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Abstract. We consider Galton—Watson branching processes with countable typeset X. We study
the vectors gq(A) = (qz(A))zex recording the conditional probabilities of extinction in subsets of
types A € X, given that the type of the initial individual is . We first investigate the location
of the vectors q(A) in the set of fixed points of the progeny generating vector and prove that
q:({z}) is larger than or equal to the xth entry of any fixed point, whenever it is different from
1. Next, we present equivalent conditions for ¢,(A) < ¢, (B) for any initial type z and A, B € X.
Finally, we develop a general framework to characterise all distinct extinction probability vectors,
and thereby to determine whether there are finitely many, countably many, or uncountably many
distinct vectors. We illustrate our results with examples, and conclude with open questions.
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1. Introduction

Branching processes are models for populations where independent individuals reproduce and die.
If all individuals have the same reproduction law and live in a single location, then the population
can be modelled with a single-type branching process. If individuals have specific characteris-
tics (i.e. their location, or in general their “type") which impact the evolution of the population,
then multitype branching processes are suitable models. Here we focus on (discrete-time) multi-
type Galton—Watson branching processes (MGWBPs) with countably many types (where countable
includes the finite case as well). These processes arise naturally as stochastic models for various
biological populations (see for instance Kimmel and Axelrod (2002, Chapter 7)). They can alter-
natively be interpreted as branching random walks (BRWs) on an infinite graph where the types
correspond to the vertices of the graph (see for instance Shi (2015) and references therein).

One of the primary quantities of interest in a branching process is the probability that the
population eventually becomes empty or extinct. Extinction in MGWBPs can be of the whole
population (global extinction), in all finite subsets of types (partial extinction), or more generally,
in any fixed subset of types A (local extinction in A). To be precise, let X denote the (countable)
typeset, and let Z,, = (Z,,4)zex, Where Z, , records the number of type-z individuals alive in
generation n > 0. For A € X, let £(A) be the event that the process {Z,},>0 becomes extinct in
A, that is, the event that lim, o Y c4 Znz = 0. Let q(A) = (¢z(A))zex be a vector whose xth
entry records the conditional probability of local extinction in A, given that the population starts
with a single type-z individual, that is,

¢x(A) := P(E(A) [ Zo = e.),

where e, is the vector with entry = equal to 1 and all other entries equal to 0. In particular, note
that () = 1. We let g := q(X) be the vector containing the conditional probabilities of global
extinction, and we let § = (G, )zex be the vector containing the conditional probabilities of partial

extinction, where
Gy = IP’( N €@ ’ Zo — em>.
A:|Al<o

Several authors have studied properties of g and §; see for instance Bertacchi and Zucca (2008);
Braunsteins et al. (2019); Gantert and Miiller (2006); Spataru (1989) and most other references
herein.
If the process is irreducible, meaning that an individual of any given type may have a descendant

of any other type, then

e when X is finite, ¢ = q(A) = @ for all non-empty A € X, and

e when X is countably infinite and A is finite, § = q(A) (see for instance Braunsteins and

Hautphenne (2020, Corollary 1)).

More generally, for any non-empty A € X, it is known that
g<q(A)<g<l

in addition, these inequalities may be strict (see for instance Bertacchi and Zucca (2020) and
Braunsteins and Hautphenne (2020)). Thus the vectors g(A) are of independent interest. Other
than the recent work of Hutcheroft (2020) (which focuses on different questions than those considered
here) and references in the remainder of this section, little attention has been paid to properties of
the vectors q(A).

The vectors {g(A)}acx are all solutions of a common fixed point equation. More precisely, if
G(s) := (Gz(s))zex records the probability generating function associated with the reproduction
law of each type (defined in (2.1)), then g(A) belongs to the set

S:={se[0,1]":s=G(s)}. (1.1)
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In other words, Ext < S, where
Ext :={q(A4) : A< X} (1.2)

is the set of extinction probability vectors. In this paper, we focus on the following three main
questions:

(i) Where are the elements of Ext located in S7 (Section 3)
(i1) When does g(A) differ from q(B) for two sets A, B < X? (Section 1)
(177) How many distinct elements does Ext contain and can these elements be identified? (Sec-
tion 5)

While the answers to these questions are well established in the finite-type setting, much less is
known when there are infinitely many types. Below we discuss the background behind each question
and the contributions we make in this paper.
Question (7). It is well known that in the finite-type irreducible setting, the set of fixed points
S contains at most two elements: S = Ext = {g,1}; see for instance Harris (1963, Chapter 2).
When there are countably many types, q is the minimal element of S Moyal (1964, Theorem
3.1). More recently, in Braunsteins and Hautphenne (2019) the authors proved that, for a class
of branching processes with countably infinitely many types called lower Hessenberg branching
processes (LHBPs), q is either equal to 1 or to the maximal element of S\{1}. Theorem 3.1 of the
present paper implies that the same result holds for general irreducible MGWBPs. In particular, if
there is strong local survival, that is, if ¢ = ¢ < 1, then Theorem 3.1 implies that S = Ext = {q, 1},
as in the finite-type setting. In addition, this theorem also applies in the reducible setting as we
show in general that, for any fixed point s € S, if s, < 1 then s, < g,({z}).
Question (ii). Recent work addresses related questions: in Bertacchi and Zucca (2014) and Bertacchi
and Zucca (2020), the authors provide equivalent conditions for q(A) = g for every non-empty A <
X; in Braunsteins and Hautphenne (2020), the authors give sufficient conditions for q(A4) < q(B)
that apply to any MGWBP and A, B € X, as well as sufficient conditions for ¢ < q(A) < ¢ that
apply to block LHBPs. In Theorem 4.1 we present a number of necessary and sufficient conditions
for gz(A) < ¢q.(B) for any initial type x; this is a significant improvement on Bertacchi and Zucca
(2014, Theorem 3.3) and Bertacchi and Zucca (2020, Theorem 2.4) (see Section 4 for details). One
condition in Theorem 4.1 is the existence of an initial type from which, with positive probability,
the process survives in A without ever visiting B; another is the existence of a sequence of types
{xn}nen such that

(1 =42, (B))/(1 = ¢z, (A)) = 0 asn — 0. (1.3)

A consequence of (1.3) is that, for any extinction probability vector g(A) # g, we have
Sup,ey ¢z (A) = 1 (Corollary 4.2). In particular, if all the entries of g are uniformly bounded
away from 1, then there is strong local survival (@ = ¢ < 1; Corollary 4.4).

Question (77). When g < @, the set of extinction probability vectors Ext may contain more than
two distinct elements. For instance, in processes that exhibit non-strong local survival (@ < g <
1 = q()), Ext contains at least three distinct elements; see for instance Bertacchi and Zucca
(2014); Gantert et al. (2010); Menshikov and Volkov (1997); Miiller (2008) for examples of such
processes. In recent years, various examples with more than three extinction probabilities have
been constructed: for instance, Braunsteins and Hautphenne (2020) contains examples with four
and five distinct extinction probability vectors. The set Ext can even contain uncountably many
distinct elements, as shown in Bertacchi and Zucca (2020, Section 3.1). In the same paper, the
authors leave open the question of whether Ext can be countably infinite. Up to this point, the
literature has focused primarily on specific examples. Here our goal is to develop a unified theory
to characterise —and thereby count— the distinct elements of Ext.

We start by restricting our attention to a more manageable subset of Ext,

Ext(A) :={q(A) : Ae X(A)}, (1.4)
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where A = {A;}ick, is a (finite or infinite) collection of subsets of X and 3(.A) is the smallest o-
algebra on . 4 A containing A. The idea is to select A carefully so that (1) either Ext = Ext(A)
or Ext(A) highlights some property of Ext, and (2) A satisfies some minor assumptions, in which
case we call A reqular. We show that we can associate a directed graph G4 to A, and that if A
is regular, then the analysis of Ext(A) reduces to the analysis of G4. More specifically, in this
graph, the vertices are the elements of K 4, and there is a directed edge from ¢ to j if and only if
q(A;) > q(A;), where these pairwise relationships can be determined using Theorem 4.1. We show
that there is an injective function from the set of edgeless subgraphs of G 4 to the distinct elements
of Ext(A) (Theorem 5.4 and Lemma 5.7); furthermore, if G 4 does not contain a path of infinite
length (i.e. an ascending chain as defined in Definition 5.9), we prove that this function is bijective
(Theorem 5.4 and Proposition 5.10(%i)). If G 4 contains ascending chains, then we show that the set
of edgeless subgraphs can be extended so as to define a bijection between this extended set and the
distinct elements of Ext(.A) (Theorem 5.4 and Proposition 5.10(3)). These results translate problems
about the distinct extinction probability vectors into much simpler problems about the graph G 4.
We use this framework to provide necessary and sufficient conditions for Ext(.A) to contain finitely
many, countably many, or uncountably many distinct elements (Theorem 5.12). To provide a
rigorous exposition, we introduce an equivalence relation ~ on the set 254 (see Definition 5.3) and
then study properties of the quotient set 254 [~

We apply our results to three examples. In Example 1, we consider a specific family of irreducible
branching processes where, by varying a single parameter, we can transition smoothly between
cases where the process has any finite number of extinction probability vectors, a countably infinite
number of extinction probability vectors, and an uncountable number of extinction probability
vectors (Proposition 6.1). This resolves the open question in Bertacchi and Zucca (2020). In
Examples 2 and 3, we use our general framework to list all distinct extinction probability vectors
in two non-trivial examples: in Example 2, the number of distinct elements of Ext(.A) is the same
as the number of edgeless subgraphs in G4, while in Example 3, the number of distinct elements of
Ext(A) is strictly larger than the number of edgeless subgraphs in G 4.

