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Societal Impact Statement

The legume crop cowpea is grown worldwide, but 90% of the world's total share is

produced in Africa. It is a promising species due to its resilience properties, balance

of macro and micronutrients and presence of health-promoting bioactive compounds.

In African countries, cowpea has a crucial role in guaranteeing food security as a sub-

sistence crop for families and commercial income for small farmers. The discovery of

compounds with high nutraceutical value and bioactive properties supports socio-

economic policies to improve health and nutrition, especially in low- and middle-

income countries. In turn, this encourages biodiversity protection and crop enhance-

ment programmes.

Summary

• Bowman–Birk protease inhibitors (BBIs) are a restricted group of small proteins in

plants mainly involved in defence mechanisms against pests. BBIs are demon-

strated to be active components capable of reducing the viabilities of different

cancer cell lines. BBI bioactivity is directly linked to the inhibition capacity, but the

variability and the efficiency against the physiological targets of different BBI iso-

forms remain still unexplored.

• We analysed the natural genetic diversity of two main genes encoding BBI tryp-

sin-trypsin (BBI-TT) and trypsin-chymotrypsin (BBI-TC) in wild and domesticated

cowpea samples mainly spread in Sub-Saharan Africa. We analysed DNA

sequences and respective amino acidic isoforms/isoproteins to explore signs of

natural selection and haplotype relationships. Moreover, we calculated the binding

energy between BBIs and their biological targets to identify which are the most

efficient inhibitors and their geographical locations.
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• We found a high level of haplotype diversity for both genes, almost exclusively in

wild accessions and detected positive and negative selection signals in the amino

acid sequences. Furthermore, in the wild diversity pool, some BBI-TT and BBI-TC

mature proteins were potentially better interactors with the physiological targets.

• The long interaction between plant-pathogen has selected new and useful iso-

forms in wild lineages that have allowed the chances of survival of the species to

improve. On the other hand, the domestication process has produced an intense

bottleneck leaving only poorly efficient BBI variants. In addition to providing infor-

mation on the natural diversity and evolution of BBIs, our work discusses the

potential applications in agriculture and human health.

K E YWORD S

binding energy calculations, bioactive compounds, biodiversity, Bowman–Birk protease
inhibitors, domestication, legumes, selective pressure, Vigna

1 | INTRODUCTION

Plants are a fundamental source of natural protease inhibitors which

have the function of discouraging the attacks of invading insect herbi-

vores by inactivating digestive proteases (Pandey et al., 2022). Prote-

ase inhibitors are generally small proteins containing one or more

inhibitory domains and are classified based on the chemical nature of

the inhibited groups (Laskowski & Kato, 1980). Among the serine pro-

tease inhibitors, Bowman–Birk protease inhibitors (BBIs) are one of

the best characterised groups. Molecular studies have suggested that

BBIs appeared in the most ancient tracheophytes (James et al., 2017),

but were lost by many families during the evolution process. However,

in Poaceae and Fabaceae families, BBIs show a highly conserved struc-

ture composed of about 70 amino acids, 14 of which are cysteines

that create 7 disulphide bonds folding the protein (Mello et al., 2003).

In Fabaceae, BBIs show a ‘double headed’ conformation because of

the presence of two independent inhibitory domains

(Domoney, 1999; Mello et al., 2003). Affinity for its specific target is

determined by a single amino acid (called P1) located in the interactive

domain of the protein that initiates the interaction with the target

enzyme (Schecter & Berger, 1967). According to the intrinsic physico-

chemical characteristics of the P1 amino acid, BBI can inhibit trypsin

(with positively charged amino acids, such as lysine or arginine) or chy-

motrypsin (with aromatic or apolar amino acids, such as phenylalanine,

tyrosine and leucine) (Clemente & Domoney, 2006) widely present in

the digestive system of target insects.

Although BBIs are mainly involved in defence mechanisms against

pests, they are believed to also be involved in some abiotic stress con-

trol mechanisms (Dramé et al., 2013; Shan et al., 2008). These inhibi-

tors have shown to be resistant to high temperatures, typically

required in cooking recipes, and, therefore, diets based on these nutri-

ents are recognised to be beneficial in the treatment of many diseases

for their anticarcinogenic, antioxidant and anti-inflammatory proper-

ties (Gitlin-Domagalska et al., 2020). Chemopreventive activities have

been tested showing encouraging results for several legumes,

fundamentals for human alimentation, such as soybean, pea and bean

(Clemente & del Carmen Arques, 2014; Conti et al., 2021; Sánchez-

Chino et al., 2015). Some researchers have proposed the employment

of BBIs or enriched extracts as therapeutic agents in various human

cancers (Gitlin-Domagalska et al., 2020; Srikanth & Chen, 2016;

Tripodi et al., 2020) in particular against colorectal cancer (CRC)

models (Clemente et al., 2005, 2010; Lima et al., 2016; Olías

et al., 2019; Panzeri et al., 2020). Recently, BBI extracts recovered

from Vigna unguiculata (L.) Walp. (cowpea) water-boiled seeds were

assumed to be the main active component able to reduce the viability

of different CRC cell lines reducing the levels of phosphorylated epi-

dermal growth factor receptor (EGFR) (Panzeri et al., 2020). These

findings confirm the importance of including cowpea in legume-based

diets to prevent CRC occurrence. Considering all these beneficial

properties, it is considered important to study the variability of BBI

with the aim of identifying more effective forms both for plant pest

resistance and human wellbeing.

