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Abstract
Aims  Alterations of the exocrine pancreas have been reported in type 1 diabetes, but their contribution to the pathogenesis 
of the disease is poorly understood. Here, we investigated markers of exocrine pancreas dysfunction in individuals at-risk 
of developing type 1 diabetes.
Methods  Serum P-amylase and lipase levels were assessed in samples obtained from healthy controls, patients with new 
onset type 1 diabetes, relatives participating to the TrialNet Pathway to Prevention who were, at blood collection, autoan-
tibody negative or positive for a single autoantibody (low-risk individuals), and positive for multiple autoantibodies (high-
risk individuals). Linear mixed models were adopted to estimate variation of pancreatic enzymes among the groups and to 
evaluate the influence of high-risk HLA genotypes and residual beta cell function on exocrine pancreas function.
Results  In adults, but not children, reduced levels of P-amylase and lipase were shown in at-risk individuals, including (for 
P-amylase levels only) those at low-risk, and in T1Dnew. Furthermore, while high-risk HLA genotypes negatively affected 
P-amylase levels in autoantibody negative adult individuals, fasting C-peptide levels did not correlate with pancreatic enzyme 
levels.
Conclusions  Exocrine pancreas dysfunction precedes the onset of type 1 diabetes in adult at-risk individuals and may be 
unrelated to fasting C-peptide levels.
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DR4	� DRB1*04
FE-1	� Fecal elastase-1
GAD	� Glutamic acid decarboxylase
HC	� Healthy controls
HLA	� Human Leukocyte Antigens
IA2	� IA‐2 molecule (IA‐2A)
IAA	� Insulin autoantibodies
ICA	� Cytoplasmic islet cell antibodies
LME	� Linear mixed model
OSR	� Ospedale San Raffaele
P-amylase	� Pancreatic amylase
T1D	� Type 1 diabetes
T1Dnew	� New onset type 1 diabetes patients
TN01	� TrialNet Pathway to Prevention Study
ZnT8	� Zinc transporter isoform 8

Introduction

Type 1 diabetes (T1D) has been recently reconsidered as a 
disease of the whole pancreas, rather than exclusively char-
acterized by self-reactive T cell-mediated beta cell destruc-
tion. In fact, consistent evidence now suggests that the exo-
crine component of the pancreas, mainly composed of acinar 
cells that produce digestive enzymes, is also involved in the 
disease process leading to beta cell loss.

Data corroborating this hypothesis are structural, immu-
nopathological and functional. Pancreas weight and volume 
are reduced in patients with overt type 1 diabetes as well 
as at-risk individuals, including relatives with and without 
islet autoantibodies, suggesting that pancreas remodeling 
occurs before and after seroconversion and may be geneti-
cally determined [1–7]. Immune cells are abundant both in 
the islets and the exocrine compartment [8–13], and autoan-
tibodies targeting exocrine pancreas-derived proteins were 
described in at-risk individuals as well as in patients with 
type 1 diabetes [14]. The reduced pancreatic mass, accom-
panied by immune cell infiltration, results in a subclinical 
exocrine functional impairment, characterized by an overall 
reduction of exocrine pancreatic enzymes, with trypsinogen, 
lipase and fecal elastase (FE-1) levels already decreased in 
at-risk individuals [15–18].

The heterogeneous clinical phenotype observed in 
patients with type 1 diabetes led investigators to propose 
the use of the ‘endotype model’, originally applied to the 
asthma field [19], also in type 1 diabetes. This model is 
based on the assumption that different mechanisms underlie 
the pathogenesis of the disease and can explain, at least to 
some extent, the variety of clinical phenotypes [20]. Here, 
we hypothesized that exocrine pancreas dysfunction contrib-
utes to type 1 diabetes heterogeneity; therefore, in this study, 
we attempted to clarify how pancreatic enzyme abnormali-
ties associate with age, sex, high-risk HLA genotypes, islet 

autoantibodies status and fasting C-peptide in individuals 
at various stages (low-risk, high-risk, clinical onset) of pro-
gression to type 1 diabetes.

Understanding the patterns of exocrine pancreas patho-
physiology in at-risk, pre-symptomatic individuals can con-
tribute to the understanding of type 1 diabetes heterogeneity 
and underlying endotypes.