The paper is structured as follows. In Section 2 we introduce some definitions and notation, as
well as some preliminary results. In Sections 3 and 4 we tackle Questions (i) and (i), respectively.
In Section 5 we deal with Question (74i); more precisely, in Section 5.1 we introduce the concept
of a regular family A, in Section 5.2 we define the equivalence relation ~ on 254 and establish
the relationship between 254/ and the distinct elements in Ext(.A), in Sections 5.3 we investigate
the structure of the equivalence classes, and in Section 5.4 we provide conditions for the number of
distinct elements in Ext(.A) to be finite, countably infinite, or uncountable. In Section 6 we present
our examples, and in Section 7 we discuss open questions. All the proofs, along with some technical
lemmas, can be found in Section 8. In a final appendix, we propose an iterative method to compute
the extinction probability vector g(A) for any A <€ X,

In this paper, we let 1 denote the infinite column vectors of 1s. For any vectors  and y, we write
x <y if x; <y; forall i, and * < y if * < y with z; < y; for at least one entry 4. Finally, we use
the shorthand notation P, () := P(:|Zp = e;) and E,(-) := E(:|Zy = e,). We remark that, unless
otherwise explicitly stated, our results hold for any generic, not necessarily irreducible, MGWBP.

2. Preliminaries

2.1. Definitions. In an MGWBP {Z,,},,>0 with countable typeset X, each individual lives for one
generation and, at death, independently gives birth to a (finite) random number of offspring. For
ze X and Jj = (jy)yex € N7, let pzj denote the probability that an individual of type x gives birth
to jy children of type y, for all y € X. The associated probability generating function is

Gols)i= Y pags? = > po [[s0,  sel0,1]7, (2.1)

Jilgl<eo J:lgl<o0 yed
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where [j| := >} cy Jy, and we let G(s) := (Gz(8))zex. Note that G: [0, 1]% — [0,1]% is nonde-
creasing and continuous with respect to the pointwise convergence (or product) topology on [0, 1]*.
Let myy = Ey[Z1y] = (0G4(8)/0sy)|s=1 be the expected number of offspring of type y born
to a parent of type z, and let (X, Ey) be the directed graph with vertex set X and edge set
Ex = {(z,y) € X? : myy > 0}. We write  — y if there is a path from x to y in (X, Ex), and we
write x < y if £ — y and y — z. Note that x < = because there is always a path of length zero
from z to itself. The equivalence class [z]., of 2 with respect to <> is called the irreducible class of
x.

The MGWBP {Z,} is called irreducible if and only if the graph (X, Ex) is connected (that is,
there is only one irreducible class), otherwise it is reducible. We say that the process is non-singular
if, in every irreducible class, there is at least one type whose probability of having exactly one child
in that irreducible class is not equal to 1, or, in other words, if for every x, there exists y <> x such
that Py(>,,,, Z1,w = 1) < 1. This assumption is different from the usual one (which is, for every
x there exists y < x such that Py(>, v Z1,w = 1) < 1), but both definitions are equivalent for
irreducible processes.

2.2. Properties of q(A). Forn >0 and A € X, we define ¢\ (A) := (q:(gn) (A))zex where

A (4) = Py ( Y 2, - o)

{=nyeA

is the probability of extinction in A before generation n, starting with a single type-z individual.
The sequence {g™(A)},>0 is (pointwise) nondecreasing, and satisfies

q"(A) = G(g"V(A), Wn=>1,

aV(4) =0, Vz € A, (2.2)
a(A) = G.(q(A)) V¢ A.

In addition, q(”)(A) converges to q(A) as n — 0. This implies that, for every A € X, g(A)
belongs to the set of fixed points S defined in (1.1) (note that ¢ also belongs to S). We observe
that qéo)(A) = P,(N(A)), where N'(A) is the event that the process never visits A. In principle,
if we knew q(¥(A), we could iteratively apply G(-) and recover g(A) as the limit of the sequence
g™ (A). However, ¢'9 (A) is not uniquely characterised by Equation (2.2). In other words, ¢(® (A)
is not necessarily the only element of the set of fixed points

S = (se[0,1]%: s = GW(s)},
where the function G : [0,1]% — [0,1]¥ is defined by

é(A)(s) . 0, lf €T € A
C | Gu(s) ifx¢ A

T

We point out that the function G@ () can be interpreted as the generating function of the defective
process {ZA7(LA)} obtained by modifying the original process {Z,} so that individuals of type z € A
produce an infinite number of children of all types with probability one at each generation. Note
that, if A # ¢, then 1 ¢ SA) ForBc X , we define the probability that the process becomes extinct
in B and never visits A as q(B, A) := (¢z(B, A))zex, where q,(B, A) := P,(E(B) n N(A)). The
vectors (B, A) belong to S for all B (by the same arguments as those used to show q(A) € S).
The following result characterizes g(¥) (A).

Proposition 2.1. The vectors q(X, A) and ¢°)(A) = q(&, A) are the (componentwise) minimal
and mazimal element of S respectively.
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Observe that g(¥)(A) is uniquely identified by Equation (2.2) if and only if S i a singleton,
which, by Proposition 2.1, occurs if and only if q(X, A) = ¢(®)(A); conditions for SA to be a
singleton are given in Theorem 4.1. We also point out that, in the irreducible case, ¢(© (A) can
be interpreted as the partial extinction probability vector of {Z,(LA)}; in practice, g(® (A) can then
be computed numerically using the method developed in Hautphenne et al. (2013), and g(A) can
be approximated by functional iteration, however it is unclear whether this algorithm converges.
An alternative iterative method to compute the vector g(A) for any A € X can be found in the
Appendix.

3. The second largest fixed point

It is well known that q is the componentwise minimal element of .S while, clearly, 1 is the maximal.
The next theorem gives an upper bound, namely ¢, ({z}), for the zth component of any fixed point,
whenever it is different from 1. In the irreducible case, we then have that @ is either the largest or
second largest element of S: the largest when ¢ = 1, and the second largest when ¢ < 1 (indeed,
by Braunsteins and Hautphenne (2020, Corollary 4.1), ¢, = ¢z ({z})).

Theorem 3.1. Suppose {Z,}n>0 is a non-singular MGWBP. If s < G(s), then

(i) for all x € X, either s =1 or s, < ¢, ({x});
(i) if sy < 1, then sy < qy({y}) for all y € X such that y — z;
(1i1) if the process is irreducible and s # 1, then s < q.

The following corollary gives further insights into the set of fixed points S when g, ({z}) = ¢, for
all ; note that ¢,({x}) = ¢, < 1 is usually called strong local survival in x.

Corollary 3.2. Suppose {Z,}n>0 is non-singular and let s € S.

(1) If gz({x}) = gz for all x then, for every x € X, either s, = 1 or s, = q.({x}). In this case,
any fixed point is an extinction probability vector, that is, Faxt = S.
(2) If {Z)}n>0 is irreducible and s # 1, then s < q. In particular, if § = q, then S = {q, 1}.

4. When is q(A) # q(B)?

In order for two extinction probability vectors q(A) and g(B) to be different, it is necessary for the
process to have a positive chance of survival in the symmetric difference of the sets A and B. More
formally, letting S(A) := £(A)¢ denote the event that the process survives in A, if P,(£(AAB)) =1
then P,(S(A)) = P,(S(A n B)) = P,(S(B)), that is,

q(A) # q(B) = JeeX st P (E(AAB)) <1.

A more powerful characterization of q(A) # q(B) is given in the following theorem, which is
a significant improvement over Bertacchi and Zucca (2014, Theorem 3.3), where the equivalence
between (i) and (v) was proved with A = X.

Theorem 4.1. For any MGWBP and A, B € X, the following statements are equivalent:

(i) there exists x € X such that q;(A) < q(B)
(ii) there exists x € X such that q(A\B) < q.(B)
(iii) there exists x € X such that q,(A) < qg(co)(B)
(iv) there exists x € X such that, starting from x there is a positive chance of survival in A without
ever visiting B
(v) there exists x € X such that, starting from x there is a positive chance of survival in A and
extinction in B
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(vi)

- QI(B)

in —

TEX: gz (A)<1 1 — qx(A)

Moreover, if A = X then each of the above conditions is equivalent to

= 0.

(vii) SB) is not a singleton.

Note that the equivalence between (i) and (i77) was proved in Bertacchi and Zucca (2020, Theo-
rem 2.4).

Corollary 4.2. For any MGWBP, every extinction probability vector q(A) # q, satisfies

sup gz (A) = 1.

reX
Remark 4.3. In Moyal (1964, Lemma 3.3), the author showed that, if an MGWBP is irreducible,
then all fixed points s # g with inf ey s, > 0 satisfy sup,cy sz = 1. However, the condition
‘inf,ey s, > 0" was described as unsatisfactory. Corollary 4.2 proves that all extinction probabilities
q(A) # q satisfy sup,ey ¢z(A) = 1 under no assumptions (not even irreducibility).

In the irreducible case, Corollary 4.2 easily implies the following result.
Corollary 4.4. Suppose that {Z,} is irreducible. If sup ey ¢u < 1 then § = q and S = {q, 1}.

Corollary 4.4 applies to irreducible quasi-transitive MGWBPs (see for instance Bertacchi and
Zucca (2014, Section 2.4) for the definition) where ¢ < 1, extending Bertacchi and Zucca (2014,
Corollary 3.2); indeed, in that case the coordinates of ¢ take their value in a finite set and they
are all different from 1. It also applies to MGWBPs with an absorbing barrier (see Biggins et al.
(1991)) with ¢ < 1, for which & = N and ¢, is decreasing in z.

There are special cases where g(A) depends only on the cardinality of A. For instance, in an
irreducible lower Hessenberg branching process there are (at most) three distinct vectors: g, ¢, and
1 (see Braunsteins and Hautphenne (2020, Section 4.1)). Indeed, if A # &, then g(A) = ¢ when A
is finite, whereas q(A) = q when A is infinite. In this simple case, we can completely describe the
set Ext.