Cowpea has been considered an orphan crop for several decades,

but its cultivation is spreading in many semi-arid countries where

other crops are poorly suitable (Boukar et al., 2019; Guzzetti

et al., 2019; Panzeri et al., 2022). Some studies that have compared

traditional and modern landraces have shown different concentrations

of proteins and minerals, proposing that some underutilised lineages

could be used to select new varieties (Abadassi, 2015; Boukar

et al., 2011; Dakora & Belane, 2019; Horn et al., 2015). Given that

cowpea is an increasingly widespread crop with great plasticity and

adaptability, wild lineages could become a crucial resource for future

breeding and agricultural programmes providing useful genes and

traits that could greatly improve current cultivars (Harouna

et al., 2018; Padulosi & Ng, 1997). Taxonomic analyses have identified

over 10 subspecies with a high morphological diversity suggesting

that V. unguiculata originated in the South-East regions of Africa

where the greatest wild diversity is found (Coulibaly et al., 2002;

Pasquet, 1996, 1997, 1999; Pasquet et al., 2021; Pasquet &

Padulosi, 2013; Xu et al., 2012). Unfortunately, these studies consider

2 PANZERI ET AL.

 25722611, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1002/ppp3.10507 by U

niversity Studi M
ilano B

icocca, W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



only morphological or non-coding molecular markers and the natural

variability of genes that encode for BBIs remains unknown (Muñoz-

Amatriaín et al., 2021; Panzeri et al., 2022).

In our study, we have explored the natural genetic diversity of

two main genes encoding BBI in cowpea able to inhibit trypsin and

chymotrypsin enzymes (hereafter BBI-TT for trypsin/trypsin gene

and BBI-TC for trypsin/chymotrypsin gene). These two genes are the

main ones responsible for BBI proteins in cowpea as observed in

various studies (Clemente et al., 2010; Hilder et al., 1989; Mehdad

et al., 2016; Panzeri, 2023). We hypothesise that wild accessions

during the evolution process have kept the majority of diversity, and

they are currently harbouring the BBI proteins with high energetic

efficiency. To address our hypothesis, we: (i) characterised the haplo-

types and respective amino acidic isoforms and assessed the geo-

graphical distribution of BBIs variability; (ii) identified the codons

targeted by natural selection; (iii) finally, we calculated the energy of

interaction between the BBI proteins and their respective biological

targets to identify which are the most efficient protease inhibitors and

in which accessions they are located.

2 | METHODS

2.1 | Definitions

For greater clarity, we define ‘accession’ as the unique identifier

assigned to collected organisms by the germplasm seed banks in their

specific collection, while we define ‘individual’ as the plant gathered

after germination and from which we have extracted the genomic

DNA. On average, 1–3 individuals per accession were analysed in this

study. Furthermore, we will use the term ‘haplotype’ to refer to all

possible combinations of genetic variants found on the same locus,

whereas the term ‘isoform’ will refer to the corresponding translated

amino acid sequences. Eventually, we use the term ‘isoprotein’ to

refer to the different forms of mature protein sequence, starting from

the first maturation cleavage (Kumar et al., 2002).

2.2 | Sampling

In order to explore the geographic distribution of gene diversity of

BBI-TT and BBI-TC genes in V. unguiculata a total of 426 individuals

were sampled. In particular, 303 individuals (126 accessions) were

obtained from International Institute of Tropical Agriculture (https://

my.iita.org/accession2/, IITA, Ibadan, Nigeria), 116 individuals (51

accessions) were obtained from Meise Botanical Garden (http://db.

plantentuinmeise.be/RESEARCH/COLLECTIONS/LIVING/

PHASEOLUS/index.html, Meise, Belgium) and 7 individuals (5 acces-

sions) were obtained from Centro De Recursos Fitogenéticos (https://

www.inia.es/en-en/units/Institutes%20and%20Centres/CRF/

Paginas/Home.aspx, CRF, Madrid, Spain). The list of all accessions,

including origins, taxonomical classification and geographic coordi-

nates is reported in Table S1. Overall, 399 individuals (168 accessions)

came from Sub-Saharan African countries, whereas 27 individuals

(14 accessions) came from out of Africa countries.

As a phylogenetic outgroup, 3 accessions belonging to Vig-

na mungo (L.) Hepper, Vigna hirtella Ridl. and Vigna trinervia (B.Heyne

ex Wight & Arn.) Tateishi & Maxted were downloaded from the

National Center for Biotechnology Information (NCBI) databank

(https://www.ncbi.nlm.nih.gov, Table S2).

