)
holds when IA is finite, it might fail if IA is infinite. Indeed, when IA is finite, survival in

Ť

iPIA
Ai

implies survival in Ai0 for at least one i0 P IA, which implies survival in A. On the other hand,
when IA is infinite, there may be a positive probability of survival in

Ť

iPIA
Ai and both extinction

in every Ai and extinction in A.

5.2. Equivalent subsets of indices. Not all the elements of ExtpAq are necessarily distinct. For
instance, if Ai ñ Aj , then qpAi YAjq “ qpAjq. This motivates the next definition.

Definition 5.3. The subsets I, J Ď KA are equivalent, and we write I „ J , if and only if
(i) for every i P I there exists j P J such that Ai ñ Aj , and
(ii) for every j P J there exists i P I such that Aj ñ Ai.

Observe that H „ I implies I “ H.
We are interested in the number of distinct elements in ExtpAq, which we denote by |ExtpAq|.

The next theorem implies that, if A is regular, then |ExtpAq| equals the cardinality of the quotient
set 2KA{„, that is, the number of equivalence classes.

Theorem 5.4. Given a family A and I, J Ď KA, consider the following relations:
(i) I „ J
(ii)

Ť

iPI Ai ô
Ť

jPJ Aj

(iii) q
´

Ť

iPI Ai

¯

“ q
´

Ť

jPJ Aj

¯

.
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Then piiq if and only if piiiq.
If (C4) holds then piq implies piiiq; if in addition (C1) holds then |ExtpAq| ď |2KA{„|.
If (C2) and (C5) hold then piiiq implies piq and |ExtpAq| ě |2KA{„|.

5.3. Primitive subsets and ascending chains. In order to characterize |ExtpAq|, the next step is
to better understand the structure of the equivalence classes. To help visualise these classes, we
associate a directed graph GA “ pKA, EAq, with edge set EA :“ tpi, jq P K2

A : Ai ñ Aju, to a given
MGWBP and family A “ tA1, A2, . . . , AκAu. Observe that
(P1) pi, jq, pj, kq P EA implies pi, kq P EA (by transitivity of the relation ñ),
(P2) pi, iq P EA for all i P KA,

and, under the regularity condition (C3),
(P3) GA contains no cycles (of length greater than one).

Note that in GA, there is a path from i to j if and only if pi, jq P EA. The next lemma states that,
given a directed graph pX,EXq satisfying (P1) and (P3), there exist an MGWBP and a regular
family A such that GA “ pX,EXq.

Lemma 5.5. Let pZ,EZq be a directed graph where
‚ Z is at most countable,
‚ there are no cycles (closed paths).

Then there exists an MGWBP and a regular family A “ tAiuiPZ such that Ai ñ Aj if and only if
there is a path from i to j in pZ,EZq.

For any subset I Ď KA, we define the subgraph induced in GA by I as

GArIs :“ pI, EArIsq, with EArIs :“ tpi, jq P I2 : Ai ñ Aju.

Definition 5.6. We call I Ď KA primitive if for all i, j P I, i ‰ j, we have Ai ø Aj . Equivalently, a
subset I is primitive if the induced subgraph GArIs is edgeless. We write PA for the set of primitive
subsets of KA.

The following properties are straightforward:
‚ I :“ H is primitive and, if (C2) holds, it is the only subset of KA such that q

`
Ť

iPI Ai
˘

“ 1;
‚ every singleton tiu is primitive.
‚ every subset of a primitive subset is primitive;
‚ if tInun is a sequence of primitive subsets of KA such that In Ď In`1 (for all n) then

Ť

n In
is primitive.

From the definition of „, if (C3) holds, then the equivalence class of a primitive subset I is

rIs„ “
!

J Ď KA : J Ě I,@j P J, Di P I, Aj ñ Ai

)

. (5.1)

In particular, given two primitive subsets I1 ‰ I2 we have rI1s„ ‰ rI2s„. Hence PA can be identified
with a (possibly proper) subset of 2KA{„. This directly leads us to the next result about the map

fA : PA Ñ 2KA{„ s.t. fApIq “ rIs„.

Lemma 5.7. If A satisfies (C3) then fA is injective; in particular |PA| ď |2KA{„|.

We will see that in many situations, the injective map fA is actually bijective, in which case, if A
is regular, then by Theorem 5.4 there is a one-to-one correspondence between the distinct extinction
probability vectors in ExtpAq and the primitive subsets. We now present two illustrative examples:
in Figure 5.1, fA is bijective, and in Figure 5.2, fA is not surjective because no primitive subset
belongs to the equivalence class of I “ t3, 4, 5, . . .u.
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Relations:

A1 ñ A3, A2 ñ A1

A2 ñ A3, A2 ñ A4

GA:

1 3

2 4

PA ExtpAq

H 1

t1u qpA1q “ qpA1 YA2q

t2u qpA2q

t3u qpA3q “ qpA1 YA3q “ qpA2 YA3q

“ qpA1 YA2 YA3q

t4u qpA4q “ qpA2 YA4q

t1, 4u qpA1 YA4q “ qpA1 YA2 YA4q

t3, 4u qpA3 YA4q “ qpA2 YA3 YA4q

“ qpA1 YA2 YA3 YA4q

Figure 5.1. A regular family A “ tA1, A2, A3, A4u with its associated directed
graph GA, the set of primitive subsets PA, and the elements in ExtpAq. There is a
one-to-one correspondence between the primitive subsets and the distinct elements
in ExtpAq.

2 1

3 4 5 6 7 . . .

Figure 5.2. The directed graph GA of a regular family A “ tA1, A2, A3, . . .u. The
set of primitive subsets is PA “ tH, tiui“1,2,3,..., t1, juj“4,5,6,..., t2, juj“4,5,6,...u.

In order for the map fA to be bijective in general, the domain PA of fA needs to be extended.
To understand how to extend PA, we need a more complete description of the codomain 2KA{„ of
fA. We consider the following subsets of every I Ď KA:

$

’

&

’

%

IM :“ ti P I : @j P I, j ‰ i, Ai œ Aju

Id :“ ti P I : Dj P IM , Ai ñ Aju

Ic :“ IzId.

Roughly speaking, IM contains the vertices with out-degree zero in GArIs, and Id is the largest
subset of I equivalent to IM (clearly, IM Ď Id, since Aj ñ Aj for every j P KA). If we think of
“ñ” as a partial preorder relation “ď” (it is a partial order relation if (C3) holds), then IM can be
interpreted as the primitive subset of maximal elements of I, and Id as the subset of elements which
are smaller than a maximal element. Finally, Ic is the subset of elements which are not comparable
with any maximal element of I; in particular,

Ic “ ti P I : Ej P IM , Ai ñ Aju ” ti P I : @j P IM , Ai ø Aju ” ti P I : Ej P Id, Ai ñ Aju.
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As an example, let I “ KA “ N for the family A considered in Figure 5.2; then IM “ t1u,
Id “ t1, 2, 3u, and Ic “ t4, 5, 6, . . .u.

Clearly I is primitive if and only if I “ IM ; moreover rIM s„ “ rIds„, and if I ‰ H then
rIds„ ‰ rIcs„. The next lemma states several other properties of the subsets IM , Id, and Ic; in
particular it extends the representation of the equivalence class of a primitive subset given in (5.1)
to that of a generic subset (Lemma 5.8(vii)).

Lemma 5.8. Let I, J Ď KA.
(i) I „ IM if and only if Ic “ H;
(ii) IM „ JM if and only if Id „ Jd;
Suppose that (C3) holds.
(iii) IM “ JM if and only if Id „ Jd;
(iv) I „ J if and only if IM “ JM and Ic „ Jc;
(v) I „ J for some primitive J if and only if Ic “ H;
(vi) if Ic ‰ H then Ic is infinite;
(vii) rIs„ “ tH YW : H,W Ď KA, Hd „ Id, Wc „ Ic, Hc “Wd “ Hu.