5. The set of extinction probability vectors

We now turn our attention to the set Ext of extinction probability vectors. Our analysis builds
upon an important consequence of Theorem 4.1 (which we state in Corollary 5.1). We start by
defining relations between subsets A, B € X in a given MGWBP: we write

e A = Bifsurvival in A implies survival in B from every starting point (i.e., P4 (S(B)|S(A)) =
1 for all z € X),

e A =+ B if there is a positive chance of survival in A and extinction in B from some starting
points (that is, P, (S(B)|S(A4)) < 1) for some z € X),

e A< B if survival in A implies survival in B and vice-versa from every starting point,

e A < B if there is a positive chance of survival in B and extinction in A from some starting
points and vice-versa.

Note that A < A for all A € X. The next corollary is a straightforward consequence of the
equivalence between (i) and (v) in Theorem 4.1.
Corollary 5.1. Let A, BcC X.

(1) A= B if and only if q(A) = q(B).

(2) A< B if and only if q(A) = q(B).

(3) A < B if and only if there is no order relation between q(A) and q(B).

We point out that any of the six equivalent conditions in Theorem 4.1 can be used to establish
the relation between the pair A, B € X.
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5.1. Regular families of subsets. We will use the pairwise relations between subsets of X to study
Ext. Rather than considering all subsets of X, it is often sufficient to restrict our attention to a
particular family of subsets. More precisely, we focus on

Ext(A) := {q(A): Ae (A)},

where A = {A1,As,..., A; }, with kg <0, A; € X forallie Ky :={1,...,k4}, and 3(A) is the
smallest o-algebra on | ;. Ka A; containing all A;. The idea is to select a suitable family A so that
either Ext = Ext(.A) as in the examples in Section 6, and in Bertacchi and Zucca (2020, Section 3.2)
and Braunsteins and Hautphenne (2020, Example 1), or so that Ext(A) highlights some property
of Ext as in Bertacchi and Zucca (2020, Section 3.1). Below we show that the analysis of Ext(A) is
substantially simpler under some minor regularity conditions on A and the associated MGWBP.

Definition 5.2. We call A regular if
(C1) for any i # j € K4, we have A; n Aj; = ;
(C2) for any i € K4, we have q(4;) < 1;
(C3) there does not exist i # j € K4 such that A; < Aj;
(C4) it Ae X(A) and T4 :={ie Kq: A; = A} # & then [
(C5)

Condition (C1) allows an easy description of ¥(.A) in terms of unions of sets in A; in particular,
under this condition, I — | J,.; A; is a surjective map from 254 onto %(A). If in addition (C2)
holds, then A; # & for all i € K4 and the map is also injective. Conditions (C2) and (C3)
can be viewed as a preprocessing step which removes elements from A that lead to non-distinct
extinction probability vectors. In particular we observe that (C3) “almost implies” (C2), meaning
that, if (C3) holds then g(A;) = 1 for at most one i € K4 (by Corollary 5.1). Thus, (C2) implies
that q(J,e; 4i) = 1 if and only if I = ¢, in particular &5 ¢ A. Conditions (C4) and (C5) are
minor regularity assumptions that we use to compare the number of distinct elements in Ext(.A)
and the cardinality of the quotient set of 254 with respect to a suitable equivalence relation (see
Definition 5.3). On the other hand, (C2) and (C3) allow us to study the cardinality of a particular
subset of this quotient set (see Definition 5.6 and Equation (5.1)). We observe that, while (C4)
holds when I, is finite, it might fail if 74 is infinite. Indeed, when I, is finite, survival in | ;. I A;
implies survival in A;, for at least one iy € I4, which implies survival in A. On the other hand,
when Iy is infinite, there may be a positive probability of survival in [ J A; and both extinction
in every A; and extinction in A.

ieIAAi:>A;
ifie K4 and J; := {jeKA:Ai::)Aj};é@thenAi::)UjeJiAj.

iEIA

5.2. Equivalent subsets of indices. Not all the elements of Ext(.A) are necessarily distinct. For
instance, if A; = Aj;, then g(A; U A;) = q(A;). This motivates the next definition.

Definition 5.3. The subsets I,.J © K 4 are equivalent, and we write I ~ J, if and only if

(i) for every i € I there exists j € J such that A; = A;, and

(ii) for every j € J there exists ¢ € I such that A; = A;.
Observe that ¢ ~ I implies I = (.

We are interested in the number of distinct elements in Ext(A), which we denote by |Ext(A)|.
The next theorem implies that, if A is regular, then |Ext(.A)| equals the cardinality of the quotient
set 2Ka /~, that is, the number of equivalence classes.

Theorem 5.4. Given a family A and I,J < K 4, consider the following relations:
(i) I ~J
(it) Uier 4i & Ujes 45
(iti) Q<Uiel Ai) = q(UjeJ Aj)'
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Then (ii) if and only if (ii7).
If (C4) holds then (i) implies (iii); if in addition (C1) holds then |Ext(A)| < [284/_|.
If (C2) and (C5) hold then (iii) implies (i) and |EBxt(A)| = [254/_|.

5.3. Primitive subsets and ascending chains. In order to characterize |Ext(.A)|, the next step is
to better understand the structure of the equivalence classes. To help visualise these classes, we
associate a directed graph G4 = (K4, E 4), with edge set E4 := {(i,7) € K,243 A; = Aj}, to a given
MGWBP and family A = {A;, Ag,..., A, ,}. Observe that

(P1) (4,4), (j, k) € E4 implies (i,k) € E4 (by transitivity of the relation =),

(P2) (i,i) e E4 for allie K4,
and, under the regularity condition (C3),

(P3) G4 contains no cycles (of length greater than one).
Note that in G 4, there is a path from i to j if and only if (¢,j) € E4. The next lemma states that,
given a directed graph (X, Fx) satisfying (P1) and (P3), there exist an MGWBP and a regular
family A such that G4 = (X, Ex).

Lemma 5.5. Let (Z,Ez) be a directed graph where

e Z is at most countable,
e there are no cycles (closed paths).

Then there exists an MGWBP and a regular family A = {A;}icz such that A; = A; if and only if
there is a path from i to j in (Z,Ez).

For any subset I < K 4, we define the subgraph induced in G 4 by I as
GAlI] := (I, E4[I]), with E4[I]:={(i,5) € I*: A; = A;}.

Definition 5.6. We call I < K 4 primitive if for all 7,5 € I, i # j, we have A; <+ A;. Equivalently, a
subset [ is primitive if the induced subgraph G 4[] is edgeless. We write P 4 for the set of primitive
subsets of K 4.

The following properties are straightforward:

I := ¢ is primitive and, if (C2) holds, it is the only subset of K 4 such that q( U
every singleton {7} is primitive.

every subset of a primitive subset is primitive;

if {I,}n is a sequence of primitive subsets of K4 such that I,, < I, (for all n) then |, I,
is primitive.

A,L) = 1;

el

From the definition of ~, if (C3) holds, then the equivalence class of a primitive subset I is
[ ={Jc Ka:J21¥jed icl, A= A}, (5.1)

In particular, given two primitive subsets I1 # Iy we have [I1]. # [I2]~. Hence P 4 can be identified
with a (possibly proper) subset of 254/_. This directly leads us to the next result about the map

faiPa—284/ 0 st fa(l) = [1]~.
Lemma 5.7. If A satisfies (C3) then f4 is injective; in particular [P 4| < [254/.]|.

We will see that in many situations, the injective map f 4 is actually bijective, in which case, if A
is regular, then by Theorem 5.4 there is a one-to-one correspondence between the distinct extinction
probability vectors in Ext(.A) and the primitive subsets. We now present two illustrative examples:
in Figure 5.1, f4 is bijective, and in Figure 5.2, f4 is not surjective because no primitive subset
belongs to the equivalence class of I = {3,4,5,...}.
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Relations:

P4y Ext(A)

A1 = Ag, AQ == Al
(%) 1

A2 = Ag, AQ == A4
{1} q(A1) = q(A1 U Ag)

G 4:
A {2} q(Az)

q(A1 U Ag) = q(A2 ) A3)
q(Al U A2 U A3)
q(

(1 — ) | alas) =

4} q(A4) =

{1,4} (Al ) A4) = q(Al U AQ U A4)
@ {3, 4} <A3 ) A4) (A2 \ A3 ) A4)
(Al U AQ U Ag U A4)

FIGURE 5.1. A regular family A = {Aj, Aa, Az, A4} with its associated directed
graph G 4, the set of primitive subsets P 4, and the elements in Ext(.A). There is a
one-to-one correspondence between the primitive subsets and the distinct elements
in Ext(A).

Ag U Ay)

FIGURE 5.2. The directed graph G 4 of a regular family A = {A;, Ay, As,...}. The
set of primitive subsets is ¥ 4 = {, {i}i=123,..,{1,j}j=456,.,{2,7}j=156,..}-

In order for the map f4 to be bijective in general, the domain 0 4 of f4 needs to be extended.
To understand how to extend P 4, we need a more complete description of the codomain 2K /~ of
fa. We consider the following subsets of every I € K 4:

Inpi={iel:Vjel, j+#1i, Aj » Aj}
IdZ:{iGI:HjGIM,AiﬁAj}
I, .= 1\I,.

Roughly speaking, Ij; contains the vertices with out-degree zero in G4[I], and I; is the largest
subset of I equivalent to Ips (clearly, Ins < Ig, since A; = Aj for every j € K 4). If we think of

=" as a partial preorder relation “<” (it is a partial order relation if (C3) holds), then Ij; can be
interpreted as the primitive subset of maximal elements of I, and I; as the subset of elements which
are smaller than a maximal element. Finally, I, is the subset of elements which are not comparable
with any maximal element of I; in particular,

Io={iel:}jely, Afi=Ajy={iel:Vjely, Ao A} ={iel: {jel, A= Aj}.
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As an example, let I = K4 = N for the family A considered in Figure 5.2; then Iy, = {1},
I;={1,2,3}, and I. = {4,5,6,...}.