2.3 | DNA isolation and BBI genes characterisation

The choice of the candidate genes was carried out carefully based on

literature and published data. In particular, the screening of existing

protein crystals published in public databases (InterPRO, UniProtKB

and PDB) led us to the identification of two BBI mature proteins:

trypsin–trypsin (Q4VVG2, https://www.uniprot.org/uniprotkb/

Q4VVG2/entry, crystal entry 2g81) and trypsin–chymotrypsin

(Q9S9H8, https://www.uniprot.org/uniprotkb/Q9S9H8/entry, crystal

entry 2r33). Secondly, the specific sequence of these BBI entries was

blasted into the reference V. unguiculata genome to obtain the com-

plete gene sequence (Figure S1).

The genomic DNA of 426 samples was extracted from dried

leaves with the E.Z.N.A.® Plant DNA kit (Omega Bio-Tek, https://

omegabiotek.com/) according to the manufacturer's instructions. BBI-

TT and BBI-TC genes were PCR-amplified using Esco Healthcare

Swift-MaxPro thermocycler and in 25 μL total volume reactions con-

taining 5–30 ng DNA, GoTaq® G2 Green Master Mix (Promega,

https://ita.promega.com/), 5 pmol of each primer and purified water

until the final reaction volume. Details on PCR protocols and primers

are given in Tables S3 and S4. Products of PCR were visualised by 2%

agarose gel electrophoresis stained with EuroSafe Nucleic Acid Stain

(EuroClone, https://www.euroclonegroup.it/) and purified prior to

DNA sequencing with the QIAquick PCR Purification Kit (Qiagen,

https://www.qiagen.com/it). Successively, DNA sequencing was per-

formed by Eurofins Genomics (Vimodrone, https://eurofinsgenomics.

eu/), and sequences obtained were deposited in the NCBI GenBank

database.

2.4 | Data preparation and gene diversity

Multiple sequence alignment was generated with the online version

of MAFFT v. 7 (Katoh et al., 2019; Kuraku et al., 2013) producing two

different datasets for BBI-TT and BBI-TC genes. DNA sequences

were compared visually and those sequences containing heterozygous

sites were probabilistically resolved in the corresponding haplotypes

using the PHASE software (number of iterations = 500, thinning

interval = 1, burn-in = 100) implemented in DnaSP v.6.12.03 (Rozas

et al., 2017). Only individuals with resulting phase probabilities >.95

were considered for successive analysis. Successively, parsimony

informative sites (P), nucleotide diversity (π) and haplotype diversity

(HD) were calculated for both genes using the programme DnaSP

v.6.12.03.

PANZERI ET AL. 3
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2.5 | AMOVA analyses

Analysis of molecular variance (AMOVA) statistical analyses on the

geographic distribution of haplotypes was performed using Arlequin

v3.5.2.2 (Excoffier et al., 1992; Excoffier & Lischer, 2010; Weir &

Cockerham, 1984). The analysis was conducted by dividing accessions

into two groups, West versus South-East Africa, excluding non-African

accessions from the grouping and the subsequent analysis (Table S1).

The dividing region was set in correspondence with the tropical

Congolese rainforest. Analyses considered polymorphic sites including

indels and were run with 1000 standard permutations. Moreover, P, π

and HD were calculated for geographic groups (West and South-East

Africa) and wild and domesticated groups.

2.6 | Phylogenetic and network analysis

We inferred a maximum likelihood (ML) tree using RAxML-HPC

BlackBox for both datasets produced with and without outgroups

performed under the general time-reversible with gamma distribution

(GTRGAMMA) model of substitution (Stamatakis, 2014). All runs

were performed on the Cyberinfrastracture for Phylogenetic

Research (CIPRES) Science Gateway (Miller et al., 2010). Moreover,

a neighbour joining (NJ) tree was produced using the p-distance

method and 1000 bootstrap replicates by MEGA11 software

(Tamura et al., 2021). Finally, to understand the relationships among

the identified haplotypes the Popart 1.7 software (Leigh &

Bryant, 2015) was chosen to perform network analyses using the

parsimony method (Templeton–Crandall–Sing network (TCS) net-

work). A network is generated by the integrated algorithm by collaps-

ing identical haplotypes and separating them by single base

mutations with probability >95% (Clement et al., 2002).

2.7 | Positive and negative selection analyses

In order to detect the sites under selection the haplotypes were pre-

pared using Codon Alignment v2.1.0 (https://www.hiv.lanl.gov) and all

stop codons were manually removed. Fast, unconstrained Bayesian

approximation (FUBAR) (Murrell et al., 2013), fixed effects likelihood

(FEL) (Kosakovsky Pond & Frost, 2005), mixed effects model of evolu-

tion (MEME) (Murrell et al., 2012) and single-likelihood ancestral count-

ing (SLAC) (Kosakovsky Pond & Frost, 2005) methods were performed

using the DATAMONKEY web server (https://www.datamonkey.org/)

(Weaver et al., 2018), while site model (SM) tests were performed using

EasyCodeML v1.4 software (Gao et al., 2019). Each dataset was ana-

lysed to explore signs of positive and negative selection, and for each

software, the analysis parameters were set as described below.