Definition 5.9. We call I Ď KA an ascending chain if I “ Ic (that is, Id “ IM “ H).

From Lemma 5.8(vii), any subset J equivalent to an ascending chain is also an ascending chain
(that is, if I “ Ic and J „ I, then J “ Jc).

Given two equivalent subsets I and J , observe that

ti P KA : Dj P I, Ai ñ Aju “ ti P KA : Dj P J,Ai ñ Aju.

The largest subset equivalent to I, defined as I` :“ ti P KA : Dj P I, Ai ñ Aju, is a natural
representative of the equivalence class rIs„. We let

CA :“ tI Ď KA : DJ “ Jc, J
` “ Iu

be the set of representatives of ascending chains; note that CA is non-empty sinceH P CA. Moreover
J P CA if and only if J “ Jc and J “ J`. As an example, in Figure 5.2 the set I “ t3, 4, 5, . . .u is
an example of an ascending chain and CA “ tH, Iu.

Recall that the domain of fA is PA, which is non-empty (since H is primitive), and that, by
Lemma 5.7, fA is injective (under (C3)). The following proposition implies that PA can be extended
by means of CA to the set

IA :“ tpI, Jq P pPA ˆ CAq : I X J “ H, pJzI`q` “ Ju. (5.2)

Clearly tHuˆ CA and PAˆtHu are subsets of IA; in particular pH,Hq P IA. We define the map

gA : 2KA{„ Ñ IA s.t. gAprIs„q “ pIM , pIcq
`q.

Proposition 5.10. If A satisfies (C3), then gA is bijective; in particular,
(i) |2KA{„| “ |IA|,
(ii) if there are no ascending chains (i.e. CA “ tHu), then the map fA is bijective, that is, every

equivalence class contains one (unique) primitive subset.

Note that fA “ g´1A ˝h where h is the natural bijection from PA onto PAˆtHu. In the example
considered in Figure 5.1, CA “ tHu, hence IA “ PA ˆ tHu, while in the example considered in
Figure 5.2, CA “ tH, t3, 4, 5, . . . uu, and

JA “ tpI,Hq : I P PAu Y tpH, t3, 4, 5, . . .uq, ptiu, t3, 4, 5, . . .uqi“1,2u.

In Figure 5.3 we provide a modification of the example considered in Figure 5.2 that illustrates why
the condition IXJ “ H is not sufficient in the definition of IA in order for gA to be bijective: take
I “ t41, 51, 61, . . .u and J “ t3, 4, 5, . . . u; we have I X J “ H, but I` “ I Y J , so pJzI`q` “ H ‰ J .
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In this case, g´1A pI, Jq “ g´1A pI,Hq because rI Y Js„ “ rIs„, so gA is not bijective. Additional
examples where we identify JA are given in Section 6.

2 1

3 4 5 6 7 . . .

41 51 61 71 . . .

Figure 5.3. The directed graph GA of a regular family with an ascending chain
(the edges implied by transitivity are omitted).

When combined, Theorem 5.4 and Proposition 5.10 allow us to identify the distinct elements in
ExtpAq.

Proposition 5.11. If A is regular, then

ExtpAq “
!

q
´

Ť

iPpIYJqAi

¯

: pI, Jq P IA

)

, (5.3)

and distinct elements in IA correspond to distinct extinction probability vectors.

In the example considered in Figure 5.2, the distinct elements of ExtpAq are therefore

ExtpAq
“ tq p

Ť

iPI Aiq : I P PAu
Ť

tq pA3 YA4 YA5 Y . . .q , q pA1 YA3 YA4 YA5 Y . . .q , q pA2 YA3 YA4 YA5 Y . . .qu .

(5.4)

5.4. The number of distinct elements in ExtpAq. Building on the results in the previous section,
we are now ready to discuss the number of distinct elements in ExtpAq, |ExtpAq|. In particular,
Propositions 5.10 and 5.11 lead to equivalent conditions for the number of distinct elements in
ExtpAq to be finite, countably infinite, or uncountable.

Theorem 5.12. Given a family A satisfying (C3),
(i) |ExtpAq| is finite if and only if A is finite (that is, κA ă 8).

If (C2), (C3) and (C5) hold then
(ii)

|ExtpAq| ě |PA|. (5.5)
If, in addition, A is regular and CA “ tHu, then there is equality in (5.5).

(iii) If ExtpAq is countably infinite, then there exists a family A1 Ď A satisfying (C2)-(C3)-(C5)
with κA1 “ 8 such that either A11 ñ A12 ñ A13 ñ . . . or A11 ð A12 ð A13 ð . . . . In particular
if A is regular, one can choose A1 as a regular family.

If A is regular, then
(iv) ExtpAq is countably infinite if and only if PA and CA are both countable and at least one of

them is countably infinite.
(v) ExtpAq is uncountable if and only if either PA is uncountable or CA is uncountable.
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Note that if A is regular, the condition ‘CA “ tHu’ is sufficient but not necessary for the equality
in (5.5) to hold. Indeed, in the example considered in Figure 5.2, CA ‰ tHu while ExtpAq and PA
are both countably infinite (see Equation (5.4)).

The next corollary gives a sufficient condition for the existence of an infinite regular family whose
associated graph is edgeless and, as a consequence, for the existence of uncountably many distinct
extinction probability vectors.

Corollary 5.13. If there exists a (infinite) collection of pairwise disjoint subsets A1, A2, . . . of X
such that for each i ě 1 there exists xi P X with

PxipSpAiq X EpX zAiqq ą 0,

then there are uncountably many distinct extinction probability vectors.

6. Examples

We are ready to answer two important questions:
(1) The first question was asked previously in Bertacchi and Zucca (2020): Is it possible to con-

struct an irreducible MGWBP with countably infinitely many extinction probability vectors?
Theorem 5.12 not only suggests that the answer is positive, it also gives insight into how
such examples may arise. In Example 1 we not only answer this question but we go further
by constructing an irreducible family of processes where, by varying a single parameter, we
can transition smoothly between cases where the process has any finite number of extinction
probability vectors, a countably infinite number of extinction probability vectors, and an
uncountably infinite number of extinction probability vectors.

(2) Given a regular family A, do we always have |ExtpAq| “ |PA|? If PA is either finite or
uncountable, then equality holds. Thus, by Theorem 5.12(v), we may only have |ExtpAq| ą
|PA| if PA is countable and CA is uncountable. In Example 2, both PA and CA are countable,
and thus |ExtpAq| “ |PA|, while in Example 3, PA is countable and CA is uncountable, and
thus |ExtpAq| ą |PA|. This means the answer to the above question is negative.

Example 1 is an application of the results developed in Sections 4 and 5, and Examples 2 and 3
highlight the framework developed in Section 5.

Example 1: From finitely many to uncountably many extinction probability vectors.
Consider a process with type set X “ N2

0, where
‚ individuals of type p0, 0q have one child of type p1, 0q with probability q, and 0 children
otherwise;

‚ individuals of type p0, jq, j ě 1, have one child of type p0, j´ 1q with probability p ă 1, and
0 children otherwise;

‚ individuals of type pi, 0q, i ě 1, have one child of type pi, 1q with probability 1, and one
child of type pi` 1, 0q with probability q; and

‚ individuals of type pi, jq, i, j ě 1, have a geometric number of children of type pi´1, jq with
mean r´j`1, and one child of type pi, j ` 1q with probability 1.