Clearly I is primitive if and only if I = Ips; moreover [In]~ = [Ig]~, and if I # ¢ then
[Z4]~ # [Ic]~. The next lemma states several other properties of the subsets Ins, Iy, and I.; in
particular it extends the representation of the equivalence class of a primitive subset given in (5.1)
to that of a generic subset (Lemma 5.8 (vii)).

Lemma 5.8. Let I,J € K 4.
(i) I ~ Iy if and only if 1. = &;
(11) Ing ~ Jpr if and only if Ig ~ Jg;
Suppose that (C3) holds.
(1i3) Ipy = Jpp if and only iof Iy ~ Jy;
() I ~ J if and only if Ing = Jpr and 1. ~ J;
(v) I ~ J for some primitive J if and only if I. = J;
(vi) if I. # & then I. is infinite;
(vii) [~ = {HOW: HW € Ka, Hy ~ I3, Wy ~ I, H. = Wy = &}.
Definition 5.9. We call I € K 4 an ascending chain if I = I, (that is, I = Iy = ).

From Lemma 5.8(vii), any subset J equivalent to an ascending chain is also an ascending chain
(that is, if I = I, and J ~ I, then J = J,.).

Given two equivalent subsets I and .J, observe that

{Z'GKA:EijGI,AZ‘ﬁAj}Z{iEKA:HjEJ,Ai:Aj}.
The largest subset equivalent to I, defined as I := {t € K4 : 3j € I, A; = A,}, is a natural
representative of the equivalence class [I].. We let
Cy:= {IQKA:HJZJC,J+=I}

be the set of representatives of ascending chains; note that € 4 is non-empty since § € € 4. Moreover
Je€y if and only if J = J. and J = JT. As an example, in Figure 5.2 the set I = {3,4,5,...} is
an example of an ascending chain and €4 = {F, I}.

Recall that the domain of f4 is P4, which is non-empty (since J is primitive), and that, by

Lemma 5.7, f4 is injective (under (C3)). The following proposition implies that P 4 can be extended
by means of €4 to the set

Ba={I,T)e@sxCQ):InJ=gF, (JNI" =T} (5.2)
Clearly {J} x €4 and P 4 x {J} are subsets of 3 4; in particular (F, ) € 3 4. We define the map
ga 284/ 0> 3a st ga(llle) = (Iar, (1) ).

Proposition 5.10. If A satisfies (C3), then g4 is bijective; in particular,
(i) 1254/ ] = [34l,

(ii) if there are no ascending chains (i.e. €4 = {J}), then the map f4 is bijective, that is, every
equivalence class contains one (unique) primitive subset.

Note that fq = g;tl o h where h is the natural bijection from P 4 onto P 4 x {F}. In the example
considered in Figure 5.1, €4 = {J}, hence J 4 = P4 x {I}, while in the example considered in
Figure 5.2, €4 = {F,{3,4,5,...}}, and

:s.A = {(Ia @) Ie pA} v {(gv {3a4a 57 .- })a ({Z}v {3a4’ 57 .- -})i:1,2}'

In Figure 5.3 we provide a modification of the example considered in Figure 5.2 that illustrates why
the condition I nJ = J is not sufficient in the definition of 73 4 in order for g4 to be bijective: take
I={4,5,6,..}and J ={3,4,5,...}; wehave InJ =&, but T =TuJ, so (J\[T)" = # J.
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In this case, g;ll(I, J) = g;ll(I, ) because [I U J]. = [I]~, so g4 is not bijective. Additional
examples where we identify 73 4 are given in Section 6.

O

: (4) (s)

i
O 9

FIGURE 5.3. The directed graph G 4 of a regular family with an ascending chain
(the edges implied by transitivity are omitted).

When combined, Theorem 5.4 and Proposition 5.10 allow us to identify the distinct elements in

Ext(A).
Proposition 5.11. If A is reqular, then

Bt(A) = {q (Uieron Ar) 1 (1.7) €3} (5.3)
and distinct elements in 3 4 correspond to distinct extinction probability vectors.

In the example considered in Figure 5.2, the distinct elements of Ext(A) are therefore
Ext(A)
= {q(Uier 4i) s 1€ P4}
U {gq(A3vAsvA50...),q(AivA3 VAL UAsU .. ), q(A2 U A3V As U A5 U .. )}
(5.4)

5.4. The number of distinct elements in Ezt(A). Building on the results in the previous section,
we are now ready to discuss the number of distinct elements in Ext(A), |Ext(A)|. In particular,
Propositions 5.10 and 5.11 lead to equivalent conditions for the number of distinct elements in
Ext(A) to be finite, countably infinite, or uncountable.

Theorem 5.12. Given a family A satisfying (C3),
(i) |Ext(A)| is finite if and only if A is finite (that is, ka4 < o).
If (C2), (C3) and (C5) hold then
(1)
| Ext(A)| = [P 4]- (5.5)
If, in addition, A is regular and €4 = {J}, then there is equality in (5.5).
(iii) If Ext(A) is countably infinite, then there exists a family A" < A satisfying (C2)-(C3)-(C5)
with kg = o such that either A} = Ay = Ay = ... or A} « A, < A, < .... In particular
if A is reqular, one can choose A" as a regular family.

If A is reqular, then
(v) Ext(A) is countably infinite if and only if P4 and €4 are both countable and at least one of

them is countably infinite.
(v) Ext(A) is uncountable if and only if either P 4 is uncountable or € 4 is uncountable.
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Note that if A is regular, the condition ‘€4 = {J}’ is sufficient but not necessary for the equality
in (5.5) to hold. Indeed, in the example considered in Figure 5.2, €4 # {} while Ext(A) and P 4
are both countably infinite (see Equation (5.4)).

The next corollary gives a sufficient condition for the existence of an infinite regular family whose
associated graph is edgeless and, as a consequence, for the existence of uncountably many distinct
extinction probability vectors.

Corollary 5.13. If there exists a (infinite) collection of pairwise disjoint subsets Ay, Ag,... of X
such that for each © = 1 there exists x; € X with

then there are uncountably many distinct extinction probability vectors.

6. Examples

We are ready to answer two important questions:

(1) The first question was asked previously in Bertacchi and Zucca (2020): Is it possible to con-
struct an irreducible MGWBP with countably infinitely many extinction probability vectors?
Theorem 5.12 not only suggests that the answer is positive, it also gives insight into how
such examples may arise. In Example 1 we not only answer this question but we go further
by constructing an irreducible family of processes where, by varying a single parameter, we
can transition smoothly between cases where the process has any finite number of extinction
probability vectors, a countably infinite number of extinction probability vectors, and an
uncountably infinite number of extinction probability vectors.

(2) Given a regular family A, do we always have |Ext(A)| = [P 4|7 If P4 is either finite or
uncountable, then equality holds. Thus, by Theorem 5.12(v), we may only have |Ext(A)| >
|0 4] if P 4 is countable and € 4 is uncountable. In Example 2, both P 4 and € 4 are countable,
and thus |[Ext(A)| = [P 4], while in Example 3, P 4 is countable and € 4 is uncountable, and
thus |Ext(A)| > [P 4]. This means the answer to the above question is negative.

Example 1 is an application of the results developed in Sections 4 and 5, and Examples 2 and 3
highlight the framework developed in Section 5.

Example 1: From finitely many to uncountably many extinction probability vectors.
Consider a process with type set X = N(Z), where

e individuals of type (0,0) have one child of type (1,0) with probability ¢, and 0 children
otherwise;
e individuals of type (0,7), j = 1, have one child of type (0,7 — 1) with probability p < 1, and
0 children otherwise;
e individuals of type (4,0), @ = 1, have one child of type (i,1) with probability 1, and one
child of type (i + 1,0) with probability ¢; and
e individuals of type (4,7), 4, j = 1, have a geometric number of children of type (i — 1, 7) with
mean /1 and one child of type (i,j + 1) with probability 1.
A visual representation of these offspring distributions is given in Figure 6.4. We partition X in two
ways: by levels, L; := {(i,7)}j=0 for i = 0, and by phases P; := {(i, j)}i=0, for j = 0.
Consider the family A = {L£4,Ls,...}. The next proposition implies that, for any p,q < 1, we
can choose r such that the process has: (i) any finite number k& > 1 of extinction probability vectors
(just pick p/*+=1D < r < p/k), which corresponds to

Lreloe... Ly 1< Ly L1 e ...,
(ii) countably infinite many distinct extinction probability vectors (r = 1), which corresponds to

LieLlo=Ly<=Li<=. ..,
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FIGURE 6.4. A visual representation of the offspring distributions in Example 1.
The solid arrows represent Bernoulli distributions and bold dashed arrows represent
geometric distributions (the weights represent the corresponding means).

[\]
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€

or (iii) uncountably many distinct extinction probability vectors (r > 1), which corresponds to
£1®£2®£3®£4®....

Moreover, the proposition implies that, when r < 1, Ext = Ext(A). Note that in this example,
€4 = &, and when r < 1, the only primitive subsets are singletons. In preparation for the next
result, for any A € X we let

t(A) :==min{i > 0: [£; n A| = o0},
and set ((A) := oo if the above set is empty.

Proposition 6.1. In Example 1,

(i) if 7 < 1, then there is a finite number i* := min{i > 1: 7% < p} of distinct extinction
probability vectors, namely q = q if i* = 1, and
g=q(L1)<...<q(Lx)=q if i* = 2. (6.1)

In particular, if 1«(A) < i* then q(A) = q(L,(a)), whereas if L(A) = i* then q(A) = q.
(ii) of r = 1, then there are countably infinite many distinct extinction probability vectors, namely
q=q(L1) <q(Ls) <q(Ll3) <..., (6.2)
and q. In particular, if 1L(A) < oo then q(A) = q(L,(4)), whereas if L(A) = c© then q(A) = §.