2.8 | Site model test

SM uses a statistical distribution to account for variation in the ω ratio

among codons (Nielsen & Yang, 1998). The ratio (ω) of the non-

synonymous substitution rate (dN) to the synonymous substitutions

rate (dS) was used to determine the selective pressure (Yang &

Nielsen, 2002). Codon substitution models were investigated under

the preset mode: M7 versus M8 and M8a versus M8. To minimise the

possibility of stumbling in local optima, we ran the M8 model with dif-

ferent starting ω values (ω = 2 and 0.5) as suggested by Anisimova

et al. (2002). Positive selection was reported in results if the estimated

ω parameter was greater than 1 and if the likelihood ratio test (LRT) of

the comparison (M7 vs. M8 and M8a vs. M8) showed p-value smaller

than .05. In order to identify the codons under positive selection, we

performed the Bayes empirical Bayes (BEB) analysis implemented in

EasyCodeML (Yang et al., 2005). For each codon, positive selection

was reported when BEB analysis showed p > .9.

2.9 | FUBAR analysis

FUBAR uses a Bayesian approach to infer dN and dS substitution rates

on a per-site basis for a given coding alignment assuming that the

selection pressure for each site is constant along the entire phylogeny

(Murrell et al., 2013). FUBAR reports evidence for pervasive positive

selection using posterior probabilities and the authors suggest that

p > .9 is strongly suggestive of positive selection (Weaver et al., 2018).

FUBAR was run using the following default options: number of Markov

chain Monte Carlo (MCMC) chains to run = 5, length of each

chain = 2,000,000, burn-in = 1,000,000 and samples drawn from each

chain = 100. Moreover, we selected the advanced options: number of

grid points = 50; concentration parameter of the Dirichlet prior = 0.5.

2.10 | FEL analysis

FEL uses an ML approach to infer dN and dS substitution rates on a

per-site basis for a given coding alignment along the entire phylogeny

(Kosakovsky Pond & Frost, 2005). FEL fits an MG94xREV model to

each codon site to infer site-specific dN and dS substitution rates. We

selected 500 bootstrap resamples. The selection signal of each codon

estimated was reported for p-value < .1 (Poon et al., 2009).

2.11 | MEME analysis

MEME employs a mixed-effects ML approach to test the hypothesis

that individual sites have been subject to positive selection (Murrell

et al., 2012). MEME allows the distribution of ω to vary from site to

site and also from branch to branch at a site and it can capture the

molecular footprints of both episodic and pervasive positive selection.

The significance threshold was set at p = .1 (Poon et al., 2009).

2.12 | SLAC analysis

SLAC uses ML to infer the most likely ancestral sequence at each node

of the phylogeny (Kosakovsky Pond & Frost, 2005). SLAC then

4 PANZERI ET AL.
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employs a modified version of the Suzuki–Gojobori counting method

(Suzuki & Gojobori, 1999) to directly count the total number of dN

and dS changes that have occurred at each site. The significance

threshold was set at p = .1 (Poon et al., 2009) and is ascertained at

each site using an extended binomial distribution even if it may not be

accurate for data sets that show high divergence levels.

2.13 | Geographical distribution

The maps of the accession distributions were generated with QGIS

Desktop v. 3.28.3-Firenze (https://www.qgis.org/it/site/). Coordinates

given by germplasm databanks were used to localise every accession.

When coordinates were not available or uncertain, details provided in

the accession description were instead used to increase the localisa-

tion precision. Furthermore, accessions were coloured based on the

corresponding haplotypes, isoforms and isoproteins for each gene. The

point size was determined by the number of samples. To avoid multi-

ple overlaps on the same point, the software was instructed to shift

the point around the precise position with a distance set at 1.

2.14 | Binding energy calculations

Structures of the 17 BBI mature proteins (7 BBI-TT and 10 BBI-TC, see

Section 3) were predicted using AlphaFold v2.0 (Jumper et al., 2021) and

then refined through molecular dynamics (MD) simulations with Gro-

ningen Machine for Chemical Simulation (GROMACS, Abraham

et al., 2015; Páll et al., 2015). Five simulations were carried out for

100 ns each with an integration step of 2 fs in an NPT ensemble at a

temperature of 300 K and pressure of 1 atm using Chemistry at Harvard

Macromolecular Mechanics (CHARMM36, Huang & MacKerell, 2013)

force field. For every mature protein, trajectories were concatenated and

processed using the cluster analysis tool of GROMACS to identify the

most representative structure for each system. Cluster analysis was car-

ried out with gromos algorithm (0.6 Å cut-off for both BBI-TT and BBI-

TC) (Daura et al., 1999). The structure representing the centroid of the

most populated cluster was used as the starting point for the binding

energy calculations. For the computational analysis, two crystals were

used as reference: the BBI from Vigna radiata (L.) R. Wilczek, in complex

with porcine trypsin (PDB id: 3MYW) and BBI from Glycine max (L.)