A visual representation of these offspring distributions is given in Figure 6.4. We partition X in two
ways: by levels, Li :“ tpi, jqujě0 for i ě 0, and by phases Pj :“ tpi, jquiě0, for j ě 0.

Consider the family A “ tL1,L2, . . .u. The next proposition implies that, for any p, q ă 1, we
can choose r such that the process has: (i) any finite number k ě 1 of extinction probability vectors
(just pick p1{pk´1q ă r ď p1{k), which corresponds to

L1 ð L2 ð . . .ð Lk´1 ð Lk ô Lk`1 ô . . . ,

(ii) countably infinite many distinct extinction probability vectors (r “ 1), which corresponds to

L1 ð L2 ð L3 ð L4 ð . . . ,
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0, 0 1, 0 2, 0 3, 0

0, 1 1, 1 2, 1 3, 1

0, 2 1, 2 2, 2 3, 2
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r´1r´1r´1

r´2r´2r´2

q

1

r´1

r´2

111p

Figure 6.4. A visual representation of the offspring distributions in Example 1.
The solid arrows represent Bernoulli distributions and bold dashed arrows represent
geometric distributions (the weights represent the corresponding means).

or (iii) uncountably many distinct extinction probability vectors (r ą 1), which corresponds to

L1 ø L2 ø L3 ø L4 ø . . . .

Moreover, the proposition implies that, when r ď 1, Ext “ ExtpAq. Note that in this example,
CA “ H, and when r ď 1, the only primitive subsets are singletons. In preparation for the next
result, for any A Ď X we let

ιpAq :“ minti ě 0: |Li XA| “ 8u,

and set ιpAq :“ 8 if the above set is empty.

Proposition 6.1. In Example 1,
(i) if r ă 1, then there is a finite number i˚ :“ minti ě 1: ri ď pu of distinct extinction

probability vectors, namely q “ q̃ if i˚ “ 1, and

q “ qpL1q ă . . . ă qpLi˚q “ q̃ if i˚ ě 2. (6.1)

In particular, if ιpAq ă i˚ then qpAq “ qpLιpAqq, whereas if ιpAq ě i˚ then qpAq “ q̃.
(ii) if r “ 1, then there are countably infinite many distinct extinction probability vectors, namely

q “ qpL1q ă qpL2q ă qpL3q ă . . . , (6.2)

and q̃. In particular, if ιpAq ă 8 then qpAq “ qpLιpAqq, whereas if ιpAq “ 8 then qpAq “ q̃.
(iii) if r ą 1, then there are uncountably many distinct extinction probability vectors.

Figure 6.5 shows the distinct probabilities of extinction tqp0,0qpLiquiě1 as a function of r when
p “ 0.1 and q “ 0.5. Observe that, in accordance with Proposition 6.1, the number of extinction
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Figure 6.5. The probabilities of extinction qp0,0qpL1q (lowest curve), qp0,0qpL2q

(second lowest curve), qp0,0qpL3q, . . . , as a function of r when p “ 0.1 and q “ 0.5.

probabilities increases by one at r “ i
?
p for each i ě 1. The probabilities are computed using the

iterative method presented in Appendix A.
We now consider what may happen if the family A is not chosen carefully (i.e. is not regular).

Consider the family A1 “ tL10,L11,L12, . . .u, where

L1i “
`

8
ď

k“0

 

pi, 2kq
(˘

Y
`

8
ď

k“0

 

pk, 2i` 1q
(˘

, i ě 0.

Note that A1 does not satisfy (C5): indeed we have that L11 ñ
Ť

jPJ1
L1j , where J1 “ t0, 2, 3, 4, . . .u.

The next proposition implies that, when r ą 1, PA1 is uncountable, while ExtpA1q is countable; this
shows that, without (C5), Theorem 5.12(ii) might not hold.

Proposition 6.2. If r ą 1, then L1i ø L1j for all i ‰ j and ExtpA1q is countably infinite.

Example 2: A BRW on a grid. Consider a branching process with typeset Nˆ N in which the
generating function of type pi, jq is

Gpi,jqpsq “
1

3
`

1

2
s3pi,jq `

1

12
s3pi,j`1q `

1

12
s3pi`1,jq.

In other words, an individual of type pi, jq has no children with probability 1{3, three children of
type pi, jq with probability 1{2, three children of type pi, j ` 1q with probability 1{12, and three
children of type pi` 1, jq with probability 1{12.

Suppose we would like to determine the distinct elements of Ext. We consider the family A “ X
(the set of singletons), in which

pi1, j1q ñ pi2, j2q if and only if i1 ď i2 and j1 ď j2,

and whose associated graph GA is illustrated in Figure 6.6 (the edges implied by transitivity are
omitted). Note that the family A is regular; indeed, pC1q and pC3q are immediate, pC4q and pC5q

can be verified easily (for instance by inspecting the graph GA), and pC2q follows from the fact that
the mean number of type-pi, jq offspring of a type-pi, jq parent is 3{2 ą 1.
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Figure 6.6. Left panel: The graph GA in Example 3. Right panel: The graph
GA in which particular subsets of vertices are highlighted.

In this example, the primitive subsets are the subsets of X in which no element is strictly greater
(componentwise) than any other. More formally,

PA “ tA Ă X : Epi1, j1q, pi2, j2q P A with i1 ď i2 and j1 ď j2u.

The set of blue nodes in Figure 6.6 is an example of a primitive subset. Note that every element of
PA is a finite subset, and therefore PA is countable. The set of representatives of ascending chains
is

CA “ tpi, jq : 1 ď i ď k, j ě 1ukPN Y tpi, jq : i ě 1, 1 ď j ď kukPN Y X YH. (6.3)
To understand how this expression for CA is obtained, observe that there are essentially three kinds
of ascending chains: those that take infinitely many steps upwards while only taking finitely many
steps to the right (representatives of these chains are given in the first term of (6.3)), those that take
only finitely many steps upwards while taking infinitely many steps to the right (representatives of
these chains are given in the second term of (6.3); the set of green nodes in Figure 6.6 corresponds
to k “ 2), and those that take both infinitely many steps upwards and infinitely many steps to the
right (these chains have just a single representative X ; one such path is illustrated in red in Figure
6.6).

By Proposition 5.11 the set of distinct extinction probability vectors is

Ext “ ExtpAq “
!

q
´

Ť

pi,jqPIYJpi, jq
¯

: pI, Jq P IA

)

,

where

JA “ tpI, Jq P pPA ˆ CAq : I X J “ H, pJzI`q` “ Ju

“ tpI, Jq P pPA ˆ CAq : I X J “ Hu,

and the final equality follows from the fact that for every I P PA, I` is a finite set. One element
pI, Jq of JA is formed by letting I and J be the set of blue and green nodes respectively in Figure
6.6. Because PA and CA are both countably infinite, by Theorem 5.12, Ext contains a countably
infinite number of distinct elements. We have thus constructed an example with ascending chains
in which |PA| “ |ExtpAq|.

Example 3: A BRW on a modified binary tree. Consider the modification of an oriented
binary tree which is illustrated in Figure 6.7 and is formally constructed as follows. Let Z :“
Ť`8
i“0t´1,`1ui denote the set of vertices, where t´1,`1u0 “ tHu represents the root. Note that

every vertex is a finite sequence of ´1 and `1. A planar representation of this set is given by the
map γ : Z ÞÑ R2 where γptHuq “ p0, 0q and γptα1, α2, . . . , αnuq “

`
řn
i“1 αi3

´i, n
˘

, for n ě 1.
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Figure 6.7. The modified binary tree.