Methods

Subjects

Subjects participating in this study were enrolled at Ospedale 
San Raffaele (OSR), Milan (Italy) from December 2010 to 
February 2019. In this study, 3 groups of subjects were 
enrolled. Group 1: relatives of patients with T1D were par-
ticipants to the TN01 TrialNet Pathway to Prevention Study 
(formerly Natural History Study) [21]. Based on their islet 
autoantibody profile at study entry, relatives were recruited 
as follows: autoantibody negative (AAb−, n = 276), subjects 
positive for single (AAb1 + , n = 74) or multiple (2 or more) 
autoantibodies (AAb ≥ 2 + , n = 50). The risk of progression 
to clinical type 1 diabetes is negligible in those negative, 
around 15% in those with a single autoantibody (low-risk), 
and more than 80% in those with multiple autoantibodies 
(high-risk) in the following 15 years [22, 23]. A fraction of 
at-risk subjects, equal to 14.6% (107 subjects out of 732), 
was followed longitudinally in the TN01, and multiple sam-
ples obtained from these individuals were used in this study 
(referred to as repeated measures). The total number of sam-
ples was 1092 from 732 subjects within 598 families. Group 
2: patients with new onset type 1 diabetes (T1Dnew, n = 86) 
according to the American Diabetes Association criteria [24] 
were enrolled either at the Pediatric or General Medicine, 
Diabetes and Endocrinology Departments of the Ospedale 
San Raffaele, Milan, Italy. Blood samples were withdrawn 
within 3 months from diagnosis. In patients presenting with 
diabetic ketoacidosis (DKA), blood samples were collected 
at least five days after hospital admission to rule out poten-
tial confounding factors affecting pancreatic enzyme levels 
[25]. Group 3: healthy non-diabetic controls (HC, n = 246) 
with no family history for type 1 diabetes undergoing sur-
gery for congenital diseases (i.e., flatfeet or hallux valgus) 
at the OSR Orthopedic Department. Subjects with current 
infection or missing data were excluded from the study. 
Detailed characteristics of participants are shown in Table 1.

Study approval

The study was approved by the Ospedale San Raffaele 
(OSR) Ethics Committee (IRB#TIGET004-DRI003). First-
degree relatives of T1D patients were enrolled in the T1D 
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TrialNet Pathway to Prevention Trial (TN01) at OSR (IRB# 
NHPROT32803-TN01). Peripheral blood was collected 
for mechanistic studies (approved by the TrialNet Ancil-
lary Studies Subcommittee). All participants (or parents for 
pediatric individuals) provided written informed consent. 
Participants over the age of 12 signed an additional study 
assent form.

Blood tests

Serum P-amylase, lipase and C-peptide concentrations were 
measured in the Ospedale San Raffaele central laboratory 
by automated methods, as follows. Serum P-amylase levels 
were measured using the enzymatic colorimetric method 
after inhibition of human salivary α-amylase (Cobas C, 
Roche/Hitachi, Roche Diagnostics GmbH, Mannheim, 
Germany); serum lipase levels using the enzymatic colori-
metric method (Cobas C, Roche/Hitachi, Roche Diagnos-
tics GmbH, Mannheim, Germany); fasting serum C-peptide 
levels using Electrochemiluminescent Assay, CLIA, on 
automatic Instrumentation Cobas 8000 (Roche Diagnostics 

GmbH, Mannheim, Germany). Reference ranges for the 
above enzymes are: P-amylase, 0–20 U/L (0–24 months), 
9–35 U/L (2–18 years) subjects, 13–53 U/L (> 18 years); 
lipase: 0–60 U/L. The following islet autoantibodies were 
measured in all enrolled participants except HC: islet cell 
antibodies (ICA), anti-IA2, anti-GAD, anti-insulin (IAA) 
and anti-ZnT8. Measurements were performed according 
to study protocol [21]. ICA were not routinely measured in 
T1Dnew. HLA genotypes were performed in an European 
Federation for Immunogenetics (EFI) accredited laboratory 
using the HISTO SPOT SSO System (BAG Health Care 
GmbH, Germany). DRB1*03 (DR3) and DRB1*04 (DR4) 
alleles are considered high-risk HLA genotypes for the 
development of type 1 diabetes [26].