Merr. in complex with bovine alpha-chymotrypsin (PDB id: 5J4S). These

crystals were used to build a total of 14 BBI-TT trypsin/trypsin com-

plexes (7 for each inhibitory domain) and 20 BBI-TC trypsin/

chymotrypsin complexes (10 for each inhibitory domain), 2 for each

isoform, in order to obtain a dimeric structure for each of the two prote-

ase reactive sites with trypsin/chymotrypsin, according to the standard

mechanism for serine proteinase inhibition. Each complex was obtained

by superimposing and replacing the original crystallographic BBI struc-

ture with the BBIs described in this work. Also, these complexes were

refined using the MD protocol previously described (i.e. gromos cutoff:

0.5 Å for both BBI-TT-trypsin/trypsin complex and BBI-TC-trypsin/

chymotrypsin complex). Trypsin and chymotrypsin structures were iso-

lated from the aforementioned X-ray structure and optimised using the

same MD protocol illustrated above for the BBI isoforms (gromos cut-

off: 0.4 Å for porcine trypsin and 0.35 Å for bovine chymotrypsin). The

binding energy is defined as the energy difference between the bound

conformation of BBI to an enzyme (trypsin or chymotrypsin, Eenz-BBI)

and the unbound BBI and enzyme in water (EBBI + Eenz) according to

this formula (Kuhn & Kollman, 2000):

ΔE¼Eenz�BBI� EBBIþEenzð Þ:

A single-point energy calculation was performed on each struc-

ture using MacroModel from Schrödinger Suite (Release 2021-1,

2021) in order to obtain the potential energy of the system.

3 | RESULTS

3.1 | Molecular characterisation, gene diversity
and evolution

Two multiple sequence alignments of 324 bp for BBI-TT and 345 bp

for BBI-TC were produced and after the analyses with the Phase algo-

rithm, a total of 24 haplotypes for BBI-TT and 29 haplotypes for BBI-

TC were identified. These haplotypes resulted in 13 isoforms and

7 isoproteins for BBI-TT and 20 isoforms and 10 isoproteins for BBI-

TC. Sequences corresponding to haplotypes, isoforms and isoproteins

are summarised in Tables S5–S10. The list of individual samples and

relative haplotypes, isoforms and isoproteins is summarised in

Table S11. The distribution of haplotypes, isoforms and isoproteins

for each gene in wild and cultivated subspecies is summarised in

Table 1. Notably, only three isoforms and two isoproteins and only

two isoforms and one isoprotein were found in domesticated subspe-

cies for the BBI-TT and BBI-TC genes, respectively. Polymorphic sites

for haplotypes, isoforms and isoproteins are listed in Tables S12–S17.

The diversity indices showed higher variability for BBI-TC

(P = 32, π = 0.00672 ± 1 � 10�5 and HD = 0.685 ± 0.016) than for

BBI-TT (P = 18, π = 0.00403 ± 1 � 10�5 and HD = 0.677 ± 0.016).

TABLE 1 The table summarises the
distribution of haplotypes, isoforms and
isoproteins for the BBI-TT and BBI-TC
genes in wild and domesticated cowpea.
The number of variants for each category
is indicated in brackets.

Gene Group Haplotype Isoforms Isoproteins

BBI-TT Wild H1–H14, H16–H24 (23) Iso1–Iso13 (13) P1–P7 (7)

Domesticated H1, H2, H15 (3) Iso1, Iso2, Iso3 (3) P1, P2 (2)

BBI-TC Wild H1–H29 (29) Iso1–Iso20 (20) P1–P10 (10)

Domesticated H1, H7 (2) Iso1, Iso6 (2) P1 (1)

PANZERI ET AL. 5
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These indices were calculated to compare wild and domesticated

accessions remarking the greatest variability within wild ones (BBI-TT:

P = 18, π = 0.00420 ± 1 � 10�5 and HD = 0.7350 ± 0.012, BBI-TC:

P = 32, π = 0.00876 ± 1 � 10�5 and HD = 0.799 ± 0.0002) than into

domesticated ones (BBI-TT: P = 4, π = 0.00259 ± 0.00039 and

HD = 0.245 ± 0.035, BBI-TC: P = 1, π = 0.00056 ± 0.00009

and HD = 0.2 ± 0.032) Furthermore, they were also performed for

geographic groups and biological origin, showing higher value of vari-

ability for South Eastern Africa (Tables S18–S20). For both genes, the

AMOVA analysis on wild accessions showed a 2.2% (BBI-TT) and 9%

(BBI-TC) genetic differentiation among geographic groups, within

which most of the observed variance was partitioned. The same anal-

ysis was performed on domesticated accessions of the two geo-

graphic groups showing 16% and 18.5% variation among populations,

respectively (Tables S21 and S22).