Henceforth, when we speak of “left” and “right” we refer to the first coordinate in this planar
representation. Given a vertex tHu or tα1, . . . , αnu with n ě 1, we define the (oriented) edges as
follows

ptβiu
m
i“1, tαiu

n
i“1q

õ
#

αi “ βi @i ď m. if m` 1 “ n ě 1

βi “ αi @i ď n´ 1, βn “ ´αn “ 1, βi “ ´1 @i ą n if m ě n ě 1.

Roughly speaking, the first line defines the usual upward edges in the binary tree (where each parent
has exactly two children). The second line draws lateral edges to each point from the sibling on its
right (if any) and from each descendent of this siblings in such a way that the resulting graph is
isomorphic to a planar graph (see Figure 6.7). We observe that there are no lateral edges pointing
to the right, and that from every vertex tβiumi“1 such that βi “ 1 for some i, there is always a lateral
edge pointing to the left (to the sibling if βn “ 1, or to the sibling of some ancestor if βn “ ´1).
Denote this collection of edges by EZ ; it is easy to see that there are no cycles.

We can define an MGWBP and a regular family A with GA “ pZ,EZq in a similar manner as
Example 2; however we do not provide an explicit construction here. Note that the graph pZ,EZq
satisfies the assumptions of Lemma 5.5, hence such an MGWBP and regular family A must exist.
For simplicity, below we will assume that, as in Example 2, the typeset in our MGWBP is X “ Z
and the regular family is A “ X (the set of singletons).

In this example the set of primitive subsets is PA “ X , i.e., the set of singletons. This is because,
by construction, for any x, y P A, either x ñ y or y ñ x. To identify CA note that there is a
one-to-one correspondence between ascending chains and rays starting from the root represented
by sequences tαiu8i“1. The representative of the ascending chain is the set of vertices that lie to the
right of its corresponding ray. More formally, for each ray tαiu8i“1, we let

hptαiu
8
i“1q :“ tHu Y

8
ď

n“1

#

tβiu
n
i“1 :

n
ÿ

i“1

3´iβi ě
n
ÿ

i“1

3´iαi

+

denote the set of vertices to the right of the ray tαiu8i“1. The set of representatives of ascending
chains is then

CA “ thptαiu
8
i“1q : tαiu

8
i“1 P t´1,`1u8u . (6.4)
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Note that the set CA is uncountable because there are uncountably many rays. Here, we have

JA “ tpI, Jq P pPA ˆ CAq : I X J “ H, pJzI`q` “ Ju

“ tpI,Hq : I P PAu Y tpH, Jq : J P CAu. (6.5)

To understand Equation (6.5), note that if I ” txu P PA and J P CA, then either x P J , in
which case I X J ‰ H, or x R J , in which case if y P J then tyu ñ txu, thus J Ď I` and
therefore pJzI`q` “ H; thus if I X J “ H and pJzI`q` “ J then either I “ H or J “ H. By
Proposition 5.11, the set of distinct extinction probability vectors is then given by

Ext “ ExtpAq “ tqpIq : I P PA Y CAu.

Because CA is uncountable, by Theorem 5.12(v), Ext contains uncountably many distinct elements.
In addition, because X , and therefore PA, is countable, we have thus constructed an example in
which |PA| ă |ExtpAq|. Note that in this example the inequality in Equation (5.5) is strict.

7. Open questions

The results in this paper motivate several open questions. Here we consider a very general
setting, in which we observe a wide variety of behaviours; for instance, in Example 1, there can be
any number of distinct extinction probability vectors. We can then ask whether we observe similarly
rich behaviour in more homogeneous settings, such as transitive or quasi-transitive processes. We
believe that the answer is negative. In particular, for quasi-transitive BRWs on a graph G, like
those considered in Stacey (2003) (see also the examples in Candellero and Roberts (2015)), we
conjecture that either (i) |Ext| “ 1, in which case q “ q̃ “ 1, (ii) |Ext| “ 2, in which case
q “ q̃ ă 1 or q ă q̃ “ 1, or (iii) |Ext| is uncountable, such as in Bertacchi and Zucca (2020,
Section 3.1). Furthermore, we conjecture that, if the process is quasi-transitive, then (iii) can only
occur when it is nonamenable (see Bertacchi and Zucca (2014, Section 2.1) for the definition). Note
that, without the quasi-transitivity assumption, the MGWBP can exhibit an uncountable number of
extinction probability vectors even if both the underlying graph and the process itself are amenable
(see Example 1 with r ą 1). We believe that similar results also hold for irreducible BRWs in an
i.i.d. random environment such as those considered in Comets and Popov (2007); Machado and
Popov (2003).

Moreover, the exact location of the extinction probability vectors qpAq (different from q and
q̃) in the set of fixed points S is yet to be identified. In Braunsteins and Hautphenne (2020), the
authors conjecture that the “corners" of the set S correspond to extinction probability vectors qpAq;
see Braunsteins and Hautphenne (2020, Conjecture 5.1) for a precise statement. In addition, it has
been shown that S can contain (uncountably many) fixed points which are not extinction probability
vectors; see for instance Bertacchi and Zucca (2017, Example 3.6). Under particular assumptions
(i.e. in an irreducible LHBP), it has been shown that there is a continuum of fixed points between
q and q̃ and there are no fixed points between q̃ and 1; see Braunsteins and Hautphenne (2019,
Theorem 1). Here we prove that there are no fixed points between q̃ and 1 in the general irreducible
setting (Corollary 3.2); we believe that, like in the setting of Braunsteins and Hautphenne (2019),
there is a continuum of fixed points between q and q̃, however this is yet to be established rigorously.
Another closely related question is the following: is it possible to have |Ext| ă |S| ă `8?

Finally, here we focused on the distinct elements of ExtpAq, where A is a regular family. In
Example 1, we showed that Ext”ExtpAq, and therefore the study of Ext could be reduced to that
of ExtpAq without losing any information. More generally we may ask under which conditions there
exists a regular family A such that Ext”ExtpAq, and if one exists, can it be described?
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8. Proofs

Proof of Proposition 2.1: The usual way to identify the maximal and minimal fixed points of a
continuous nondecreasing function in a (partially ordered) set is to generate iteratively two sequences
starting from the maximal and minimal elements of the set (if available).

More precisely, observe that if we let pGpA,n`1qpsq “ pGpA,nqp pGpAqpsqq, then pG
pA,nq
x p1q is the

probability that, given Z0 “ ex, no type y P A individual has been born into the population before
generation n. We then have “ pG

pA,nq
x p1q Œ q

p0q
x pAq as n Ñ `8. The fact that qp0qpAq is the

unique componentwise maximal element of the set pSpAq then follows from the fact that pGpAqpsq
(and therefore its iterates) are increasing in s.

Similarly, pGpA,nqx p0q “ q
pnq
x pX , Aq, and the limit of this nondecreasing sequence (namely qpX , Aq)

is necessarily the minimal element of pSpAq. �

Proof of Theorem 3.1: (i). Let us fix s such that s ď Gpsq and suppose sx ă 1 for some x P X .
Define rGpxq : r0, 1sX Ñ r0, 1sX such that

rGpxqy puq “

#

ux, y “ x,

Gypuq, otherwise.