(iii) if r > 1, then there are uncountably many distinct extinction probability vectors.

Figure 6.5 shows the distinct probabilities of extinction {g()(£:)}i>1 as a function of r when
p = 0.1 and ¢ = 0.5. Observe that, in accordance with Proposition 6.1, the number of extinction
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FIGURE 6.5. The probabilities of extinction g )(L1) (lowest curve), g,0)(£L2)
(second lowest curve), g(o,0y(£3), - - -, as a function of 7 when p = 0.1 and ¢ = 0.5.

probabilities increases by one at r = /p for each i > 1. The probabilities are computed using the
iterative method presented in Appendix A.

We now consider what may happen if the family A is not chosen carefully (i.e. is not regular).
Consider the family A" = {L£}, £}, L}, ...}, where

L= ( [CJ {(i,2k)}) U ( O {(k,20+1)}), i=0.

Note that A’ does not satisfy (C5): indeed we have that £} = (J,c;, £}, where J; = {0,2,3,4,...}.
The next proposition implies that, when r > 1, P 4 is uncountable, while Ezt(.A’) is countable; this
shows that, without (C5), Theorem 5.12 (%) might not hold.

Proposition 6.2. Ifr > 1, then Lj <> L) for all i # j and Ext(A’) is countably infinite.

Example 2: A BRW on a grid. Consider a branching process with typeset N x N in which the
generating function of type (i,7) is
1 154 1 4 1 4
Gi)(8) = 3+ 5505 + 135Gs+0) T 135G+L)

In other words, an individual of type (7,7) has no children with probability 1/3, three children of
type (i,7) with probability 1/2, three children of type (i,j + 1) with probability 1/12, and three
children of type (i + 1, j) with probability 1/12.

Suppose we would like to determine the distinct elements of Ext. We consider the family A = X
(the set of singletons), in which

(i1,71) = (i2,72) if and only if 41 < iy and j; < Jo,

and whose associated graph G 4 is illustrated in Figure 6.6 (the edges implied by transitivity are
omitted). Note that the family A is regular; indeed, (C}) and (C3) are immediate, (C4) and (Cj)
can be verified easily (for instance by inspecting the graph G 4), and (C3) follows from the fact that
the mean number of type-(i, j) offspring of a type-(i, j) parent is 3/2 > 1.
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FIGURE 6.6. Left panel: The graph G4 in Example 3. Right panel: The graph
G 4 in which particular subsets of vertices are highlighted.

In this example, the primitive subsets are the subsets of X in which no element is strictly greater
(componentwise) than any other. More formally,

Pa={AcX:H(ir, ), (i2,j2) € A with iy < iz and j1 < j2}.

The set of blue nodes in Figure 6.6 is an example of a primitive subset. Note that every element of
P 4 is a finite subset, and therefore P 4 is countable. The set of representatives of ascending chains
is

Ca={(4,5):1<i<k,j=1l} nyui{(i,j):i=>1,1<j<k}lnyuvXUD. (6.3)
To understand how this expression for € 4 is obtained, observe that there are essentially three kinds
of ascending chains: those that take infinitely many steps upwards while only taking finitely many
steps to the right (representatives of these chains are given in the first term of (6.3)), those that take
only finitely many steps upwards while taking infinitely many steps to the right (representatives of
these chains are given in the second term of (6.3); the set of green nodes in Figure 6.6 corresponds
to k = 2), and those that take both infinitely many steps upwards and infinitely many steps to the
right (these chains have just a single representative X’; one such path is illustrated in red in Figure
6.6).

By Proposition 5.11 the set of distinct extinction probability vectors is

Ext = Ext(A) = {q (U(mdw(z’,j)) L (I,J) € :sA},
where
Ja={LT)e®ayxCu): InJ=0 (JN[")" =J}
(L) e ®OAxCa): T[T =),

and the final equality follows from the fact that for every I € P4, I'" is a finite set. One element
(I,J) of 3 4 is formed by letting I and J be the set of blue and green nodes respectively in Figure
6.6. Because P4 and €4 are both countably infinite, by Theorem 5.12, Ext contains a countably
infinite number of distinct elements. We have thus constructed an example with ascending chains

in which [P 4| = |Ext(A)|.

Example 3: A BRW on a modified binary tree. Consider the modification of an oriented
binary tree which is illustrated in Figure 6.7 and is formally constructed as follows. Let Z :=

T90{—1,+1} denote the set of vertices, where {—1,+1}° = {(J} represents the root. Note that
every vertex is a finite sequence of —1 and +1. A planar representation of this set is given by the
map v : Z — R? where y({&}) = (0,0) and v({a, q2,...,00}) = (X7, 375 n), for n > 1.
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FIGURE 6.7. The modified binary tree.

Henceforth, when we speak of “left” and “right” we refer to the first coordinate in this planar
representation. Given a vertex {J} or {aq,...,a,} with n > 1, we define the (oriented) edges as
follows

B}t {aidis)
0

a; = B; Vi < m. ifm+1l=n=>=1
<sn—1,06,=—a,=1,6=—1Vi>n ifm=n>=1.

Roughly speaking, the first line defines the usual upward edges in the binary tree (where each parent
has exactly two children). The second line draws lateral edges to each point from the sibling on its
right (if any) and from each descendent of this siblings in such a way that the resulting graph is
isomorphic to a planar graph (see Figure 6.7). We observe that there are no lateral edges pointing
to the right, and that from every vertex {£;}", such that 3; = 1 for some i, there is always a lateral
edge pointing to the left (to the sibling if ﬁn = 1, or to the sibling of some ancestor if 3, = —1).
Denote this collection of edges by Ez; it is easy to see that there are no cycles.

We can define an MGWBP and a regular family A with G4 = (Z, Ez) in a similar manner as
Example 2; however we do not provide an explicit construction here. Note that the graph (Z, Ez)
satisfies the assumptions of Lemma 5.5, hence such an MGWBP and regular family A must exist.
For simplicity, below we will assume that, as in Example 2, the typeset in our MGWBP is X = Z
and the regular family is A = X (the set of singletons).

In this example the set of primitive subsets is P 4 = X, i.e., the set of singletons. This is because,
by construction, for any x,y € A, either x = y or y = z. To identify €4 note that there is a
one-to-one correspondence between ascending chains and rays starting from the root represented
by sequences {c;}* . The representative of the ascending chain is the set of vertices that lie to the
right of its corresponding ray. More formally, for each ray {a;},, we let

e}y =12t v {{ﬂi DI N Z:ziai}

denote the set of vertices to the right of the ray {a;}2;. The set of representatives of ascending
chains is then

= {h({eu}iZy) : {ou}idy € {=1,+1}7}. (6.4)
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Note that the set € 4 is uncountable because there are uncountably many rays. Here, we have

(I,J))e Pax€Q):InJ=g, (I =J}
(I, D) TePapu{(D,J): JeCal. (6.5)

To understand Equation (6.5), note that if I = {z} € P4 and J € €4, then either x € J, in
which case I nJ # &, or x ¢ J, in which case if y € J then {y} = {z}, thus J < It and
therefore (J\IT)T = &; thus if I nJ = & and (J\IT)" = J then either I = J or J = ¢J. By
Proposition 5.11, the set of distinct extinction probability vectors is then given by

4

{
{

Ext = Ext(A) = {q(I) : [ e P4 uC4}.

Because € 4 is uncountable, by Theorem 5.12(v), Ext contains uncountably many distinct elements.
In addition, because &', and therefore P 4, is countable, we have thus constructed an example in
which [P 4] < |[Ext(A)|. Note that in this example the inequality in Equation (5.5) is strict.

7. Open questions

The results in this paper motivate several open questions. Here we consider a very general
setting, in which we observe a wide variety of behaviours; for instance, in Example 1, there can be
any number of distinct extinction probability vectors. We can then ask whether we observe similarly
rich behaviour in more homogeneous settings, such as transitive or quasi-transitive processes. We
believe that the answer is negative. In particular, for quasi-transitive BRWs on a graph G, like
those considered in Stacey (2003) (see also the examples in Candellero and Roberts (2015)), we
conjecture that either (i) |Ezt| = 1, in which case ¢ = q¢ = 1, (ii) |Ext| = 2, in which case
g=¢qg<1lorq<gq=1,or (ili) |[Ext| is uncountable, such as in Bertacchi and Zucca (2020,
Section 3.1). Furthermore, we conjecture that, if the process is quasi-transitive, then (iii) can only
occur when it is nonamenable (see Bertacchi and Zucca (2014, Section 2.1) for the definition). Note
that, without the quasi-transitivity assumption, the MGWBP can exhibit an uncountable number of
extinction probability vectors even if both the underlying graph and the process itself are amenable
(see Example 1 with » > 1). We believe that similar results also hold for irreducible BRWs in an
ii.d. random environment such as those considered in Comets and Popov (2007); Machado and
Popov (2003).

Moreover, the exact location of the extinction probability vectors g(A) (different from q and
q) in the set of fixed points S is yet to be identified. In Braunsteins and Hautphenne (2020), the
authors conjecture that the “corners" of the set S correspond to extinction probability vectors g(A);
see Braunsteins and Hautphenne (2020, Conjecture 5.1) for a precise statement. In addition, it has
been shown that S can contain (uncountably many) fixed points which are not extinction probability
vectors; see for instance Bertacchi and Zucca (2017, Example 3.6). Under particular assumptions
(i.e. in an irreducible LHBP), it has been shown that there is a continuum of fixed points between
g and ¢ and there are no fixed points between ¢ and 1; see Braunsteins and Hautphenne (2019,
Theorem 1). Here we prove that there are no fixed points between ¢ and 1 in the general irreducible
setting (Corollary 3.2); we believe that, like in the setting of Braunsteins and Hautphenne (2019),
there is a continuum of fixed points between g and q, however this is yet to be established rigorously.
Another closely related question is the following: is it possible to have |Ext| < |S| < 4007

Finally, here we focused on the distinct elements of Ext(A), where A is a regular family. In
Example 1, we showed that Ext=Ext(.A4), and therefore the study of Ext could be reduced to that
of Ext(A) without losing any information. More generally we may ask under which conditions there
exists a regular family A such that Ext=Ext(A), and if one exists, can it be described?
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8. Proofs

Proof of Proposition 2.1: The usual way to identify the maximal and minimal fixed points of a
continuous nondecreasing function in a (partially ordered) set is to generate iteratively two sequences
starting from the maximal and minimal elements of the set (if available).