Statistical parsimony networks that explain the phylogenetic

relationships between haplotypes for each gene are shown in

Figures 1a and 2a. Different colours used in the networks corre-

spond to 13 and 20 isoforms obtained for BBI-TT and BBI-TC,

respectively. The Sub-Saharan distribution of the different isoforms

is shown in Figures 1b and 2b. The same networks painted for bio-

logical origin (wild vs. domesticated) and for different isoforms and

isoproteins are available in the Supporting Information (Figures S2

and S3). Geographical distributions of accessions and their relative

haplotypes, isoforms and isoproteins are reported in the Supporting

Information (Figures S4–S10).

3.2 | Selection pressure on genes

Because SM test and BEB analyses implemented in EasyCodeML

requires a phylogram as the input file, alternative phylogenetic trees

were produced for the different analyses (see Section 2). Trees gener-

ated from RAxML and NJ analyses are listed in Newick format in

Table S23. We found a considerable number of codons under nega-

tive selection in both genes (up to 9 sites for BBI-TT and up to 8 for

BBI-TC). Moreover, signatures of positive selection were found in

2 residues for BBI-TT and in 3 residues for BBI-TC. All codons tar-

geted by natural selection are summarised in Figure 3, which high-

lights their location on the amino acid sequences and the different

analysis methods used. The generated trees are shown in Newick for-

mat in Table S19 and the complete list of all outputs obtained from

SM, FEL, FUBAR, MEME and SLAC analyses is reported in the Sup-

porting Information (Tables S25–S30).

3.3 | Binding energy calculations

Computational approaches were performed to assess and predict the

inhibition capability of the proteins found by the genetic diversity

exploration. In particular, among each calculation, some mature pro-

teins resulted in needing less energy to interact with the physiological

targets. Figure 4 shows the calculated relative energies for each

mature protein compared with the most common BBI (P1) used as a

reference. We highlighted that P2 and P7 for BBI-TT and P3 and P6

for BBI-TC were the mature proteins examined in this study that

needed less binding energy (raw calculations are provided in

Tables S31–S34). Taking the sequence of P1 as a reference, the muta-

tions of P2 and P7 (BBI-TT) are two amino acid mutations near the

first trypsin-interacting loop (isoleucine to methionine at Residue

50 and threonine to serine at Residue 52, respectively). The mutations

of P3 and P6 (BBI-TC) are, respectively, a glycine to alanine (pos. 92)

found near the chymotrypsin-interacting loop, while the P6 has a

mutation in the N-terminus tail (glutamate to valine in pos. 40).

4 | DISCUSSION

A growing number of crystal structures of plant protease inhibitors

are becoming available and an increasing number of pharmaceutical

companies are showing interest in their application in human clinical

trials (Srikanth & Chen, 2016). Although protease inhibitors can be

produced by synthetic processes, they can be more easily ingested

through a diet based on traditional cereals or legumes, reducing their

costs and avoiding negative impacts on the human organism. There-

fore, in this study, we have explored the natural diversity developed

during the evolution of the BBI-TT and BBI-TC genes in cowpea,

evidencing which accessions conserved the mature BBIs with the

highest potential for agriculture and human health.

4.1 | Distribution of variability and natural
selection in BBI genes

Our results show that during evolution several mutations have been

accumulated on both BBI genes examined. As evidenced by different

tests (Figure 3), signatures of negative selection are spread along the

amino acid sequences indicating that several residues are probably

fundamental in maintaining the structure of proteins. On the other

hand, codons targeted by pervasive positive selection may be promot-

ing the emergence of different and more efficient mature isoproteins,

suggesting that evolutionary forces could be still in progress. Although

different stressors such as past climate changes, pests or agriculture

can have influenced the evolution of BBI genes, the interaction with

insects should be the main candidate (Bussotti et al., 2014; Pandey

et al., 2022; Panzeri et al., 2022). Different genes that encode for BBIs

are frequently found in plants (Panzeri et al., 2022; Srikanth &

Chen, 2016) and the strategy of increasing the number of variants is

generally used in plants to reinforce the defences efficiency, minimis-

ing the hydrolysis risk by the enzymes of insects (Gitlin-Domagalska

et al., 2020). Our results, showing a remarkable number of different

isoforms within the wild subspecies (13 isoforms in BBI-TT and 20 iso-

forms in BBI-TC), would therefore be consistent with the ‘arms race’
paradigm. In this perspective, new isoforms produced in the popula-

tions could be targeted by natural selection during the evolution,

improving the chances of survival of the species. Although this

6 PANZERI ET AL.
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explanation seems plausible, we cannot completely exclude that other

causes contributed to shaping the current pattern of observed iso-

forms. On the other hand, regarding the cultivars included in this

work, our findings do not support the idea that the domestication pro-

cess had a positive role in the selection and conservation of isoforms

(Larson et al., 2014; Panzeri et al., 2022). Among all landraces analysed

F IGURE 1 (a) Network and geographical distribution in Sub-Saharan Africa of haplotypes and corresponding isoforms of the gene encoding
the trypsin–trypsin Bowman–Birk protease inhibitor (BBI-TT) in Vigna unguiculata accessions. Haplotype networks were generated using the
PopArt v.1.7 programme from BBI-TT gene. Colours indicate the corresponding isoforms (Iso1–Iso13) and portions with lined texture highlight
samples from domesticated accessions. Black hatch marks along the branches indicate the numbers of mutations. (b) Map showing the
distribution of BBI-TT gene isoforms (grouped by corresponding mature proteins) in Sub-Saharan Africa.