Statistical analysis

Linear mixed-effects models (LME) were employed to esti-
mate the longitudinal trend of the amylase and the lipase 
and evaluate the differences among groups, since the data 
consist of repeated measurements of the same subjects with 

Table 1   Donor characteristics

All characteristics are shown for the total 1092 observations (732 subjects and 598 families, range number of observations per subject = 1–13). 
HC, Healthy controls; AAb−, Autoantibody negative; AAb1 + , Positive for 1 islet autoantibody; AAb ≥ 2 + , Positive for 2 or more islet autoan-
tibodies; T1Dnew, New onset type 1 diabetes patients. Data are presented as absolute %, mean ± SD, or median (first quartile, third quartile)

HC
N = 247

AAb−
N = 343

AAb1 + 
N = 208

AAb ≥ 2 + 
N = 208

T1Dnew
N = 86

Age (years),
median (range)

16.97
(1.45–48.08)

12.78
(1.11–46.03)

18.06
(3.31–51.04)

15.53
(4.32–45.56)

13.39
(3.89–47.62)

Sex
 Female, n(%) 116 (46.96%) 191 (55.69%) 101 (48.56%) 106 (50.96%) 35 (40.7%)
 Male, n(%) 131 (53.04%) 152 (44.31%) 107 (51.44%) 102 (49.04%) 51 (59.3%)

Number of Autoantibodies n/a
 0, n(%) 343 (100%) 1 (1.16%)
 1, n(%) 208 (100%) 12 (13.95%)
 2, n(%) 91 (43.75%) 15 (17.44%)
 3, n(%) 74 (35.58%) 38 (44.19%)
 4, n(%) 38 (18.27%) 20 (23.26%)
 5, n(%) 5 (2.40%) 0

Type of autoantibody n/a
 GAD65, n(%) 167 (80.29%) 197 (94.71%) 72 (83.72%)
 ZnT8, n(%) 0 133 (63.94%) 67 (77.91%)
 IA2, n(%) 6 (2.88%) 70 (33.65%) 54 (62.79%)
 ICA, n(%) 1 (0.48%) 110 (52.88%) 0
 IAA, n(%) 33 (15.87%) 71 (34.13%) 43 (50%)

Pancreatic Amylase (U/L) 25 (5–111) 22 (4–93) 23 (2–85) 23 (0–93) 16.5 (7–128)
Lipase (U/L) 26 (11–153) 27 (12–183) 26 (9–81) 24 (9–83) 23 (12–350)
Fasting c-peptide,
median (ng/ml)

n/a N = 64
1.61(0.595–3.695)

N = 159
1.55(0.435–4.35)

N = 188
1.455(0.375–3.25)

N = 79
0.41(0–2.8)

HLA (DR3 or DR4), n(%) n/a N = 97
67 (69.07%)

N = 206
136 (66.02%)

N = 201
153 (76.12%)

n/a
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some subjects belonging to the same family. Random effects 
were accordingly defined, nested by family and by subject. 
In order to meet the assumptions of normality of the model, 
the square root transformation was applied to the amylase 
and the logarithmic transformation was applied to the lipase. 
Both linear and quadratic terms for age at sample collection 
were included in the model to account for the nonlinear tra-
jectories of amylase and lipase over time. In the models, we 
also accounted for the possible effect of sex and the disease-
groups (HC, AAb−, AAb1 + or AAb ≥ 2 + and T1Dnew) at 
sample collection, for the interaction effect between the sex 
and the disease-groups and for the interaction effect between 
the age and the disease-groups. Backward selection proce-
dures were applied to select the most parsimonious model. 
Post-hoc analysis after LME was performed, considering 
all the pairwise comparisons of disease-groups at a fixed 
age. p-values were adjusted using Bonferroni’s correction. 
LME models were also employed to evaluate the effect of 
high-risk HLA genotypes and fasting C-peptide on amyl-
ase and lipase. These effects were evaluated separately and 

accounting for the possible effects of age, sex and disease-
groups and the interactions with these variables. All statisti-
cal analyses were performed using R 3.6.3 (http://​www.R-​
proje​ct.​org/) and the significance threshold was set at 0.05.

Results

Serum levels of P‑amylase and lipase are decreased 
in adult relatives of patients with type 1 diabetes, 
but not in children

Serum P-amylase and lipase levels were evaluated in rela-
tion to age and sex in HC, relatives of patients with type 1 
diabetes (i.e., AAb−, AAb1 + or AAb ≥ 2 +) and T1Dnew. 
Table 1 shows characteristics of participants including all 
1092 observations from 732 subjects. The linear mixed-
effects model showed that P-amylase levels increase with 
age in all groups although with different trends (Fig. 1a 
and Table S1). In HC, a significant positive linear effect 
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Fig. 1   Reduction of serum amylase and lipase occurs in adult rela-
tives of type 1 diabetes but not in children. a Final linear mixed-
effects model for predicting serum P-amylase levels based on dis-
ease-groups, age and sex as well as interactions among variables are 
shown. b–c Pairwise post-hoc comparisons among groups at fixed 
age for estimated level of P-amylase in female subjects. d Final linear 