Observe that rGpxqp¨q is the generating function of the original process modified so that all type-x
individuals are frozen (at each generation they produce a single copy of themselves). By induction,
for any n ě 0, we have s ď rGpx,nqpsq, which implies s ď limnÑ8

rGpx,nqpsq. By monotonicity of
Gp¨q, this leads to Gpsq ď GplimnÑ8

rGpx,nqpsqq, which implies

s ď Gp lim
nÑ8

rGpx,nqpsqq. (8.1)

Moreover, the function

φpsxq : “ Gxp lim
nÑ8

rGpx,nqp1, . . . , 1, sx, 1, 1, . . . qq (8.2)

is the (possibly defective) generating function of the asymptotic number of frozen type-x individuals
in the modified process when we start with a single type-x individual in generation 0, and we freeze
all type-x individuals after generation 1. If we let this asymptotic number of frozen individuals be
Y1 and then repeat these steps, with the initial number of type-x individuals now being Y1, to obtain
Y2 and so on, then we obtain a (possibly defective) Galton-Watson process tYkukě0. This process is
referred to as the embedded type-x process, and it is known that the probability of extinction in tYku
is qxptxuq (see for instance the proof of Zucca (2011, Theorem 4.1)). In addition, because tZnu is
non-singular, tYku is non-singular, which means that for any ε ą 0 and N ă 8 there exists K such
that

1´ qxptxuq ´ ε ď PpYk ą Nq ď 1´ qxptxuq ` ε, (8.3)
for all k ě K. Combining (8.1), (8.2) and (8.3), we then have sx ď φpsxq, and for all k ě K,

sx ď φ ˝ . . . ˝ φ
loooomoooon

k

psxq “ E
`

sYkx
˘

ď psxq
N p1´ qxptxuq ` εq ` qxptxuq ` ε.

For any η ą 0 we may then choose ε ă η{2 and N large enough so that psxqN ă η{2. For these
values of ε and N we can then choose k sufficiently large so that (8.3) holds. Taking η Ó 0 we then
obtain sx ď qxptxuq.

(ii). Assume y Ñ x; we need to show that if sx ă 1 then sy ă 1, because in that case, (ii) follows
from (i). Since y Ñ x, there exists n ě 1 such that PypZn,x ą 0q ą 0. Consequently,

sy “ EypsZnq ď Eyps
Zn,x
x q ď PypZn,x “ 0q ` sx PypZn,x ą 0q ă 1,
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where the equality follows from s “ Gpsq “ G ˝ . . . ˝G
looooomooooon

n

psq “ pExpsZnqqxPX for any n ě 1.

(iii). In the irreducible case y Ñ x for all y P X . Whence s ‰ 1 implies sx ă 1 for all x P X .
Again, the first part of the theorem yields the claim because rqx “ qxptxuq (see Braunsteins and
Hautphenne (2020, Corollary 4.1)). �

Proof of Corollary 3.2: We only prove the equality Ext “ S since the rest follows trivially from
Theorem 3.1. If s “ 1 then there is nothing to prove; otherwise consider the (non-empty) set
A :“ tx P X : sx ă 1u; we prove that s “ qpAq (which shows that any fixed point is an extinction
probability vector). First, by the definition of A and the same argument as in the proof of Theo-
rem 3.1(ii), there are no y P Ac and x P A such that y Ñ x. Therefore qypAq “ 1 “ sy for all y P Ac.
On the other hand, if x P A then qpAq ď qptxuq; moreover by Theorem 3.1(i), qx ď sx ď qxptxuq,
and we also have qx ď qxpAq ď qxptxuq for all x P A, which yields the conclusion. �

Proof of Theorem 4.1: We start by proving the equivalence between (i) and (iii). Theorem 2.4 in
Bertacchi and Zucca (2020) implies that, for every fixed point s, qxpBq ą sx for some x P X if and
only if qp0qy pBq ą sy for some y P X . It is enough to take s “ qpAq.

The fact that (iii) implies (iv) is trivial, since the probability of survival in A is strictly larger
than the probability of visiting B. The facts that (iv) implies (v) and that (vi) implies (i) are also
straightforward.

We now prove that (v) implies (vi). Suppose PxpSpAq X EpBqq ą 0 and fix x as the type of the
initial individual. Let Fn denote the history of the process up to generation n and observe that

MnpAq :“ PxpEpAq|Fnq “ PxpEpAq|Znq “ qpAqZn

MnpBq :“ PxpEpBq|Fnq “ PxpEpBq|Znq “ qpBqZn

are martingales. By Doob’s martingale convergence theorem MnpAq Ñ PxpEpAq|F8q “ 1EpAq as
nÑ8, with the same holding for extinction in B. Thus, by assumption

PxpSpAq X EpBqq “ Px
ˆ

lim
nÑ8

qpAqZn “ 0, lim
nÑ8

qpBqZn “ 1

˙

ą 0. (8.4)

Now, suppose by contradiction that there exists c ą 0 such that

1´ qipBq ě cp1´ qipAqq (8.5)

uniformly in i P X . Then,

qpBqZn “
ź

iPX
p1´ p1´ qipBqqq

Zn,i

ď
ź

iPX
p1´ cp1´ qipAqqq

Zn,i

ď exp

"

´ c
ÿ

iPX
Zn,ip1´ qipAqq

*

, (8.6)

where to obtain (8.6) we use the fact that 1´y ď e´y. In addition, using the inequality 1´
ś

iPI αi ď
ř

iPIp1´αiq (where I is countable and αi P r0, 1s for all i P I) and the subadditivity of the probability
measure,

1´ qpAqZn ď
ÿ

iPX
p1´ qipAq

Zn,iq ď
ÿ

iPX
Zn,ip1´ qipAqq

so that
qpAqZn ě 1´

ÿ

iPX
Zn,ip1´ qipAqq. (8.7)
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Combining (8.6) and (8.7) we obtain

Px
ˆ

lim
nÑ8

qpAqZn “ 0, lim
nÑ8

qpBqZn “ 1

˙

ď Px
ˆ

lim inf
nÑ8

ÿ

iPX
Zn,ip1´ qipAqq ě 1, lim

nÑ8

ÿ

iPX
Zn,ip1´ qipAqq “ 0

˙

“ 0,

which contradicts (8.4). Thus, the assertion in (8.5) cannot hold.
The equivalence between (i) and (ii) follows from the equality SpAq X EpBq “ SpAzBq X EpBq

and the fact that (v) is equivalent to (i) (apply (v) with AzB instead of A).
Finally, we prove that (iv) is equivalent to (vii). Assume A “ X . Since ŜpBq is non-empty,

by Proposition 2.1 it is not a singleton if and only if qpX , Bq ă qp0qpBq. Note that qp0qx pBq ´
qxpX , Bq “ PxpN pBqXSpX qq whence qpX , Bq ă qp0qpBq if and only if there exists x P X such that
PxpN pBq X SpX qq ą 0, that is, if and only if (iv) holds. �

Proof of Corollary 4.2: If supxPX qx “ 1 there is nothing to prove. Otherwise, suppose supxPX qx ă
1; then by Theorem 4.1 (vi) (set A “ X and B “ A), we have

inf
xPX
p1´ qxpAqq ď inf

xPX

1´ qxpAq

1´ qx
“ 0,

which yields the claim. �

Proof of Theorem 5.4: The equivalence between (ii) and (iii) follows from Corollary 5.1.
Suppose that (C4) holds. Let us prove that (i) implies (ii). Since for all i P I we have Ai ñ Aj

for some j P J , then Ai ñ
Ť

jPJ Aj for all i P I which, by (C4), implies
Ť

iPI Ai ñ
Ť

jPJ Aj . By
exchanging the role of I and J we prove the claim. This implies that the map rIs„ ÞÑ q

`
Ť

iPI Ai
˘

is well defined and, if (C1) holds, it is a surjective map onto ExtpAq.
Now assume (C2) and (C5). We prove that (ii) implies (i). Suppose that either I or J are

empty; then (i) holds if and only if they are both empty. The same holds for (iii) and (ii) because
q
`
Ť

iPI Ai
˘

“ 1 if and only if I “ H. We can assume henceforth I, J ‰ H. Suppose, by contradic-
tion, that there exists i P I such that Ai œ Aj for all j P J (if there exists j P J such that Aj œ Ai
for all i P I we proceed analogously): in this case J Ď Ji and, by (C5), Ai œ

Ť

jPJ Aj . This implies
Ť

iPI Ai œ
Ť

jPJ Aj and yields the claim. Moreover, it implies that q
`
Ť

iPI Ai
˘

ÞÑ rIs„ is a well
defined surjective map from a subset of ExtpAq onto 2KA{„. �

Proof of Lemma 5.5: Fix a family of probability distributions triuiPZ , where ri “ trijujPZ such that
rii “ 1{2 for all i P Z and, when i ‰ j, rij ą 0 if and only if pi, jq P EZ . Consider a probability
generating function φpsq such that φ1p1q ą 2.