PANZERI ET AL. 7
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F IGURE 2 (a) Network and geographical distribution in Sub-Saharan Africa of haplotypes and corresponding isoforms of the gene encoding
the trypsin–chymotrypsin Bowman–Birk protease inhibitor (BBI-TC) in Vigna unguiculata accessions. Haplotype networks were generated using
the PopArt v.1.7 programme from BBI-TC gene. Colours indicate the corresponding isoforms (Iso1–Iso20) and portions with lined texture
highlight samples from domesticated accessions. Black hatch marks along the branches indicate the numbers of mutations. (b) Map showing the
distribution of BBI-TC gene isoforms (grouped by corresponding mature proteins) in Sub-Saharan Africa.

8 PANZERI ET AL.
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in this study, only two isoforms for BBI-TC and three isoforms for

BBI-TT were identified (see Table 1). This notable loss of variation

compared with wild subspecies can be seen as a side effect of the

domestication process. Likewise other crops, the accessions exten-

sively cultivated in the world today have originated from a small num-

ber of plants. The marked reduction in population size associated with

the domestication bottleneck would have caused a reduction of the

gene pool variability. In addition, reducing population size would have

increased the strength of genetic drift, leading to further loss of

variability.

Finally, we highlighted that the geographic distribution of genetic

diversity is unequally distributed between West and South/east Sub-

Saharan Africa and the higher variability found is located in South-

eastern regions. Because it is generally recognised that the centre of

origin of a species is characterised by higher variability, our results

reinforce the idea that the most ancient wild lineages of V. unguiculata

are originated in the South-Eastern area (Padulosi & Ng, 1997;

Pasquet, 1997, Pasquet & Padulosi, 2013; Pasquet et al., 2021).

Therefore, we suggest that extensive sampling, especially in the areas

where the wild progenitors originated, could greatly increase the

probability of finding new unknown genetic variants.

4.2 | BBI bioactivity and potential applications

We have evaluated the interaction energies of Bowman–Birk prote-

ase inhibitors with trypsin and chymotrypsin targets demonstrating

that the mature proteins that need less binding energy are spread

mostly in wild accessions of African cowpea. P2 and P7 for BBI-TT

and P3 and P6 for BBI-TC are the most efficient BBI forms examined

F IGURE 3 Graphic summary of the in-silico analyses conducted on the whole amino acid sequence and residue mutations on the mature
protein in the interaction with their physiological targets. Selection analyses on the whole translated gene sequences for (a) trypsin–trypsin
Bowman–Birk protease inhibitor (BBI-TT) and (b) trypsin–chymotrypsin Bowman–Birk protease inhibitor (BBI-TC). The shown sequences and
proteins, used as reference, correspond to P1 of both BBI-TT and BBI-TC. Portions of the amino acid sequence are coloured differently: signal
peptide in grey, propeptide in blue and mature protein in orange. Interactive domains are underlined while residues that change among all
isoforms found are represented in bold-black font (see Tables S13 and S16). Sites detected by selection analyses are indicated by arrows
(red = negative selection and green = positive selection). Letters explain which method detected the corresponding site under pressure (a = site
model [SM], b = fixed effects likelihood [FEL], c = fast, unconstrained Bayesian approximation [FUBAR] and d = single-likelihood ancestral
counting [SLAC]) and the numbers explain the corresponding residue. Graphical representation of BBI-TT (c) and BBI-TC (d) mature isoproteins in
interaction with the physiological targets. Trypsins are coloured in light purple, chymotrypsin in green and BBIs in orange while the mutated
amino acids are shown in red and labelled with the three letters code (in alphabetical order: Asp-aspartate, Glu-glutamate, Gly-glycine, Ile-
isoleucine, Met-methionine, Phe-phenylalanine, Pro-proline, Thr-threonine, Val-valine).
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in this study, probably obtained through a long interaction between