mixed-effects model for predicting serum lipase levels on the basis 
of the disease-groups, age and sex as well as interactions with them 
are shown. e–f Pairwise post-hoc comparisons among groups at fixed 
age for estimated level of lipase in female subjects. Only significative 
comparisons p-values are shown in the graph

http://www.R-project.org/
http://www.R-project.org/
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of age is evident. Low-risk relatives (i.e., AAb− and 
AAb1 + individuals), although presenting a lower slope 
than HC, also showed increased P-amylase levels with age. 
In T1Dnew, P-amylase levels decreased during childhood 
and early adolescence, starting to rise only after the age 
of 15. Of note, high-risk individuals (AAb ≥ 2 +) showed 
a relatively flat curve until their 20 s, with an intermediate 
pattern between low-risk relatives and T1Dnew. Although 
within the normal range, in adults (Fig. 1b showing the 
status at age 30) estimated serum P-amylase levels were 
significantly reduced in at-risk individuals, already before 
seroconversion, and in T1Dnew patients. This was not 
observed in children, where the significant reduction was 
evident only in T1Dnew (Fig. 1c showing the status at 
age 10).

Age-dependent levels of lipase showed a similar trend 
compared to P-amylase, but differed in that HC have a 
less steep curve and subjects with multiple autoantibod-
ies overlap with T1Dnew patients (Fig. 1d and Table S2). 
Serum lipase levels in adults (30 years; Fig. 1e and Figure 
S1b left panel), but not in children (10 years; Fig. 1f and 
Fig. S1b right panel), were found significantly reduced 
in relatives with multiple autoantibodies and in T1Dnew 
patients compared to HCs. No statistical differences 
were evident between adult low-risk relatives and HCs 
(AAb− vs. HC, p = 0.090; AAb1 + vs. HC, p = 0.209) 
(Fig.  1e). Unexpectedly, lipase levels were increased 
in AAb− pediatric individuals compared to HCs, but 
declined in AAb ≥ 2 + subjects.

With regard to sex, males showed significantly lower lev-
els of both P-amylase and lipase compared to females within 
all groups (Fig. S1).

Overall, these data indicate that exocrine pancreas func-
tion is impaired in adults, but not in children, already during 
pre-symptomatic stages of type 1 diabetes. Moreover, in the 
case of P-amylase, function impairment is detectable already 
prior to islet autoantibody seroconversion, suggesting a pos-
sible genetic predisposition to exocrine dysfunction.

High‑risk HLA genotypes negatively affect 
P‑amylase levels of AAb1+ adult individuals

The effect of high-risk HLA genotypes DR3 and/or DR4 
on the exocrine pancreas function was tested in at-risk indi-
viduals. The presence of high-risk HLA genotypes has a 
negative effect on P-amylase (Table 2) in AAb1+ individu-
als only (AAb1+ × Age x HLA, p-value = 0.024), with a 
trend observed in AAb ≥ 2+ subjects (Ab POS ≥ 2+ × Age 
x HLA, p-value = 0.099), and no effect in AAb− (Ab 
POS ≥ 2+ × Age x HLA, p-value = 0.773). Notably, the 
effect of high-risk HLA in AAb1+ relatives was greater 
with increasing age (AAb1+ × Age, Ab POS ≥ 2+ × Age, 

p-value < 0.001), suggesting that the high-risk HLA geno-
types are associated with lower P-amylase levels in adults 
more than in children. No effect of high-risk HLA genotypes 
was observed on lipase levels (data not shown).

Fasting C‑peptide levels do not correlate 
with pancreatic enzymes reduction

To test the hypothesis that exocrine pancreas dysfunction 
is influenced by the loss of insulin secretion during the pre-
symptomatic stage of type 1 diabetes, we evaluated the effect 
of fasting C-peptide on P-amylase and lipase levels, account-
ing for the possible effects of age, sex and disease-groups 
and the interactions with these variables. After backward 
selection, the final models did not include fasting C-pep-
tide levels (data not shown) indicating lack of relationship 
between the two variables.