We define a MGWBP on Z by the following reproduction rules: a particle living at i produces
a random number of offspring according to the distribution with probability generating function
φ; each newborn particle is placed at random independently according to the distribution ri. The
offspring generating function of this MGWBP is Gipsq :“ φp

ř

j rijsjq. Define the family A as the
collection of singletons Ai :“ tiu for i P Z.

Clearly local survival in i implies survival in j if and only if there is a path from i to j in pZ,EZq.
Let us prove regularity. Condition pC1q is trivial and, since there are no closed paths in pZ,EZq,
then Condition pC3q follows.

The probability of local extinction starting from i is the smallest nonnegative fixed point of
the generating function ψpsq :“ Gipsq|si“s,sj“1,j‰i; indeed, every child placed outside i cannot
contribute to the local survival (because there are no closed paths of length strictly larger than 1).
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This means that each particle in the progeny has the same (positive) probability 1´β of generating
a population which survives locally and this implies pC2q.

Let us pick I Ď Z. If the process survives in
Ť

iPI Ai then there are infinitely many descendants,
and by a Borel-Cantelli argument, almost surely, at least one of them (actually an infinite number
of them) will generate a progeny which survives locally. Thus, for every fixed I, survival in

Ť

iPI Ai
implies survival in Aj for some j P I, that is, PxpSp

Ť

iPI Aiqz
Ť

iPI SpAiqq “ 0 for all x P X . By
taking I “ IA we have that PxpSp

Ť

iPIA
Aiqz

Ť

iPIA
SpAiqq “ 0 for all x P X ; moreover, from the

definition of IA, we have Pxp
Ť

iPIA
SpAiqzSpAqq “ 0 for all x P X , whence PxpSp

Ť

iPIA
AiqzSpAqq “ 0

for all x P X . This proves that Condition (C4) holds.
To prove pC5q it is enough to observe that Ai œ Aj if and only if there is no path from i to j in

pZ,EZq; thus, if the process starts from i, then the probability of visiting
Ť

jPJi
Aj “ Ji is 0, while

the probability of survival in Ai is strictly positive. �

Proof of Lemma 5.8: Recall that, by definition, rIds„ “ rIM s„, that is, Id „ IM .
(i). If Ic “ H then I “ Id and rIs„ “ rIds„ “ rIM s„. Conversely, if I „ IM then for all i P I

there exists j P IM such that Ai ñ Aj , thus i P Id. This implies that IC “ H.
(ii). The claim follows from the chain of equalities rIds„ “ rIM s„ “ rJM s„ “ rJds„.
(iii). If IM “ JM then Id „ Jd by (ii). Conversely, since rIM s„ “ rIds„ “ rJds„ “ rJM s„, IM

and JM are primitive subsets, and (C3) holds, we have rIM s„ “ rJM s„, which implies IM “ JM
because these sets are primitive.

(iv). Let us prove that I „ J implies IM “ JM and Ic “ Jc. Let I „ J and i P IM . If j P J such
that Ai ñ Aj , there exists i1 P I such that Aj ñ Ai1 , thus Ai ñ Ai1 whence i “ i1 “ j (from the
definition of IM and from (C3)). Since by the equivalence there exists such a j P J , we have that i
is an element of J which does not imply any other element of J , that is, i P JM . Thus IM Ď JM ;
by exchanging the role of I and J , we have IM “ JM . For all i P Ic, there exists j P J such that
Ai ñ Aj and, by the definition of Ic, there is no l P IM such that Aj ñ Al. Since IM “ JM then
j P Jc. By exchanging the role of I and J we have Ic „ Jc.

Let us now prove the opposite implication. Let i P I. If i P IM “ JM then i P J . If i P Id then,
since Id „ Jd, Ai ñ Aj for some j P Jd Ď J , whence Ai ñ Aj for some j P J . By exchanging the
role of I and J , we have that for all j P J there exists i P I such that Aj ñ Ai. This proves that
I „ J .

(v). Note that, from (iv), if I „ J then Ic “ H if and only if Jd “ H. Whence, if J is primitive
and I „ J we have H “ Jc “ Ic. The converse follows from (i) by taking I :“ JM .

(vi). We prove, by induction, that there is a sequence of pairwise distinct elements tinunPN such
that, for all n P N, in P Ic and Ain ñ Ain`1 . Since Ic ‰ H there exists i0 P Ic. Suppose that we
have n ` 1 distinct elements i0, i1, . . . , in P Ic satisfying the above relation. Since in R IM there
exists in`1 ‰ in in I such that Ain ñ Ain`1 . By (C3), in`1 ‰ ij for all j ă n. If j P I such that
Ain`1 ñ Aj then Ain ñ Aj whence j ‰ IM since in P Ic; this implies that in`1 P Ic.

(vii). It follows easily from (iii) and (iv), from the decomposition I “ Id Y Ic and from the basic
properties discussed above, pJdqM “ pJM qM “ JM , pJdqd “ Jd, pJM qc “ pJdqc “ pJcqM “ pJcqd “
H which hold for all J Ď KA.
Suppose that J „ I and consider the decomposition J “ Jd Y Jc. Observe that, from (iv) and
the basic properties discussed above, pJdqM “ JM “ IM , pJdqc “ pJcqM “ pJcqd “ H. By taking
H :“ Jd and W :“ Jc we prove that J belong to the set in the right-hand-side.
Conversely, let J “ H YW belong to the set in the right-hand-side, and let us prove that J „ I.
If i P Id then Ai ñ Aj for some j P IM “ HM Ď J then Ai ñ Aj where j P J . If i P Ic then, by
hypotheses there exists j PWc Ď J such that Ai ñ Aj . If j P Jd �

Proof of Proposition 5.10: Assume (C3). We make use of Lemma 5.8 to show that the map
gAprIs„q “ pIM , pIcq

`q is a bijection from 2KA{„ onto IA. The map is well defined and injec-
tive by Lemma 5.8(iv); indeed, note that Ic „ Ĩc if and only if pIcq` “ pĨcq`. By the definition of
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Ic it is clear that for all i P IM and j P Ic we have Ai ø Aj , whence the image of the map is a
subset of IA (take J “ pIcq` and J̄ “ Ic in Equation (5.2)).

We are left to prove that the map is surjective. Note that IA can be equivalently defined as

IA :“ tpI, Jq P pPA ˆ CAq : DJ̄ „ J,@i P I, @j P J̄ , Ai ø Aju. (8.8)

Let pI, Jq P IA and let J̄ „ J such that @i P I,@j P J̄ , Ai ø Aj . If we define Ī :“ IYJ̄ we have that
ĪM “ Īd “ I and Īc “ ĪzĪd “ J̄ ; clearly pJ̄q` “ J since J̄ „ J . Then gAprĪs„q “ pI, pJ̄q`q “ pI, Jq,
whence the map is surjective and (i) is proved.

When CA “ tHu then IA “ PA ˆ tHu. The claim (ii) follows by the equality fA “ g´1A ˝ h,
where h is the natural bijection from PA onto PA ˆ tHu.