plants and different pathogens spread in Africa. The past lack of

human-driven selective pressure for some isoforms over others, com-

bined with the domestication bottleneck and the random effect of

genetic drift can be argued as the main causes of the small number of

isoproteins observed within the domesticated group (Panella &

Gepts, 1992; Xiong et al., 2016). Unfortunately, these isoproteins

largely correspond to the less energy-efficient BBI variants. This event

is clearly observable in P1 of BBI-TT, which, despite being the most

common protein in domesticated accessions, shows a higher binding

energy when interacting with physiological targets where the calcu-

lated differences with P2 are �57.2 kcal/mol and �106.8 kcal/mol for

the two trypsin domains, respectively. Single amino acid substitutions

can have huge impacts on the protein stability or target affinity, due

to their physicochemical properties. At the protein level, this change

can involve a total target shift, such as the domain affinity in the BBI

for trypsin or chymotrypsin, or a change in overall net charge or inter-

action energy. MD coupled with binding energy calculations have

allowed us to consider the entire 3D protein model resulting in a

clearer and wider perspective. We report that improving mutated

amino acids had a direct effect on the energy needed for target inter-

action, probably due to the proximity to the interaction loops and the

physicochemical properties of the single amino acids. Comparing

the best BBIs (Figure 4, Tables S14 and S17) with the most common

isoprotein (P1) diffused in almost the totality of domesticated acces-

sions, we present a panel of mutations that have impacted the protein

functionality. For example, the change of a methionine into an isoleu-

cine in Position 50 (P2 to P1, BBI-TT) involves the loss of a sulphur

atom and prevents a further salt bridge, affecting the protein–protein

interaction. The change from a serine to a threonine in Position

52 (P7 to P1, BBI-TT) involves an addition of a methyl group,

moderately decreasing the polarity of the loop. For the BBI-TC gene,

the mutation in Position 92 (P3 to P1) implies a loss of a methyl group

(a glycine instead of an alanine), disfavouring the chymotrypsin hydro-

phobic interaction. In addition, the codon in Position 92 turned out to

be targeted by positive selection indicating that pervasive forces of

selection are still influencing the evolution of protein in this site.

Although the most efficient BBI forms examined in this study are

located especially in wild lineages, a restricted group of domesticated

accessions show a BBI form characterised by low binding energy

(P2 for BBI-TT). These landraces are mostly cultivated in South-

eastern regions of Africa (Kenya, TVU11422; Tanzania, TVU13237;

Lesotho, TVU15404; Madagascar, TVU6901) and in India (NI778),

suggesting that at least a part of the Asian cowpea could have arrived

directly across the Indian ocean or across the Sabaean Lane in modern

Yemen from South-Eastern Africa to India (Blench, 2003; Herniter

et al., 2020). This result does not contradict the hypothesis of diffu-

sion from Africa to Asia proposed by different authors (Herniter

et al., 2020; Padulosi & Ng, 1997; Panzeri et al., 2022), and, in addi-

tion, it highlights that some domestic lineages are also a valuable pool

of genetic resources (Ramanatha Rao & Hodgkin, 2002) that can be

exploited to integrate or ameliorate features of other existing culti-

vars. The physiological role of BBIs is crucial, especially for the first

developmental stages of the plant (Clemente & Domoney, 2006), con-

tributing to the rise of the innate defensive plant capability, germina-

tion success and harvest outcome. In this perspective, de novo

domestication approaches could be applied to develop new cultivars

with elite traits that improve both the nutritional quality and the resis-

tance to biotic/abiotic stresses (Fernie & Yan, 2019; Renzi

et al., 2022; Smỳkal et al., 2018). Regarding human health potential

applications, BBIs inhibition is not limited to trypsin and chymotrypsin,

but can also interact with other molecular targets (Rawlings

F IGURE 4 Calculation results of the found mature proteins in interaction with physiological targets (trypsin or chymotrypsin) for each
interacting domain. Binding energy calculations of the (a) trypsin–trypsin Bowman–Birk protease inhibitor (BBI-TT) and (b) trypsin–chymotrypsin
Bowman–Birk protease inhibitor (BBI-TC) mature proteins in comparison to the most common protein (P1 for each graph). Blue column explains
the calculated energy expressed in kcal/mol at the first protein interaction domain, while the yellow column at the second interaction domain,
enzyme affinity is summarised in brackets. Protein belonging to domesticated and/or wild accessions are specified with D for domesticated and
W for wild.
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et al., 2004). In particular, BBIs can successfully and selectively inter-

act with protein complexes involved in cancer growth and develop-

ment, such as proteasome 20S and metalloproteinases 2 and

9 (Fereidunian et al., 2014; Mehdad et al., 2016). Although the mecha-

nism of interaction is still unclear, we hypothesise that some BBI vari-

ants identified in this study could exert stronger inhibition on such

targets, resulting in improved anticancer activity. However, in vitro

and in vivo experiments are consequently needed to appraise the real

capacity of the best variants. Although this step is time costly (Cui

et al., 2020), it is fundamental to fully characterise the mechanism of

action and the target interaction in the models. In the long term these

results, if properly confirmed, could open a lot of applications, starting

from the use as supplements coming directly from everyday diet but

also the adoption of these molecules as drug synergic adjuvants in

combination with election drugs (such as cetuximab), reducing or

overcoming the drug-resistance phenomena in many tumours.
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