Discussion

Exocrine pancreas dysfunction is commonly accepted as a 
feature of type 1 diabetes, as evidence from multiple inde-
pendent studies have shown decreased levels of pancreatic 
enzymes [15–18, 27–30]. In this study, we demonstrate that 
impaired exocrine function, resulting in lower levels of cir-
culating P-amylase and lipase, can be detected long before 
the onset of clinical symptoms in at-risk adult individuals, 
but not in children. It can be postulated that the exocrine 
pancreas is able to better counteract type 1 diabetes-asso-
ciated pathogenetic destruction during infancy and early 
adolescence than in adult age, possibly thanks to the devel-
opment and regeneration ability of the pancreas in childhood 
[31]. This would lead to stable P-amylase levels during the 
pre-symptomatic stages of type 1 diabetes as observed at the 
age of 10, while declining thereafter as shown at the age of 
30. Since the study population was not randomly selected 
as it is part of a large T1D prevention trial, it cannot be 
excluded that, when subjects were aware of their autoanti-
body status, their lifestyle habits changed in such a way as 
to affect P-amylase and lipase levels. Furthermore, although 

Table 2   Effect of high-risk HLA genotypes on P-amylase levels

Parameter Estimate SEr p-value

Intercept 4.317 0.116  < 0.001
AAb− x Age 0.017 0.011 0.117
AAb1+ × Age 0.035 0.007  < 0.001
Ab POS ≥ 2+ × Age 0.032 0.009  < 0.001
AAb− x Age x HLA 0.003 0.011 0.773
AAb1+ × Age x HLA −0.016 0.007 0.024
Ab POS ≥ 2+ × Age x HLA −0.014 0.009 0.099
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this is an observational study in which subjects were selected 
retrospectively, with a non-negligible selection bias, our 
analysis allowed to control for a number of confounding fac-
tors. To strengthen these results, a validation cohort would 
be needed.

Reduced levels of FE-1 [16], serum trypsinogen [17] and 
lipase [18] have been reported in children at-risk of devel-
oping type 1 diabetes. In our analysis, we have taken into 
account the effect of multiple parameters (such as age, sex 
and number of autoantibodies) on P-amylase and lipase lev-
els. The different pattern of exocrine pancreas dysfunction 
observed between children and adults may explain why, 
in another study [18], pancreatic enzymes were not found 
reduced in individuals with low-risk of developing type 1 
diabetes. However, it should be noted that a limitation of 
our study is the lack of body mass index (BMI) and pubertal 
status data, which may affect pancreatic enzyme levels [32]. 
Although serum P-amylase and lipase levels are not con-
sidered sensitive biomarkers of exocrine pancreas function 
[33], our data are consistent with previous reports showing 
that exocrine pancreatic enzymes are a serological biomarker 
for T1D staging.

The lack of relationship between P-amylase with fasting 
C-peptide levels suggests that the counterregulatory mecha-
nisms against the progression of type 1 diabetes in younger 
age are more effective for the exocrine, as reflected by sta-
ble P-amylase, than the endocrine pancreas, as reflected 
by declining C-peptide. On the other hand, this divergence 
is unlikely to persist with advancing age and disease pro-
gression, as indicated by the recently reported correlation 
between P-amylase and C-peptide in adult new onset and 
long-standing type 1 diabetes [29]. However, it should be 
considered that fasting C-peptide, although considered a 
reasonably good indicator of endogenous insulin secretion 
[34], it is not the best way to estimate residual beta cell 
function, thus leaving still uncertain whether exocrine and 
endocrine compartments of the pancreas are interdependent 
in the natural history of type 1 diabetes.

The evidence that low-risk adult relatives display reduced 
P-amylase levels suggests that the genetic background may 
influence the impairment of exocrine pancreas function. 
However, with regard to HLA, we show that high-risk 
genotypes impact exocrine dysfunction only in adult sin-
gle autoantibody-positive individuals. It is possible that 
increasing sample size may help clarify the effect of HLA 
genotypes in multiple autoantibody-positive subjects. How-
ever, since other non-HLA genes may be equally involved in 
exocrine pancreas dysfunction, additional studies are needed 
to more comprehensively address the role of the genetics.

There is growing evidence that, behind the clinical phe-
notype, there are different mechanisms contributing to the 
pathogenesis of type 1 diabetes, thus highlighting the need 
to unveil disease endotypes [20]. Besides the heterogeneity 

of type 1 diabetes in terms of age at disease onset, genetic 
susceptibility, decline of residual beta cell function and 
pancreas-specific immune cell infiltrate, here we provide 
evidence that exocrine pancreas dysfunction occurs in at-risk 
adult individuals, possibly reflecting an endotype with a low 
progression rate. So far, the abnormalities of exocrine pan-
creatic function have been considered subclinical; however, 
in the perspective of a new trait of endotype heterogeneity, 
the possible clinical impact of exocrine pancreatic dysfunc-
tion in type 1 diabetes should be studied more in depth in 
the future.

Conclusion

In conclusion, our findings provide evidence that the exo-
crine pancreas dysfunction detected during the pre-symp-
tomatic stages of type 1 diabetes show different patterns of 
progression according to age, possibly reflecting a further 
trait of endotype heterogeneity.
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