More precisely, observe that if we let CA}’(A’”H)(S) = @(A’")(é’m)(s)), then é&A’”)(l) is the
probability that, given Zy = e, no type y € A individual has been born into the population before
generation n. We then have = G ( ) N\ q(o)( A) as n — +o0. The fact that q(o)(A) is the
unique componentwise mazimal element of the set S then follows from the fact that G4 )(s)
(and therefore its iterates) are increasing in s.

Similarly, G(A n)(O) = q;gn)(X, A), and the limit of this nondecreasing sequence (namely q(X, A))
is necessarily the minimal element of S, g

Proof of Theorem 5.1: (i). Let us fix s such that s < G(s) and suppose s, < 1 for some z € X.
Define G [0,1]% — [0, 1] such that

~x Uy, y=uu,
G (w) :{

Gy(u), otherwise.

Observe that CNJ(I)(-) is the generating function of the original process modified so that all type-x
individuals are frozen (at each generation they produce a single copy of themselves). By induction,
for any n > 0, we have s < G(*")(s), which implies s < lim,_, G®™(s). By monotonicity of
G(-), this leads to G(s) < G(limy_., G™™(s)), which implies

s < G(lim G@)(s)). (8.1)
Moreover, the function
B(se): = Ga 1111%06:@7”)(1,.“,1,sz,1,1,...)) (8.2)

is the (possibly defective) generating function of the asymptotic number of frozen type-z individuals
in the modified process when we start with a single type-z individual in generation 0, and we freeze
all type-z individuals after generation 1. If we let this asymptotic number of frozen individuals be
Y7 and then repeat these steps, with the initial number of type-z individuals now being Y7, to obtain
Y and so on, then we obtain a (possibly defective) Galton-Watson process {Y%}r>0. This process is
referred to as the embedded type-x process, and it is known that the probability of extinction in {Y%}
is gz ({x}) (see for instance the proof of Zucca (2011, Theorem 4.1)). In addition, because {Z,} is
non-singular, {Yj} is non-singular, which means that for any £ > 0 and N < o there exists K such
that

¢:({z}) —e <P(Yi > N) <1-q.({z}) +¢, (8.3)
for all k > K. Combining (8.]), (8.2) and (8.3), we then have s, < ¢(sz), and for all k > K
e <600 glss) = E(5)
—_——
k

< (s2)V (1 = au({z}) + ) + @({z}) + .

For any > 0 we may then choose ¢ < 1/2 and N large enough so that (s;)¥ < n/2. For these
values of ¢ and N we can then choose k sufficiently large so that (8.3) holds. Taking n | 0 we then
obtain s, < ¢, ({z}).

(it). Assume y — z; we need to show that if s, < 1 then s, < 1, because in that case, (i) follows
from (i). Since y — x, there exists n > 1 such that Py(Z, , > 0) > 0. Consequently,

5, = Ey(szn) < Ey(sfn’x) <Py(Zne =0)+ 5. Py(Zp > 0) <1,
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where the equality follows from s = G(s) = Go...0 G(s) = (Ez(8%"))sex for any n > 1.

n
(7). In the irreducible case y — x for all y € X. Whence s # 1 implies s, < 1 for all z € X.
Again, the first part of the theorem yields the claim because ¢, = ¢, ({z}) (see Braunsteins and
Hautphenne (2020, Corollary 4.1)). O

Proof of Corollary 5.2: We only prove the equality Ext = S since the rest follows trivially from
Theorem 3.1. If s = 1 then there is nothing to prove; otherwise consider the (non-empty) set
A:={xre X:s, <1}, we prove that s = g(A) (which shows that any fixed point is an extinction
probability vector). First, by the definition of A and the same argument as in the proof of Theo-
rem 3.1 (%), there are no y € A° and x € A such that y — x. Therefore ¢,(A) = 1 = s, for all y € A°.
On the other hand, if x € A then g(A) < g({z}); moreover by Theorem 3.1(7), g, < s, < q({z}),
and we also have ¢, < ¢z(A) < ¢z({z}) for all x € A, which yields the conclusion. O

Proof of Theorem J.1: We start by proving the equivalence between (i) and (7ii). Theorem 2.4 in
Bertacchi and Zucca (2020) implies that, for every fixed point s, g,(B) > s, for some x € X if and

only if qg(/o) (B) > s, for some y € X. It is enough to take s = g(A).

The fact that (ii7) implies (iv) is trivial, since the probability of survival in A is strictly larger
than the probability of visiting B. The facts that (4v) implies (v) and that (vi) implies (i) are also
straightforward.

We now prove that (v) implies (vi). Suppose P,(S(A) n E(B)) > 0 and fix x as the type of the
initial individual. Let F,, denote the history of the process up to generation n and observe that

My (A) = Po(E(A)|Fn) = Po(E(A)|Z,) = q(A)"
My(B) = Py(E(B)|Fy) = Po(E(B)|Zn) = q(B)

are martingales. By Doob’s martingale convergence theorem M,,(A4) — P,(£(A)|Fx) = lg(a) as
n — o0, with the same holding for extinction in B. Thus, by assumption

n—a0

P.(S(A) nE(B)) = Px< lim q(A)%" =0, lim q(B)% = 1) > 0. (8.4)
Now, suppose by contradiction that there exists ¢ > 0 such that
1—¢qi(B) = c(1 - qi(A)) (8.5)

uniformly in ¢ € X. Then,

a(B)% = [ - (1 - a(B)*

eX
<[] et = ai(A)))
eX
< exXp { — C Z Zn7z(]_ - ql(A))}, (86)

eX
where to obtain (8.6) we use the fact that 1 —y < e™¥. In addition, using the inequality 1—] [,.; o <
Dier(1=0y) (where I is countable and «; € [0, 1] for all i € I') and the subadditivity of the probability
measure,
1—q(A)?" < Y (1= (A7) < ) Zoi(1 — gi(A))
iEeX 1€X
so that

q(A)? = 1- Z Zn,i(1— qi(4)). (8.7)
eX
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Combining (8.6) and (8.7) we obtain
]P)x< lim g(A)%" =0, lim q(B)?" = 1)
n—0oo n—o0

< ]P)z<liminf D Zni(1—qi(A) =1, lim Y Z, (1 — qi(A)) = 0)
noe ieX e ieX
= ()7

which contradicts (8.4). Thus, the assertion in (8.5) cannot hold.

The equivalence between (i) and (i) follows from the equality S(A) n E(B) = S(A\B) n £(B)
and the fact that (v) is equivalent to (i) (apply (v) with A\B instead of A).

Finally, we prove that (iv) is equivalent to (vii). Assume A = X. Since S®B) is non-empty,
by Proposition 2.1 it is not a singleton if and only if q(X,B) < ¢®(B). Note that qgo)(B) —
4z(X, B) = P.(N(B) n S(X)) whence ¢(X, B) < ¢\9(B) if and only if there exists = € X such that
P, (N (B) nS(X)) > 0, that is, if and only if (iv) holds. O

Proof of Corollary /.2: If sup ey gz = 1 there is nothing to prove. Otherwise, suppose sup ey ¢» <
1; then by Theorem 4.1 (vi) (set A = X and B = A), we have

inf (1 — g5(A4)) < inf 1= a:(4)
zeX

=0
TeX 1—(]96 ’

which yields the claim. O

Proof of Theorem 5./: The equivalence between (i) and (74i) follows from Corollary 5.1.

Suppose that (C4) holds. Let us prove that (i) implies (7). Since for all i € I we have A; = A;
for some j € J, then A; = UjEJ A; for all i € I which, by (C4), implies | J,.; 4i = UjeJ Aj. By
exchanging the role of I and J we prove the claim. This implies that the map [[]. — q( Uier Ai)
is well defined and, if (C1) holds, it is a surjective map onto Ext(.A).

Now assume (C2) and (C5). We prove that (7i) implies (i). Suppose that either I or J are
empty; then (i) holds if and only if they are both empty. The same holds for () and (i) because
q( Uier AZ-) = 1 if and only if I = . We can assume henceforth I, J # ¢ZJ. Suppose, by contradic-
tion, that there exists ¢ € I such that A; = A; for all j € J (if there exists j € J such that A; = A,
for all i € I we proceed analogously): in this case J < J; and, by (C5), A; = | e A;. This implies
Uics 4i = UjeJ Aj and yields the claim. Moreover, it implies that q(UieI Ai) — [I]~ is a well
defined surjective map from a subset of Ext(A) onto 254/_. O

Proof of Lemma 5.5: Fix a family of probability distributions {r;};cz, where r; = {r;;} ez such that
ri; = 1/2 for all i € Z and, when i # j, r;; > 0 if and only if (i,j) € E. Consider a probability
generating function ¢(s) such that ¢/(1) > 2.

We define a MGWBP on Z by the following reproduction rules: a particle living at ¢ produces
a random number of offspring according to the distribution with probability generating function
¢; each newborn particle is placed at random independently according to the distribution r;. The
offspring generating function of this MGWBP is G;(s) := ¢(X;7i;8;). Define the family A as the
collection of singletons A; := {i} for i € Z.