�

The proofs of Theorem 5.12 and Corollary 5.13 require the following lemma.

Lemma 8.1. Let A “ tA1, A2, . . . , AκAu with κA ď `8.
(i) κA ă 8 if and only if PA is finite.
(ii) If κA “ 8, then the following statements are equivalent:

(1) PA is uncountable;
(2) there exists an infinite, primitive I;
(3) there exists a family A1 Ď A such that A1i ø A1j for all A1i, A

1
j P A1;

Proof of Lemma 8.1: (i). Clearly if κA ă `8 is finite then PA is finite as well. Conversely, since
every singleton tiu, where i P KA, is a primitive set, the reverse implication holds.

(ii). If I Ď KA is primitive and infinite, then it must be countably infinite; in this case, every
subset of I is primitive, and the collection of all subsets of I is uncountable, thus we have (2)ñ (1).
To prove (1)ñ (2), it is enough to note that tI Ď KA : I primitive and finiteu Ď

Ť8
i“0K

i
A which is

a countably infinite set (provided κA ‰ 0). The implication (2)ñ (3) is straightforward if we take
A1 :“ tAi : i P Iu. To prove (3)ñ (2), just take I :“ ti P KA : Ai P A1u. �

Proof of Theorem 5.12: (i). Clearly if A is finite then ΣpAq is finite and ExtpAq is finite as well
(there is no need for (C3) to hold here). Conversely, if ExtpAq is finite, then by Theorem 5.4 (which
holds without any assumptions on singletons), we have that 2KA{„ is finite. By Lemma 5.7, PA is
finite as well. By Lemma 8.1(i) κA is finite.

(ii). We observed that, if (C2), (C3) and (C5) hold, then by Lemma 5.7 and Theorem 5.4, there
is an injective map from PA into the set ExtpAq, and this yields Equation (5.5). By regularity,
according to Theorem 5.4, |ExtpAq| “ |2KA{„|. If, in addition there are no ascending chains, by
Proposition 5.10, we have equality in Equation (5.5).

(iii). Suppose ExtpAq is countably infinite which, as shown above, implies κA “ 8. By
Lemma 8.1(ii) and Equation (5.5), an infinite primitive I Ď KA does not exist. Consider the
graph GA on KA; let I0 “ H and for j ě 1, define Ij recursively so that Ij is the set of vertices
with out-degree zero in the induced graph GArKAzp

Ťj´1
i“0 Iiqs. By construction, EArIjs “ H for

all j, thus there cannot exist j such that |Ij | “ 8, since Ij is primitive. In that case, either there
exists j0 ě 1 such that |Ij | “ 0 for all j ě j0, or 0 ă |Ij | ă 8 for all j ě 1. In the former
case, because κA “ 8 and the graph contains no cycles in GA, there must exist an infinite path
Ai1 ñ Ai2 ñ Ai3 ñ . . . . In the latter case, since for all l P In`1 there exists r P In such that
Al ñ Ar, by transitivity we have that for all l P

Ť

jąi Ij there exists r P Ii such that Al ñ Ar. Since
0 ă |In| ă `8 for all n and the sets tInun are pairwise disjoint, we have that

ˇ

ˇ

Ť

jąn Ij
ˇ

ˇ “ `8 for
all n. Besides, we have that for all n, there exists i P In such that di :“ |tr P

Ť

jąn Ij : Ar ñ Aiu|
is infinite. Clearly, given any in P In such that din “ `8, there exists in`1 P In`1 such that
din`1 “ `8 and Ain`1 ñ Ain . It is possible to construct iteratively a sequence tinun such that
in P In, din “ `8, and Ain`1 ñ Ain . In both cases the family A1 “ tA11, A12, . . .u, where A1n :“ Ain ,
satisfies (C2), (C3) and (C5). Moreover it is regular if A is regular.
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(iv) and (v). According to Proposition 5.10 and Theorem 5.4, regularity implies that ExtpAq,
2A{„, and IA have the same number of (distinct) elements. By Equation (5.2) and the remarks
thereafter,

maxp|PA|, |CA|q ď |IA| ď |PA ˆ CA|.

By recalling that |PA| ě 1 and |CA| ě 1, it is easy to show that maxp|PA|, |CA|q and |PA ˆ CA| are
simultaneously finite, simultaneously countably infinite, or simultaneously uncountable. Whence,
the above double inequality yields the following table,

|PA| ă 8 PA countably 8 PA uncountable
|CA| ă 8 |IA| ă 8 IA countably 8 IA uncountable
CA countably 8 IA countably 8 IA countably 8 IA uncountable
CA uncountable IA uncountable IA uncountable IA uncountable,

and this proves the claims.
�

Proof of Corollary 5.13: Let A “ tA1, A2, A3, . . .u. By assumption, for all i ě 1, Ai œ X zAi, so
Ai œ Aj for j ‰ i. This implies that A is regular and I “ N is a primitive set. Therefore, by
Lemma 8.1(ii) and Theorem 5.12(i), ExtpAq is uncountable. �

Proof of Proposition 6.1: Assume r ď 1 (cases (i) and (ii)). We consider the family A “ tL0,L1,
L2, . . .u and start by showing that for any i ě 1, Li´1 ð Li, that is, survival in Li implies survival
in Li´1, regardless the initial type. This implies qpLi´1q ď qpLiq.

Observe that, with probability one, an initial pi, jq-type individual has an infinite line of descent
made of all pi, kq-types for k ě j. Let ξk denote the geometric number of pi ´ 1, kq-type offspring
born to the pi, kq-type individual in this line of descent. We have

ÿ

kěj

P rξk ě 1s “
ÿ

kěj

1

1` rk´1
“ 8;

because this sum is infinite for all j ě 0, by the Borel-Cantelli Lemma, if the process ever reaches
Li, then with probability 1, there are infinitely many individuals in Li who have at least one child
in Li´1; thus, survival in Li implies survival in Li´1.

We note that global survival implies survival in
Ť

0ďiď` Li for some ` ě 1; in particular, global
survival implies survival in L1, and therefore in L0. This leads to q “ qpL0q “ qpL1q.

Next, we show that the study of Ext can be reduced to the study of ExtpAq: in other words, for
any subset A Ď X , if ιpAq “ 8 then qpAq “ q̃, while if ιpAq ă 8 then qpAq “ qpLιpAqq.

We first assume that ιpAq “ 8. If |A| ă 8, then clearly qpAq “ q̃ since the process is irreducible,
so we take |A| “ 8. In this case survival in A implies survival in P0. To see why, suppose there
is a positive chance of survival in A. If, by contradiction, the process became extinct in P0 there
would exist a finite maximum level K ever reached by the process. Since ιpAq “ 8, we would have
|AXp

ŤK
i“0 Liq| ă 8, thus survival in A and extinction in P0 would imply that the process survives

locally. However, by irreducibility, local survival implies survival in P0 which yields a contradiction.
Hence qpAq ě qpP0q. To show q̃ ” qpp0, 0qq “ qpP0q first observe that, by Theorem 3.1(iii),
q̃ ě qpP0q. On the other hand, extinction in p0, 0q implies that a finite number of particles will ever
reach p0, 0q, and since each of them reaches a finite level in P0 almost surely, there is almost sure
extinction in P0. When ιpAq “ 8 we therefore have q̃ ě qpAq ě qpP0q “ q̃.