Clearly local survival in 4 implies survival in j if and only if there is a path from i to j in (Z, E).
Let us prove regularity. Condition (C1) is trivial and, since there are no closed paths in (Z, Ez),
then Condition (C3) follows.

The probability of local extinction starting from ¢ is the smallest nonnegative fixed point of
the generating function 9(s) := Gy(8)|s;=s,s;=1,j%i; indeed, every child placed outside i cannot
contribute to the local survival (because there are no closed paths of length strictly larger than 1).
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This means that each particle in the progeny has the same (positive) probability 1 — 3 of generating
a population which survives locally and this implies (C2).

Let us pick I < Z. If the process survives in | J;.; A; then there are infinitely many descendants,
and by a Borel-Cantelli argument, almost surely, at least one of them (actually an infinite number
of them) will generate a progeny which survives locally. Thus, for every fixed I, survival in | J;.; 4;
implies survival in A; for some j € I, that is, Py(S(U,c; 4i)\U;er S(4i)) = 0 for all z € X. By
taking I = I4 we have that Pr(S(U,cr, 4i)\Uicr, S(4i)) = 0 for all € X'; moreover, from the
definition of 14, we have Py (e, S(4i)\S(A)) = 0for all z € X', whence Py (S(Ue;, 4i)\S(4)) =0
for all z € X. This proves that Condition (C4) holds.

To prove (C5) it is enough to observe that A; = A; if and only if there is no path from ¢ to j in
(Z, Ez); thus, if the process starts from ¢, then the probability of visiting Ujeji Aj = J; is 0, while
the probability of survival in A; is strictly positive. O

iEIA

Proof of Lemma 5.8: Recall that, by definition, [I4]~ = [Ia]~, that is, Iy ~ Ins.

(i). If I, = & then I = Ij and [I]. = [I4]~ = [Im]~. Conversely, if I ~ Ips then for all i € T
there exists j € Ips such that A; = Aj, thus i € I;. This implies that Ic = .

(11). The claim follows from the chain of equalities [Ig]~ = [Ip]~ = [Jnr]~ = [Ja]~-

(111). If Ing = Jpr then Iy ~ J4 by (ii). Conversely, since [In]~ = [La]~ = [Ja]~ = [Im]~, Im
and Jys are primitive subsets, and (C3) holds, we have [Ips]~ = [Ja]~, which implies Ipy = Jy
because these sets are primitive.

(iv). Let us prove that I ~ J implies Iy = Jys and I, = J.. Let I ~ J and i € I;. If j € J such
that A; = A;, there exists 7; € I such that A; = A;, thus A; = A;, whence i = iy = j (from the
definition of I and from (C3)). Since by the equivalence there exists such a j € J, we have that 4
is an element of J which does not imply any other element of J, that is, ¢ € Jy;. Thus Iny S Jy;
by exchanging the role of I and J, we have Ip; = Jys. For all ¢ € I, there exists j € J such that
A; = Aj and, by the definition of I., there is no [ € Ip; such that A; = A;. Since Ins = Jjr then
j € J.. By exchanging the role of I and J we have I, ~ J,.

Let us now prove the opposite implication. Let i € I. If i € Ip; = Jps then i € J. If ¢ € I then,
since Iy ~ Jg, A; = A; for some j € Jg < J, whence A; = A; for some j € J. By exchanging the
role of I and J, we have that for all j € J there exists ¢ € I such that A; = A;. This proves that
I~J.

(v). Note that, from (i), if I ~ J then I. = ¢F if and only if J; = . Whence, if J is primitive
and I ~ J we have J = J. = I.. The converse follows from (i) by taking I := Jy,.

(vi). We prove, by induction, that there is a sequence of pairwise distinct elements {i, }nen such
that, for all n € N, 4, € I, and A4;, = A;,,,. Since I. # & there exists ig € I.. Suppose that we
have n + 1 distinct elements g, 1, ...,4, € I. satisfying the above relation. Since i, ¢ Ij; there
exists in41 # in in I such that A; = A; ... By (C3), in41 # i; for all j < n. If j € I such that
A;,., = Aj then A; = A; whence j # I since i, € I.; this implies that 4,11 € I..

(vii). It follows easily from (iii) and (iv), from the decomposition I = I; U I, and from the basic
properties discussed above, (Jg)v = (Ju)m = I, (Ja)a = Jas (Im)e = (Ja)e = (o) = (Jo)g =
& which hold for all J € K 4.

Suppose that J ~ I and consider the decomposition J = J; U J.. Observe that, from (iv) and
the basic properties discussed above, (Jg)y = Iy = I, (Ja)e = (Jo)mr = (Je)a = . By taking
H := Jj and W := J. we prove that J belong to the set in the right-hand-side.

Conversely, let J = H U W belong to the set in the right-hand-side, and let us prove that J ~ I.
If i € I; then A; = A; for some j € Iy = Hy S J then A; = A; where j € J. If i € I, then, by
hypotheses there exists j € W, < J such that A; = A;. If j € Jy O

Proof of Proposition 5.10: Assume (C3). We make use of Lemma 5.8 to show that the map
ga([I]~) = (In, (1)T) is a bijection from QK{/N onto 4. The map is well defined and injec-
tive by Lemma 5.8(7v); indeed, note that I. ~ I.. if and only if (I.)* = (I.)*. By the definition of
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I. it is clear that for all i € Ips and j € I. we have A; <> Aj, whence the image of the map is a
subset of J 4 (take J = (I.)* and J = I, in Equation (5.2)).
We are left to prove that the map is surjective. Note that 3 4 can be equivalently defined as

Da={I,J)e P x€Cq): 3T ~JViel VjeJ, A< A;}. (8.8)
Let (I, J) € 34 and let J ~ Jsuch that Vi € I,Vj € J, A; < A;. If we define I := I uJ we have that

Ing =1y =1Tand I. = I\I; = J; clearly (J)* = J since J ~ J. Then g4([I]~) = (I,(J)") = (I, J),
whence the map is surjective and (i) is proved.
When €4 = {J} then J 4 = P4 x {J}. The claim (i) follows by the equality fa = g;ll oh,
where h is the natural bijection from P 4 onto ¥4 x {J}.
]

The proofs of Theorem 5.12 and Corollary 5.13 require the following lemma.

Lemma 8.1. Let A= {A1, Ay, ..., Ax} with kg < +00.
(i) ka < o0 if and only if P 4 is finite.
(i1) If k4 = 0, then the following statements are equivalent:
(1) P4 is uncountable;
(2) there exists an infinite, primitive I;
(8) there exists a family A" < A such that A} <> A} for all A}, A} e A';

77

Proof of Lemma 8.1: (i). Clearly if k4 < +00 is finite then P 4 is finite as well. Conversely, since
every singleton {i}, where i € K 4, is a primitive set, the reverse implication holds.

(i1). If I < K 4 is primitive and infinite, then it must be countably infinite; in this case, every
subset of I is primitive, and the collection of all subsets of I is uncountable, thus we have (2) = (1).
To prove (1) = (2), it is enough to note that {I € K 4: I primitive and finite} < | J;2, K which is
a countably infinite set (provided x4 # 0). The implication (2) = (3) is straightforward if we take
A" :={A;:ieI}. To prove (3)= (2), just take I := {ie K4: A; € A'}. O

Proof of Theorem 5.12: (i). Clearly if A is finite then 3(A) is finite and Ext(.A) is finite as well
(there is no need for (C3) to hold here). Conversely, if Ext(.A) is finite, then by Theorem 5.4 (which
holds without any assumptions on singletons), we have that 254 /_ is finite. By Lemma 5.7, P 4 is
finite as well. By Lemma 8.1(i) k4 is finite.

(11). We observed that, if (C2), (C3) and (C5) hold, then by Lemma 5.7 and Theorem 5.4, there
is an injective map from P4 into the set Ext(.A), and this yields Equation (5.5). By regularity,
according to Theorem 5.4, |Ext(A)| = [254/_|. If, in addition there are no ascending chains, by
Proposition 5.10, we have equality in Equation (5.5).

(11i). Suppose Ext(A) is countably infinite which, as shown above, implies K4 = 0. By
Lemma 8.1(77) and Equation (5.5), an infinite primitive I € K4 does not exist. Consider the
graph G 4 on K 4; let Iy = (& and for j > 1, define I; recursively so that I; is the set of vertices
with out-degree zero in the induced graph Ga[K 4\( g;& I;)]. By construction, E4[l;] = & for
all j, thus there cannot exist j such that |I;| = oo, since I; is primitive. In that case, either there
exists jo = 1 such that |I;| = 0 for all j > jo, or 0 < |[;| < oo for all j > 1. In the former
case, because k4 = o0 and the graph contains no cycles in GG 4, there must exist an infinite path
A, = A, = A;; = .... In the latter case, since for all [ € I, there exists r € I,, such that
A; = A,, by transitivity we have that for all [ € Uj>i I; there exists r € I; such that A; = A,. Since
0 < |I,| < +oo for all n and the sets {I,,}, are pairwise disjoint, we have that ‘Uj>n Ij’ = 4o for
all n. Besides, we have that for all n, there exists i € I, such that d; := [{r € ;. I;: Ar = A;}|
is infinite. Clearly, given any i, € I, such that d;, = 400, there exists ¢,4+1 € I,4+1 such that
di,., = +o0 and A;, ., = A;,. It is possible to construct iteratively a sequence {i,}, such that
in € In, d;, = +00, and A, , = A;,. In both cases the family A" = {A], A5, ...}, where 4], := A; ,
satisfies (C2), (C3) and (C5). Moreover it is regular if A is regular.
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(iv) and (v). According to Proposition 5.10 and Theorem 5.4, regularity implies that Ext(.A),
24/, and J 4 have the same number of (distinct) elements. By Equation (5.2) and the remarks
thereafter,

max([Pal, [€al) < [3al < PaxCyl.
By recalling that [P 4] = 1 and |€4| > 1, it is easy to show that max(|P 4/, [€4|) and [P 4 x € 4] are
simultaneously finite, simultaneously countably infinite, or simultaneously uncountable. Whence,
the above double inequality yields the following table,

‘ V4] < o0 P 4 countably o P 4 uncountable

|€4] < o0 |34l <0 3 4 countably oo 3 4 uncountable
€ 4 countably o | J 4 countably co 3 4 countably oo 73 4 uncountable
€ 4 uncountable | 3 4 uncountable 34 uncountable 34 uncountable,

and this proves the claims.
O

Proof of Corollary 5.15: Let A = {A1, Ag, As,...}. By assumption, for all i > 1, A; == X\A;, so
A; = Aj for j # i. This implies that A is regular and I = N is a primitive set. Therefore, by
Lemma 8.1(73) and Theorem 5.12(7), Ext(.A) is uncountable. O

Proof of Proposition 0.1: Assume r < 1 (cases (i) and (ii)). We consider the family A = {Lo, L1,
Lo, ...} and start by showing that for any ¢ > 1, £;_1 <= L;, that is, survival in £; implies survival
in £;_1, regardless the initial type. This implies q(£;—1) < q(L;).