We now assume 1 ď ιpAq ă 8. First, observe that survival in Li implies survival in A whenever
|Li X A| “ 8; for instance when i “ ιpAq. Next, we show that survival in A implies survival in
LιpAq; by definition of LιpAq, A only contains a finite number of types in the levels below LιpAq,
namely the types in A1 :“ AXYiăιpAqLi. Therefore, survival in A implies survival in at least one of
A1 and AzA1. By the argument above, survival in A1 implies local survival, which implies survival
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in LιpAq. On the other hand, survival in AzA1 also implies survival in LιpAq because survival in L`
implies survival in L`´1 for all ` ě 1 when r ď 1. So qpAq “ qpLιpAqq.

Finally, if ιpAq “ 0, then extinction in A implies extinction in L1, and therefore extinction in
L0; indeed, by the above argument, survival in L1 implies that infinitely many individuals in L1

will have at least one child in AX L0. On the other hand, here A1 “ H, and survival in A implies
survival in L0 for the same reason as above. So qpAq “ qpL0q.

Thus, for r ď 1, we have at most a countable number of distinct extinction probability vectors.
Assume r “ 1 (case (ii)). We show that when r “ 1, the family AztL0u is regular, and due

to the linear structure of GA, the edgeless subgraphs are precisely the countably infinite singletons
(individual levels). It is enough to prove that for any i ě 1, Li œ Li`1, that is, there exists x P X
such that qxpLiq ă qxpLi`1q. This implies qpLiq ă qpLi`1q. It suffices to show that, starting from x,
there is a positive chance of survival in Li without ever reaching Li`1. We consider a pi, k` 1q-type
individual (k ě 0) and note that the expected number of its descendants that eventually reach t
p0, k ` jq when all particles are frozen as soon as they reach L0, is

`

i`j´1
j´1

˘

. Each frozen particle at
p0, k` jq independently has probability pk`j of having a descendant that reaches p0, 0q; we refreeze
the particles reaching p0, 0q. Thus, the expected number of frozen p0, 0q-type descendants of the
initial pi, k ` 1q-type individual is given by

pk
8
ÿ

j“1

ˆ

i` j ´ 1

j ´ 1

˙

pj ă 8

when p ă 1. Since the sum is finite, we can select k such that the initial type x “ pi, k ` 1q has
an expected number of frozen p0, 0q-type descendants strictly less than 1. By Markov’s inequality
there is a positive chance that the original particle has no p0, 0q-type descendants, and hence has
no descendants in Li`1. The family AztL0u satisfies the conditions of Theorem 5.12(v).

Assume r ă 1 (case (i)). For any i ě 1, we show that if ri ą p, then qpLiq ă qpLi`1q, while if
ri ď p then qpLiq “ q̃; this implies that Li ô Lj if and only if ri ď p and rj ď p. Hence the family
A does not satisfy (C3), but the subfamily A1 :“ tL1, . . . ,Li˚u does and it is regular.

Assume first that ri ą p. We need to show that there exists x P X such that qxpLiq ă qxpLi`1q.
Following similar arguments as in case (ii), it suffices to show that the expected number of frozen
p0, 0q-type descendants of an initial pi, 1q-type individual is finite. This expected number is bounded
above by

8
ÿ

j“1

ˆ

i` j ´ 1

j ´ 1

˙

pr´j`1qi pj ,

which is finite when ri ą p.
Finally, assume ri ď p. Because qpLiq ď q̃, it remains to show that q̃ ď qpLiq, or equivalently,

that survival in Li implies local survival. Without loss of generality, we consider an initial pi, 1q-type
individual and we show that, with probability 1, it has an infinite number of p0, 0q-type descendants.
Indeed, with probability 1, the initial individual has an infinite line of descendance made of type
tpi, jqujě1 individuals. The probability that any pi, jq-type individual in this line of descendants has
at least one (frozen) p0, 0q-type descendant is bounded from below by the probability of having at
least one descendant along the direct path from pi, jq to p0, jq in Pj and then along the direct path
from p0, jq to p0, 0q in L0. This probability is 1´G

piq
j p1´ p

jq, where Gpiqj psq is the composition of i
geometric probability generating functions with mean r´j`1 and satisfies

1

1´G
piq
j psq

“
prj´1qi

1´ s
`
`

1` rj´1 ` prj´1q2 . . .` prj´1qi´1
˘

.
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Because
ÿ

jě1

1´G
piq
j p1´ p

jq “
ÿ

jě1

˜

r´1
ˆ

ri

p

˙j

`

ˆ

1´ priqj´1

1´ rj´1

˙

¸´1

“ 8,

since the general term of the series diverges when ri ď p, by the Borel-Cantelli lemma, with
probability 1, the pi, 1q-type individual has infinitely many (frozen) p0, 0q-type descendants. By
extension the same is true when we start with any pi, jq-type individual. This shows that survival
in Li implies local survival. In this case ΣpAq “ ΣptLi : 1 ď i ď i˚u and Theorem 5.12(i) applies.

Assume r ą 1 (case (iii)). We show that for each i, j ě 1,

Ppi,jqpSpLiq X EpX zLiqq ą 0. (8.9)

Corollary 5.13 then implies that there are uncountably many distinct extinction probability vectors.
Recall that, with probability one, an initial pi, jq-type individual has an infinite line of descent

made of types pi, kq for k ą j, and that ξk denotes the geometric number of pi´ 1, kq-type offspring
born to the pi, kq-type individual in this line of descent. By direct computation,

Ppξk “ 0 @k ě jq “
`8
ź

k“j

´

1´
r´k`1

1` r´k`1

¯

ą 0

since
ř`8
k“j r

´k`1 ă `8. Thus, for all j ě 1, there is positive probability that the descendants of
pi, jq never reach Li´1, and therefore (8.9) holds.

�

Proof of Proposition 6.2: A similar argument as in the proof of Proposition 6.1 (r ą 1) can be used
to show that L1i ø L1j for all i ‰ j.

Then, for any I Ď N with |I| “ 8 we have qp
Ť

iPI L1iq “ qpX q, and for any |I| ă 8 we have
qp
Ť

iPI L1iq “ qp
Ť

iPI Liq; since the number of finite subsets of N0 is countably infinite, this proves
that ExtpA1q is countably infinite. �

Appendix A. Numerical computation of qpAq

We describe an iterative method to compute the extinction probability vector qpAq for any subset
A Ď X in an irreducible MGWBP. Since X is countably infinite, we first relabel the types in A as
1, 2, 3, 4, . . ., and the types in X zA as 11, 21, 31, 41, . . .. For k, `1 ě 1, we then define qpk,`

1qpAq as the
global extinction probability vector of the finite-type modified branching process where the types
in A larger than k are immortal and the types in X zA larger than `1 are sterile. More precisely, the
offspring generating function Ḡpk,`1qpsq of the modified process is such that

Ḡ
pk,`1q
i psq “ Gipsq for all i P A, i ă k,

Ḡ
pk,`1q
i1 psq “ Gi1psq for all i1 P X zA, i1 ă `1,

Ḡ
pk,`1q
i psq “ 0 for all i P A, i ě k,

Ḡ
pk,`1q
i1 psq “ 1 for all i1 P X zA, i1 ě `1,

and qpk,`
1qpAq is the minimal fixed-point of the (finite) system s “ Ḡpk,`1qpsq, obtained by functional

iteration.

Proposition A.1. If the MGWBP is irreducible then

lim
kÑ8

lim
`1Ñ8

qpk,`
1qpAq “ qpAq.

The proof follows the same arguments as that of Theorem 4.3 in Braunsteins and Hautphenne
(2020). Note that the convergence rate of the sequence tqpk,`1qpAquk,`1ě1 depends on the way the
types are relabelled. In addition, it is often more efficient to let k “ `1 and let them increase to
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infinity together; however, we must be careful since that does not always guarantee convergence, as
highlighted in Braunsteins and Hautphenne (2020). The computational method can be optimised
depending on the example under consideration.
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