Observe that, with probability one, an initial (7, j)-type individual has an infinite line of descent
made of all (i, k)-types for k > j. Let & denote the geometric number of (i — 1, k)-type offspring
born to the (i, k)-type individual in this line of descent. We have

1
ZP[&?”:ZW:@;
k>j k>j
because this sum is infinite for all j > 0, by the Borel-Cantelli Lemma, if the process ever reaches
L;, then with probability 1, there are infinitely many individuals in £; who have at least one child
in £;_1; thus, survival in £; implies survival in £;_1.

We note that global survival implies survival in |, <i<¢ Li for some £ > 1; in particular, global
survival implies survival in £, and therefore in Ly. This leads to ¢ = g(Lo) = q(£1).

Next, we show that the study of Ext can be reduced to the study of Ext(A): in other words, for
any subset A € X, if 1(A) = oo then q(A) = g, while if 1(A) < oo then q(A) = q(L,(4))-

We first assume that ¢(A) = oo. If |A] < oo, then clearly g(A) = g since the process is irreducible,
so we take |A| = oo. In this case survival in A implies survival in Py. To see why, suppose there
is a positive chance of survival in A. If, by contradiction, the process became extinct in Py there
would exist a finite maximum level K ever reached by the process. Since ¢(A) = 00, we would have
A~ (UE o Li)| < o0, thus survival in A and extinction in Py would imply that the process survives
locally. However, by irreducibility, local survival implies survival in Py which yields a contradiction.
Hence q(A) = q(Pp). To show ¢ = ¢q((0,0)) = q(Po) first observe that, by Theorem 3.1(iii),
g = q(Py). On the other hand, extinction in (0, 0) implies that a finite number of particles will ever
reach (0,0), and since each of them reaches a finite level in Py almost surely, there is almost sure
extinction in Py. When ¢(A) = oo we therefore have ¢ = g(A) = q(Py) = q.

We now assume 1 < 1(A) < . First, observe that survival in £; implies survival in A whenever
|£; N A| = oo; for instance when i = ¢(A). Next, we show that survival in A implies survival in
L,(ay; by definition of £,(4), A only contains a finite number of types in the levels below L, (),
namely the types in Ay := Anu;.,4)Li. Therefore, survival in A implies survival in at least one of
A; and A\A;. By the argument above, survival in A; implies local survival, which implies survival
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in £,(4). On the other hand, survival in A\A; also implies survival in £, 4y because survival in £,
implies survival in £, for all £ > 1 when 7 < 1. So q(4) = q(L,(4))-

Finally, if t(A) = 0, then extinction in A implies extinction in £, and therefore extinction in
Lo; indeed, by the above argument, survival in £; implies that infinitely many individuals in £q
will have at least one child in A n L. On the other hand, here A; = ¢F, and survival in A implies
survival in £y for the same reason as above. So g(4) = q(Lp).

Thus, for » < 1, we have at most a countable number of distinct extinction probability vectors.

Assume 7 = 1 (case (ii)). We show that when r = 1, the family A\{Lo} is regular, and due
to the linear structure of G 4, the edgeless subgraphs are precisely the countably infinite singletons
(individual levels). It is enough to prove that for any i > 1, £; = L£;1, that is, there exists z € X
such that ¢, (L;) < q.(L;+1). This implies q(£;) < q(L;+1). It suffices to show that, starting from x,
there is a positive chance of survival in £; without ever reaching £;,1. We consider a (i, k + 1)-type
individual (K > 0) and note that the expected number of its descendants that eventually reach t
(0,k + j) when all particles are frozen as soon as they reach Ly, is (’Jj”_ _11) Each frozen particle at
(0, k + 7) independently has probability p**7 of having a descendant that reaches (0, 0); we refreeze
the particles reaching (0,0). Thus, the expected number of frozen (0,0)-type descendants of the
initial (¢, k + 1)-type individual is given by

when p < 1. Since the sum is finite, we can select k£ such that the initial type x = (i,k + 1) has
an expected number of frozen (0,0)-type descendants strictly less than 1. By Markov’s inequality
there is a positive chance that the original particle has no (0, 0)-type descendants, and hence has
no descendants in £;11. The family A\{Lo} satisfies the conditions of Theorem 5.12(v).

Assume r < 1 (case (i)). For any i > 1, we show that if 7* > p, then q(£;) < q(L;;1), while if
r* < p then q(£;) = g; this implies that £; < L; if and only if r* < p and 17 < p. Hence the family
A does not satisfy (C3), but the subfamily A" := {L1, ..., L;+} does and it is regular.

Assume first that r’ > p. We need to show that there exists x € X such that ¢, (£;) < qz(Lit1).
Following similar arguments as in case (i), it suffices to show that the expected number of frozen
(0,0)-type descendants of an initial (7, 1)-type individual is finite. This expected number is bounded
above by

which is finite when ¢ > p.

Finally, assume r* < p. Because q(£;) < g, it remains to show that § < q(L;), or equivalently,
that survival in £; implies local survival. Without loss of generality, we consider an initial (7, 1)-type
individual and we show that, with probability 1, it has an infinite number of (0, 0)-type descendants.
Indeed, with probability 1, the initial individual has an infinite line of descendance made of type
{(4,7)}j=1 individuals. The probability that any (i, j)-type individual in this line of descendants has
at least one (frozen) (0,0)-type descendant is bounded from below by the probability of having at
least one descendant along the direct path from (i, 7) to (0,7) in P; and then along the direct path

from (0, 7) to (0,0) in Ly. This probability is 1 — Gg-i)(l —p?), where Gg.i)(s) is the composition of

geometric probability generating functions with mean 771 and satisfies

1 B (ri=1yi
Dy 11—
1-G;7(s) §

(L4 (T2 ()
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Si-fam-y ( (;j‘)ﬂ(l;jj}tl))”:w,

since the general term of the series diverges when 7' < p, by the Borel-Cantelli lemma, with

probability 1, the (i,1)-type individual has infinitely many (frozen) (0,0)-type descendants. By

extension the same is true when we start with any (4, j)-type individual. This shows that survival

in £; implies local survival. In this case ¥(A) = X({£;: 1 < i < i*} and Theorem 5.12(i) applies.
Assume r > 1 (case (iii)). We show that for each i,j > 1,

Py (S(Li) n E(X\L;)) > 0. (8.9)

Corollary 5.13 then implies that there are uncountably many distinct extinction probability vectors.

Recall that, with probability one, an initial (7, j)-type individual has an infinite line of descent
made of types (i, k) for k > j, and that &, denotes the geometric number of (i — 1, k)-type offspring
born to the (i, k)-type individual in this line of descent. By direct computation,

Because

1o pktl
k—j

since Z,:io —k+1 < 4 oo, Thus, for all j > 1, there is positive probability that the descendants of

(1,7) never reach £;_1, and therefore (8.9) holds.
]

Proof of Proposition 6.2: A similar argument as in the proof of Proposition 6.1 (r > 1) can be used
to show that £; < L) for all i # j.
Then, for any I C N with |I| = oo we have q(|J,.; £} q(X), and for any |I| < oo we have
q(User E; q(U;es £4); since the number of finite subsets of No is countably infinite, this proves
that Ext(A") is countably infinite. O

Appendix A. Numerical computation of q(A)

We describe an iterative method to compute the extinction probability vector g(A) for any subset
A € X in an irreducible MGWBP. Since X is countably infinite, we first relabel the types in A as
1,2,3,4,..., and the types in X\A as 1/,2/,3',4,.... For k, ¢ > 1, we then define ¢(**)(A) as the
global extinction probability vector of the finite-type modified branching process where the types
in A larger than k are immortal and the types in X'\ A larger than ¢ are sterile. More precisely, the
offspring generating function G**)(s) of the modified process is such that

)(s) = Gi(s) forallie A, i<k,
V(s) = Gu(s) foralli e X\A, i <?,
J(s) =0 for all i € A, i >k,
J(s) =1 for all ' € X\A, i’ >0,

and q**)(A) is the minimal fixed-point of the (finite) system s = G**)(s), obtained by functional
iteration.

Proposition A.1. If the MGWBP is irreducible then
lim lim ¢ (A) = q(A).

k—00 {'—00
The proof follows the same arguments as that of Theorem 4.3 in Braunsteins and Hautphenne
(2020). Note that the convergence rate of the sequence {g**)(A)} #=1 depends on the way the
types are relabelled. In addition, it is often more efficient to let & = ¢ and let them increase to
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infinity together; however, we must be careful since that does not always guarantee convergence, as
highlighted in Braunsteins and Hautphenne (2020). The computational method can be optimised
depending on the example under consideration.
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